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Abstract

Principal components analysis has been used for decades to summarize genetic variation across geographic regions and to
infer population migration history. More recently, with the advent of genome-wide association studies of complex traits, it
has become a commonly-used tool for detection and correction of confounding due to population structure. However,
principal components are generally sensitive to outliers. Recently there has also been concern about its interpretation.
Motivated from geometric learning, we describe a method based on spectral graph theory. Regarding each study subject as
a node with suitably defined weights for its edges to close neighbors, one can form a weighted graph. We suggest using
the spectrum of the associated graph Laplacian operator, namely, Laplacian eigenfunctions, to infer population structure. In
simulations and real data on a ring species of birds, Laplacian eigenfunctions reveal more meaningful and less noisy
structure of the underlying population, compared with principal components. The proposed approach is simple and
computationally fast. It is expected to become a promising and basic method for population genetics and disease
association studies.
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Introduction

Principal Components Analysis (PCA) is a classical statistical

tool to achieve dimension reduction through consideration of

linear combinations of the original variables. The top few principal

components (PCs) are the linear combinations that explain the

greatest amount of variation in the data. The use of PCA in

population genetics has a long history, including early work of

Cavalli-Sforza and colleagues [1,2], who considered high dimen-

sional genetic variants from population samples at many different

continental locations and used the top PCs to summarize the

genetic variation across space. While legitimate concerns have

been raised about the interpretation of such PC maps [3], PCA

can still provide useful information and is a commonly-used tool in

various contexts of genetic data analysis [4]. For example, there is

known to be a close connection between the spectral decompo-

sition of the migration matrix and that of the genetic covariance

matrix [5]. More recently, in genome-wide disease association

studies, PCA has been employed to detect and correct population

stratification [6–8], in which systematic ancestry differences

between cases and controls can lead to false positive association

between phenotype and genotype. Such spurious associations

[9–11] can occur when the disease frequency varies across

subpopulations, resulting in affected individuals being more likely

than unaffected individuals to be sampled from certain subpop-

ulations [12]. Though this topic has been extensively studied, PCA

has advantages [6] over other methods such as genomic control

[13] and structured association [14].

Motivated from geometric learning [15], we describe LAP-

STRUCT, a Laplacian eigenfunction approach based on graph

theory which we briefly introduced in Genetic Analysis Workshop

(GAW) 16 [16]. One regards each subject as a vertex of a weighted

graph [17], where the weight associated to the edge for each pair of

subjects is chosen as a function of their genetic relatedness, with higher

weight given when individuals are genetically closer (see Methods).

Thus, in this context, one thinks of the distance between each pair of

subjects as being based on their degree of genetic relatedness, not on

their geographical proximity. The resulting adjacency graph approx-

imates the underlying manifold of the dependence structure of the

sample. The eigenfunctions of the Laplace-Beltrami operator [18] on

the manifold are generalized geometric harmonic functions, which

contain useful intrinsic geometric structure information on the

population. The eigenvectors of the associated graph Laplacian matrix

(see Methods) are first-order linear approximations of the Laplacian

eigenfunctions, and they relate to the intrinsic dependence structure of

the data. The Laplacian eigenmap formed by embedding each subject

to a lower dimensional Euclidean space via the top few eigenfunctions

has a locality preserving property, that is, the distance between a pair of

subjects in the Laplacian eigenmap reflects the degree of their being

correlated. The more they are correlated, the closer together they are

mapped. As a result, the Laplacian eigenmap leads to cluster-like

structures for subjects who either come from the same discrete

subpopulation or share more common ancestry in an admixed

population.

The Laplacian eigenfunction method is part of a large class of

spectral methods that includes PCA as a special case. However,

the approach we use improves on PCA in that each vertex is

connected by edges to only its close neighbors, rather than to all

other individuals (where, here, closeness refers to genetic

relatedness rather than physical proximity). A justification for this

results from the connection between spectral clustering and

approximate solutions to graph cut problems (see previous work
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[19,20] for details). The result is that the Laplacian eigenfunction

method tends to emphasize substructure that affects many data

points rather than just a few extreme points, so the proposed

nonlinear algorithm is robust to outliers, in contrast to PCA.

Therefore we suggest using Laplacian eigenvectors instead of PCs

to study population structure. A similar approach based on

spectral graph theory is also treated by Lee et al. [20] with a nice

illustration on the POPRES data [21], but with different choices of

weight and data renormalization (see Methods and Discussion).

The proposed method, LAPSTRUCT, has arisen from the idea

of studying the geometry of the intrinsic dependence structure of

sample populations, which can be creatively regarded as a

weighted graph, together with a metric measuring the degree of

relatedness for each pair of individuals. The paradigm of the

approach is that local infinitesimal structure integrates out global

macroscopic structure. Another interpretation to this is to define a

random walk on the weighted graph constructed above, with a

suitably normalized transition probability between two nodes

reflecting their connectivity. Then one can use the top spectrum of

the Markov transition matrix to map the data to a lower

dimenional Euclidean space. This idea has clear antecedents in

earlier work in population genetics (e.g. [5]).

The results on both the Greenish warbler (a ring species) data

set [3,22] and a simulated data set with a spatially correlated

population give better approximations to the true population

structure than does PCA. Because Laplacian eigenfunctions are

generalized harmonic functions, the patterns observed from the

PC map on spatially correlated genetic data [3] are also present in

the Laplacian eigenmap. Therefore, any hypotheses of historic

migration suggested by LAPSTRUCT would require additional

evidence before a conclusion is made.

Results

Simulation Study A
In our simulations, we compare the results of LAPSTRUCT with

those of the PC-based method EIGENSTRAT [6]. Figure 1
illustrates the population structure dectected by EIGENSTRAT and

by LAPSTRUCT in the discrete population consisting of two

subpopulations (see Methods). In this example, the population

structure is perfectly captured by the vector, v, of length N, having

entry
{N2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1N2N
p ~{0:0316 for each individual in population 1 and

entry
N1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N1N2N
p ~0:0316 for each indvidual in population 2, where

N1 and N2 are the total numbers of individuals from subpopulations

1 and 2, respectively, and N~N1zN2 (see Text S1 online for

details). Both the PC and the Laplacian eigenvector appear to be

approximating v, but the Laplacian approach is clearly giving a much

more accurate approximation. While both approaches are effective at

clustering the data, the more accurate approximation of the ancestry

vector, v, by the Laplacian approach suggests that ancestry should be

more accurately accounted for in downstream analyses such as

association mapping. In principle, this should increase power, though

in our simulation the effect was slight (see Table 1). Figure 2 shows

the population structure identified by EIGENSTRAT and by

LAPSTRUCT in the admixed population. The PC map shows the

expected uniform distribution of ancestry proportion. However, the

Laplacian eigenmap shows a tendency to shrink the points toward

two clear clusters, indicating the two ancestral populations. For

disease association studies conducted in both simulations by simply

replacing the PCs by Laplacian eigenfunctions in the regression

setting introduced in reference [6], LAPSTRUCT peforms as well as

EIGENSTRAT (see Table 1).

Simulation Study B
The sensitivity of PC to outliers is illustrated by the analysis of

the spatially correlated population that consists of subpopulations

arranged on a circle and an additional isolated subpopulation.

When 10 individuals from the isolated subpopulation are included

Figure 1. Structure of a simulated discrete population.
Population structure detected by PCA (top) and by Laplacian with
e~1:0 (bottom), for the discrete population consisting of two
subpopulations.
doi:10.1371/journal.pone.0007928.g001

Table 1. Simulated Association Testing.

EIGENSTRAT
LAPSTRUCT
(e~1:0)

LAPSTRUCT
(e~2:0)

Discrete population

Random SNPs 0.0001 0.0001 0.0001

Differentiated SNPs 0.0001 0.0001 0.0001

Causal SNPs 0.4735 0.4762 0.4739

Admixed population

Random SNPs 0.0001 0.0001 0.0001

Differentiated SNPs 0.0001 0.0001 0.0001

Causal SNPs 0.4891 0.4919 0.4863

Proportion of association reported as significant by EIGENSTRAT and
LAPSTRUCT at significance level 10{4, based on 100,000 simulations.
doi:10.1371/journal.pone.0007928.t001
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in the sample, the top PC focuses on isolating those outliers, and

the PC map based on the top 2 components does not capture the

full structure of the data, missing the circle configuration of the

population structure (see Figure 3). With the outliers removed

from the sample, the PC map based on the top two PCs does give

the ring shape of the population structure. In contrast, the

Laplacian eigenmap based on two components identifies the full

population structure even in the presence of outliers, demonstrat-

ing that it is much more robust to outliers than is PC. The

additional smoothness in the Laplacian eigenmap compared to the

PC map might be due to the fact local correlation is weighted

more highly, which gives a local smoothing effect.

Phylloscopus trochiloides
Figure 4 below illustrates the population structure detected by

the PCA and Laplacian methods, respectively, where one can

more clearly observe the ring-shape structure in the Laplacian

eigenmap, compared to the vague structure shown in the PC map.

Discussion

We have developed LAPSTRUCT, a Laplacian eigenfunction

approach for detection and correction of population structure in

Figure 2. Structure of a simulated admixed population. The
ancestral population structure detected by PCA (top) and by Laplacian
with e~1:0 (bottom), for the admixed population with two ancestral
populations, where crosses (circles) stand for individuals whose
ancestry proportion from ancestral population 1 is larger (smaller) than
one-half.
doi:10.1371/journal.pone.0007928.g002

Figure 3. Structure of a simulated ring population. Population
structure detected by PCA (with and without outliers present) and by
Laplacian with e~0:4, for the simulated ring population.
doi:10.1371/journal.pone.0007928.g003
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genetic studies. LAPSTRUCT can be viewed as a robust alternative

to PC-based methods such as EIGENSTRAT. Like PC, LAP-

STRUCT naturally leads to population clusters according to the

degree of genetic correlation among individuals. However, LAP-

STRUCT is designed to be less sensitive to outliers than PC,

emphasizing structure that affects many data points rather than just a

few extreme points. LAPSTRUCT can reveal less noisy and richer

structure at different scales by varing the parameters. It is expected to

become a promising tool for population genetics.

In the simulation studies, the top Laplacian eigenfunctions

identify the overall structure, while the PC approach has a

tendency to highlight outliers, when they are present. For example,

in the spatial simulation with outliers, PC requires three

components to find the ring structure, while the Laplacian

eigenfunction approach finds the ring structure with only two

components. This suggests that the Laplacian eigenfunction

approach could be more useful than the PC approach in contexts

such as association mapping in which it is desirable to capture the

population structure with as few components as possible, in order

to preserve power. Additionally, only those eigenfunctions for

which cases and controls have significantly different distributions

need to be accounted for in the setting of association mapping, and

including unnecessary eigenfunctions will lead to power loss.

Further investigation in this direction is encouraged.

The Laplacian eigenmap approach we describe is part of a

more general setting of spectrum-based dimension reduction

techniques that includes the PC approach. The appropriate choice

of the neighborhood parameter, e, is what causes the Laplacian

eigenmap to be less sensitive to outliers than PC. When e is

sufficiently large, the Laplacian eigenmap approach and the PC

approach can produce very similar results. As e is decreased, the

Laplacian eigenmap can capture the local dependence structure at

different scales. In practice, e should be chosen reasonably large to

make the graph connected and maintain valid type one error for

association studies. For example, e could be the a-th quantile for

some suitable a. An alternative on the scale of neighborhood is to

select each subject’s K closest neighbors in terms of correlation for

some reasonably large integer K . To avoid the issue of tuning

parameter selection Lee et al. [20] simply take wjk~
ffiffiffiffiffiffi
cjk
p

if cjkw0,

otherwise wjk~0: Generally there is room for different choices of

weights which may give close performance, and the optimal

weight is worth further investigation. The threshholding technique

seems appropriate and it has been widely accepted. It reduces the

noise from less correlated samples. We incorporate this idea in the

renormalization of the genotype data, where each individual’s

SNP is normalized using the local SNP frequency estimated from

only those closely correlated individuals. We note this is

appropriate when the data are abundant, and one would certainly

use all data instead if the sample size were relatively small.

Materials and Methods

Phylloscopus Trochiloides (Greenish Warblers) Data
Greenish warblers are most abundant in western and eastern

Siberia, where they form a ring species complex. The complex

consists of two main populations connected by gene flow via a

narrow band of populations to the south that are arranged in a ring

around the Tibetan plateau. There is no mating between the two

main populations where they overlap geographically, so greenish

warblers can be regarded as inhabiting a one-dimensional habitat.

Irwin et al. [22] collected 105 individuals from 26 geographic sites

and each individual was typed for presence or absence at 62

amplified fragment length polymorphism (AFLP) markers.

Laplacian Eigenfunctions
Regard each individual j as a vertex Vj in a weighted graph

G~ V ,Eð Þ, where j~1 to N. Let the weight between individuals j

and k be a Gaussian kernel Wjk~e{
Vj {Vkk k2

t if j=k and

Vj{Vk

���� ve, and Wjk~0 otherwise. Here t and e are some

selected positive real numbers. The e measures the size of each

subject’s neighborhood. The constant t stands for the global

diffusion scale on the graph and we set t~1:0 in all the

computations. (For information on the effects of e and t on

detection of population structure, see Figure S1 online.) The

Vj{Vk

�� �� measures the distance between vertex Vj and Vk. We set

the distance Vj{Vk

�� ��~1{Cjk, where Cjk is the estimator of

genetic correlation [6] between individuals j and k. Specifically, let

gij denote the genotype 0,
1

2
,1

� �
of individual j at SNP i. We

normalize the vector of genotypes for SNP i by subtracting off its

average, mi~
1
N

P
j gij , and then dividing each entry byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
pi 1{pið Þ

r
, where pi is an estimate of the allele frequency at

SNP i given by pi~

1

2
z
X

j
gij

1zN
. (All missing entries are excluded

from the computation.) Let Xij be the resulting normalized

genotype for SNP i in individual j. Then we set Cjk~
1
N

P
i XijXik.

To avoid the effects of population structure in the allele

frequency estimation, the same idea above leads to an alternative

Figure 4. Ring Structure of a real dataset. Population structure
detected by PC map and by Laplacian eigenmap with e~0:90, for
Greenish Warbler dataset.
doi:10.1371/journal.pone.0007928.g004
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local SNP frequency estimation and genotype updating approach.

Instead of estimating a single allele frequency per marker, we

compute a local SNP frequency fij for each individual j at SNP i

simply by including only those individuals whose correlation

with individual j is larger than 1{e. That is,

fij~
1

# k : Ckj§1{e
� �X

k:Ckj§1{ef g gjk. Next we denote the

updated genotype matrix G from the original genotype matrix g

by Gij~
gij{fijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
fij 1{fij

� �r .

Let D be a diagonal matrix of size N|N with entries

Djj~
P

k Wjk, a natural measure on the vertices. The Laplacian

matrix on graph G is defined to be L~D{W . Note that L is a

symmetric and positive semidefinite matrix, and we restrict to the

normalized version D{1L which is not symmetric anymore. The

eigenfunctions of the normalized equation Le~lDe are denoted by

ej~ ej1, . . . ,ejN

� �T
for each j, ranked according to the reverse order of

their corresponding eigenvalues, i.e., l0ƒl1ƒl2ƒ . . .. It is easy to see

that 0 is always an eigenvalue with constant eigenvector consisting of all

1’s. These eigenfunctions generalize the low frequency Fourier

harmonics on a manifold approximated by the graph G. To achieve

dimension reduction, the Laplacian eigenmap with first n (usually

small, 2 or 3) eigenvectors is defined by f : k? e1k,e2k, . . . ,enkð Þ[Rn

for individual k. Note that the situation here is different from PCA,

where one takes the PCs corresponding to the largest eigenvalues which

account for the largest amount of variation in the data. The justification

is given below. We remark that a symmetrically normalized version of

L is given by D{1
2LD{1

2. The Laplacian eigenmap using the

corresponding spectrum gives comparable performance. For the

relationship between these two versions, see [19].

The Laplacian eigenmap approach we describe is part of a more

general setting of spectrum-based dimension reduction techniques

that includes the PC approach. The appropriate choice of the

neighborhood parameter, e, is what causes the Laplacian eigenmap

approach to be less sensitive to outliers than PC. When e is sufficiently

large, the Laplacian eigenmap approach and the PC approach can

produce very similar results. This is shown in Figure 5 for the

simulated discrete population model. As e is decreased, the Laplacian

eigenmap can capture the local dependence structure at different

scales. See Figure S2 online for an illustration.

To apply the Laplacian eigenmap method to disease association

studies, one can follow a multiple regression approach as in [6]. For

example, one could regress genotypes and phenotypes on the top K

Laplacian eigenvectors for each individual, and then compute the

adjusted x2 statistic of the residuals. In the simulations, we set K

equal to 10, in order to make a comparison with EIGENSTRAT.

Justification of Weight Kernel and Laplacian Eigenmap
The selected Gaussian weight is optimal in a certain sense, and

it has a deep connection to the heat kernel on a manifold that gives

the general solution to the heat equation. In the discrete case, the

Laplacian of a function can be expressed as combinations of heat

kernels which locally approximate the Gaussian kernel. For the

mathematical details, see references [15,17]. The locality preserv-

ing property of the Laplacian eigenmap follows from the fact that

the cost function of a weighted graph equals the Laplacian of the

map function, that is, :5
P

i,j Wij f xið Þ{f xj

� �� �2
~f ~xxð ÞtLf ~xxð Þ,

where xif g are the collection of nodes and

f ~xxð Þ~ f x1ð Þ, . . . ,f xNð Þð Þt: So the minimization problem reduces

to finding f xð Þ that minimizes f ~xxð ÞtLf ~xxð Þ, subject to the

constraint f xð ÞtDf xð Þ~1, and this is equivalent to the generalized

eigenvalue problem stated above. This also explains why the

Laplacian eigenmap ranks the eigenvalues in increasing order.

Simulation Study A. Discrete and Admixed Populations
To simulate a discrete population consisting of two subpopula-

tions, we follow a model of population structure used in reference

[10] (see also [6]). Each subpopulation is generated by the Balding-

Nichols model, but with each subpopulation having its own

generalized Fst value (0.01 and 0.05, respectively, for subpopula-

tions 1 and 2), instead of the same value for both subpopulations (see

[10] for details). The population allele frequency of each random

SNP is sampled uniformly from 0:1,0:9½ �. The allele frequency

within each subpopulation is drawn from a beta distribution,

Beta
p 1{Fstð Þ

Fst

,
1{pð Þ 1{Fstð Þ

Fst

� �
. For each individual, 10,000

SNPs were generated. The sample consists of 500 cases and 500

controls, where 60% of cases and 40% of controls were from

subpopulation 1 and the rest were sampled from subpopulation 2.

For the admixed population with two ancestral populations, the

ancestral populations’ generalized Fst values were set equal to 0.01

and 0.09 respectively. For the admixed population, 1,000

individuals were sampled, half cases and half controls. The sample’s

ancestral proportions are assumed uniformly distributed from 0 to 1.

For the causal allele, a risk model [6] with relative risk r~1:5 was

used for both the discrete population and the admixed population.

Figure 5. QQ-plot of PCA and Laplacian. QQ-plot of the top two
PCs and Laplacian eigenfunctions with e~2:0 for the simulated discrete
population.
doi:10.1371/journal.pone.0007928.g005
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The allele frequencies for highly differentiated SNPs are respectively

set to 0.2 and 0.8 in the two subpopulations.

Simulation Study B. Spatially Correlated Population
Following reference [3], an equilibrium population is simulated

using the software MS for population genetics developed by

Hudson [23]. The population consists of 100 subpopulations

equally spaced on a circle, with members of an additional isolated

subpopulation as outliers. Each subpopulation is assumed to

consist of an equal number of diploids. During each generation

backward in time, a fraction m~0:1 of each subpopulation along

the circle is made up of migrants from each adjacent subpopu-

lation, and there are no gamete swaps between non-adjacent

subpopulations. 1,000 SNP loci were independently simulated

with one segregating site per locus, and 10 individuals were

sampled from each subpopulation.

URL. Software for running LAPSTRUCT on a Linux

platform is available at http://galton.uchicago.edu/ ˜junzhang/

LAPSTRUCT.html.

Supporting Information

Text S1 Supporting Text

Found at: doi:10.1371/journal.pone.0007928.s001 (0.09 MB

PDF)

Figure S1 Here we consider the simulated discrete population

consisting of two subpopulations, analyzed with e= 1.0 in all cases.

When the scale parameter t is sufficiently small, the Laplacian

matrix L degenerates to the identical matrix I and no structure can

be detected. When t = 0.1, the second Laplacian eigenfunction

degenerates approximately to zero for one of the subpopulations.

For larger t values, there are little difference in the detected

structures.

Found at: doi:10.1371/journal.pone.0007928.s002 (0.08 MB

PDF)

Figure S2 Here we consider the simulated discrete popualtion

consisting of two subpopulations, and t = 1.0 in all cases. When

e= 0.96, the graph has two connected components representing

two subpopulations and the top two Laplacian eigenfunctions

degenerate to 0 and -1/J 500 = -0.0447. When e$1.0, the graph

is connected. As e increases, the local correlation structures

revealed by the Laplacian eigenmap evolve to global structures

which approximate to PCs.

Found at: doi:10.1371/journal.pone.0007928.s003 (0.11 MB

PDF)
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