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Abstract

Networks of neurons produce diverse patterns of oscillations, arising from the network’s global properties, the propensity of
individual neurons to oscillate, or a mixture of the two. Here we describe noisy limit cycles and quasi-cycles, two related
mechanisms underlying emergent oscillations in neuronal networks whose individual components, stochastic spiking
neurons, do not themselves oscillate. Both mechanisms are shown to produce gamma band oscillations at the population
level while individual neurons fire at a rate much lower than the population frequency. Spike trains in a network undergoing
noisy limit cycles display a preferred period which is not found in the case of quasi-cycles, due to the even faster decay of
phase information in quasi-cycles. These oscillations persist in sparsely connected networks, and variation of the network’s
connectivity results in variation of the oscillation frequency. A network of such neurons behaves as a stochastic perturbation
of the deterministic Wilson-Cowan equations, and the network undergoes noisy limit cycles or quasi-cycles depending on
whether these have limit cycles or a weakly stable focus. These mechanisms provide a new perspective on the emergence of
rhythmic firing in neural networks, showing the coexistence of population-level oscillations with very irregular individual
spike trains in a simple and general framework.
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Introduction

Networks of the central nervous system display oscillations at

many frequencies and scales of organization. Gamma oscillations

(25–100 Hz) in cerebral cortex and hippocampus are implicated in

a bewildering variety of neural phenomena, including many stages

of sensory processing, and in a wide range of brain regions in

many species [1–3]. Changes in the patterns of neuronal os-

cillations are linked to changes in brain states, such as attention

and sleep-wake transitions, and to pathologies such as epilepsy and

schizophrenia [2,4,5]. Mathematical models are crucial to

understanding the mechanisms underlying the generation and

function of these oscillations.

Models for oscillations in nervous tissue fall into three types,

depending on whether the oscillations arise within the individual

neurons and then synchronize across the network, emerge purely

at the population level, or occur due to a combination of the two.

The first case includes coupled oscillator models such as those

involving simplified model neurons [6], or detailed models in

parameter regimes where the individual neurons oscillate in-

trinsically, and the network oscillations arise from the synchroni-

zation of these individual oscillating elements [7]. The second case

includes population-based models such as the Wilson-Cowan

equations [8], which may display limit cycle oscillations in bulk

variables which are coarse-grained representations of neuronal

firing; however these may not be informative about how the spike

times of individual neurons relate to the network oscillation. The

third case includes the delay-driven models of Brunel et al [9,10]

and most models based on Hodgkin-Huxley neurons [11–13]. In

both the first and third category we may have exact synchronous

firing, where each neuron fires once per population cycle, or

‘‘cluster states’’ where neurons fire together in groups at some

fixed multiple of the population frequency [14]. Noisy versions of

such models may produce sparse or irregular firing, so that

neurons skip beats, i.e. do not fire in every cycle of the network

oscillation; but generally the spike times have a narrow distribution

of phases within the network cycle.

In this paper we examine mechanisms by which oscillations

emerge purely at the network level. We use a stochastic model of

individual neurons which gives the elements no intrinsic oscillatory

capacity but which makes the relationship of individual spike trains

to the population oscillation transparent. The inspiration comes

from complex systems beyond neural networks, where population-

level oscillations without the individual components themsel-

ves oscillating are widespread. In ecology, oscillations occur in

predator-prey systems in which the individual components are

organisms, each of which may be born or die only once [15]; and

in oscillating chemical systems such as the Belousov-Zhabotinsky

reaction or the brusselator, molecules undergo reactions at ef-

fectively random times yet the overall concentrations fluctuate

close to periodically [16,17].

A stochastic network may oscillate when the mean-field

equations follow a limit cycle, or also when the mean-field equa-

tions have a damped oscillation. In the latter case the noise causes
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a continual excitation which pushes the system away from its

mean-field fixed point, causing a population-level resonant

oscillation. This mechanism, called quasi-cycles [18], has been

studied in ecology [19] and epidemiology [20].

There are two principal differences between the results pre-

sented here and those by Brunel and co-workers [9,10] and Mattia

and del Giudice [21]. Firstly, our oscillations are driven by

excitatory-inhibitory feedback rather than by synaptic delay in

inhibitory-inhibitory coupling, and so their frequency is strongly

modulated by changing synaptic strengths or sparseness of

connectivity, rather than determined primarily by a delay time.

Secondly, individual neuron spike trains are far more irregular in

our model, weakly rather than strongly biased towards peak phases

of the population oscillation. The extreme irregularity of spike

trains in our model is suggestive of the irregularity of spike trains in

vivo. Additionally, our neurons are abstracted to 2-state Markov

processes, which cannot oscillate individually, rather than inte-

grate and fire neurons, which may have an internal resonance that

gives rise to or interacts with population oscillations. We return to

these differences, and discuss the key role played by noise, in the

discussion.

We use the stochastic rate model [22], in which the simplified

model neurons are 2-state random processes. Our earlier paper

[22] demonstrated the existence of avalanche dynamics, irregular

and aperiodic synchronous firing events, in some parameter

regimes of the model; this paper addresses oscillations, which are

periodic synchronous firing events, in different parameter regimes

of the same model.

This paper begins by summarizing the stochastic rate model.

We show that, if the ‘‘mean-field’’ equations of the network, which

are the Wilson-Cowan equations, have a stable limit cycle osci-

llation, then the full network activity will be a noisy limit cycle.

The population oscillation coexists with irregular spike trains

whose multimodal inter-spike-interval distribution has its peaks at

multiples of the oscillation period. We show that noisy limit cycle

oscillations persist in sparse networks, whose frequency varies with

parameters for synaptic weights and sparseness of connectivity as

well as the single-neuron parameters. Then, we show quasi-cycle

oscillations and calculate their frequency, which also depends on

the connectivity parameters. We discuss the two mechanisms,

comparing the individual activity with population-level behaviour,

and noting the transition from one oscillatory regime to the other

as parameters vary. Both mechanisms are characterized by a single

major peak in the power spectrum and a roughly power law decay

at high frequencies; the stochastic model is informative about the

tail of the power spectrum, unlike a deterministic Wilson-Cowan

model. In the discussion we address the relation to previous

models in detail, and the biological implications of the work.

Results

Summary of the stochastic rate model
We begin by summarizing the stochastic rate model [22],

presented in detail in the methods section. Individual neurons

are approximated as coupled, continuous-time, two-state Markov

processes. In this paper we model networks of NE excitatory and

NI inhibitory neurons, initially with all-to-all connectivity, later

extending to sparsely connected networks. At any given time, the

state of a neuron is either active or quiescent. The decay rate, i.e.

the transition rate from active to quiescent, is a constant aE for

active excitatory neurons and aI for active inhibitory neurons. The

firing rate, i.e. the transition rate from quiescent to active, depends

on the network state via the individual neuron’s total input, s.

When the For quiescent excitatory neurons, the firing rate is

bEf sE(t)ð Þ~bEf
wEEk

NE

{
wEI l

NI

zhE

� �
ð1Þ

and for quiescent inhibitory neurons

bI f sI (t)ð Þ~bI f
wIEk

NE

{
wII l

NI

zhI

� �
: ð2Þ

Here f is a sigmoid response function,

f (s)~
1

1ze{s
ð3Þ

giving the firing rate as a function of input, sE is the total synaptic

input to excitatory neurons, consisting of the external input hE ,

and internal terms involving synaptic weights wEE from excitatory

to excitatory neurons, and so on. The choice of response function

and the inclusion of population-dependent maximal firing rates

bE ,bI are the only differences in the model from [22].

The model specifies the rates of the transitions, but, to account

for the presence of noise in actual biological networks, this is a

stochastic process in which the time to the next event is a random

variable; the network dynamics may be thought of as a random

walk on a lattice, depicted in supplementary figure ??. We simulate

the model according to Gillespie’s stochastic simulation algorithm

(see methods).

Our main analytical tool is the linear noise approximation, in

which the number of neurons active in each population is

approximated as the sum of a deterministic term, scaling with the

population size, and a stochastic fluctuation term, scaling with the

square root of this size:

k(t)~NEE0(t)z
ffiffiffiffiffiffiffi
NE

p
jE , l(t)~NI I0(t)z

ffiffiffiffiffiffi
NI

p
jI ð4Þ

The deterministic terms obey the exact Wilson-Cowan equations

dE0

dt
~{aE0z(1{E0)bEf (sE),

dI0

dt
~{aI0z(1{I0)bI f (sI )

ð5Þ

where in terms of the new variables, the input currents are written

sE~wEEE0{wEI I0zhE , sI~wIEE0{wII I0zhI , ð6Þ

The fluctuation variables (jE ,jI ) obey a linear stochastic diffe-

rential equation

d

dt

jE

jI

� �
~A

jE

jI

� �
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aE0z(1{E0)f (sE)

p
gEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aI0z(1{I0)f (sI )
p

gI

 !
ð7Þ

where A is related to the Jacobian matrix, or linearization, of (5),

calculated at their (deterministic) solution, by a scaling transfor-

mation involving the population sizes. The derivation and details

are summarized in the methods section.

Population limit-cycle oscillations with weak single-
neuron oscillations

First we describe population-level oscillations in the stochastic

rate model for a set of parameter values where the deterministic
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Wilson-Cowan equations produce limit cycles. As the raster plot in

figure 1A shows, in this scenario neurons tend to fire in periodic

bursts. The power spectrum of the network’s excitatory activity

(figure 1B) shows a peak at 68Hz, in the gamma band, a harmonic

subpeak at twice that frequency, and at frequencies up to

2000 Hz, shows a v{3:6 decay. Despite the high frequency

network oscillation, individual excitatory neurons fire with a mean

rate of 16.4 Hz and inhibitory neurons with a mean rate of

45.2 Hz. In fact, no neuron in the network fires more than 61

times in any given second of the simulation, which is less than the

frequency of the network oscillation. This phenomenon is termed

cycle-skipping [23], since individual neurons do not fire with every

peak in the network oscillation. Stochastic cycle-skipping is not

surprising in our model since the individual neurons have no

intrinsic oscillatory capability when isolated from the network. The

noisy limit cycle oscillations are an emergent property of the

interaction of neurons at the network level.

Figures 1C and 1D compare time series of the stochastic model

with the deterministic Wilson-Cowan equations. The deterministic

system exhibits stable limit-cycle oscillations with a frequency of

89 Hz, while the stochastic trajectory exhibits undamped oscilla-

tions at a lower frequency band centered on 68 Hz. The

discrepancies between these frequencies arises from the interaction

of noise and nonlinearity in the stochastic system, the noise arising

from random spike times. After an initial transient, the stochastic

network follows an irregular pattern of spontaneous activity near,

but usually outside, the deterministic limit cycle.

Noisy perturbations to the trajectory may be decomposed into a

component transverse to the limit cycle and another parallel to it.

Perturbations transverse to the limit cycle will cause fluctuations in

the amplitude of the excitatory activity. Since the limit cycle is

stable, these transverse fluctuations are damped over time.

However, fluctuations away from the centre of the limit cycle

are more persistent since they are amplified by the larger vector

field in this region of the phase plane. Thus the stochastic system

tends to take longer and slower loops surrounding the limit cycle;

this accounts for the frequency of the noisy system being lower

than that of the deterministic system. Unlike the transverse

direction, there is no restorative force for perturbations in the

parallel direction, so perturbations that change the phase of the

oscillation accumulate over time until the relative phase of the

deterministic and stochastic trajectories become independent, a

phenomenon known as phase slipping [24].

Every individual neuron fires irregularly, sometimes skipping an

oscillation cycle, sometimes firing once or even twice within one

oscillation period. This may be seen from the two inhibitory and

two excitatory spike trains highlighted in the raster plot of

figure 1A. The inter-spike interval (ISI) histogram for the

inhibitory population in figure 2A clarifies this, showing a small

peak at 2 ms indicating that some neurons fire twice in the same

cycle, a large peak at 14 ms representing spikes separated by one

cycle, a smaller peak at 28 ms corresponding to spikes separated

by two cycles, and a slow decay with 19% of ISIs longer than two

cycle periods. The excitatory population has a lower firing rate so

we expect its ISIs to be more dispersed: the excitatory ISI

histogram in figure 2B shows a small peak at 2 ms indicating that

some neurons fire twice in the same cycle, a large peak at 14 ms

representing spikes separated by one cycle, then 5 discernible

subharmonic peaks and a slow decay in which 82% are separated

by more than one cycle. This indicates that often neurons cycle-

skip, i.e. do not fire in two consecutive cycles. The presence of

peaks at several integer multiples of the oscillation period indicates

that the firing is not clustered into several groups of neurons each

firing at a fixed multiple of the population period. Since the ISI

histogram has no empty bins, spikes may occur at any phase of the

population oscillation, although some phases are much less likely

than others.

The presence of some very short ISIs is possible in our model

because there is no absolute refractory period, so that a neuron

may fire a spike, then transition back to the quiescent state, and

then fire another spike, in an arbitrarily short amount of time.

Although this is possible, it is highly improbable and we feel that

the small proportion of unphysiologically short ISIs is a harmless

artefact.

The normalized autocovariances (AC0F) of population activity

in figure 2C indicate oscillations preserving phase information for

the first 2-4 cycle periods but an almost complete loss of phase

information over the duration of 6 cycle periods. The first peak in

the inhibitory AC0F is at 14.9 ms (black dotted line), and in the

excitatory AC0F at 14.3 ms, corresponding to frequencies of

69.9 Hz and 67.1 Hz respectively, consistent with the power

spectrum peak at 68 Hz in figure 1B. The cross-correlation of

excitatory and inhibitory activity in figure 2D shows that the

oscillation involves excitatory-inhibitory feedback, where the

excitatory firing tends to lead the inhibitory firing by 1.1 ms.

The cross-correlation has a decay of phase information compa-

rable to that of the autocovariance.

Noisy limit cycles persist in sparse networks
Population-level oscillations may be produced in sparse

networks by the same mechanisms at work in all-to-all connected

networks. Figure 3A shows oscillations in a network with 1000

neurons and random homogenous 10% connectivity. Weakly

synchronous firing is detectable from the vertical stripiness of the

raster plot; the power spectrum (blue trace in figure 3B) has a

diffuse peak at 75 Hz. By ‘‘random homogenous connectivity,’’ we

mean the synaptic connection from any neuron to any other is

nonzero with probability r~0:1 independently of other connec-

tions, as in an Erdös-Rényi random graph. However, the strength

of the nonzero synapses varies with population so that the Wilson-

Cowan approximation is identical to the limit cycles simulation in

the all-to-all case in the previous section. To see how this is

achieved, consider the synaptic connections from inhibitory to

excitatory neurons. The term wEI in the Wilson-Cowan equations

represents the mean connection strength to the excitatory

population from the inhibitory population, multiplying the

proportion of inhibitory neurons active, I . The mean input wEI I
thus depends on the strength of individual synapses uEI , and on

the number of synaptic inputs, which is on average a product of

the number of inhibitory neurons NI and the density of

connections r:

wEI~uEI rNI : ð8Þ

Analogous formulas hold for the other pairs of populations.

As the network becomes increasingly sparse, the frequency of

population oscillations changes while their amplitude declines,

shown in Figure 3B. At 50% connectivity the power spectrum has

a peak at 73 Hz and a subpeak at the 2nd harmonic. At 20%

connectivity the peak is at 81 Hz, is smaller in magnitude and the

harmonic subpeak is much smaller. At 10% connectivity the peak

is at 76 Hz and considerably more diffuse, while the harmonic

subpeak is absent. At 5% connectivity there is no peak, rather the

power spectrum stays close to flat until roughly 70 Hz before

beginning a faster decay.

Figure 3B also illustrates how a stochastic network becomes

increasingly unlike its approximating Wilson-Cowan equations as

the connectivity declines. Randomness in an all-to-all network’s

Emergent Neural Oscillations
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dynamics arise only from the random spike times of individual

neurons, but once a neuron has fired the whole network responds

with an identical change in firing probabilities. In a sparse

network, any two neurons receive inputs from different groups of

neurons, so that when a neuron fires only its postsynaptic

neighbours change their firing probabilities. The inputs of neurons

in one population are correlated, but not identical, random

variables, so that the transition rates are heterogenous, depending

not just on the numbers of neurons active per population but on

the particular combination of neurons active. The random con-

nection probabilities act as a second source of noise in the network,

which grows as the sparseness increases; indeed, if there are

K&rN incoming synapses to a neuron, a Gaussian approxima-

tion of input will have variance scaling with 1
� ffiffiffiffi

K
p

rather than the

network size parameter 1
� ffiffiffiffiffi

N
p

. The Wilson-Cowan approxima-

tion ignores the extra variance and the input correlations within

the network since it relies upon making a population average over

the synaptic inputs, Sf (sj)T&f (SsjT). This explains why the

sparser the connectivity, the less the network dynamics resemble

the Wilson-Cowan approximation.

Frequency in sparse networks varies consistently with

Wilson-Cowan equations. We have shown that the stochastic

model undergoes noisy limit cycles when the Wilson-Cowan

equations predict limit cycles; however, the frequency of the noisy

limit cycles is somewhat different from the frequency of the

deterministic limit cycle. This raises the question, how good

a guide is the deterministic system to the stochastic system? In

particular, does the frequency of noisy limit cycles vary with

Figure 1. Noisy Limit Cycles. Simulations with parameter values hE~{3:8, hI ~{9:2, wEE~25, wEI~26:3, wIE~32, wII ~1:5, NE~800,
NI ~200, aE~0:1, aI ~0:2, bE~1, bI~2. A: Mean firing rate of network (smoothed over 5 ms) plotted over raster plot of spikes (grey). Individual
neurons are rows, with the 20% of inhibitory neurons plotted at the top, otherwise unsorted. Four individual spike trains are highlighted in red. The
mean excitatory firing rate is 16.4 Hz and mean inhibitory firing rate is 45.2 Hz. B: Normalized power spectrum for the excitatory population in
simulation showing peak at 68 Hz. A diffuse subpeak around the 2nd harmonic of 136 Hz is also shown, followed by a power-law decay of v{3:6

(linear fit to log-log plot from frequencies from 200 to 2000 Hz). C: Time series plot of the excitatory and inhibitory activity of trajectories from
deterministic and stochastic models. The deterministic trajectories show a stable limit cycle with a period of roughly 11.3 ms, corresponding to an
89 Hz oscillation. D: Plot of phase plane of system, including the vector field (grey) and the _EE~0 (blue) and _II~0 (red) nullclines of the deterministic
Wilson-Cowan equations. Sample trajectories of the deterministic (black dashed) and stochastic (light green) system are shown.
doi:10.1371/journal.pone.0014804.g001
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parameters in a manner consistent with that predicted by the

deterministic system?

Figure 4 shows that the answer is a qualified yes. Figure 4A

shows that, in the all-to-all network with parameters as in figure 1,

increasing the inhibitory-to excitatory synaptic input wEI causes

the power spectrum peak to move to the left. Figure 4E compares

the peak frequency (solid line) with that predicted by the

eigenvalues at the fixed point of the Wilson-Cowan equations

(grey dashed line), which shows the same downwards trend. This

means that the network oscillation frequency decreases as

predicted by the deterministic equations.

In a sparse random network, one may vary either a synaptic

strength or a sparseness parameter in order to change a single

connectivity parameter in the Wilson-Cowan equations. Similarly

to the previous section, the term wEI in the Wilson-Cowan

equations represents the mean connection strength to the

excitatory population from the inhibitory population. Here we

allow the density of connections to vary on a population-by-

population basis, so that wEI depends on the strength of individual

synapses uEI , and on the number of synaptic inputs, which is on

average a product of the number of inhibitory neurons NI and the

density of inhibitory-excitatory connections rEI :

wEI~uEI rEI NI : ð9Þ

Analogous formulas hold for the other pairs of populations.

Figure 4 shows that in a sparse network with 20% connectivity,

increasing either the relevant synaptic strength uEI (figure 4B) or

the connection density rEI (figure 4C) causes the power spectrum

peak to move to the left; meanwhile the tail of the power spectrum

varies very little. This means that the network oscillation frequency

decreases as wEI increases. Tracking only the peaks of these power

spectra in figure 4E is consistent with this. As we move the

parameters corresponding to wEI between 80% and 120% of

their original value, the system displays noisy limit cycles with a

consistently decreasing oscillation frequency. The grey dashed line

in figure 4E shows the frequency predicted from the imaginary

part of the eigenvalue at the fixed point of the Wilson-Cowan

equations, although as we discuss the deterministic limit cycle

frequency is different from this. The plot shows that the varying

the parameters of the stochastic network corresponding to wEI has

an effect on the frequency corresponding to that predicted by the

eigenvalue of the deterministic system.

Figures 4D, 4F and 4G show further that varying the pa-

rameters of the sparse network corresponding to wEE , wIE and wII

has a similar effect on the frequency corresponding to that pre-

dicted by eigenvalues of the deterministic system. However, the

all-to-all network shows a more complex effect; in most but not all

cases the variation in frequency corresponds. The points marked

by magenta circles in figure 4 are those for which the related

Figure 2. Inter-spike intervals and cross-correlations for noisy limit cycles. Results from a 10-second simulation using parameters from
figure 1. A: Inter-spike interval (ISI) histogram for the inhibitory population (131,435 data points) B: ISI histogram for the excitatory population (89,290
data points). C: Normalized autocovariance (AC0F) for inhibitory (red) and excitatory (blue) activity, showing a peak in the inhibitory AC0F at 14.9 ms
corresponding to the oscillation period. D: Cross-correlation of excitatory and inhibitory activity, showing that the excitatory phase leads the
inhibitory phase by 1.1 ms.
doi:10.1371/journal.pone.0014804.g002
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deterministic system has a stable fixed point. We think that the

discrepancy is related to the underlying Hopf bifurcation and

return to this point in the discussion, after presenting results on

quasi-cycles in the next section.

Population quasi-cycle oscillations without single-neuron
oscillations

Here we examine quasi-cycles, a form of oscillatory activity that

can only exist in stochastic systems. The deterministic simplifica-

tion of the system is characterized by a stable focus associated

with damped oscillations; the stochastic component perturbs this

equilibrium and causes sustained oscillations. Quasi-cycles were

noticed independently in a similar neural network model by [25],

where the single-neuron spike trains were not addressed.

The network tends to fire in periodic bursts, as the raster plot in

figure 5A shows. The power spectrum of the excitatory activity

(figure 5B) shows a diffuse peak at 76Hz, in the gamma band, and

at higher frequencies, shows an v{2:6 decay. Despite the high

frequency network oscillation, individual excitatory neurons fire

with a mean rate of 14.1 Hz and inhibitory neurons with a mean

rate of 39.2 Hz. In fact, no neuron in the network fires more than

58 times in any given second of the simulation, which is less than

the frequency of the network oscillation. Stochastic cycle-skipping

is not surprising since the individual neurons have no intrinsic

oscillatory capability when isolated from the network. Quasi-cycle

oscillations are an emergent property of the interaction of neurons

at the network level.

Figures 5C and 5D compare time-series of the stochastic model to

the deterministic Wilson-Cowan equations with. The deterministic

system exhibits damped oscillations with a frequency of 86 Hz

about a stable fixed point, while the stochastic trajectory exhibits

undamped oscillations at a slightly lower frequency band centered

on 76 Hz. The effect of random spike times of individual neurons is

to add noise to the dynamics. In portions of the phase plane where

the Wilson-Cowan equations predict fast deterministic dynamics,

the effect of noise is small by comparison; near the fixed point of the

deterministic system, where the Wilson-Cowan equations predict

slower dynamics, the effect of noise is proportionately larger. After

an initial transient, the stochastic network follows an irregular

pattern of spontaneous activity where noise pushes the system away

from the deterministic fixed point enough to induce oscillations with

a predictable frequency.

Quasi-cycle oscillations are explained by a Gaussian

approximation. The fluctuating terms are close to those pre-

dicted by the linear noise approximation in equation (27). Since

the Wilson-Cowan system here has a single attractive fixed point,

after an initial transient the Jacobian matrix A and noise am-

plitudes in (27) approach a constant.

Taking the Fourier transform of (27) allows us to approxi-

mate the power spectrum of the fluctuations, giving the squared

amplitude of the oscillations in each frequency band. A standard

calculation, summarized in the appendix, shows that the power

spectrum for the excitatory activity consists of a delta peak at zero

and a fluctuating component

SE(v)~
1

2pNE

FEzGEv2

v2{det(A)½ �2ztr(A)2v2
: ð10Þ

where FE and GE are calculated from the coefficients of (27),

themselves calculated at the deterministic solution (E0,I0). This

power spectrum has a peak at 85.7 Hz, (rounded to 86 Hz in

figure 5B), slightly below the minimum of the denominator

v0&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det(A){

1

2
tr(A)2

r
, and decays proportional to v{2 for

very large frequencies. The power spectrum of inhibitory activity

has analogous behaviour, with a peak at 89.1 Hz, also close to v0.

We can now ask, for what size network the deterministic Wilson-

Cowan equation is a good approximation to the full stochastic

system? For the simulation shown in figure 5 the calculated

amplitude of the Fourier component at its maximum of 85.7 Hz is

Figure 3. Noisy limit cycles persist in sparse networks. Simulations of random sparse networks with parameter values hE~{3:8, hI ~{9:2,
NE~800, NI ~200, aE~0:1, aI ~0:2, bE~1, bI ~2. For a given connectivity, individual nonzero synaptic weights are scaled to give the Wilson-
Cowan weight parameters wEE~25, wEI ~26:3, wIE~32, wII ~1:5, see text for details. A: For network with 10% connectivity (r~0:1), mean firing
rate of network (smoothed over 5 ms) plotted over raster plot of spikes (grey). Individual neurons are rows, with the 20% of inhibitory neurons
plotted at the top, otherwise unsorted. The mean excitatory firing rate is 16.2 Hz and mean inhibitory firing rate is 45.2 Hz B: Excitatory power spectra
for different connectivity levels, r~0:5,0:2,0:1 and 0:05. The top trace is normalized to 1 and subsequent traces are normalized to 0.1, 0.01, and 0.001,
respectively, i.e. displaced downwards 1, 2 or 3 units in log co-ordinates.
doi:10.1371/journal.pone.0014804.g003
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE(85:7Hz)

p
~

0:538ffiffiffiffiffiffiffiffi
800
p &0:019 ð11Þ

which is within an order of magnitude of the deterministic solution,

E0&0:14. Similarly

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SI (89:1Hz)

p
~

0:438ffiffiffiffiffiffiffiffi
200
p &0:031 ð12Þ

is comparable to the deterministic solution I0&0:19. Despite the

large factors of NE~800 or NI~200 in the denominator of (10),

the term v2{det(A)
� �2

ztr(A)2v2 is small enough at the peak

frequency that the power at this frequency is large. Note that the

peak v0 may be close to the value that minimizes the denominator

of (10), so that simply minimizing the denominator gives an

approximation to the peak frequency. However, the quadratic term

in the numerator ensures that minimizer is not exactly the peak

frequency.

In the simulation presented here, there is a 10 Hz difference

between the peak frequency in the simulation and that predicted

by the linear noise approximation. The curves match better in

networks with less noise or further from the Hopf bifurcation (data

not shown).

Population oscillations are undetectable from individual

spike trains. Every individual neuron fires irregularly, some-

times skipping several oscillation cycles, sometimes firing more

than once within an oscillation period, as can be seen in the two

inhibitory and two excitatory spike trains highlighted in the raster

plot of figure 1A. The inter-spike interval (ISI) histograms in

figure 6 clarifies that population quasi-cycles are not detectable in

the spike trains of individual neurons. The inhibitory ISI

histogram in figure 6A shows a single large peak at 11ms and a

slow decay. The excitatory ISI histogram in figure 6B similarly has

a single peak and slow decay, although it is more dispersed since

the excitatory firing rate is much lower than the inhibitory firing

rate. This indicates that single neurons cannot be meaningfully

said to oscillate in quasi-cycle dynamics, and that the oscillations

are only detectable at the population level.

The autocorrelation functions (AC0F) in figure 6C indicate

oscillations with an almost complete loss of phase information over

2-3 periods. This is a much quicker loss of phase information than

in the limit cycle case, a point we return to in the discussion. The

peak in both AC0Fs, at 12.2 ms (black dotted line), corresponds to

a frequency of 82 Hz, close to the power spectrum peak at 76 Hz

in figure 5B. The cross-correlation of excitatory and inhibitory

activity in figure 6D shows that the oscillation involves excitatory-

inhibitory feedback, where the excitatory firing tends to lead the

inhibitory firing by 1.7 ms. The cross-correlation has a decay of

phase information comparable to that in figure 2C.

Figure 4. Oscillation frequency in the stochastic model varies with Wilson-Cowan parameters. A-C: Power spectra for networks with
wEE~25, wEI~26:3, wIE~32, wII ~1:5; insets show the peaks of those power spectra. Synaptic weights are scaled to give the Wilson-Cowan weight
parameters wEI~21:04 (red), wEI~26:3 (blue) or wEI~31:56 (green), with others fixed at wEE~25, wIE~32, wII ~1:5, see text for details. A: Varying
synaptic strength in all-to-all network. B: Varying synaptic strength uEI in sparse network with density of connections r~0:2. C: Varying inhibitory-to-
excitatory connection density rEI in sparse network with other connection densities r~0:2. D-G: Oscillation frequencies for networks varying one
parameter from 80%-120% of original value (see methods for details). Solid line with ., vary synaptic strength in all-to-all network; small dashed line
with |, vary synaptic strength in sparse network; grey dotted line with z, vary connectivity in sparse network; grey large dashed line, frequency
from imaginary part of eigenvalue at fixed point of deterministic system. Magenta circles denote parameter values for which the deterministic system
has a stable fixed point, so that the stochastic system displays quasi-cycles rather than noisy limit cycles. All simulations in this figure have parameter
values hE~{3:8, hI~{9:2, NE~800, NI ~200, aE~0:1, aI ~0:2, bE~1, bI~2.
doi:10.1371/journal.pone.0014804.g004
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Discussion

Our results show two forms of oscillations in the stochastic rate

model of neural activity: noisy limit cycles, and quasi-cycles. Both

of these involve a single peak on the power spectrum of network

activity indicating population-level oscillations (figures 1B and 5B).

yet irregular firing of individual neurons (figures 1A and 5A). The

power spectrum shows a slow decay after its peak similar to

experimental measurements. These oscillatory dynamics are ro-

bust to variations in connectivity over a range of at least 80%

–120% of their original values (figure 4), and to changes in the

density of connections from 100% to 10% connectivity (figure 3).

The firing of individual neurons has an even weaker phase

relationship with a quasi-cycle population oscillation than to a

noisy limit cycle oscillation, to the extent where the population

oscillation is undetectable from the spike trains of single neurons in

the network.

Our analysis treated the stochastic model as a noisy per-

turbation of the deterministic Wilson-Cowan equations [8]. Noisy

limit cycles occur when the deterministic Wilson-Cowan

equations have a stable limit cycle. The stochastic system then

undergoes what we call noisy limit cycles, which are oscillations

localized near the deterministic limit cycle and so of similar

frequency (figure 1C–D). We simulated networks where the

connectivity is made increasingly sparse, which makes the

network’s evolution increasingly unlike that predicted by the

deterministic equations. In this case, the oscillations persist while

becoming more irregular, down to connection probabilities as low

as 10% in a network of 1000 neurons (figure 3). Although the

deterministic system only approximates the frequency of noisy

Figure 5. Quasi-cycles in an all-to-all network. Simulations with parameter values hE~{2:1, hI ~{7:1, wEE~19, wEI~25, wIE~31, wII~5:5,
NE~800, NI ~200, aE~0:1, aI~0:2, bE~1, bI ~2. A: Mean firing rate of network (smoothed over 5 ms) plotted over raster plot of spikes (grey).
Individual neurons are rows, with the 20% of inhibitory neurons plotted at the top, otherwise unsorted. Four individual spike trains are highlighted in
red. The mean excitatory firing rate is 14.1 Hz and mean inhibitory firing rate is 39.2 Hz B: Normalized power spectrum for the excitatory population
in simulation (blue) with peak at 76Hz and from the linear noise approximation, SE(v) (magenta, see text), with peak at 86 Hz. The simulation shows
a roughly v{2:6 decay at frequencies up to 2000 Hz. C: Time series plot of the excitatory and inhibitory activity of trajectories from deterministic and
stochastic models. D: Plot of phase plane of system, including the vector field (grey) and the _EE~0 (blue) and _II~0 (red) nullclines of the deterministic
Wilson-Cowan equations. Sample trajectories of the deterministic (black dashed) and stochastic (light green) system are shown.
doi:10.1371/journal.pone.0014804.g005
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limit cycle oscillations, in sparse networks, the oscillation fre-

quency varies with parameters in a manner largely consistent

with the deterministic Wilson-Cowan equations (figure 4). Quasi-

cycles occur when the deterministic Wilson-Cowan equations

have a stable fixed point approached via weakly damped os-

cillations; then the stochastic model undergoes continued flu-

ctuations localized in frequency near that of the damped

oscillations (figure 5). This is because the noise acts as a source

of excitation, pushing the system into the oscillatory neighbour-

hood of its fixed point. In the case of quasicycles, we calculated

the power spectrum of the network activity explicitly and showed

its dependence on network parameters. Analytical results

approximated the frequency of the oscillation and the shape of

the power spectrum (figure 4B).

Both these forms of synchronous fluctuations differ from the

neuronal avalanches we reported in a previous paper [22]. We do

not consider the avalanches to be oscillations as there is no peak in

the power spectrum, and so no preferred frequency. Avalanches,

noisy limit cycles, and quasi-cycles are distinct forms of syn-

chronous firing grouped into network bursts that emerge from

excitatory-inhibitory interactions in noisy networks, but avalanch-

es are aperiodic while noisy limit cycles and quasi-cycles are

oscillatory. Neuronal avalanches and quasi-cycles both arise from

stochastic destabilization of a stable fixed point, in the avalanche

case from a stable node via functionally feedforward connectivity,

and in the quasi-cycles case from a stable focus generating weakly

damped oscillations.

Exploring the links between these dynamical regimes would

shed light on the emergence of oscillations from avalanches

reported in cell cultures by Gireesh & Plenz [26]. In particular, it

suggests that during cortical development, network parameters

may change in such a way that the underlying Wilson-Cowan

approximation changes from functionally feedforward to weakly

damped oscillations; this transition deserves further study.

Distinguishing different mechanisms driving oscillations
How should we distinguish data from noisy limit cycles and

quasi-cycles, given that the power spectra of both mechanisms are

characterized by a single peak and power-law decay decay at

higher frequencies? The limit cycle power spectrum in figure 1B

has a smaller peak around the 2nd harmonic which is not

discernible in the quasi-cycle power spectrum in figure 5B.

However, the appearance of harmonic peaks in limit cycle osci-

llations is sensitive to the shape of the limit cycle, for example, a

circular limit cycle traversed at constant speed would not have

harmonic peaks. The harmonic peak also disappears in sparsely

connected networks undergoing noisy limit cycles (figure 3).

Comparing the tails of the power spectra far above the peak

frequency, the limit cycle power spectrum exhibits power law

decay with a higher exponent than that of quasi-cycles.

Figure 6. Inter-spike intervals and cross-correlations for quasi-cycles. Results from a 10-second simulation using parameters from figure 5.
A: Inter-spike interval (ISI) histogram for the inhibitory population (111,879 data points) B: ISI histogram for the excitatory population (78,028 data
points). C: Normalized autocovariance (AC0F) for inhibitory (red) and excitatory (blue) activity, showing a peak in the inhibitory AC0F at 12.2 ms
corresponding to the oscillation period. D: Cross-correlation of excitatory and inhibitory activity, showing that the excitatory phase leads the
inhibitory phase by 1.7 ms.
doi:10.1371/journal.pone.0014804.g006
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The autocovariance of activity was used to distinguish limit

cycles and quasi-cycles in ecological models by Pineda-Krch et al

[27], since limit cycles preserve phase information better than

quasi-cycles. The autocovariance is sensitive to the mean activity

as well as amplitude of oscillations, so here we use a related metric,

the normalized autocorrelation function (AC0F). Figures 2C and

6C depict the AC0F; comparison of the results reveals much lower

amplitude AC0F oscillations for quasi-cycles which nearly vanish

within a few periods, while the AC0F oscillations for noisy limit

cycles are larger in amplitude and are maintained for many

periods, indicating a longer phase memory in the limit cycle case.

Pineda-Krch et al. [27] suggested that the amplitude of the

oscillation at a lag time of the period of the network oscilation

could be used to differentiate the two dynamics, offering a

‘‘heuristic threshold. ’’ Since the threshold they offered, like the

metric they used, is sensitive to the relative size of the mean

activity and the amplitude of the population oscillations, we do not

recommend it. However, the relative decay of the AC0F generally

exhibits much slower decay in its oscillations for noisy limit cycles

than for quasi-cycles.

Figure 6A–B show the precision in phase memory from the

perspective of individual neurons in the network by examining

their inter-spike intervals (ISI). For quasi-cycles, there is a single

peak in the ISI histogram for both excitatory and inhibi-

tory neurons, roughly corresponding to the period of the network

oscillation, followed by monotonic decay in the ISI. The

exponential-like tail of the ISI at time scales above the oscillation

period means that population oscillations are undetectable from

the spike trains of individual neurons. By contrast, the ISI dis-

tributions of figures 2A–B describe a different situation where

individual neurons are more tightly linked to the network os-

cillation. There are peaks in the ISI corresponding to firing once

every three and even four cycles of the network oscillation. The ISI

distribution decays monotonically on time scales much larger than

60 msec.

Another finding in the limit cycle case is another peak in the

inhibitory ISI distribution at 2 msec (figure 2A), related to the

model’s lack of absolute refractory period. This suggests that

our model neurons often fire in bursts with 2 msec delays

during a single peak of the network oscillation, contrasting

with the main peak ISI of 14 ms msec corresponding to the

oscillation period.

The two forms of population oscillations also respond differently

to changes in the noise amplitude. We have conceptualized the

stochastic network’s dynamics as a small stochastic perturbation of

a deterministic system, expressed in equations (25) and (27). Noisy

limit cycles were viewed as a perturbation of a deterministic limit

cycle, and quasi-cycles as a perturbation of a deterministic stable

focus. So for noisy limit cycles, the deterministic term oscillates

and the stochastic term perturbs these oscillations, whereas for

quasi-cycles the deterministic term goes to a stable fixed point

while oscillatory fluctuations persist in the stochastic term. This

means that, as the noise amplitude decreases, we expect a noisy

limit cycle to continue oscillating with increasing regularity in

amplitude and phase, whereas quasi-cycle oscillations, which are

noise-driven, would decrease in amplitude and remain irregular.

This is experimentally testable in nervous tissue by injecting white

noise current, in the first case weakening population oscillations

and in the second case enhancing them.

In our model, due to the scaling of synaptic strength with

population size N, the noise amplitude varies roughly as 1
� ffiffiffiffiffi

N
p

,

and so noisy limit cycles would be enhanced and quasi-cycles

attenuated as the network size increases. However, the relationship

of synaptic strength to network size in vivo is not well understood.

Despite our conceptualization of the system’s dynamics as a

small stochastic perturbation of a deterministic system, both the

deterministic and stochastic population variables arise from

exactly the same microscopic stochastic dynamics. In the stochastic

rate model there is no clean separation between trend and noise;

nor is there a clean separation between one deterministic regime

and another. This is seen here most clearly in figure 4, where

the peak of the power spectrum moves continuously as the

deterministic system goes through a Hopf bifurcation from limit

cycle to stable focus. Raster plots, power spectra, ISIs, and other

statistics also vary slowly (data not shown); there is no discontinuity

in the stochastic system corresponding to the bifurcation in the

deterministic system. Thus we are forced to see noisy limit cycles

and quasi-cycles as dynamical regimes which, although they are

sometimes distinguishable, are not separated by a clear boundary

[28]. This is a particular case of the general phenomenon that

noise acts to blur the boundaries between dynamics which would

be qualitatively different in a purely deterministic system [29].

In the light of this we return to the question of what causes the

discrepancies between frequency trends with parameters in the

different plots in figures 4D and 4F. For these parameter ranges,

the deterministic limit cycle surrounds an unstable fixed point, and

the noisy limit cycle explores the neighbourhood of the

deterministic cycle. The eigenvalue at the fixed point (grey dashed

trace in figures 4D–G) gives the frequency of the limit cycle born

when it first emerges at a Hopf bifurcation, but becomes a less

accurate approximation as the limit cycle moves further away from

the fixed point. The limit cycle frequency could either increase or

decrease relative to the eigenvalue’s predictions, depending on

both the length of the limit cycle trajectory and on the speed or

strength of vector field along that trajectory.

In noisy networks trajectories may explore the exterior of the

limit cycle, so that the frequency of the noisy system is lower than

that of the deterministic system. A stochastic trajectory may also

explore the interior, including the vicinity of fixed point, causing

phase slips and resembling more a quasi-cycle system. In other

words, in a noisy nonlinear system there are many competing

effects as parameters vary and it is hard to predict which will

dominate. The larger the noise amplitude, the less the stochastic

system will resemble the deterministic system; and in the sparse

case the fixed randomness in the weights acts as a second source of

noise. This extra noisiness in sparse networks means that noisy

limit cycle trajectories explore a larger region of the phase plane,

including the interior of the limit cycle, meaning that the period of

the oscillations will be derived from averaging the dynamical

behaviour over this entire region, including the fixed point. We are

not aware of perturbative approaches which are usefully predictive

in these very noisy situations, but thankfully it is possible to explore

the full stochastic system directly with simulations.

Relation to experimental findings
Noisy limit cycles and quasi-cycles are mechanisms of emergent

oscillations in neural networks, both of which allow the maximal

firing rates of individual neurons to be lower than the network

oscillation frequency. This phenomenon, referred to as cycle

skipping, has been observed during physiological oscillations in

visual cortex and during pathological oscillations in the form of fast

ripples [23,30,31]. This suggests that the mechanisms presented

here are good candidate mechanisms for such neuronal oscillations

with cycle-skipping.

Power law tails in the power spectrum of neuronal networks are

widely observed in vivo from electrocorticogram [32,33] and

electroencephalogram recordings [34]. These power laws naturally

emerge in noisy limit cycles and quasi-cycles, or indeed in the
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stochastic rate model in other dynamical regimes [22]. In general,

stochastic models for oscillations provide an entire power

spectrum, both the peak and tail of which may be compared with

experimental observations. We should note the distinction bet-

ween the power law approximation, taken by fitting a portion of

the power spectrum in physiologically measurable frequencies

such as the 200–2000 Hz in figures 1B and 5B or 80–500 Hz in

[33], and the asymptotic behaviour of an analytic expression such

as (10) as v??, which may be approached at frequencies too

high to be physiologically relevant. Only the former may be

meaningfully compared with experimental results.

Differences in spike-time reliability between quasicycles and

limit cycles should also be detectable experimentally. This may be

the mechanism behind the observation that low frequency

oscillations (d- and h- band) exhibit weaker spike-time reliability

than higher frequency oscillations (b- or c- band), or that the

fast ripples seen pre-ictally are more disorganized than lower

frequency ripples found in human hippocampus [5,35]. This

network mechanism accounting for the characteristics of oscilla-

tions at different frequencies is an alternative to mechanisms

involving single-cell dynamics exhibiting some kind of resonance.

Figure 4 shows that the oscillation frequency in sparse networks

varies with either a network-level parameter, the connectivity

between a pair of populations, or with a single-neuron parameter,

the synaptic strength between a pair of populations. This suggests

a homeostatic mechanism controlling the frequency of network

oscillations: changes in the pattern of connectivity could be

compensated for by changes in synaptic strengths, or vice versa,

meaning that the network frequency could be robust to changes

induced by plasticity. It would also be interesting to investigate

how connectivities more structured than the random graphs

investigated here, or structured distributions of non-zero synaptic

weights, affect a sparse network’s oscillatory behaviour, and to

compare the results with experiments. Biological networks are

almost never all-to-all connected, and since the stochastic rate

model is adaptable to sparse networks, it appears to be a useful tool

for investigating these questions.

Relation to other models
Studies by Brunel and co-workers, summarized in [10], and

other groups [21], examine similar ‘‘sparsely synchronized

oscillations’’ in networks consisting of leaky integrate-and-fire

neurons with injected noise and delays in synaptic transmission. A

single inhibitory population produces a delay-induced limit cycle

whose frequency is strongly tied to the delay time; excitatory

neurons modulate the frequency of this oscillation via inter-

population feedback. This is a distinct mechanism from those

presented in this paper. Our model has no delays; moreover in the

parameter sets presented here the inhibitory-inhibitory feedback is

more than an order of magnitude smaller than the other

connectivity parameters, whereas in the models of Brunel et al.

the inhibitory-inhibitory feedback with delay drives the population

oscillations. The results in figure 4 confirm that our noisy limit

cycle oscillations are due to excitatory-inhibitory feedback. More-

over, comparison of the raster plots in figures 1 and 5 with the

firing-rate plots in, for example, [9], shows that in Brunel et al.’s

model the inhibitory neurons have a more definite phase

relationship with the population oscillation. The extreme irregu-

larity of spike trains in our model is suggestive of the irregularity of

spike trains in vivo, and suggests that our model applies to a

different set of experimental data.

In addition, the simplified model neurons used here provide for

easier analysis and comparison with mean-field models such as the

Wilson-Cowan equations; by contrast, Brunel et al. use integrate

and fire neurons which account for more biophysical features of

neurons.

Beyond the weak relationship of neuronal firing to the the phase

of the population oscillation, the decay of the AC0F in the noisy

limit cycle case means that phase is not very clearly defined in the

case of noisy limit cycles; there is certainly no asymptotic phase

one could use to establish isochrons. The work of Boland et al.

[28] defines the phase of a point on the stochastic trajectory as the

phase of nearest location to it on the deterministic trajectory.

However, it is not clear how one would define phase from noisy

limit cycles observed in data where a deterministic limit cycle is not

analytically presented. In the case of quasi-cycles the trajectory

frequently approaches the phase singularity at the fixed point, and

the AC0F decays very quickly, suggesting that the idea of phase

may not be useful in this context.

Delays in synaptic transmission are present in actual neural

networks, so one wants to investigate what effect such delays

would have on population oscillations in the present model.

Because the time to spike firing is a random variable, there is

already a random delay before a change in input triggers a

spike. Consequently we would expect transmission delays much

shorter than the typical inter-spike interval to have a negligible

effect on the system’s dynamics beyond slowing the oscillation

frequency.

As neurons in larger networks are more likely to be far apart, we

might expect conduction delays to play a bigger role in larger,

spatially distributed networks. Longer delays could have major

effects, including introducing another mode of population

oscillations similar to that of Brunel et al. [10], which could

interact with the present mechanism in non-obvious ways. Ex-

tending the current model to incorporate delays could be relatively

straightforward to simulate as an adaptation of the Gillespie

algorithm to account for delays already exists [36], and related

algorithms are also able to incorporate delays [37].

We discussed the relationship of the stochastic rate model to

other neural models in a previous paper [22], noting that discrete-

state Markov models have been used to model neural dynamics at

different timescales, for example up and down states in cortex in

studies of repeating patterns of activity by Roxin et al [38], where

state transitions operate 2 to 3 orders of magnitude slower than the

present model. This raises the possibility that oscillations might

arise from the same mechanisms, of noisy limit cycles or quasi-

cycles, in a much lower frequency band such as the delta band (1–

4 Hz). Indeed, there is no reason that the mechanisms presented

here should be restricted to gamma-band oscillations; any other

part of the nervous system with a stable focus or limit cycle in its

dynamics, and noise, could produce emergent oscillations, at a

frequency given by its own network characteristics.

The present work contributes to a wider body of literature

addressing the ways in which noise contributes to biological

network dynamics. Noise may work to create new dynamical

behaviours such as avalanches [22]. Noise may also extend the

parameter regimes for behaviours such as stochastic synchroni-

zation in feedforward networks [39], contrasting with the

recurrent network presented here. On a smaller scale, noise

may destabilize the fixed point of an excitable single neuron,

causing oscillations whose period is linked to the time taken for an

escape trajectory to return to the fixed point, a phenomenon

called coherence resonance [40]. This contrasts with quasi-cycles,

in which noise causes a network near a stable focus to explore the

oscillatory neighbourhood of its fixed point, or noisy limit cycles,

which are a perturbation of a deterministic limit cycle. Since

simple stochastic models may produce phenomena only seen in

deterministic models with more complex interaction terms, an
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overly deterministic viewpoint may encourage needless complex-

ity in biological models [15,41].

Conclusions
The population oscillations presented here, coexisting with irregular

single-neuron spike trains, arise from the interplay of noise and

nonlinearity. Our stochastic excitatory-inhibitory network is essentially

two-dimensional, and a deterministic system in two dimensions has a

limited range of possible dynamics. A solely deterministic model with a

stable sink will only be able to produce damped oscillations, and a

deterministic model with a stable limit cycle will only produce perfectly

periodic population firing, which is rarely if ever found in biological

networks. Incorporating noise introduces a richer dynamical reper-

toire, including noisy limit cycles and quasi-cycles, without introducing

extra variables or more complex microscopic dynamics. Moreover,

stochastic models of oscillations produce an entire power spectrum, not

merely the peak frequency, further enabling comparison with ex-

perimental results.

We have presented two related mechanisms for the generation of

spontaneous population oscillations in nervous tissue; here we speculate

on their functional role. Firstly, a change in the external input from one

fixed level to another could move the network into or out of a state

where it spontaneously produces noisy limit cycles or quasi cycles,

analogously to a similar change in external input moving a de-

terministic system through a bifurcation. Secondly, here we have

shown that for a wide range of parameters and connectivities, a

stochastic network may spontaneously produce oscillations, so long as

the mean values of input and synaptic strengths are within appropriate

ranges. This raises the possibility that some kind of structure encoded

into the choice of nonzero synaptic strengths could coexist with the

generation of spontafoneous oscillations. We would then expect that,

for different structured external inputs with similar means, a network

might produce population oscillations with the same frequency, but

with different groups of neurons firing at the peak of the oscillations.

This potential mechanism for turning a rate code into a discrete code,

phase-locked to spontaneous population oscillations, deserves further

study.

Methods

The stochastic rate model
The stochastic rate model [22] treats neurons as coupled,

continuous-time, two-state Markov processes. Each neuron can

exist in either the active state a, representing a neuron firing an

action potential and its accompanying refractory period, or a

quiescent state q, representing a neuron at rest. The transition

probability for the ith neuron to decay from active to quiescent is

Pi(active?quiescent,in time dt)~aidt ð13Þ

as dt?0, where a represents the decay rate of the active state of

the neuron. The transition probability for the ith neuron to spike,

i.e. to change from quiescent to active, is

Pi(quiescent?active,in time dt)~bif si(t)ð Þdt ð14Þ

as dt?0. Here f is a sigmoid response function,

f (s)~
1

1ze{s
ð15Þ

giving the firing rate as a function of input, with maximum rate bi,

and si is the total synaptic input to neuron i. This total input is the

sum of two terms,

si(t)~
X

j

wijaj(t)zhi: ð16Þ

The network input is
P

j wijaj(t), where wij are the weights of the

synapses, and the activity variable aj(t)~1 if the jth neuron is active

at time t and zero otherwise. The term in hi represents the net

difference of external input to and threshold or bias of the ith neuron;

in this study the origins of the net difference are unimportant, and we

shall not address the question of time-varying external input. We use

the Gillespie algorithm [42], an event-driven method of exact

simulation, for all simulations of the master equation (see methods).

If a neuron receives constant input si, its inter-spike-interval is the

sum of two independent exponential random variables, with

parameters ai and bif (si) respectively, so its spike train will be

irregular. In other words, these model neurons have no intrinsic

capacity to oscillate.

Although there is no explicit refractory state in the model, in all

simulations, a~0:1ms{1, corresponding to an active state with a

time constant of T~a{1~10ms (1ms for the action potential plus

9ms to approximate a refractory period where neurons are

hyperpolarized). This choice of a constrains neuronal firing rates

to be no greater than 100 Hz.

Network setup and the linear noise approximation
We next consider networks of NE excitatory and NI inhibitory

neurons, initially with all-to-all connectivity depending only on the

cell type; later in the results section we address how our findings

extend to sparse connectivities. The outgoing synaptic weight

from each excitatory neuron to each excitatory neuron is
wEE

NE

,

from inhibitory to excitatory is {
wEI

NI

, from excitatory to inhi-

bitory is
wIE

NE

, and from inhibitory to inhibitory is {
wII

NI

.

The network’s stochastic evolution can be thought of as a random

walk between states with k excitatory and l inhibitory neurons

active, where the number of active neurons can increase or decrease

only by one at a time, causing the state to wander around on a lattice

as shown in Figure S1. We have summarized the input currents as

sE~
wEEk

NE

{
wEI l

NI

zhE ð17Þ

sI~
wIEk

NE

{
wII l

NI

zhI : ð18Þ

It is possible to write down a master equation for the network

[22,43], which would contain exactly the same information as

Figure S1, and about which a limited amount may be analytically

determined. That master equation, describing the evolution of the

probabilities pk,l(t) that the network is in state (k,l) at time t, is

dpk,l(t)

dt
~a (kz1)pkz1,l(t){kpk,l(t)½ �z

bE (NE{kz1)f sE(k{1,l)ð Þpk{1,l(t)½ {

(NE{k)f sE(k,l)ð Þpk,l(t)�z

bI (NI{lz1)f sI (k,l{1)ð Þpk,l{1(t)½ {

(NI{l)f sE(k,l)ð Þpk,l(t)�:

ð19Þ

Its derivation is presented in detail in [22], and the only difference
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here is in the inclusion of population-dependent maximal firing

rates bE and bI , and a different choice of sigmoid response

function (see equation 3). The analogous equation presented in

[44] assumes that the proportion of active neurons is very small,

and so lacks the saturation factors (NE{k) and so on; and also

treats synaptic weights on a per-neuron rather than the per-

population basis found here, accounting for the lack of a factor of

1=N in their input currents.

The linear noise approximation
Here we move to a tractable approximation called the linear

noise approximation.

Suppose there is a timescale dt at which the numbers of

spike and decay transitions in each population are large but the

transition rates do not change appreciably; this occurs roughly

when 1%Ndt%N. Since the rates do not change appreciably,

the individual transitions are approximately independent, so

the totals approximate Poisson random variables with mean

equal to the product of the number of neurons in a state, the

time step dt, and the transition rate. Since the numbers

of transitions are large, we may approximate each Poisson

increment by a normal random variable (denoted N ) with

identical mean and variance. The evolution of (k,l) is then

described by

k(tzdt){k(t)&{N aEk(t)dt,aEk(t)dtð Þz

N (NE{k(t))bEf (sE)dt,(NE{k(t))bEf (sE)dtð Þ

~ {aEk(t)z(NE{k(t))bEf (sE)½ �dtzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aEk(t)z(NE{k(t))bEf (sE)½ �dt

p
N (0,1)

ð20Þ

Similarly, the inhibitory population increments are approxi-

mated as

l(tzdt){l(t)& {aI l(t)z(NI{l(t))bI f (sI )½ �dtzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aI l(t)z(NI{l(t))bI f (sI )½ �dt

p
N (0,1)

ð21Þ

Changing variables to the excitatory activity, E(t)~
k(t)

NE

and the

inhibitory activity I(t)~
l(t)

NI

, and dividing equations (20) and (21)

by NE dt and NI dt respectively, we arrive at

dE

dt
~{aEEz(1{E)bEf (sE)z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aEEz(1{E)bEf (sE)

NE

s
gE(t) ð22Þ

dI

dt
~{aI Iz(1{I)bI f (sI )z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aI Iz(1{I)bI f (sI )

NI

s
gI (t) ð23Þ

where gE and gI are independent white noise variables. These are

nonlinear nonautonomous Langevin equations analogous to the

chemical Langevin equation of Gillespie [45].

As the population sizes NE ,NI become very large, the noise terms

scaled with 1
� ffiffiffiffiffiffiffi

NE

p
or 1

� ffiffiffiffiffiffi
NI

p
become proportionately smaller and

equations (22) approach the deterministic Wilson-Cowan equations

[8]. If N is quite large but stochastic effects are still important, we

may make a further Gaussian approximation, representing the

activity (k,l) as the sum of a deterministic component (E0,I0) scaled

by the population sizes, and a stochastic perturbation (jE ,jI ) scaled

by square root of the population sizes, so that

k~NEE0z
ffiffiffiffiffiffiffi
NE

p
jE , and l~NI I0z

ffiffiffiffiffiffi
NI

p
jI : ð24Þ

Then the deterministic terms obey the exact Wilson-Cowan

equations

dE0

dt
~{aE0z(1{E0)bEf (sE),

dI0

dt
~{aI0z(1{I0)bI f (sI )

ð25Þ

where in terms of the new variables, the input currents are written

sE~wEEE0{wEI I0zhE , sI~wIEE0{wII I0zhI , ð26Þ

The fluctuation variables (jE ,jI ) obey a linear stochastic differential

equation

d

dt

jE

jI

� �
~A

jE

jI

� �
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aE0z(1{E0)f (sE)

p
gEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aI0z(1{I0)f (sI )
p

gI

 !
ð27Þ

where A is related to the Jacobian matrix, or linearization, of

(25), calculated at their (deterministic) solution, by a scaling

transformation involving the population sizes, detailed in the

following section. Equations (25) and (27) describe the linear noise

approximation; one may measure the quality of this approxima-

tion by re-deriving it as a truncation of an infinite-order

expansion using the small parameters 1
� ffiffiffiffiffiffiffi

NE

p
,1
� ffiffiffiffiffiffi

NI

p
, discussed

in [22,24,46,47].

Let us clarify the relationship between activity and firing rate in

this model. Excitatory activity E is the proportion of neurons

currently active, and so the excitatory firing rate is (1{E)f (sE) Hz

per neuron. Conversely, if in the jth timebin, of (small) width dt,

there are m excitatory spikes and activity is initially E(j), then the

expected activity in the next timebin is

E(jz1)&(1{adt)E(j)z
m

NE

ð28Þ

where the first term represents remaining active neurons from the

previous timestep and the second term the proportion of neurons

which became active due to spiking at that timestep.

Calculating coefficients of the linear noise approximation
Starting with equations (22–23), we use the expressions

E~E0z
1ffiffiffiffiffiffiffi
NE

p jE , and I~I0z
1ffiffiffiffiffiffi
NI

p jI : ð29Þ

to expand the equations (22–23) as a Taylor series about the

deterministic terms (E0,I0). The zeroth-order terms are the

deterministic Wilson-Cowan equations in (25). The perturbation

terms then obey the equations

d

dt

jE

jI

 !
~A

jE

jI

 !
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aE0z(1{E0)f (sE)

p
gEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aI0z(1{I0)f (sI )
p

gI

 !
z

O
1ffiffiffiffiffiffiffi
NE

p
� �

zO
1ffiffiffiffiffiffi
NI

p
� �

:

ð30Þ
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The matrix for the linearized part is

A~

{aE{bEf (sE )z(1{E0)bEwEE f ’(sE ) {cEI (1{E0)bEwEI f ’(sE )

c{1
EI (1{I0)bI wIEf ’(sI ) {aI {bI f (sI ){(1{I0)bI wII f ’(sI )

 !
ð31Þ

where cEI~

ffiffiffiffiffiffiffi
NE

NI

r
. Varying the ratio cEI does not alter the de-

terminant or trace of A, and so has no effect on its eigenvalues; if

NE~NI then cEI~1, so A simplifies to the Jacobian of the

deterministic system.

If the deterministic system is at a fixed point, then

dE0

dt
~0~{aE0z(1{E0)f (sE) ð32Þ

dI0

dt
~0~{aI0z(1{I0)f (sI ) ð33Þ

so that the noise amplitudes multiplying the white noise (gE and

gI ) terms in (30) simplify to
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2aEE0

p
and

ffiffiffiffiffiffiffiffiffiffiffi
2aI I0

p
respectively.

Simulation method
We simulate the entire network as a single continuous-time

Markov process, using Gillespie’s exact stochastic simulation

algorithm [42]. The most general form of this starts with the

single-neuron transition rates, that for the ith neuron being:

ri~
a if ith neuron active,

f (si) if ith neuron quiescent:

�
ð34Þ

The algorithm takes the state of the network, i.e. each neuron is

specified as being either active or quiescent, and proceeds as:

1. Find neuronal transition rates ri, and network transition rate

r~
P

i ri.

2. Pick time increment dt from an exponential distribution of rate r.

3. Pick ith neuron with probability
ri

r
, change its state, and update

time to tzdt.

In the case of homogenous all-to-all networks, if one only wants

to simulate the number of neurons active in each population, one

may simplify this algorithm along the lines of Gillespie’s original

presentation for a well-mixed chemical system, since the upwards

transition rates f (si) would be identical for all neurons in a

population. The simplified algorithm uses much less memory and

runs considerably faster.

All simulations were performed in Matlab 7.1 (Mathworks, Natick,

MA); code is available on the corresponding author’s website.

Temporal coarse-graining
To produce plots of the mean firing rate, we counted the

number of spikes KT in timebins of width T~0:1ms, and

convolved with a Gaussian of width s~5ms. Some figures show

an approximation to the proportion active: since active neurons

decay at rate a~0:1ms{1, we may calculate the activity from the

spike times as E(iz1)&(1{aT)E(i)zKT=N.

Time-averaged normalized power spectrum
The activity signal E calculated using the temporal coarse-

graining method described above. This signal E was then

demeaned, removes any DC offset arising from the deterministic

solution and scaling the total power to unity. In order to calculate

the average power spectrum of E, we divided the normalized E
into 100 epochs (in figures 1 and 5) or 1000 epochs, each one

second in duration, calculated the power spectrum of each epoch,

and took the mean of these spectra. This reduced the noise in the

overall power spectrum, and ensured resolution in increments of

1 Hz. To find the peak location we further smoothed the power

spectrum with a 5-point triangular window, and then reported the

frequency, necessarily a whole number of Hz, at which the curve

was maximized. To estimate the exponent of the tail of the power

spectrum, we transformed the data into log-log co-ordinates and

then a least-squares linear fit to the frequencies from 200 to

2000 Hz.

Calculating the power spectrum analytically from the
linear noise approximation

Here we review how to calculate the power spectrum from a

stable linear stochastic differential equation such as (30). This

calculation is standard, and presented in, for example, [48]. The

general vector form of such equations is

d

dt
x(t)~Ax(t)zSg(t) ð35Þ

which may be Fourier transformed to

{ivx(v)~Ax(v)zSg(v) ð36Þ

so that

x(v)~{(Aziv){1Sg(v) ð37Þ

Now, taking expectations we get the power spectrum

S(v)~Sx(v)x(v){T ð38Þ

~S(Aziv){1Sg(v)g(v){ST (AT{iv){1T ð39Þ

~(Aziv){1SST (AT{iv){1 ð40Þ

where superscript T denotes the transpose and { the conjugate

transpose.

We have a two-dimensional linear system (30) governing the

fluctuations, x~
jE

jI

� �
; the matrix A will be labelled as

A~
aEE aEI

aIE aII

� �
ð41Þ

whose components are detailed in (31). The noise amplitude

matrix is given by

SST~
dE 0

0 dI

� �
~

2aEE0 0

0 2aI I0

� �
: ð42Þ

ð31Þ
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Then, the power spectrum in (40) has diagonal components

SE(v)~
1

2p

dEa2
IIzdI a2

IEzdEv2

det (A){v2½ �2ztr(A)2v2
ð43Þ

SI (v)~
1

2p

dEa2
EIzdI a2

EEzdI v2

det (A){v2½ �2ztr(A)2v2
ð44Þ

which can be calculated numerically once the fixed point is

determined. Note the form of the denominator. If tr(A)&0, then

the power spectrum indicates a resonance at v2
0~det(A)~

Im(l)2. In other words, there is a peak in the power spectrum near

the frequency of the damped oscillation in the deterministic

Wilson Cowan system. Near tr(A)~0, there will be a peak in the

power spectrum at

v0&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det(A){

1

2
tr(A)2

r
: ð45Þ

Equations (43) and (44) also show the 1
�

v2 decay at higher

frequencies.

Since E~E0z
ffiffiffiffiffiffiffi
NE

p
jE , the power spectrum of excitatory

activity E is the sum of a delta-peak at zero and the spectrum of

jE from (43) scaled by 1=NE ; and likewise for the inhibitory

activity.

Inter-Spike Intervals
To make the ISI histograms, we extracted spike trains of

individual neurons from the simulations, and stored all the ISIs.

Since all neurons in the excitatory population are statistically

identical, we then took the histogram of ISIs from all excitatory

neurons together, and likewise for the inhibitory neurons.

Autocovariance
We used Matlab’s xcov function to calculate the autocovariance

(ACF) of the excitatory and inhibitory population activity

respectively, and then divided this by the variance to obtain the

normalized autocovariance (AC0F). For the cross-correlation of

excitatory and inhibitory activity, we analogously divided the

output of xcov by the product of the standard deviations of each

activity.

Supporting Information

Figure S1 Two-population network dynamics visualized. If

there are k excitatory and l inhibitory neurons active, another

excitatory neuron may become active, and network state moves

rightwards one spot, at net rate NE{kð Þf sEð Þ, where sE is the

total synaptic input to an excitatory neuron. The rates for other

transitions out of the state (k, l ) are shown with black arrows and

discussed in the population dynamics section of the results. Grey

arrows represent transitions into the state (k, l ) from adjacent

states.
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