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ABSTRACT. Significance: Manual annotations are necessary for training supervised learning
algorithms for object detection and instance segmentation. These manual annota-
tions are difficult to acquire, noisy, and inconsistent across readers.

Aim: The goal of this work is to describe and demonstrate multireader generaliza-
tions of the Jaccard and Sørensen indices for object detection and instance
segmentation.

Approach: Themultireader Jaccard and Sørensen indices are described in terms of
“calls,” “objects,” and number of readers. These generalizations reduce to the equa-
tions defined by confusion matrix variables in the two-reader case. In a test set of
50 cell microscopy images, we use these generalizations to assess reader variability
and compare the performance of an object detection network (Yolov5) and an in-
stance segmentation algorithm (Cellpose2.0) with a group of five human readers
using the Mann–Whitney U-test with Bonferroni correction for multiplicity.

Results: The multireader generalizations were statistically different from the mean
of pairwise comparisons of readers (p < 0.0001). Further, these multireader gener-
alizations informed when a reader was performing differently than the group. Finally,
these generalizations show that Yolov5 and Cellpose2.0 performed similarly to the
pool of human readers. The lower bound of the one-sided 90% confidence interval
for the difference in the multireader Jaccard index between the pool of human
readers and the pool of human readers plus an algorithm were −0.019 and −0.016
for Yolov5 and Cellpose2.0, respectively.

Conclusions: Multireader generalizations of the Jaccard and Sørensen indices
provide metrics for characterizing the agreement of an arbitrary number of readers
on object detection and instance segmentation tasks.
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1 Introduction
The “ole” machine learning adage of “garbage in, garbage out” highlights the necessity of clean
and reliable training data with high-quality, consistent annotations. Manual annotation of data to
serve as the reference standard, or “ground truth,” is necessary for training supervised learning
algorithms to perform a variety of tasks including image-based tasks, such as image classifica-
tion, segmentation, object detection, and instance segmentation.1–3 Manual annotations of images
are often treated as the gold standard and are used as references in computing cost functions and
measuring algorithm performance. Deep convolutional neural networks (DCNNs) continue to
demonstrate high accuracy for several computer vision tasks, including object detection and in-
stance segmentation tasks.4–6 As many of these algorithms are fully supervised learning algo-
rithms, their performance directly depends on the quality and reliability of human-defined
ground truth. Ambiguities and inconsistencies in the ground-truth training data will result in
less accurate and less consistent performance by a DCNN.7,8

In biomedical image annotation, it is well established that manual annotations, which are
subjective, can be noisy and inconsistent.9,10 Radiologists and pathologists can have varying
opinions on image classification tasks, both compared with other experts (interreader variability)
and compared with themselves at a different time point or in different reading conditions (intra-
reader variability).11–14 Human readers, even those trained extensively in discerning slight abnor-
malities in medical images, are seriously challenged by object counting and object detection in
images.15,16 This also extends to instance segmentation, which is the generation of semantic seg-
mentations for each detected object. Because of this known variability and the inconsistency in
human readers defining ground truth in images, it is valuable to quantify the extent to which
readers agree on a specific task.10 This quantitative assessment can better inform researchers
on the quality of the annotated training data for training supervised learning algorithms and
provide a more realistic benchmark for algorithm comparison. For some computer vision
tasks, quantitative measures of multireader variance are well developed. Multireader multicase
(MRMC) receiver operating curve (ROC) analysis is designed to optimize the acquisition of
manual annotations from multiple readers for image classification tasks.17,18 To the best of our
knowledge, no equivalent methods exist for improving object level segmentations, in which the
noise in the image annotations is compounded by within-image variability in the number of
objects called and variations in each individual object mask. For many object detection tasks,
no absolute reference standard exists outside of human annotations, which are known to be noisy.
Because of this lack of a reference standard, MRMC analysis becomes intractable. Additionally,
true negative (TN) objects are undefined for object detection tasks, which prevents ROC analysis
from being a useful evaluation tool. Human-in-the-loop (HITL) training methods allow the
reader to work with an algorithm to quickly train object detection and instance segmentation
models.19,20 In HITL methods, a human reader manually corrects the output of an algorithm
to generate more training data for fine-tuning that same model. Such training schemes reduce
the time and resource load of generating training datasets. However, manual annotation of test
sets without computer assistance is still necessary to quantify the performance of HITL-trained
object detection models. As discussed, these manual annotations are an imperfect standard. Some
would argue that the performance of a human annotating with the aid of a computer is a better
reference standard than the human annotating alone, but unfortunately—with no perfect standard
to compare to—there is no quantitative solution to answer this philosophical disagreement.

Existing metrics for assessing reader variability in object detection tasks rely on pairwise
comparisons of readers.21 The most commonly used object detection metric, mean average pre-
cision, is the area under the precision–recall curve. Both precision and recall are calculated from
the confusion matrix variables of true positives (TPs), false positives (FPs), and false negatives
(FNs). Note that TNs are undefined for all object detection tasks, prohibiting the calculation of
specificity. Importantly, all of these confusion matrix variables are defined through pairwise
comparisons of a single reader compared with an established ground truth of two readers but
not for the multireader case.21 Free-response receiver operating characteristic analysis handles
object detection and localization tasks well but is not designed for the multireader case.22

The distribution of pairwise comparisons of readers paints an incomplete picture of the multi-
reader agreement across a dataset as the datapoints in a distribution of pairwise comparisons are
inherently nonindependent. Because of this lack of independence, comparing a nonhuman reader,
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i.e., a computer algorithm, with a collection of human readers becomes problematic within this
approach. One could average all pairwise comparisons per image, but the disagreement between
one pair of readers might not be accurately reflected. Additionally, defining the degree of
consensus across readers for object detection is a nontrivial task.23 The simultaneous truth and
performance level estimation algorithm24 generates consensus segmentations across multiple
readers to define ground truth. However, this algorithm acts on a binary mask and therefore
discards all object-level information when defining consensus. In cases in which objects are
spatially distinct and nonoverlapping, the consensus segmentations can easily be separated back
into discrete objects. However, in the case of cell detection and segmentation, cells can be packed
very tightly with spatially adjacent boundaries.25 Additionally, some readers might define two to
three objects within a single object called by another reader.

We present two metrics to assess the agreement of an arbitrary number of readers on object
detection and instance segmentation tasks. Each can be used to directly assess whether an object
detection algorithm or instance segmentation algorithm falls within the distribution of human
readers. We also discuss methods for defining reader consensus while maintaining object-level
information, as the calculation of the multireader generalizations that we discuss requires the
definition of discrete objects. We demonstrate the functionality of these metrics by evaluating
reader agreement across five human readers in the task of cell instance segmentation. We also
compare two DCNNs with the group of human readers.

2 Methods
Here we describe generalized forms of the Jaccard and Sørensen indices that can be applied
when evaluating agreement across an arbitrary number of readers. Specifically, we discuss these
metrics with respect to object detection and instance segmentation tasks.

2.1 Generalized Metrics for Object Detection and Instance Segmentation
The following sections define generalizations of the Jaccard and Sørensen indices, which can
account for more than simple pairwise comparisons of readers. The canonical forms of the
Jaccard and Sørensen indices [Eqs. (1) and (2)] are defined with confusion matrix variables
(TPs, FPs, TNs, and FNs).

EQ-TARGET;temp:intralink-;e001;117;367Jaccard index ¼ TP

TPþ FPþ FN
; (1)

EQ-TARGET;temp:intralink-;e002;117;321Sørensen index ¼ 2TP

2TPþ FPþ FN
: (2)

Note that these equations do not use the TN variable, as TNs are undefined in object detec-
tion tasks. Confusion matrix variables inherently require exactly two items to compare. In the
multireader generalizations of these metrics, we seek to compare an arbitrary number of readers,
so we define the terms “calls” and “agreements” to describe multireader agreement. The term
“calls” refers to the number of putative objects called across a given number of readers, and the
term “agreements” refers to the total number of objects called after calculating consensus across
all readers.

2.1.1 Defining agreement on a single object from multiple calls

Determining whether two or more readers agree in defining a single object requires a pixel-level
assessment of the consensus between readers for that object. Pixel-level metrics, including inter-
section over union (IOU) and the Dice-Sørensen coefficient (DSC), are used to help define
whether two overlapping segmentations are in fact defining the same object. The definition of
an agreement (or a TP object) requires the IOU or DSC calculated between two calls to be more
than some predefined threshold [Fig. 1(a)]. If the IOU or DSC calculated between two calls falls
below that threshold, those two calls are defined as two separate objects rather than one.

Here we would like to note that in terms of confusion matrix variables, the equations for
Jaccard index and IOU are equivalent, and Sørensen index and DSC are equivalent. To clearly
separate the discussion of pixel-level agreement and object agreement, we use IOU and DSC
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when referring to the pixel-level agreement used for defining agreement on a single object, and
we use the terms Jaccard and Sørensen indices when defining the agreement across multiple
objects in an image or dataset.

2.1.2 Multireader generalization of the Jaccard Index

The Jaccard index [Eq. (1)] is a measure of algorithm performance that relates the number of
correctly identified objects (TP) to the sum of the correctly identified objects, the erroneous
predictions, and the missed objects (TP + FP + FN). The Sørensen index is a similar metric,
but with TP more heavily weighted. In comparing two readers, the Jaccard index is equivalent
to a ratio of the number of objects that the two readers agree on to the number of agreed upon
objects plus the number of objects identified only by each reader [Fig. 1(b)]. The Sørensen index
[Eq. (2)] is a similar comparison, yet with agreements more heavily weighted. Note that, when
comparing two expert human readers, either reader can be treated as the reference standard;
however, FP and FN will flip depending on which reader is chosen. In both the Jaccard and
Sørensen indices, FP and FN can be interchanged without affecting the value of the metric.
Reader pairs are therefore commutable when evaluating these metrics.

Using this analogy of the number of agreements relative to the total number of calls, we
present the multireader generalization of the Jaccard index [Eq. (3)]. As mentioned earlier, the
definition of a TP object, also referred to here as an agreement, is dependent on the pixel-level
IOU threshold demonstrated in Fig. 1(a). The multireader Jaccard index uses the total number of
calls (C) across all readers (NR) and the total number of objects (O), which can vary in their level
of agreement across readers. Objects therefore have the attribute of being called by k readers,
ranging from 1 to the maximum number of calls (NC), where NC ¼ NR:

EQ-TARGET;temp:intralink-;e003;114;258multireader Jaccard index ðIOUÞ ¼
PNR

j¼1 Cj −
PNC

k¼1 OkðIOUÞ
ðNR − 1ÞPNC

k¼1 OkðIOUÞ
: (3)

In the two-reader case (NR ¼ 2), the total number of calls (
PNR

j¼1 Cj) is represented in
terms of confusion matrix variables as: 2TP + FP + FN. Similarly, the total number of objects

(
PNC

k¼1 OkðIOUÞ) is interpreted as: (TP + FP + FN). Using these confusion matrix representa-
tions, the multireader generalization simplifies to Eq. (1).

2.1.3 Multireader generalization of the Sørensen Index

The Sørensen index, which is also known as the F1 score, can also be applied to evaluate the
algorithm performance or reader agreement for object detection and instance segmentation
tasks. This metric more heavily weights TP—or agreements—in its calculation [Eq. (2)]. For
pairwise comparisons, the relationship between the Sørensen index and the Jaccard index is

Reader 1 only
Reader 2 only

Both

(a)

IOU < threshold 
no agreement

IOU > threshold 
agreement

Defining agreement of two calls using 
single-object IOU

Use single-object IOU to
define agreements (TP)

(b) Defining the rate of agreement across object calls

Reader 1 calls
Reader 2 calls

(TP) Agreements
(FN) Called by Reader 1 only 
(FP) Called by Reader 2 only 

Fig. 1 (a) A pixel-level IOU threshold can be used to define overlapping calls from two readers as
an agreement or TP. Overlapping pixels are highlighted in green. (b) A toy example of Jaccard and
Sørensen indices as defined by confusion matrix variables. In this analogy, reader 1 is defined as
the gold standard, and therefore objects called only by reader 1 are defined as FN, purple boxes.
Reader 2 is therefore analogous to an algorithm, and therefore objects called only by reader 2 are
defined as FP, yellow box. Objects that the two readers agree on are TP, green boxes.
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Sørensen = 2*Jaccard/(1 + Jaccard). More generally, for an arbitrary number of readers,
we state this as Sørensen = NR � Jaccard∕ðNR − 1þ JaccardÞ, where NR is the number of
readers performing a given task. Applying this relationship to Eq. (3), we define the multi-
reader Sørensen index as Eq. (4). Given the two-reader case with confusion matrix representa-
tions above, this generalized description simplifies to the Sørensen index defined in Eq. (2) for
any given IOU:

EQ-TARGET;temp:intralink-;e004;117;664multireader Sørensen index ðIOUÞ ¼
NR

�PNR
j¼1 Cj −

PNC
k¼1 OkðIOUÞ

�

ðNR − 1Þ2 PNC
k¼1 OkðIOUÞ þ

PNR
j¼1 Cj −

PNC
k¼1 OkðIOUÞ

:

(4)

2.1.4 Computing consensus across an arbitrary number of readers

Defining the number of objects and the degree to which calls from multiple readers agree on
an object is not a trivial task. First, an agreement must be determined by a threshold of some
pixel-level metric, such as IOU or DSC. A toy example for defining consensus is depicted in
Fig. 2. To define consensus, we first look at each pairwise comparison of readers. The number of
objects and the number of calls per object can be found with an agreement matrix [Figs. 2(b)–
2(d)]. This pairwise agreement matrix is an M × N matrix, where M is the number of calls from
reader A and N is the number of calls from reader B. For each pairwise comparison of calls,
the value of a given segmentation metric, such as IOU or DSC, is computed. From this matrix, we
reject all values less than our predetermined threshold by setting them equal to zero and perform
a version of nonmaximum suppression (NMS) (Fig. 3). NMS traditionally rejects overlapping
predictions of an object detection algorithm, except for the one with the highest prediction score,
therefore “suppressing” predictions for which the algorithm is less “confident.” Here we are
comparing readers and have no scores; each reader’s call has equal weight. Therefore, we use
a pixel-level overlap metric (IOU or DSC) to reject objects in cases in which multiple calls
from one reader intersect with a single call from another reader. Because some readers may call
multiple objects where another reader calls a single object (referred to as fragmenting), two calls
are only considered an agreement if their pixelwise IOU or DSC is the maximum in all axes of
the agreement matrix [Figs. 2(b)–2(d)]. Conceptually, this ensures that only the best match of
overlapping calls from reader A and reader B are defined as an agreement.

For an arbitrary number of readers, a separate agreement matrix is computed for all unique
comparisons of NR readers, which is NRðNR − 1Þ∕2 comparisons. After thresholding and NMS
across all agreement matrices, we create a match matrix, which index matches every object in
our pairwise agreement matrices to every other pairwise comparison of readers for that image.
This yields a matrix of NA agreements by NR readers, with each element in this matrix
corresponding to the index of the matched call from each reader [Fig. 2(e)]. If a reader did not
call an object where other readers did, the element for that reader at that object is left blank.
An image-level representation of this match matrix is depicted in Fig. 2(f). This representation
contains NR layers of X × Y matrices, where X and Y are the dimensions of the image in ques-
tion. Each layer k of this representation contains the objects called by k readers. If a single set
of ground-truth objects called by k readers is desired, this representation can be used to filter
the objects by how many readers called each to define a singular “ground truth” from these
segmentations.

2.2 Dataset Acquisition of Ground Truth from Multiple Readers
For this study, we used an existing dataset of fluorescence microscopy images of renal biopsies
from patients diagnosed with lupus nephritis. These data were previously obtained from the
University of Chicago Human Tissue Resource Center for a separate study.26 Briefly, biopsies
in this dataset were stained with several immunofluorescence markers and imaged on a Large
Format Caliber ID fluorescence confocal microscope at a magnification of 63× with a pixel size
of 0.221 μm. For this analysis, we extracted the DAPI (ds-DNA) channel from these multiplex
images to identify all nucleated cells [Fig. 4(a)].
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2.3 Annotations
To demonstrate the utility of the proposed generalized, multireader performance metrics, we
acquired annotations on our dataset from both human and computer readers. Five human readers
provided manual annotations, and Yolov5 and Cellpose2.0 were used to provide object detection
(bounding box) and instance segmentation annotations, respectively.

2.3.1 Human readers

We recruited and trained five readers to perform manual segmentations of cell nuclei in DAPI
images to assess reader agreement. Prior to this experiment, readers had minimal to no expe-
rience in cellular imaging and segmentation. All readers completed 15 to 20 h of training prior to
segmenting images for analysis. All images used for training data were independent of the data

Fig. 2 Defining consensus across multiple readers. (a) A toy example of an image segmented by
three separate readers: reader A (blue), reader B (orange), and reader C (green). Unique calls from
each reader are indicated on each object. (b) A pairwise comparison of readers A and B from (a).
The corresponding agreement matrix for these two readers is depicted below the graphic.
Numbers shaded in blue would be rejected from NMS, and numbers shaded in pink would be
rejected by filtering with an IOU or DSC threshold. (c) A comparison of readers A and C with the
corresponding agreement matrix. (d) A comparison of readers B and C with the corresponding
agreement matrix. Note that the agreement matrices in (b)–(d) are estimations based on the
graphic, not exact calculations. Unique objects in (b)–(d) are indicated with Roman numerals.
(e) The pairwise Jaccard and Sørensen indices are shown for (b)–(d) along with the mean pairwise
calculation and the multireader generalization. (f) The final match matrix associates each call from
each reader (RN ) with a final object (ObjM ). (g) The match matrix can be mapped to a multilayer
image representation of reader agreement, with each agreed upon object residing in the layer
corresponding to the number of readers who called it.
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used for reader comparisons. When manually segmenting cells, readers were limited to 3-h
sessions to minimize fatigue. All readers were provided with touchscreen tablets and styluses.
Readers segmented cells by outlining each individual cell in an image with the freehand tool in
ImageJ27 [Fig. 4(b)]. Readers segmented 50 images patches of 512 × 512 pixels, which were
sampled from whole-section images from five lupus nephritis patients by extracting 10 random
and unique areas from each sample. Readers independently segmented images “from scratch”
with no assistance from each other or from an algorithm.

2.3.2 Machine learning algorithms (DCNNs)

For a separate study, our group trained a Yolov528 to detect cell nuclei in triple-negative breast
cancer (TNBC) images. The network was trained on 512 × 512-pixel DAPI image tiles extracted
from fluorescence confocal images of TNBC biopsies. The training set included 100 image tiles
from three TNBC biopsies (∼33 image tiles per biopsy). The validation set included 12 images
from a fourth TNBC biopsy. Training was stopped when the performance on the validation set
stopped increasing using the early stopping function in Keras.28 The trained Yolov529 was
deployed on the 50-image lupus nephritis test dataset described above. Not only was this test
set from an independent set of patients, but these patient biopsies also originated from a different

Fig. 3 NMS helps to define agreement in cases in which a reader (reader 2, blue) fragments an
object called by another reader (reader 1, green). Only the fragment call from reader 2 is accepted
as agreeing with the call from reader 1. The second fragment is counted as only being called by
one reader, despite having a high overlap with the call from reader1. NMS ensures that all calls are
accounted for without counting one reader’s call as agreeing with multiple of another reader’s calls.
Note that, although we discuss reader 2 as “fragmenting” reader 1’s call, both readers are equally
correct. Reader 1 could also be considered to consolidate unique calls from reader 2.

Fig. 4 Representative image and manual segmentations. (a) Representative single-channel fluo-
rescence image of DAPI (cell nucleus marker) from the manually annotated dataset. (b) Image with
overlay of manual outlines from a single human reader. Scale bar ¼ 10 μm.
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tissue than the training data (breast versus kidney) and sampled a different pathology (TNBC
versus lupus nephritis). Note that Yolov5 outputs object bounding boxes rather than detailed
object outlines.

We also deployed Cellpose2.0,19 the state-of-the-art instance segmentation algorithm for
cellular images, on the test set. We used the built-in “nuclei” model from Cellpose2.0 with
no additional fine-tuning.

All computation was accomplished using our Radiomics Analysis Commons for Deep
Learning in Biomedical Discovery, on a S10 HPE Superdome Flex computational server, which
contains 256 Xeon Gold 6130 CPU cores, 3 TB of DDR4 ECC RAM memory, 24 TB of NVMe
SSD storage, and 16 Nvidia Tesla V100 32GB GPU accelerators.

2.4 Assessment of Agreement
Here, we describe our analyses for validating the multireader generalizations of the described
performance metrics to understand the degree of agreement among human readers and between a
group of human readers and two computer readers in performing object detection and instance
segmentation tasks.

2.4.1 Interreader agreement

Additionally, agreement was computed for each image by comparing readers in a pairwise fash-
ion using the equations in Fig. 1(a) and across all readers using the multireader generalizations of
the Jaccard and Sørensen indices. A putative cell was defined as an agreement by two readers if
the IOU between the cell segmentations was greater than a given threshold. Reader agreement
was compared across several IOU thresholds to ensure that performance metrics were trending
down as the agreement criteria became more stringent.

2.4.2 Intrareader agreement

To assess reader consistency, three readers were asked to resegment the DAPI image patches
1 to 3 months after they first completed manual annotations for the dataset. The level of agree-
ment of readers with themselves was evaluated using the pairwise Jaccard and Sørensen indices.
Note that, for two readers (in this case a person and their past self), the multireader generalized
metrics are equivalent to the pairwise metrics.

2.4.3 Reader quality

Individual readers were compared with the group of the other readers by evaluating the group
agreement without each reader. The multireader Jaccard index was compared between all readers
and each unique set of NR − 1 readers.

2.4.4 Human and computer agreement

The outputs of the Yolo5 and Cellpose2.0 were compared with the five human readers. In both
comparisons, we treated the algorithm as a sixth reader and compared its agreement with the
original group of five human readers. Performance of Yolov5 and Cellpose2.0 were evaluated
relative to the group of human readers using the multireader generalizations of the Jaccard and
Sørensen indices. The group of human readers was compared with the group of humans plus the
algorithm, and noninferiority testing was used to test whether the group agreement decreased
when adding the algorithm to the group. For evaluations involving Yolov5, bounding boxes were
computed from the manual annotations by extracting the minimum and maximum x and y coor-
dinates for each object identified by a reader.

Additionally, multiple sets of ground-truth annotations were established from the multi-
reader match matrices. The manual annotations from the five human readers were combined
to create five separate ground-truth sets based on how many readers agreed on each cell call.
In the first ground-truth set, a segmented object was included if a minimum of one human reader
called that object. In the second set, only segmented objects called by two or more readers
were included as ground-truth annotations in each image. Each set increased the stringency for
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a human-segmented object to be included until the fifth and final set, in which each object in the
ground truth was called by all five human readers. Cellpose2.0 was evaluated against each of
these ground-truth sets.

2.4.5 Statistical analysis and data visualization

The Mann–Whitney U-test30 with Bonferroni correction31 for multiplicity was used to evaluate
the differences in performance in terms of the means of the Jaccard and Sørensen indices for all
comparisons in the performance described above. All p-values are reported after correction
for multiplicity. For testing the differences between the mean pairwise metrics and the multi-
reader generalizations, p-values were corrected for three comparisons. When evaluating the
performance of each human reader relative to the group, p-values were corrected for fifteen
comparisons. Finally, when evaluating humans and computer algorithms relative to the group,
p-values were corrected for 18 comparisons. When comparing the mean pairwise metrics to
the multireader generalizations, we tested the alternative hypothesis that the sample means were
different. When evaluating reader quality and the algorithms relative to the group of human read-
ers, we tested the alternative hypothesis that the smaller group of readers had a higher sample
mean. Noninferiority of the two DCNNs relative to the group of human readers was tested by
calculating the lower bound of the 90% confidence interval of the difference in the multireader
Jaccard index. The multireader Jaccard index, a measure of agreement across a group, can mar-
ginally increase when adding a reader. However, this increase does not mean that the new reader
is better than the group, but that they are very similar to the group. If adding a new reader to the
group causes a decrease in the multireader Jaccard index, this means that the reader is dissimilar
to the original group. Therefore, noninferiority testing is appropriate for testing if the level of
agreement does not decrease when adding a reader. A Kruskal–Wallis test,32 the nonparametric
equivalent of ANOVA, was used to evaluate whether the performance of Cellpose2.0 varied with
the stringency at which ground truth was defined with regard to consensus across human readers.
Violin plots are used to visually compare the sample means while maintaining a visual display of
the data distribution within each group.

3 Results

3.1 Interreader Agreement: Pairwise and Multireader Metrics
All images in the DAPI dataset were segmented by the five human readers. These segmentations
were compared across readers in a pairwise fashion using the Jaccard and Sørensen indices and
using the multireader generalizations of these metrics discussed above (Table 1 and Fig. 5). This
resulted in each of the 50 images having 10 unique pairwise comparisons between readers. To
compare overall agreement across readers, we show the distributions of two metrics: the mean of
the unique pairwise comparisons per image and the multireader generalization calculated for
each image. Both the Jaccard index [Fig. 5(a)] and Sørensen index [Fig. 5(b)] were different
across all IOU thresholds when evaluating the mean pairwise comparison relative to the multi-
reader generalization (p < 0.05).

Table 1 Comparison of the mean of the unique pairwise comparisons across readers and the
multireader generalization for each image in the dataset. Each metric is reported across a range
of IOU thresholds, which are used to determine a prediction as a TP or an agreed-upon object.
The mean and 95% confidence interval of the mean are reported for each metric.

IOU threshold = 0.25 IOU threshold = 0.50 IOU threshold = 0.75

Jaccard
index

Sørensen
index

Jaccard
index

Sørensen
index

Jaccard
index

Sørensen
index

Mean pairwise
comparison

0.69
[0.68:0.72]

0.81
[0.79:0.82]

0.61
[0.59:0.63]

0.74
[0.72:0.75]

0.34
[0.32:0.35]

0.48
[0.47:0.50]

Multireader
generalization

0.55
[0.52:0.57]

0.60
[0.57:0.61]

0.46
[0.43:0.48]

0.51
[0.49:0.53]

0.27
[0.26:0.29]

0.32
[0.30:0.33]
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3.2 Intrareader Agreement
Table 2 lists the Jaccard and Sørensen indices for three human readers at three different IOU
thresholds. For this resegmentation task, agreement varied across readers, suggesting that some
readers might be more consistent than others. For Secs. 3.2–3.4, reader IDs (Table 2, column 1)
are consistent across all tables and figures.

3.3 Reader Quality
The mean Jaccard index for each pairwise comparison of human readers shows that reader 1
agreed with all other readers at a lower rate than any other reader [Fig. 6(a)]. When reader 1
was removed from our pool of readers, the agreement between readers significantly increased

Fig. 5 Violin plots of the Jaccard index (a) and Sørensen index (b) calculated as pairwise com-
parisons of readers and through the multireader generalization. Both metrics are compared across
a range of IOU thresholds. At each threshold, a significant difference was found between the mean
pairwise comparison and the multireader generalization. (* p < 0.05, Mann–Whitney U-test with
Bonferroni correction).

Table 2 Evaluation metrics for comparing the performance of human readers across resegment-
ing cells. All metrics were calculated for a single reader segmenting each image twice, with a mini-
mum of 4 weeks between segmentations. Reader IDs (column 1) are consistent for all downstream
analyses. The mean and 95% confidence interval of each metric are reported for IOU thresholds of
0.25, 0.5, and 0.75.

Reader
Jaccard index
(IOU ≥ 0.25)

Sørensen index
(IOU ≥ 0.25)

Jaccard index
(IOU ≥ 0.50)

Sørensen index
(IOU ≥ 0.50)

Jaccard index
(IOU ≥ 0.75)

Sørensen Index
(IOU ≥ 0.75)

1 0.59 [0.54:0.63] 0.73 [0.69:0.77] 0.49 [0.41:0.51] 0.61 [0.56:0.66] 0.25 [0.21:0.28] 0.38 [0.33:0.43]

3 0.81 [0.76:0.85] 0.88 [0.84:0.92] 0.78 [0.74:0.83] 0.87 [0.83:0.91] 0.58 [0.54:0.63] 0.72 [0.68:0.76]

5 0.85 [0.83:0.88] 0.92 [0.91:0.93] 0.81 [0.79:0.84] 0.89 [0.88:0.91] 0.57 [0.53:0.62] 0.72 [0.68:0.75]

Fig. 6 (a) Average Jaccard index across images for each pairwise combination of readers is
shown for an IOU threshold of agreement of 0.5. (b) Each unique group of four readers was com-
pared with the full group of five readers. Comparisons were performed at each IOU threshold.
When excluding reader 1 (R1) from the group, the multireader Jaccard index significantly
increased at every IOU threshold (p < 0.0001).
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[p < 0.0001, Fig. 6(b)], suggesting that reader 1 was performing out of distribution relative to
the other readers. When removing other readers from the pool, we failed to show a significant
difference in the multireader Jaccard index relative to the full group. Interestingly, reader 1 was
also the least consistent in the resegmentation task. This analysis demonstrates that the multi-
reader generalization of the Jaccard index is capable of identifying when a reader is significantly
different from a group of readers.

3.4 Human and Computer Agreement
In evaluating the algorithm performance, we first assessed whether Yolov5 performed similarly
to a group of human readers in the task of object detection. Here, we discuss a “humans only”
group and a “humans + Yolov5” group. For all proceeding analyses, this “humans + algorithm”
group includes five human readers that independently annotated images and a sixth reader (algo-
rithm) that also independently annotated the images. Yolov5 performs object detection, so all
comparisons were calculated on cell bounding boxes extracted from the manual segmentations
[Fig. 7(a)]. Bounding box IOU was used for defining agreement [Fig. 7(b)]. A cell was deter-
mined to be an agreement if the IOU of its bounding box with a bounding box from another

Fig. 7 Two DCNNs (Yolov5 and Cellpose2.0) are compared with human readers for DAPI detec-
tion. (a) For comparisons with Yolov5, manual segmentations from human readers were converted
to bounding boxes to compare the performance of human readers with Yolov5 in the task of calling
cells. (b) A representation of bounding box IOU is shown. A violin plot comparing the distribution of
the (c) multireader Jaccard index and (d) multireader Sørensen index for human readers only (left)
and for human readers plus Yolov5 (right). A violin plot comparing the distribution of (e) multireader
Jaccard index and (f) multireader Sørensen index for human readers only (left) and for human
readers plus Cellpose2.0 (right).
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reader was >0.25, 0.5, and 0.75. As expected, the degree of agreement decreased as the IOU
threshold increased [Figs. 7(c) and 7(d), Table 3]. The difference in means between the human
readers and the human readers plus Yolov5 failed to reach significance at any IOU threshold
(p > 0.05). The lower bounds of the 90% confidence interval for the difference in the multireader
Jaccard index between the humans only group and the humans + Yolov5 group were −0.026,
−0.019, and −0.014 for IOU thresholds of 0.25, 0.5, and 0.75, respectively, demonstrating
noninferiority at all tested IOU thresholds.

Although we compared agreement of bounding boxes for evaluating Yolov5 performance,
we used the cell segmentations (while maintaining discrete objects) to compute IOU when com-
paring with Cellpose2.0 predictions [Table 3, Figs. 7(e) and 7(f)]. We failed to find a statistically
significant difference between the group of human readers and the group of human readers plus
Cellpose2.0 (p > 0.05). The lower bounds of the 90% confidence intervals for the difference
in the multireader Jaccard index at the three tested IOU thresholds were −0.022, −0.016, and
−0.008. Therefore, Cellpose2.0 also cannot be shown to perform significantly worse than the
group of human readers at any IOU threshold.

Yolov5 and Cellpose2.0 were next evaluated against each human reader [Fig. 8(a)]. Similar
to the interreader studies with only human readers, reader 1 showed a lower agreement with each
of the models relative to other human readers. Treating Yolov5 and Cellpose2.0 as readers, each
reader was removed from the group, and the agreement across all readers was compared with the
group without each reader. For both cases, removing the algorithm from the group failed to show
an increase in agreement across readers [Fig. 8(b), data only shown for Cellpose2.0]. However,
removing reader 1 from the group did show an increase in agreement across readers, indicating
that Cellpose2.0 and Yolov5 agreed more with readers 2 to 5 than reader 1 agreed with either
the group of human readers or the human readers plus an algorithm.

Table 3 Mean and 95% confidence intervals of the multireader Jaccard andmultireader Sørensen
indices are reported for IOU thresholds 0.25, 0.5, and 0.75. Comparisons involving Yolov5 are
computed on the bounding box around (Bbox), and comparisons with Cellpose2.0 are computed
on the cell mask (seg). We failed to find significant differences between the five human readers and
the five human readers + an algorithm (p > 0.05).

Multireader Jaccard index Multireader Sørensen index

IOU threshold: 0.25

Human readers only (Bbox) 0.55 [0.52:0.57] 0.60 [0.57:0.62]

Human readers + Yolov5 (Bbox) 0.53 [0.50:0.55] 0.57 [0.54:0.59]

Human readers only (seg) 0.55 [0.52:0.57] 0.60 [0.57:0.62]

Human readers + Cellpose2.0 (seg) 0.51 [0.49:0.56] 0.57 [0.55:0.60]

IOU threshold: 0.50

Human readers only (Bbox) 0.46 [0.43:0.48] 0.51 [0.49:0.53]

Human readers + Yolov5 (Bbox) 0.44 [0.42:0.47] 0.48 [0.46:0.51]

Human readers only (seg) 0.46 [0.43:0.48] 0.51 [0.49:0.53]

Human readers + Cellpose2.0 (seg) 0.45 [0.42:0.47] 0.49 [0.46:0.51]

IOU threshold: 0.75

Human readers only (Bbox) 0.27 [0.26:0.29] 0.32 [0.30:0.33]

Human readers + Yolov5 (Bbox) 0.26 [0.25:0.28] 0.30 [0.28:0.31]

Human readers only (seg) 0.27 [0.26:0.29] 0.32 [0.30:0.33]

Human readers + Cellpose2.0 (seg) 0.27 [0.25:0.28] 0.30 [0.29:0.32]
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Finally, Cellpose2.0 was evaluated against five test sets, which were defined by varying the
level of agreement between human readers required for reader call to be included in the ground
truth (Fig. 9). As expected, the performance of Cellpose2.0 varied with the number of calls per
object required to define an object as ground truth (p < 0.0001). Cellpose2.0 demonstrated the
highest Jaccard index when compared with the test set, in which each ground-truth object was
identified by a minimum of three readers (in this case, a majority).

4 Discussion
Human readers are notoriously inconsistent when defining ground truth for object-level com-
puter vision tasks including object counting, object detection, and instance segmentation.15

Although cell detection, counting, and segmentation are subclinical tasks, acquiring accurate
quantification of cells can provide valuable insight for both biomedical discovery and clinical
decision making.33 However, this is not a task for human experts to perform in the clinic, so cell
counting is a rare case in which we seek to fully remove the human element from image analysis.
Currently, we still need manual annotations to verify the performance of cell detection and count-
ing algorithms. We know that there is a large variance across human readers in these tasks,34,35

Fig. 8 (a) Heatmap of the mean Jaccard index for each human reader compared with Yolov5 and
Cellpose2.0 at an IOU threshold of 0.5. (b) Each unique group of five readers was compared with
the full group of five human readers plus Cellpose2.0. Comparisons were performed at each IOU
threshold. When excluding reader 1 (R1) from the group, the multireader Jaccard index increased
at every IOU threshold relative to the full group of six readers (p < 0.0001).

Fig. 9 Cellpose2.0 evaluated against ground-truth sets selected by the number of manual anno-
tations associated with each agreement from the set of five readers. A Kruskal–Wallis test shows
that Cellpose2.0 performance varies when the stringency of the test set varies (p < 0.0001).
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so consensus across readers would be helpful to optimizing algorithm training and test sets.
However, it is nontrivial to quantify the agreement across multiple readers for such tasks.
The multireader generalizations of the Jaccard and Sørensen indices presented in this work pro-
vide a way to evaluate reader agreement on object-level tasks. Furthermore, these metrics provide
a singular, independent metric for defining reader agreement without averaging over pairwise
agreements between readers. The resulting agreement values from these multireader metrics are
significantly lower than pairwise means, but we believe that they better reflect the discrepancies
within and between readers for object-level computer vision tasks.

We have demonstrated that these multireader metrics are valuable for identifying readers
who perform differently from the consensus of other readers and for comparing the performance
of computer algorithms (DCNNs in our application) with noisy reader labels. Increases and
decreases in agreement can be measured when adding or removing readers (human or computer)
from the group. If adding or removing a reader increases the average fraction of readers that call
an object, these agreement metrics will increase. Similarly, if the mean fraction of readers that
call an object decreases, these metrics will also decrease. Therefore, these multireader general-
izations can help to determine whether adding a reader to the group—human or computer—will
affect agreement among the reader pool. Rejecting a reader as inconsistent might prove to be
controversial. In particular, if all readers are assumed to be equivalent, variability in annotations
might simply be reflective of task difficulty.

We have also delineated methods for defining object-level consensus across several readers,
allowing for rapid curating of ground truth based on how many readers called each object. We
confirmed that the stringency with which a test set is defined from multiple readers affects the
apparent algorithm performance as expected. It is important to note that if a singular set of ground
truth is desired, a thorough analysis of the agreement between readers should be performed prior
to selecting the number of calls that define a ground-truth object. Our analysis simply demon-
strates that if object-level annotations are collected from multiple readers, the stringency with
which you define your test set will affect the apparent performance of an algorithm. We prefer to
compare the algorithm with the group of readers directly using the multireader metrics to deter-
mine whether an algorithm’s performance is within the distribution of human readers. Regardless
of the method for curating manual annotations, the methods laid out in this work provide tools for
understanding and characterizing the variability on manual annotations in object-level tasks.

DCNNs trained for object detection (Yolov5) and instance segmentation (Cellpose2.0) were
compared with the group of human readers using multireader generalizations of the Jaccard and
Sørensen indices. We found that the models performed comparably to the pool of human readers.
The human readers in this study were novices in annotating cells in fluorescence microscopy
images. However, we seek to show the applicability of these performance metrics rather than
achieve an optimal ground-truth set. Here we evaluate algorithms on a single channel of fluo-
rescence image data. However, instance segmentation of cell nuclei, although challenging, is
among the easiest of tasks that require manual annotations in microscopy. Analyzing multiplex
fluorescence images requires the definition of multiple cell classes based on the differential
expression of the cells in various protein channels. Human readers’ performance is worse at
multiclass object detection and instance segmentation tasks, which inherently limits the training
of supervised algorithms for these tasks. However, being able to characterize the variability of
manual annotations more fully could help to better curate training data for these tasks.

Although these generalizations provide a tool for describing multireader agreement on
object detection and instance segmentation tasks, there are limitations to this work. We only
demonstrate the multireader metrics for a single class of objects, but the multireader general-
izations of the Jaccard and Sørensen indices can also be generalized to multiple classes of
objects. In the multireader, multiclass generalizations, agreements and calls would be summed
across classes prior to calculating the multireader Jaccard or Sørensen indices described above.
This ensures that class imbalance does not skew the metric. We have not yet performed experi-
ments to validate these multireader, multiclass metrics, partly because our reader pool is com-
prised of novice readers. In a preliminary study, agreement on multiclass instance segmentation
of cells was very low between these readers.34 To further test these metrics, we will either need to
train our current readers more extensively or recruit readers with more experience in reading
fluorescence microscopy images.
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5 Conclusions
We present multireader generalizations of the Jaccard and Sørensen indices to better characterize
the agreement between multiple readers in object detection and instance segmentation tasks.
Additionally, these metrics can compare the performance of a computer algorithm with noisy
reader labels. We demonstrate that these metrics can detect when a reader is performing out of
distribution relative to the rest of the reader pool. These multireader metrics provide a tool for
understanding the agreement of readers on object-level tasks.
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