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Abstract

Sequencing technologies are becoming cheap enough to apply to large numbers of study participants and promise to
provide new insights into human phenotypes by bringing to light rare and previously unknown genetic variants. We
develop a new framework for the analysis of sequence data that incorporates all of the major features of previously
proposed approaches, including those focused on allele counts and allele burden, but is both more general and more
powerful. We harness population genetic theory to provide prior information on effect sizes and to create a pooling strategy
for information from rare variants. Our method, EMMPAT (Evolutionary Mixed Model for Pooled Association Testing),
generates a single test per gene (substantially reducing multiple testing concerns), facilitates graphical summaries, and
improves the interpretation of results by allowing calculation of attributable variance. Simulations show that, relative to
previously used approaches, our method increases the power to detect genes that affect phenotype when natural selection
has kept alleles with large effect sizes rare. We demonstrate our approach on a population-based re-sequencing study of
association between serum triglycerides and variation in ANGPTL4.
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Introduction

Over the past 20 years, positional cloning guided by linkage

analysis and genome wide association studies (GWAS) have

identified many loci relevant to human disease and other

quantitative phenotypes such as height, body mass index, and

serum lipid composition. However, in most cases the total amount

of phenotypic variance explained is small compared to the

heritability observed in twin or adoption studies [1]. Some authors

note the possibility that low-frequency genetic variation, which is

not measured on standard single nucleotide polymorphism (SNP)

arrays, may contribute to this missing heritability [2–7]. The rapidly

decreasing cost of obtaining DNA sequence has prompted several

groups to test this hypothesis by sequencing candidate genes in

participants of cohort or case-control studies hoping to discover

either 1) rare or previously unknown SNPs with large detectable

effect sizes, or 2) a correlation between overall number of rare SNPs

and phenotype [8–15]. This research is rapidly approaching a new

phase as investigators use next-generation sequencing technology to

measure all variation in the exome and wider genome [16,17].

Several authors have shown that rare variation is particularly

relevant in the case that natural selection has acted to keep variants

with large effects rare, and that without action by purifying selection

rare variants have effect sizes comparable to common ones [2,3,6].

There are three signatures of association in a resequencing study

which we want to use to assess candidate genes. Some SNPs could

have effect sizes large enough that they have individually

noticeable impact on phenotype; this is the information underlying

regression procedures, like those put forward by Hoggart et al [18]

and Kwee et al [19]. This approach is very similar to current tag-

SNP based procedures and not designed thinking of resequencing

data, since the effects of rare SNPs will not be easy to discern.

Depending on the role natural selection has played in the history

of the phenotype, two other signatures of association may exist.

Second, rare SNPs may tend to have effect sizes in the same

direction (e.g. inducing risk), so a measure of overall rare-variant

burden could correlate to phenotype; this is the information

exploited in allele-count [20] and rare-variant-burden [21] type

methods. That signature may be present if either selection has

favored the phenotype (or a correlate) in a particular direction, or

if purifying selection has been weak and derived alleles tend to be

deleterious to the phenotype. Finally, rare SNPs could tend to

have effect sizes which are larger than common ones. This could

be the case if selection has tended to stabilize the phenotype. The

method of Kwee et al [19] can allow for that possibility, but does

not contain guidance on what the structure of the frequency -

effect size relationship should be.

We present a method capable of detecting all three signatures of

association. Our method generalizes allele count and rare-variant-

burden methods by explicitly constructing a model relating disease

impact, selective pressure, and SNP frequency in a candidate gene.

By doing so, we will be able to provide intuitive interpretations to

detected associations, allowing investigators to answer additional

questions with their data. Our approach will yield substantially
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more power if the model is close to correct without introducing

bias or sacrificing much efficiency when our assumptions are not

met.

We propose to estimate the evolutionary fitness burden of each

SNP using its observed frequency and population genetic

parameters inferred by other authors. That estimate of fitness

burden will act as prior information on the variant effect, acting

like a burden function [21]. The same estimate will structure the

variability of SNP-phenotype correlations, replacing arbitrary

weights [19], and provide robust estimates even if there is no

relationship between fitness and effect magnitude. We recognize

that for a quantitative trait measured in a prospective cohort, a

well-justified approximation of the full model can be fit using a fast

and general statistical technique, mixed linear models, and provide

software routines to estimate parameters and conduct hypothesis

tests. We have named the approach EMMPAT (Evolutionary

Mixed Model for Pooled Assocation Testing)

In what follows, we will briefly introduce the population genetics

ideas which underly our approach. Next, we construct our

statistical model and discuss estimation and testing within it.

Finally, we illustrate the method both in simulation studies and on

a real candidate gene resequencing study examining serum

triglyceride levels in a multi-ethnic prospective community-based

sample [8,12].

Relating SNP Frequency, Fitness, and Disease Effect
Several authors have reviewed the potential contribution of low

frequency alleles to variation in phenotypes [2–7]. Absent a

change in the properties of new mutations during recent history,

which we find implausible, systematic differences between SNPs of

varying frequencies must be mediated by natural selection. Since

the early 20th century, much work has explicated the evolutionary

dynamics of quantitative traits, reviewed by Barton and Johnson

[22,23]. Below we will posit a model of pleiotropic selection

whereby the trait under study or a trait with a correlated genetic

basis is under purifying selection. More detailed connection and

contrast to the existing work on the genetic basis of quantitative

traits is found in Text S1.

In Figure 1, we illustrate direct and apparent selection scenarios

which give rise to a correlation between fitness effects and

phenotype effects. In Figure 1A, the phenotype itself is under

selective pressure; for example, disease leading to propensity to

childhood mortality. Figure 1B shows apparent selection by

pleiotropy; variants which disrupt an unconstrained role of a gene

also tend to disrupt another role which is under selection; for

example, variation which increases Alzheimer’s Disease risk after

reproductive age may relate to other brain function which is

relevant for individuals still reproducing.

Hartl and Clark [24] carefully constructs and interprets the

concept of fitness-effects in classical population genetics. Briefly, in an

idealized population, the relative reproductive advantage of an

individual is the product of the fitness effects of each variant that

person carries, an additive approximation with no dominance or

epistasis. We parameterize the problem in terms of the log of

multiplicative fitness effects. That is, the fitness of the ith person is

given by Si~exp
P

j sjGij

� �
where the fitness effect of the jth variant

is denoted sj and Gij is the unphased genotype at that locus. The

fitness effect of a new mutation sj determines several of its properties,

such as average sojourn time before either going extinct or fixing at

100% prevalence and average frequency when sampled at a point in

time [24].

Rather than assume that all variants in the region have the same

sj , we assume that the sj of new mutations are sampled from a

distribution of fitness effects (DFE). Just as a fixed sj would determine

properties of the sampled genotype data for a SNP, a DFE along

with mutation, recombination, and demographic parameters

induces a distribution on the observed frequency spectrum and

polymorphism - divergence ratios in sampled data. Several authors

have attempted to fit a parameterized DFE from genomic data

[25–34]. Boyko et al [33] found that a combination of a point mass

at neutrality (not under selection) combined with a gamma

distribution for deleterious differences from neutrality to be a good

fit for the DFE of non-synonymous mutations.

With these facts in mind, in what follows we will use fitness

effects to operationalize the construct of functional status for each

SNP. Whereas Johnson and Barton [23] worked directly with the

joint distribution of fitness and phenotype effects, we will use an

existing DFE estimate [33] as a marginal distribution for fitness

effects and construct the conditional distribution of phenotype

effects. Since we do not know the true fitness effects of SNPs, we

will estimate them with observed SNP frequency, which is

statistically ancillary to phenotype-SNP correlation, using a

simulation methodology described below.

Methods

Model for SNP Effects on Phenotype
Assume the context of a simple random cross-sectional sample

of n individuals (indexed by i ) studying a quantitative trait Yi

measured once per individual. Assume that these individuals also

possess vectors of covariates Xi and genotypes Gi at each locus

inside a sequenced candidate gene or region. The genotypes are

coded such that ‘‘0’’ represents homozygous possession of the

ancestral allele, ‘‘1’’ heterozygosity, and ‘‘2’’ homozygous

possession of the derived allele at the locus. That is, G4,3~2
represents the fourth sampled person possessing two derived alleles

at the third locus in the sequenced region.

We can write a regression model for person i’s phenotype Yi in

terms of deviation ei from an average level predicted by covariate

effects b and additive genotype effects c,

Yi~b:Xizc:Gizei: ð1Þ

Using standard least-squares regression to estimate such a

model will pose several problems. First, because there will be many

rare variants, c will contain many poorly estimated coefficients.

Author Summary

Studies correlating genetic variation to disease and other
human traits have examined mostly common mutations,
partly because of technological restrictions. However,
recent advances have resulted in dramatically declining
costs of obtaining genomic sequence data, which provides
the opportunity to detect rare genetic variation. Existing
methods of analysis designed for an earlier era of
technology are not optimal for discovering links to rare
mutations. We take advantage of 1) the advanced
theoretical understanding of evolutionary mechanics and
2) genome-wide evidence about evolutionary forces on
the human genome to suggest a framework for under-
standing observed correlations between rare genetic
variation and modern traits. The model leads to a powerful
test for genetic association and to an improved interpre-
tation of results. We demonstrate the new method on
previously confirmed results in a gene related to high
blood cholesterol levels.

Association Testing in Resequencing Studies
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The large number of rare variants will give model (1) a large

number of degrees of freedom, decreasing its power to detect

association with the candidate gene. Some of the variation

uncovered may be perfectly correlated in the sample, meaning

that those coefficients are not separately estimable in least-squares

regression. Additionally, as the amount of the genome sequenced

becomes large, there will be more variants than participants,

making the entire model unidentified.

To overcome these problems, we need to make more

assumptions and model the c coefficients. We adopt a model

where we view the effects of SNPs in the study as a sample from a

wider population of SNP effects, and characterize that entire

population using only three parameters. To fix ideas, assume for

now that we knew the fitness effect of each SNP sj . If fitness was

perfectly correlated to effect on phenotype, we would use that as a

summary for all alleles, cj~rsj , where the parameter r relates the

scales of the two measures. As the fitness effect is not perfectly

correlated to effect on phenotype, we add a mean m and an error

term g�j acknowledging those limitations to obtain

cj~mzrsjzg�j : ð2Þ

In applied problems, sj is not known a-priori, so we will construct a

prediction bsjsj based on the observed frequency. We denote

bsjsj:E sj Dbfjfj

� �
for that estimate, and for its prediction error we

write Vj:Var sj{bsjsj Dbfjfj

� �
. We plug those estimates in to (2) to

obtain

cj~mzrbsjsjzr sj{bsjsj

� �
zg�j , ð3Þ

and combine the two uncorrelated error terms to yield

cj~mzrbsjsjzgj , ð4Þ

where

gj~r sj{bsjsj

� �
zg�j ð5Þ

Var(gj)~r2Vjzt2w(sj): ð6Þ

The first term in (4), m, allows derived alleles to on average

increase or decrease the phenotype. The second term rbsjsj is an

unscaled correlation between phenotype effects and expected

fitness effects bsjsj . The error term gj is the deviation in SNP j ’s effect

on phenotype from the average of SNPs with the same observed

frequency. The variance of gj in (6) therefore has two components,

first r2Vj corresponds to prediction error of ŝsj , and second t2w(sj)

is the variance of phenotype effects for SNPs at the same level of

true fitness burden sj . The function w() allows that as average

burden changes the variability might also change. Although one

could imagine ‘‘bad’’ alleles being more variable in their effects

than relatively neutral alleles, implying non-constant w(), we

propose constant w() as a reasonable modeling start. This will still

allow for the variance of effect sizes to change with observed

frequency because of non-uniformity of Vj with frequency.

Equation (4) asserts that phenotype-effect and fitness-effect are

linearly related; that seems correct for the scenario in Figure 1A

and a good starting place for the other possibilities. In future work

we will be able to empirically examine this assumption by

graphical diagnostics and comparing fits using other functional

forms. Further discussion of nonlinear relationships is found in

Text S1, and we will demonstrate the impact of an incorrect

assumption of linearity in our simulation studies.

Our model is quite general in that existing methods correspond

to submodels of (4). An allele count method tests the model with

only m allowed to vary; rare alleles below an arbitrary threshold

are summarized by an average effect which does not change with

frequency, so r and all gj are set to zero, and alleles above that

threshold are regarded as free parameters. Similarly a weighted-

burden method corresponds to the model cj~rŝsj with a particular

implementation of ŝsj , such as in Madsen et al [21] where

ŝsj~ f̂f j(1{f̂f j)
� �{1=2

, and forces all gj in the rare alleles to be zero.

Our model will not involve an arbitrary threshold for ‘‘rare alleles’’

and will adaptively pool variant effects in a flexible way. As shown

in the results, this will create substantial power gains in a variety of

settings.

When r and m in (4) are zero, our model reduces to a standard

random-effect model identical to that of Kwee et al [19] with all

variants given the same weight. That is, regardless of frequency all

SNPs have the same likelihood of having large effect sizes, and

regardless of frequency SNP effects have zero mean. As a result,

our method will be robust to the case that fitness and phenotype

effects are unrelated by estimating r̂r~0 and retaining the

flexibility of the method of Kwee et al. The major difference

between the above and our method is the use of population

genetics to suggest the structure of the variance of SNP effects,

including a fallback should fitness and phenotype effect not be

related. Kwee’s method is developed in the context of tag SNPs

and suggests an arbitrary variance of SNP effects given as either a

constant, Var(cj)~t2=
ffiffiffiffi
f̂f j

q
, or any prior-information based form.

A related method is that of Hoggart et al [18]. Their approach

Figure 1. Hypotheses relating SNP effect and fitness effect. Panel A depicts the scenario where the trait is directly under selection. Panel B
depicts the scenario where a gene with pleiotropic effects creates fitness-trait correlation via a related phenotype.
doi:10.1371/journal.pgen.1001202.g001

Association Testing in Resequencing Studies
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corresponds to m and r set to zero (they assume a mean-zero

distribution) and a different set of restrictions on the distribution of

g. Their assumptions about the distribution of g were chosen to

yield estimates with most variants having zero effect, a feature

called model selection which eliminates small effects and

correlated variables. In contrast, our model will tend to reign in

large effect sizes and split effect size between variants in high

linkage disequilibrium, but does not eliminate SNPs from the fit.

We prefer our choice for resequencing for several reasons. First,

there may well be many effects of small size which are

cumulatively important, and we want to retain those small effects

in the model. Second, we want an estimate of the effect size of

each variant for graphical and diagnostic purposes. Third, we

accomplish a similar goal of reducing the model size by rejecting

the null on a small number of genes. That is, we want to identify a

small number of disease relevant genes with our efficient test;

doing so will exclude most SNPs without further model selection

procedures. Fourth, by smoothly grouping rare SNPs and

summarizing them with only a few parameters, we already greatly

reduce the multiple testing burden.

Model Interpretation
The specification of equations (1), (4), and (6) yields a natural

interpretation to the fitted model. After estimating the population

parameters of phenotype effects, we will be able to jointly estimate

individual SNP effects ĉc and their impact on the phenotype of each

person in our sample. By calculating ĉc:Gi, we obtain the expected

difference between participant i’s phenotype and what we would

expect were there no effects of this gene. As a result we can

empirically estimate the overall phenotypic variability due to

observed genetic variants, Var ĉc:Gið Þ over study participants. We

can similarly estimate the variability dues to rare alleles by

including only rare SNPs in the above calculation. The overall

effect m is an average change in phenotype per derived allele,

perhaps due to inadequate purifying selection. In the variance

expression (6), t2 is the variability of allelic effects for a given level

of true fitness. As will be shown below in Figure 2, when using the

genome-wide distribution of fitness effects for non-synonymous

SNPs, common variation is nearly neutral so t2 can also be

thought of as the variability of effects of common alleles. r
represents the correlation between fitness burden and phenotypic

burden. This parameter’s interpretation relies on accurately

estimating the scale of fitness effects and has awkward units, but

we can avoid this difficulty by noting that (4) can be decomposed

into a fitness related portion and a fitness unrelated portion which

are independent

cj~r bsjsjz sj{bsjsj

� �� �
z g�j zm
� �

~cfit
j zcnf

j : ð7Þ

By calculating Var(bcc fit:Gi) we can ascribe a proportion of total

variation in phenotype to selection-phenotype correlation without

worrying about having gotten the scale of r correct. Calculations

for separating these variance components are found in Text S1.

We can use the same technique to compare classes of SNPs, for

example non-coding vs missense, by jointly fitting separate r,t,m
and comparing the attributable variance for each class of SNPs.

We will illustrate this idea in our real data example. This

decomposition also shows why it is not crucial for our estimates of

fitness to be perfect. The model can fall back by setting r to zero

and use only cnf
j to recover a working model which does not pool

information across rare alleles. Doing so will mean that the

Figure 2. Relationship between sampled frequency and mean fitness. Simulation results using fitted DFE of non-synonymous variation from
[33] and a sample size of 1000 diploids. Red bars are median +235% of the distribution at that sampled frequency. The x-axis is logarithmic and
scaled by 100, i.e., the first point is 1/2000 chromosomes.
doi:10.1371/journal.pgen.1001202.g002
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opportunity to gain information by recognizing structure in

phenotype effects will not be realized, but the remaining

estimation method is still valid.

An important consideration is how to interpret the results when

multiple ethnic groups are analyzed simultaneously. Because some

genetic variation is fixed between ethnic groups in the sample, the

average effect of single-population variation will be absorbed into

the fitted mean for that group. As a result, the interpretation for

‘‘total explained variation’’ is actually ‘‘total explained within-

ethnic-group variation;’’ genetic variation may explain some of the

phenotypic difference between groups, but we do not include it in

our estimate because of confounding between environmental

exposures and ethnic background.

Another point requiring clarification is the assumption that

genotype effects are independent. In the context of GWAS, nearby

SNPs often are thought to have correlated effects because they

mutually tag a functional variant. Additionally, estimates of SNP

effects will be correlated due to LD making their true separate

effects difficult or impossible to identify. However, in the

underlying data generating mechanism true genotype effects are

independent. Because sequencing identifies all the variation within

the region and eliminates much of the correlation due to untyped

alleles, we believe that the independence assumption is a useful

approximation in this case. Non-independence of the true effects

could be accommodated by imposing a covariance structure on

SNP effects, for example using their spatial distance in the genome

or folded protein. Alternatively, the phylogenetic approach of

TreeLD [35] estimates the degree of probable overlap of untyped

SNPs.

Computing Fitness Effects
Model (4) relies on a prediction bsjsj of the fitness effect of each

variant as well as an estimate Vj of the error of that prediction. We

use the following procedure to calculate such estimates.

1. Take as given the fitted distributional form of fitness effects and

population history since out-of-Africa [33,36].

2. Use existing software SFS_CODE [36] to simulate new

polymorphisms in the gene under study many times, creating

pseudo-samples containing true variant-level fitness.

3. For each variant in the real dataset, find variants in the pseudo-

data with the same sampled frequency, and calculate the meanbsjsj and variance Vj of true fitness among those simulated

variants.

To reduce computational requirements, steps 2 and 3 above can

be replaced by simulating a smaller number of large populations

and calculating the expected mean and variance of fitness using

simple random sampling. Figure 2 depicts the relationship of bsjsj

and Vj to frequency when using a genome-wide fitted DFE [33].

Because much of the variation discovered in our multi-ethnic

example dataset is confined to one ethnicity, we use the ethnicity-

specific frequency and pseudo-data. Because of admixture in our

sample, we use the highest observed frequency (the most skeptical

about its being rare) to assign an ethnicity of origin to SNPs

appearing in multiple groups.

An advantage of this method is that because it refers to a feature

of genetic history rather than a phenotype, it need only be done

once for any trait under study on the same cohort. While the

fitness - phenotype relationship will be different for all traits, that is

modeled by the fitted parameter r rather than modification of ŝs. If

the impact of LD structure on the prediction does not vary too

much between genes, the calculation can be recycled for multiple

genes under study. In some experiments, we found the impact of

LD to be minimal (data not shown). Discussion of taking the DFE

as known versus estimating or using some other flexible function of

frequency it is included in Text S1. Discussion of the quality of the

existing DFE estimates are also included in Text S1. We have used

the observed frequency to estimate the fitness effect, but there are

many other potential predictors of functional status. Discussion of

including them in our model is found in Text S1.

Model Fitting and Estimation
Testing. Our model fitting procedure will be likelihood-based,

so we will use a standard hypothesis testing method: likelihood ratio

tests. To improve robustness, our examples will use permutation p-

values obtained by comparing the likelihood ratio of the fitted model

to that generated under the null hypothesis by randomly swapping

genotype vectors between members of the same ethnicity. Permuting

genotype labels simulates the null hypothesis that no relationship

exists between any genotype and any aspect of the response, which

in our parametric setup is equivalent to r~0,t~0,m~0 while

retaining the relationship between covariates (such as age and sex)

and phenotype. Because the genotypes of members of different

ethnicities are not exchangeable even under the null, we only swap

genotype vectors among individuals with the same reported

ethnicity. In admixed populations where information about local

ancestry is available, the permutation should be between individuals

with the same local ancestry.

Estimation. For numerical convenience and statistical

robustness, we will use only the first two moments of the model

in equations (1), (4), and (6), and assume w() constant in (6). This

last restriction yields a mixed-effects regression problem where the

genotype effects are crossed random factors, presented in (8) and

(9) below. A broad introduction to mixed effects regression and

many of the formulas we will use are provided in McCulloch and

Searle [37]. In matrix notation where each participant is a row

and effects are column vectors,

E½Y DX ,G�~XbzrGŝszmGf1g ð8Þ

Var½Y DX ,G�~Is2zr2G Var s{ŝs½ �ð ÞGTzt2GGT : ð9Þ

We allow the procedure to exploit the possibility that individuals

with a high burden of rare alleles not only have drift in their mean

phenotype because of r in (8), but also more variability in

phenotype due to r in (9). Equations (8) and (9) assert that a single

parameter r regulates the change in mean variant effect and effect

variability with frequency. However, non-differential error (with

respect to phenotype) in imputing covariates biases coefficient

estimates towards the null, so if our estimations of bsjsj and Vj have

different levels of error they will experience different such biases.

As a result, we will want to fit rmean in (8) and r2
variance in (9)

separately to check that they are similar before combining them.

Because it involves an extra parameter the ‘‘split r’’ calculation

will be more variable under the null and less powerful when the

model is true. However, it may be more robust when the model is

mis-specified, as we will explore in our simulations.

We will fit the mixed effects model (8)–(9) using modified

Newton-Raphson optimization of the implied likelihood. The

linear mixed effects approach is equivalent to assuming normality

for the error terms e and g and fitting via maximum likelihood. A

major advantage of this estimation approach is that it allows for

very fast computation; the likelihood can be integrated analytically

over c when maximizing over parameters r and t. We have not

Association Testing in Resequencing Studies
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optimized our software for speed, but it completes in a few seconds

for the large example dataset. Though higher-order expansions

are possible, others have shown that most of the information is

often contained in the first two moments of the data [38,39], and

that correct specification of mean and variance models produces

correct inference robust to additional details of structure.

Assumptions which better match the data at hand will lead to

more power, but they will tend to require dramatically more

computational effort. For our current example we have considered

a single sequenced candidate gene where computational speed is

not crucial, but we expect that methods similar to ours will be

required for whole-genome or whole-exome resequencing efforts

where computational resources will be a limiting factor. Addition-

ally, popular methods such as Markov Chain Monte Carlo and

EM which can use arbitrary distributions of residuals and random

effects require accurate initial estimates to perform well; MCMC

also benefits enormously from a good proposal distribution. Mixed

effect regression is a reasonable way to generate these initializa-

tions. Whereas using only the first two moments for estimation is

only optimal under the normality of Y DX ,G, it will still yield

consistent estimates if normality does not hold, and we can use use

robust methods of testing the null hypothesis such as permutation

p-values. This quasi-likelihood-based method also yields best linear

unbiased estimates for the SNP phenotype effects [37, chapter 6],

which we relied upon in ‘‘model interpretation’’.

Implementation. As discussed above, we will be interested in

fitting distinct rmean in (8) and r2
variance in (9) because of concerns

about different magnitudes of error in the computation of ŝsj and

Vj . In such a scenario, we can use the SAS MIXED procedure [40]

to estimate the model parameters and check our custom software.

Example code implementing this use is maintained at the authors’

website. We generate confidence intervals using the standard

asymptotic arguments in McCulloch and Searle [37, chapter 6],

which are built into SAS.

Alternatively, if we use a single r in the mean and variance

models, the result is a model which is not easily fit in any standard

statistics package of which the authors are aware. We have created

a set of functions in the R programing language [41] to estimate

this model using optim to maximize the likelihood, code for which

is posted at the authors’ web site: http://home.uchicago.edu/

,crk8e/papersup.html

Bayesian interpretation. Our model is easily recast in a

purely Bayesian framework. One would need to write priors for

r,t,m and the effects of covariates. The frequentist formulation is

just the Bayesian formulation with an improper uniform prior

distribution on the variance components. As a result, using

Bayesian regression software like R’s MCMCglmm package or

winBUGs is an alternative for estimation. A reasonable way to

generate proper informative priors would be a three step

calculation. First, estimate a posterior distribution on variance

explained by genetic factors from previous linkage studies. Because

many phenotypes may not have available linkage studies or very

low resolution, one may have to rely on other phenotypes or

animal model results. Second, equate the resulting prior on

attributable variance to the expression in Text S1 with observed

values for the genotype data. Third, assign an arbitrary fraction of

the explained variation to each source and back-calculate to find

the square of the parameter.

The Bayesian analyst could continue to use our normal

approximation of the distribution of the latent sj Df̂fj which allows

it to be integrated out, or could model it directly including the

point mass at zero and skew distribution from the simulation

result. The result would be a large model with many latent

variables, some of which are poorly identified.

Results/Discussion

Dallas Heart Study: ANGPTL4
Description of dataset. About 3500 prospectively sampled

individuals from the population in Dallas, Texas, were sequenced

at a candidate gene for dyslipidemia: ANGPTL4 (Ensembl

Acc:16039). These individuals come primarily from three ethnic

backgrounds: non-Hispanic white (N = 1043), non-Hispanic black

(N = 1832), and Hispanic (N = 601). We will exclude from our

analysis the 75 individuals listed as ‘‘Other’’ ethnicity. Our outcome

phenotype is log-transformed serum triglyceride levels. Details of the

cohort [42], its metabolic phenotypes [43], and the sequencing

methods and discovered genetic variation [8,12] have been de-

scribed previously. We grouped all missense and nonsense mutations

into a single category which we label ‘‘non-synonymous’’ in the

tables and figures, and we grouped all synonymous and non-

coding region mutations into a single category labeled ‘‘non-

coding.’’ Table 1 shows the number of discovered SNPs in each

category in each ethnic group. We consider age, sex, ethnicity,

diabetes status, and self-reported ethanol consumption as adjuster

covariates. For age, we use a flexible linear spline model with knots

at every ten years to allow for nonlinearity in response. We include

all interactions between ethnicity and gender and ethnicity-gender

interactions with other covariates. Because statin use is an

endogenous variable indicating diagnosed dyslipidemia, we do

not adjust for it. We fit models 1) ignoring statin use and 2)

increasing triglyceride levels 25% in the treated to approximate

their untreated level. Because we obtained qualitatively similar

results, we present only the latter.

Model estimates. Table 2 presents model summaries and

point estimates with asymptotic standard errors for model

parameters, stratified by ethnicity and pooled using ethnicity as

an adjuster. Table 2 presents the results setting the offset term m to

zero. We found that including m in (4) produced poor fits when

there were few variants, for example when using only the Hispanic

non-synonymous variants (n = 8). In the pooled estimate, including

the offset did not qualitatively change the result.

For ANGPTL4, we observe a p-value of .006 on 10,000

permutations versus the strong null hypothesis that no SNPs have

any effect. Previous authors [12] observed a p-value for a net

surplus of non-synonymous variants in low triglyceride partici-

pants of .016 and a minimum variant-at-a-time p-value of .019 for

E40K corrected for multiple testing. The improvement to the

model fit by including r is small in this case; a likelihood-ratio p-

value using the asymptotic distribution is non-significant. As seen

in Table 2, a glimmer of a fitness component is only seen in the

non-coding variation, and the explained variance is very small.

However, to illustrate the interpretation of the plots which our

approach generates we’ll take the parameter estimates at face

value below.

Table 1. Genetic variation in ANGPTL4.

Population N individuals
N Non-synonymous
variants

N Non-coding
variants

Pooled 3476 32 62

Non-Hispanic
whites

1043 20 23

Non-Hispanic
blacks

1832 15 38

Hispanic 601 8 17

doi:10.1371/journal.pgen.1001202.t001
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Interpretation of diagnostic plot. Figure 3 shows the

observed SNPs and estimated effect sizes (non-synonymous in

black and non-coding in red) rank ordered by observed frequency

(in blue). Variant-at-a-time ordinary least squares (OLS) estimates

of effect size are overlaid in green. Figure 3 displays several

interesting features of the data; first there are two low-frequency

non-synonymous variants with a strong effect reducing triglyceride

levels; the first is E40K (frequency in non-Hispanic whites = .012,

frequency in non-Hispanic blacks = .003), the sole variant

identified by Romeo et al [12]. However, adjusted for E40K we

see that another more common variant R278Q almost exclusive to

non-Hispanic blacks (frequency = .055) also appears to decrease

triglyceride levels. We observe a weak tendency for all non-

synonymous variation to reduce the phenotype; Romeo [12] also

noted an excess of rare non-synonymous variants in those with low

triglyceride levels. The rare non-coding variation appears to have

the opposite sign of effect; it increases triglyceride levels. Referring

to Table 2 we see that a fitness-related component of variability (of

about the same scale as the change in mean) was detected; this

gives rise to the wider spread of point estimates and wider

confidence intervals in non-coding variation.

An interesting data point in Figure 3 is a single 5% frequency

non-coding variant (directly before R278Q) whose OLS effect

estimate is quite large (and nominally significant) but whose

model-based effect estimate is small. Examining that variant more

closely, we found that it is in strong LD with R278Q. Because

E40K (which is not strongly correlated to any other variation) had

a large effect and non-synonymous variants tended to decrease

triglycerides, the model assigned non-synonymous variation as

more likely to have non-rare variation with large negative effect

sizes and gives the effect to R278Q. Similarly, perfectly correlated

rare variants have their combined effect split evenly.

We can understand this model fit by looking at the green OLS

estimates in Figure 3. Visually, the estimates for non-synonymous

variation tend to be below zero. Comparing the non-synonymous

to non-coding singletons, we see more variable estimates in the

non-coding singletons as well as a different mean. The model fit

identifies this as opposite signs of rmean and a much greater r2 in

non-coding. The non-rare non-synonymous variants with large

effects (E40K, R278Q) drive the larger estimate of t2 versus non-

coding variants; examining Figure 2 we see that common variation

is essentially neutral with respect to fitness, and as a result non-zero

effects in non-rare variants force t2 away from zero.
Evolutionary interpretation. An interesting potential story

about natural selection on ANGPTL4 activity emerges from

Figure 3. First, non-synonymous mutation tended to decrease the

effectiveness of ANGPTL4 and decrease serum triglyceride levels

[8,44,45]. We see no evidence of selection against those mutations;

variants which decreased triglycerides became more than rare in

both the African and European lineages, and we see no excess of

large effects in rare SNPs. On the other hand, non-coding

mutations which may alter the regulation of ANGPTL4 on

average increased triglycerides. Variants with large effect sizes

were preferentially rare, and the apparent selective force was

stronger in the non-European lineage, as the demographic history

would predict. This meshes well with the finding that ANGPTL4

experienced a Europe specific relaxation of purifying selection

[12]. We do not suggest that serum triglyceride levels in themselves

were the target of purifying selection; effect on triglycerides may

only be correlated to effect on a selected function.

Simulation Studies
Population parameters. In order to determine the power

and robustness of our procedure, we simulated variation in a gene

with the exon structure of the gene ANGPTL4 in a study

population using SFS_CODE [36] and fitted demographic and

DFE parameters [31,33]. We used 4cM/mb for the local

recombination rate and no recombination hotspots. We used

1:8=108 as the mutation rate per-nucleotide-per-generation. From

the final simulated population of about 20,000 individuals we

sampled 1000 individuals independently for each of 1000

simulation runs. SFS_CODE commands creating the simulated

population are available at the authors’ web site. We created

simulated phenotypes according to (1) and (2) using parameters

described below. The total simulated population had 132 coding-

region SNPs, 29 of which were at frequency greater than 1%.

Model parameters. We chose several levels of the

phenotype parameters to correspond to potential cases of

interest while keeping the total fraction of variation explained by

the gene about the same: a weak mean variant effect, a strong

fitness-related component of the phenotype, and a strong fitness

independent component of the phenotype. We chose the baseline

values such that r and t explain about the same amount of

variation in phenotype. We also created a scenario with no fitness-

phenotype correlation whatsoever. To ensure that type 1 error

rates were correct, we include a simulation under the null

hypothesis that no variants have any effect on phenotype. Table 3

contains the chosen phenotype parameter values for each set of

simulations and the resulting expected percent of variance

Table 2. Model fit for ANGPTL4.

Population SNP Type t̂t Dr̂rvariance D r̂rmean SE
nonfitness %
variance

fitness %
variance

Pooled non-syn 0.13 0.0 2.5 8.7 0.54 0.003

Pooled non-coding 0.02 8.3 29.6 6.5 0.09 0.08

NHW non-syn 0.15 0.0 5.8 13.5 0.53 0.03

NHW non-coding 0.02 0.0 1.9 7.3 0.004 0.008

NHB non-syn 0.08 0.0 0.5 11.4 0.42 0.0002

NHB non-coding 0.02 0.0 211.4 8.1 0.07 0.13

Hispanic non-syn 0.00 0.0 20.5 43.9 0 0.03

Hispanic non-coding 0.10 19.6 240.8 38.2 0.08 0.66

Parameters are defined in equations (1), (4), and (6). SE is for rmean . Attributable variance is that due to decomposition (7), see Text S1 for calculation. Pooled model
p = .0064 on 10000 permutations. Pooled model residual variance = 0.29. NHW is non-Hispanic white; NHB is non-Hispanic black.
doi:10.1371/journal.pgen.1001202.t002
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explained by the SNPs due to fitness-phenotype correlation and

percent of variance explained independent of that correlation.

Two additional batches of simulation examine the robustness of

our procedure to incorrect assumptions. First we created violations

of the assumed population model. We mis-specified the assumed

DFE in our analysis, making the scale parameter a factor of 5 too

large or too small and keeping the truth the same. We also

simulated violation of our demographic assumptions using a

population which experienced an additional 100 fold exponential

growth over the last 11% of generations since out-of-Africa.

Second we created violations of the assumed statistical model. We

simulated three scenarios violating the linearity assumption. First,

with cj proportional to s2
j , second proportional to

ffiffiffiffi
sj
p

, and third a

50/50 mixture of sj and {sj . We simulated g�j using a highly

skewed log-normal distribution which was then standardized to

have mean zero and variance t2. We also simulated with 20% and

80% of the variants having an effect size of zero.

Power comparisons. To compare power with existing

methods, we included several proposed methods of analysis.

First, we test the method of Bonferroni corrected minimum p-

value of SNPs with minor allele frequency .1% or .5%. Other

proposed methods using allele counts like CAST [46] CMC [20]

and weighted sums [21] were created for case-control studies, so

we alter those methods to be fair in a cohort quantitative-trait

context. Our representative of CAST-like analysis is regression

with the number of rare variants carried by each participant as a

Figure 3. Frequency versus estimated effect size in ANGPTL4 with ordinary least squares estimates. The SNPs have been rank-ordered
by observed frequency on the x-axis with ties broken by estimated effect size. The left y-axis is the predicted effect (ĉcj in (4) ) on the log of serum
triglycerides. Green solid dots are the point estimate for each variant’s effect on log-triglycerides from one variant at a time ordinary least squares
adjusted for non-genetic covariates. Open circles are joint point estimates of ĉc from our method, and bars 95% prediction intervals on those
estimates. Confidence intervals are the elementwise Wald-type estimates described in chapter 6 of [37] and produced by SAS’s estimate command in
the mixed procedure. See Text S1 for the calculation of point estimates, and the sample code at the author’s website for SAS commands. Non-
synonymous variation is in black; non-coding variation in red. The right y-axis and blue line depict observed count pooled across ethnicities on a log
scale.
doi:10.1371/journal.pgen.1001202.g003
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covariate; CMC-like analysis is the same with non-rare SNPs

(frequency greater then 1% or 5%) treated as free regression

parameters. P-values are then generated by ANOVA against the

nested model consisting only of only fitting the mean response.

Our representative of weighted-sum type methods is a similar

regression analysis where rare variants are collapsed to a mean

model with burden proportional to f̂f j(1{f̂f j)
� �{1=2

, which is the

same weight used by Madsen et al [21]. Because the simulated

response is actually normal, we do not use a rank transformation.

We also used the same burden function for only low frequency

SNPs and treated common SNPs as regression parameters. P-

values are again obtained by ANOVA versus a nested model with

no genetic effects.

To demonstrate the gain (or loss) in information by considering

the marginal variance, we apply a similar regression with an

optimal mean model, that is (8) either for all SNPs or treating

common SNPs as free. We tested our model both with a single r in

the mean and variance and the ‘‘split r’’ calculation where

separate parameters are fit in (8) and (9).

Table 4 summarizes the power comparisons in each case. Our

model is as or more powerful than the existing methods, even

when there is substantial violation of its assumptions. The only

scenario in which our model loses some power is when there is

absolutely no fitness-phenotype correlation. Even in that case, the

relative loss is small, much smaller than the gain when r was not

zero. The additional utility of the method varies substantially

depending on the chosen parameters. For example, when the

fitness-phenotype correlation accounts for about half the genetic

component of the phenotype (the basic scenario), our method

provides a substantial improvement, but when t is large (common

variants have large effect sizes) the benefit is less. Our model

appears reasonably robust to all the violations of assumptions

which we tested, even providing a performance benefit when effect

sizes were very skew or the true relationship was nonlinear. In

effect, the truth in those cases lined up less well with the implicit

assumptions of the competing methods. Perhaps most importantly,

even fairly substantial mistakes in the DFE and demographic

history did not dramatically reduce the power of our method. The

‘‘split r’’ model appears to perform about the same as a single r.

The minimum p-value method’s poor showing in some scenarios is

explained by the data generating mechanism we chose; when t is

small or many SNPs have zero effect there will often be no

common variants with appreciable effect sizes.

Discussion
We propose a novel method, EMMPAT, for association

between sequenced genes and phenotype which utilizes population

genetic theory to pool information among rare variants. Our

method generalizes allele-count and allele-burden techniques, and

presents several advantages. Of greatest importance to the

practicing scientist will be increased power and interpretability.

As shown above, our method allows us to leverage allele frequency

as auxiliary data related to SNP effects and to substantially

increase power to detect association in many scenarios. The

availability of a well motivated pooling strategy allows an omnibus

test which incorporates common and rare variation simultaneous-

ly. Our approach provides clear interpretations for the fitted

model, such as the attributable variance in phenotype due to all

polymorphisms observed in a gene, particular types of SNPs, or

only the rare variation. Furthermore it facilitates tests of

meaningful parameters (such as mean derived allele burden) and

group differences (such as non-synonymous versus non-coding).

The regression toolbox allows model checking and exploration,

such as in Figure 3 which presents the data in an informative

format. Additional model checking proceeds as usual in linear

mixed models, and posterior predictive checks are similarly

possible.

A relevant question is how important our method will be for

diseases which have not been strongly selected against. There are

three answers to consider. First, when selection and disease effect

are completely independent, common SNPs will tend to have just

as large effect sizes as rare SNPs and explain much of the heritable

variation in phenotype [2,3]. We believe that most investigators

conducting resequencing studies assume rare variation to have

larger effect sizes, since that is the best-justified scenario for the

expense of sequencing. Second, our method allows for this

possibility in the form of estimating r to be zero and t non-zero.

As demonstrated in our simulations, the loss of power in adding a

single unnecessary parameter to describe many SNPs is small.

Third, as discussed in the Introduction and Text S1, direct

selection against disease is not a necessary condition for correlation

between fitness and phenotype; as long as the disease related gene

is under selective pressure in any of its functions, we expect a

correlation.

We have planned several extensions to this method. In addition to

improved techniques of estimating fitness effects, we need to

incorporate evidence for adaptive selection. Signatures of positive

selection [47–49] can be used to prioritize genes for study which may

have been more important in differentiating humans from our

ancestors and hence contribute to modern phenotypes. We expect

positively selected variants to have very different phenotype effects

from neutral alleles, but it is not clear a-priori what that relationship

should be or if it will be possible to reliably identify positively selected

SNPs [50,51]. Second, for mathematical and numerical convenience

Table 3. Simulation design.

scenario r t m
residual standard
deviation

expected fitness %
variance explained

expected nonfitness %
variance explained

Base 27.0 0.012 0.007 0.22 0.84 0.84

High r 221.0 0.012 0.007 0.50 1.51 0.17

High t 27.0 0.018 0.007 0.28 0.55 1.13

Low m 26.4 0.012 0.003 0.21 0.83 0.85

Very high r 263.1 0.012 0.003 1.43 1.66 0.02

Zero r 0.0 0.012 0.007 0.16 0.00 1.68

Parameters chosen for simulation. Data generated by mechanism of formula (1) and (2). Parameters defined in equations (1), (2), and (6). Explained variance is the
average true variance over individuals of fitness component and fitness independent component.
doi:10.1371/journal.pgen.1001202.t003
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we have developed this method in the context of a prospective

probability sample measuring a quantitative trait. Both these

assumptions need to be relaxed for the setting of most resequencing

projects. Disease phenotypes are frequently non-normal, binary, or

censored such as time-to-event from clinical trials, requiring a

generalized linear mixed model. The prospective sampling assump-

tion will also require work to relax. Retrospective sampling such as in

case-control designs and extreme-phenotype-based sampling [13,52]

is well known to distort random effect distributions [53]. Third, in

our example and simulations, we assume that gj are independent of

one another, but one need not do this. One could add spatial

covariance structures between gj to relax the independence

assumption, which would correspond to allowing that variants

nearby each other in the genome or folded protein tend to have

similar effects. Especially in exome-only resequencing studies,

consideration of unobserved linked markers with techniques similar

to TreeLD [35] will be important. Our model has not included

dominance or epistasis between SNPs or genes, the structure of

which is probably not simple, although progress has been made on

determining the impact of these features to quantitative traits

[54,55]. Finally, because our example dataset comes from high-

quality Sanger sequencing, we have ignored nonrandom missing

data issues. Future work involving second generation sequencing

or beyond must address the complex nature of library cover-

age, alignment error, and genotyping error inherent in those

technologies.

Supporting Information

Text S1 Supplementary methods and discussion.

Found at: doi:10.1371/journal.pgen.1001202.s001 (0.05 MB PDF)
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