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Evolution of biological cooperation: 
an algorithmic approach
Ivan Sudakow 1*, John Reinitz 2,6, Sergey A. Vakulenko 3,4,6 & Dima Grigoriev 5

This manuscript presents an algorithmic approach to cooperation in biological systems, drawing on 
fundamental ideas from statistical mechanics and probability theory. Fisher’s geometric model of 
adaptation suggests that the evolution of organisms well adapted to multiple constraints comes at 
a significant complexity cost. By utilizing combinatorial models of fitness, we demonstrate that the 
probability of adapting to all constraints decreases exponentially with the number of constraints, 
thereby generalizing Fisher’s result. Our main focus is understanding how cooperation can overcome 
this adaptivity barrier. Through these combinatorial models, we demonstrate that when an organism 
needs to adapt to a multitude of environmental variables, division of labor emerges as the only viable 
evolutionary strategy.

The explanation of organismal development, starting from simple compounds and progressing to complex 
multicellular forms, presents a significant challenge for the fields of mathematics and  physics1–3. In this manu-
script, we employ an algorithmic approach to elucidate the emergence of cooperation within cell communities. 
Our proposal entails a mathematical model that demonstrates how the emergence of new cooperation can be 
effectively explained using Hard Combinatorial models. These models and our approach arise naturally when 
we assume that gene regulation is governed by networks resembling neural nets with Boolean inputs-a widely 
accepted assumption supported by notable works (e.g.,4–7). Consequently, the optimization of fitness becomes 
a hard combinatorial problem.

Such problems are of great importance in various applications and have been extensively  studied8–10. It is 
widely recognized that many of these problems are inherently difficult, often classified as NP-hard8. Due to the 
impracticality of exhaustive search in such cases, specialized or approximation algorithms must be employed. 
Notably, Sewall Wright was the first to realize the immense challenge of finding the optimal fitness value within 
a multidimensional hypercube (genotype space)11. Recent publications, such  as12, delve into the consideration 
of epistasis effects.  In12, it is observed that the mutation graph defines the proximity between genotypes, where 
a genotype A is considered close to B if B can be transformed into A through a single mutation. The presence 
of epistasis and gene pleiotropy (gene incompatibility) renders the search for fitness landscape peaks a hard 
combinatorial  problem5,6,12,13.

Our approach can be outlined as follows. We utilize genotype-fitness maps, also known as the fitness land-
scape ( s → F(s) ). These maps play a crucial role in the mathematical description of evolution using an algorith-
mic approach. However, the structure of these maps remained unknown until the last few decades. Nowadays, 
real fitness landscapes are being analyzed by constructing genotypes with all possible combinations of small 
sets of mutations observed in evolution  experiments14–17. We employ models that are consistent with this data.

Furthermore, it is worth noting that the human genome comprises approximately 22,000 protein-coding 
genes, a number that is comparable to the genomes of fruit flies and nematodes. Surprisingly, more complex 
organisms do not necessitate a higher number of genes, despite having a greater number of phenotypic traits and 
the need to adapt to numerous environmental constraints. These facts challenge the classical ideas of modern 
evolutionary synthesis. According to the celebrated Fisher geometric model, it can be demonstrated that the 
likelihood of improving fitness through random mutations diminishes as the organism’s complexity  increases18. 
Building upon Fisher’s approach, Orr estimated the adaptation rate Re = d log F

dt  as a function of the number of 
environmental constraints M, with F representing the average population  fitness19. Orr’s findings indicate that 
the adaptation rate becomes exponentially small as M ≫ 1 . We refer to this effect as the ’adaptivity (complexity) 
barrier.’ Thus, for large values of M, the adaptivity barrier increases exponentially. Defining the complexity of a 
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real organism or an adaptation in rigorous mathematical terms is challenging. However, in our formal approach, 
the adaptation complexity is simply represented by the number M.

Using various genotype-fitness map models, including one  from20 that generalizes the Fisher model and 
classical  methods21–23, we demonstrate that they all exhibit the same effect: the complexity cost exponentially 
increases with M. This complexity cost effect arises due to pleiotropy, which becomes inevitable when M ≫ N , 
where N represents the number of genes. When there are more traits to be regulated by the same set of genes, 
higher pleiotropy occurs, which refers to the average number of unrelated traits affected by a single gene. Pleiot-
ropy is a fundamental characteristic of gene  regulation24 and one of the primary causes of the complexity  cost19. 
The substantial complexity cost results from the pronounced roughness of the fitness landscape, which exhibits 
numerous peaks, valleys, and ridges connecting those peaks. Notably, fundamental findings on hard combinato-
rial problems (refer  to10 for an overview) demonstrate that combinatorial models effectively depict real fitness 
landscapes, characterized by the presence of multiple peaks, valleys, and connecting  ridges14–17. It is important 
to note that studies of fitness landscapes in natural populations have revealed the prevalence of low fitness for 
intermediate phenotypes, indicating the existence of valleys in the fitness  landscape14–17. The models considered 
in this manuscript are capable of describing such landscapes.

First, we consider homeostasis as a set of coordinated biochemical processes that maintain the parameters of 
an organism within a given domain (see the “Supplementary Material (SM)”  and25 for details). Next, we derive 
a relation for the probability of the parameters being within that viability domain and find that this probability’s 
dependence on the genotype is described by the fitness function proposed  in20. Maximizing this function leads 
to challenging combinatorial problems, for which we identify adaptivity barriers. However, we demonstrate that 
these barriers can be overcome through cooperation. Our combinatorial models demonstrate that the division 
of labor becomes the only viable evolutionary strategy when an organism must adapt to a multitude of envi-
ronmental variables. We also investigate the adaptivity barriers associated with the following in silico models: 

A  Simplest unicellular organisms (prokaryotes);
B  Cooperation among simple organisms, such as symbiosis of prokaryotes;
C  Bacterial colonies with a simple genetic regulation based on greedy principle;
D  Cell colonies with a more sophisticated genetic regulation, representing primitive analogs of multicellular 

organisms.

An example of extreme cooperation is observed in methane-producing colonies, as discussed  in26,27. The 
process of decomposing organic matter into methane and carbon dioxide is widespread. According  to26, the 
limited availability of energy in methanogenic conversion necessitates efficient cooperation among microorgan-
isms. This mutual dependence, driven by energy constraints, reaches a level where neither partner can function 
independently. However, when working in unison, they sustain the metabolic activity necessary for survival.

The primary consequence of these mathematical findings is that the transition to cooperation becomes essen-
tial for survival when an environment rapidly becomes more challenging. In such cases, cooperative organisms 
have a higher chance of survival. This assertion can be exemplified using a simple example. Let’s consider a colony 
of non-interacting cells with 500 genes, which must fulfill 500 ecological constraints, and let’s assume the adaptiv-
ity barrier α = M/N is set at α = 1 . Now, suppose an ecological catastrophe occurs, resulting in the emergence 
of 100 new additional constraints (which form a constraint set, disjoint with previous constraints). In order to 
adapt, evolution would need to generate approximately 100 new genes, which is highly improbable within a short 
evolutionary timeframe. However, if we consider a group of cooperating cells, where each cell can handle 100 
constraints, only six distinct cell types would be sufficient to adapt to all the constraints, including both the new 
and pre-existing ones. Note that in many cases α determines the probability of adaptation. This parameter has 
the order 1 as M,N >> 1 . Basic results  (see10, Ch. 14) on the existence of phase transitions in hard combinato-
rial problems show that there are even more remarkable effects in cooperation. Suppose, for example, that to 
be adapted, an organism must satisfy, say, 1000 constraints with 950 genes, and the adaptivity barrier is α = 1 . 
Then the chances of survival are vanishingly small because 950 < 1000 , and these chances decrease exponentially 
with M − αN . However, if due to cooperation the number of restrictions is reduced even slightly, for example 
to 930, the chances of survival become close to 1. Thus, it may occur that even weak cooperation is capable of 
saving a population in harsh conditions. Certainly, if the organism fails to find suitable neighbors, it may die.

In conclusion, it is worth noting that there are other approaches that explain the origins of multicellularity 
and cooperation through various factors, including defense against infectious agents and interactions between 
hosts and  parasites28,29, see  also30 for a review of of different hypotheses and their biological testing.

Results
The homeostasis problem for a system of chemical kinetics, which can describe metabolic regulation in bacte-
ria (see Sect. Methods), is investigated. We aim to estimate the probability of viability, denoted as Pv,T , which 
represents the likelihood that the system parameters remain within a homeostasis domain over a large time 
period [0, T]. To estimate Pv,T , we employ a novel concept of replicative stability through genetic regulation, as 
proposed  in25. Briefly, the concept is as follows: In the work referenced  as31, it is hypothesized that all cells with 
fixed genomes and genetic regulations will eventually perish due to external and internal fluctuations. However, 
if these cells replicate and modify their genome, then the resulting chain of replicating cells can potentially 
survive indefinitely with a non-zero probability. This hypothesis was mathematically analyzed  in25, and we have 
incorporated these results into our study.

By considering all possible situations of stress impact on a bacterium or a cell, we obtain an integral repre-
sentation for Pv,T.
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This representation exhibits intriguing properties. The chances of viability depend singularly on the efficiency 
of the gene regulation network (GRN), the rate of innovation within this GRN, and the size of the GRN. The 
size of a gene regulation network (GRN) is defined by the number O(Nreg ) of nodes it contains. Given that the 
connectivity of real networks is bounded, the number of network interconnections has the order O(Nreg ) . The 
efficiency of a GRN is characterized by models described in the SM and  in25. We hypothesize that the GRN net-
work counteracts stress-induced perturbations through appropriate gene expression, with network efficiency 
quantitatively measuring such compensation (details can be found in the SM).

The innovation rate refers to the probability that the antistress GRN network will enhance its efficiency during 
the replication stage. This rate determines the GRN size increase and is substantially lower than the mutation 
rate because an innovation may result from several mutations.

It is demonstrated that the viability probability, regarded as the fitness function F(s), relies on the genotype 
s = (s1, s2, ..., sN ) , where si ∈ {0, 1} . Here the value si = 1 indicates the expression of a gene.

For sufficiently large T , the viability probability can be approximated by the following relations:

where s(t) represents the genotype at the t-th replication step, Nrep is the number of replication steps within 
the time interval [0,T] , and Pout(s,w) is the probability of exiting the homeostasis domain between subsequent 
replication steps (which is assumed to be small). The variable w refers to gene network parameters, determining 
various coefficients within the gene regulation network (GRN), such as interaction matrix entries, kinetic rates, 
thresholds, etc. One has

where F can be interpreted as a fitness function:

Here, fk represent Boolean functions, and bk are positive weights. In this context, M represents the number of 
environmental constraints, corresponding to different stress scenarios, and fk are probabilities to survive between 
replications under the k-th stress scenario with genotype s and GRN parameters w . In simpler cases, such as a 
chain of reactions of the Michaelis–Menten type, this fitness can be reduced to the gene-trait maps, as recently 
investigated  in20,32,33. In classical theory (18,19,34), the fitness F is fixed, and only the genotype evolves. However, 
our new idea is as follows: we propose that with replication, the gene regulation network (GRN) expands and 
enhances stress resistance (see a conceptual scheme in Fig. 1). Determining precise estimates of this resistance 
is a formidable mathematical problem (see the SM). Nevertheless, we can use estimates from Deep Learning 
theory, assuming that the efficiency of the GRN depends mainly on its size. Evolution in t  involves not only 
modification of the genotype but also an increase in GRN size step by step, which alters the fitness. This exten-
sion of the classical approach explains why evolution is successful and why the GRN expands. In fact, for fk 
independent of t  , we have Pv,T → 0 as T → ∞ , but in our model, evolution can continue indefinitely (see the 
SM). In fact, for large T , we obtain Pv,T ≈ 1− exp(−c0N

γ
reg ) , where Pv,+∞ represents the probability that the 

system state remains within a small homeostasis domain over the time interval (0,+∞) . Here, Nreg denotes the 
size of the gene network (i.e., the number of units within the network), γ > 0 is a small constant influenced by 
the number of fluctuating parameters of random stress, and c0 is a positive constant depending on details of the 
system’s chemical kinetics. GRNs compensate for stress impacts (see  also25). We show that this compensation 
leads to an exponential increase in the viability probability. The larger the network, the better the compensation, 
as follows from the above estimate for Pv,+∞.

(2.1)log Pv,T ≈ −
Nrep
∑

t=1

Pout(s(t),w(t))

Pout(s,w) = 1− F(s,w),

(2.2)F(s,w) =
M
∑

k=1

bkfk(s,w).

Figure 1.  In contrast to physical systems, the stability of biosystems relies on replicative and regulatory 
mechanisms driven by intricate genetic regulatory networks (GRNs). In the figure, an organism responds to 
stress using its GRN. There is a ’stress’ arrow directed towards the cell, countered by an arrow from the GRN, 
which represents the cell’s resistance to the stress. As replication occurs, the GRN gradually expands, resulting in 
enhanced stress resistance. Leveraging insights from Deep Network theory, we derive an approximate formula to 
estimate the survival probability of a replicating chain of organisms based on the stress properties, network size, 
and mutation rate.
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One can show that larger GRNs are better equipped to cope with complex combinations of stresses. Regulator 
genes act as switching devices, facilitating these switches. Stress response networks exhibit a modular structure, 
where different modules generate responses to various  stresses35. Then, the regulators switch between these 
modules. In our paper, however, we do not delve into these questions regarding the structure of networks. We 
simply utilize known estimates of the accuracy of approximation of target functions via Deep  Networks36–38. 
These estimates describe the dependence of approximation accuracy on the network size Nreg , but it is chal-
lenging to infer details about the network structure, except for the fact that the network is deep and the vertices 
have a small degree.

Furthermore, we demonstrate the versatility of this function as it is capable of describing not only a free-
living bacterium but also various cooperation phenomena. Our findings can be summarized as follows: a new 
form of cooperation emerges when the computational cost of cooperation is lower than that of direct adaptation 
without cooperation. To illustrate this concept, we explore the evolutionary adaptivity barriers in the in silico 
models labeled A–D.

We initially examine the evolutionary adaptivity barriers for various models without cooperation (the case A). 
This entails investigating whether well-adapted phenotypes exist for individual organisms without engaging in 
cooperation. In this case, the fitness maximum is achieved if all fi = 1 . By making certain assumptions, such as 
the randomness of genetic regulation (as described in Assumption RG in the SM), we derive the following results.

The adaptivity barrier can be expressed via the quantity P+,δ , which is a maximal probability to find a con-
straint i and the gene expression string s such that fi(s) > 1− δ:

where δ ∈ [0, 1) is a small parameter, [1,M] = {1, 2, ...,M} and SN = {0, 1}N the set of all genotypes.
If P+,δ is not small there exists a genotype s satisfying conditions fi(s) > 1− δ for all i = 1, ...,M , i.e., a 

genotype sufficiently well adapted with respect to all M constraints. We find the following upper bound for M:

where N is the number of genes, and the constant Cmax is uniform in M and N as both M,N ≫ 1 . If condition 
(2.4) is not satisfied, the likelihood of a well-adapted phenotype becomes highly improbable, with its probability 
exponentially approaching zero (as detailed in Proposition I from the SM). Therefore, inequality (2.4) acts as 
a constraint on the maximum adaptivity achievable by an organism without cellular cooperation. The specific 
values of Cmax for various models are discussed in depth in the SM. We focus on two basic models here: the K-
SAT and single-layered perceptrons (SLPs), as used  in20. The K-satisfiability problem (K-SAT), a fundamental 
and challenging combinatorial  problem10, has a clear biological interpretation. Biologically, it represents M 
constraints, each dependent on K Boolean genes, which must be satisfied by the correct expression of K genes 
involved. The number of satisfied constraints can be viewed as the fitness of a Boolean string of length N >> K . 
For large K, one finds that Cmax ≈ 2K ln 2 . However, if the number of genes involved in each trait is randomly 
distributed according to a Poisson distribution with a mean of K, then Cmax ≈ exp(K/2) ln 2 , indicating that 
randomization reduces the barrier. It is also important to note that gene redundancy, as defined by the parameter 
K, significantly increases the adaptivity barrier and, consequently, adaptability.

The SLP model is defined by

where j = 1, . . . ,M . Here σ(z) is a sigmoidal function of z such that σ is monotone increasing, σ(z) → 1 as 
z → +∞ and σ(z) → 0 as z → −∞ . The coefficients wij can have different signs. If wji > 0 then the i-th gene 
is an activator for j-th trait, if wji < 0 it is a repressor, and for wji = 0 that gene does not affect the i-th trait. This 
model can be viewed as a circuit with the ability to regulate phenotype robustness through special parameters hj , 
which are thresholds first introduced  in39. The model as described in equation (2.5) has been considered  in40–42.

Suppose that all wij are independent, normally distributed, random quantities with zero mean and variance 
r2 . These assumptions, which are standard for such  models43, imply that we are considering a random gene 
regulation. Then

where the quantity h̄ = h(
√
Nr)−1. can be interpreted as a normalized threshold, and it defines the sensitivity 

of the trait fi with respect to mutations.
It is noteworthy that in multilayered models, the coefficient Cmax may substantially exceed that of single-layer 

models. This suggests that cascade regulation can alleviate the complexity cost, as detailed in the SM.
In case B, we examine a symbiotic relationship involving n organisms using the Set Covering Model (see the 

SM for more details). We define Nreg as the number of genes in the set Sreg required to facilitate cooperation or 
symbiosis. For instance, in the context of symbiosis transitioning from prokaryotes to eukaryotes, these genes 
Sreg may be responsible for the adhesion of different organelles, such as mitochondria. The transition from case 
A to case B becomes computationally advantageous when the following condition is met: Nreg < C−1

max
(n−1)M

n . 

(2.3)P+,δ = max
i∈[1,M], s∈SN

Pr[fi(s,w) > 1− δ],

(2.4)M < CmaxN , Cmax =
ln 2

| ln P+,δ |
,

(2.5)fj = σ

(

N
∑

i=1

wjisi − hj

)

,

(2.6)Cmax = ln 2(ln 2π−1/2

∫ ∞

h̄
exp(−u2/2)du)−1,
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It is reasonable to expect that this inequality holds true in challenging environments characterized by a large 
number of potential ecological constraints ( M ≫ 1).

Consider the Jacob-Monod  regulation44. In the Monod–Jacob model, the Escherichia coli lac operon encodes 
proteins necessary for the transport and breakdown of the sugar lactose (lac). The production of proteins is pre-
vented when a repressor, encoded by a regulatory gene, binds to its operator, a specific site in the DNA sequence 
that is close to the genes encoding the proteins. If each organism possesses a sensor to detect which products 
are already produced by other organisms, it eliminates the need to produce those products. Maximizing fitness, 
therefore, involves producing the maximum number of products that are not already synthesized by other organ-
isms. Furthermore, it is important to note that this regulation minimizes energy consumption, as discussed  in45. 
The Jacob–Monod regulation is limited to systems whose functioning does not rely on feedback loops composed 
of the gene regulatory system and external input. Mathematically, this regulation can be interpreted as a greedy 
algorithm, as outlined in the SM. The greedy approach implies that each organism aims to satisfy constraints 
that remain unsatisfied by others, thus maximizing its individual fitness (Fig. 2). Let us estimate Nreg for this 
greedy algorithm.

Note that, in order to perform this regulation, the i-th cell must have sensors capable of recognizing Mθi dif-
ferent reagents, where θi is on the order of 1/n. Therefore, it can be expected that in this case, Nreg is on the order 
of M/n. Consequently, for the minimal required gene number N, we obtain N > Creg

M
n = Nreg , where CJM is a 

constant > 1 while for individual cells we have N = M >> Nreg . So, the transition from B to C is computation-
ally profitable if the parameter n satisfies n > Creg . This is attributable to the fact that a single regulatory gene 
can coordinate the expression of multiple proteins.

Furthermore, for the cases A, B, and C, as well as the fitness functions examined  in20, the search for a gene 
string s that maximizes the fitness can be reduced to an NP-hard Boolean linear programming problem. However, 
in the transition from case C to case D, as demonstrated in the SM, our model indicates that in multicellular 
organisms, the search for a response to stress leads to a standard real-valued linear programming problem. In 
algorithm theory, it is well-known that transitioning from discrete to real variables significantly simplifies the 
problem (a process known as relaxation). In our case, these real variables represent the concentrations of cells of 
a given type. Unlike the NP-hard problem, this real-valued linear programming problem can be feasibly solved 
within a reasonable timeframe. Such a property potentially gives multicellular organisms a decisive advantage, 
as their genetic networks can find a response to stress much faster and have higher chances of success.

Transitions from simple symbiotic systems to cell colonies can occur in response to a decrease in available 
resources. Consequently, colonies of cells with the Jacob–Monod regulation demonstrate greater adaptability 
to the environment compared to ensembles of non-interacting cells. This increased adaptability arises from the 
fact that cell colonies consume fewer resources (see Fig 2).

The scarcity of resources available for consumption may also provide an explanation for the transition from 
cell colonies to more complex multicellular organisms with gene regulation. We exploit the interpretation of 
simple gene regulations as greedy algorithms, which, in general, is not optimal and cannot achieve the optimal 
value of the target function. In our case, the target function is the number of consumed resources, as indicated 
by relation (4.8). If the critical constant Cres , representing the maximum level of available resources, falls below 
the value attainable by the greedy algorithm, the simple cell colony encounters an extinction challenge. Therefore, 
the transition from simple cell colonies to multicellular organisms, where more sophisticated gene regulation 
algorithms are at play, can be attributed to the need to overcome starvation and enhance resource utilization. The 

Figure 2.  The plot illustrates the resource usage by genetic and greedy algorithms. Mathematically, resources 
are represented by the number of subsets, denoted as Nsub , required to cover a given set. The comparison is 
made between the greedy algorithm and various simulations of a genetic algorithm, with each simulation 
defined by two parameters (e.g., (1000, 50) indicating 1000 steps with populations of 50 members). The plot 
demonstrates that the most sophisticated genetic algorithm achieves the task of covering the set using the least 
value of Nsub , indicating efficient resource utilization.
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transition to higher forms through cooperative evolution does not necessarily result in the complete extinction 
of lower forms. In fact, it is known that the current distribution of life’s kingdoms is as follows: plants dominate 
with approximately 450 gigatons of carbon (Gt C), while animals account for about 2 Gt C, bacteria for approxi-
mately 70 Gt C, and archaea for around 7 Gt  C46. Microorganisms forming simple colonies can benefit from 
symbiosis with more complex forms. For example, mammalian intestines provide relatively stable environments 
for  bacteria47.

Discussion
The emergence and evolution of complexity are fundamental challenges in  biology1,2,48. It is intriguing to con-
sider why the evolution of life did not cease at the stage of the simplest autotrophic prokaryotes but produced 
“organisms with huge, regulated genomes, multiple tissue types, and even ability to develop theories of evolu-
tion?”  (see48, Ch. 8).

This manuscript demonstrates that classical models from algorithm theory and mathematical methods from 
statistical mechanics, originally developed for neural networks, spin glasses, and Boolean satisfaction problems, 
can provide insights into the emergence of new forms of cooperation in life. Inspired  by5,6, we view evolution 
as a hard combinatorial problem and draw upon the foundational principles of algorithm  theory10,21. The key 
concept, as highlighted  in5,6, is that evolution is achievable if the time required for adaptation is polynomial 
in the number of genes, but it becomes infeasible if this time is exponentially large. Notably, the existence of a 
fundamental adaptivity barrier was first identified by R. Fisher in the context of the Fisher Geometric  model18, 
and subsequent studies by  Orr19,34 further explored this concept. In this manuscript, we also demonstrate that 
such an adaptivity barrier is present in practically all Boolean fitness models, which encompass gene-trait maps 
and generalize the Fisher model with mutations that have been extensively  studied49.

A second important idea, proposed  in31, suggests that all metabolic systems with fixed parameters are inher-
ently unstable under fluctuations and will eventually be destroyed. In order to maintain stability and avoid 
destruction, evolution needs the process of replication, which involves the invention of new genes and modi-
fications to existing ones. This concept was explored further  in50, leading to fundamental implications. The 
introduction of new genes requires cells to develop more complex metabolic systems, thereby giving rise to a 
generator of complexity. Consequently, the evolution of individual organisms inevitably encounters a funda-
mental adaptivity barrier. This barrier hinders gradual evolution, prompting the emergence of new forms of 
cooperation when the computational (and thus thermodynamic) cost of gradual evolution becomes too high to 
overcome the adaptivity barrier.

Complex traits can evolve adaptively or non-adaptively. The debate over the nature of evolution has been 
ongoing for many years, starting with Kimura’s seminal  work51 and continuing with others  like48. Genomic data, 
coupled with the relatively small effective population sizes of large multicellular organisms, support the opinion 
that the evolution of these organisms might have been non-adaptive, aligning with the theory of constructive 
neutral evolution. Based on our models, drawing a definitive conclusion remains challenging. However, our 
estimates suggest that the emergence of multicellular organisms was quite plausible.

Undoubtedly, constructing an efficient genetic network is a complex process. Nevertheless, our estimates 
indicate that even a slight increase in network size can exponentially enhance the probability of maintaining 
homeostasis, provided the initial GRN was sufficiently large. The likelihood of a series of mutations leading to a 
more efficient network is small, but not exponentially so, in terms of the network size parameter Nreg . Our cal-
culations reveal that even if almost all mutations were non-adaptive, except for the final terminal mutation, the 
process of successive replications leading to an organism with complex genetic regulation is not implausibly rare.

Using the Boolean models, we can demonstrate that certain forms of cooperation may arise as a result of 
rapid environmental changes. When faced with bounded mutation rates and a limited supply of genes within 
individual organisms, it becomes insufficient to adapt to new and challenging environmental constraints. In such 
cases, cooperation between organisms becomes the only viable option for survival.

Furthermore, some forms of cooperation emerge due to resource limitations. For example, under inap-
propriate environmental conditions but with abundant nutrients, slime mold exists as a colony of single cells. 
However, when faced with harsher conditions such as starvation, the cells undergo migration, aggregation, and 
differentiation into spores. This transformation from colonies to a primitive multicellular organism aligns with 
our model for the transition from case C to case D.

The algorithmic approach highlights that the biosphere is not capable of adapting to rapid environmental 
changes within short periods. As a result, these rapid changes can lead to the emergence of new cooperative forms 
or mass extinctions. A notable example of this is the Cambrian explosion, a period associated with global warm-
ing caused by the greenhouse  effect52. During this period, there was a substantial increase in biodiversity and the 
emergence of multicellular organisms. The exact reasons for these developments are still subject to debate, but one 
leading theory suggests that the increase in atmospheric oxygen levels played a crucial role. The higher oxygen 
levels allowed cells to adhere together and form complex body structures, and they also facilitated metabolic 
processes involved in the production of collagen, a protein critical for the formation of hard body structures.

On the contrary, there are theoretical arguments and comparative genomics data that support the second sce-
nario, known as the neutral or non-adaptive  scenario53. This perspective, discussed in detail  in48 (Chapters 8-9), 
suggests that random evolutionary processes and genetic drift play an important role in the emergence of large, 
complex genomes, rather than solely adaptive selection.

Our theoretical arguments align, to some extent, with this non-adaptive theory. The process of random evo-
lution leading to the emergence of large, effective regulation networks of size N may require a number of steps, 
most of which do not contribute to an immediate increase in fitness. However, once this network is established, 
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it provides a substantial fitness advantage (exponential in Nγ ) that facilitates the fixation of complex regulated 
genomes, even in small populations.

Methods
Our approach is built upon several established components: (i) The concept of replicative stability in systems 
supporting homeostasis, as proposed Gromov-A.Carbone31; (ii) The fitness model developed Reinitz et al.20,41; 
(iii) The theory of large deviations and stochastic transitions in random dynamical  systems54; (iv) The theory 
of phase transitions in combinatorial  problems21; (v) The novel idea employed in this study is the stability via 
gene regulation, as described  in25 and the SM. In this context, we use universal approximations provided by 
deep  networks36–38,55.

The application of these methods can be described as follows. We use (i), (ii), (v) to estimate the stochastic 
stability of evolving biochemical systems under random perturbations. Note that the fundamental results of large 
deviation theory, as outlined in point (iii), are applied to estimate the probability that the organism will remain 
within the homeostasis zone and survive.

This analysis leads us to the development of combinatorial fitness models, which have the ability to describe 
both individual organisms and various cooperative communities. Furthermore, with the help of (iv), we estimate 
the adaptivity barriers associated with different situations. In the subsequent subsections, we will introduce the 
specific models that are used.

Metabolic regulation and homeostasis
Here, we briefly describe a GRN model and homeostasis. This model is also described in more detail  in25 and 
the SM.

Let v1, ..., vn represent the concentrations of chemical reagents involved in the metabolism of an organism. 
Biochemical kinetics can be described by the following system of differential equations:

where v = (v1, ...., vn) ∈ D , where D is a compact domain in a non-negative cone Rn
> = {v ∈ R

n : vi ≥ 0} with 
a smooth boundary ∂D , vi(t) are the concentrations of reagents, the reaction terms gi are smooth functions, for 
example, polynomials (see the SM), in v dependent on ξ , which is a random stress parameter, and the gene expres-
sion string s. Reaction rates gi depend on the state of the random environment, characterized by the coordinate ξ 
in E ⊂ R

d . Here, E is a set of all possible environments. For instance, ξ could be the concentrations of nutrients 
necessary for the organism’s survival, the temperature, or parameters describing a complex temperature regime, 
including variations during different times of the day.

To incorporate genes into our models, we use Boolean strings s = (s1, ..., sNg ) , where Ng is the number of 
genes. Each gene si can take Boolean values si ∈ {0, 1}.

Homeostasis. We assume, to be viable, the organisms should produce sufficiently large amounts of the output 
concentrations vi : vi(ξ , s) > hi , i ∈ I , where I ⊂ {1, ...,Nr} is a subset of indices. These conditions define the 
homeostasis (viability) domain, where organisms survive (see the SM). The probability Pv(s) that the organism 
remains viable is

Let the random quantity ξ be distributed according to the probability measure dρ(ξ) . Then

where the set V is defined by V(h,Nr , s) = {ξ ∈ E : vi(ξ , s) > hi ∀i ∈ I}. The quantity Pv(s) can be considered 
as the fitness of an individual. Computing this fitness for real metabolic networks is a challenging task. How-
ever, in many cases, it can be shown that minimizing the probability Pv(s) reduces to solving different Boolean 
combinatorial problems, which are described in the following subsections (refer to the SM for more details).

The quantity Pv(s) can be considered as the fitness of an individual. Computing this fitness for real metabolic 
networks presents a challenging task. However, in many cases, it can be shown that minimizing the probability 
Pv(s) is equivalent to solving various Boolean combinatorial problems, which are described in the following 
subsections (refer to the SM for more details).

GRN. One can show (see the SM), through the Fourier analysis of pseudo-Boolean functions, that the kinetic 
rates gi can be split into two parts: gperti  , interpreted as a perturbation induced by the stress ξ , and gregi  , which 
depends on gene expression. The second part can be considered as a GRN. We can ensure the stability of the sys-
tem under perturbations if the perturbation and the response to it mutually negate (or almost negate) each other.

As an example, let us consider mechanisms that allow bacteria to resist antibiotics. Bacteria have different 
methods to withstand the effects of an antibiotic. For instance, some bacterial enzymes can inactivate antibiotics. 
An example can be given by β-lactamase, which destroys the active component of penicillins. Bacteria can also 
produce enzymes capable of adding different chemical groups to antibiotics, preventing the binding between the 
antibiotic and its target in the cell. This resistance mechanism can be described by our model.

(4.1)
dvi

dt
= gi(v, ξ , s), t ≥ 0,

(4.2)Pv(s) = Pr[vi(ξ , s) > hi ∀i ∈ I].

(4.3)Pv(s) =
∫

V(h,Nr ,s)
dρ(ξ),
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Simplest fitness model
This model (as described  in20,32) can be obtained by considering a chain of reactions following the Michae-
lis–Menten law, where each stage is controlled by a gene. In this context, we can examine the gene-trait maps 
defined by

where j = 1, . . . ,M . Here σ(z) is a sigmoidal function of z such that σ is monotone increasing, σ(z) → 1 as 
z → +∞ and σ(z) → 0 as z → −∞ . The coefficients wij can have different signs. If wji > 0 then the i-th gene 
is an activator for j-th trait, if wji < 0 it is a repressor, and for wji = 0 that gene does not affect the j-th trait. This 
model can be viewed as a circuit that allows for the regulation of phenotype robustness through specific param-
eters hj , which are thresholds initially introduced  in39. Similar models, such as (2.5), have also been explored in 
studies such  as40–42.

Suppose that all wij are independent and normally distributed random variables with zero mean and vari-
ance r2 . These assumptions, which are standard for such  models43, imply that we are considering random gene 
regulation.

Multilayered perceptron (MLP)
To see that the MLP can appear as a model of metabolism we can consider two metabolic ways, which work in 
a cooperative way (see the SM).

MLPs (Multi-Layer Perceptrons) typically consist of one or several hidden layers arranged in a feed-forward 
cascade. In each layer, the genes depend recursively on the genes in the previous layer through sigmoidal func-
tions. This architecture resembles the gene regulatory networks observed in developmental biology, such as the 
cascade of transcription factors during Drosophila melanogaster morphogenesis. Maternal factors activate gap 
or pair-rule genes, which in turn activate Hox genes, and Hox genes activate realizator genes that drive segment 
differentiation in the developing embryo. Therefore, MLP architectures can effectively mimic realistic gene regu-
latory networks encountered in developmental biology. Furthermore, MLP architectures are Turing-complete, 
meaning they have the ability to approximate any Boolean function, including any conceivable gene-trait  map56. 
This versatility allows MLPs to serve as models for various biological processes, including metabolism. For 
example, by considering two metabolic pathways that operate cooperatively, we can demonstrate how MLPs can 
effectively represent such interactions (see the SM for more details).

It has been demonstrated that both single-layer and multilayer perceptron models are capable of reproducing 
the topological characteristics of rugged and fragmented fitness landscapes observed in real-world situations. 
This is achieved through the reduction of single-layer perceptron models to the well-known hard combinatorial 
model called K-SAT (see the SM for further details).

Models of cooperation
All the cooperative models discussed in this context can be derived from the fitness functions described earlier. 
The fitness functions capture the essential dynamics and interactions within the systems, allowing us to model 
and analyze various cooperative phenomena.

Models for symbiosis
We consider a case where organisms O1,O2, ...,Om coexist in an external environment. These organisms have the 
ability to activate different genotypes s(1), s(2), ..., s(n) that enable them to produce chemical compounds (gene 
products) essential for their survival. Let us denote by ail the quantity of i-th gene product that can be obtained 
by activating genotype s(l) . The cost of activating genotype s(l) is denoted by rl , which represents the amount of 
resources required. Additionally, hi represents the minimum amount of the i-th gene product needed for the 
survival of the organism. Mathematically, the cooperation problem among organisms can be formulated as an 
Integer Linear Programming problem, which can be defined as follows: To minimize

under conditions

This means that each organism produces a subset of gene products, and collectively they need to produce all the 
products required for survival using the minimal amount of resources defined by Ftarg (u) . The Boolean variable 
ul represents the activation status of the genotype s(l) , where ul = 1 if the genotype is activated and ul = 0 oth-
erwise. It is worth noting that an alternative formulation of the problem can be considered, where the condition 
(4.5) is replaced by:

(4.4)fj = σ

(

N
∑

i=1

wjisi − hj

)

,

(4.5)Ftarg (u) =
n

∑

l=1

rlul

(4.6)
n

∑

l=1

ailul ≥ hi , ∀i = 1, ...,M

(4.7)ul ∈ {0, 1}.
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This implies that the population of organisms must adapt and survive under constrained resource availability. 
In the specific case where ail ∈ 0, 1 , rl = 1 , and hi = 1 , the Integer Linear Programming problem reduces to the 
Set Cover  Problem57. Let’s delve into the Set Cover Problem and its biological interpretation in more detail.

Let ξ represent a parameter that characterizes the state of the environment. We assume the existence of a 
set U = f1, ..., fM , which encompasses all possible ecological constraints (referred to as the Universe). For each 
specific ξ , a different subset of constraints E(ξ) ⊂ U is present.

Let F  be a family that comprises n subsets Ek , where k = 1, ..., n , representing the different constraints from 
the Universe U  . We assume that the k-th organism has the ability to fulfill the constraints specified by a set 
Ek ∈ F  from this family.

We suppose that

i.e., all the sets Ek cover the entire Universe U.
Consider different subfamilies Ej ⊂ F , j ∈ J , where J is a subset of [1, n] = {1, ..., n} . Let us denote by |J| the 

number of elements of the set J, i.e., the size of the subfamily. Then the Set Covering Problem is as follows:
Consider the family F  of subsets of U . Suppose (4.9) is satisfied. For a subset E ⊂ U to find a cover Ej of E by 

subsets Ej ∈ J:

that has a minimal size |J|. In other words, we have a set U  containing elements 1, 2, ..., M, referred to as the 
Universe, and a collection F  consisting of m sets. The objective is to find the smallest subset of F  such that the 
union of this subset covers the entire Universe U (note that there may be multiple possible subsets that satisfy 
this condition).

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files. The code to produce numerical results is available at https:// doi. org/ 10. 5281/ zenodo. 64815 68.
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