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Abstract

We consider the identification of interacting protein-nucleic acid partners using the rigid body docking method FTdock,
which is systematic and exhaustive in the exploration of docking conformations. The accuracy of rigid body docking
methods is tested using known protein-DNA complexes for which the docked and undocked structures are both available.
Additional tests with large decoy sets probe the efficacy of two published statistically derived scoring functions that contain
a huge number of parameters. In contrast, we demonstrate that state-of-the-art machine learning techniques can
enormously reduce the number of parameters required, thereby identifying the relevant docking features using a miniscule
fraction of the number of parameters in the prior works. The present machine learning study considers a 300 dimensional
vector (dependent on only 15 parameters), termed the Chemical Context Profile (CCP), where each dimension reflects a
specific type of protein amino acid-nucleic acid base interaction. The CCP is designed to capture the chemical
complementarities of the interface and is well suited for machine learning techniques. Our objective function is the
Chemical Context Discrepancy (CCD), which is defined as the angle between the native system’s CCP vector and the decoy’s
vector and which serves as a substitute for the more commonly used root mean squared deviation (RMSD). We demonstrate
that the CCP provides a useful scoring function when certain dimensions are properly weighted. Finally, we explore how the
amino acids on a protein’s surface can help guide DNA binding, first through long-range interactions, followed by direct
contacts, according to specific preferences for either the major or minor grooves of the DNA.
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Introduction

Interacting molecules convey information via their association

that is driven by surface complementarity and chemical compat-

ibility. However, predicting the docking process generally requires

some structural knowledge (although attempts exist of simulta-

neously predicting folding and docking [1]). Given a number of

recent and promising structure prediction algorithms for DNA [2],

RNA [3,4,5], and proteins [6,7], along with the wealth of data

generated by various structural genomics initiatives [8,9], a major

goal is to devise methods for the automatic determination of gene

and protein networks at a molecular level and on a genomic scale.

This daunting task requires docking algorithms that can handle

the three major classes of molecules, as well as large scale

computing resources to perform the computations on a genomic

scale.

Although a number of approaches are available for predicting

the docking of small ligands and proteins with other proteins

(although not necessarily highly successful), the treatment of the

docking of nucleic acids (NAs) onto proteins lags far behind. The

continually growing database of solved structures for NA-protein

molecular complexes [10] is available for mining to extract the

rules governing molecular association [11,12,13]. As found in the

PDB, the protein-protein docking process is the most studied and

critically reviewed [14,15,16] because it is believed to be the most

prominent molecular assembly [17]. The fewer existing studies for

protein-NA docking [18,19] include those with DNA [18,20,21]

and RNA [19,22] and with force field development [23]. These

studies mainly employ scoring functions that either involve all the

atoms or all beads in reduced many bead models, but the scoring

functions are meaningful only in assessing the structure of a solved

complex or a very high resolution models. Other treatments use

fuzzy restraints, for example, from experimental studies [18] but

are restricted to treat either protein-DNA or protein-RNA

interactions.

Our goal is two-fold. The first goal is to analyze the behavior of

the rigid body docking methods when beginning with either the

bound (apo) or unbound (holo) crystal structures for the molecules

to be docked. The second goal is to assess the performance of two

published statistical scoring functions, commonly known as

statistical potentials, and to compare them with our new statistical

potential that is based on machine learning methods and that
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contains orders of magnitude fewer parameters than the published

statistical potentials. The study further aims to provide reasonable

performance using only the holo forms of the molecules and to

devise scoring functions that are able to discern credible or native-

like docking poses.

Results and Discussion

Protein-DNA benchmark
We use van Dijk and Bonvin’s protein-DNA benchmark set

composed of 47 complexes whose PDB IDs are summarized in

Table S1 [24]. This benchmark includes the bound and unbound

forms of the proteins and DNAs, enabling tests of the importance

of flexibility and conformational change for both the protein and

DNA as well as on the performance of rigid body docking methods

and various scoring functions.

Performance of rigid body docking
Rigid body docking methods have garnered tremendous

attention because of the development of fast geometric algorithms

using fast Fourier transform calculations of surface complemen-

tarity [25]. These methods can be systematic and exhaustive in the

exploration of all degrees of freedom since 1010 docked

conformations or poses can be generated. But the analysis of such

a large decoy set is challenging. Hence, most applications

including ours use far fewer poses.

We retain the best 105 models from the entire 1010 models

produced for each protein-NA complex by FTdock [26,27] and

query whether such a large decoy set is required to find a

sufficiently accurate pose. The best models are initially selected

based on surface complementarity scores (SCS) assigned by

FTdock, rather than on chemical and electrostatic compatibility.

These models are assigned an SCS rank from 1 to 105. Models also

are ranked by the root-mean-squared-deviation (RMSD) calculat-

ed between the model and native DNA conformations after the

proteins have first been aligned.

In order to further restrict the size of the decoy set, only poses

with SCS ranks below a threshold (e.g., the top 103 decoys from

the 105 set) are retained. The degree of success is defined as the

fraction of the best 20 RMSD scoring decoys in this smaller subset.

This procedure allows us to examine whether the subset of decoys

with the best surface complementarity also contains poses with low

RMSD to the native pose.

Figure 1a presents the fraction of the 20 lowest ranking RMSD

in the decoy subset as a function of the size of the decoy subset.

Here, we use the bound forms of the molecules because they

provide for a mimic of a best case scenario. On average, 12 of the

best 20 RMSD poses are found in the subset of the best 103 decoys

that have been selected according to SCS rank. This number

increases to 16 when the subset contains the best 104 SCS decoys,

and, of course, increases to 20/20 in the entire set of 105 decoys.

Although the increase in low RMSD structures is mild, it does

indicate that on average models can still have low RMSD even

when the surface complementary is far from optimal. Nevertheless,

we find that for some complexes, the entire set of 105 poses is

required to find low RMSD poses (data not shown). Consequently,

we use 105 poses in the following tests.

Next, we inquire how well rigid body docking describes protein-

DNA interactions. The algorithm is challenged with five docking

trials that utilize the four combinations of the bound and unbound

conformations of the protein and DNA molecules, as well as an

extra trial using the bound form for the DNA and protein but with

the protein’s side chains rebuilt using the SCWRL algorithm in

order to study contributions from side chain reorganization. For

each trial, 105 decoys are generated for each of the N = 47

complexes, yielding a total of 23.56106 decoys. Three goodness-

of-fit metrics quantify the performance: 1) The RMSD between

the DNA molecules of the native and model once the proteins are

aligned. 2) The fraction of native contacts, as defined in the

CAPRI experiment [15]. A contact is defined to exist between a

protein moiety and one in DNA if their separation is less than 7 Å.

The intersection of the set of contacts in the native co-crystallized

complex with the corresponding set in a model defines the true

positives (TP), i.e., the predicted contacts in the model complex

that are also present in the native complex. The difference

between the sets represents the false negatives (FN), i.e., the

contacts present in the native complex but absent in the model.

The fraction of native contacts is then TP/(TP+FN). 3) The

protein Matthews correlation coefficient (MCC) compares the set

of protein residues in contact with DNA in the native complex

with that of a model as follows. The native set comprises the

residues in the complex found to be in contact with DNA, while

those in contact with DNA in the model define the model set. The

intersection between the sets gives the true positives (TP). Residues

in contact in the native complex but not in the model are the false

negatives (FN). Similarly, residues in contact in the model but not

in the native are false positives (FP). The MCC is computed as

(TP/(TP+FP) TP/(TP+FN))1/2. Because the MCC only considers

the protein residues in contact with DNA, regardless of the DNA

nucleotide, the MCC provides a less stringent than the measure of

fraction of native contacts.

When the docked conformations of the molecules are used, a

pose with a DNA RMSD#4 Å is present for 80% of the N = 47

benchmark complexes (Fig. 1b). This result indicates that the rigid

body docking procedure can be satisfactory. However, only about

50% of the benchmark complexes can be redocked to within 4 Å

when the protein side chains are rebuilt using SCWRL but in the

absence the DNA to reflect real world situations where only the

protein’s structure in the unbound state is known. Hence, the

proper orientation of the amino acid side chains significantly

influences the success of the docking. Our calculations use the

default settings in FTdock to restrict the interpenetration of the

two docked molecules; other settings may perform better. Here, it

is tempting to compare the protein-DNA results to those of

protein-protein docking predictions. Because of the elongated

shape of the DNA molecule, any small tilt of the DNA significantly

increases the RMSD, whereas proteins, with their more globular

shape, show RMSD values that are more robust to misdocking.

We suggest that the CAPRI criteria for pose quality should be

revised to take this effect into consideration.

A sharp decrease in performance ensues when either or both of

the molecules are in the unbound or holo state. Merely 5% of the

systems achieve the threshold of RMSDbest#4 Å, while only 50%

can be rebuilt to within 10 Å when using unbound conformations.

Interestingly, the overall performance is slightly better when the

protein is in the holo state. Potentially, docking using various DNA

shapes could be a quick alternative to test a new target (Figure 1b,

U/B: unbound protein/bound DNA). Regardless, these perfor-

mances are underwhelming for the situation that best corresponds

to a realistic scenario. One can find the data for Figure 1b in Table

S6.

When the fraction of native contacts is taken as the measure of

performance, 80% of the 47 benchmark complexes are rebuilt

with 30% of the native contacts or better (Figure 1c). This value of

30% corresponds to the minimum at which the docking is

designated as ‘‘medium’’ in the CAPRI competition. Strikingly,

the performances are better using the unbound forms of both the

protein and DNA; more than 90% of the complexes yield medium

ProteinDNA Interactions
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poses or better. This striking outcome may be quite significant in

enabling the use of rigid body docking with the holo form when

screening a structural database to find a suitable binding target,

provided that the scoring functions are sensitive enough to identify

these ‘‘early-encounter’’ conformations that form just prior to

relaxation of the DNA and/or protein conformation. This

phenomenon of improved docking with the unbound states is

consistent with the ‘‘funnel-energy model’’ as reported in a recent

study of protein-protein binding [28].

Similarly, up to 90% of the benchmark complexes yield protein

MCC indices $0.6 when using the unbound structures (Figure 1d).

Therefore, the use of the holo form in rigid body docking can still

provide useful information as to where a DNA molecule may bind

and thereby guide experimental studies. The next section describes

a new measure to assess the quality of rigid body docking models.

Physical representation of protein and NA
Our scoring function employs a representation describing the

pairs of interacting chemical moieties between proteins and DNAs.

The typical interactions are mostly polar, with the protein using

positively charged side chains to ‘‘pierce’’ the electronegative

envelope of the NA and to form a hydrogen bond with the base or

sugar [29,30,31]. Since most of the interactions involve the

phosphate backbone or sugar group atoms [13,32], our scoring

function uses one pseudo-atom to represent each of these

interacting groups (Figure 2a). The backbone pseudo-atom is

located at the position of the phosphorus atom (P). Because base

pairs are recognized by different amino acid side chains in a

manner depending on the base pair type and on access to the

sugar [31,33,34,35], each base is assigned two interacting centers

(i.e., pseudo-atoms), one on the major groove side (M) and the

other on the minor groove (m). This representation involves a total

of 15 interacting centers to model the NAs (three moieties times

five nucleotides).

Each of the 20 amino acids is represented by a single pseudo

atom that is centered on the Cb atom because this position conveys

most of the interacting information [36], and side chain

information need not be specified, thus, better mimicking real

Figure 1. Performance of rigid-body docking. (a) Justification for decoy set size. The top 20 CCD (n) or RMSD (,) ranks for the N = 47
complexes in the benchmark set are plotted against the size of the decoy set generated using molecules in the bound conformation. (b,c,d) The
performance for the five docking trials using different combinations of bound and unbound conformations: bound protein/bound DNA (N, B/B),
bound, but with rebuilt side chains (&, S/B), unbound/bound (,, U/B), bound/unbound (n, B/U), and unbound/unbound (#, U/U). A total of 105

docked conformations are generated for each complex. (b) Fraction of the complexes having an RMSD of the 20th best decoy better than the abscissa
(e.g., 50 percent of the benchmark can be rebuilt to within 10 Å using the unbound forms as marked with the two intersecting grey lines). (c) Same as
(b) but for fraction of native contacts. The higher the score the better; docking would have the value 1.0. For 80 percent of the benchmark, decoys
have at least 30% of the native contacts (intersecting grey lines). (d) Same as (b) but for the MCC. The true positives (TP), false positives (FP) and false
negatives (FN) are computed by comparing the protein residues in contact with DNA in the crystal structure compared to a docked model. Higher
values are better; a perfect docking would score1.0. As much as 90 percent of the benchmark decoys have MCC greater than 0.6.
doi:10.1371/journal.pone.0032647.g001
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Figure 2. Protein and DNA representation and the Chemical Context Profile. (a) Interacting centers for nucleic acids. For each of the nucleic
acids, A:adenine, C:cytosine, G:guanine, U:uracil and T:thymine, the three moieties used to describe a nucleotide are highlighted by shaded disks.
Each nucleotide has three interacting centers; one in the phosphate group and one in each of the grooves, major and minor. The nucleic acids are
paired in the canonical Watson-Crick configuration to expose the positions of the two double-helical grooves. The thick curved lines represent the
major grooves (over the base pairs), while the thin ones the minor grooves (under the base pairs). (b) Comparison of the CCP magnitude with the loss
of accessible surface area upon docking using complex 1A0A with a 103 poses decoy set. The area loss is computed as the area of the complex minus
the area of the isolated protein and DNA, using the msms computer program (ref). The squared Pearson correlation coefficient is 0.6. (c,d,e,f) CCD
versus RMSD for 105 decoys. The CCD correlates with the RMSD when the RMSD values are low (e.g. ,10 Å). (c) The non palindromic DNA (2IRF). (d)
The DNA sequence (1ZME) has two palindromic regions at both ends (e) The DNA (1Z9C) has a palindromic sequence. (f) Expanded version of (c,d,e)
near the origin into the zero closed triangles, 2IRF; open circles, 1ZME; and closed boxes, 1Z9C. The Pearson’s R-Squared values for linear fits are
provided.
doi:10.1371/journal.pone.0032647.g002
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world situations. Hence, the representation contains a total of 20

amino acids x 15 nucleic acids moieties, or 300 different pairwise

interacting types. The next sections provide an examination of

whether a rather small subset of the pairwise interactions can be

extracted to suffice for our purposes.

Chemical Context Profile
Supervised learning tasks must train the learning algorithm on

objects that are defined as ‘‘good’’. Identifying what is good for

protein-NA docking becomes a non-trivial problem. Using the

RMSD as a measure of goodness can mislead the learning

algorithm, especially when many degenerate solutions of equal

merit have different RMSDs. We define merit or success based on

finding docking interfaces with the similar number and type of

contacts as present in the native pose, rather than just those with a

low RMSD.

This situation contrasts with that for protein-protein and

protein-ligand docking where the RMSD [37] is the de facto

scoring standard for assaying prediction quality. The RMSD,

however, is poorly suited for scoring protein-NA poses because

NAs often have rotational and translational symmetries due to

their double-helical structure. For example, a 180u rotation of a

duplex with a nearly palindromic sequence produces a large

RMSD, yet the pose still has a near-native set of contacts. Hence,

this model should also be assigned a good score. Conversely, two

DNA docking poses that have the same RMSD to the native pose

can be of considerably different quality. One pose might preserve

most of the chemistry (e.g., due to a small tilt of the DNA), while

the other produces an entirely different set of interactions (e.g., a

small sideways translation of the DNA). The situation can be even

worse when the molecule has high order symmetry such as the

near palindromic DNA example. Furthermore, the RMSD often

fails to capture the essence of the docking, which is best viewed as

a search for a given set of molecular contacts between moieties of

particular chemical character.

Accordingly, we introduce a 300-dimensional vector termed the

Chemical Context Profile (CCP, see Materials and Methods) to

describe a docking configuration. Each dimension of the vector is

the interaction energy associated with one of the aforementioned

300 pairwise protein-NA interacting pairs (energies to be defined

below). This vector is intended to capture the chemical context of

the interacting surface. The CCP also correlates with the loss of

surface area upon docking (using decoy set with one thousand

decoys) (Figure 2b), and, hence, provides a quicker alternative for

evaluating the area of the binding site than from analytical

algorithms [38]. Below we demonstrate that the CCP is useful in

scoring the decoys as well.

Energy function
We now describe the energy function to be used in conjunction

with the CCP. Protein-NA interactions include long-ranged

electrostatic energies. However, their effective range is an open

issue [39]. The side chain of each amino acid type has an average

extent beyond the Cb atom. Within this distance, the interaction

energy is assumed to be constant (Table S5), while beyond this

distance, our potential decays as 1/r, similar to the electrostatic

potential, with the specific functional form f(r) = 1/max(3.5,r-

,e.), where r is the separation (in Å).

A possible concern about the long-range 1/r interaction is

allayed by the fact that the Onsager length is 140 Å in a medium

of low dielectric permittivity e= 4, such as that inside a

biomolecule. The binding interface between the protein and the

nucleic acid is assumed as being largely desolvated. Because the

rigid body docking approach only generates approximate models,

we anticipate that the 1/r dependence should be adequate for our

study.

Chemical Context Discrepancy
The Chemical Context Discrepancy (CCD) is a measure

introduced to guide the learning algorithm in selecting decoys

with a native-like chemical context rather than a low RMSD. To

emphasize our point, consider three DNA duplexes of increasing

palindromic character. This increase results in the growth of a

second minimum at ,25 Å in plots of the CCD versus RSMD

(Fig. 2c–e). A learning algorithm that is trained only on low

RMSDs decoys would exclude those at 55 Å even though both

configurations have essentially the same chemical context.

Although a low CCD score does not imply a low RMSD, the

converse is largely true, and the correlation is linear (Fig. 2f).

Because we seek to score based on poses having a native-like

chemical context, docking configurations are considered as native-

like when they have a similar CCP as the native pose. The

difference in CCP profiles of the decoy and the native is quantified

by the angle between the CCP vectors for the native and decoy

poses, as determined using the dot-product cos (CCD)~

CCPnat
����!

.CCPmdl
�����!� �.

CCPnat
����!��� ���| CCPmdl

�����!��� ���� �
. The smaller the

angle, the more similar is their chemical context at the docking

interface. The CCD has the advantage of being free of additional

conditionals, whereas the RMSD and other measures of docking

quality, such as the fraction of native contacts, depend on the

labeling and mapping of moieties between the native and model

poses. Another advantage of the CCD lies in the fact that

discrepancies are implicitly weighted by the magnitudes of the

entries in the CCPs. The CCD serves to identify the characteristics

of a good pose in the machine learning stage of our study.

Training on known complexes
A frequently used scoring function is a statistical potential that is

constructed from a database of protein-NA complexes, ideally

utilizing an appropriate reference state [36,40]. Unfortunately,

training on a low number of complexes may produce unreliable

statistics. This phenomenon becomes serious for the development

of a distance dependent potential because the counts are diluted

across multiple distance bins. Furthermore, a distance dependent

statistical potential may be too sensitive to permit efficaciously

sorting out native-like poses in decoy sets with medium resolution,

such as those produced by rigid body docking of the unbound

forms of the molecules. Statistical potentials often utilize hundreds

of parameters, which results in a small data:parameter ratio. The

large parameter space detracts from the learning capacity and may

result in a learn-by-heart situation (i.e., over-fitting). We, therefore,

seek to compress or limit the number of free parameters in our

scoring function so as to produce a superior and quicker scoring

function.

Our CCP vector offers a straightforward solution for training

based on known complexes. By weighting each one of the 300

interacting pair types in the CCP, a linear combination of the

entries in the CCP vector serves as the dominant term in our

scoring function, v!.CCP
���!

. The weight vkj j assigned to a given

interacting pair of type k is the importance of this particular

interaction in influencing the score. These interactions implicitly

encompass factors such as electrostatics, hydrogen bonding,

desolvation, London dispersion, polarization, ionization, and

other effects. The 1/r dependence of our energy function mimics

the function form of Coulomb’s law although we do not explicitly

account for the individual contributions of these factors to the total

score, nor do we assume that the various weights can be uniquely
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decomposed into discreet components (as in Coulomb law’s

dependence on the product of charges Q1Q2). The sign of the

weight indicates whether the interaction is attractive (negative) or

repulsive (positive).

Table 1 displays the components of the compressed parameters

space. These constitute the weight vector v. The total score S is

defined as S~vCoulombCoulomb z varea CCP
���!��� ��� z vCCP

���!.CCP
���!

,

where Coulomb is the total 1/r Coulombic energy between the

negatively charged phosphates with the positively and negatively

charged amino acids. Without loss of generality, the contribution

from the total Coulomb interaction has a weight of vCoulomb~1.

Even though there are 300 different types of NA-protein

pairwise interactions, we seek find a much smaller subset that can

still identify native-like docking poses. As a first step, we no longer

distinguish between the NA residue type for the score calculation

(but the NAs remain distinct in the CCD calculation). Fifteen of

the 17 components shown in Table 1 are selected via the Forward

Sequential Feature Selection (FSFS) method from the 60 possible

components (20 amino acids times the three moieties for DNA;

Phosphate, Major and Minor grooves). Their weights, as well as

varea, are determined via machine learning (below). The most

attractive or repulsive entries are all associated with interactions

involving the DNA’s phosphate group. Hydrophobic side chains

tend to stay away from the DNA. The weight varea has a negative

sign meaning that the larger the extent of the contact between the

DNA and the protein the better the score. We prefer the use of

|CCP| instead of FTdock’s Surface Complementarity Score

because the latter requires a Fourier transform. Hence, the full 300

dimensional CCP vector is used for assessing the quality of a pose

with respect to the native solution via the CCD, while a reduced or

compressed 15 dimensional CCP vector is use while scoring poses.

The use of only 15 dimensions (i.e. number of fitted parameters)

for scoring prevents over fitting. Indeed, Figure S2a shows that the

scoring performance on the training set can still be improved by

the addition of even more parameters but at the cost of

diminishing test set performance (when the issue of over fitting

starts to become significant).

Machine learning
Our goal is to produce a general method to identify potential

protein-DNA binding partners and possible docking conforma-

tions. CCP vectors are evaluated for each of the 105 poses

generated for each possible protein-DNA pair. Certain dimensions

of this vector are more heavily weighted than others to produce a

net score S (defined earlier) that is favorable only for likely protein-

NA poses, with minimal false positives and negatives; i.e., the best

weights vector v is the one that maximizes the separation between

the scores of known DNA-binding proteins from randomly chosen

proteins from the PDB not known to bind DNA (e.g., Figure 3, left

column).

These weights are determined using a training set with 34

complexes. For each complex, the 105 decoys are first sorted by

their CCDs, from smallest (most native like) to greatest. The best

50 decoys for each complex are identified using the scoring

function S defined previously, producing the training set of 1700

decoys (50634 complexes). The weight vector v is adjusted to

select for the most native-like among the 1,700 poses where the

most native-like is determined by our CCD parameter which

examines whether the chemical context of the pose is similar to

that of the native pose (rather than, e.g., the RMSD). Specifically,

we optimize the objective function,

min
X34

N

dz
X50

d

c

 ! !

where d equals 2100 if at least one decoy has a CCD rank lower

than 100, while the function c equals 21 if the decoy’s CCD rank

is less than 100. The ranking system allows for a uniformly

weighted objective function, in contrast to the use of the CCD

values themselves, which vary broadly depending on the size of the

molecules (e.g., compare the y-axes in Figures 2c–e).

The optimization of v includes proteins with both low (,7) and

high (.7) isoelectric points (pI) because the net charge of the

protein, either negative or positive, respectively, is a significant

factor in identifying authentic complexes (Figure 3f). A potential

improvement to our approach would be to train separately on the

complexes with low and high pI separately, as each protein class

may use a different balance of forces to bind DNA. When the pI is

above 7, nonspecific electrostatic interactions could dominate and

produce a high number of false positives. Hence, specific

interaction should be given increased weight for this class of

proteins, as compared to proteins having a pI below 7.

Performance of scoring functions
Our method is now compared to two statistical potentials aimed

at identifying protein-DNA complexes. The first approach only

considers contacts [41], and the other only distances [42]. These

potentials are challenged to answer the following questions. ‘‘Does

this protein bind DNA, and if so, where on the protein would the

DNA bind?’’ These questions may be difficult for the statistical

potentials to answer considering the limited context in which they

are developed. On the one hand, the contact statistical potential is

used for further filtering after proteins have already been selected

to contain DNA-binding motifs similar to ones found in solved

DNA-protein complexes. On the other hand, the distance

statistical potential is sensitive enough to predict binding affinities,

mutation induced binding affinities, and native base pair recovery.

Table 1. Scoring function components optimized in this
work.

Attractive Repulsive

ASP-P 21.2437400 ALA-P +1.8794400

LYS-P 20.6089050 PHE-P +1.1204700

GLN-P 20.6009340 TRP-M +0.4848890

THR-P 20.0755443 PHE-M +0.0466844

CYS-M 21.0494700 PRO-m +0.6295210

THR- M 20.6104230 CYS-m +0.5091100

TYR-m 20.6844790 GLN-m +0.1395020

ILE-m 21.0006000

|CCP| 20.3550520

Attractive and Repulsive

Coulomb +1.0000000 ARG, LYS, HIS: +1e

ASP, GLU, P: 21e

The components are split into three classes, depending on their sign: negative
(attractive), positive (repulsive). The Coulomb potential is attractive or repulsive
depending on the product of charges. Each component XXX-x is labeled with
an amino acid, followed by a dash, then a nucleic acid moiety, which can be one
of: phosphate group, P; major groove, M; and minor groove, m. The |CCP|
component is the vector length of the Chemical Context Profile, which is
proportional to the loss of accessible surface area upon binding. Pair-wise
interactions selected by the Forward Sequential Feature Selection methods are
in the form XXX-x.
doi:10.1371/journal.pone.0032647.t001
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These tests require protein-DNA templates with atomic precision

but are advertised to perform docking decoy discrimination. We

test these methods along with ours in a more stringent application

where the predictions start from the 3D structures of the isolated

protein and DNA.

The first challenge ‘‘Does this protein bind DNA?’’ is pursued

using three sets of proteins. One set contains the 47 proteins in the

benchmark set (Table S1), while the other sets contain proteins

with a pI,7 (N = 40, Table S3) or pI.7 (N = 41, Table S4),

respectively. Separating the proteins by their pI is important

Figure 3. Performance of various scoring functions for identifying DNA binding. The scoring functions are statistical contacts (a,b),
statistical distance-dependent (c,d) and the one derived here (e,f, bottom row). Three decoy sets are used, known DNA-binding proteins (N), proteins
with isoelectric points (pI) lower than 7 (,) and greater than 7 (n). Left panels (a,c,e) illustrate how the protein-DNA complexes are scored in relation
to the pI of the proteins. Right panels (b,d,f) illustrate how the scores of the three decoy sets overlap with one another: a perfect scoring function
would be able to systematically score authentic DNA-binding proteins from those that do not bind to DNA (no overlap). The blue region highlights
the overlap between the known DNA-binding proteins with those proteins that have a pI greater than 7. The tick marks at the top of the plots
indicate the scores of the known DNA-binding proteins, while those at the bottom are for the two other protein sets.
doi:10.1371/journal.pone.0032647.g003
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because proteins with higher pIs contain more electropositive

residues on their surfaces and are, thus, more likely to bind DNA.

Proteins from the benchmark are docked against their cognate

DNA, while proteins from the two other sets are docked against a

straight B-DNA double helix with the same sequence as the DNA

of PDB file 1A74. The use of cognate DNA for the benchmark

proteins enables establishing a ceiling for the ability of the various

scoring functions to identify known DNA-binding proteins. If the

scoring fails to identify cognate DNA, then there is little hope

when a ‘‘generic’’ DNA is used.

Figure 3 (left column) illustrates how the three scoring functions

behave with respect to variation of the protein’s pI (Figure S1 for

FTdock’s Coulomb and Surface Complementarity Score). As

expected, the scores for proteins with high pIs are better than for

those with lower isoelectric points, except for the distance scoring

function where the scores are similar (compare Fig. 3d with

Figs. 3b, 3f). This similarity is probably due to the extremely large

parameter space (167 atom-types for proteins times 82 atom-types

for DNA, yielding individual parameters for the 13,694 possible

pairs of the distance-dependent potential). Table 2 indicates that

median Z-scores for both low and high pI proteins are

approximately, +0.87 versus +0.84, when scoring using the

distance-dependent potential. The influence of the pI on the

Coulomb-only score is evident, as the high pI proteins score better

than known DNA-binding proteins (negative Z-Score for ‘‘Cou-

lomb’’ in Table 2). The contact version produces better Z-Scores,

but the distance-dependent version yields minimal overlap

between curves for the scores of known versus unknown DNA-

binding proteins (Figure 3, right column). Furthermore, there is

minimal overlap of the low and high pI sets with the known below

average scoring DNA-binding proteins, and hence a protein with a

score better (lower) than 2150 is very likely a DNA-binding

protein (i.e., generating few false positives). But, one must bear in

mind that the trial DNA structures used as probes to measure the

DNA-binding affinity are the cognate DNAs.

The second challenge ‘‘Where would the DNA bind on the

protein?’’ is addressed using the DNA’s RMSD by considering the

fraction of the native contacts reproduced and the Matthews

correlation coefficient for the protein residues (Figure 4, rows).

The challenge is performed with the cognate DNA sequences (left

column) or the flipped DNA sequences (right column). A flipped

DNA sequence has guanosine nucleotides substituted for adeno-

sines (and vice versa) and cytosines for uracils (and vice versa). This

flipping ‘‘mutation’’ retains the purine-pyrimidine order in the

base pairs (i.e., a G = C base pair is flipped to an A = U pair). Each

of the six plots in Figure 4 includes two sets of four curves: one set

is for the bound/bound (filled symbols), and another set is for

unbound/unbound states (opened symbols) of the protein/DNA

molecules. Each set is examined with four different scoring

functions; the three described earlier plus one called ‘‘random’’,

which simply attributes a random score to any docked complex.

The random curves are important in providing a performance

floor for comparison [43]. Because the analysis considers the top

50 scores in decoy sets of 105 models, the statistical significance of

a true positive hit (i.e., near native decoy identification) is high.

Both our scoring function and the distance-dependent function

recognize native-like docking conformations when both the

protein and DNA are in the bound forms, with 80% of the

benchmark complexes having RMSDs below 5 Å (Figure 4a).

Even though their curves are very similar, each scoring function

makes distinct errors when identifying docking poses by score

(Tables S7 and S8). Only about 40% of the benchmark is properly

identified by the contact-only statistical potential at the 5 Å level.

This result suggests that long-range interactions contribute to the

recognition process. When the unbound forms of the molecules

are docked, no scoring function is significantly better than

random, at least when the DNA’s RMSD is used to measure

performance since 70% of the benchmark complexes have

RMSDs above 18 Å. Surprisingly, when the DNA sequences are

flipped, the contact-only potential performances are worst, which

signifies that this statistical potential is more sensitive to the

sequence context (Figure 4b). We expected to observe a

diminished performance for the distance-dependent version, but

this statistical potential is still able to choose native-like

configurations even though the DNA sequence is not optimal.

Even if performance is assessed using less stringent criteria, such

as the fraction of native contacts (Figures 4, middle row), all three

scoring functions do not fare much better than random if both

molecular states are holo; only 20% of the benchmark complexes

have scores better than 0.3. The less stringent criterion, identifying

the protein residues that contact the DNA, offers a more optimistic

view of the performance of the various scoring functions. If we

compare the unbound/unbound curve in Figure 1d, for which

90% of the complexes in the benchmark feature docked complexes

with more than a 0.6 correlation, with the same curve in Figure 4e,

as much as 60% of the benchmark still has a better than 0.6

correlation. On the one hand, this points to the usefulness of the

rigid-body docking approach in identifying where the DNA would

bind. On the other hand, these issues suggest that the quality

criteria employed in the CAPRI test are probably too stringent for

protein-DNA complexes to be attained with even with the best

algorithms.

Properties of DNA-binding proteins
Because our interaction matrix only contains three types of

moieties (phosphate, major and minor groves) within the DNA,

probing a protein’s surface with a ‘‘test’’ moiety enables

highlighting the favorable and unfavorable regions for that test

moiety, a procedure similar to the use of a test charge to probe an

electrostatic field. Figure 5 displays the results of such tests for true

DNA-binding proteins, as well as for proteins known not to bind

DNA. The surface of each protein is scanned with either one of the

Table 2. Performance of various scoring functions.

Scoring Function Z-Score Z-Score Area Area

pI,7 pI.7 pI,7 pI.7

FTdock SCS +0.64 +0.70 0.48 0.40

Coulomb +1.15 20.02 0.52 0.83

C-S +1.34 +0.84 0.47 0.58

D-S +0.87 +0.84 0.42 0.41

This work +1.22 +0.35 0.46 0.72

Scoring functions are FTdock’s Surface Complementarity Score (SCS),
electrostatics via Coulomb’s law, a statistical potential based on contacts (C-S), a
distance-dependent statistical potential (D-S) and our work. Each scoring
function is used in scoring three sets of proteins; the set of N = 47 known DNA-
binding proteins (set K), the set of proteins with pI,7, and the set with pI.7.
From the distribution of scores on a given set, say set K, we obtain the average
score m and the standard deviation s of scores: this in turn allows locating any
scoring value x following a Z-score computation Z = (x2m)/s. We report here
the Z-scores of the median scores on set pI,7 and set pI.7. Positive Z-Score
values indicate that the median has a value greater than the mean of set K,
while negative ones lower. Ideally, the mean of set K should be lower than the
median of the other sets (i.e. set K has better scores). The greater the Z-Score
the better is the scoring function at discriminating DNA-binding proteins from
non-binders. Normalized overlapping areas are also reported.
doi:10.1371/journal.pone.0032647.t002
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test moieties, Phosphate, Major Groove or Minor Groove. The

‘‘Phosphate field’’ includes the contribution from the electrostatics

of the protein. The moieties correspond to those illustrated in

Figure 2a where each test site is represented with a ball whose

color varies from blue (favorable) to red (unfavorable).

Each of the known DNA-binding proteins yields a favorable

score for the Phosphate at the sites where the DNA docks the

proteins (first three rows of Figure 5, second column). Further-

more, the Major and Minor Groove fields are complementary in

1ZME and 1BDT or overlapping in 1Z63. The two groove

Figure 4. Performance of various scoring functions for identifying the native binding pose. The scoring functions are random (&),
statistical contacts (.), statistical distance-dependent (m) and our work (N). Two decoys sets are used for the evaluation: both protein and DNA in
the bound form (closed figures) or both in the unbound form (opened figures). Left panes (ace) are results with the native DNA sequences, while the
right panes (b,d,f) features ‘‘flipped’’ sequences. For each decoy set in the benchmark, the decoys are scored by the specified scoring functions (rows),
then sorted from best to worst: lowest RMSD in top row, highest fraction of native contacts in middle row, and highest protein MCC in the bottom
row, reporting the 5th value in the top 50 score. (a,b) DNA RMSD. (c,d) Fraction of native contacts. (e,f) Protein MCC. The true positives (TP), false
positives (FP) and false negatives (FN) are computed by comparing the protein residues in contact with DNA in the crystal structure compared to a
redocked model.
doi:10.1371/journal.pone.0032647.g004
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‘‘fields’’, along with the Phosphate field, align the protein onto the

DNA with proper register. We hypothesize that the Phosphate

field contributes an initial, indirect readout of the DNA by the

protein, perhaps mediated by water [44], while the Major and

Minor Groove measures function more as direct readouts once the

protein-DNA interface is desolvated and scanned.

The three fields convey the ‘‘potential’’ for DNA binding, acting

as a DNA-binding code [45]. Proteins known not to bind DNA

present non-overlaping and discordant fields (last two rows of

Figure 5), rendering them unable to coordinate and promote DNA

binding. This test can be applied as a filter before a more

computationally expensive docking procedure. It may also be used

to explore how a protein can adapt for a competent DNA-binding

field by a conformational change. These points are currently

under investigation.

Conclusion
There are five salient points in this study:

1. The introduction of the Chemical Context Profile (CCP) of

the docking interface represents the chemical complementar-

ity of the protein-NA interface for a given pose. The

magnitude of the CCP correlates with the loss of surface area

upon binding. Profiles from different poses can be compared

with one another by their similarity to the native CCP, where

the similarity is defined using the Chemical Context

Discrepancy (CCD). Models with low RMSD to the native

also have low CCD values, but the CCD measure is robust to

DNA palindromic sequences. The CCD can be used as a

substitute for RMSD in machine-learning techniques [46].

Furthermore, by weighting each entry of the CCP, we devise a

simple and fast scoring function. The CCP is applicable to

other types of interactions, including protein-protein, protein-

RNA, protein-ligand interactions, etc. and the functional form

is arbitrary (e.g., the alternative 1/r6). The CCP also can

provide an estimate of the magnitude of various types of

interactions (salt bridges, hydrogen bonding, hydrophobic

desolvation, etc) provided that the entries in the CCP are

designed accordingly.

2. The use of machine-learning techniques, more specifically

sequential feature selection, can greatly reduce the parameter

space in the derivation of a scoring function. This compression

identifies the principal components of protein-DNA interac-

tions. The compression process is implemented with a training

set containing a small number protein-DNA complexes

(N = 34), indicating that the method can be used when there

are only a few structures. Very large decoy sets encompass

many native-like complexes as true positive examples and

provide far more true negative ones to score against. A total of

only 15 components are identified as the principal components

out of 300. This relative low number of parameters performs as

well as a sophisticated statistical potential with several

thousands of components, allowing for a quick complex scoring

while preventing parameter over fitting.

3. Rigid-body docking is examined to see whether it can provide

rudimentary ‘‘initial contact’’ protein-DNA docked complexes

from the holo or unbound forms of both molecules. With a

scoring function that is able to identify these complexes, rigid

body docking can be used in all-atom refinement procedures

that allow flexibility of both protein and DNA. These

refinement procedures already exist, e.g., the HADDOCK

approach [18], but this method requires near-native complexes

for satisfactory results.

4. When the unbound states of both protein and DNA molecules

are used, the performance of all the scoring functions tested

herein is not much better than random. This situation likely

reflects a ‘‘best case’’ actual genome-wide screening scenario

because one or both structures generally are unknown. Hence,

further research is required to increase the power of the

scoring functions to identify early-encounter complexes.

Unfortunately, no such structural database exists from which

to extract any information. Potentially coarse-grain, Langevin

or Brownian dynamics could be of use [47]. The least

stringent criterion to evaluate the quality of docked poses is

the one that measures the protein residues at the interface

with DNA. Our scoring function performs comparably to

modern statistical potentials and performs adequately in the

identification of the surface residues involved in DNA binding.

However, this performance is achieved using orders of

magnitude fewer parameters.

5. We map a protein’s surface to assess its potential to bind DNA.

This ability is particularly important because electrostatic

models of proteins are often inadequate to identify the DNA-

binding properties of proteins [48].

Figure 5. Protein DNA-binding potential. A protein’s DNA-binding
potential is revealed using one of the test moieties. Each test site is
represented by a ball, whose color varies blue (favorable) to red
(unfavorable). The first three proteins are known to bind DNA, while the
last two are not known to bind DNA. For DNA-binding proteins, a graph
tracks the potential for each type of moiety along the actual DNA
coordinates. The blue curve tracks the 59 strand of the DNA (tagged
with a star), while the green curve tracks the 39 strand. A point marks
each base pair step, and a black horizontal line each 5 base pair steps.
Since the 59 phosphate is absent for both the 59 and 39 strands, the
base pair step index starts at two. The potential is more favorable as the
curve is more to the left. The x axis is scaled to show the relative change
along the DNA molecule.
doi:10.1371/journal.pone.0032647.g005
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Materials and Methods

Benchmark
An existing protein-DNA benchmark [24] consisting of 47

protein-DNA complexes is ranked from easy to difficult,

depending on the degree of conformational change upon binding

(Table S1). The benchmark provides the bound and unbound

conformations, which enables testing the use of unbound forms of

the molecules to rebuild a complex via rigid-body docking. The

unbound forms of the proteins have been determined in the

absence of their DNA partners, while the unbound forms of the

DNA are generated by the computer program 3DNA [49] and

adopt the standard B-form double-helix.

RMSD
The root-mean-squared-deviation (RMSD) calculation includes

the following heavy atoms: Ca and Cb for proteins and P, C29 and

C4 for DNA. All three DNA atoms appear in any nucleotide,

regardless of type (A, C, G or T). The P atom is situated in the

DNA backbone, C29 in the DNA sugar ring, and C4 is in the

nucleobase. This allows for easy computations of the RMSD

between DNA molecules containing the same number of

nucleotides but different sequences.

Pose generation
The computer program FTdock [26,27] is chosen to generate

the docking poses. Even though it performs rigid body docking,

FTdock has multiple advantages, including a systematic and

exhaustive search of rotational and translational degrees of

freedom with a bias toward geometrical surface complementarity

[25]. FTdock also features a scoring scheme based on electrostatics

[26]. We have modified the program to account for the unit

negative charge on nucleic acid phosphate groups and have

trivially parallelized the program to perform computations on a

computer cluster without the need for communications between

executing processes. We employ a 0.5 Å grid and 10u rotational

spacing, yielding 15,840 possible rotation states. The best ten

geometrical docking poses for each rotation are retained to give a

grand total of 158,400 poses that are sorted by their surface

complementary score (SCS), with the best 105 retained. Because

FTdock converts the molecules into coarse grids and allows for

some overlap between them, it implicitly accounts for some

induced fit upon docking. In the FTdock algorithm, one molecule

is held in place while the other is scanned across its surface. The

static molecule has a core in addition to an interfacial surface

region. We choose the proteins to be the static molecule to account

for side chain flexibility. The great number of decoys offers a

reference state, similar in spirit to ‘‘decoys as a reference state’’ or

DARS [50]. Hence, the scoring function has the ability to train on

native-like docking poses and a great number of false positive

docking configurations. Pose generation and management is made

easy through the use of the Swift processing language [51], which

can harness the power of super computers (University of Chicago’s

Beagle) as well as heterogeneous computer clusters (as those on the

Open Science Grid).

Chemical Context Profile
We define the Chemical Context Profile (CCP) as a multi-

dimensional vector:

CCP
���!

~
Xala

Cb

XA

M

f (r),
Xala

Cb

XA

m

f (r),
Xala

Cb

XA

P

f (r), � � � ,
Xval

Cb

XT

P

f (r)

0
@

1
A

for which each entry is a double-sum over a given pairwise

interaction type. The interaction is measured between specific

moieties (bottom of the summation symbol) of specific residues/

nucleotides (top of the summation symbol). For instance, the first

entry is between all Cb moieties of the alanines (ala) in the protein,

and major groove moieties (M) of the adenosines (A) in the DNA.

The last term is between the valine (val) Cb and the thymine (T)

phosphate groups (P). The moieties, or interacting centers, for

proteins are centered at the Cb atom, while those for nucleic acids

are presented in Figure 2a. For a given nucleotide, we only

account for the residue interacting with the groove ((M)ajor or

(m)inor) that is the closest to the residue’s Cb atom, so that a

residue interacts only with the closest groove. The total number of

entries in the vector is 300: the 20 amino acid types times 3 NA

moieties times 5 nucleotide types. The score is obtained by

summing f(r) for each interacting pair, where the distance-

dependent function is taken as f(r) = 1/max(3.5,r-,e.) and where

the average extent of the amino acid side chains ,e. are

presented in Table S5. The functional form is designed to contain

a maximum within each protein side chain’s extent beyond which

the interaction strength decays as the inverse of the distance,

analogous to the decay of the electrostatic potential. The sum of

the f(r) increases with the number of a given interacting pair type

and with shorter separations.

Pose scoring
Docked conformations are scored by weighting the Chemical

Context Profiles, S~vCoulombCoulomb z varea CCP
���!��� ��� z vCCP

���!.
CCP
���!

, in which the dot symbolizes the vector dot product. The

weights vector vccp and varea are optimized using machine

learning (as described below) to recognize native-like docking

conformations in large sets of decoys. The weight vCoulomb is set to

unity without loss of generality. The |CCP| is a proxy for the area

loss upon binding.

Chemical Context Discrepancy
Given a native and predicted (model) docking pose and their

associated CCPs, the Chemical Context Discrepancy (CCD) is

defined as the angle between the profiles,

cos ( CCD )~ CCPnat
����!

.CCPmdl
�����!� �.

CCPnat
����!��� ���| CCPmdl

�����!��� ���� �
where the nat and mdl refer to native and model docking poses,

respectively. The dot symbolizes the vector dot product, while

vertical brackets indicate the vector norm, or magnitude. The

CCD is used here as a substitute of the root mean squared

deviation (RMSD) and is shown to correlate with low-RMSDs

(Figure 2f) while taking into account the translational and

rotational degeneracy of DNA molecules (especially those with

palindromic sequences). Because moieties are triangulated by

many others, it is almost impossible to generate two different

docking poses for which their CCPs only differ by a constant.

Hence, the CCD angle is zero if and only if the two CCPs are

identical.

Sequential Feature Selection
In order to identify the most important elements in an

interaction matrix, tests of all subsets of the set of elements could

be generated by enabling and disabling some of the matrix cells

and determining how well the matrix performs at identifying

native docking poses. This strategy would require 2n6m parameter

optimization trials for a matrix with n by m elements, repeated over

many training and test sets (recall that the set of all subsets of a set
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of size N is 2N). Because our interaction matrix contains 20 * 3 * 5

entries, a total of 2300 experiments would be required. This

number is computationally unfeasible even on a super computer.

In practice, however, when the question is posed concerning a

specific matrix (with many parameters), one can rely on the

sequential feature selection (SFS) method [52]. Here, the

parameters are activated in a sequential fashion, starting with

one parameter (thus the forward version of sequential feature

selection, i.e., FSFS). This process proceeds by activating all of the

matrix features, one at a time. The feature that leads to the best

performance when activated is permanently activated, and the

selection process is repeated. We have performed the FSFS

procedure for a matrix with 60 parameters that are associated with

the twenty amino acid types and the grooves (M, m and P) of the

DNA independent of nucleotide types (2063 = 60 parameters).

The FSFS is implemented to consider up to 30 parameters (Figure

S2a). Although we explore only 30660 subsets of the total 260, this

protocol is a tractable way to locate significant features or

parameters. To derive the most important features, we simply

count the number of times a feature appears after the feature

selection round; those that are selected early appear more often as

they are permanently activated, so they are deemed the most

important. This step is performed to identify which elements in the

scoring matrix have the most impact and, hence, require the most

optimization (Figure S2b). A total of 15 variables have been

selected by FSFS. Adding any more variables enhances the

performance on the training set, but the performance on the test

set starts decreasing (i.e., as the capacity increases, it is easier to

learn the native docking poses by heart, but generalizing to new

unseen cases becomes more difficult).

Weight optimization
The weights are optimized using the Particle Swarm Optimi-

zation (PSO) method [53]. A variant of the PSO method is used to

prevent early convergence and loss of diversity [54]. The PSO

method entails evolving N = 50 particles in the space of parameters

(our weights). The trajectory of each particle is controlled by its

own local behavior as well as the current global minimum. The

algorithm offers the advantage that the objective function being

minimized has a unique global minimum, with few local minima,

along a slice in the parameter space. Hence, whenever a particle

updates the coordinates of its local minimum, we continue the

optimization process in a stochastic fashion by choosing a random

dimension, taking a step along this direction in both directions,

and choosing the new position that further optimizes the objective

function. The procedure is repeated until we fail to update the

objective function ten times. To prevent the ‘‘learn by heart’’ over-

training/fitting phenomenon, we rely on the early stoppage

technique. After a fixed number of steps that is randomly chosen

between 1–100, the optimization process is halted, and the current

global minimum is reported as the solution.

The optimization program begins by loading the Chemical

Context Profiles into memory for each of the decoys. The training

set has 34 members (Table S2) and represents the N = 47

benchmark except for PDB codes 1Z– or higher, leaving these

complexes for testing. 105 decoys are generated for each member.

The decoys are taken from the bound/bound states of the protein/

DNA because they offer the best quality decoys with the lowest

CCDs (or RMSD).

Given a weight vector v obtained using the PSO, the score S of

all decoys d is updated using the formula defined earlier. Then, the

decoys are sorted by their scores from best (lowest) to worst

(greatest) for each PDB ID. The best 50 decoys are identified and

represent the docking set solution. Two objective functions

discussed in the text are optimized. The best weights vector v is

the one that maximizes the separation between the known DNA-

binding proteins and those proteins with low (,7) or high (.7)

isoelectric points (Figure 3f). Entries of the best weights vector are

shown in Table 1. A total of 200,000 weights vectors have been

inspected for fits. The proteins with low and high isoelectric points

are listed in Tables S3 and S4, respectively.

By grouping rows and columns together in the 20615 interaction

matrix, we can test many models for their ability to recognize native

poses. For instance, one model has been identified by the Forward

Sequential Feature Selection methods. Here, we considered the 20

amino acid types, and Major, Minor and Phosphate groups

regardless of the nucleotide type for the nucleic acids (matrix size is

2063 = 60). The selection process has identified 15 interacting pairs.

Other models can readily be devised: the twenty amino acids could be

grouped into six (as proposed here [55]). For the nucleic acids, we

could consider the nucleotide types (A, …, T) (size = 5) regardless of

the moiety type (M, m or P). Or, interactions with P can be specified

as independent of the nucleotide type, while the Major and Minor are

treated in a nucleotide-dependent fashion (size = 6; A,…,T,P). The

model that performs best and has the lowest number of parameters is

the one identified by the FSFS method. All other models either have

more parameters with equal or worse performance.

Supporting Information

Figure S1 Performance of various scoring functions.
The scoring functions are FTdock’s Coulomb’s law (a,b) and

Surface Complementarity Score (c,d). Three decoy sets are used:

known DNA-binding proteins (N, black), proteins with pI,7 (,,

blue) and .7 (n, green). Left panes show how the protein-DNA

complexes are scored in relation to the isoelectric point of the

protein. Right panes show how the scores of the three decoy sets

overlap (blue area) with one another; a perfect scoring function

would separate the scores of authentic DNA-binding proteins from

those that do not bind DNA.

(PDF)

Figure S2 Forward sequential feature selection. The

method is applied to find the most important interacting pairs. (a) As

the number of variables increases, the performance on the training

set (open circles) also increases, but the performance on the test set

(closed circles) degrades when too many variables are used; this is

the learn-by-heart phenomenon. We thus cap the number of

variables to 17 (vertical grey bar); since two of the variables are fixed

(Coulomb and |CCP|), 15 will be picked from the 2063 = 60

interaction matrix. (b) The relative importance of the 60 pairs (left).

The 15 most important pairs are highlighted in grey (right).

(PDF)

Table S1 List of PDB codes that are part of the N = 47
protein-DNA benchmark database.

(PDF)

Table S2 List of PDB codes that are part of the N = 34
protein-DNA training set database.

(PDF)

Table S3 List of PDB codes that features N = 40 proteins
with isoelectric point lower than 7, and are assumed to
not bind DNA.

(PDF)

Table S4 List of PDB codes that features N = 41 proteins
with isoelectric point greater than 7, and are assumed to
not bind DNA.

(PDF)
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Table S5 Amino acid extent beyond the Cb atom. Values

extracted from 201 protein-DNA complexes. The magnitude

reported is the average extent plus one standard deviation

SeT~SmTzSsT. The PDB atom types used for the extent

measurements are also shown.

(PDF)

Table S6 Performance of rigid body docking. The

performance is measured on a benchmark comprising 47 different

complexes. Five docking trials using various combinations of

bound and unbound states of the docked molecules: bound/bound

(B/B), bound, but with rebuild side chains/bound (S/B),

unbound/bound (U/B), bound/unbound (B/U), and unbound/

unbound (U/U). A total of 105 docked conformations are

generated for each complex and docking trial. For each decoy

set, decoys are sorted by RMSD from lowest to greatest, and the

RMSD of the 20th best decoy is reported. The RMSD is taken

between the DNA positions in the native and the docked

complexes, once the proteins have been superimposed. All values

reported here are in Angstroms, and are plotted in Figure 1b. The

Level column partitions the complexes into the Easy/Intermedi-

ate/Difficult notation assigned by van Dijk and Bonvin, which

estimates the degree of conformational change upon docking.

(PDF)

Table S7 Performance of various scoring functions. The

performance is tested using the bound states of the protein/DNA

molecules. The scoring functions are our work (CCP), contact only

statistical potential (C-S) and distance-dependent statistical

potential (D-S). The RMSD column is the same as in table S6,

B/B case. All values are in Angstroms, and are plotted in Figure 4a.

(PDF)

Table S8 Summary of Tables S6 and S7, grouped by van
Dijk and Bonvin’s annotations. A checkmark is put whenever

the DNA RMSD is lower than 10 Angstroms. The FFT column

relates to the ability of the FFT-based docking method to provide

for good decoys, while the last three columns to the ability of the

various scoring functions to identify them. Rows marked with an

asterix have been left out while training, and as such constitute the

test set.

(PDF)
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