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Abstract

Staphylococcus aureus infection is a frequent cause of sepsis in humans, a disease associated with high mortality and
without specific intervention. When suspended in human or animal plasma, staphylococci are known to agglutinate,
however the bacterial factors responsible for agglutination and their possible contribution to disease pathogenesis have not
yet been revealed. Using a mouse model for S. aureus sepsis, we report here that staphylococcal agglutination in blood was
associated with a lethal outcome of this disease. Three secreted products of staphylococci - coagulase (Coa), von Willebrand
factor binding protein (vWbp) and clumping factor (ClfA) – were required for agglutination. Coa and vWbp activate
prothrombin to cleave fibrinogen, whereas ClfA allowed staphylococci to associate with the resulting fibrin cables. All three
virulence genes promoted the formation of thromboembolic lesions in heart tissues. S. aureus agglutination could be
disrupted and the lethal outcome of sepsis could be prevented by combining dabigatran-etexilate treatment, which
blocked Coa and vWbp activity, with antibodies specific for ClfA. Together these results suggest that the combined
administration of direct thrombin inhibitors and ClfA-antibodies that block S. aureus agglutination with fibrin may be useful
for the prevention of staphylococcal sepsis in humans.
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Introduction

The Gram-positive bacterium Staphylococcus aureus is the

causative agent of human skin and soft tissue infections, invasive

disease and bacteremia [1]. Staphylococcal bacteremia leads to

endocarditis and sepsis, diseases that, even under antibiotic

therapy, are associated with high mortality [2]. Community- and

hospital-acquired infections are frequently caused by antibiotic

(methicillin)-resistant S. aureus (MRSA) [3], resulting in poor

disease outcomes following the failure of antibiotic therapy [4]. A

preventive strategy that can reduce the burden and improve the

outcomes of S. aureus sepsis is therefore urgently needed [5].

S. aureus is a unique disease pathogen owing to its multiple

interactions with fibrinogen [6,7,8], a highly abundant host

protein responsible for the formation of fibrin clots following

cleavage by thrombin [9]. Fibrinogen is a glycoprotein with Mr

,340,000, formed by three pairs of Aa-, Bb-, and c-chains

covalently linked to form a ‘‘dimer of trimers,’’ where A and B

designate the fibrinopeptides released by thrombin cleavage [10].

The elongated molecule folds into three separate domains, a

central domain E that contains the N-termini of all six chains and

two flanking domains D formed mainly by the C-termini of the

Bb- and c-chains [9]. These globular domains are connected by

long triple-helical structures [9].

S. aureus secretes two coagulases, Coa and von-Willebrand factor

binding protein (vWbp), polypeptides that also promote cleavage

of the Aa and Bß chains of fibrinogen to generate fibrin clots [11].

Coagulases conformationally activate the central coagulation

zymogen prothrombin [10]. The crystal structure of the active

complex revealed binding of the D1 and D2 domains of coagulases

to prothrombin and insertion of their Ile1-Val2 N-terminus into

the Ile16 pocket of the zymogen, inducing a functional active site

through conformational change [11]. Exosite I of a-thrombin, the

fibrinogen recognition site, and proexosite I on prothrombin are

blocked by the D2 of Coa [11]. Nevertheless, association of the

tetrameric (Coa?prothrombin)2 complex enables fibrinogen bind-

ing at a new site with high affinity [10]. This model explains the

coagulant properties and efficient fibrinogen conversion by

coagulases [10]. S. aureus mutants lacking both coagulases, coa

and vwb, are unable to form abscesses in a mouse model of

staphylococcal diseases [12]. When used as a purified antigen, Coa

and vWbp elicit protective immune responses that prevent the

formation of abscesses in the same model [12].

The coagulation of calcium-chelated plasma following incuba-

tion with bacteria [12] is still used in clinical laboratories to

distinguish S. aureus isolates from non-pathogenic staphylococci

(coagulase test) [13]. Another diagnostic tool, the slide agglutina-

tion test, monitors the agglutination of S. aureus immersed in
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calcium-chelated plasma [14]. The biochemical attributes and

physiological relevance of staphylococcal agglutination are not yet

known. S. aureus strains express clumping factor A (ClfA) [15], a

surface protein that promotes precipitation of staphylococci

through association with soluble fibrinogen (clumping reaction)

[16,17,18]. The N2 and N3 domains of ClfA (residues 229–545)

bind to the C-terminal end of the fibrinogen c-chains (residues

395–411) [19,20]. S. aureus mutants lacking functional clfA display

virulence defects in mouse models for septic arthritis or

endocarditis, phenotypes that have been attributed to the loss of

staphylococcal binding to fibrinogen deposited on inflamed joint

tissues or on mechanically damaged heart valves [21,22]. ClfA also

contributes to staphylococcal escape from phagocytic killing,

which involves its binding to complement regulatory factor I [23].

A ClfA-specific monoclonal antibody has been isolated that blocks

staphylococcal association with the fibrinogen c-chain [24]. A

phase II clinical trial with bacteremic patients compared the

efficacy of monoclonal antibody (Tefibazumab) and antibiotic

treatment with placebo and antibiotic. However, composite

clinical end point analysis did not detect differences between

placebo and antibody [25].

Birch-Hirschfeld employed a biochemical approach to elucidate

S. aureus agglutination in citrate-plasma and proposed a reaction

pathway involving both fibrinogen and prothrombin [26]. This

work suggests a considerably more complex mechanism for S.

aureus agglutination rather than the direct association of bacteria

with fibrinogen (clumping). To explore this possibility, we have

searched for staphylococcal mutants that are defective for

agglutination and/or sepsis with the purpose of identifying new

preventive strategies for this disease.

Results

Surface proteins contribute to staphylococcal sepsis
We previously developed an animal model to examine the

genetic requirements for staphylococcal sepsis [27]. Briefly, S.

aureus Newman, 16108 CFU, is injected into the retro-orbital

plexus of BALB/c mice, resulting in 100% lethality over a ten day

observation period [27]. This model was used to examine the

contribution of secreted coagulases to staphylococcal sepsis [12]. S.

aureus Newman mutants lacking the coa and vwb genes displayed

increased time-to-death and increased survival phenotypes

[12](Table 1). Earlier work identified sortase A (SrtA), an enzyme

that links surface proteins to the staphylococcal cell wall envelope

[28], as an essential virulence factor for sepsis [27]. Nevertheless,

these studies left unresolved which surface protein(s) play a key role

in this disease process. S. aureus mutants with insertional lesions in

any one of eighteen surface protein genes [29] were tested for their

role in sepsis (Table 1). These experiments identified clumping

factor A (ClfA) as the single most important contributor (Table 1).

Although mutations in clfA diminished the severity of clinical

disease and improved the outcome of sepsis, clfA mutants retained

significant virulence and were still capable of killing infected

animals, unlike srtA variants (Table 1).

Genetic requirements for staphylococcal agglutination
S. aureus Newman mutants with defined genetic lesions [29]

were screened for defects in agglutination (Fig. 1A). Mutations that

abrogated the secretion of only one of the two coagulases, Coa

[30] or vWbp [31], had little or no effect on agglutination (Fig.

1AB). In contrast, a mutant lacking both genes (coa/vwb) was

severely impaired for agglutination, similar to a clfA variant (Fig.

1AB). A mutant lacking all three genes - coa, vwb, and clfA - was

unable to agglutinate in plasma (Fig. 1AB). Mutants with

insertional lesions in other known fibrinogen binding proteins,

efb [32,33] and clfB [34], did not cause large defects in

agglutination (Fig. 1AB). The phenotypic agglutination defects of

coa/vwb as well as clfA mutants could be restored by transformation

Table 1. Surface protein genes and their contribution to
S. aureus sepsis.

Genotype P values
Median survival time
(hours ± SEM)

wild-type - 24 (1.6)

srtA ,0.0001 .240

sasF 1.000 24 (1.6)

sdrC 0.5416 24 (1.2)

sdrD 0.5416 24 (1.2)

sasD 0.3415 24 (2.0)

isdA 0.3116 24 (1.8)

sasG 0.1462 24 (0)

clfB 0.0888 24 (1.2)

sdrE 0.0888 24 (4.8)

isdH 0.0143 24 (2.0)

isdB 0.0243 30 (3.2)

sasA 0.0004 36 (7.3)

isdC ,0.0001 36 (1.2)

vwb ,0.0001 36 (2.6)

fnbpA 0.0004 48 (5.5)

sasB ,0.0001 48 (7.4)

sasC 0.0011 54 (8.8)

fnbpB ,0.0001 60 (8.0)

coa ,0.0001 72 (12.5)

adsA ,0.0001 96 (16.7)

clfA ,0.0001 120 (15.3)

BALB/c mice were infected by retro-orbital injection with 16108 CFU of
S. aureus Newman or its variants with insertional lesions in either sortase A (srtA)
or any one of eighteen genes encoding sortase A-anchored surface proteins or
the two coagulase genes, coa and vwb. Median survival time represents the
time at which 50% of infected mice (n = 10) exhibited lethal disease. Statistical
significance was determined by the two-tailed Logrank test. Data are
representative of two independent experiments.
doi:10.1371/journal.ppat.1002307.t001

Author Summary

Staphylococcus aureus secretes factors that perturb blood
coagulation in infected hosts. We report here that three
bacterial products – coagulase (Coa), von Willebrand factor
binding protein (vWbp) and clumping factor (ClfA) - act
together and promote agglutination, the association of
staphylococci with polymerized fibrin cables. Staphylococ-
cal agglutination was associated with thromboembolic
lesions in heart tissues and a lethal outcome of S. aureus
sepsis in mice. Inhibition of Coa and vWbp with direct
thrombin inhibitors, drugs already approved for the
prevention of stroke, as well as passive transfer of
antibodies specific for Coa, vWbp and ClfA could prevent
the pathogenesis of S. aureus sepsis. These results suggest
new preventive and/or therapeutic strategies that may
improve the outcome of S. aureus sepsis in humans, a
disease that is otherwise associated with high mortality.

Preventing Staphylococcal Agglutination and Sepsis
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of staphylococci with pcoa-vwb and pclfA, respectively, plasmids

encoding wild-type alleles to the corresponding mutational lesions

(Fig. 1C). Thus, unlike ClfA-mediated clumping of staphylococci

via binding to fibrinogen [15], S. aureus agglutination appears to be

a multi-factorial process involving coagulases, ClfA, as well as

fibrinogen and prothrombin [26].

Staphylococcal agglutination in septic mice
To test whether staphylococcal agglutination occurred in mice

with sepsis, the hearts of animals that had succumbed to S. aureus

Newman challenge were examined for histopathology (Fig. 2).

Deposits of large numbers of staphylococci, mostly without

immune cell infiltrates, were identified in hematoxylin-eosin

stained heart tissue twelve hours after infection (Fig. 2A–D). The

appearance of these staphylococcal agglutinations is consistent

with the general concept of thromboembolic deposition of S. aureus

during sepsis [35] (Fig. 2A). Immuno-histochemical staining was

used to detect specific agglutination factors (Fig. 2E). These

experiments identified prothrombin and fibrinogen (fibrin) in the

immediate vicinity of staphylococcal agglutinations (Fig. 2E). In

agreement with the hypothesis that agglutination contributes to

the pathogenesis of sepsis, fewer heart lesions were observed when

mice were challenged with either clfA or coa/vwb variants (Fig. 3).

Of note, heart tissues of animals necropsied twelve hours after

intravenous challenge harbored considerable loads of staphylo-

cocci, irrespective of the challenge strain. Nevertheless, histopa-

thology features of heart lesions associated with clfA or coa/vwb

variants revealed immune cell infiltrates in the absence of

staphylococcal agglutinations (Fig. 3B). A mutant lacking all three

agglutination factors - clfA, coa and vwb - failed to generate either

immune cell infiltrates or S. aureus agglutinations in heart tissues

(Fig. 3B) and appeared avirulent in the mouse sepsis model

(Fig. 3C).

Clumping factor A tethers staphylococci to fibrin cables
Staphylococcal agglutination requires coagulase catalyzed

conversion of fibrinogen to fibrin as well as ClfA-mediated

attachments. If so, ClfA may bind not only fibrinogen but also

Figure 1. Staphylococcus aureus agglutination in citrate-plasma is a multi-factorial process and essential for the pathogenesis of
sepsis in mice. (A) Agglutination in EDTA-plasma of Syto-9 stained S. aureus Newman wild-type (wt) or its isogenic mutants with insertional lesions
in single or multiple genes: coa (coagulase), vwb (von Willebrand factor binding protein), clfA (clumping factor A), clfB and efb (extracellular fibrinogen
binding protein). (B) Quantification of agglutination for staphylococcal mutants (A) expressed as the percent relative to wt (100%). Average and
standard error of the means were calculated from sixteen fields of microscopic view and statistical significance was assessed in pairwise comparison
between wt and mutant with the two-tailed Student’s t-test: *P,0.01, **P,0.0001. (C) Complementation studies of staphylococcal agglutination
using the slide agglutination test. S. aureus Newman variants coa/vwb and clfA were transformed with plasmids pcoa-vwb and pclfA, respectively.
Statistical significance was analyzed by two-tailed Student’s t-test; ***P,0.0001.
doi:10.1371/journal.ppat.1002307.g001

Preventing Staphylococcal Agglutination and Sepsis
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fibrin. This prediction was tested by measuring the binding of

purified recombinant ClfA to either fibrinogen or fibrin immobi-

lized in wells of polystyrene plates (Fig. 4A). Using non-linear

regression analyses, we calculated a dissociation constant (Kd) of

395.2 nM (651.82) for ClfA binding to fibrinogen, comparable to

earlier affinity measurements [18]. The Kd of ClfA binding to

fibrin was calculated as 661.9 nM (680.32), which is not

significantly different from the affinity of ClfA for fibrinogen

(Fig. 4A). To further investigate S. aureus Newman interactions

with fibrin, staphylococci were examined by scanning electron

microscopy (SEM), which revealed agglutinated wild-type bacteria

enmeshed in fibrin cables (Fig. 4B). SEM analysis of the

staphylococcal variants coa/vwb and coa/vwb/clfA identified

bacteria without fibrin cables (Fig. 4B). The clfA mutant continued

to convert fibrinogen to fibrin, however clfA variant staphylococci

did not agglutinate with fibrin cables (Fig. 4B). Plasmids pcoa-vwb

and pclfA complemented the phenotypes caused by mutations in

the corresponding genes and restored staphylococcal agglutination

to wild-type levels (Fig. 4B). These data are in agreement with our

general hypothesis that Coa/vWbp-derived fibrin cables provide a

tether for ClfA-mediated staphylococcal agglutination (Fig. 4B).

Antibodies that prevent staphylococcal agglutination
and sepsis

To further explore the contributions of Coa, vWbp and ClfA to

staphylococcal agglutination, we raised rabbit antibodies against

affinity purified recombinant proteins [12,36]. Affinity purified

rabbit antibodies specific for Coa, vWbp or ClfA inhibited S. aureus

Newman agglutination in plasma (Fig. 4C). Passive transfer of

ClfA-specific rabbit antibodies (85 mg purified antigen-specific

IgG) into the peritoneal cavity of mice reduced the deposition of S.

aureus Newman agglutinations in heart tissues of infected animals

(Fig. 5A). Active immunization of mice with purified Coa and

vWbp or ClfA raised specific IgG antibodies and reduced the

frequency of heart lesions in animals challenged for twelve hours

with wild-type S. aureus Newman (Fig. 5B). In particular, the

abundance of staphylococcal agglutinations without immune cell

infiltrates was reduced (Fig. 5B). Active immunization of mice

with all three antigens – Coa, vWbp and ClfA – eliminated

staphylococcal agglutination in heart tissues and caused the largest

reduction of all types of pathological lesions (Fig. 5B). Similar to

Coa- and vWbp-specific immunoglobulin [12], passive transfer of

ClfA-specific rabbit antibodies into the peritoneal cavity of mice

increased the survival time in the sepsis model of infection

(Fig. 4D). These data corroborate the concept that ClfA-specific

antibodies can improve the outcome of S. aureus Newman sepsis

[24].

Direct thrombin inhibitors and staphylococcal sepsis
Univalent direct thrombin inhibitors, e.g. argatroban and

dabigatran, inhibit the proteolytically active Coa?prothrombin

complex [37,38]. We examined whether these inhibitors also block

the catalytic activity of vWbp?prothrombin. As a control,

conversion of fibrinogen to fibrin by thrombin was monitored as

an increase in sample absorbance at 450 nm. Compared to a

mock control, this reaction was blocked with 200 ng argatroban

(Fig. 6A). Treatment of fibrinogen with either Coa?prothrombin or

vWbp?prothrombin led to fibrin conversion, whereas incubation

with prothrombin alone did not (Fig. 6A). Incubation of both

Coa?prothrombin or vWbp?prothrombin with 200 ng argatroban

Figure 2. Staphylococcus aureus agglutination occurs during the pathogenesis of sepsis in mice. (A–D) Quantification of heart lesions in
BALB/c mice (n = 10) 12 hours post-infection with S. aureus Newman. Three types of lesions were observed with either (A) staphylococcal
agglutination (SA) without immune cell infiltrates (PMNs, polymorphonuclear leukocytes), (B) immune cell infiltrates without SAs (PMNs only) or (C)
SA with surrounding granulocytes (SA+PMNs). Heart tissues were stained with hematoxylin-eosin and lesions enumerated (D). Error bars represent
standard error of the mean of tissue samples. Data are representative of two independent experiments. (E) Immuno-histochemical analysis of heart
tissues from BALB/c mice (n = 10) 12 hours following intravenous challenge with S. aureus Newman. Samples were stained with antibodies directed
against mouse fibrinogen (a-fibrinogen) or mouse prothrombin (a-prothrombin). Arrows point to staphylococcal agglutinations (black) or immune
cell infiltrates (green); scale bars represent 1 mm.
doi:10.1371/journal.ppat.1002307.g002

Preventing Staphylococcal Agglutination and Sepsis

PLoS Pathogens | www.plospathogens.org 4 October 2011 | Volume 7 | Issue 10 | e1002307



blocked the conversion of fibrinogen to fibrin (Fig. 6A). Arga-

troban treatment also interfered with the agglutination of S. aureus

Newman in plasma (Fig. 6B).

To evaluate the efficacy of direct thrombin inhibitors on the

outcome of S. aureus Newman sepsis, mice received intraperitoneal

injections with 10 mg/kg dabigatran-etexilate in 12 hour intervals.

Dabigatran-etexilate is converted in mammalian tissues to its

active form, dabigatran, which acts as a direct inhibitor of

thrombin [39]. To assess dabigatran activity, mouse blood samples

were drawn by cardiac puncture and the dilute thrombin time was

determined (Fig. S1). Following challenge of mice via blood stream

injection of 16108 CFU S. aureus Newman, mock treated animals

died of sepsis within 60 hours post challenge (Fig. 6C). In contrast,

dabigatran-etexilate treated animals survived up to 132 hours,

albeit that all animals in this cohort eventually succumbed to the

challenge (Fig. 6C). To determine whether direct thrombin

inhibitors specifically block Coa and vWbp, mock or dabigatran-

etexilate treated animals were challenged with the S. aureus coa/vwb

mutant. In these experiments, dabigatran-etexilate treatment had

no effect on survival or time-to-death (Fig. 6C). Mock or

dabigatran-etexilate treated mice were also infected with lethal

doses of S. aureus USA300 LAC, the current clone responsible for

the epidemic of community-acquired MRSA infections in the

United States [5]. Dabigatran-etexilate treatment prolonged the

survival of septic mice (Fig. 6D).

Inhibiting multiple staphylococcal factors improves the
outcome of sepsis

If clfA, coa and vwb act together to promote S. aureus Newman

agglutination, dabigatran-etexilate treatment would be expected to

improve the outcome of sepsis caused by clfA mutant staphylococci

(Fig. 7A). Indeed, dabigatran-etexilate treatment increased the

survival and time-to-death of mice with sepsis caused by clfA

mutant S. aureus compared to a control strain harboring the

complementing plasmid pclfA (Fig. 7A). Dabigatran-etexilate

treatment further improved the disease outcome of animals

challenged with clfA mutant staphylococci compared to a cohort

of mock treated mice (Fig. 7A). Injection of clfA mutants carrying

pclfA into the blood stream of mice resulted in reduced time-to-

death compared to the wild-type parent, S. aureus Newman

(Fig. 7A). Nevertheless, animals infected with the clfA (pclfA)

variant also benefited from dabigatran-etexilate treatment

(Fig. 7A).

To test whether combining dabigatran-etexilate and ClfA-specific

antibodies can improve the outcome of staphylococcal sepsis,

animals received both treatments followed by challenge with a lethal

dose of S. aureus (Fig. 7B). As compared to mock-treated animals or

mice receiving either dabigatran or ClfA-specific antibodies, the

combination of dabigatran and ClfA-specific antibodies led to

increased time-to-death and survival of staphylococcal sepsis

(Fig. 7BC).

We wondered whether the use of thrombin inhibitors and ClfA-

specific antibodies could aid in the prevention of sepsis caused by

clinical S. aureus isolates. To test this, we used the community-

acquired MRSA isolate MW2, which was isolated from a fatal case

of septicemia [40], as well as the hospital-acquired MRSA isolate

N315 [41]. S. aureus strains N315 and MW2 both agglutinated

when suspended in EDTA-plasma (Fig. 8A). These reactions were

inhibited by treatment with argatroban (Fig. 8A) or with ClfA-

specific antibodies (Fig. 8B). Treatment of mice with both

dabigatran and ClfA-specific antibodies led to increased time-to-

death during sepsis caused by either S. aureus N315 or S. aureus

MW2 (Fig. 8CD). In contrast, the use of either dabigatran or ClfA-

specific antibodies alone did not prolong the survival of mice

Figure 3. Staphylococcal agglutination in heart tissues is
required for the pathogenesis of sepsis. (A) Staphylococcal load,
enumerated as colony forming units (CFU), in heart tissues of BALB/c
mice (n = 10) 12 hours after retro-orbital inoculation with 108 CFU of
S. aureus Newman (wt) or its variant strains (clfA, coa/vwb and coa/vwb/
clfA). Horizontal lines represent mean CFU. Statistical analysis was
performed with the Mann-Whitney test: wt vs. clfA, P = 0.0002; wt vs.
coa/vwb, P = 0.0002; wt vs. coa/vwb/clfA, P = 0.0002; coa/vwb vs. coa/
vwb/clfA, P = 0.0007; clfA vs. coa/vwb/clfA, P = 0.0002. Data are
representative of two independent experiments. (B) Summary of
histopathology findings in thin-sectioned and hematoxylin-eosin
stained heart tissue from BALB/c mice (n = 10) 12 hours after retro-
orbital injection of S. aureus Newman wild-type (wt) or its clfA, coa/vwb
as well as clfA/coa/vwb variants. Representative lesions in heart tissues
included staphylococcal agglutination without PMNs (SA), with PMNs
(SA+PMNs), and PMN accumulation without staphylococcal agglutina-
tion (PMNs–SA). Error bars represent standard error of the mean from
10 hearts. Statistical significance of lesions for each mutant compared
to wt infection was determined by Student’s t test: *P,0.05, **P,0.01,
***P,0.001. Data are representative of two independent experiments.
(C) Survival of cohorts of BALB/c mice (n = 20) following intravenous
injection with S. aureus Newman (wt) or variants lacking coa, vwb or
clfA. Data are representative of three independent experiments.
Statistical significance was assessed with the logrank test: wt vs. coa/
vwb (P,0.01), wt vs. clfA (P,0.001), and wt vs. coa/vwb/clfA (P,0.0001).
doi:10.1371/journal.ppat.1002307.g003
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receiving a lethal challenge of S. aureus N315 or S. aureus MW2

(Fig. 8CD).

Discussion

Sepsis is a clinical condition in response to severe bacterial

infection, which is associated with high mortality due to continued

activation and apoptosis of immune cells and malperfusion of

organ systems [42]. During sepsis, the physiological coordination

between hemostasis and inflammation is dysregulated, triggering

intravascular fibrin deposits [disseminated intravascular coagula-

tion (DIC)] [43]. Dysregulated clotting places sepsis patients at

high risk for systemic bleeding and loss of perfusion for vital organ

systems [42]. Most anticoagulants, including the thrombin

inhibitors heparin, hirudin and antithrombin, cannot alter the

outcome of sepsis, likely because these compounds can halt an

advancing coagulopathy but are unable to reverse the detrimental

effects of established disease [43,44,45]. Activated protein C is a

serine protease that inactivates the clotting cascade factors Va and

VIIIa, without which thrombin-mediated coagulation, i.e. the

conversion of fibrinogen to fibrin, is slowed by 2–3 orders of

magnitude [46]. Recombinant human activated protein C

(drotrecogin alfa) is currently the only FDA-licensed adjunctive

therapy in patients with severe sepsis [47,48]. Clinical trial data

indicate reduced mortality in 6.1% of all cases but also

considerable bleeding risks. Activated protein C may be

particularly useful in preventing sepsis caused by Escherichia coli

or other Gram-negative bacteria [49]. The ability of activated

protein C treatment to affect the outcome of sepsis caused by

different bacterial or fungal pathogens is not known [50].

Invasive S. aureus infections are frequently associated with

bacteremia and may rapidly advance to sepsis [51]. The use of b-

lactam antibiotics is obsolete for the treatment of sepsis with drug-

resistant S. aureus strains (MRSA)[51]. Patients with MRSA

infections typically receive vancomycin [51], a glycopeptide

antibiotic that blocks bacterial cell wall synthesis [52]. Due to

significant nephrotoxicity, vancomycin therapy must be carefully

monitored to exceed the minimal inhibitory concentration for

staphylococci in host tissues yet avoid the detrimental effects of this

compound on kidney function [53]. Even with intensive clinical

care, the annual survival of patients with MRSA sepsis is low

(,50%) [54]. Thus, preventive measures or therapeutics that

Figure 4. ClfA enables staphylococcal agglutination with fibrin cables in vitro and in vivo. (A) The association of purified recombinant ClfA
with immobilized fibrinogen or fibrin was assessed by ELISA and analyzed as the percentage of maximal binding. Average and standard error of the
means were calculated from three independent experiments. Curves represent nonlinear regression for one-site binding saturation performed with
GraphPad Prism, Fbgn R2 = 0.9876; Fibrin R2 = 0.9876. (B) Scanning electron micrographs of S. aureus Newman (wt) and its isogenic mutants immersed
in plasma. (C) Affinity-purified rabbit IgG specific for Coa (a-Coa), vwb (a-vWb), ClfA (a-ClfA) or the plague protective antigen V10 (a-V10) was
analyzed for its ability to prevent staphylococcal agglutination. Statistical significance of antibody effects compared to a mock treated control was
assessed with the Student’s t test: *P,0.05. (D) BALB/c mice (n = 10) were passively immunized by intraperitoneal injection with affinity-purified
antibodies against V10 or ClfA and disease protection assessed by intravenous challenge with S. aureus Newman. Data represent one of three
independent experiments. Statistical significance was assessed with the logrank test: P,0.01.
doi:10.1371/journal.ppat.1002307.g004
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improve the outcome of MRSA sepsis represent a pressing public

health issue in the United States [51].

S. aureus sepsis isolates coagulate blood and/or agglutinate in

citrate-plasma [2]. Genome sequencing revealed that all clinical S.

aureus isolates harbor functional coa, vwb and clfA genes [55]. In

contrast, only some staphylococcal strains, those carrying hlb-

converting phages, harbor the sak gene [56], whose secreted

product staphylokinase associates with plasminogen to promote

fibrinolysis [57,58] in addition to cleaving human antimicrobial

peptides (defensins)[59]. We wondered whether the unique

attributes of S. aureus to generate fibrin deposits contribute also

to the pathogenesis of sepsis. Using a mouse model for this disease,

we observed that sortase A mutants, unable to anchor any one of

nineteen different surface proteins in the staphylococcal envelope

[60], were unable to cause sepsis [27]. ClfA, a surface protein

associated with bacterial binding to fibrinogen [17], is the most

important sortase A anchored virulence factor for sepsis (Table 1).

Mutations in two coagulases, coa and vwb [12], further diminish the

virulence of clfA mutants to a level that resembles that of sortase A

variants (Fig. 1). To investigate the physiological role of coagulases

and ClfA, we studied staphylococcal agglutination, a clinical

microbiological assay requiring fibrinogen and prothrombin for

bacterial association with fibrin fragments [26]. All three

staphylococcal products - Coa, vWbp and ClfA – were required

to agglutinate the pathogen in blood and cause lethal disease in

mice. We presume that staphylococcal agglutination in vivo

promotes the formation of thromboembolic lesions that contribute

to the rapid lethality of S. aureus Newman [61] or USA300 LAC

infections [62] into the bloodstream of mice.

Pretreatment of animals with dabigatran-etexilate, which blocks

cleavage of fibrinogen by Coa?prothrombin and vWbp?prothrom-

bin, as well as administration of ClfA-specific antibodies both

interfere with S. aureus agglutination and reduce the mortality of

sepsis. Nevertheless, combining direct thrombin inhibitors with

ClfA-specific antibodies or combining anti-ClfA with anti-Coa/

anti-vWbp can generate an even higher level of protection against

sepsis. The recent licensure of direct thrombin inhibitors (e.g.

dabigatran) and the availability of ClfA-specific monoclonal

antibody provide an opportunity for the rapid testing of such

regimen to reduce the incidence and/or the mortality of S. aureus

sepsis.

ClfA binding to the C-terminal residues of the fibrinogen c-

chain may not be involved in S. aureus agglutination; this portion of

the polypeptide is thought to be buried within polymerized fibrin

cables [63,64]. If so, staphylocoagulase mediated cleavage of

fibrinogen may reveal another binding site for ClfA on the surface

of fibrin cables, enabling staphylococcal agglutination in a manner

that can be inhibited with ClfA-specific antibodies. Direct

thrombin inhibitors block coagulase (Coa and vWbp) mediated

cleavage of fibrinogen and thereby hinder the formation of ClfA

binding sites on the surface of fibrin cables. These compounds also

mimic the phenotype of S. aureus Newman coagulase mutants

(Dcoa, vwb) in the murine sepsis model and presumably exert a

similar effect in preventing the formation of staphylococcal

abscess.

S. aureus is a frequent cause of human wound infections [1],

however the contribution of coagulases towards the establishment

of this disease is not known. Of note, physiological hemostasis

during wound healing generates fibrin and platelet deposits within

wounded tissues [65]. Thus, it would be interesting to explore

whether preventive treatment with direct thrombin inhibitors as

well as ClfA-specific antibodies can reduce the incidence of

hospital-acquired sepsis and/or wound infections.

Figure 5. Neutralization of coagulases and ClfA prevents
staphylococcal agglutination in heart tissues of septic mice.
(A) Quantification of histopathology lesions in heart tissues of BALB/c
mice (n = 10) passively immunized with affinity-purified V10 control
antibodies (which neutralize the plague protective antigen LcrV) or ClfA
antibodies prior to lethal infection. Hearts were removed during
necropsy 12 hours after retro-orbital inoculation of staphylococci.
Tissues were thin-sectioned, stained with hematoxylin-eosin and
histopathology lesions enumerated. Error bars represent standard error
of the mean from cohorts of ten mice. Statistical analysis was performed
by two-tailed Student’s t-test comparing same lesion types between
mock-immunized and vaccinated animals: *P,0.05, **P,0.01,
***P,0.001. (B) Quantification of three types of histopathology lesions
in heart tissues from mice actively immunized with recombinant Coa,
vWbp, or ClfA. Hearts were removed during necropsy 12 hours after
retro-orbital inoculation of staphylococci into BALB/c mice (n = 10).
Tissues were thin-sectioned, stained with hematoxylin-eosin and
histopathology lesions enumerated. Error bars represent standard error
of the mean from cohorts of ten mice. Statistical analysis was performed
by Student’s two-tailed t-test comparing same lesion types between
mock-immunized and vaccinated animals: *P,0.05, **P,0.01,
***P,0.001. Data are representative of two independent experiments.
(C) Half maximal IgG antibody titer specific for Coa, vWb or ClfA
antigens in serum following active vaccination of BALB/c mice (n = 5).
Blood samples were drawn at the time of challenge. Error bars
represent standard deviation of serum IgG titers. The limit of detection
is 100.
doi:10.1371/journal.ppat.1002307.g005
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Materials and Methods

Ethics statement
Animal experiments involving S. aureus challenge followed

protocols that were reviewed, approved and performed under

the regulatory supervision of The University of Chicago’s

Institutional Biosafety Committee (IBC) and the Institutional

Animal Care and Use Committee (IACUC). Animals were

managed by the University of Chicago Animal Resource Center,

which is accredited by the American Association for Accreditation

of Laboratory Animal Care and the Department of Health and

Human Services (DHHS number A3523-01). Animals were

maintained in accordance with the applicable portions of the

Animal Welfare Act and the DHHS ‘‘Guide for the Care and Use

of Laboratory Animals’’. Veterinary Care was under the direction

of full-time resident veterinarians boarded by the American

College of Laboratory Animal Medicine. BALB/c mice and New

Zealand white rabbits were purchased from Charles River

Laboratories and Harlan Sprague Dawley, respectively. After

confirming that the data sets abide by a normal distribution, the

statistical analysis of staphylococcal sepsis was analyzed using the

two-tailed Logrank test. Quantification of mouse heart tissue

histopathology was analyzed for statistical significance using the

unpaired two-tailed Student’s t-test. The bacterial load (CFU) in

heart tissue from mice infected with staphylococcal variants was

analyzed with the Mann Whitney test. The results of all animal

experiments were examined for reproducibility.

Bacterial strains and growth of cultures
S. aureus strains Newman [61], USA300 LAC [62], MW2 [40]

and N315 [41] were cultured on tryptic soy agar or broth at 37uC.

E. coli strains DH5a and BL21 (DE3) were cultured on Luria

Bertani agar or broth at 37uC. Ampicillin (100 mg/ml) and

chloramphenicol (10 mg/ml) were used for pET15b and pOS1

selection [66], respectively.

Transposon mutants and plasmids
Insertional mutations carrying the bursa aurealis transposon with

an erthyromycin resistance cassette from the Phoenix library [29]

were transduced with bacteriophage into S. aureus Newman or the

coa/vwb mutant [12]. Mutations were verified by PCR with specific

primer pairs for coa (CGCGGATCCATAGTAACAAAGGAT-

TATAGTGGGAAATCACAAG and TCCCCCGGGTTATTT-

TGTTACTCTAGGCCCATATGTCGC), vwb (CGCGGATC-

CGTGGTTTCTGGGGAGAAGAATCC and TCCCCCGG-

GTTTGCAGCCATGCATTAATTATTTGCC) and clfA (CGC-

GGATCC-AAGGTCAAATCGACCGTT and CGGGGTACC-

TTATTTCTTATCTTTATTTTCTTTTTTTC) as well as by

immunoblotting with specific rabbit antibodies [12,36]. Comple-

Figure 6. Direct thrombin inhibitors block a key step in staphylococcal pathogenesis. (A) Conversion of fibrinogen to fibrin by
prothrombin, Coa?prothrombin or vwb?prothrombin was detected in the presence or absence of 200 ng argatroban (Agb). Arbitrary units are defined
as A450*100. Average and standard error of the means were calculated from three independent measurements. (B) Agglutination of S. aureus
Newman or S. aureus USA300 LAC in plasma in the presence of increasing concentrations of Agb. Average and standard error of the means were
calculated from three independent measurements and statistical significance was assessed with the Student’s two-tailed t-test: *P,0.05, **P,0.0001.
(C) Survival of cohorts of BALB/c mice (n = 15) treated with saline (mock) or dabigatran-etexilate (Dbg) and infected with either S. aureus Newman or
the coa/vwb mutant strain. Statistical significance was analyzed with the logrank test: mock vs. Dbg with wt challenge: P ,0.0001; mock vs. Dbg with
coa/vwb challenge: P = 0.43. Data are representative of three independent experiments. (D) Survival of cohorts of BALB/c mice (n = 15) treated with
saline (mock) or dabigatran (Dbg) and challenged by intravenous inoculation with S. aureus USA300 LAC. Statistical significance was analyzed
with the logrank test: mock vs. Dbg, P,0.01. Data are representative of three independent experiments.
doi:10.1371/journal.ppat.1002307.g006
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menting plasmids pcoa-vWbp and pclfA were described previously

[12,67]. For immunoblot analysis, 1 mL of staphylococcal

overnight cultures grown in tryptic soy broth (Difco) were

centrifuged at 8,0006g for 3 min in a table top centrifuge and

the supernatant was recovered. Proteins in culture supernatants

were precipitated with 10% trichloroacetic acid on ice for 20

minutes. Pellets were washed once in 1 mL TSM (100 mM Tris-

HCl, pH 7.5, 0.5 M sucrose, 10 mM MgCl2), suspended in

500 mL TSM, incubated with 50 mg lysostaphin for 15 minutes at

37uC for 15 minutes. 10% TCA was added and samples were

incubated on ice for 10 min. All samples were centrifuged and

washed with 1 mL ice-cold 100% acetone. Samples were air dried

and solubilized in 75 mL sample buffer (4% SDS, 50 mM Tris-

HCl, pH 8.0, 10% glycerol, and bromophenol blue).

Scanning electron microscopy
Staphylococcal strains were grown to mid-log phase (OD600

0.5), washed twice and suspended in PBS to a final OD600 1.

Bacteria were mixed with EDTA-chelated rabbit plasma (1:1) and

incubated for 15 minutes. Samples were fixed for 60 minutes in

2% glutaraldehyde in phosphate buffered saline (PBS) at room

temperature onto freshly prepared poly-L-lysine coated glass

coverslips. Samples were washed twice with PBS and subsequently

serially dehydrated by consecutive incubations in 25% and 50%

ethanol/PBS, 75% and 90% ethanol/H2O, 26 100% ethanol,

followed by 50% ethanol/hexamethyldisilazane (HDMS) and

finally with 100% HDMS. After overnight evaporation of HDMS

at room temperature, samples were mounted onto specimen

mounts (Ted Pella, Inc.) and coated with 80% Pt/20% Pd to 8 nm

using a Cressington 208HR Sputter Coater at 20mA prior to

examination with a Fei Nova NanoSEM 200 scanning electron

microscope. The SEM was operated with an acceleration voltage

of 5 kV and samples were viewed at a distance of 5 mm.

Protein purification
E. coli BL21(DE3) harboring expression vectors containing coa,

vwb, or clfA were grown at 37uC and induced with 1 mM IPTG

after two hours. Three hours following induction, cells were

centrifuged at 7,0006g, suspended in column buffer (0.1 M Tris-

HCl, pH 7.5, 0.5 M NaCl) and lysed in a French pressure cell at

14,000 lb/in2. Lysates were subjected to ultracentrifugation at

40,000 6g for 30 min and the supernatant was subjected to Ni-

NTA chromatography, washed with column buffer containing

10 mM imidazole, followed by elution with 500 mM imidazole.

Eluates were dialyzed against PBS. To remove endotoxin, 1:100

Triton-X114 was added and the solution was chilled for 10 min,

incubated at 37uC for 10 min, and centrifuged at 13,000 6g. This

was repeated twice. Supernatant was loaded onto a HiTrap

desalting column to remove remnants of Triton-X114. Purity was

verified by SDS-PAGE analysis and Coomassie Brilliant Blue

staining.

Rabbit antibodies
Protein concentration was determined using a BCA kit (Pierce).

Purity was verified by SDS-PAGE analysis and Coomassie

Brilliant Blue staining. Six month old New-Zealand white female

rabbits were immunized with 500 mg protein emulsified in CFA

(Difco) for initial immunization or IFA for booster immunizations

on day 24 and 48. On day 60, rabbits were bled and serum

recovered for immunoblotting or passive transfer experiments. For

antibody purification, recombinant His6-Coa [12], His6-vWbp

[12], or His6-ClfA (5 mg) [36] was covalently linked to HiTrap

NHS-activated HP columns (GE Healthcare). This antigen-matrix

was then used for affinity chromatography of 10–20 ml of rabbit

serum raised against Coa [12], vWbp [12] or ClfA at 4uC.

Charged matrix was washed with 50 column volumes of PBS,

antibodies eluted with elution buffer (1 M glycine pH 2.5, 0.5 M

NaCl) and immediately neutralized with 1 M Tris-HCl, pH 8.5.

Purified antibodies were dialyzed overnight against PBS, 0.5 M

NaCl at 4uC.

Agglutination assay
Overnight cultures of staphylococcal strains were washed in

1 mL 0.85% NaCl and suspended to a final concentration of

OD600 4.0 in 1 mL. Bacteria were incubated with 1:500 Syto9

(Invitrogen) for 15 minutes, washed with 1 mL 0.85% NaCl, and

suspended in 1 mL saline. Bacteria were mixed 1:1 with EDTA-

chelated rabbit plasma (Becton, Dickinson) on a glass microscope

Figure 7. Additive protective effects of direct thrombin
inhibitors and ClfA-specific antibodies against S. aureus sepsis.
(A) Survival of cohorts of BALB/c mice (n = 15) treated with saline (mock)
or dabigatran (Dbg) followed by intravenous inoculation with S. aureus
Newman (wt), clfA or clfA (pClfA) variants. Data are representative of
three independent experiments. (B) Survival of cohorts of BALB/c mice
(n = 15) treated with saline (mock) or Dbg and passively immunized
(5 mg?kg21) with affinity-purified antibodies against V10 or ClfA.
Animals were challenged by intravenous inoculation with S. aureus
Newman. Statistical analysis was assessed with the logrank test: mock-
V10 vs. mock-ClfA, P,0.001; Dbg-mock vs. Dbg-ClfA, P, 0.001. Data are
representative of three independent experiments. (C) Half-maximal IgG
titer of a-V10 or a-ClfA in serum of passively immunized mice (n = 5)
was determined by ELISA. Blood was drawn on day 0, six hours post-
immunization and at day 10, when the experiment was terminated.
doi:10.1371/journal.ppat.1002307.g007
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slide and incubated for 15 minutes. Samples were viewed and

images captured on an Olympus Provis microscope using a 406
objective. For quantification of agglutination, plasma and bacteria

were inoculated onto polystyrene C-Chip disposable hemocytom-

eter slides (IN-CYTO). Brightfield images from sixteen fields of

view were taken of bacterial strains using a Nikon TE2000 U with

a 206 objective. To determine the degree of agglutination, the

Threshold Function in ImageJ software was used to convert the

image into a binary image, in which staphylococci are black and

the background is white. The mean intensity of the image was

measured. The average mean intensity of S. aureus Newman in

saline without plasma was subtracted from all values and percent

agglutination was calculated by normalizing all mean intensity

values to S. aureus Newman in plasma. To assess the inhibitory

affect of antibodies on agglutination, affinity-purified antibodies

were incubated with staphylococci to a final concentration of

3 mM for 10 minutes prior to mixture with plasma. To assess the

inhibitory affect of argatroban on agglutination, argatroban was

diluted 1:10 and 1:100 in plasma and incubated for 10 minutes

prior to mixture with bacteria. Percent agglutination was

measured compared to bacteria in plasma without argatroban.

For experiments using S. aureus N315 and MW2, agglutination was

measured as percent change in OD550 following two hours

incubation of bacteria with saline containing argatroban (1 mg/

mL), plasma, or plasma containing argatroban (1 mg/mL). Error

bars represent standard error of the mean from at least three

independent experiments to ensure reproducibility.

Sepsis
Overnight cultures of staphylococcal strains were diluted 1:100

into fresh TSB and grown until they reached an OD600 of 0.4.

Bacteria were centrifuged at 7,000 6g, washed, and suspended in

the one-tenth volume of PBS. Six week-old female BALB/c mice

(n = 15) (Charles River) were injected retro-orbitally with

16108 CFU (S. aureus Newman, MW2, and N315) or

56107 CFU (S. aureus USA300) suspensions in 100 ml of PBS. Mice

were monitored for survival over 10 days. To enumerate

staphylococcal load in heart tissue twelve hours post-infection, mice

were euthanized by CO2 asphyxyation and hearts were removed

during necropsy. Heart tissue was homogenized in PBS, 0.1%

Triton X-100. Serial dilutions of homogenate were spread on TSA

and incubated for colony formation. The bacterial load in organ

tissue was analyzed in pairwise comparisons between wild-type and

mutant strains with the unpaired two-tailed Student’s t-test. For

histopathology, mice infected with S. aureus were euthanized

12 hours after infection. Hearts were removed during necropsy

and fixed in 10% formalin for 24 hours at room temperature.

Tissues were embedded in paraffin, thin-sectioned, stained with

hematoxylin and eosin, and examined by light microscopy to

enumerate pathological lesions per organ. Data were analyzed in

pairwise comparisons between wild-type and mutant strains with

the unpaired two-tailed Student’s t-test. For immunohistochemical

analysis, thin-sectioned heart tissues were stained with polyclonal

antibodies against mouse prothrombin (Haematologic Technolo-

gies) or mouse fibrinogen (Haematologic Technologies).

Figure 8. Direct thrombin inhibitors and ClfA-specific antibodies increase the time-to-death of MRSA sepsis in mice. (A) Agglutination
of methicillin-resistant S. aureus isolates N315 or MW2 in plasma in the presence or absence of argatroban (Agb). Average and standard error of the
means were calculated from at least five independent measurements and statistical significance was assessed with the Student’s two-tailed t-test:
*P,0.05, ***P,0.0001. (B) Affinity-purified rabbit IgG specific for ClfA (a-ClfA) or the plague protective antigen V10 (a-V10) was analyzed for its ability to
prevent agglutination of MRSA strains N315 and MW2 in plasma. Average and standard error of the mean were calculated from 16 fields of view from
two independent experiments. Statistical significance of antibody effects compared to a mock treated control was assessed with the Student’s two-
tailed t test: ***P,0.001. (C) Survival of cohorts of BALB/c mice (n = 15) treated with saline (mock) or Dbg and passively immunized (5 mg?kg21) with
affinity-purified antibodies against V10 or ClfA. Animals were challenged by intravenous inoculation with MRSA strain N315. Statistical analysis was
assessed with the logrank test: mock-V10 vs. mock-ClfA, not significant; mock-V10 vs. Dbg-ClfA, P,0.05; mock-ClfA vs. Dbg-ClfA, P,0.05; Dbg-mock vs.
Dbg-ClfA, P,0.01. Data are representative of two independent experiments. (D) Survival of cohorts of BALB/c mice (n = 15) treated as described in panel
(C) and challenged by intravenous inoculation with MRSA strain MW2. Statistical analysis was assessed with the logrank test: mock-V10 vs. mock-ClfA,
not significant; mock-ClfA vs. Dbg-ClfA, P,0.001; Dbg-mock vs. Dbg-ClfA, P,0.001. Data are representative of two independent experiments.
doi:10.1371/journal.ppat.1002307.g008
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ClfA binding to fibrinogen and fibrin
MaxSorb 96-well ELISA plates (Nunc) were coated with human

fibrinogen (Sigma) overnight. Wells were washed and solutions of

PBS or alpha-thrombin (Innovative Research), 100 nM in 1%

sodium-citrate/PBS were added for one hour at room tempera-

ture to generate fibrinogen and fibrin wells respectively. As

controls, the same conditions were generated in Eppendorf tubes.

Following incubation with or without alpha-thrombin, samples

were centrifuged at 13,000 6g for 10 min and supernatants were

recovered. The sediment was dissolved in 8 M urea. Running

buffer (3 M urea, 4% SDS, 10% BME) was added 1:1. Proteins in

supernatants and pellets were separated by SDS-PAGE (15%) and

stained with Coomassie Brilliant Blue to analyze soluble fibrinogen

in the supernatant fraction and fibrin in the sediment. Purified

recombinant ClfA in 1% sodium-citrate was added at increasing

concentrations to 96-well plates and incubated for one hour.

Samples were incubated with polyclonal anti-ClfA (1:1,000) to

detect bound-ClfA followed by goat anti-rabbit-HRP (1:10,000).

The wells were developed using an OptEIA kit (BD Lifesciences)

and absorbance at 450 nm was measured. Non-linear regression

assuming one-site saturation kinetics was performed using

GraphPad Prism.

Active immunization
Three week-old BALB/c mice (n = 10) were injected with 50 mg

protein emulsified in 100 ml complete Freund’s adjuvant. Eleven

days post vaccination these mice were boosted with 50 mg protein

each emulsified in 100 ml incomplete Freund’s adjuvant. On day

21, mice were injected with 16108 CFU of S. aureus challenge

strains.

Passive transfer of antibodies
Six hours prior to infection, six week old BALB/c mice (n = 15)

were injected intraperitoneally with specific rabbit antibodies

affinity-purified on ClfA- or V10-coupled resin (control IgG

specific for the LcrV plague antigen) at a dose of 5 mg/kg body

weight. Control mice (n = 5) that received the same antibody via

passive transfer were anesthetized and bled retro-orbitally at the

time of infection and again at the end of the experiment. Blood

was collected using micro-hematocrit capillary tubes (Fisher) in Z-

Gel microtubes (Sarstedt). Tubes were centrifuged at 8,000 6g for

three minutes, and serum was collected. Antibody titer was

measured by ELISA as previously described [27].

Coagulase activity
Purified recombinant Coa or vWbp (100 nM) were mixed with

human prothrombin (Innovative Research) in 1% sodium-citrate/

PBS. After an initial reading, fibrinogen (3 mM) (Sigma) was added

and conversion of fibrinogen to fibrin was measured as an increase

in turbidity at 450 nm in a plate reader (BioTek) at 2.5 min

intervals. As controls, the enzymatic activity of human alpha-

thrombin (Innovative Research) or prothombin alone were

measured. Argatroban (200 ng, Novaplus) was added to reactions

prior to the addition of fibrinogen.

Dabigatran etexilate treatment
Dabigatran (Boehringer Ingelheim) tablets were dissolved in

0.9 N saline and doses of 10 mg/kg in 100 mL were administered.

Mice (n = 15) were injected intraperitoneally starting 24 hours

prior to infection and continuing every twelve hours during the

course of the infection. Control mice received injections of 0.9 N

saline. To measure dilute thrombin time, mice (n = 5) received

saline or dabigatran treatment and were euthanized by CO2

asphyxiation at the time of infection. Blood was drawn by cardiac

puncture, diluted in sodium-citrate (1%), centrifuged at 1,500 6g

for 5 minutes, and plasma diluted in pooled fresh human plasma

1:6. Thrombin time was measured on a STA-R analyzer

(Diagnostica Stago).

Supporting Information

Figure S1 Direct thrombin inhibitors and their effect on
in vitro and in vivo coagulation. (A) Conversion of fibrinogen

to fibrin by human alpha-thrombin was measured in the presence

or absence of 200 ng argatroban. Human prothrombin was

incubated alone as negative control. One arbitrary unit is defined

as A450*100. Error bars represent standard deviation of triplicate

experiments. (B) Dilute thrombin time was measured for plasma

from mice treated with saline (mock) or Dabigatran-etexilate (Dbg)

on the day of infection or on day 10 following infection. Each

symbol represents a blood sample from a single mouse. Horizontal

lines indicate mean thrombin time for the cohort. Statistical

significance was determined by two-tailed Student’s t-test:

*P,0.01, **P,0.001.

(PDF)
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factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus

aureus. Mol Microbiol 30: 245–257.
35. Hawiger J, Hammond DK, Timmons S (1975) Human fibrinogen possesses

binding sites for staphylococci on Aalpha and Bbeta polypeptide chains. Nature
258: 643–645.

36. Stranger-Jones YK, Bae T, Schneewind O (2006) Vaccine assembly from surface

proteins of Staphylococcus aureus. Proc Nat Acad Sci U S A 103: 16942–16947.
37. Hijikata-Okunomiya A, Kataoka N (2003) Argatroban inhibits staphylothrom-

bin. J Thromb Haemost 1: 2060–2061.
38. Vanassche T, Verhaegen J, Peetermans WE, Hoylaerts MF, Verhamme P

(2010) Dabigatran inhibits Staphylococcus aureus coagulase activity. J Clin

Microbiol 48: 4248–4250.
39. Haul NH, Nar H, Priepke H, Ries U, Stassen JM, et al. (2002) Structure-based

design of novel potent nonpeptide thrombin inhibitors. J Med Chem 45:
1757–1766.

40. Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K, et al. (2002) Genome and
virulence determinants of high-virulence community acquired MRSA. Lancet

359: 1819–1827.

41. Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, et al. (2001) Whole
genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357:

1225–1240.

42. Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG

(2010) The pathogenesis of sepsis. Annu Rev Pathol Mech Dis 6: 19–48.

43. Warren HS, Suffredini AF, Eichacker PQ, Munford RS (2002) Risks and

benefits of activated protein C treatment for severe sepsis. N Engl J Med 347:

1027–1030.

44. Jaimes F, De La Rosa G, Morales C, Fortich F, Arango C, et al. (2009)

Unfractioned heparin for treatment of sepsis: A randomized clinical trial (The

HETRASE Study). Crit Care Med 37: 1185–1196.

45. Di Nisio M, Middeldorp S, Buller HR (2005) Direct thrombin inhibitors.
N Engl J Med 353: 1028–1040.

46. Marlar RA, Kleiss AJ, Griffin JH (1981) Human protein C: inactivation of

factors V and VIII in plasma by the activated molecule. Ann NY Acad Sci 370:
303–310.

47. Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, et al. (2001)

Efficacy and safety of recombinant human activated protein C for severe sepsis.
N Engl J Med 344: 699–709.

48. Levy MM, Dellinger RP, Townsend SR, Linde-Zwirble WT, Marshall JC, et al.

(2010) The Surviving Sepsis Campaign: results of an international guideline-
based performance improvement program targeting severe sepsis. Intensive Care

Med 36: 222–231.

49. Taylor FBJ, Chang A, Esmon CT, D’Angelo A, Vigano-D’Angelo S, et al.
(1987) Protein C prevents the coagulopathic and lethal effects of Escherichia coli

infusion in the baboon. J Clin Invest 79: 918–925.

50. Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis
in the United States from 1979 through 2000. N Engl J Med 348: 1546–1554.

51. Liu C, Bayer AS, Cosgrove SE, Daum RS, Fridkin SK, et al. (2011) Clinical

practice guidelines by the infectious diseases society of america for the treatment
of methicillin-resistant Staphylococcus aureus infections in adults and children:

executive summary. Clin Infect Dis 52: 285–292.

52. Walsh CT (1993) Vancomycin resistance: decoding the molecular logic. Science

261: 308–309.

53. Fowler Jr. VG, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, et al.

(2006) Daptomycin versus standard therapy for bacteremia and edocarditis

caused by Staphylococcus aureus. N Engl J Med 355: 653–665.

54. Klevens RM, Edwards JR, Gaynes RP, System NNIS (2008) The impact of

antimicrobial-resistant, health care-associated infections on mortality in the

United States. Clin Infect Dis 47: 927–930.

55. McCarthy AJ, Lindsay JA (2010) Genetic variation in Staphylococcus aureus surface

and immune evasion genes is lineage associated: implications for vaccine design

and host-pathogen interactions. BMC Microbiology 10: 173.

56. Coleman DC, Sullivan DJ, Russell RJ, Arbuthnott JP, Carey BF, et al. (1989)
Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic

conversion of beta-lysin, staphylokinase and enterotoxin A: a molecular
mechanism of triple conversion. J Gen Microbiol 135: 1679–1697.

57. Lijnen HR, Van Hoef B, De Cock F, Okada K, Ueshima S, et al. (1991) On the

mechanism of fibrin-specific plasminogen activation by staphylokinase. J Biol
Chem 266: 11826–11832.
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