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Abstract

Variation in gene expression has been observed in natural populations and associated with complex traits or phenotypes
such as disease susceptibility and drug response. Gene expression itself is controlled by various genetic and non-genetic
factors. The binding of a class of small RNA molecules, microRNAs (miRNAs), to mRNA transcript targets has recently been
demonstrated to be an important mechanism of gene regulation. Because individual miRNAs may regulate the expression
of multiple gene targets, a comprehensive and reliable catalogue of miRNA-regulated targets is critical to understanding
gene regulatory networks. Though experimental approaches have been used to identify many miRNA targets, due to cost
and efficiency, current miRNA target identification still relies largely on computational algorithms that aim to take
advantage of different biochemical/thermodynamic properties of the sequences of miRNAs and their gene targets. A novel
approach, ExprTarget, therefore, is proposed here to integrate some of the most frequently invoked methods (miRanda,
PicTar, TargetScan) as well as the genome-wide HapMap miRNA and mRNA expression datasets generated in our laboratory.
To our knowledge, this dataset constitutes the first miRNA expression profiling in the HapMap lymphoblastoid cell lines. We
conducted diagnostic tests of the existing computational solutions using the experimentally supported targets in TarBase as
gold standard. To gain insight into the biases that arise from such an analysis, we investigated the effect of the choice of
gold standard on the evaluation of the various computational tools. We analyzed the performance of ExprTarget using both
ROC curve analysis and cross-validation. We show that ExprTarget greatly improves miRNA target prediction relative to the
individual prediction algorithms in terms of sensitivity and specificity. We also developed an online database, ExprTargetDB,
of human miRNA targets predicted by our approach that integrates gene expression profiling into a broader framework
involving important features of miRNA target site predictions.
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Introduction

Gene expression is a fundamental phenotype that affects

complex cellular, physiological and clinical phenotypes including

disease risk as well as individual response to therapeutic treatment.

For example, gene expression alterations have been implicated in

the etiologies of common diseases such as cancers [1–3],

cardiovascular diseases [4], and psychiatric disorders [5]. Previous

studies using the International HapMap Project [6,7] lympho-

blastoid cell lines (LCLs) derived from individuals of European

(CEU: Caucasians from Utah, USA), African (YRI: Yoruba people

from Ibadan, Nigeria) and Asian (CHB: Han Chinese from

Beijing, China; JPT: Japanese from Tokyo, Japan) ancestry have

shown that common genetic variants including single nucleotide

polymorphisms (SNPs) and copy number variants (CNVs) account

for a substantial fraction of variation in gene expression within a

population and between populations [8–14]. Furthermore,

pharmacogenomic studies based on these HapMap cell lines

[6,7] strongly suggest that response to therapeutic treatment is

likely to be a complex phenotype affected by genetic factors that

alter gene regulation, especially in the form of eQTLs (expression

quantitative trait loci) [15–17].

In addition to eQTLs, more recently, microRNAs (miRNAs)

(,700 known in humans to date), a family of small (21–23

nucleotides), single-stranded, non-coding RNAs, have been shown

to be an important class of gene regulators that generally down-

regulate gene expression through sequence-specific binding to the

39 untranslated regions (UTRs) of target mRNAs [18]. In humans,
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miRNAs are predicted to potentially target up to one third of

protein-coding genes [19]. Global microRNAome profiling has

demonstrated significant changes in the expression of multiple

miRNAs in a growing list of human diseases, including

neurodegenerative diseases [20], heart diseases [21] and cancer

[22]. Because an individual miRNA may regulate multiple

mRNAs, a comprehensive and reliable catalogue of miRNA gene

targets should enhance our understanding of the complexity of

gene regulatory networks in a cell, as well as facilitate the shifting

of focus from miRNA gene identification to functional character-

ization. Due to the lack of high throughput experimental

technique for identifying the targets of miRNAs, only a small

proportion of the targets of the potentially more than 1000 human

miRNAs – such as those in TarBase [23,24] (a manually curated

database of experimentally supported miRNA targets) – have been

confirmed experimentally. Therefore, several computational and

bioinformatic approaches have been developed for large-scale

prediction of miRNA targets including miRanda [25,26] (based on

sequence complementarity, free energy of the RNA-RNA duplex,

extent of conservation), TargetScan [27–29] (based on seed

complementarity, thermodynamic free energy of binding, conser-

vation over different species), and PicTar [30] (based on seed

complementarity, thermodynamics and a combinatorial prediction

for common targets in sets of coexpressed miRNAs). The various

computational prediction algorithms have been found to suffer

from significant false positive and false negative rates. For

example, the miRanda algorithm [25,26] was estimated to have

a high false-positive rate at 24–39% in an early study [31]. A high

false-negative rate is also expected for the current miRNA target

prediction programs, largely due to their requirements for

evolutionary conservation, while many of the experimentally-

supported targets (e.g., those from TarBase [23,24]) may not be

conserved in other species [32]. Though using combinations of

two or more of these computational approaches may improve the

sensitivity or specificity of the prediction, the degree of overlap of

their predictions is poor [32]. To date, a few algorithms have been

developed to leverage existing approaches involving relevant

miRNA binding site considerations such as thermodynamics,

sequence complementarity, conservation, and gene expression

profiles [32]; however none of these algorithms provide a genome-

wide map of predictions that utilizes post-transcriptional regula-

tion within a broad framework of relevant target site prediction

features as well as utilizes the experimentally validated binding

sites as training set.

Though experimental testing is critically important for validat-

ing any putative miRNA targets, we propose here a novel

bioinformatic approach, ExprTarget (Fig. 1), to predicting human

miRNA targets by integrating select computational algorithms and

our recently-generated miRNA expression data and previously

published mRNA data [33] on 58 unrelated HapMap CEU LCLs

[6,7]. We demonstrate that a significant improvement of

performance in terms of sensitivity and specificity can be achieved

by integrating both the computational algorithms as well as the

experimental miRNA expression data. Furthermore, the study we

report here of miRNA-mRNA relationships in the HapMap

samples [6,7] extends, in the direction of miRNA-mediated gene

regulation, earlier studies on these same samples that have

successfully been used as models for studies of complex traits

[34] and for pharmacogenomic studies [15–17]. We developed an

online resource, ExprTargetDB (http://www.scandb.org/apps/

microrna/) to: 1) enable user-friendly queries of a comprehensive

catalogue of miRNA targets using this integrative approach; 2)

provide a reference dataset of miRNA-mRNA relationships on the

HapMap samples and; 3) advance our understanding of gene

regulatory networks and of the contribution of miRNAs to

complex traits.

Results

Pair-wise comparisons between prediction algorithms
Pair-wise comparisons show that the miRNA targets predicted

by different algorithms are generally not correlated (Fig. 2A, 2B,
2C) in the sense that good candidates for one algorithm do not

tend to be good candidates for the other algorithms. PicTar [30]

scores, TargetScan [27–29] scores and miRanda [25,26] scores

are not correlated for the same miRNA targets predicted by these

algorithms. We compared the distribution of experimentally-

validated targets (from TarBase [23,24]) using the targets’

miRanda [25,26] scores (Fig. 2D), PicTar [30] scores (Fig. 2E)

and TargetScan [27–29] scores (Fig. 2F) with the corresponding

overall distribution of scores. This analysis enables us to compare,

for each score bin defined by an algorithm, the proportion of

target site predictions and the proportion of experimentally

validated predictions falling within the bin; particularly, it shows

the proportion of experimentally supported targets that overlap

with the highest scoring bins.

Performance of individual prediction algorithms
Individual prediction algorithms were evaluated for perfor-

mance (see Materials and Methods) using either TarBase [23,24]

alone or TarBase [23,24] combined with the expression-

corroborated miRNA targets (TarBase+LCL) as gold standard.

The receiver operating characteristic (ROC) curves, which plot the

true positive rate (sensitivity) and false positive rate (1-specificity),

for the individual algorithms are shown in Fig. 3. Each point on

the ROC curve is a specificity/sensitivity pair corresponding to a

score threshold. A comparison of the diagnostic performance of

the three prediction algorithms using only TarBase [23,24] as gold

standard is shown in Fig. 3 (Fig. 3A, 3B, 3C). The same analysis

was repeated using (TarBase+LCL) as gold standard to gauge the

Figure 1. ExprTarget integrates various methods and datasets.
Individual computational methods (miRanda, PicTar, TargetScan) were
evaluated using both TarBase and (TarBase + LCL) as gold standards.
ExprTarget integrates individual computational methods (miRanda,
PicTar, TargetScan) and the LCL expression data. ExprTarget was
evaluated using TarBase as gold standard. ExprTargetDB was developed
to house the predictions by ExprTarget. LCL refers to the miRNA and
mRNA expression data generated on a panel of lymphoblastoid cell
lines from the HapMap.
doi:10.1371/journal.pone.0013534.g001
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effect of the choice of gold standard; the results for the three

prediction approaches are shown in Figure S1.

Integrating different algorithms and miRNA expression in
miRNA target prediction

By incorporating the computational approaches included in this

study (miRanda [25,26], PicTar [30] and TargetScan [27–29]) as

well as the expression-based prediction model into an integrative

model ExprTarget based on sigmoidal modeling (see Materials and

Methods), we observed that the performance in terms of sensitivity

and specificity is greatly improved using TarBase [23,24] as gold

standard (Fig. 4). A similar ROC-based performance evaluation

shows that ExprTarget is a much better classifier in discriminating

the experimentally verified targets from the non-experimentally

supported ones than the random guessing procedure indicated by

the line of no-discrimination (Fig. 4) or, indeed, any of the existing

computational solutions (Fig. 3) evaluated in this study. Reduced

models (e.g., the combination of two individual methods as well as

the expression-based approach) lead to decreased predictive

performance, as measured by the area under the ROC curve.

Restricting the gold standard to the subset of TarBase [23,24] that

excludes the high-throughput assays, we observed that the

improvement in predictive performance for ExprTarget relative

to the individual methods continues to hold robustly (Figure S2).

From each computational algorithm incorporated by ExprTarget, a

parameter that quantifies the confidence of each binding site is used

so that the final model is target-site based. The use of a score from

the expression data that is gene-based rather than target-site based

(e.g., when the score from the expression data is defined as the

minimum of all p values for the gene) demonstrates the robustness of

our primary finding, namely, incorporating these algorithms

through sigmoidal modeling improves predictive performance

(Figure S3). To evaluate whether the fitted model can be

generalized to as-yet-unseen data (given that ExprTarget uses the

experimentally validated targets as training set), we proceeded to do

cross-validation (see Materials and Methods) on ExprTarget. Cross-

validation enabled us to evaluate how well our predictive model,

which was defined by the use of training data, would perform on

future data. Using 10-fold cross validation, ExprTarget resulted in a

mean prediction error of 0.000277.

Figure 2. Prediction results from existing computational approaches are not correlated. Prediction scores (TargetScan, PicTar, and
miRanda) for the same miRNA targets are plotted to show pair-wise comparisons (A, B, C). The distributions of scores for targets from the TarBase
(experimentally-validated) are shown with the scores for the full set of targets from individual prediction algorithms (D, E, F). (A) miRanda (x-axis)
scores are plotted against PicTar scores (y-axis); (B) miRanda (x-axis) scores are plotted against TargetScan scores (y-axis); (C) PicTar scores (x-axis) are
plotted against TargetScan scores (y-axis); (D) Histogram of experimentally-validated targets with the distribution of miRanda scores (left y-axis is for
the miRanda p values; right y-axis is for the TarBase targets); (E) Histogram of experimentally-validated targets with the distribution of PicTar scores
(left y-axis is for the PicTar scores; right y-axis is for the TarBase targets); and (F) Histogram of experimentally-validated targets with the distribution of
TargetScan scores (left y-axis is for the TargetScan scores; right y-axis is for the TarBase targets).
doi:10.1371/journal.pone.0013534.g002
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ExprTargetDB, a database for human miRNA targets
We developed a web-based database, ExprTargetDB (http://

www.scandb.org/apps/microrna/), to provide user-friendly que-

ries of our miRNA-mRNA association data in the context of other

computationally-predicted miRNA targets including miRBase

[25,26], TargetScan [27–29] and PicTar [30] as well as the

experimentally-supported miRNA targets [23,24]. The miRNA

expression profiling is, to our knowledge, the first such reported

dataset on the HapMap samples. Though the initial dataset was

generated from the samples of European descent only, ExprTar-

getDB will hold the results assayed from other HapMap

populations. Since previous studies on the HapMap samples have

Figure 3. Individual performance of foundational prediction algorithms. The three prediction algorithms were evaluated using ROC curves,
which plot the true positive rate (sensitivity) and the false positive rate (1-specificity) at various score thresholds. TarBase was used as gold standard.
The line of no-discrimination was drawn from the left bottom to the top right corners. (A) miRanda vs. TarBase; (B) PicTar vs. TarBase; and (C)
TargetScan vs. TarBase.
doi:10.1371/journal.pone.0013534.g003

Figure 4. Performance of ExprTarget, an integrative prediction algorithm. ExprTarget was assessed by plotting the ROC curve, which shows
the true positive rate (sensitivity) and the false positive rate (1-specificity) at various thresholds. The database of manually-curated experimentally
verified targets, TarBase, was used as gold standard. The line of no-discrimination was drawn from the left bottom to the top right corners.
doi:10.1371/journal.pone.0013534.g004
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shown that complex traits [34] and pharmacologic phenotypes

[15–17] are affected by genetic variants that alter gene regulation,

this dataset on miRNA-mediated gene regulation should be a

tremendous resource to the scientific community. ExprTargetDB

supports downloading of the complete list of expression-corrob-

orated miRNA targets. In addition, ExprTargetDB can be queried

by either miRNA or gene target, in single or batch mode. A query

of miRNA should utilize the nomenclature of the miRBase [25,26]

(e.g., ‘‘hsa-miR-138’’), while a query for gene target should use the

official gene symbols (e.g., ‘‘PAPD5’’). A successful search outputs a

table of miRNA targets (miRNA-centric) or miRNAs (gene target-

centric). A link to our SCAN database (SNP and CNV

Annotation, http://www.scandb.org/) [35] is also provided for

more information on eQTLs of the gene targets to supplement the

information on miRNA-mediated gene regulation. A search

example is discussed in the online tutorial.

Discussion

The identification of the transcript targets regulated by miRNAs

promises to greatly enhance our understanding of gene regulation

and to provide important insights into the genetic/epigenetic basis

of various human diseases such as those that have been found to be

associated with altered or abnormal miRNA expression [20–22].

As a result of the multiplicity of computational algorithms that

have been developed, two distinct problems arise: (1) the problem

of inter-method reliability, and (2) the problem of integrating the

results obtained from the various methods into a single optimal

score. The present study conducted a comparative analysis of the

most frequently used target prediction algorithms and developed

an integrative approach, with certain analytically attractive

properties, that improves the predictive performance in relation

to the foundational prediction methods.

The problem of inter-method reliability is concerned with the

degree of agreement between the various computational methods

and with the predictive performance of each algorithm. Many

available computational prediction methods take advantage of the

biochemical or thermodynamic properties of the binding between

miRNAs and their cognate mRNA transcripts. For the three

frequently used algorithms we tested (i.e., miRanda [25,26],

PicTar [30], TargetScan [27–29]), pairwise comparisons reveal

that their prediction results are generally not correlated. This

unanticipated lack of correlation between these prediction

algorithms presumably reflects the differing emphasis on bio-

chemical/thermodynamic factors as well as the extent of the use of

evolutionary conservation. Surprisingly, we found very different

distributional patterns for the existing prediction approaches when

comparing the experimentally-validated miRNA targets (from

TarBase [23,24]) predicted by an algorithm with the full set of

targets for the same algorithm. For example, Fig. 2D shows that

the distribution of miRanda [25,26] scores for predicted targets is

similar to the distribution of miRanda [25,26] scores for only the

experimentally supported targets; each is bell-shaped and peaks in

the same score bin. In contrast, the distributions of the scores from

the other two methods show quite distinct patterns.

An ROC analysis using TarBase [23,24] on each of the existing

computational methods would seem to suggest that TargetScan

[27–29] may yield slightly better performance than the other

computational methods, based on the area under the ROC curve

(AUC). However, caution must be exercised in the interpretation

of these results. We sought to evaluate the effect of the choice of

gold standard on the performance evaluation. A comparative

ROC analysis for the three methods, using either TarBase [23,24]

or (TarBase+LCL), shows the dependence of the performance

evaluation on the use of a different gold standard. TarBase [23,24]

is a manually-curated database with results that assume particular

prediction approaches and that were derived during the

experimental verification of a prediction algorithm; on the other

hand, it has also been shown that a substantial proportion of

TarBase predictions are non-conserved target sites and would not

have been predicted by computational approaches that assume

evolutionary conservation [32]. Due to these biases, it is

informative to assess the performance of the individual computa-

tional approaches using another benchmark. The miRNA-mRNA

associations generated from our HapMap LCL [6,7] data are

genome-wide, facilitate a comparative analysis, and may serve as a

reference dataset on the regulatory effects of miRNAs. However,

this gold standard could reflect the possible biases from the high-

throughput expression microarrays.

The problem of integrating existing computational approaches

is concerned with identifying a parsimonious model, which utilizes

the accumulated knowledge base of experimentally supported

miRNA target sites in defining the training algorithm. The

parsimonious model is selected from a potential hierarchy of

models derived from various combinations of existing algorithms.

ExprTarget is inspired by a multivariate logistic regression model

for a binary outcome and predictor variables from existing

computational solutions. ExprTarget has certain attractive features

besides the relevant criterion of parsimony. In relation to existing

computational methods, ExprTarget shows a greater predictive

power to discriminate the experimentally verified targets based on

ROC curve analysis. To gauge the accuracy, we conducted K-fold

cross-validation (K = 10) on our proposed algorithm, resulting in a

mean prediction error of 0.000277. There are, of course, other

ways of combining individual computational approaches such as

taking various unions or various intersections of the corresponding

result sets. However, while unions of computational approaches

may achieve a higher level of sensitivity than the individual

approaches, this gain comes at the cost of a reduction in specificity.

In the same vein, while intersections of computational approaches

may achieve a higher level of specificity, they also generally

achieve a much reduced sensitivity [32]. Alternatively, non-linear

statistical models may provide an excellent fit; however, the

parameters in these models are often difficult to interpret. The

application of a complex model with many degrees of freedom to

produce a satisfactory fit may come at the cost of failure to

replicate in as-yet-unseen data. The model we propose in

ExprTarget enables us to evaluate the relative importance of the

predictors in miRNA target site prediction.

We acknowledge that miRNA-mediated regulation of gene

expression may be tissue-specific and population-specific. Our

miRNA expression data on LCLs represent one tissue type in one

population (the CEU samples); therefore, it is likely that we might

miss some information on miRNAs not expressed in these samples

or differentially expressed between human populations. Neverthe-

less, the approach we propose here is completely extensible. With

the availability of more data sets on other tissues (e.g., liver) and

the development of new methods that may utilize novel

characteristics of the miRNA-mRNA relationships, ExprTarget

is amenable to refinement to guide the prediction of miRNA

targets.

Finally, the prediction results of our integrative approach are

provided through an online searchable database, ExprTargetDB,

which can also be used to compare the prediction results (i.e.,

p values, scores) from the various computational solutions we

tested in this study (i.e, miRanda [25,26], PicTar [30], TargetScan

[27–29], TarBase [23,24], and our LCL data). In particular, the

expression dataset in ExprTargetDB constitutes the first reported

MicroRNA Gene Targets
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study of miRNA-mediated gene regulation using the HapMap

samples [6,7] that have been so important in transcriptome-based

studies of complex traits [34] and pharmacologic phenotypes [17].

Given the role of miRNAs on the regulation of expression, we also

provide additional relevant information (e.g., eQTL annotation

through the SCAN database [35]) in ExprTargetDB to inform

studies of the complex networks of gene expression. ExprTar-

getDB has been designed to seamlessly integrate into existing

genomic and pharmacogenomic resources (e.g., PharmGKB [36]).

Materials and Methods

MiRNA profiling of unrelated HapMap LCLs
MiRNA expression was measured in unrelated HapMap LCLs

[6,7] including 58 CEU (Caucasians from Utah, USA) samples

using the Exiqon miRCURYTM LNA Array v10.0 (,700 human

miRNAs, updated to miRBase 11.0 annotation [25,26]) (Exiqon,

Inc., Denmark). The HapMap cell lines [6,7] were purchased from

Coriell Institute for Medical Research (Camden, NJ). The details

for cell line culture were described in a previous publication [10].

Total RNA was extracted using miRNeasy Qiagen Kit (Qiagen,

Inc., Valencia, CA) according to manufacturer’s protocol. Array

hybridization was performed by Exiqon. The quantified signals

were background corrected using normexp with offset value 10

based on a convolution model [37] and normalized using the

global Lowess regression algorithm. In total, 225 miRNAs were

found to be expressed in these samples (unpublished data).

Expression-supported human miRNA targets
Associations between the 225 expressed miRNAs and potential

gene targets were evaluated using the miRNA profiling data and

our previously-generated Affymetrix Human Exon 1.0ST array

data on the same cell lines (,10,000 mRNA transcripts with

reliable expression) (NCBI Gene Expression Omnibus Accession:

GSE9703) [33]. Association analyses in the CEU samples

were carried out using the lm function of the R Statistical Package

[38].

Computationally-predicted miRNA targets

1. The miRBase Targets Release Version v5 (http://www.ebi.ac.

uk/enright-srv/microcosm/htdocs/targets/v5/) (i.e., micro-

Cosm) provides computationally predicted targets for miRNAs

using the miRanda algorithm [25,26], which uses dynamic

programming to search for maximal local complementarity

alignments corresponding to a double-stranded anti-parallel

duplex. miRanda [25,26] also takes into account the extent of

conservation of the miRNA targets across related genomes.

The miRBase Targets Release Version v5 is comprised of gene

target predictions for 711 human miRNAs.

2. TargetScan (http://www.targetscan.org/) (TargetScanHuman

Release 5.1, April, 2009) [27–29] predicts miRNA gene targets

by searching for the presence of conserved sites that match the

seed region of each miRNA. Predictions are ranked using site

number, site type, and site context, which include factors that

influence target-site accessibility.

3. PicTar [30] (http://pictar.mdc-berlin.de/) takes sets of coex-

pressed miRNAs and searches for combinations of miRNA

binding sites in each 39UTR. Like TargetScanS [27–29],

PicTar also requires target conservation across several species

[30]. PicTar has target prediction information for human

miRNAs based on conservation in mammals (human, chim-

panzee, mouse, rat, dog) [30].

Experimentally-supported human miRNA targets
TarBase [23,24] (http://diana.cslab.ece.ntua.gr/tarbase/),

which houses a manually curated collection of experimentally

tested miRNA targets in a variety of species including human,

mouse and several other model organisms. Each target site is

described by the miRNA that binds it, the gene in which it occurs,

the nature of the experiments that were conducted to test it, the

sufficiency of the site to induce translational repression and/or

cleavage, and the paper from which all these data were extracted.

The current TarBase [23,24] v.5c (June, 2008) covers 1122 distinct

miRNA-gene pairs for 143 human miRNAs.

Comparing computationally-predicted and
experimentally-supported miRNA targets

1. Pair-wise comparisons of miRanda scores [25,26], PicTar

scores [30] and TargetScan scores [27–29] were performed to

evaluate the correlations between the computational algo-

rithms. Predicted miRNA targets overlapping between every

pair were included in this analysis: 21590 between miRanda

[25,26] and TargetScan [27–29], 2465 between miRanda

[25,26] and PicTar [30], and 8707 between TargetScan [27–

29] and PicTar [30].

2. The distribution of experimentally-supported miRNA targets

from TarBase [23,24] for each algorithm was compared with

the distribution of the full set of miRNA targets predicted by

the same algorithm. The overlap of miRNA targets between

TarBase [23,24] and each computational algorithm were

included in each comparison. For example, the distribution of

miRanda-predicted miRNA targets [25,26] was compared with

the distribution of targets among them supported by TarBase

[23,24].

ExprTarget: An integrative approach to miRNA target
prediction

We constructed a computational prediction model that

integrates select miRNA computational algorithms using the

experimentally validated targets as training data. Following a

multivariate logistic regression model, let the xj,i be the prediction

score of algorithm j on the i-th miRNA target site prediction:

log it(pi)~ ln (
pi

1{pi

)~b0zb1x1,iz:::zbkxk,i

where pi defines the score for ExprTarget that may be derived

from a sigmoidal transformation of a weighted sum of the scores

from select computational algorithms or target site features:

pi~sigmoid (
X

bkxk,i)

sigmoid(s)~
1

1z exp ({s)

Pictar [30], TargetScan [27–29], miRanda [25,26], and our

HapMap-based expression microarray dataset were selected as

providing the xj,i, although the approach we describe here may

extend to a larger list provided certain assumptions are met.

Estimated from the data, each beta bk describes the size of the

contribution from a target site feature (encapsulated by the

prediction algorithm k). The model, as stated, characterizes the

relationship between the various predictors and a binary variable,

MicroRNA Gene Targets
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expressed as a probability, showing whether the prediction is

experimentally supported or not. A high absolute magnitude for

the parameter bk implies that the incorporation of the respective

target prediction feature increases the probability of experimental

support. The PicTar [30] score, which has a maximum = 1000,

has been normalized to lie between 0 and 1 by dividing by this

maximum value. The score for the expression-corroborated

miRNA targets is set to the p value for the general linear model

between miRNA and mRNA normalized (log2-transformed)

expression intensities, provided the estimated coefficient is

negative; otherwise, the expression-based score is set to 1. For

the miRanda [25,26] contribution, we used the algorithm’s Score,

which is based on complementary base pairing as well as the

presence of mismatches, gap-opening, and gap-extension. For

TargetScan [27–29], we utilized the probability of preferentially

conserved targeting (PCT), a Bayesian estimate of the probability of

site conservation due to selective maintenance of miRNA

targeting. Alternatively, one could utilize the TargetScan context

score, which is meant to provide complementary information to

PCT and is derived from information orthogonal to site

conservation [27–29]; however, our analysis shows that the use

of context scores does not lead to higher predictive performance

based on AUC (see next section). The change in ExprTarget score

p with respect to the change in score xi for a given prediction

method is given by:

Lp

Lxi

~p(1{p)bi

Performance evaluation using ROC curve analysis and
cross-validation

The various prediction algorithms were assessed using the

receiver operating characteristic (ROC) curves, which plot the true

positive rate (sensitivity) and the false positive rate (1-specificity) for

a binary classifier at various score thresholds [39]. The

performance of a prediction algorithm can be evaluated using

the area under the ROC curve (AUC). The area estimate V has

the following standard error (SE):

SE(V)~(
h(1{h)z(nA{1)(Q1{h2)z(nN{1)(Q2{h2)

nAnN
)1=2

where nA and nN are the number of ‘‘failures’’ and ‘‘successes’’, h is

the ‘‘true’’ area, and Q1 and Q2 are distribution specific quantities

[40]:

Q1~
h

2{h

Q2~
2h

2

1zh

Two prediction algorithms with AUC values V1 and V2 may be

compared. We can determine the standard error for the difference

in areas as follows [41]:

SE(V1{V2)~(SE2(V1)zSE2(V2){2rSE(V1)SE(V2))
1
2

where r is the estimated correlation between V1 and V2. The test

statistic for the comparison of areas is defined as follows:

Z~
V1{V2

SE(V1{V2)
*N(0,1)

Since the experimentally supported targets in TarBase may

represent biases (e.g., relative to sequence conservation), we chose

to evaluate the performance of each algorithm (miRanda [25,26],

Pictar [30] and TargetScan [27–29]) using TarBase [23,24] first as

gold standard followed by using TarBase [23,24] and expression-

corroborated predictions (TarBase + LCL) as gold standard. We

also evaluated the predictive performance of ExprTarget using as

gold standard the subset of TarBase [23,24] that includes only the

target sites validated by individual experiments rather than by

high-throughput assays.

To further assess the predictive power of our integrative

approach, we conducted K-fold cross-validation on the training

algorithm in ExprTarget. This method partitions the entire

dataset into K subsets or folds Fi, i = 1,2,…K. One of the K

subsets is used as a validation set, Ftest where test {1,2,…,K},

and the remaining K21 subsets are combined into a training set

Ftrain to fit our weighted logistic regression model. The training

algorithm is repeated K times so that each subset is used as a

validation set once, and an average error is calculated. All

observed data are thus used in the training and the validation.

We utilized the cv.glm function for cross-validation in general-

ized linear models in the boot package available in R [38]. For

K = 10, the mean error was 0.00027725 while for K = 3, the

mean error was 0.00027719.

Supporting Information

Figure S1 Individual performance of foundational prediction

algorithms using (TarBase + LCL) as gold standard. The three

prediction algorithms were evaluated using ROC curve analysis,

using (TarBase + LCL) as benchmark.

Found at: doi:10.1371/journal.pone.0013534.s001 (2.30 MB TIF)

Figure S2 When the subset of TarBase that excludes the high-

throughput assays is used as gold standard, the improvement in

predictive performance for ExprTarget relative to the individual

methods continues to hold robustly.

Found at: doi:10.1371/journal.pone.0013534.s002 (1.02 MB TIF)

Figure S3 The use of a score from the expression data that is

gene-based rather than target site-based (e.g., the score is defined

as the minimum of all p values for miRNA correlations with the

gene) shows that the incorporation of the individual algorithms

improves predictive performance.

Found at: doi:10.1371/journal.pone.0013534.s003 (1.35 MB TIF)
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