

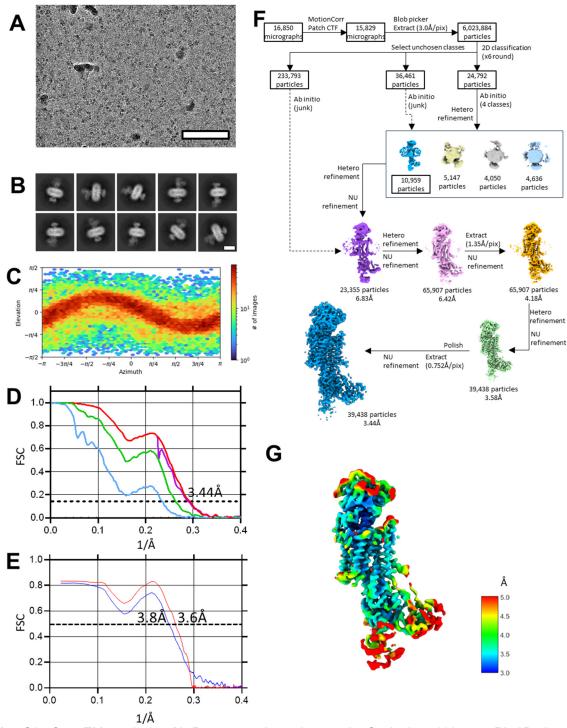
Supporting Information for

A Na pump with reduced stoichiometry is upregulated by brine shrimp in extreme salinities

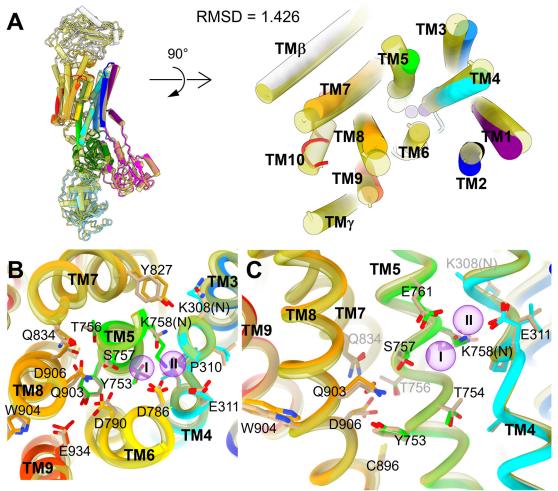
Pablo Artigas, Dylan J. Meyer, Victoria C. Young, Kerri Spontarelli, Jessica Eastman¹, Evan Strandquist, Huan Rui, Benoît Roux, Matthew A. Birk, Hanayo Nakanishi, Kazuhiro Abe, and Craig Gatto.

Paste corresponding author name here Email: pablo.artigas@ttuhsc.edu

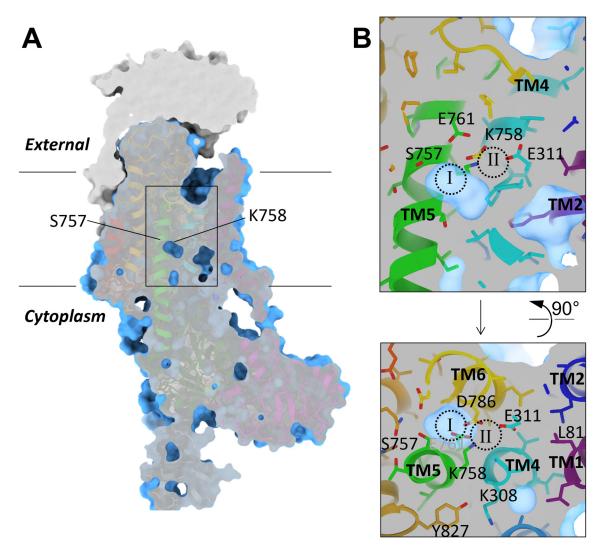
This PDF file includes:

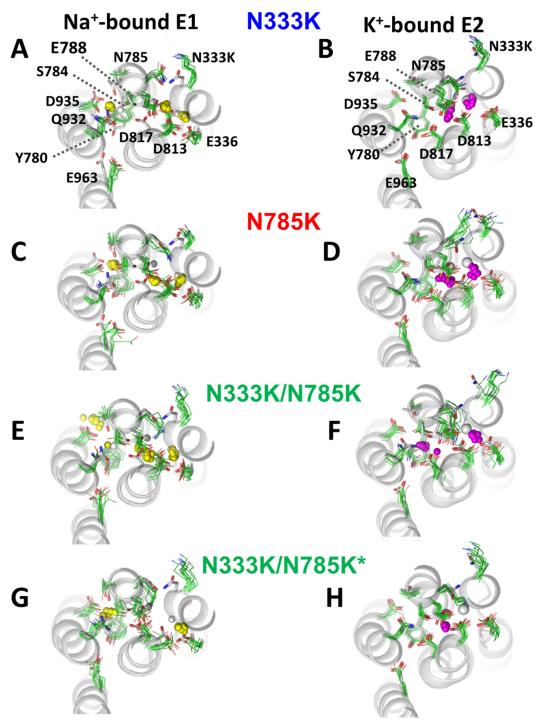

Figures S1 to S7 Tables S1 to S3

β(S11081)	MADKKP D E Q FVGSGPK E TKWQS F K G F V WNSETS Q FMGRT A G S WAKITIFY
β1	MADKKPDEQ FVGSGPKETKWQSFKGFV WNSETSQFMGRTAGS WAKITIFY
β2	MADKKP E E F FVGSGPK P TKWQS V K T F I WNSETS E FMGRT GVN WAKITIFY
	VIFYTLLAGFFAGMLMIFYQTLDFKIPKWQNKDSLIGANPGLGFRPMPPE
	VIFYTLLAGFFAGMLMIFYQTLDFKIPKWQNKDSLIGTNPGLGFRPMPPE VIFYTLLAGFFAGMLMIFYQTLDFKIPKWQNKDSLIGTNPGLGFRPMPPE
R <i>(</i> S11081)	AQVDSTLIQFKHGIKGDWQYWVHSLTEFLEPYETLTSSGQEFTNCDFDKP
β1	AQVDSTLIQFKHGIKGDWQYWVHSLTEFLEPYETLTSSGQEFTNCDFDKP
β2	AQVDSTLIQFKHGIKGDWQYWVHSLTEFLEPYETLTSSGQEFTNCDFDKP
β(S11081)	PQEGKACNFNVELLGDHCTKENNFGYELGKPCVLIKL \mathbf{T} - \mathbf{D} FGWRPEVYNS
β1	PQEGKACNFNVELLGDHCTKENNFGYELGKPCVLIKL NKI FGWRPEVYNS
β2	PQEGKACNFNVELLGDHCTKENNFGYELGKPCVLIKL NKI FGWRPEVYNS
	SAEVPEDMPADLKSYIKDIETGNKTHMNMVWLSCEGETANDKEKIGTITY
β1 β2	SAEVPEDMPADLKSYIKDIETGNKTHMNMVWLSCEGETANDKEKIGTITY SAEVPEDMPADLKSYIKDIETGNKTHMNMVWLSCEGETANDKEKIGTITY
β(S11081)	TPFRGFPAYYYPYLNVPGYLTPVVALQFGSLQNGQAVNVECKAWANNISR
β1	TPFRGFPAYYYPYLNVPGYLTPVVALQFGSLQNGQAVNVECKAWANNISR
β2	TPFRGFPAYYYPYLNVPGYLTPVVALQFGSLQNGQAVNVECKAWANNISR
β(S11081)	DRQRRLGSVHFEIRMD
β1	DRQRRLGSVHFEIRMD
β2	DRQRRLGSVHFEIRMD


Fig. S1. Sequence alignment of the two β subunits in the transcriptome (β 1 and β 2) with the previously reported sequence (S11081). β 1 coincides with S11081, except for three residues. β 1 and β 2 are splice variants that differ in their N-terminus.

$\alpha 1_{NN}$ $\alpha 2_{KK}$ $\alpha 3_{NN}$	$\alpha 1_{NN}$ $\alpha 2_{KK}$ $\alpha 3_{NN}$	$\alpha 1_{NN}$ $\alpha 2_{KK}$ $\alpha 3_{NN}$	$\alpha 1_{NN}$ $\alpha 2_{KK}$ $\alpha 3_{NN}$	$\alpha 1_{NN}$ $\alpha 2_{KK}$ $\alpha 3_{NN}$	$\alpha 1_{NN}$ $\alpha 2_{KK}$ $\alpha 3_{NN}$	$\alpha 1_{NN}$ $\alpha 2_{KK}$ $\alpha 3_{NN}$	$\alpha 1_{NN}$ $\alpha 2_{KK}$ $\alpha 3_{NN}$	$\alpha 1_{NN}$ $\alpha 2_{KK}$ $\alpha 3_{NN}$	$\alpha 1_{NN}$ $\alpha 2_{KK}$ $\alpha 3_{NN}$	$\alpha 1_{NN}$ $\alpha 2_{KK}$ $\alpha 3_{NN}$
α1 _{NN} (1001) FLIFVYDEARKFILRRNPGGWVEQETYY α2 _{KK} (971) LLILVYDECRKFLMRRNPGGFLERETYY α3 _{NN} (972) IFILVYDESRKLIMRRNPGGWVERETYY	(901) NDLTDSYGQEWTYDARKQLEYSCHTAYFVSIVIVQWADLIISKTRRNSVFQQGMRNNILNFALVFETCLAAFLSYTPGMDKGLRMYPLKINWWFPALPFS (871) NDLTDSYGQEWTWDARKQLEYTCHTAFFISIVIVQWTDLIICKTRRLSLFQQGMKNGTLNFALVFETCVAAFLSYTPGMDKGLRMYPLKIWWWFPALPFA (872) NDLEDSYGQEWTYDARKELEYTCHTAYFISIVVVQWTDLIICKTRRNSLFQQGMGNQPLKFGIFFETFVAAFLSYCPGTDKGLRMYPLKLSWWFPALPFA	(801) FDIPLPLGTVTILCIDLGTDMVPAISLAYEEAESDIMKRRPRNPVTDKLVNERLISLAYGQIGMIQASAGFFVYFVIMAECGFLPWDLFGLRKHWDSRAV (771) FDLPLAIGTVTILCIDLGTDVVPAISMAYEGPEADLMKRKPRDPVKEKLVNERLISMAYGQIGVMQAFGGFFTYFVIMGECGFLPNRLFGLRKWWESKAY (772) FDIPLPLGTVTILCIDLGTDLVPAISLAYEKPESDIMKRKPRSPITDKLVNERLISMAYGQIGFIQASAGFFTYFTIMAENGFLSGYLFGLRRAWDSRAI	(701)QQKLIIVEGCQRQGAIVAVTGDGVNDSPALKKADIGVAMGIAGSDVSKQAADMILLDDNFASIVTGVEEGRLIFDNLKKSIVYTLTS <mark>N</mark> IPEISPFLLFIL (671)QQKLIIVEGVQRQGEFVAVTGDGVNDSPALKKADIGVAMGIAGSDVSKQAADMILLDDNFASIVTGVEEGRLIFDNIKKSIAYTLTS <mark>K</mark> IPELSPFLMYIL (672)QQKLIIVEGCQRKGDIVAVTGDGVNDSPALKQADIGVAMGIIGSDVSKEAADMVLLDDNFASIVTGVEEGRLIFDNLKKSIAYTLTS <mark>N</mark> IPEILPFLMFIL	(601)RAAVPDAVAKCRSAGIKVIMVTGDHPITAKAIAKSVGIISEGNETVEDIAARLNIPVSEVNPRDAKAAVVHGGELRDITPDALDEILRHHPEIVFARTSP (571)RAAVPDAVSKCRSAGIKVIMVTGDHPITAKAIARQVGIISEGHETVDDIAARLNIPVSEVNPRSAQAAVIHGNDLKDMNSDQLDDILRHYREIVFARTSP (572)RAAVPDAVAKCRSAGIKVIMVTGDHPITAKAIAKSVGIISEVSETVEDIAARLNIPVSEVNPEFAKAAVIHGNDLRDYTPERLDYVLRHYSEIVFARTSP	(501)EDKSDGRYLLVMKGAPERILERCSTIFMNGKEIDMTEELKEAFNNAYMELGGLGERVLGFCDYLLPLDKYPHGFAFNADDANFPLTGLRFAGLMSMIDPP (473)EDKSGYFLVMKGAPERILERCSTILIDGTEILLDNHMKECFNNAYMELGGMGERVLGFCDFELPSDQYPRGYVFDADEPNFPISGLRFVGLMSMIDPP (472)EDRIDGRYHLVMKGAPERILDCCSTIYVNGEERPLDNEAKEAFDDVYMELGGLGERVIGFCDFYLPRDKYPRGYIFNPDDINFQLTGLRFVGLMSMIDPP	(401) TITEADTTEDQSGAQFDKSSAGWKALVKIAALCSRAEFKPNQSTTPILKREVTGDASEAAILKCVELTTGETEAIRKRNKKICEIPFNSANKFQVSIHEN 7. (373) KIVTADTTENQSGNQLYRGSKGFPELIRVASLCSRAEFKTEHAHLPVLKRDVNGDASEAAILKFAEMSTGSVMNIRSKQKKVSEIPFNSANKYQVSVHER 3. (372) SAVKADTTEDQSGVQFDRSSPGWRALVRIAALCSRAEFRPLQQDVPVLKREVIGDASEAAILKCVELCTSQTDAIRWRNRKICEIPFNSTNKFQISIHEN 4. (4. (4. (4. (4. (4. (4. (4. (4. (4.	(301) TGVAVFLGVTFFIIAFVLGYHWLDAVVFLIGIIVA <mark>N</mark> VPEGLLATVTVCLTLTAKRMASKNCLVKNLEAVETLGSTSTICSDKTGTLTQNRMTVAHMWFDG (273) TAMAVSLAAVFAVISFLYGYTWLEAAIFMIGIIVA <mark>K</mark> VPEGLLATVTVCLTLTAKRMAKKNCLVRNLEAVETLGSTSTICSDKTGTLTQNRMTVAHMWFDQ (272) TSVAVFLGITLFIIAFILGYHWVDAVVFLIGIIVA <mark>N</mark> VPEGLLATVTVCLTLTAKRMASKNCLVKNLEAVETLGSTSTICCDKTGTLTQNRMTVSHMWFDG	(201) GDRVPADLRVLEARSFKVDNSSLTGESEPQARSPEFTNDNPLETKNLAFFSTNAVEGTMRGIVIGIGDNTVMGRIAGLASGLDTGETPIAKEIAHFIHII . (173) GDRIPADIRITSCQSMKVDNSSLTGESEPQSRSTECTNDNPLETKNLAFFFTNTLEGTGRGIVINVGDDSVMGRIACLASSLDSGKTPIAREIEHFIHII : (172) GDRIPADVRITEARSFKVDNSSLTGESEPQPRGPEYTNENPLETRNLAFFSTNAVEGAMRGIVINIGDNTVMGRIAVLASGLETGVTPIAKEIDHFIRII	(101) FGGFALLLWTGAILCFLAYGIEASSGNEDMLKDNLYLGIVLATVVIVTGIFSYYQENKSSRIMDSFKNLVPQYALALREGQRVTLKAEELTMGDIVEVKF (74) FGGFQMLLWIGSILCFIAYTMEKYK-NPDVLGDNLYLGLALLFVVIMTGCFAYYQDHNASKIMDSFKNLMPQFAFVIRDGKKIQLKAEEVTVGDLVEVKF (73) FGGFSLLLWIGSILCFIAYYIEVST-AEVPLADHLYLGIVLASVVIVTGCFSYYQENKTSRIMESFRNLVPQYALVVREGHRLTIKAEEVAIGDVVECQS	(1) MDSYRVATTSTLADDNRRADGRVKMAKGKQKKGKDLNELKKELDIDFHKIPIEECYQRLGSNPETGLTNAQARSNIERDGPNCLTPPKTTPEWIKFCKNL . (1)


Fig. S2. Alignment of the three α subunit isoforms found in our transcriptome. α1_{NN} coincides with the previously reported CAA39972 except for its longer N-terminus (shown in bold font). α2_{KK} is almost identical to the previously described (P17326), except where indicated in bold. P17326 has a Pro instead of Leu at 504, and the sequence Leu831/M832/K833 (also in bold font) is substituted by P831. α3_{NN} has not been previously described. Both α1_{NN} and α3_{NN} are canonical NKAs. The asparagine residues of canonical α subunits that are lysine residues in α2_{KK} are highlighted.


Fig. S3. Cryo-EM analysis. **A)** Representative micrograph. Scale bar 100 nm. **B)** 2D-class averages. Scale bar 70 Å. **C)** Angular distribution plot of particles included in the 3D reconstruction. The number of views at each angular orientation is represented by the color (blue to red). **D)** Fourier Shell Correlation (FSC) plot used for resolution estimation (blue: no mask, green: loose, red: tight, purple: corrected). The dotted line indicates FSC = 0.143. **E)** Correlations between pdb model and EM maps (red: fullmap, blue: half map). The dotted line indicates FSC = 0.5. **F)** Data processing flow chart. See Methods for details. **G)** Unsharpened map colored by local resolution as calculated by cryoSPARC (scale is indicated in the figure).

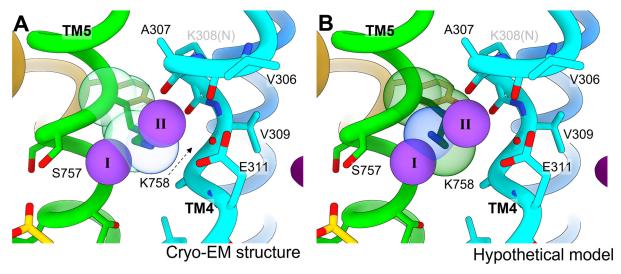

Fig. S4. Structural alignment of *Artemia*'s $\alpha 2_{KK}$ in E2-AlF₄ with the canonical pig $\alpha 1$ in E2(2K)-MgF₄. **A)** Overall view of the aligned structures from the membrane plane (*left*) and the transmembrane domain from the extracellular side, perpendicular to the membrane (*right*). **B, C)** Atomic detail of the ion-binding site region viewed perpendicular (**B**) or parallel (**C**) to the membrane. For clarity, TM6 and TM9 were removed in C. Of note, all the residues important for direct or indirect stabilization of Na⁺ bound to site III in E1 structures of canonical NKAs are conserved in $\alpha 2_{KK}$.

Fig. S5. A) Overall clipped membrane slice of *Artemia* $\alpha 2_{KK}$ viewed from the membrane plane. **B)** Close-up view at the position indicated by a black box in A, viewed from a plane approximately parallel to the membrane with extracellular side up (top), and from cytoplasmic side (bottom). Several key amino acids are indicated in the figure. Dotted circles (I, II) indicate K⁺-binding site I and II in the $(2K^+)E2-P$ state of the canonical pig $\alpha 1$ (2zxe).

Fig. S6. Representative snapshots from 100 ns-long MD simulations of the mutants introduced in the E1(3Na $^+$), or the E2(2K $^+$) structures, shown on the *left* and the *right*, respectively. **A)** and **B)** N333K, **C)** and **D)** N785K, **E** and **F)** N333K/N785K, **G)** N333K/N785K $^+$ with one Na $^+$ removed from site I, E1 systems starting with the Na $^+$ removed from site II were not stable. **H)** N333K/N785K $^+$ with one K $^+$ removed from site II in the initial conditions.

Fig. S7. A hypothetical model of Lys758 rotamer. **A**) Close-up side view (exoplasmic side-up) of the cation-binding site of *Artemia's* α 2_{KK} as modeled based on cryo-EM map. **B**) Model using a different rotamer exclusively for Lys758, allowing it to go into site I. Purple spheres represent K⁺ ions in the (2K⁺)E2-Pi state of the superimposed canonical NKA (2zxe). Transparent spheres show van der Waals volume of Lys758 side chain. The ε-amine and δ-carbon of Lys758 sterically clash with both K⁺ ions in the cryo-EM model in A. If K⁺ were to bind to site I (hypothesis 1 in the discussion), Lys746 side chain may be pushed toward the unwound part of TM4 (as noted with a dotted arrow in A) to closely interact with the main chain oxygen atoms of V306, A307 and V309 (sticks). If the K⁺ bound structure was closer to B, with a different Lys746 facing site I to bind K⁺ to site II (Hypothesis 2 in the discussion) the K⁺ in site II still clashes with the Lys758 ε-amine.

Table S1: Transcriptome assembly statistics.

Statistic	Metric
Total Trinity 'transcripts'	764788
Total Trinity 'genes'	580596
Contig N50 (nt)	719
Median contig length (nt)	327
Mean contig length (nt)	567.51
Total assembled bases	434025290
BUSCO score (metazoa_odb9)	C:97.3% [S:39.8%, D:57.5%], F:1.2%, M:1.5%, n:978

Table S2. Primer identification, sequence, and product size for target *Artemia* genes in quantitative PCR.

Target	Sequence (5'-3')	Product Size (bp)		
α1 _{NN} FWD	CGTATTGCTGGTCTCGCTTC	107		
α1 _{NN} RVS	ACACCAAGAAACACACGCAC	107		
α2 _{KK} FWD	AGGAGGCATGGGTGAAAGAG	180		
α2 _{KK} RVS	TTCGAAACGGCATCAGGAAC			
α3 _{NN} FWD	TGTTGAAGGTGCTATGCGTG	160		
α3 _{NN} RVS	TTCCCAAGAACACAGCAACG	163		
NKA β FWD	ACGATTTCAAGTCTGCTGGC	152		
NKA β RVS	CGGAGATCATTGCACCAAGG	132		
NKA ß1 FWD	CTACCAGCTGTCCTTCCCAT	222		
NKA ß1 REV	AGCCCAGTTTCACAGTCAGT	222		
NKA ß2 FWD	TCTTGGCCCAGTTAACACCT	212		
NKA ß2 REV	TCACTTGTCTTTCAGCTGTTGA	212		
EF1α FWD	TCACCAAAGCCGCAGAAAAG	118		
EF1α RVS	CGAAAGTGCCGTAGTAACCG			
α-Tubulin FWD	CGAATTTGCCGTCTACCCAG	116		
α-Tubulin RVS	TGTCGACCATAAAAGCGCAG			

 Table S3 Statistics of the structural analysis.

Conformation	E2-Pi
PDB ID	8K1L
EMDB	EMD-36794
Data collection	
Magnification	60,000
Voltage (kV)	300
Electron exposure (e ⁻ /Å ²)	60
Defocus range (µm)	0.8-1.8
Pixel size (Å/pix)	0.752
Symmetry imposed	C1
Movies (no.)	16,850
Initial particles (no.)	6,023,884
Final particles (no.)	39,483
Box size (extract/final, pix)	320/450
Map resolution (Å)	3.44
Map sharpening B-factor (Å ²)	-92.7
FSC threshold	0.143
Refinement	
Initial model used (PDB)	2zxe
Model resolution (Å)	3.6
FSC threshold	0.5
Model composition	
Non-hydrogen	9,895
Protein residues	1,255
Waters	0
Ligands	AIF
B-factor (mean value, Å ²)	
Protein	110.72
Ligand	94.35
Water	-
R.m.s. deviations	
Bond length (Å)	0.004
Bond angles (°)	0.734
Validation	
MolProbity score	2.18
Clashscore	13.29
Poor rotamers (%)	0.37