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Excitable media, ranging from bioelectric tissues and chemical oscillators to forest
fires and competing populations, are nonlinear, spatially extended systems capable
of spiking. Most investigations of excitable media consider situations where the
amplifying and suppressing forces necessary for spiking coexist at every point in space.
In this case, spikes arise due to local bistabilities, which require a fine-tuned ratio
between local amplification and suppression strengths. But, in nature and engineered
systems, these forces can be segregated in space, forming structures like interfaces
and boundaries. Here, we show how boundaries can generate and protect spiking
when the reacting components can spread out: Even arbitrarily weak diffusion can
cause spiking at the edge between two non-excitable media. This edge spiking arises
due to a global bistability, which can occur even if amplification and suppression
strengths do not allow spiking when mixed. We analytically derive a spiking phase
diagram that depends on two parameters: i) the ratio between the system size and
the characteristic diffusive length-scale and ii) the ratio between the amplification
and suppression strengths. Our analysis explains recent experimental observations of
action potentials at the interface between two non-excitable bioelectric tissues. Beyond
electrophysiology, we highlight how edge spiking emerges in predator–prey dynamics
and in oscillating chemical reactions. Our findings provide a theoretical blueprint for a
class of interfacial excitations in reaction–diffusion systems, with potential implications
for spatially controlled chemical reactions, nonlinear waveguides and neuromorphic
computation, as well as spiking instabilities, such as cardiac arrhythmias, that naturally
occur in heterogeneous biological media.

reaction–diffusion equations | dynamical systems | electrophysiology | morphogenesis |
topological phenomena

A spike is a large nonlinear excursion in a dynamical system followed by a time
of latency known as the refractory period. Protecting the ability to spike is crucial
for a wide range of biological functions, from cardiac pacemaking (1–6) to neural
information processing (7), while in other contexts, such as forest fires (8) and disease
outbreaks (9–12), spiking is undesirable. In a spatially extended medium, the ability
to spike gives rise to distinctive spatiotemporal patterns (13–23) appearing in processes
ranging from morphogenesis (24–34) to spiral waves observed in electrograms of the
heart (35–37). While analytical studies have revealed important features of excitable
media whose properties are spatially homogeneous (38–42), less is understood about
abrupt heterogeneities such as sample edges or interfaces (43–54). As is often the case
with wave mechanics, edges and interfaces can have properties that differ qualitatively
from those of the bulk medium (55–61).

For instance, Fig. 1A shows a recent experiment in which human embryonic kidney
(HEK293) cells were genetically modified to express either sodium (NaV1.5) or potassium
(Kir2.1) channels (63). Usually, a cell containing both potassium and sodium channels
spikes via the following mechanism, which is representative of excitable systems: The
potassium channels favor a low membrane potential, while the sodium channels favor a
high membrane potential, creating a bistability. Given a suitably large voltage stimulation,
the membrane potential (a fast variable) spikes upward toward the value set by the sodium
channels. The sodium channels then gradually shut due to open-state inactivation (a
slow variable), causing the membrane potential to fall toward the value set by the
potassium channels. The sodium channels then take some time to recover their strength
(the refractory period). Because the competition between the two channels is essential,
neither sodium nor potassium channels alone are sufficient for an individual cell to spike.
Furthermore, even when both channels coexist in a single cell, spikes only occur when
they have the appropriate ratio of open-state conductances (i.e., channel strengths).
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Fig. 1. Edge spiking in electrophysiology, population dynamics, and chemistry. (A) Experiments from ref. 63 in which an action potential propagates along a
tissue interface, as revealed by a voltage-sensitive red dye. See Movie S1. (Scale bar, 1 mm). The Left column shows a schematic vertical cross-section of the
interface: The top tissue features sodium ion channels (inward arrows), while the bottom tissue features potassium ion channels (outward arrows). The vertical
lines represent gap junction coupling between the cells. Images adapted from ref. 63. (B) A fast diffusing predator (lumberjacks) and relatively immobile prey
(trees) are described by an interfacial Lotka–Volterra model [Eqs. 3 and 4]. A kymograph generated by the model reveals spikes in the lumberjack population
at the interface. (C) An interface between two chemical reservoirs, neither of which are capable of oscillating, is described by Eqs. 10 and 11. A kymograph of
the fast, mobile catalyst a reveals repeated spikes generated at the interface.

Something visually striking happens when two distinct and
non-excitable tissues (composed of the two cell types) are placed
in contact and weakly coupled by gap junctions, which allow
voltage diffusion. When stimulated at the interface, a voltage
spike (i.e., an action potential) emerges and robustly propagates
along the interface; see Fig. 1A and Movie S1 (62). Crucially,
these interfacial spikes persist for a much wider range of open-
state conductances than for a single cell (63). This observation
suggests that spikes generated at an interface may have a distinct,
and possibly more robust, dynamical origin than those in a
homogenized system. Here, we reveal the underlying dynamical
mechanism behind this phenomenon and demonstrate that it
is not limited to electrophysiology. For instance, we provide
examples from population dynamics (Fig. 1B) in which a fast,
mobile predator (lumberjacks) consumes a slow, sedentary prey
(trees) while diffusing across an environmental (forest-desert)
boundary, and from chemical reaction networks in which a
fast catalyst diffuses between two chemically distinct reservoirs
(Fig. 1C). In all these examples, a spiking interface is more than
the sum of its parts: Interfacial spiking does not result from
merely superimposing the two halves. In fact, coupling the two
halves too strongly can destroy spiking altogether.

Results
Spiking Boundaries and the Role of Spatial Extent. The basic
notion of an edge spike involves two distinct processes: transport
across two domains and transport within the domains themselves.
To illustrate the former, consider a two-compartment model of
predator–prey dynamics shown in Fig. 2A, Inset. The model
features a population p of lumberjacks (the predators) that

consumes a population n of trees (the prey). The rightmost
compartment, the forest (blue bar), acts as a lumberjack amplifier
in which tree consumption elevates the lumberjack population.
By contrast, the desert (red bar) is an infinitely strong suppressor
in which any lumberjack that enters dies instantly. Lumberjacks
from the forest wander into the adjacent desert with a hopping
rate �. The populations evolve according to the following Lotka–
Volterra equation:

ṗ =− � p + n p k(p), [1]

ṅ =
n
�

(
1− n−

p
q

)
, [2]

where 1/q is the predation rate, � � 1 is a long time scale
implying that the tree population changes slowly, and k(p) is
a nonlinearity that encodes a lumberjack carrying capacity. A
normalization has been chosen so that all variables in Eqs. 1 and
2 are dimensionless and the carrying capacities of the lumberjacks
and trees are set to 1; see SI Appendix section 1. Here, the
lumberjack population plays the same role as the cell-membrane
potential in the electrophysiology experiment (a fast, diffusing
variable), the tree population corresponds to the gating variable
of the sodium channels (an immobile, slow variable), while the
desert and the forest correspond to cells with potassium and
sodium channels, respectively.

In this model, the ability to spike depends sensitively on the
hopping rate �. If � = 0 (Fig. 2A), the two halves are decoupled
and the lumberjack population cannot spike: The lumberjacks
will quickly return to their carrying capacity regardless of the
perturbation. However, when � is small but nonzero (Fig. 2B),
the dynamics change dramatically: The lumberjacks can now
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Fig. 2. Spikes induced by weak diffusion and large system size. (A) (Inset) A predator–prey system with a desert (red) and a forest (blue) described by Eqs. 1
and 2. In the forest, the predators (lumberjacks, p) consume the prey (trees, n) with predation rate 1/q. The predators cross from the forest to the desert (and
subsequently perish) with hopping rate �. (A–C) Three phase portraits, for � = 0, 0 < � � 1, and 1� �, illustrate the role of diffusion across a boundary: For � = 0
(A), the lumberjacks reach their carrying capacity and the trees go extinct. For � � 1 (C), the lumberjacks go extinct and the trees reach their carrying capacity.
Spikes can only occur in the intermediate range 0 < � � 1 (B), in which the effective death rate due to hopping is present but not overpowering. Orange curves
are example trajectories. The ṗ = 0 and ṅ = 0 nullclines are denoted by black and gray lines, respectively. (D) A phase diagram for Eqs. 1 and 2 summarizes
the possible behaviors: If the lumberjack hopping rate � is too large, the lumberjack population cannot spike. The phase boundaries are determined by the
consumption nonlinearity k(q) in Eqs. 1 and 2. (E–G) A chain of N forests (blue lines) are coupled to a desert (red line) by a large hopping rate � = 4. Kymographs
for systems with N = 2, N = 4, and N = 100 exemplify a distinctive transition: Oscillation onset is driven by increasing system size, even as � is held constant.
(See SI Appendix section 1 for simulation details.) (H) A phase diagram for Eqs. 3 and 4, applicable for N � 1, reveals a crucial distinction between the spatially
and non-spatially extended systems: The vertical axis in (H) features N/

√
�, implying that spiking occurs for a much larger range of � in the spatially extended

limit. The curve X(q) determines the locations of the phase boundaries and is given in Eq. 21.

spike because the motion into the desert depletes the lumberjack
population when trees are sparse and tree consumption overpow-
ers diffusion when trees are abundant. Crucially, though, when
� becomes too large (Fig. 2C), the desert and forest become well
mixed, and the lumberjack population cannot spike because the
suppressor (desert) is infinitely strong. In the two-compartment
model described by Eqs. 3 and 4, the hopping rate � can be
reinterpreted as an effective suppression strength: Even though
the desert itself is infinitely strong, the finite entrance rate atten-
uates its effect. The phase diagram in Fig. 2D illustrates a basic
mechanism: An amplifier and a suppressor need to be suitably
well balanced for spikes to occur—attenuating a strong sup-
pressor through weak diffusion across an interface helps achieve
this balance.

Yet, this simplified model lacks a basic feature: the forest
itself can be spatially extended. In Fig. 2 E–G, the desert is
now connected to a chain of N compartments comprising the
forest, each of which is coupled to its neighbors by a hopping
rate �. The size of the forest dramatically influences the dynamics.
WhenN = 2 and � = 4, the lumberjacks rapidly go extinct in all
compartments (E). Yet, when N = 4, the lumberjack population

not only begins to survive but undergoes large oscillations (F). A
window into the relationship between N and � can be obtained
in the large N limit (G and H). In this limit, the dynamics can
be described by a continuum reaction–diffusion equation:

ṗ = D∇2p + n p k(p), [3]

ṅ =
n
�

(
1− n−

p
q

)
, [4]

where L = Nd is the system size and d is the lattice spacing*.
The parameter D = � d2 denotes the diffusion coefficient times
the characteristic time scale used to nondimensionalize � (SI
Appendix, section 1). The lumberjack population obeys the
following boundary conditions: ∂xp = 0 at x = L and, because
of the infinitely strong desert, p = 0 at x = 0. The basic effect of
spatial extent can be obtained by dimensional analysis: Only

√
D

and L have units of length, so any change in qualitative behavior

*Notice that Eqs. 3 and 4 do not contain advective transport, which has also been shown to
give rise oscillations near Dirichlet boundaries, for example, in models of and experiments
on Dictyostelium discoideum (44, 45).
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must depend on the dimensionless ratio L/
√
D = N/

√
�.

Therefore, in the continuum, increasing N is equivalent to
decreasing �. This collapse is physically consequential because the
diffusion D is an intrinsic property of the material while L is an
extrinsic property, so the two can often be tuned independently.
Notably, by increasing L a system can support spiking over a
wider range of D†.

Interfaces and a Spiking Phase Diagram. The dynamics are even
richer when the suppressor (e.g., the desert) is no longer infinitely
strong. In this case, the Dirichlet boundary becomes an interface,
and spikes can arise both in the limit L/

√
D→ 0 and L/

√
D→

∞. To illustrate this behavior, we consider a one-dimensional
(1D) model for the electrophysiology experiment of ref. 63 which
takes the form of an interfacial Fitzhugh–Nagumo equation (64):

V̇ =D∇2V +
{
fK(V ) x ∈ [−L, 0]
h fNa(V ) x ∈ (0, L],

[5]

ḣ =
h∞(V )− h

�
. [6]

Here, x is the coordinate transverse to the interface (Fig. 1A),
V is the voltage, and fK(V ) and fNa(V ) capture the effect of
the potassium and sodium channels, respectively. The sodium
channels are modulated by a gating variable h that slowly
approaches the function h∞(V ) on a long time scale �. The
term D∇2V arises from direct cell-to-cell current flow via gap
junctions. Like the predator–prey system, a normalization is
chosen such that the quantities

√
D and x have units of length,

while all others are dimensionless (SI Appendix section 2). The
system is modeled by no-flux boundary conditions at both ends,
∂xV |±L = 0, while the voltage V and its first derivative ∂xV are
required to be continuous across the interface.

The gating switch h∞(V ) is reasonably well approximated
by a step function h∞(V ) = r Θ(V∗ − V ), where Θ is a
Heaviside step function and V∗ is a crossover voltage that turns
off the sodium channels (3). The parameter r is the ratio of
the open-state conductances of the sodium to the potassium
ion channels. Therefore, r can be interpreted as the relative
strength of the amplifier (sodium) and suppressor (potassium).
When r � 1, the potassium ion channels are so strong that
the interface effective becomes a Dirichlet boundary of the type
considered in the predator–prey system. When r � 1, both
sides of the interface are dynamic.

In Fig. 3A andB, we sketch a three-dimensional phase diagram
spanned by the parameters L/

√
D,V∗, and r. When L/

√
D→ 0,

diffusion forces the voltage to be approximately constant across
the entire system, so we can think of the system as an effective
single cell with both ion channels. By contrast, when L/

√
D→

∞, the coupling is weak and the spatial heterogeneity plays a
crucial role. To illustrate the independence of these two limits,
in Fig. 3 C–K, we consider three different realizations of fNa and
fK (65, 66). For each realization, we show two cross-sections of the
phase diagram: one for L/

√
D→ 0 and one for L/

√
D→ ∞.

Fig. 3 D–F shows an example of ion channels for which the
effective single cell (L/

√
D→ 0) exhibits spikes but the weakly

coupled interface (L/
√
D→∞) does not. Moreover, Fig. 3 G–I

†For simplicity, in this example, we are using the same hopping rate � within the forest
as between the forest and desert. This distinction becomes irrelevant in the continuum
limit (large � and large N) because this subextensive heterogeneity is absorbed into the
Dirichlet boundary condition at an edge or into the continuity requirements across an
interface.

shows an example in which the interface exhibits spikes for all
values of r, yet no ratio of the amplifier and suppressor gives rise
to spiking in a single cell.

Global BistabilitiesUnderlie Edge Spiking. In both the interfacial
and boundary systems, the presence of spikes is associated with
topologically robust features of the underlying dynamical system
governed by their respective reaction–diffusion equations. Both
Eqs. 3 and 4 and Eqs. 5 and 6 take the form:

Ȧ =D∇2A + f (A, B, x), [7]

Ḃ =
1
�
g(A, B), [8]

where A(x, t) is a fast field and B(x, t) is a slow field. We will
call [A0(x), B0(x)] a stationary solution of Eqs. 7 and 8 if they
satisfy Ȧ = Ḃ = 0. Each stationary solution comes paired with a
functional Φ:

Φ[A] =
∫

D (∂xA)2
− U (A, x) dx, [9]

where U (A, x) =
∫ A

0 f (A′, B0(x), x) dA′. The meaning of Φ is as
follows. If the system is prepared at the stationary solution and the
variable A is perturbed, then on short time scales, Ȧ ≈ −�Φ/�A.

The number of stationary solutions and the critical points of
their associated functionals encode the ability of a system to spike.
For instance, suppose Eqs. 7 and 8 permit only one stationary
solution, [A0(x), B0(x)], and the associated functionalΦ only has
one minimum [namely A0(x)]. Then, the system will not exhibit
spikes because any perturbation to A(x) quickly relaxes to A0(x).
However, if Φ permits a second minimum A1(x) in addition to
A0(x), then the system is excitable: Suitable perturbations to A
will push the system into the basin of attraction of A1(x) and,
only on longer times (t ∝ �), will the system return to A0(x).
Oscillations (i.e., repeated spikes) occur when A0(x) itself is a
saddle, rather than a minimum, of Φ. The number of critical
points and their unstable dimensions are topologically robust
quantities: These integers are unchanged under sufficiently small,
generic perturbations to Eqs. 7 and 8.

For certain models, such as the electrophysiology equa-
tions [Eqs. 5 and 6] in the experimentally relevant limit of
h∞(V ) = rΘ(V∗ − V ), the stationary solutions and associated
critical points are captured by a relatively simple geometric
construction. The stationary solution for the membrane potential
V0(x) is constructed as follows: First draw potentials for fK(V )
(red) and h∞(V )fNa(V ) (blue) and align their maxima as shown
in Fig. 4A. Treating these as hills, let a ball roll from the top
of one hill to the other. The trajectory of the ball in time
corresponds to the voltage profile V0(x) in space (Fig. 4B).
As we show in SI Appendix section 2, the existence of spiking
at the interface is determined by an auxiliary function X (V )
defined in Fig. 4C: Place the ball at an arbitrary voltage VR
and let it roll down the blue hill. The function X (VR) is the
amount of time it takes for the ball to reach the intersection.
Each solution to the equation X (V∗) = X (V ) constitutes a
critical point of Φ(V ). Whenever X (V∗) = X (V ) has multiple
solutions, the system exhibits spikes. As shown in Fig. 4 D–F,
the precise form of the spikes (excitable vs oscillatory) depends
on whether the solution V0(x) is stable (excitable) or unstable
(oscillatory). Using homological techniques from Conley index
theory (67, 68), we show in SI Appendix that the decreasing
branch of X (V ) must always be unstable, while the increasing
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Fig. 3. A spiking interface is more than the sum of its parts. (A) A spiking phase diagram is shown for the bioelectric interface in Eqs. 5 and 6. Here, L/
√
D is

the ratio of the system size to the diffusion length and r and V∗ appear in h∞(V) = r Θ(V∗ − V). The parameter r is the ratio of the amplifier (sodium channel)
strength to the suppressor (potassium channel) strength. (B) At small L/

√
D, diffusion forces the membrane potential to be approximately constant across the

entire tissue, creating an effective single cell with both ion channels. For large L/
√
D, the coupling is weak, so the dynamics are spatially heterogeneous. (C–K) A

table comparing the L/
√
D→ 0 (single cell) and the L/

√
D→∞ (interfacial) limits. The Left column (C, F, and I) shows three examples of voltage-current curves for

potassium (red) and sodium (blue) ion channels. Their reversal potentials are denoted VK and VNa, respectively. The Center column (D, G and J) contains phase
diagrams for L/

√
D → 0, corresponding to a single cell with both ion channels. The phase boundaries are determined by the dashed line heq = −fK/fNa. In

order of brightness, the regions are oscillating, excitable, bistable, and no spiking. If heq is monotonic, then the single cell does not exhibit spikes. The Rightmost
column (E, H and K) contains phase diagrams in the limit L/

√
D→ ∞, describing interfacial dynamics. Row 1 (C–E) shows an example of ion channels in which

both the single cell and the interfacial phase diagrams exhibit spiking, but boundaries differ. Row 2 (F–H) shows an example of ion channels for which the
single-cell phase diagram contains spiking, while the interfacial phase diagram does not. Row 3 (I–K) shows an example of ion channels for which the interface
exhibits spiking, but no ratio r of the amplifier and suppressor gives rise to spiking in a single cell. The green checks and red crosses indicate phase diagrams
that do or do not contain spiking, respectively.

branches are stable. The function X (V ) can be thought of as the
high dimensional counterpart of the dashed lines, heq, in Fig. 3
D, G and J that determine the phase diagrams for a single cell.

An analogous function X (q) demarcates the phase boundaries
for the predator–prey diagram shown in Fig. 2H; see Materials
and Methods, section B.
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A

D

G H I

E F

B C

Fig. 4. A geometric construction for interfacial spiking. (A) Starting from Eqs. 5 and 6, the antiderivatives of fK(V) (solid red line) and h∞(V)fNa(V) (solid blue
line) are visualized as hills. The dashed blue line is the antiderivative of rfNa(V). To construct the stationary solution with no-flux boundary conditions, consider
letting a ball roll from the top of one hill to the other (orange curve). (B) The stationary voltage solution V0(x) in space corresponds to the trajectory of a ball (in
time) rolling across the potentials in (A). (C) The ability to spike is determined by the number and stability of critical points of Φ in Eq. 9. To determine the critical
points, we release a ball from a voltage VR and measure the “time” X it takes to reach the intersection. (D) We plot X as a function of VR , and three cases emerge.
When x∗ intersects X once, the interface is unable to spike. (E) When x∗ intersects X three times and V∗ corresponds to an increasing branch of X , the interface
is excitable. (F) When x∗ intersects 3 times and V∗ corresponds to the decreasing branch, the voltage at the interface oscillates. (G–I) Kymographs illustrating no
spiking, excitability, and oscillating at the interface. See SI Appendix section 5 for simulation details.

Spiking Mode Transitions and Wave Delocalization. So far, we
have considered bulk media that alone cannot spike but exhibit
excitability or oscillations when a boundary or interface is
introduced. Now we show that boundaries or interfaces can cause
conversions between different modes of spiking. As illustrated
in Fig. 1C, we consider two chemical reservoirs separated by a
semi-permeable membrane. The reaction in the right chamber
(x > 0) contains two catalysts with concentrations a(x, t) and
b(x, t) that evolve according to the Oregonator model of the
celebrated Belousov–Zhabotinsky reaction (69). We assume that
the catalyst a is free to diffuse across the interface, while the
catalyst b is relatively immobile. In the left reservoir, the catalyst
a is rapidly converted into a product that exits the reaction.
Starting from a minimal chemical reaction network and applying
the law of mass action (SI Appendix section 3), we derive the
following dynamical equations:

ȧ =D∇2a +
{
−a x < 0
2m1b− a [b∞(a) + m2] x > 0,

[10]

ḃ =
b∞(a)− b

�
, [11]

where m1 and m2 are parameters set by internal rate constants,
and b∞(a) is a monotonically decaying function given in

SI Appendix, Eq. S69. For sufficiently large m1 and small m2,
neither of the reservoirs alone can oscillate. The kymograph in
Fig. 1C shows that allowing catalyst a to diffuse between the
two reservoirs creates spontaneous oscillations at the interface.
However, unlike the previous examples (predator–prey and
electrophysiology), the chamber on the right alone is excitable
(though not oscillatory) even without the interface (SI Appendix,
Fig. S4). The presence of excitability for x > 0 changes a
qualitative feature of the oscillations: The interfacial spikes are
no longer spatially localized. Instead of dying off at large x
(as in Fig. 1B), the spikes generated at the interface propagate
at constant amplitude to the far away boundary (Fig. 1C).
Oscillations at chemical interfaces have been reported previously,
but they often rely on a distinct mechanism in which chemicals
mix at the interface to reach locally suitable conditions for
oscillations (70, 71). Interfacial spiking, for example, using gels
or other tailored chemistry (72–75), may serve as a promising
alternative technique for spatial control of chemical reactions
because the two reservoirs can remain distinct indefinitely.

2D Systems and Nonlinear Waveguides. In two dimensions, an
interface is a 1D line. If the interface is excitable, then the 1D
line can host nonlinear waves called trigger waves, as illustrated
by the bioelectric experiments in Fig. 1A. In the notation of
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Eqs. 7 and 8, an interfacial trigger wave is described by a profile
A(x, y, t) = A(x, y− c t) where x runs transverse to the interface,
y runs parallel to the interface, and c is the wave speed. In a
� → ∞ approximation, the sharp front along the interface is
described by:

D∂2
y A = −c∂yA +

�Φ
�A

, [12]

which is a higher dimensional version of the profile equation for
standard trigger waves (30). When the interface is excitable, Φ
has two minima, the stationary solution A0(x), and an additional
minimum A1(x). In the simplest approximation, A0(x) and
A1(x) are the boundary conditions of Eq. 12 as y → +∞
and −∞, respectively. Trigger-wave propagation can then be
understood by a classic rolling ball analogy (31): Eq. 12 describes
a ball of mass D moving with damping c between two maxima
[A0(x) and A1(x)] of a potential −Φ. The front moves in the
direction that expands the low potential (larger Φ) region, and
the wave speed c corresponds to the (unique) value of dissipation
that allows the ball to arrive at rest on top of the lower peak
of −Φ. Notably, a sufficiently strong perturbation can create a
small region with A(x, y) = A1(x) in an otherwise undisturbed
undisturbed profile [A(x, y) = A0(x)]. If Φ[A1] > Φ[A0], then
the A1 will expand with trigger waves propagating outward in
both directions. If Φ[A1] < Φ[A0], then the initial perturbation
will close, and the trigger waves will not propagate.

Geometric primitives, such as curves, corners, and junctions,
can then be used to control the propagation of these nonlinear
waves. For instance, Fig. 5 A and B shows a four-way junction
formed by patterning two different materials (light and dark
gray). In panel (A), two trigger waves approach the junction
from below. Since the trigger waves are in phase, they interfere
constructively and pass through the junction. However, when
the pulses are sent periodically with a phase lag (B), no pulse
passes through due to overlap in their refractory periods. Since
the trigger waves are nonlinear, constructive interference results
in outgoing waves that have the same amplitude as the incoming
waves (rather than twice the amplitude). This modification to
the superposition principle can form the basis of more complex
devices, such as those capable of computation (76–79). As
an illustration, Fig. 5 C and D and Movie S2 show a two-
dimensional (2D) surface patterned by two materials obeying
equations of the form of Eqs. 5 and 6. The network of excitable
interfaces forms an effective circuit that computes the sum of
two binary numbers (see SI Appendix section 4 for additional
minimal logic gates, such as AND, OR, and NOT gates). Since
only diffusion is required at the boundary, interfacial excitability
is potentially useful as a form of wave control that does not require
electronics, additional materials, or the fabrication precision
necessary to explicitly construct a narrow channel or wire.

Discussion
Exciting possibilities await in systems with multiple fast degrees
of freedom. In this case, the fast dynamics need not be gradient-
like and therefore may give rise to more complex interfacial effects
like bursting, in which oscillations transiently turn on and off.
Likewise, we envision extensions to three-dimensional systems in
which the interface is a 2D surface. In addition to engineered
waveguides, interfacial spikes may mediate biological functions,
such as intracellular chemical signaling (29, 30, 33, 34), as well as
pathologies such as atrial fibrillation (80, 81), in which erroneous
pacemaking emerges, for example, at the boundary of the aortal
and pulmonary heart tissues.

Materials and Methods
A. Spike Generation in Fast–Slow Systems without Spatial Extent. Here,
we review examples of spike generation in fast–slow systems without spatial
extent. We consider equations of the form:

Ȧ = f(A, B), [13]

Ḃ =
1
�
g(A, B), [14]

and we assume that � � 1, which implies that A is a fast variable andB is a slow
variable. Fig. 6 A, Top shows two curves known as nullclines, which are defined
by Ȧ = 0 (black) and Ḃ = 0 (gray). The intersection of the nullclines (solid
orange circle), denoted (A0, B0), is a fixed point of Eqs.13 and14. If an external
stimulus (light blue arrow) pushesA across a threshold value (open green circle),
A will evolve along the solid green line toward a high value (solid green circle),
while B remains approximately constant. Over a longer period of time, known
as the refractory period, A and B will move along the dashed orange line back
toward their rest position (solid orange circle). This is an example of an excitable
system, in which the fast variable A needs to be stimulated above a critical
threshold in order to undergo a spike. Fig. 6 A, Bottom shows an equivalent
description of the spike: When initially perturbed, A will evolve according to
Ȧ = −∂AU, where ∂AU(A) = −f(A, B0). From this perspective, the system is
excitable becauseU has a minimum (solid green circle) other than the one at A0
(solid orange circle).

Fig. 6B shows a similar example where the fixed point (A0, B0) is unstable.
Since the global fixed point is unstable, this system contains a limit cycle denoted
by the dashed orange line. Such a system exhibits repeated spikes even in the
absence of external stimulation, which we refer to as oscillation or pacemaking.
In the following sections, we use an analogous fast–slow decomposition in a
high-dimensional setting to identify spiking in reaction–diffusion equations,
where the potential U is replaced by a functional Φ of the spatially extended
fields.

B. Phase Diagram for Spiking at a Dirichlet Boundary. In this section, we
provide the mathematical derivations underlying the spiking phase diagram for
systems with a Dirichlet boundary, e.g., Fig. 2H. In SI Appendix, we generalize
the argument to interfaces and apply it to specific systems (i.e., population
dynamics, bioelectric tissues, and chemical oscillators).
B.1. General setting. Here, we derive the phase diagram featured in Fig. 2H.
The equations we consider take the form:

Ȧ =∇2A + Bf̃(A), [15]

Ḃ =
1
�
g(A, B). [16]

Notice that Eqs.15and16are a specialization of Eqs.7and8with f(A, B, x) =

Bf̃(A). We will assume that f̃(A) > 0 for A ∈ [0, 1) and that f̃ crosses zero at
A = 1. Moreover, we will assume that there is a function 0 ≤ B∞(A) ≤ 1
such that g(A, B) < 0 whenever B∞(A) < B < 1 and g(A, B) > 0 whenever
0 < B < B∞(A). We note that B∞(A) is the unique solution to g(A, B) = 0
with 0 < B < 1, and B∞ is a zero crossing rather than a local minimum of
g. We will require the boundary conditions A(0) = 0 and ∂xA|` = 0. Here,
` = L/

√
D is the nondimensionalized system size. We will assume that the

maximum value of f̃ and g are of order 1 and that � � 1, implying that B is
a slow variable. As we will illustrate with examples in subsequent sections, this
form is general enough to capture a wide range of dynamical systems through
suitable variable changes.

The calculations below comprise the following steps: We first find the fixed
points of Eqs.15 and16, which we refer to as stationary solutions. Setting Ḃ = 0
in Eq. 16 yields B = B∞(A), and then setting Ȧ = 0 in Eq. 15 yields the
following ordinary differential equation for A:

∇
2A = −B∞(A)

dU
dA

, [17]

whereU is an antiderivative of f̃ . Suppose the system is initialized to a stationary
solution, given by A0(x) and B0(x) = B∞(A0(x)), and suppose the fast field
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A

C D

B

Fig. 5. Nonlinear waveguides from interfacial spiking. (A and B) Two distinct non-spiking materials (light and dark gray) are patterned to form a four-way
junction of excitable interfaces. When two nonlinear wave trains arrive at a junction in-phase (A), they propagate through uninterrupted. When the two wave
trains arrive out-of-phase, they annihilate at the junction. The color corresponds to the intensity I of the fast, diffusively coupled variable. (C and D) A network of
excitable interfaces acts as a binary half adder, which takes the sum of two 0 or 1 inputs. Here, the presence of a wave indicates the value 1, while the absence
of a wave indicates the value 0. The color Imax is the maximum value of I over time when the network has reached steady state. See SI Appendix section 4 and
Movie S2 for more information, and SI Appendix section 5 for simulation details.

A is subject to a perturbation A(x, t = 0) = A0(x) + �A(x), where �A is not
necessarily small. On short time scales, B(x, t) will be frozen to B0(x) and Awill
evolve according to:

Ȧ = ∇2A + B0(x)f̃(A) = −
�Φ
�A

, [18]

where

Φ =

∫ `

0
[(∇A)2

− B0(x)U(A)]dA. [19]

Solutions to Eq. 18 with Ȧ = 0 are critical points of Φ. Notice that A0(x) is
always one of the critical points. We will make inferences about the qualitative

behavior of Eqs.15 and16using the structure of the stationary solutions, critical
points, and orbits connecting them. Examples of such inferences are as follows:

• Suppose that Eqs. 15 and 16 only permit one stationary solution, and this
stationary solution is linearly stable. If the associated Φ has no additional
critical points beyond A0(x), then the system cannot exhibit spikes because
A(x, t) will quickly return to A0(x) after any perturbation.

• Suppose that Eqs. 15 and 16 only permit one stationary solution, and this
stationary solution is linearly stable. If Φ has stable critical points other than
A0(x), then the system is excitable. Namely, if the initial trigger�A(x)pushes
the system into the basin of attraction of a second stable critical point, then
A(x, t) will be attracted to the second critical point on a fast time scale (t � �)
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A BExcitable Oscillating

Fig. 6. Spike generation in fast–slow systems without spatial extent.
(A, Top) A phase portrait of an excitable fast–slow system. The black curve
corresponds to Ȧ = 0, and the gray curve corresponds to Ḃ = 0. The light
blue arrow represents an external perturbation. The solid green curves are
the fast trajectory, and the dashed orange curve is the refractory period.
The solid orange circle denotes the global fixed point. The open (closed)
green circle represents an unstable (stable) fixed point of the fast dynamics.
(Bottom) On short time scales, the potential U(A) governs the dynamics.
The system is excitable since U(A) has multiple minima. (B, Top) A phase
portrait of a fast–slow system exhibiting oscillations. The dashed orange
curve is a limit cycle. The open orange circle denotes an unstable global fixed
point. The closed green circles are stable fixed points of the fast dynamics
if initialized at the open orange circle. (Bottom) On short time scales, the
potential U(A) governs the dynamics. The system exhibits oscillations since
U(A) has multiple minima, and the orange circle (global fixed point) is not one
of them.

and remain there for a long time (t ∝ �) until the slow variableB(x, t) begins
to evolve. This constitutes a spike.

• Suppose that Eqs. 15 and 16 only permit one stationary solution, and this
stationary solution is linearly unstable. Assuming chaotic behavior does not
occur, the system will (generically) contain a limit cycle. The presence of this
limit cycle corresponds to oscillatory activity.

• Eqs. 15 and 16 may have multiple stable stationary solutions. In this case,
we refer to the dynamics as multistable.

In the next section, we specialize the form of B∞(A) to allow for an analytical
calculation of the stationary solutions and critical points and thereby an analytical
construction of a spiking phase diagram.
B.2. Construction of the phase diagram. In this section, we specialize the form
of B∞(A) to B∞(A) = Θ(A∗ − A), where Θ is the Heaviside step function.
Then, Eq. 17 becomes:

∇
2A = −Θ(A∗ − A)

dU
dA

=
dUclip

dA
, [20]

where
dUclip

dA = Θ(A∗ − A)f̃(A) defines a potential that has been clipped by
the step function; see the solid black line in Fig. 7A. To construct solutions, notice
that Eq. 20 is equivalent to the equation of motion for a ball moving in a 1D
potential, where x corresponds to “time” and A corresponds to “position.” The
boundary condition ∂xA|` = 0 is the requirement that the ball is at rest at
“time” `. Likewise, the boundary condition A(0) = 0 is the requirement that
the ball reaches “position” 0 at “time” 0. As shown in Fig. 7A, solutions to Eq. 20
can be constructed as follows: Release the ball from rest at point A, allow it to
move through the potential, and measure the amount of “time” it takes to reach
point A = 0. If that “time” is equal to `, then one will have constructed a valid
solution to Eq. 20.

Fig. 7A demonstrates that there are two possible types of solutions. For type
I (red), the ball is released along the non-clipped part of the potential (A < A∗).
For type II, the ball is released at A = A∗: If the amount of “time” T it takes the
ball to reach A = 0 is less than `, then a valid solution can be constructed by
letting the ball sit at rest on the flat part of the potential for a “time” `− T before
releasing it. In Fig. 7B, the two types of solutions are shown in real space.

To help count the number of solutions to Eq. 20, we introduce a function
X(A) that corresponds to the amount of “time” the ball takes to reach “position”
0 if released from “position” A. This is given by:

X(A) =
1
√

2

∫ A

0

1√
U(A)− U(a′)

da′. [21]

Fig. 7BandC show an example ofX(A) featuring one local maximum and one
local minimum. Depending on the choice of f̃(A), the function X(A) can have
many local maxima and minima. Nevertheless, the assumptions that f̃(1) = 0
and f̃(A) > 0 for A < 1 imply that X(A) > 0, X(0) = 0 and X(1) =∞. In
terms of X(A), type I and type II solutions correspond to the following:

Type I: If a < A∗ and X(a) = `, then there is a solution with A(`) = a. In
this case, the stationary solution A(x) is given by the inverse of:

x(A) =
1
√

2

∫ A

0

1√
U(a)− U(a′)

da′. [22]

Type II: Let x∗ = X(A∗). If x∗ < `, then there is a solution with A(`) = A∗.
In this case, the stationary solutionA(x) can be defined in a piecewise manner:
A(x) = A∗ for x ∈ [x∗, `]; For x < x∗, A(x) is the inverse of:

x(A) =
1
√

2

∫ A

0

1√
U(A∗)− U(a′)

da′. [23]

Now, we can think of A∗ and ` as being parameters of our dynamical system
defined by Eqs.15and16. Working in theA∗-`plane, all the stationary solutions
can be found by the graphical construction illustrated in Fig. 7C:

A B C

Fig. 7. Stationary solutions and critical points. (A) The potentials U(A) and Uclip(A) are depicted by dashed and solid lines, respectively. The red points
correspond to type I stationary solutions that lie along the non-clipped part of the potential. The blue point corresponds to a type II stationary solution, which
lies at the point A∗. The gray circle symbolizes a ball moving this 1D potential. If released from rest at either of the red points, the ball will take a “time” ` to
reach A = 0. If the ball is released from the blue point, it will take a “time” X(A∗) to reach the origin. (B) The stationary solutions are plotted in real space. Type I
solutions intersect the curve X(A) along the x = ` boundary and type II solutions intersect the curve X(A) along the A = A∗ boundary. (C) The (A∗ , `) parameter
space is shown, with X(A∗) plotted. A specific choice of parameters corresponds to a point P. Type I stationary solutions lie along the dashed red line, while
type II lie along the dashed blue line. The critical points associated with the blue stationary solution are indicated with purple circles.
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A B C

Fig. 8. Determining the stability of critical points. The critical points of Φ(A; e) are shown for three values of e. (A) At low e, there exists only one critical point,
A. (B) At moderate e, there exist three critical points A, B, and C. The solid arrows indicate heteroclinic orbits. (C) At large e, only one critical point (C) remains.
Critical points A and C must be minima (i.e., unstable dimension of 0), while B has an unstable dimension of 1.

1. Represent a choice of parameters (A∗, `) as a point P in the plane.
2. Draw the curve X(A∗).
3. Draw a horizontal line extending to the left fromP. The intersections between

the horizontal line and X(A∗) correspond to stationary solutions of type I.
4. Draw a vertical line extending downward from P. Intersections between the

vertical line and X(A∗) represent stationary solutions of type II.

This construction yields all the solutions to Eq. 20. Next, we derive the stability
of the stationary solutions and their consequences for spiking. To do so, we
will specialize to the situation in which X(A) is “N”-shaped, i.e., it has exactly
one local maximum and one local minimum. We will use the following result:
Consider the functional:

Φ(A; e) =

∫ e

0
[(∇A)2

− U(A)] dx, [24]

which is minimized with respect to A subject to the boundary conditions A(0) =
0 and ∂xA|e = 0. Using a similar derivation to that above, one sees that
the critical points of Φ correspond to the intersections between X(a) and the
horizontal line at e. As illustrated in Fig. 8A, for sufficiently small e, there is
only one critical point (denoted A) and therefore this critical point must be a
minimum of Φ. As e increases (Fig. 8B), a bifurcation produces two new critical
points,B and C. As e increases further,B andA annihilate (Fig. 8C). Since C is
now the lone remaining critical point, it must also be a minimum of Φ. Conley

index theory states that two critical points that emerge or annihilate must have
unstable dimensions that differ by 1 (67). Since the minima A and C have
an unstable dimension of 0, the unstable dimension of B is 1. Moreover, the
dynamical system Ȧ = − �Φ

�A must have heteroclinic orbits fromB toA andB
to C. (See SI Appendix section 7 for a brief introduction to Conley index theory
and a derivation of these facts.)

We now apply these facts to deduce the stability of the stationary solutions.
For stationary solutions A0(x) of type I, B∞(A0(x)) = 1. Therefore, the fast
dynamics for a type I stationary solution are governed by the equation:

Ȧ = ∇2A +
dU
dA

= −
�ΦI
�A

. [25]

For stationary solutions A0(x) of type II, B∞(A0(x)) = Θ(x − x∗), where
x∗ = X(A∗). Hence, the fast dynamics are governed by the equation:

Ȧ = ∇2A + Θ(x − x∗)
dU
dA

= −
�ΦII
�A

. [26]

Notice that the critical points of ΦI(A) and ΦII(A) can be put in
correspondence with Φ(A; `) and Φ(A; x∗), respectively. Therefore, one can
use the following graphical construction, illustrated in Fig. 7C, to find the critical
points associated with each stationary solution:

A B

Fig. 9. Phase diagram for spiking at a Dirichlet boundary. (A) A phase diagram in the A∗-` plane is divided into 11 distinct regions. The solid black curve is
X(A∗). The color code indicates the qualitative behavior. Green: no spiking; olive: bistable; blue: excitable; pink: oscillating. (B) The qualitative behavior may
be inferred from diagrams that summarize the topological features of the flow. In each diagram, the black circles represent stationary solutions, and the
gray circles represent the critical points of the associated potentials. Solid circles are stable, and the open circles are unstable. The light gray lines represent
heteroclinic orbits in the fast dynamics, and the black lines convey the evolution of the system on longer time scales.
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1. Identify the point corresponding to the stationary solution of interest.
(In Fig. 7C, the blue stationary solution is of interest).

2. Draw a horizontal line in both directions out from the point. (Dashed purple
line in Fig. 7C).

3. The intersections between the horizontal line andX(A∗)correspond to critical
points. (The blue and purple points in Fig. 7C).

4. The stability of each critical point is determined by which branch of X(A∗) it
lies on: Those on an increasing branch are stable while those on a decreasing
branch have an unstable dimension of 1.

Notice that all stationary solutions are also critical points of their associated
potential.Occasionally,criticalpointsofonestationarysolutionarealsostationary
solutions unto themselves.

Theseconsiderationsallowustoconstruct thephasediagramshowninFig.9A.
The parameter space has been divided into 11 regions based on the number of
type I and type II stationary solutions and the nature of their associated critical
points. For each region, one can construct a corresponding diagram shown in
Fig. 9B. In each diagram, the black circles denote stationary solutions, while gray
circles denote critical points that are not stationary solutions. Solid circles indicate
stable stationary solutions/critical points, while open circles indicate unstable
stationary solutions/critical points. The solid gray lines indicate heteroclinic orbits
in the fast dynamics, while the solid black curves depict the evolution of the
system over longer time scales.

Using these diagrams, we can then classify distinct qualitative behaviors.
Regions 1, 5, 6, and 11 are classified as no-spiking because they feature only one
stationary solution, and the functional associated with that stationary solution has
only one critical point. Regions 2, 4, 7, and 8 are classified as excitable because
they have exactly one stable stationary solution, and the potential associated with
this stationary solution has multiple stable critical points. Region 3 is classified
as oscillating because it features only one stationary solution, and this stationary
solution is unstable, and hence the system exhibits a limit cycle. Regions
9 and 10 are classified as bistable because they feature two stable stationary
solutions.

Notice that this phase diagram differs at small A∗ from the one shown in
Fig. 2H, because f̃ in the lumberjack-tree setting has an additional zero atA = 0.
In SI Appendix section 1, it is explained how the phase diagram in Fig. 9A is
mapped onto the one for population dynamics in Fig. 2H.

Data, Materials, and Software Availability. All data and code supporting
this article are available in Zenodo (DOI: 10.5281/zenodo.10426295) (62).
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