PNAS www.pnas.org

Supplementary Information for

DNA methylation signatures in airway cells from adult children of asthmatic mothers reflect subtypes of severe asthma

Kevin M. Magnaye, Selene M. Clay, Jessie Nicodemus-Johnson, Katherine A. Naughton, Janel Huffman, Matthew C. Altman, Daniel J. Jackson, James E. Gern, Douglas K. Hogarth, Edward T. Naureckas, Steven R. White, Carole Ober.

Corresponding authors: Carole Ober and Kevin Magnaye
Email: c-ober@genetics.uchicago.edu and kevin.magnaye@ucsf.edu

This PDF file includes:

Supplementary Methods
Figures S1 to S11
Tables S1 to S8
Supplementary References

Supplementary Methods

Inclusion and Exclusion Criteria

Subjects with asthma met the following criteria: (1) a physician's diagnosis of asthma; (2) either (a) a fall in baseline $F E V_{1} \geq 20 \%$ at $\leq 25 \mathrm{mg} / \mathrm{ml}$ methacholine in subjects whose FEV_{1} predicted was $\geq 70 \%$ or (b) a $\geq 15 \%$ increase in baseline FEV_{1} after inhalation of a bronchodilator (albuterol) or over time with treatment in subjects whose FEV_{1} predicted was $<70 \%$; (3) at least two symptoms (cough, wheeze, and dyspnea); (4) fewer than three pack years of cigarette exposure; and (5) no conflicting pulmonary diagnoses. Controls had no current or previous diagnosis of asthma, normal spirometry, and no evidence of bronchial hyperresponsiveness by methacholine challenge tests. For both cases and controls, exclusion criteria included: (1) a smoking history of ≥ 10 pack years; (2) born premature (≥ 37 weeks gestation); (3) a history of conflicting pulmonary diagnosis, such as chronic obstructive pulmonary disease, allergic bronchopulmonary aspergillosis, cystic fibrosis, or Churg-Strauss syndrome; or (4) any medical contraindication to bronchoscopy.

Genotyping and QC

SNPs were genotyped using the Illumina Omni2.5-8v1A, Omni1MDuo, or HumanCore+Exome arrays. SNPs on each array were excluded with HWE P<0.0001 within each ethnic group (European American, African American), MAF < 0.05, SNP call rate < 0.95, and subject call rates <0.95. Ancestry principal component analysis (PCA) was performed in R (prcomp function) using the 676 ancestry informative markers (1) that were available in our sample and overlapped with three representative populations from the HapMap release 3 (YRI, Yoruba in Ibadan, Nigeria; CEU, Utah residents with Northern and Western European ancestry; CHB, Han Chinese in Beijing, China).

RNA extraction, sequencing, and QC

RNAs were extracted from bronchial epithelial epithelial cells and purified using the QIAGEN AllPrep DNA/RNA/miRNA Universal Kit (Hilden, Germany), following manufacterer's instructions. Quality and quantity assessment of RNA were measured at the University of Chicago Functional Genomics Core using an Agilent RNA 6000 Pico assay and the Agilent 2100 Bioanalyzer. cDNA libraries were constructed using the Illumina TruSeq RNA Library Prep Kit v2. RNA sequencing was performed at the University of Chicago Genomics Core on either the Illumina HiSeq 2500 or 4000 platforms.

For the RNA-seq data, potential sample contamination and sample swaps were assessed using VerifyBamID (2). No cross-contamination was detected. Two sample swaps between individuals were identified and corrected. Quality control checks were performed using FastQC (3). RNA sequences were then aligned and annotated to known RNA sequences using Spliced Transcripts Alignment to a Reference using STAR (4). Genes with low count data (<1 CPM in at least 25% of the sample) and those on the X, Y, and mitochondrial chromosomes were removed. Samples containing >8M mapped RNA reads were kept, retaining 124 subjects for downstream analyses.

Raw counts were normalized using the trimmed mean of M-values (TMM) method (5). Mean-variance trend was adjusted using variance modeling in voom (6)). Technical sources of variation were identified using PCA for the RNA expression profiles. All potential confounders are described in the Methods section of the main paper.

Sample Composition and 'Omics

- 88 adults with asthma
- 56 without an asthmatic mother
(NMA)
- 32 with an asthmatic mother (MA) - 42 adult controls without asthma
- Collect cryopreserved epithelial cells from bronchial brushings
- Thaw and purify DNA and RNA
- Measure global DNA methylation and gene expression

Analytical Pipeline

Figure S1. Overview of study design.

Figure S2. Flow chart of sample selection. Analyses included the 130 subjects shown in the shaded box, as described in Table 1.

Figure S3. Scatterplot of beta coefficients for the 2,326 CpGs that were differentially methylated in all asthma cases compared to controls (shared DMCs). The beta coefficients are plotted in the NMA cases (x-axis) and MA cases (y-axis). The 2,147 (92.30\%) DMCs with larger effects in MA cases compared to NMA cases are shown as blue points; the 179 DMCs (33.15%) with larger effects in NMA cases are shown as orange points. Paired signed-rank test; $\mathrm{P}<2.2 \times 10^{-16}$.

Cluster Dendrogram

Figure S4. Cluster dendrogram of 69 non-maternal asthma-associated differentially methylated CpGs (NMA-DMCs). Of the 69 NMA-DMCs, 66 (95.65%) formed two co-methylation modules (green and orange). After merging closely related modules using the MergeCloseModules function, as implemented in WGCNA (7), the two co-methylation modules remained distinct (31 and 35 CpGs in each module). The average pairwise Spearman correlation for the CpGs within the orange and green modules was $0.28,0.35$, respectively. There were $3(4.35 \%)$ remaining CpGs assigned to the gray module. The average pairwise Spearman correlation of the three remaining CpGs was 0.50 . We only considered modules that contained at least 15 CpGs in our analyses (see Materials and Methods).

Cluster Dendrogram

Figure S5. Cluster dendrogram of 554 maternal asthma-associated differentially methylated CpGs (MA-DMCs). Of the 554 MA-DMCs, 203 (36.64\%) formed seven co-methylation modules (black, turquoise, green, blue, brown, red, and yellow). After merging closely related modules using the MergeCloseModules function, as implemented in WGCNA (7), five co-methylation modules remained (black, turquoise, blue, red, and yellow; 15 to 74 CpGs in each module). The average pairwise Spearman correlation for the CpGs within the black, turquoise, blue, red, and yellow modules was $0.61,0.57,0.52,0.60$, and 0.56 , respectively. There were 351 (63.40%) uncorrelated CpGs assigned to the gray module (average pairwise Spearman correlation = 0.04). We only considered the five correlated modules in our analysis (see Materials and Methods).

Figure S6. Distribution of NMA-DMCs in each co-methylation module across chromosomes and functional annotations. The y-axes show the $-\log _{10}(p$-values) corresponding to methylation differences between NMA cases and non-asthma controls. Blue horizontal lines show the q value threshold (FDR 0.10). Orange (upper) and green (lower) points are the CpGs assigned to the orange or green modules, respectively. The pie charts on the right show the distribution of the module-specific NMA-DMCs by functional annotations.

Figure S7. Distribution of MA-DMCs in each co-methylation module across chromosomes and functional annotations. The y-axes show the - $\log _{10}(\mathrm{p}$-values) corresponding to methylation differences between MA cases and non-asthma controls. Blue horizontal lines show the q value threshold (FDR 0.10). Purple (upper left), blue (upper right), red (middle left), turquoise (middle right) and yellow (lower left) points are the CpGs assigned to the black, blue, red, turquoise, and yellow modules, respectively. The pie charts show the distribution of the module-specific MA-DMCs by functional annotations.

Figure S8. No difference in median and covariate-adjusted gene expression of the 231 genes of the black module and the 675 genes of the yellow module between NMA and MA cases. See list of genes in Table S4.

Figure S9. Selection of hub DMCs for each module (module membership >0.80). The number of hub DMCs of the total DMCs are shown below each module. For each hub DMC, detailed functional information is in Table S6.

Figure S10. QQ plots before and after controlling for genomic inflation factors (lambda) in each of the three DNA methylation analyses.

Figure S11. Selection of soft thresholding power for the NMA (left) and MA-focused (right) WGCNA analyses.

Table S1. Characteristics of 130 subjects at the time of bronchoscopy by risk group. Severity was defined by STEP classification (8) of mild, moderate and severe asthma. MA, Maternal Asthma; Af Am, African American; Eur Am, European American; ICS, Inhaled Corticosteroid; OCS, Oral Corticosteroid; FVC, Forced Vital Capacity. Pairwise comparisons were made between controls, asthma cases without an asthmatic mother (Case NMA) and asthma cases with an asthmatic mother (Case MA). Continuous variables were tested with a Wilcoxon rank-sum test and categorical variables were tested using a Fisher's Exact Test. ${ }^{\text {A }} 52$ Case NMA subjects and 30 Case MA subjects had FeNO measurements. ${ }^{B} 41$ controls and 55 Case NMA had BAL eosinophil measurements. 41 controls and 55 Case NMA subjects had BAL neutrophil measurements. ${ }^{\circ} 41$ controls had blood eosinophil measurements. Significant pvalues after Bonferroni-correcting for 15 tests (variables; $p<3.33 \times 10^{-3}$) are bolded; ns, not significant ($p>0.05$).

	Maternal Asthma Risk Groups			Comparisons		
	Control $(\mathrm{N}=42)$	$\begin{gathered} \text { Case NMA } \\ (\mathrm{N}=56) \\ \hline \end{gathered}$	$\begin{gathered} \text { Case MA } \\ (\mathrm{N}=32) \end{gathered}$	Control vs. Case NMA	Control vs. Case MA	Case NMA vs. Case MA
Covariates						
Age (mean yr \pm SD)	37.45 ± 11.75	41.41 ± 12.24	37.56 ± 13.39	ns	ns	ns
Gender (\% female)	62	79	66	ns	ns	ns
Ethnicity (\%) (Af Am/Eur Am/ Other)	64/29/7	55/45/0	66/34/0	2.0×10^{-3}	0.02	ns
\% smoker at bronchoscopy	17	4	6	0.04	ns	ns
Clinical Measures						
ICS use (\%)	-	75	75	-	-	ns
OCS use (\%)	-	45	25	-	-	ns
STEP Category (\% mild/\% moderate/\% severe)	-	22/23/55	28/25/47	${ }^{-}$	${ }^{-}$	ns
Mean FEV ${ }_{1}$ \% Predicted (\pm SD)	95.36 ± 11.63	75.45 ± 19.73	70.41 ± 18.15	6.6×10^{-8}	9.7×10^{-8}	ns
Mean FEV $1 / \mathrm{FVC}$ (\pm SD)	0.82 ± 0.05	0.73 ± 0.10	0.83 ± 0.48	9.3×10^{-6}	2.7×10^{-5}	ns
Median total serum IgE (IU/mL) (lower, upper quartile)	$\begin{gathered} 56.50 \\ (22.00,169.00) \end{gathered}$	$\begin{gathered} 117.50 \\ (22.00,305.25) \end{gathered}$	$\begin{gathered} 156.50 \\ (70.25,626.75) \end{gathered}$	ns	6.3×10^{-3}	ns
Median FeNO (ppb) (lower, upper quartile) ${ }^{\text {A }}$	$\begin{gathered} 14.00 \\ (10.50,17.75) \\ \hline \end{gathered}$	$\begin{gathered} 23.50 \\ (13.00,45.75) \\ \hline \end{gathered}$	$\begin{gathered} 27.00 \\ (13.25,54.75) \\ \hline \end{gathered}$	2.5×10^{-3}	2.9×10^{-3}	ns
Median BAL eosinophilia (\%) (lower, upper quartile) ${ }^{\mathrm{B}}$	$\begin{gathered} 0.0 \\ (0.0,0.4) \\ \hline \end{gathered}$	$\begin{gathered} 2.9 \\ (1.5,5.6) \end{gathered}$	$\begin{gathered} 3.6 \\ (1.5,7.1) \\ \hline \end{gathered}$	7.0×10^{-13}	5.2×10^{-11}	ns
Median BAL neutrophilia (\%) (lower, upper quartile) ${ }^{\text {C }}$	$\begin{gathered} 4.9 \\ (3.0,5.9) \\ \hline \end{gathered}$	$\begin{gathered} 5.2 \\ (4.2,6.8) \\ \hline \end{gathered}$	$\begin{gathered} 3.5 \\ (2.2,6.4) \\ \hline \end{gathered}$	ns	ns	0.04
Median blood eosinophilia (cells/ $\mu \mathrm{l}$) (lower, upper quartile) ${ }^{\text {D }}$	$\begin{gathered} 70 \\ (100,170) \end{gathered}$	$\begin{gathered} 170 \\ (70,283) \end{gathered}$	$\begin{gathered} 225 \\ (108,323) \end{gathered}$	ns	8.4×10^{-4}	ns
Mean Body Mass Index (\pm SD)	28.52 ± 5.71	34.64 ± 8.83	33.68 ± 10.48	4.5×10^{-4}	0.04	ns

Table S2. Genes that were uniquely correlated (FDR < 0.10) with the two NMA-associated and five MA-associated co-methylation module eigenvectors.

Module (\# of genes)	Unique genes
Orange ($\mathrm{N}=115$)	GRIK2, WNT16, C10orf143, SERPINE2, TSHZ3, RTEL1, MARCHF4, RPS6KA5, NAB2, RGS1, HDC, RETREG1, SPECC1L, GRASP, SHC2, NOB1, PIP4K2B, ZNF329, GSR, ZNF740, HS3ST1, PMP22, ZMAT4, ERLIN1, TMEM79, SOX30, ST8SIA4, WSB2, RASAL2, E2F7, TCP11L2, BCO2, H3C8, TAB2, NOS2, MCAM, IFRD2, WDR61, POLD3, ARMC10, SMAP1, ING5, KNOP1, MYO3A, DLX4, STK40, MGA, ALG10B, PAQR3, WDR82, ZNF555, DPH2, PTPRJ, CDC16, SERPINF2, NBL1, HDHD5, KRT19, ABCA1, ARL13B, TMEM52, CPEB4, DHX9, PLIN5, OAZ2, KCNE4, GALK1, BCAS1, LAMC1, PRXL2B, NDUFA4L2, ATP8B2, RALGAPA1, ZNF620, AATF, PLD6, POSTN, ZNF846, TTLL6, STOX2, VASN, C1orf74, PLA1A, NFU1, GTF3C4, FAM184A, ZNF613, ZNF766, BAHCC1, SLC2A8, ITGA6, MTHFSD, GTSE1, MTNR1A, NBPF10, FBL, OTUD4, UBXN2A, ZNF155, TJP1, C14orf93, C15orf40, WIPF2, ZDHHC16, GTF2IRD1, DTL, FEN1, JCHAIN, ATP6V0D1, MYCL, ELL3, RAB33B, IQGAP1, ELOVL5, HHLA2
Green ($\mathrm{N}=110$)	CAPN13, MYLIP, LRRC17, KRT10, RAPGEFL1, RNASEL, CTSV, NRCAM, SOX21, ADCY2, SF3B3, CANX, TNRC6C, BCAT1, SNX25, CXXC4, PPIF, COL17A1, TMEM243, EML1, C6orf141, NDUFAF6, NAA60, MED29, CHKB, SYT7, DHTKD1, ARHGEF37, SNRNP200, CACNG8, TBCD, TXNIP, ZBTB46, DENND2C, H2BC11, IP6K3, MFSD6, GLG1, THBS1, LSM2, DPF2, ZBTB5, ZNF117, ITFG1, SNX9, AGPAT5, RNF43, PCDHB14, PHF2, TP53BP1, RPL18A, HNRNPAB, TSTD2, CSRP2, MSMB, LAMA4, WDR4, TFCP2, ZNF280B, OCLN, OLFML1, MEX3D, PROM1, SPON2, CPM, LMLN, TMEM141, PPP1R13L, FHL2, TRNP1, TMEM64, NEO1, SEMA4F, LRMDA, DCAF5, THNSL2, TXN, TMEM116, COX7A2, TFAP4, HSPB7, ETFB, NR4A1, AGPS, ARHGAP20, HSF2BP, SLC44A2, SORCS2, TMPPE, SARS2, ARHGEF4, RGCC, SMO, SMCO4, SDR39U1, UQCRFS1, APBA1, OSBP, CHCHD10, GRHL2, SLC6A16, EMC1, ZNF345, CEACAM19, CAVIN2, FIGN, BCAR3, C1orf53, ATG4B, DHRS1
Black ($\mathrm{N}=794$)	PSMG3, NAA30, FBXL13, SLC4A11, C12orf57, GSS, U2AF1L4, PARD6B, STAP2, SLC35E3, YIPF4, SGSM3, DPY19L4, GPN3, TMEM128, CPEB2, IFITM3, SPIN1, FAM237B, PHIP, THOC6, BCKDHB, AEBP2, LRRC57, N4BP2, CCDC126, WDR17, TFAM, ZYG11B, TGOLN2, SRSF8, CRKL, RIN1, AGAP2, DPH7, HSD17B12, SEC22C, PAXX, ALKBH8, KIAA0825, BORCS7, WWTR1, ZAP70, HACE1, ITGAV, CREBRF, SPAST, METTL15, ZMYND19, ZC3H12A, ZMIZ2, RO60, EXOC6B, PPP1R12C, PLPBP, BMPR1B, AIMP2, GET1, ZBTB41, NRXN3, NBEAL2, MAD2L2, ZNF529, SEPTIN1, PGLS, SLC35F5, C9orf64, NELL2, AKAP10, GYS1, HEXD, HOXC4, CORO1A, TRMT5, SCAMP1, SMAD4, SLC25A28, CXXC1, ANKRD26, SCRIB, PSMD13, FAM189B, SIT1, PI4K2B, SAMD10, TMEM134, MBD3, PLEKHF1, EID1, ADH5, CEP97, FBXL17, OGFR, SDR42E1, ZNF221, WRN, CYP20A1, ZFAND2B, RNF111,

RBBP5, PDLIM5, CD3E, CARF, PRPF31, DEGS1, EIF2B4, ZFR, C1orf226, TRIB2, CEP44, MICALL2, ZFAND4, C5orf51, HDAC10, MARCHF6, HYOU1, TMEM214, CYTH2, DPH6, CSNK1G2, TCEA1,
ZNF264, PEF1, SLC25A27, SH3BP1, ZNF776, FAM126B, ZNF721, SKP2, SEC24B, ETFBKMT, SBF1, SPTY2D1, LMBRD2, UHRF1BP1L, SPOCK2, MFSD4B, SMIM14, BTN3A3, UBALD1, LNX2, AP2A2,
RB1CC1, CST3, AATK, TMEM41B, DCP1A, TMED8, FNIP1, CD3D, ARID4B, TRIM2, CALR, OSBPL11, FAM227B, DAAM1, NFAT5, DDX11, AP1B1, ARFRP1, EIF3B, TRIM33, OTUD7B, WDR11, PIH1D1, UBQLN4, GPR85, RAB21, IMPAD1, PUS10, CARM1, SQOR, DPP8, ABTB2, EVI5, RFX3, NPRL2, CLPP, FBXL3, S100A2, UGDH, CXCR6, RAB34, MPP3, SNRNP48, SMAD2, NAA16, E4F1, BCKDK, CEP112, AUP1, GDPGP1, C1D, CISD3, TUBA4A, DDX56, TMEM51, ZNF383, NMRAL1, NEK7, HGH1, MTMR10, SMAD9, AGGF1, PRR22, B3GNT10, LYRM7, CLCN3, KIFC1, ZNF843, HARS2, FXYD3, ARHGAP5,
BTBD6, GCC2, METTL1, PRKCI, MOGS, PSMB10, PCBD2, ZNF579, GPALPP1, FBXL4, GP9, TAF1C,
ALG3, CHMP3, PTPN4, CDC40, EXOC8, MIB2, FZR1, BEND7, ZFYVE16, WDR41, MANEA, ZDHHC20, OLFML3, LRRC29, RPRD1B, SIAH1, UTP23, CD8A, SEPTIN9, MYO9B, NR2F6, PELP1, JMY, PTGR2, DENND6A, PSMD4, AP1M1, TMEM184C, ZNF619, CTDSPL2, ATF2, TBCB, ARMH3, TSC2, DIXDC1, OSBPL8, ANKRD36, WDR7, TLCD4, RCOR3, CSTB, TBX21, TTC33, SIRT6, PAFAH1B3, PLEKHA3,
BTF3L4, ZNF654, NDOR1, FRA10AC1, JADE1, MICAL3, ZNF708, ROPN1B, ADRM1, ATF7IP, PRRX2, USP8, DTWD2, PCYT2, CTBP1, TSC22D4, SATB1, JAKMIP1, MTAP, XRCC3, SPATA13, ZNF277, RFC3, CEBPZOS, ELF1, ATP2C1, LIMD2, PGGT1B, CLUH, DNAJC30, PCNP, GFI1, CDC42EP1,
RHOG, PDLIM1, ZNF566, CERT1, MED13, PRDM5, ARIH1, RBM48, ULK1, NOVA1, ZNF780B, CCDC110, CACNA1A, ARL2, MICU2, AGL, TMEM30A, NUP43, DBR1, CCL5, ORMDL2, ZNF720, SGMS2, NARS2, MINDY1, TIMM50, CHD1, DNAJB4, GIMAP1, TPP2, CNIH3, ABHD13, NRBP1,
TMEM106B, ANO5, UQCRC1, CAMTA1, RC3H1, FNDC3A, ZBTB26, MARK2, DNAJC14, EDF1, CCSAP, SAMD13, PIK3CA, EXOSC4, MED17, CD247, RASIP1, KLHL20, C19orf73, GIMAP7, CAT, PLXNB1, KDM7A, EVA1C, ANKAR, TIMM23, MOAP1, PKN2, PSMB3, RPRM, QPCTL, CBFB, FBXO16, HBS1L, CCDC152, SMG1, ANKUB1, TSPAN31, CD2, ZNF829, SDF4, B4GALT7, ODF3B, ALG10, TAF1B, SHQ1, CHCHD5, PDCD1, GTF2I, YIPF5, TMEM68, FBXW9, PGRMC2, KIF2A, EHMT1, CACTIN, ZNF606, SF3A2, RECQL5, NOC2L, PRR14, CAPN7, PDIA4, METTL26, FAM168B, ABI3, MAPK8IP3, ZDHHC17, HNRNPH3, PNKD, MCM8, HBP1, PPM1K, GRSF1, MRPL55, URI1, ROR2, GPR137, STK11, VPS41, MRM1, R3HDM2, VPS28, POLR2E, GCFC2, ICAM3, ARCN1, KCNAB1, PYCARD, DMXL1, VAV3, ACBD5, ANAPC16, CLDN4, PCNX3, SEPTIN8, CC2D1B, ZNF800, OTUB1, SELENOW, DGKZ, TNNC1, SKIL, FAM207A, LENG8, ERO1B, SPATA5, HRAS, ETV4, CARNMT1, MNT, THEM6, SH2D2A, ABCC1, RAPGEF6, CDC73, MAP3K2, NSD2, PDE4C, PYGB, TRIM11, PTPN11, PHF10, MLST8, WIZ, MRPL28, TRH, DRC7, RFESD, GPR171, CSNK2B, STMP1, RPN2, WDPCP, ATE1, IL32, MICOS13, GPSM1, FLOT1, SOX6, CCDC28A, DICER1, DIS3L, KLHDC1, PPP4C, SINHCAF, SHTN1, IDH3B, TRIP11, SH2B1, ABCB8, PUM1, COX11, HSPA4L, DGKH, TOM1L2, G3BP2, BDP1, FAM160B2, KIN, GLMP, UBA7, CRCP, ATXN3, PLEKHF2, SOS2, TASP1, FDXR, PPP2R5D, SRGAP2B, YARS2, BLVRB, SCML4,

IMP4, SPAG17, CLDN3, YTHDC1, PDE5A, PPP3CA, NAGPA, DPP9, CDK10, GRWD1, AP1G2, ELP4, MCHR1, GRINA, SCAF11, ZBTB25, MRPL10, BRWD1, SORT1, LCORL, RPN1, MOB3A, SCP2, ATP6V1A, WDR92, NHLRC2, TMOD3, TMEM179B, CDC34, FIGNL1, ZBTB18, GIPC2, TMEM54, ECHS1, ZNF664, NFKBIB, DHX36, TRAPPC12, TONSL, RNF11, SLC35A3, CACNG4, COPG1, BAIAP2, TTC21B, CTDNEP1, VCPIP1, FANCC, NCKAP1, MAST3, FZD3, TASOR, LRP8, SLC38A9, AKAP8L, PHOSPHO2, TRMT1, CDKAL1, ZDBF2, PPIP5K2, DENND4C, IKZF2, SELENOH, GCAT, ADAM17, DHX16, ZNF24, CCDC186, PDE6D, ASB4, SMTNL1, MCM5, ITSN2, SLMAP, MED16, MINK1, ZNF286A, CCDC97, ACTN4, COX6B1, TICAM1, DIPK2A, VPS4B, POLDIP2, RCSD1, GFPT1, PITPNM1, PRMT1, RNF138, ADPRM, NEK4, RNF170, CUL3, SF3B5, SMG5, SAMD8, GALK2, ZNF431, CTNNA1, MED7, NT5DC1, KIAA1586, MIER3, STX19, SZRD1, TAOK1, GTF3C5, HSD11B1L, PLIN3, DDHD2, KDF1, SMIM31, SCAND1, DCLRE1B, CDK17, LMNTD2, DNASE1L2, ATP13A2, GARS1, HAUS3, TSNAX, YPEL3, STOML2, PCMTD1, ANKRD52, ADSS2, SLC30A9, PEX16, TIMM13, RAB2A, TCTEX1D4, IFI27L1, KIF5B, CD200R1, CAPZB, RNH1, TMEM102, ARHGDIA, SNAPC4, RGS14, AK9, DNAJB14, ZNF580, SNX13, DDX17, ROGDI, FAM216B, AZIN1, KIAA1328, GP2, USF1, AVL9, AGO1, ASXL3, FAM8A1, ATXN2L, H3-3A, ZBTB7B, PM20D2, LRRC45, DIS3, EIF3A, CDK18, PSMC3, DHX29, IPMK, PES1, SLF2, IGSF9B, SHOC2, NCF1, LY6G5C, PIGN, GGA3, HMCES, CCDC12, PRIMPOL, CCDC30, TTC6, ARID3A, ZMPSTE24, PEX1, PSPH, C1orf87, ATP6V1F, PIDD1, CASC3, TBC1D10B, AURKAIP1, AHI1, VPS72, GPLD1, TRAF2, RING1, EML5, SWAP70, ANKMY2, MKLN1, MXRA8, PHAX, TMEM212, MGAT4B, BCLAF1, CCDC69, FAAP100, ZNF880, SSBP4, TTC23L, MRPL37, PCDHB1, NCLN, CRELD1, MST1, PDRG1, SLC22A18, TMEM190, HP1BP3, C8orf82, RAD18, P3H4, PLAAT4, PPP3CB, VWA1, CMTM6, SEPTIN3, TEPP, AGBL3, PPP1R11, MRC2, IMPACT, ST3GAL6, SLC25A17, POLE3, GNS, WDR60, LAMTOR4, PRDX2, CXCR1, CYC1, FNTB, PPIC, BTBD9, CLASRP, ABCC5, TMEM160, UHMK1, NANP, ATG2A, LLGL2, ABHD3, COPS2, PFN2, ITGB7, C1orf35, NDUFS7, KPNA5, TUBGCP4, SNRNP70, FRMPD2, UBE3D, ZNF747, FAM98C, TELO2, PYGL, GRM5, BCDIN3D, GRPEL2, FCHO1, MRPS6, DOLK, PPIB, MRPS17, NFKBIA, CPSF2, TMEM250, MIF4GD, DNAJC24, ZNF260, ZMYM1,

MED25, IGFBP7, PIN1, CDKN2AIP, SDCCAG8
B4GALT1, RAB7B, NOLC1, SLC35F6, HSPA2, MINPP1, MSLNL, SNAI2, ADAMTS17, TYW3, FOXA1, OVGP1, RIBC2, KITLG, FOXN1, DLK2, RNF212, PDGFC, ITGB1, TINCR, SULT1E1, SMU1, RGMB, DIRAS3, ZFP64, ANKRD29, VIPAS39, PROB1, FAM114A2, RERG, SYTL2, RHEBL1, EIF5, SNF8, ADAMTSL5, RAB20, FAM171B, HYKK, ZFYVE27, HHATL, SUPT16H, SEPTIN2, CDK5RAP2, TET1, ZNF227, PSCA, BMP8A, S100A1, EPHB6, ELAC1, TMPRSS2, CAMLG, AFAP1L2, SULT1C2, TMEM9B, DST, RARB, KRT12, ATAD1, CYP2U1, MMP7, FOXA2, ARF3, AK6, SENP8, CYBRD1, BIK, SV2A, DSEL, EMID1, SELENOS, PNRC2, SNX5, ORC1, XRCC5, LRPPRC, MLIP, KLF5, PERP, RAB3B, TTC32,
TMED3, CDK20, BLOC1S5, L3MBTL2, FIBIN, ICA1, KLHL9, BSCL2, ZZEF1, ZNF821, ZNF624, CD164L2, SYNGR1, TCF25, MAST4, STIMATE-MUSTN1, ESF1, HMGB1, FUT4, DERL3, ZNF473, TPST2, OCIAD2, GNPDA1, EPB41L5, PCDHGB4, DACT2, PIGQ, JAK1, ROM1, KCTD17, SEMA3D,

	INO80B, CNOT7, ABHD2, FJX1, FERMT2, ASPRV1, TAF5, CNOT11, SHH, VPS26A, ZNF595, FAM83F, STAMBPL1, SPNS1, THUMPD1, FHIT, LARGE1, USP1, INTS10, SPATA5L1, KIRREL1, FPR1, MMP25, PTPRG, C22orf15, TNS1, MED4, SLIT3, APPL2, RPS6KC1, LGALS9B, PPP1R1C, ADARB2, PRUNE1, SDHD, ACER3, TRMU, ABCB6, B3GALT2, FUT10, FANCE, ST20, EXOC2, LGALS9C, MARS2, CWC22, SLC16A8, ZNF420, POLR3D, ZFP2, CCDC200, VWA2, NEU4, MZF1, CDH5, LRRC23, MEGF6, DIO2, QRICH2, NUP54, SUPT5H, GSE1, ABCB4, FAM131A, NPIPB5, PDE7A, ZC3HC1, MEIS1, MYDGF, WDR20, RAB36, ISL1, NDUFB6, ELAVL1, VLDLR, NUP107, ZFP36L2, B3GLCT, FAM153B, ZNF512, ZNF552, CDC23, DRICH1, ZNF146, ZNF436, RILP, STK10, CCL3L1, TESK2, CAPN8, C11orf95, STK3, CR1L, DENND6B, FOXRED2, GJC2, DDX54, ELP3, LONP1, CSE1L, PUS7, MISP3, MAP2K3, LRRC31, TENT2, NOA1, LGALS8, PSMG4, TSPAN5, BRIX1, PTGR1, ITLN1, PCSK5, ZNF571, DIP2A, TGFB111, ABHD16A, ZNF181, CD36, VMAC, ZNF559
Red ($\mathrm{N}=46$)	TTC7B, DNHD1, ZNF839, PIAS3, EIF4EBP2, HNRNPUL2, CCNG2, CD83, OGDHL, SMUG1, PATL2, LPP, TDRD9, NPM2, CDHR2, ST6GALNAC5, SAR1A, SNIP1, PLXDC2, TIMP2, TACC2, COLCA2, MKS1, APOC1, LHFPL6, MEX3C, DEPDC5, CLASP1, AGAP9, SLC12A2, LANCL2, RBM27, TMEM130, DNAAF1, POLRMT, FNDC3B, KCNK15, EPC2, ERG28, FN1, DDAH2, ANAPC5, PLEKHA2, WASHC1, CBFA2T3, ELP6
Turquoise ($\mathrm{N}=85$)	IFIT2, MILR1, CCR2, HLA-DRB5, FCGR2B, LTB, CSF1R, IL21R, CXCL10, ADGRG5, PLXND1, SYT11, CAPN2, PRKG2, PALD1, SFMBT2, ASB2, CSF1, ATP10A, LAG3, COL3A1, AADAC, NPW, APBA2, BBS5, SALL4, CALCOCO2, C1S, LMNB1, AOAH, FNBP1, TLR10, TNFSF14, CARD9, ADSS1, FKBP15, A2M, HLA-DOA, ZNF609, RASSF5, DPYD, FYB1, HLA-DPB1, PTPN7, LRRN1, CNTLN, ADAR, LCP2, GPR18, CGREF1, TTYH2, ST8SIA1, CRTAM, PFDN6, SIRPG, ARHGAP25, TNFRSF11A, PCED1B, PPM1M, TMEM86A, QPRT, CD209, ANG, SLC26A4, CD74, STK33, OPTN, EPB41, DOCK10, IFI44L, AKR1C3, JAK2, CALHM6, RGS7BP, ANKRD39, LAX1, CCR5, HLA-DRA, HLA-DMA, CSF3, IGSF11, CXCL9, SYNPO2, IL4I1, CLEC10A
Yellow ($\mathrm{N}=391$)	NAAA, C2orf50, TNC, TNFRSF10B, SERPINB4, NOP53, LSM14B, NEURL1B, AK2, CMTM8, SLC16A11, ATXN1, IFI16, FAR2, IRX3, RPS3, RPL7A, STOM, ANAPC15, DNAJC17, RPL3, ANKRD45, MTFR2, SMIM35, APBB3, GBP6, AKAP6, BIRC5, MYH15, DMAC2L, RPL12, MTRF1, LAMC2, SLC5A8, EMC4, DHDDS, TRMT9B, DSTN, TAF11, EIF3F, AUH, FCGR3B, RPS20, CD55, ISCA2, FAM111B, RNF183, AURKB, EGLN2, GABRP, WDR62, DSP, RNF5, TIGD5, BORA, AKAP9, ST7, CEP85, CTF1, MPHOSPH8, NFIC, TRIM38, LDHA, NABP1, ALDH1A3, LNP1, RUFY4, FAM174A, ACAD8, RPL19, HMGN2, PLEK2, RPL6, RPL29, DPY19L1, SCRN1, SLC8B1, TTC12, CYP51A1, KHDC1, CPT1B, RPL10A, PMM2, PPIP5K1, UBXN10, GLRB, XAF1, SOGA1, ENO4, ZNF133, CLEC2D, TOB2, ZNF32, TGM3, CEP55, TPK1, FBXO27, NFE2L3, ZNF562, SLC23A1, DTD1, FKBP14, STAT2, LMO1, RPL13A, ARHGAP44, EFCAB11, ADRB1, POC1B, CASS4, ARG2, NBAS, KRTCAP3, CPLANE2, RPLPO, PTGS2, TIMM22, MRFAP1, UTP20, PLPPR3, MUL1, CXCR2, LSMEM1, CD58, HEATR3, MOB3C, ATP6V1FNB, DDX47, PLEKHG4B, ST6GALNAC2, AK8, LRRIQ4, ATP4B, FILIP1, RPL32, DNM1L, MED30, VEPH1,

BBS4, GALNT14, NFKBID, KIF20A, RAB4B, PSTPIP2, AURKA, SARAF, FAM118B, SUPT6H, TRAPPC9, JDP2, EPHX2, VEGFB, EEF1B2, RPS14, LPCAT3, SHOC1, RGS16, KLK11, P4HA2, RPS13, EFCAB6, SLC16A14, SETD7, MRPL9, HNRNPA0, PDGFA, HTRA1, TTC39A, PDK2, KHDC4, EGLN3, IVNS1ABP, RPL13, ANLN, RNF19A, SPRYD4, ECSIT, SH3PXD2B, ANKRD66, FARS2, LRRC69, KLF15, ZSCAN18, SP140L, PPA1, DSCAML1, CMC2, SAP30L, CLEC2B, CASP6, MBTPS1, ITPRIPL2, BACE2, FAM135A, FUCA2, PJVK, TAF6, SYTL3, RALBP1, TNFRSF10C, TRIM16, LDLRAD1, TMEM8B, GALNT5, IGF1R, RABIF, FBXO36, USP15, CPNE5, MCU, BUB1B, TOMM7, KDM1B, FYCO1, FBLN7, LNX1, ALPK3, C1RL, ZDHHC4, GNL3, YWHAQ, MCCC2, RND3, CCNI2, GAB2, MAP2K5, ERCC5, DMTN, RACK1, FPR2, ASPM, CKMT1A, SERGEF, ITPRID2, PTPRN2, RELB, FAM222B, DNAH6, FAM98A, ZC2HC1C, GNAZ, VWA5A, PARP14, TGIF1, APCDD1, SPAG7, MRPS18B, TMEM181, PRDM1, RPL30, SLC20A1, COL16A1, GRAMD1A, SHCBP1, C5orf49, COBL, NFKB2, NUPR2, NEK11, FKBP4, RPL37A, PANX2, PROM2, MRPL45, STIP1, C11orf21, WBP2, DMRTA1, KAT5, KBTBD8, ACSL3, BMP8B, GPR39, KCTD14, CDC42EP2, PRR18, AZU1, INPP5F, MAP3K8, ZNF200, MYL12A, AKIP1, SON, PLEKHD1, OAS1, AMPH, PLEKHB2, SAMD9, ZBTB7C, SPATA18, SKA3, WASF1, MGAT5, SEC31B, C1orf21, SOWAHA, TMEM14C, ZFYVE9, LOX, GCNT1, TIMM23B, KCNB1, TIGD3, ECT2, NBPF1, ITGB6, FAM86B1, VPS45, PDK1, TMEM203, MAB21L4, REM2, NUSAP1, SAMD12, PCSK9, CRY2, RPA3, TSTD1, GJB2, LARGE2, RNF10, DAAM2, SLC7A1, KIAA1671, ZNF841, TXNL4B, C6orf223, UNC119B, MPZL1, RHBDL3, TRIM31, MRPS23, LACTB2, RPSA, SDHC, PLEKHS1, CMAS, DYRK3, RBMS2, CDC42SE1, STMND1, COPS5, SRPK1, ADPRHL2, ATP5MC2, SYS1, REXO4, RPS5, C11orf97, GNAS, AK3, CEP152, TMEM117, DHX57, CDC6, HAS3, ARPC3, CFAP57, CSF3R, ITPKB, S100A5, RPS12, TIMM17A, DEPDC1, OXA1L, DDX28, GAPT, JHY, RASSF2, TAF7, PCLAF, NCAPD3, RARS1, PLAAT3, FBXW2, CCNE1, RDH10, RPS11, RAC2, RPLP1, ACAT2, CYP4F3, HACD4, GPSM2, TMEM106C

Table S3. Significant pathways for the genes that were correlated with the MA-associated black, turquoise and yellow co-methylation module eigenvectors. The uniquely correlated genes of each module ($F D R<0.10$) were included as input for pathway analysis (TopFunn (9)). Eleven, 36, and 33 pathways were significantly enriched for the uniquely correlated genes of the black, turquoise and yellow modules, respectively, at an FDR-adjusted p-value of <0.10. No pathways were enriched for the uniquely correlated genes of the NMA-associated orange or green modules or the MA-associated blue and red modules. The 3, 16, and 18 pathways of the black, turquoise, and yellow modules that discriminated between NMA and MA cases using Random Forests are bolded and listed in Table S4.

Black module (794 uniquely correlated genes)						
ID	Name	Source	P -value	FDRadjusted Pvalue	\# of input genes / \# of total genes in annotation	Genes from input
1269649	Gene Expression	BioSystems: REACTOME	7.33E-07	1.91E-03	111 / 1844	NR2F6, RPN1, RPN2, MRM1, PIDD1, FANCC, METTL1, CDC40, C1D, ZNF606, TRMT5, DHX16, CARM1, CASC3, TRMT1, SKIL, DIS3, ZNF529, MBD3, TRIM33, SNRNP48, LAMTOR4, PELP1, ZNF747, EIF3A, EIF3B, SNAPC4, SNRNP70, DCP1A, BDP1, SMG1, HBS1L, ARID4B, GARS1, ZNF619, PHAX, JMY, STK11, CRCP, IMP4, EIF2B4, AEBP2, CPSF2, MLST8, TCEA1, GCFC2, TAF1C, TAF1B, NUP43, SMG5, PRDX2, TFAM, DICER1, HARS2, PES1, ZNF566, H3-3A, ZNF431, ZNF721, ZNF664, U2AF1L4, TSC2, TSNAX, GTF3C5, RPRD1B, PIN1, PRMT1, ZNF264, MED17, MED7, EXOSC4, NRBP1, ZNF383, POLR2E, COX6B1, WRN, COX11, WWTR1, ATF2, THOC6, ZNF708, CSNK2B, ZNF221, SF3B5, RNF111, ZNF720, PRPF31, NOC2L, PSMB3, PSMB10, PSMC3, PSMD4, PSMD13, CDKAL1, ZNF776, ALKBH8, CDC73, MED13, ARID3A, AIMP2, MED16, RFC3, NARS2, YARS2, AGO1, MED25, EHMT1, SF3A2, SMAD2, ZNF286A, SMAD4
M9904	T cell receptor signaling pathway	MSigDB C2 BIOCARTA (v7.3)	1.65E-05	1.53E-02	15 / 108	VAV3, NFAT5, SOS2, NFKBIA, NFKBIB, CD3D, CD3E, CD247, CD8A, PDCD1, PIK3CA, HRAS, ZAP70, PPP3CA, PPP3CB
M39843	Cancer immunotherapy by PD-1 blockade	MSigDB C2 BIOCARTA (v7.3)	1.76E-05	1.53E-02	7 / 23	NFAT5, CD3D, CD3E, CD8A, PDCD1, ZAP70, PTPN11
M19784	T Cell Receptor Signaling Pathway	MSigDB C2 BIOCARTA (v7.3)	3.77E-05	2.09E-02	9 / 44	NFKBIA, CD3D, CD3E, CD247, PIK3CA, HRAS, ZAP70, PPP3CA, PPP3CB
83080	T cell receptor signaling pathway	BioSystems: KEGG	4.01E-05	2.09E-02	14 / 103	VAV3, SOS2, NFKBIA, NFKBIB, CD3D, CD3E, CD247, CD8A, PDCD1, PIK3CA, HRAS, ZAP70, PPP3CA, PPP3CB

M13247	T Cytotoxic Cell Surface Molecules	MSigDB C2 BIOCARTA (v7.3)	5.32E-05	$2.31 \mathrm{E}-02$	5 / 12	CD2, CD3D, CD3E, CD247, CD8A
M16966	Stathmin and breast cancer resistance to antimicrotubule agents	MSigDB C2 BIOCARTA (v7.3)	7.85E-05	2.92E-02	6 / 20	CD2, CD3D, CD3E, CD247, UHMK1, RB1CC1
1269171	Adaptive Immune System	BioSystems: REACTOME	9.62E-05	3.13E-02	54 / 826	BTBD6, NCF1, FZR1, BTN3A3, AP2A2, AP1B1, HACE1, SEC24B, RNF138, CUL3, FBXW9, SIAH1, SKP2, CD200R1, ASB4, KLHL20, NFKBIA, NFKBIB, AP1M1, MLST8, CALR, CD3D, CD3E, CD247, CD8A, CDC34, TPP2, PDCD1, FBXL13, TSC2, UBA7, PIK3CA, HRAS, ICAM3, MIB2, ZAP70, PPP2R5D, RNF111, PSMB3, PSMB10, PSMC3, PSMD4, PSMD13, ITGAV, ITGB7, FBXL3, FBXL4, PTPN11, TRIM11, MRC2, KIF2A, KIF5B, AGO1, UBE3D
1269192	Class I MHC mediated antigen processing \& presentation	BioSystems: REACTOME	1.39E-04	3.92E-02	$30 / 376$	BTBD6, NCF1, FZR1, HACE1, SEC24B, RNF138, CUL3, FBXW9, SIAH1, SKP2, ASB4, KLHL20, CALR, CDC34, TPP2, FBXL13, UBA7, MIB2, RNF111, PSMB3, PSMB10, PSMC3, PSMD4, PSMD13, ITGAV, FBXL3, FBXL4, TRIM11, MRC2, UBE3D
P00053	T cell activation	PantherDB	1.51E-04	3.92E-02	11 / 76	VAV3, SOS2, NFKBIA, CD3D, CD3E, CD247, PIK3CA, HRAS, ZAP70, PPP3CA, PPP3CB
M19422	IL 17 Signaling Pathway	MSigDB C2 BIOCARTA (v7.3)	1.83E-04	4.34E-02	5 / 15	CD2, CD3D, CD3E, CD247, CD8A
83059	mTOR signaling pathway	BioSystems: KEGG	$2.41 \mathrm{E}-04$	4.87E-02	16 / 151	FNIP1, ULK1, SKP2, NPRL2, LAMTOR4, SOS2, ATP6V1A, STK11, MLST8, ATP6V1F, TSC2, PIK3CA, HRAS, SLC38A9, TELO2, FZD3
M39602	Neurodegeneration with brain iron accumulation (NBIA) subtypes pathway	MSigDB C2 BIOCARTA (v7.3)	2.43E-04	4.87E-02	$8 / 44$	SCP2, ULK1, ATG2A, STK11, MLST8, ATP13A2, TSC2, RB1CC1
Turquoise module (85 uniquely correlated genes)						

ID	Name	Source	P-value	FDRadjusted P value	\# of input genes / \# of total genes in annotation	Genes from input
172846	Staphylococcus aureus infection	$\begin{gathered} \hline \text { BioSystems: } \\ \text { KEGG } \end{gathered}$	8.68E-09	3.24E-06	7 / 56	HLA-DMA, FCGR2B, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5, C1S
200309	Rheumatoid arthritis	BioSystems: KEGG	1.11E-08	3.24E-06	8 / 90	CSF1, HLA-DMA, HLA-DOA, HLA-DPB1, HLADRA, HLA-DRB5, LTB, TNFRSF11A
213780	Tuberculosis	BioSystems: KEGG	1.33E-08	3.24E-06	10 / 179	JAK2, HLA-DMA, FCGR2B, HLA-DOA, CARD9, HLA-DPB1, HLA-DRA, HLA-DRB5, CD74, CD209
83078	Hematopoietic cell lineage	$\begin{gathered} \text { BioSystems: } \\ \text { KEGG } \end{gathered}$	2.01E-08	3.68E-06	8 / 97	CSF1, CSF1R, CSF3, HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5
M9809	Cytokine-cytokine receptor interaction	MSigDB C2 BIOCARTA (v7.3)	5.10E-08	7.47E-06	11 / 265	CCR2, CSF1, CSF1R, CSF3, TNFSF14, CXCL10, IL21R, CXCL9, LTB, CCR5, TNFRSF11A
83051	Cytokine-cytokine receptor interaction	BioSystems: KEGG	6.18E-08	7.53E-06	11 / 270	CCR2, CSF1, CSF1R, CSF3, TNFSF14, CXCL10, IL21R, CXCL9, LTB, CCR5, TNFRSF11A
M13950	Asthma	MSigDB C2 BIOCARTA (v7.3)	2.97E-07	3.10E-05	5 / 30	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5
83120	Asthma	BioSystems: KEGG	3.52E-07	3.22E-05	5 / 31	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5
1269200	MHC class II antigen presentation	BioSystems: REACTOME	6.20E-07	4.90E-05	7 / 103	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5, LAG3, CD74
842771	Inflammatory bowel disease (IBD)	BioSystems: KEGG	6.76E-07	4.90E-05	6 / 65	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5, IL21R
1269175	Generation of second messenger molecules	BioSystems: REACTOME	7.67E-07	4.90E-05	5 / 36	HLA-DPB1, HLA-DRA, HLA-DRB5, LCP2, FYB1
1469482	Th17 cell differentiation	BioSystems: KEGG	8.04E-07	4.90E-05	7 / 107	JAK2, HLA-DMA, HLA-DOA, HLA-DPB1, HLADRA, HLA-DRB5, IL21R
M18615	Allograft rejection	MSigDB C2 BIOCARTA (v7.3)	8.84E-07	4.98E-05	5 / 37	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5

83123	Allograft rejection	BioSystems: KEGG	1.01E-06	5.30E-05	5 / 38	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5
169642	Toxoplasmosis	BioSystems: KEGG	1.16E-06	5.68E-05	7 / 113	JAK2, HLA-DMA, HLA-DOA, HLA-DPB1, HLADRA, HLA-DRB5, CCR5
M3126	Leishmania infection	MSigDB C2 BIOCARTA (v7.3)	1.25E-06	5.70E-05	6 / 72	JAK2, HLA-DMA, HLA-DOA, HLA-DPB1, HLADRA, HLA-DRB5
144181	Leishmaniasis	BioSystems: KEGG	1.35E-06	5.77E-05	6 / 73	JAK2, HLA-DMA, HLA-DOA, HLA-DPB1, HLADRA, HLA-DRB5
M13519	Graft-versus-host disease	MSigDB C2 BIOCARTA (v7.3)	1.50E-06	5.77E-05	5 / 41	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5
83124	Graft-versus-host disease	BioSystems: KEGG	1.50E-06	5.77E-05	5 / 41	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5
217173	Influenza A	BioSystems: KEGG	1.76E-06	6.07E-05	$8 / 173$	JAK2, HLA-DMA, HLA-DOA, CXCL10, HLADPB1, HLA-DRA, HLA-DRB5, ADAR
83074	Antigen processing and presentation	BioSystems: KEGG	1.86E-06	6.07E-05	6 / 77	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5, CD74
M12617	Type I diabetes mellitus	MSigDB C2 BIOCARTA (v7.3)	1.91E-06	$6.07 \mathrm{E}-05$	5 / 43	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5
83095	Type I diabetes mellitus	BioSystems: KEGG	1.91E-06	6.07E-05	5 / 43	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5
1269310	Cytokine Signaling in Immune system	BioSystems: REACTOME	2.68E-06	8.17E-05	15 / 763	CCR2, JAK2, CSF1, CSF1R, CSF3, TNFSF14, CXCL10, HLA-DPB1, HLA-DRA, HLA-DRB5, LTB, CCR5, TNFRSF11A, ADAR, IFIT2
377873	Herpes simplex infection	BioSystems: KEGG	2.91E-06	8.52E-05	$8 / 185$	JAK2, TNFSF14, HLA-DMA, HLA-DOA, HLADPB1, HLA-DRA, HLA-DRB5, CD74
M39693	Ebola Virus Pathway on Host	MSigDB C2 BIOCARTA (v7.3)	3.14E-06	8.84E-05	7 / 131	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5, CLEC10A, CD209
M615	Intestinal immune network for $\lg \mathrm{A}$ production	MSigDB C2 BIOCARTA (v7.3)	3.33E-06	9.03E-05	5 / 48	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5
1470924	Interleukin-10 signaling	BioSystems: REACTOME	3.70E-06	9.33E-05	5 / 49	CCR2, CSF1, CSF3, CXCL10, CCR5

128760	Intestinal immune network for $\lg A$ production	BioSystems: KEGG	3.70E-06	9.33E-05	5 / 49	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5
M16004	Antigen processing and presentation	MSigDB C2 BIOCARTA (v7.3)	4.07E-06	9.92E-05	6 / 88	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5, CD74
M39398	Allograft Rejection	MSigDB C2 BIOCARTA (v7.3)	4.35E-06	1.03E-04	6 / 89	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5, CXCL9
M4741	Systemic lupus erythematosus	$\begin{gathered} \text { MSigDB C2 } \\ \text { BIOCARTA } \\ \text { (v7.3) } \\ \hline \end{gathered}$	4.66E-06	1.07E-04	7 / 139	HLA-DMA, FCGR2B, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5, C1S
M13103	Autoimmune thyroid disease	MSigDB C2 BIOCARTA (v7.3)	4.98E-06	1.11E-04	5 / 52	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5
1458885	Th1 and Th2 cell differentiation	BioSystems: KEGG	5.27E-06	1.14E-04	6 / 92	JAK2, HLA-DMA, HLA-DOA, HLA-DPB1, HLADRA, HLA-DRB5
83121	Autoimmune thyroid disease	BioSystems: KEGG	5.48E-06	1.15E-04	5 / 53	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5
153910	Phagosome	BioSystems: KEGG	9.15E-06	1.85E-04	7 / 154	HLA-DMA, FCGR2B, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5, CD209
125138	Viral myocarditis	BioSystems: KEGG	9.35E-06	1.85E-04	5 / 59	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5
M6910	Cytokines and Inflammatory Response	$\begin{gathered} \text { MSigDB C2 } \\ \text { BIOCARTA } \\ (v 7.3) \\ \hline \end{gathered}$	1.09E-05	2.10E-04	4 / 29	CSF1, CSF3, HLA-DRA, HLA-DRB5
M12294	Viral myocarditis	$\begin{gathered} \hline \text { MSigDB C2 } \\ \text { BIOCARTA } \\ (\mathrm{v} 7.3) \\ \hline \end{gathered}$	2.17E-05	4.07E-04	5 / 70	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB5
M39363	Type II interferon signaling (IFNG)	$\begin{gathered} \text { MSigDB C2 } \\ \text { BIOCARTA } \\ (\text { v } 7.3) \end{gathered}$	2.94E-05	5.38E-04	4 / 37	JAK2, CXCL10, CXCL9, IFIT2
M1473	B Lymphocyte Cell Surface Molecules	$\begin{gathered} \text { MSigDB C2 } \\ \text { BIOCARTA } \\ (\mathrm{v} 7.3) \\ \hline \end{gathered}$	3.80E-05	6.50E-04	3 / 14	FCGR2B, HLA-DRA, HLA-DRB5

M22023	Antigen Processing and Presentation	MSigDB C2 BIOCARTA (v7.3)	$3.80 \mathrm{E}-05$	$6.50 \mathrm{E}-04$	$3 / 14$	HLA-DRA, HLA-DRB5, CD74
193147	Osteoclast differentiation	BioSystems: KEGG	$3.82 \mathrm{E}-05$	$6.50 \mathrm{E}-04$	$6 / 130$	CSF1, CSF1R, FCGR2B, TNFRSF11A, LCP2,
83122	Systemic lupus erythematosus	BioSystems: KEGG	$4.34 \mathrm{E}-05$	$7.22 \mathrm{E}-04$	$6 / 133$	HLA-DMA, HLA-DOA, HLA-DPB1, HLA-DRA,
M6856	Hematopoietic cell lineage	MSigDB C2 BIOCARTA (v7.3)	$6.22 \mathrm{E}-05$	$1.01 \mathrm{E}-03$	$5 / 87$	CSF1, CSF1R, CSF3, HLA-DRA, HLA-DRB5
1269547	Chemokine receptors bind chemokines	BioSystems: REACTOME	$8.32 \mathrm{E}-05$	$1.31 \mathrm{E}-03$	$4 / 48$	CCR2, CXCL10, CXCL9, CCR5

1268690	Eukaryotic Translation Elongation	BioSystems: REACTOME	2.17E-19	3.95E-16	23 / 98	RPL30, RPL29, RPL32, RPL37A, RPLPO, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, RPL10A, RPSA, EEF1B2, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
M39495	Cytoplasmic Ribosomal Proteins	MSigDB C2 BIOCARTA (v7.3)	5.21E-19	4.74E-16	22 / 90	RPL30, RPL29, RPL32, RPL37A, RPLP0, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1268691	Peptide chain elongation	BioSystems: REACTOME	1.13E-18	5.12E-16	22 / 93	RPL30, RPL29, RPL32, RPL37A, RPLPO, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1269120	Viral mRNA Translation	BioSystems: REACTOME	1.13E-18	5.12E-16	22 / 93	RPL30, RPL29, RPL32, RPL37A, RPLP0, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1268681	Formation of a pool of free 40S subunits	BioSystems: REACTOME	1.83E-18	6.65E-16	23/107	RPL30, RPL29, RPL32, RPL37A, RPLPO, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, EIF3F, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1339156	Selenocysteine synthesis	BioSystems: REACTOME	$2.36 \mathrm{E}-18$	7.16E-16	22 / 96	RPL30, RPL29, RPL32, RPL37A, RPLPO, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1268692	Eukaryotic Translation Termination	BioSystems: REACTOME	3.01E-18	7.81E-16	22 / 97	RPL30, RPL29, RPL32, RPL37A, RPLPO, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
M189	Ribosome	$\begin{gathered} \text { MSigDB C2 } \\ \text { BIOCARTA } \\ (\mathrm{v} 7.3) \end{gathered}$	5.81E-18	1.23E-15	21 / 88	RPL30, RPL29, RPL32, RPL37A, RPLPO, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS20, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1269718	Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC)	BioSystems: REACTOME	6.09E-18	1.23E-15	22 / 100	RPL30, RPL29, RPL32, RPL37A, RPLPO, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19

1268686	GTP hydrolysis and joining of the 60S ribosomal subunit	BioSystems: REACTOME	$2.28 \mathrm{E}-17$	$3.77 \mathrm{E}-15$	23/119	RPL30, RPL29, RPL32, RPL37A, RPLP0, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, EIF3F, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1268688	L13a-mediated translational silencing of Ceruloplasmin expression	BioSystems: REACTOME	$2.28 \mathrm{E}-17$	3.77E-15	23/119	RPL30, RPL29, RPL32, RPL37A, RPLP0, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, EIF3F, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1339149	Selenoamino acid metabolism	BioSystems: REACTOME	4.95E-17	7.50E-15	$23 / 123$	RPL30, RPL29, RPL32, RPL37A, RPLP0, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, RPL10A, RARS1, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1268680	Cap-dependent Translation Initiation	BioSystems: REACTOME	1.04E-16	1.35E-14	23 / 127	RPL30, RPL29, RPL32, RPL37A, RPLP0, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, EIF3F, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1268679	Eukaryotic Translation Initiation	BioSystems: REACTOME	1.04E-16	1.35E-14	23 / 127	RPL30, RPL29, RPL32, RPL37A, RPLP0, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, EIF3F, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1268689	SRP-dependent cotranslational protein targeting to membrane	BioSystems: REACTOME	1.77E-16	2.15E-14	22 / 116	RPL30, RPL29, RPL32, RPL37A, RPLP0, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1269716	NonsenseMediated Decay (NMD)	BioSystems: REACTOME	4.54E-16	4.86E-14	22 / 121	RPL30, RPL29, RPL32, RPL37A, RPLPO, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1269717	Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)	BioSystems: REACTOME	4.54E-16	4.86E-14	22 / 121	RPL30, RPL29, RPL32, RPL37A, RPLP0, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19

1268678	Translation	BioSystems: REACTOME	3.92E-15	3.96E-13	24 / 165	RPL30, RPL29, RPL32, RPL37A, RPLP0, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, EIF3F, RPL10A, RPSA, EEF1B2, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1269115	Influenza Viral RNA Transcription and Replication	BioSystems: REACTOME	8.08E-15	7.60E-13	22 / 138	RPL30, RPL29, RPL32, RPL37A, RPLP0, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
83036	Ribosome	BioSystems: KEGG	8.35E-15	7.60E-13	23/154	RPL30, RPL29, RPL32, RPL37A, RPLPO, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, MRPL9, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1269109	Influenza Life Cycle	BioSystems: REACTOME	$3.14 \mathrm{E}-14$	2.71E-12	22 / 147	RPL30, RPL29, RPL32, RPL37A, RPLP0, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1383086	Major pathway of rRNA processing in the nucleolus and cytosol	BioSystems: REACTOME	3.28E-14	2.71E-12	24 / 181	DDX47, RPL30, RPL29, RPL32, RPL37A, RPLPO, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, RPL10A, UTP20, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1427846	rRNA processing in the nucleus and cytosol	BioSystems: REACTOME	1.39E-13	1.10E-11	24 / 193	DDX47, RPL30, RPL29, RPL32, RPL37A, RPLP0, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, RPL10A, UTP20, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1269108	Influenza Infection	BioSystems: REACTOME	1.45E-13	1.10E-11	22 / 158	RPL30, RPL29, RPL32, RPL37A, RPLPO, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, RPL10A, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1383085	rRNA processing	BioSystems: REACTOME	4.30E-13	3.13E-11	24 / 203	DDX47, RPL30, RPL29, RPL32, RPL37A, RPLP0, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, RPL10A, UTP20, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19

1270158	Metabolism of amino acids and derivatives	BioSystems: REACTOME	1.99E-10	1.40E-08	28 / 367	RPL30, RPL29, RPL32, RPL37A, RPLP0, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, ARG2, ACAD8, AUH, MCCC2, RPL10A, CKMT1A, RARS1, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1269056	Infectious disease	BioSystems: REACTOME	7.51E-08	5.06E-06	25 / 393	RPL30, RPL29, RPL32, RPL37A, RPLPO, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, RPL10A, TAF6, TAF7, TAF11, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1268682	Formation of the ternary complex, and subsequently, the 43S complex	BioSystems: REACTOME	6.64E-07	4.32E-05	9 / 55	RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, EIF3F, RPSA
1268685	Ribosomal scanning and start codon recognition	BioSystems: REACTOME	2.17E-06	$1.36 \mathrm{E}-04$	9 / 63	RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, EIF3F, RPSA
1268684	Translation initiation complex formation	BioSystems: REACTOME	2.49E-06	1.51E-04	9 / 64	RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, EIF3F, RPSA
1268683	Activation of the mRNA upon binding of the capbinding complex and elFs, and subsequent binding to 43S	BioSystems: REACTOME	2.84E-06	1.67E-04	9 / 65	RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, EIF3F, RPSA
1268677	Metabolism of proteins	BioSystems: REACTOME	$2.61 \mathrm{E}-05$	$1.48 \mathrm{E}-03$	$53 / 1631$	RPL30, RPL29, RPL32, RPL37A, RPLP0, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, ARG2, ACAD8, AUH, MCCC2, RPL10A, CKMT1A, RARS1, RPSA, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19
1268854	Disease	BioSystems: REACTOME	6.14E-05	3.38E-03	33 / 867	RPL30, RPL29, RPL32, RPL37A, RPLP0, RPLP1, PDGFA, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, ZFYVE9, NEURL1B, MCCC2, GAB2, RPL10A, NFKB2, TAF6, TAF7, TAF11, RPSA, AKAP9, RNF5, RPL13A, RPL3, RPL6, RPL7A, RPL12, RPL13, RPL19

1269649	Gene Expression	BioSystems: REACTOME	9.79E-05	5.24E-03	56/1844	DDX47, MTA2, RPL30, RPL29, RPL32, RPL37A, RPLPO, RPLP1, RPS3, RPS5, RPS11, RPS12, RPS13, RPS14, RPS20, TSC1, TRMT9B, MED30, KAT5, BIRC5, PPA1, NABP1, FARS2, EIF3F, ZNF133, ZNF562, ZNF200, TNFRSF10C, TNFRSF10B, PRDM1, RPL10A, AURKA, NFIC, SUPT6H, HNRNPAO, UTP20, YWHAQ, TAF6, TAF7, TAF11, RARS1, SAP30L, CASP6, RPSA, CCNE1, TGIF1, EEF1B2, RPL13A, RPA3, RPL3, RPL6, RPL7A, RPL12, RPL13, AURKB, RPL19
M180	Hypoxic and oxygen homeostasis regulation of HIF-1-alpha	MSigDB C2 BIOCARTA (v7.3)	3.56E-04	1.85E-02	4 / 19	RACK1, COPS5, EGLN3, EGLN2
M39529	Photodynamic therapy-induced NF-kB survival signaling	MSigDB C2 BIOCARTA (v7.3)	4.29E-04	2.17E-02	5 / 35	BIRC5, PTGS2, NFKB2, EGLN2, RELB
138033	Signaling by Aurora kinases	BioSystems: Pathway Interaction Database	1.01E-03	4.96E-02	$2 / 3$	AURKA, AURKB

Table S4. Maternal asthma-discriminatory pathways of the black, turquoise, and yellow modules. For each of the 11, 36, and 33 enriched pathways of the black, turquoise, and yellow modules, respectively, a per-individual median normalized and covariateadjusted expression level was calculated for all expressed genes (CPM > 1 in at least 25% of subjects) in the pathway (3 to 1,844 per pathway. Random Forests selected pathways that discriminated between asthma cases with (MA; $\mathrm{N}=27$) and without an asthmatic mother (NMA; N=48); 3 (black), 16 (turquoise), and 18 (yellow) discriminatory pathways were identified as having Mean Decrease in Accuracy > 1. There were 231, 535, and 675 unique genes in total for the black, turquoise, and yellow modules, respectively; a median score of the normalized and covariate-adjusted expression for each set of module-specific genes were compared between MA and NMA cases (Fig. 2 in the main paper; Fig. S8).

Black module (231 expressed genes)							
ID	Name	Source	Mean Decrease in Accuracy	Median Expression (NMA)	Median Expression (MA)	\# of expressed genes / \# of total genes	Expressed genes
M9904	T cell receptor signaling pathway	MSigDB C2 BIOCARTA (v7.3)	2.10	5.06	5.00	95 / 108	KRAS, RAF1, PDCD1, AKT3, NRAS, MAP3K8, FOS, PDPK1, PIK3R3, PAK4, MAP3K14, GRB2, CBLC, NCK1, RELA, PAK6, LCK, TEC, LCP2, CBL, CBLB, ZAP70, GSK3B, ITK, CHUK, RHOA, MALT1, JUN, RASGRP1, PTPN6, CD3D, CD3E, CD3G, CD247, CD4, MAPK14, PPP3CA, ICOS, MAPK12, PTPRC, PPP3CB, PPP3CC, CD8A, PPP3R1, CD8B, LAT, NFATC1, NFATC2, NFATC3, NFATC4, PIK3CA, PIK3CB, CD28, PIK3CD, PIK3CG, PIK3R1, NFKB1, CHP2, NFKBIA, NFKBIB, NFKBIE, GRAP2, HRAS, PAK1, PAK2, DLG1, AKT1, AKT2, CARD11, BCL10, VAV3, TNF, PRKCQ, PLCG1, MAPK1, MAPK3, IKBKB, MAPK11, MAPK9, MAPK13, MAP2K1, MAP3K7, NFAT5, MAP2K2, CDC42, FYN, MAP2K7, PIK3R5, VAV1, VAV2, NCK2, CDK4, CHP1, SOS1, SOS2

83059	mTOR signaling pathway	BioSystems: KEGG	2.21	5.30	5.35	131 / 151	FNIP2, MAPKAP1, KRAS, RAF1, CAB39, SEH1L, ATP6V1A, ATP6V1B1, DDIT4, ATP6V1B2, ATP6V1C1, AKT3, ATP6V1E1, RNF152, LAMTOR2, NRAS, DEPTOR, FZD3, SLC38A9, SGK1, LAMTOR5, WNT3, PDPK1, RPS6, WNT5A, RPS6KA1, RPS6KA2, WNT7B, ATP6V1E2, RPS6KB1, RPS6KB2, PIK3R3, WNT10B, TBC1D7, WNT2B, INSR, WNT9A, PRR5, DVL1, DVL2, DVL3, GRB2, GRB10, ATP6V1G1, RICTOR, TSC1, ATP6V1F, TSC2, IRS1, WNT4, PTEN, SKP2, CLIP1, AKT1S1, WDR59, GSK3B, SLC3A2, RHEB, RRAGC, CHUK, FZD1, FZD4, RHOA, FZD6, FZD7, WNT5B, FZD8, FZD9, LPIN1, STK11, STRADB, NPRL2, ATP6V1H, IGF1R, LAMTOR4, RRAGD, BRAF, TELO2, PIK3CA, MTOR, PIK3CB, PIK3CD, STRADA, RRAGA, PIK3R1, FZD5, RPTOR, WNT3A, ATP6V1D, EIF4B, WNT16, EIF4E, PRKAA1, EIF4EBP1, PRKAA2, HRAS, NPRL3, MIOS, WNT10A, FLCN, LRP6, LRP5, LAMTOR3, PRKCA, FNIP1, PRKCB, TTI1, SLC7A5, AKT1, CAB39L, AKT2, DEPDC5, SESN2, TNF, ATP6V1C2, ULK1, MAPK1, MAPK3, TNFRSF1A, LAMTOR1, IKBKB, MLST8, MAP2K1, MAP2K2, FZD2, ULK2, WDR24, SEC13, SOS1, EIF4E2, SOS2
M39602	Neurodegeneration with brain iron accumulation (NBIA) subtypes pathway	MSigDB C2 BIOCARTA (v7.3)	4.07	5.83	5.85	41 / 44	ATG101, PIK3R4, DCAF17, ATG5, SCP2, STK11, CP, MAP1LC3A, PLA2G6, ATG16L1, ATG14, TSC1, FTL, TSC2, GTPBP2, WIPI1, ATG10, PANK2, ULK1, COASY, ATG2A, RB1CC1, DEPTOR, ACACA, MLST8, ATG7, BECN1, ATG3, ATP13A2, PIK3C3, MTOR, AKT1S1, ATG13, FA2H, RPTOR, ATG12, WIPI2, C19orf12, RHEB, PRKAA1, SPTLC1
Turquoise module (535 expressed genes)							

ID	Name	Source	Mean Decrease in Accuracy	Median Expression (NMA)	Median Expression (MA)	\# of expressed genes / \# of total genes	Expressed genes
172846	Staphylococcus aureus infection	BioSystems: KEGG	1.16	5.03	4.67	44 / 56	CFH, SELPLG, CFD, KRT10, FCGR1A, HLA-DMA, FCGR2A, HLA-DMB, FCGR2B, FCGR3A, FCGR3B, HLA-DOA, HLADPA1, HLA-DPB1, HLA-DQA1, HLADQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, FPR1, FPR2, HLA-DRB5, ICAM1, FPR3, C1QA, C1QB, C1QC, C1R, C1S, C2, C3, C3AR1, C4A, C4B, C5, C5AR1, PLG, PTAFR, CFI, ITGAL, ITGAM, ITGB2, CFB, MASP2
200309	Rheumatoid arthritis	BioSystems: KEGG	1.87	5.20	5.05	67 / 90	TGFB1, TGFB2, TGFB3, ATP6V1A, ATP6V1B1, JUN, ATP6V1B2, ATP6V1C1, IL15, ATP6V1E1, ATP6V0B, ATP6V1H, IL18, ATP6V0A1, ATP6V0D1, CSF1, ANGPT1, ATP6V0E1, HLA-DMA, HLADMB, TNFSF13, HLA-DOA, HLA-DPA1, HLA-DPB1, CD28, HLA-DQA1, CD86, HLA-DQA2, HLA-DQB1, TNFSF13B, FOS, HLA-DRA, HLA-DRB1, ATP6V1D, ATP6V1E2, ACP5, HLA-DRB5, ICAM1, ATP6V0E2, TLR2, ATP6V0A4, TLR4, TCIRG1, CCL2, CCL3, CCL3L1, ATP6V1G1, CCL5, ATP6V1F, LTB, TNF, ATP6V1C2, MMP1, TNFRSF11A, CCL20, IL1B, ITGAL, CXCL6, CXCL5, CXCL1, CTSK, ITGB2, IL23A, CTSL, CXCL12, CXCL8, ATP6V0A2

213780	Tuberculosis	BioSystems: KEGG	1.00	5.28	5.21	142 / 179	HSPD1, IL10RA, IL10RB, RAF1, MYD88, IL12A, MRC1, TRADD, AKT3, SPHK2, ATP6V0B, TRAF6, IL18, ATP6V0A1, CEBPB, CEBPG, CALM1, HLA-DMA, HLA-DMB, CALM2, HLA-DOA, CALM3, HLA-DPA1, CALML3, HLA-DPB1, HLADQA1, HLA-DQA2, HLA-DQB1, CAMK2B, CAMK2D, HLA-DRA, CAMK2G, HLADRB1, CAMP, HLA-DRB5, SRC, CYP27B1, BAD, APAF1, RIPK2, FADD, CASP3, ARHGEF12, CLEC7A, BAX, IRAK2, TCIRG1, CASP8, CASP9, CASP10, LAMP1, RELA, BCL2, TLR6, CALML5, CR1, ITGAM, ITGAX, RFX5, CREB1, ITGB2, IL23A, RFXAP, CALML6, CREBBP, CD209, STAT1, BID, NOD2, TGFB1, TGFB2, RHOA, IFNGR1, TGFB3, IFNGR2, JAK1, JAK2, KSR1, MALT1, PLA2R1, CLEC4E, CORO1A, ATP6V1H, MAPK14, ATP6V0D1, PPP3CA, PPP3CB, MAPK12, PPP3CC, PPP3R1, FCER1G, FCGR1A, CD14, FCGR2A, CIITA, FCGR2B, FCGR3A, FCGR3B, PIK3C3, CARD9, SPHK1, MRC2, TIRAP, RFXANK, NFKB1, TLR1, TLR2, ATP6VOA4, TLR4, CYCS, NFYA, NFYB, NFYC, SYK, RAB7A, CD74, C3, LSP1, AKT1, AKT2, BCL10, TNF, CALML4, MAPK1, MAPK3, EEA1, TNFRSF1A, MAPK8, MAPK11, IL1B, MAPK9, MAPK13, CTSD, NOS2, RAB5A, RAB5B, PLK3, CTSS, EP300, HSPA9, RAB5C, ATP6V0A2

83078	Hematopoietic cell lineage	BioSystems: KEGG	3.38	4.37	3.97	70 / 97	IL11RA, EPOR, ANPEP, HLA-DMA, HLADMB, HLA-DOA, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLADRA, HLA-DRB1, HLA-DRB5, CD55, ITGA6, ITGA1, ITGA2, ITGA3, ITGA4, ITGA5, CR1, ITGAM, TFRC, CD1A, CD1C, CD1D, CD1E, CD2, CD3D, CD3E, CD3G, CD4, CD5, CSF1, CD7, CSF1R, CD8A, CD8B, KITLG, CD9, CSF3, CSF3R, FCGR1A, CD14, CD19, MS4A1, CD22, IL1R2, CD33, CD34, CD36, CD37, CD38, CD44, CD24, CD59, TNF, MME, IL1B, IL1R1, KIT, IL4R, IL5RA, IL6R, IL7, IL7R, GP1BA, GP5, GP9
M13950	Asthma	MSigDB C2 BIOCARTA (v7.3)	1.74	6.62	6.27	17 / 30	TNF, FCER1A, MS4A2, FCER1G, EPX, HLA-DMA, HLA-DMB, HLA-DOA, HLADPA1, HLA-DPB1, HLA-DQA1, HLADQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, CD40
1469482	Th17 cell differentiation	BioSystems: KEGG	1.49	5.53	5.48	87 / 107	IL12RB1, HIF1A, RARA, HLA-DMA, HLADMB, HLA-DOA, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, FOS, HLA-DRA, HLA-DRB1, HLA-DRB5, TBX21, GATA3, IRF4, RELA, LCK, RUNX1, IL23A, ZAP70, RXRA, RXRB, STAT1, STAT3, STAT5A, STAT5B, STAT6, CHUK, TGFB1, TYK2, IFNGR1, IFNGR2, JAK1, JAK2, JAK3, TGFBR1, TGFBR2, JUN, CD3D, CD3E, CD3G, CD247, CD4, MAPK14, PPP3CA, PPP3CB, MAPK12, PPP3CC, PPP3R1, LAT, NFATC1, NFATC2, NFATC3, MTOR, NFKB1, IL21R, NFKBIA, NFKBIB, NFKBIE, AHR, RORA, RORC, PRKCQ, PLCG1, MAPK1, MAPK3, IKBKB, MAPK8, MAPK11, IL1B, MAPK9, IL1R1, MAPK13, IL1RAP, IL2RB, IL4R, IL6R, IL6ST, SMAD2, SMAD3, HSP90AA1, SMAD4, IL27RA, HSP90AB1

169642	Toxoplasmosis	BioSystems: KEGG	4.44	5.71	5.63	96 / 113	IL10RA, IL10RB, MYD88, IL12A, AKT3, TRAF6, HLA-DMA, HLA-DMB, HLA-DOA, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLADQA2, HLA-DQB1, HLA-DRA, PDPK1, HLA-DRB1, HLA-DRB5, BAD, LAMA1, CASP3, LAMA2, LAMA3, LAMA4, ITGA6, LAMA5, LAMB1, LAMB2, BIRC2, CASP8, BIRC3, CASP9, LAMB3, LAMC1, LAMC2, TAB2, RELA, BCL2, BCL2L1, LY96, ITGB1, LDLR, STAT1, STAT3, PPIF, CHUK, TGFB1, TYK2, TGFB2, IFNGR1, TGFB3, IFNGR2, JAK1, JAK2, MAPK14, MAPK12, PIK3R6, CIITA, PIK3CG, NFKB1, NFKBIA, TLR2, NFKBIB, TLR4, CYCS, CD40, SOCS1, AKT1, AKT2, CCR5, GNAI1, GNAI2, TNF, GNAI3, TAB1, GNAO1, MAPK1, MAPK3, TNFRSF1A, IKBKB, MAPK8, MAPK11, MAPK9, MAPK13, MAP3K7, MAP2K3, HSPA1A, MAP2K6, HSPA1B, HSPA1L, HSPA2, NOS2, PIK3R5, HSPA6, HSPA8, ALOX5

217173	Influenza A	BioSystems: KEGG	1.86	5.74	5.69	137 / 173	RAF1, MYD88, IL12A, DNAJB1, AK MAP2K4, IL18, TRIM25, RAE1, TMPRSS13, DDX58, HLA-DMA, HLADMB, TNFSF10, HLA-DOA, HLA-DPA1, HLA-DPB1, CXCL10, HLA-DQA1, HLADQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, TICAM1, NLRX1, HLA-DRB5, ICAM1, PIK3R3, ACTB, SOCS3, NUP98, CASP1, ACTG1, TMPRSS4, CASP9, OAS1, OAS2, OAS3, IRF3, IRF7, RELA, TNFRSF10D, XPO1, TNFRSF10C, TNFRSF10B, HNRNPUL1, TNFRSF10A, FAS, FASLG, ADAR, ATF2, CREBBP, GSK3B, STAT1, STAT2, NLRP3, IFNAR1, IFNAR2, IVNS1ABP, TYK2, IFNGR1, IFNGR2, JAK1, JAK2, IFIH1, IRF9, JUN, CPSF4, RSAD2, MAPK14, RNASEL, MAPK12, MAVS, CIITA, IKBKE, PIK3CA, PABPN1, PIK3CB, EIF2S1, PIK3CD, PIK3R1, FDPS, NXT1, PYCARD, FURIN, NFKB1, TBK1, NFKBIA, NFKBIB, TLR3, TLR4, CYCS, AGFG1, TMPRSS2, PRKCA, PRKCB, CCL2, AKT1, CCL5, AKT2, TNF, EIF2AK4, MAPK1, MAPK3, TNFRSF1A, PLG, EIF2AK1, IKBKB, MAPK8, MAPK11, IL1B, MAPK9, MAPK13, MAP2K1, MAP2K2, MAP2K3, HSPA1A, MAP2K6, HSPA1B, HSPA1L, MAP2K7, HSPA2, EIF2AK2, EIF2AK3, DNAJC3, HSPA6, DDX39B, HSPA8, IL33, EP300, NXF1, MX1, CXCL8, VDAC1, PML, KPNA1, KPNA2
M615	Intestinal immune network for IgA production	MSigDB C2 BIOCARTA (v7.3)	2.18	4.74	4.53	$30 / 48$	TGFB1, TNFRSF13C, IL15, IL15RA, LTBR, ICOS, ITGA4, CCL28, HLA-DMA, PIGR, TNFSF13, HLA-DMB, HLA-DOA, HLA-DPA1, HLA-DPB1, CD28, CXCR4, HLA-DQA1, CD86, HLA-DQA2, MADCAM1, HLA-DQB1, ITGB7, TNFSF13B, HLA-DRA, CXCL12, HLADRB1, HLA-DRB5, MAP3K14, CD40

1470924	Interleukin-10 signaling BioSystems: REACTOME						

193147	Osteoclast differentiation	BioSystems: KEGG	1.09	4.78	4.64	110 / 130	CYLD, AKT3, LILRB3, TRAF2, LILRA2, TRAF6, SPI1, CAMK4, LILRB2, FOS, FOSB, FOSL2, ACP5, PIK3R3, NCF1, MAP3K14, SOCS3, OSCAR, BLNK, LILRA6, GRB2, TAB2, NCF2, NCF4, RELA, RELB, SIRPB1, SIRPA, TNFRSF11A, LCK, PPARG, TEC, LCP2, CREB1, LILRB1, STAT1, STAT2, TNFRSF11B, GAB2, CHUK, IFNAR1, IFNAR2, SIRPG, TGFB1, TYK2, TGFB2, IFNGR1, IFNGR2, JAK1, TGFBR1, TGFBR2, TYROBP, IRF9, JUN, JUNB, JUND, MAPK14, PPP3CA, CSF1, PPP3CB, MAPK12, CSF1R, PPP3CC, PPP3R1, FCGR1A, NFATC1, FCGR2A, NFATC2, FCGR2B, FCGR3A, FCGR3B, PIK3CA, PIK3CB, PIK3CD, SQSTM1, PIK3R1, NFKB1, NFKB2, NFKBIA, MITF, TREM2, SYK, SOCS1, AKT1, AKT2, TNF, TAB1, PLCG2, MAPK1, MAPK3, TNFRSF1A, IKBKB, MAPK8, MAPK11, IL1B, MAPK9, FHL2, IL1R1, MAPK13, MAP2K1, MAP3K7, FYN, MAP2K6, CTSK, MAP2K7, LILRB5, LILRA5, RAC1, LILRB4, CYBA
1269330	TNF receptor superfamily (TNFSF) members mediating noncanonical NF-kB pathway	BioSystems: REACTOME	2.16	4.05	3.99	14 / 18	TNFRSF12A, TNFRSF13C, TNFSF14, TNFSF12, BIRC2, BIRC3, TNFSF13B, LTB, TRAF2, TRAF3, LTBR, TNFRSF11A, MAP3K14, CD40
1269174	Translocation of ZAP-70 to Immunological synapse	BioSystems: REACTOME	1.64	5.13	4.57	17 / 22	HLA-DPA1, HLA-DPB1, HLA-DQA1, HLADQA2, ZAP70, HLA-DQB1, PTPN22, HLADQB2, HLA-DRA, CD3D, HLA-DRB1, CD3E, CD3G, HLA-DRB5, CD247, CD4, LCK

137998	TCR signaling in naive CD4+ T cells	BioSystems: Pathway Interaction Database	3.93	4.77	4.64	56 / 60	STIM1, RASSF5, MALT1, RASGRP1, ORAI1, PAG1, PTPN6, RAP1A, CD3D, CD3E, CD3G, TRAF6, PTPN11, CD247, CD4, PTPRC, CSK, CD28, CD86, MAP3K8, MAP4K1, HLA-DRA, PDPK1, HLA-DRB1, SH3BP2, GRAP2, MAP3K14, DBNL, SHC1, GRB2, PRKCA, PRKCB, PRKCE, SLA2, AKT1, CARD11, NCK1, BCL10, STK39, PRKCQ, PLCG1, LCK, IKBKB, PTEN, LCP2, CBL, FYB1, CDC42, FYN, ZAP70, VAV1, ITK, GAB2, CHUK, RASGRP2, SOS1
Yellow module (675 expressed genes)							
ID	Name	Source	Mean Decrease in Accuracy	Median Expression (NMA)	Median Expression (MA)	\# of expressed genes / \# of total genes	Expressed genes
1268690	Eukaryotic Translation Elongation	BioSystems: REACTOME	4.27	6.75	6.65	83 / 98	RPL21, RPL22, RPL23A, RPL24, RPL26, RPL27, RPL30, RPL27A, RPL28, RPL29, RPL31, RPL36, RPL32, RPL34, RPL35A, RPL36AL, RPL37, RPL37A, RPL38, RPL41, RPLPO, RPLP1, RPLP2, RPS2, RPS3, RPS3A, RPS5, RPS6, RPS7, RPS8, RPS9, RPS11, RPS12, RPS13, RPS14, RPS15, RPS15A, RPS16, RPS17, RPS18, RPS19, RPS20, RPSA, RPS21, RPS23, RPS24, RPL14, RPS25, RPS26, RPS27, RPS27A, RPS28, RPS29, RPL39L, RPS27L, EEF1A1, RPL10A, RPL23, EEF1B2, UBA52, EEF1D, EEF2, FAU, RPL26L1, RPL22L1, RPL35, RPL13A, RPL3, RPL4, RPL5, RPL6, RPL7, RPL7A, RPL8, RPL9, RPL11, RPL12, RPL13, RPL15, RPL17, RPL18, RPL18A, RPL19

M39495	Cytoplasmic Ribosomal Proteins	MSigDB C2 BIOCARTA (v7.3)	4.3	6.78	6.69	79 / 90	RPL10A, RPL21, RPL22, RPL23A, RPL23, RPL24, RPL26, RPL27, RPL30, RPL27A, RPL28, RPL29, UBA52, RPL31, RPL36, RPL32, RPL34, FAU, RPL35A, RPL37, RPL37A, RPL38, RPL41, RPLP0, RPLP1, RPLP2, RPS2, RPS3, RPS3A, RPS5, RPS6, RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, RPS7, RPS8, RPS9, RPS11, RPS12, RPS13, RPS14, RPS15, RPS15A, MRPL19, RPS16, RPS17, RPS18, RPS19, RPS20, RPSA, RPS21, RPS23, RPS24, RPL14, RPS25, RPS26, RPS27, RPL35, RPS27A, RPS28, RPS29, RPL13A, RPL3, RPL4, RPL5, RPL6, RPL7, RPL7A, RPL8, RPL9, RPL11, RPL12, RPL13, RPL15, RPL17, RPL18, RPL18A, RPL19
1268691	Peptide chain elongation	BioSystems: REACTOME	2.31	6.79	6.69	81 / 93	RPL10A, RPL21, RPL22, RPL23A, RPL23, RPL24, RPL26, RPL27, RPL30, RPL27A, RPL28, RPL29, UBA52, RPL31, RPL36, RPL32, EEF2, RPL34, FAU, RPL35A, RPL36AL, RPL37, RPL37A, RPL38, RPL41, RPLP0, RPLP1, RPLP2, RPS2, RPS3, RPS3A, RPS5, RPL26L1, RPS6, RPS7, RPS8, RPS9, RPS11, RPS12, RPS13, RPS14, RPS15, RPS15A, RPS16, RPS17, RPS18, RPS19, RPS20, RPSA, RPS21, RPS23, RPS24, RPL14, RPS25, RPL22L1, RPS26, RPL35, RPS27, RPS27A, RPS28, RPS29, RPL39L, RPL13A, RPL3, RPL4, RPL5, RPL6, RPL7, RPL7A, RPL8, RPL9, RPL11, RPL12, RPL13, RPS27L, RPL15, EEF1A1, RPL17, RPL18, RPL18A, RPL19

1268681	Formation of a pool of free 40S subunits	BioSystems: REACTOME	1.62	6.7	6.63	92 / 107	RPL21, RPL22, RPL23A, RPL24, RPL26, RPL27, RPL30, RPL27A, RPL28, RPL29, RPL31, RPL36, RPL32, RPL34, RPL35A, RPL36AL, RPL37, RPL37A, RPL38, RPL41, RPLPO, RPLP1, RPLP2, RPS2, RPS3, RPS3A, RPS5, RPS6, RPS7, RPS8, RPS9, RPS11, EIF3E, RPS12, RPS13, RPS14, RPS15, RPS15A, RPS16, RPS17, RPS18, RPS19, RPS20, RPSA, RPS21, RPS23, RPS24, RPL14, RPS25, RPS26, RPS27, RPS27A, RPS28, RPS29, RPL39L, RPS27L, RPL10A, RPL23, UBA52, FAU, RPL26L1, EIF3L, EIF3K, EIF3A, EIF3B, RPL22L1, EIF3C, EIF3D, RPL35, EIF3F, EIF3G, EIF3H, EIF3I, EIF3J, RPL13A, RPL3, RPL4, RPL5, RPL6, EIF3M, RPL7, RPL7A, RPL8, RPL9, RPL11, RPL12, RPL13, RPL15, RPL17, RPL18, RPL18A, RPL19
1268692	Eukaryotic Translation Termination	BioSystems: REACTOME	2.91	6.68	6.63	84 / 97	RPL21, RPL22, RPL23A, RPL24, RPL26, RPL27, RPL30, RPL27A, RPL28, RPL29, RPL31, RPL36, RPL32, RPL34, RPL35A, RPL36AL, RPL37, RPL37A, RPL38, RPL41, RPLPO, RPLP1, RPLP2, RPS2, RPS3, RPS3A, TRMT112, RPS5, RPS6, RPS7, RPS8, ETF1, RPS9, RPS11, RPS12, RPS13, RPS14, RPS15, RPS15A, APEH, RPS16, RPS17, RPS18, RPS19, RPS20, RPSA, RPS21, RPS23, RPS24, RPL14, RPS25, RPS26, RPS27, RPS27A, RPS28, RPS29, RPL39L, GSPT1, RPS27L, RPL10A, RPL23, UBA52, FAU, N6AMT1, RPL26L1, RPL22L1, RPL35, RPL13A, RPL3, RPL4, RPL5, RPL6, RPL7, RPL7A, RPL8, RPL9, RPL11, RPL12, RPL13, RPL15, RPL17, RPL18, RPL18A, RPL19

M189	Ribosome	MSigDB C2 BIOCARTA (v7.3)	3.73	6.68	6.59	79 / 88	RPL21, RPL10A, RPL22, RPL23A, RPL23, RPL24, RPL26, RPL27, RPL30, RPL27A, RPL28, RPL29, UBA52, RPL31, RPL32, RPL36, RPL34, RPL35A, FAU, RPL36AL, RPL37, RPL37A, RPL38, RPL41, RPLPO, RPLP1, RPLP2, RPS2, RPS3, RPS3A, RPS5, RPL26L1, RPS6, RPS7, RPS8, RPS9, RPS11, RPS12, RPS13, RPS15, RPS15A, MRPL13, RPS16, RPS17, RPS18, RPS19, RPS20, RPSA, RPS21, RPS23, RPL14, RPS24, RPS25, RPL22L1, RPS26, RPL35, RPS27, RPS27A, RPS28, RPS29, RPL13A, RPL3, RPL4, RPL5, RPL6, RPL7, RPL7A, RSL24D1, RPL8, RPL9, RPL11, RPL12, RPS27L, RPL13, RPL15, RPL17, RPL18, RPL18A, RPL19
1269718	Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC)	BioSystems: REACTOME	1.48	6.77	6.68	86 / 100	RPL21, RPL22, RPL23A, RPL24, RPL26, RPL27, RPL30, RPL27A, RPL28, RPL29, RPL31, RPL36, RPL32, RPL34, RPL35A, RPL36AL, RPL37, RPL37A, RPL38, RPL41, RPLPO, RPLP1, RPLP2, RPS2, RPS3, RPS3A, RPS5, RPS6, RPS7, RPS8, ETF1, RPS9, RPS11, RPS12, RPS13, RPS14, RPS15, RPS15A, RPS16, RPS17, NCBP1, RPS18, RPS19, RPS20, RPSA, RPS21, RPS23, RPS24, RPL14, RPS25, RPS26, UPF1, RPS27, RPS27A, RPS28, RPS29, RPL39L, PABPC1, GSPT1, RPS27L, RPL10A, NCBP2, RPL23, UBA52, FAU, RPL26L1, EIF4G1, RPL22L1, RPL35, RPL13A, RPL3, RPL4, RPL5, RPL6, RPL7, RPL7A, RPL8, RPL9, RPL11, RPL12, RPL13, RPL15, RPL17, RPL18, RPL18A, RPL19

1268686	GTP hydrolysis and joining of the 60S ribosomal subunit	BioSystems: REACTOME	2.78	6.63	6.60	102 / 119	RPL21, RPL22, RPL23A, RPL24, RPL26, RPL27, RPL30, RPL27A, RPL28, RPL29, RPL31, RPL36, RPL32, RPL34, RPL35A, RPL36AL, RPL37, RPL37A, RPL38, RPL41, RPLPO, RPLP1, EIF4H, RPLP2, RPS2, RPS3, RPS3A, RPS5, RPS6, RPS7, RPS8, RPS9, RPS11, EIF3E, RPS12, RPS13, RPS14, RPS15, RPS15A, RPS16, RPS17, RPS18, RPS19, RPS20, RPSA, RPS21, RPS23, RPS24, RPL14, RPS25, RPS26, RPS27, RPS27A, RPS28, RPS29, RPL39L, RPS27L, RPL10A, RPL23, UBA52, FAU, EIF2S1, RPL26L1, EIF4A1, EIF4A2, EIF4B, EIF4E, EIF3L, EIF4G1, EIF2S2, EIF5, EIF5B, EIF3K, EIF3A, EIF3B, RPL22L1, EIF3C, EIF3D, RPL35, EIF3F, EIF3G, EIF3H, EIF3I, EIF3J, RPL13A, RPL3, RPL4, RPL5, RPL6, EIF3M, RPL7, RPL7A, RPL8, RPL9, RPL11, RPL12, RPL13, RPL15, RPL17, RPL18, RPL18A, RPL19

1339149	Selenoamino acid metabolism	BioSystems: REACTOME	1.18	6.57	6.50	106 / 123	RPL21, RPL22, RPL23A, EEFSEC, RPL24, RPL26, EPRS1, RPL27, RPL30, RPL27A, RPL28, RPL29, RPL31, RPL36, RPL32, RPL34, RPL35A, RPL36AL, RPL37, RPL37A, RPL38, RPL41, AIMP2, RARS1, RPLP0, RPLP1, RPLP2, AIMP1, RPS2, RPS3, MARS1, RPS3A, MAT1A, IARS1, RPS5, EEF1E1, RPS6, RPS7, RPS8, RPS9, RPS11, RPS12, RPS13, RPS14, LARS1, RPS15, RPS15A, RPS16, RPS17, RPS18, RPS19, DARS1, RPS20, RPSA, RPS21, RPS23, SCLY, RPS24, RPL14, RPS25, RPS26, RPS27, RPS27A, RPS28, RPS29, GNMT, RPL39L, PAPSS2, PAPSS1, HNMT, GSR, RPS27L, TXNRD1, RPL10A, RPL23, UBA52, PSTK, SEPSECS, FAU, KARS1, SARS1, RPL26L1, INMT, AHCY, SECISBP2, CTH, RPL22L1, RPL35, RPL13A, QARS1, RPL3, RPL4, RPL5, RPL6, RPL7, RPL7A, RPL8, RPL9, RPL11, RPL12, RPL13, RPL15, RPL17, RPL18, RPL18A, RPL19

| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

RPL21, RPL22, RPL23A, RPL24, SMG1, RPL26, CASC3, RPL27, RPL30, RPL27A, RPL28, RPL29, RPL31, RPL36, RPL32, MAGOH, RPL34, RPL35A, RPL36AL, RPL37, RPL37A, RPL38, RPL41, RPLPO, RPLP1, RPLP2, RPS2, RPS3, RPS3A, EIF4A3, RPS5, RPS6, RPS7, RPS8, ETF1, RPS9, RPS11, RPS12, RPS13, RPS14, RPS 15, RPS15A, MAGOHB, RPS16, RPS17, PNRC2, NCBP1, RPS18, RPS19, RPS20, RPSA, RPS21, RPS23, RPS24, SMG5, RPL14, UPF3A, RPS25, RPS26, UPF1, RPS27, RPS27A, RPS28, RPS29, RPL39L, PABPC1, GSPT1, RPS27L, RPL10A, NCBP2, RPL23, PPP2CA, SMG8, PPP2R1A, UBA52, PPP2R2A, FAU, SMG7, UPF2, RNPS1, RPL26L1, EIF4G1, SMG9, RBM8A,
RPL22L1, RPL35, RPL13A, RPL3, RPL4, RPL5, RPL6, RPL7, RPL7A, RPL8, RPL9, RPL11, RPL12, RPL13, RPL15, DCP1A, RPL17, RPL18, SMG6, RPL18A, RPL19

1269115	Influenza Viral RNA Transcription and Replication	BioSystems: REACTOME	4.63	6.32	6.28	125 / 138	RPL21, RPL22, IPO5, RPL23A, TPR, SEH1L, RPL24, RPL26, NUP50, RPL27, RPL30, RPL27A, RPL28, RPL29, RANBP2, RPL31, RPL36, RPL32, RPL34, RPL35A, RPL36AL, RPL37, RPL37A, RPL38, RPL41, RPLPO, NUP85, RPLP1, RAE1, NUP107, RPLP2, RPS2, RPS3, RPS3A, RPS5, RPS6, POLR2A, POLR2B, POLR2C, POLR2D, RPS7, RPS8, POLR2E, RPS9, POLR2G, POLR2H, RPS11, POLR2I, RPS12, NUP88, POLR2J, RPS13, NUP98, RPS14, POLR2K, RPS15, POLR2L, RPS15A, NUP43, RPS16, RPS17, RPS18, RPS19, RPS20, RPSA, RPS21, RPS23, NUP62, RPS24, NUP214, RPL14, RPS25, RPS26, RPS27, RPS27A, NUP42, RPS28, NUP58, RPS29, RPL39L, POM121C, GRSF1, NUP35, RPS27L, NUP54, NUP205, RPL10A, RPL23, UBA52, GTF2F1, GTF2F2, FAU, AAAS, NDC1, POM121, NUP155, NUP37, RPL26L1, NUP210, NUP133, RPL22L1, NUP188, NUP93, RPL35, RPL13A, RPL3, DNAJC3, RPL4, RPL5, NUP160, RPL6, RPL7, RPL7A, RPL8, NUP153, RPL9, RPL11, RPL12, HSP90AA1, RPL13, RPL15, RPL17, RPL18, RPL18A, RPL19

1269109	Influenza Life Cycle	BioSystems: REACTOME	4.59	6.42	6.37	$134 / 147$

RPL21, RPL22, IPO5, RPL23A, TPR, SEH1L, RPL24, RPL26, NUP50, RPL27, RPL30, RAN, RPL27A, RPL28, RPL29, RANBP2, RPL31, RPL36, RPL32, RPL34, RPL35A, RPL36AL, RPL37, RPL37A RPL38, RPL41, RPLP0, NUP85, RPLP1, RAE1, NUP107, RPLP2, CALR, RPS2, RPS3, RPS3A, RPS5, RPS6, CANX, POLR2A, POLR2B, POLR2C, POLR2D, RPS7, RPS8, POLR2E, RPS9, POLR2G, POLR2H, RPS11, POLR2I, RPS12, NUP88, POLR2J, RPS13, NUP98, RPS14, POLR2K, RPS15, POLR2L, RPS15A, NUP43, RPS16, RPS17, RPS18, RPS19, RPS20, RPSA, RPS21, RPS23, NUP62, RPS24, NUP214, RPL14, RPS25, RPS26, RPS27, RPS27A, NUP42, RPS28, NUP58, XPO1, RPS29, RPL39L, POM121C, GRSF1, NUP35, RPS27L, NUP54, NUP205, RPL10A, RPL23, UBA52, GTF2F1, GTF2F2, FAU, AAAS, NDC1, POM121, NUP155, NUP37, RPL26L1, NUP210, CLTA, CLTC, NUP133, RPL22L1, NUP188, NUP93, RPL35, RPL13A, HSPA1A, RPL3, DNAJC3, RPL4, RPL5, NUP160, RPL6, RPL7, RPL7A, RPL8, NUP153, RPL9, RPL11, RPL12, HSP90AA1, RPL13, RPL15, RPL17, KPNA1, RPL18, KPNB1, RPL18A, RPL19

1269108	Influenza Infection	BioSystems: REACTOME	5.35	6.30	6.27	144 / 158	KPNA4, RPL21, KPNA5, RPL22, IPO5, RPL23A, TPR, SEH1L, RPL24, RPL26, NUP50, RPL27, RPL30, RAN, RPL27A, RPL28, RPL29, RANBP2, RPL31, RPL36, RPL32, RPL34, RPL35A, RPL36AL, RPL37, RPL37A, RPL38, RPL41, RPLPO, NUP85, RPLP1, RAE1, NUP107, RPLP2, CALR, RPS2, RPS3, RPS3A, RPS5, RPS6, CANX, POLR2A, POLR2B, POLR2C, POLR2D, RPS7, RPS8, POLR2E, RPS9, POLR2G, POLR2H, RPS11, POLR2I, RPS12, NUP88, POLR2J, RPS13, NUP98, RPS14, POLR2K, RPS15, POLR2L, RPS15A, NUP43, RPS16, RPS17, RPS18, RPS19, RPS20, RPSA, RPS21, RPS23, NUP62, RPS24, NUP214, RPL14, RPS25, RPS26, RPS27, RPS27A, NUP42, RPS28, NUP58, XPO1, RPS29, RPL39L, POM121C, GRSF1, NUP35, RPS27L, NUP54, NUP205, RPL10A, TGFB1, RPL23, KPNA7, UBA52, GTF2F1, CPSF4, GTF2F2, FAU, AAAS, NDC1, POM121, NUP155, ISG15, PABPN1, NUP37, RPL26L1, NUP210, CLTA, CLTC, NUP133, RPL22L1, NUP188, NUP93, RPL35, RPL13A, HSPA1A, EIF2AK2, RPL3, DNAJC3, RPL4, RPL5, NUP160, RPL6, RPL7, RPL7A, RPL8, NUP153, RPL9, RPL11, RPL12, HSP90AA1, RPL13, RPL15, RPL17, KPNA1, RPL18, KPNB1, KPNA2, RPL18A, KPNA3, RPL19

1383085	rRNA processing	BioSystems: REACTOME	3.03	5.52	5.49	180 / 203	RPL21, RPL22, DDX47, RPL23A, UTP6, RPL24, RPL26, RPL27, RPL30, RPL27A, RPL28, RPL29, RPL31, RPL32, RPL34, RPL35A, RPL36AL, RPL37, RPL37A, RPP21, RPL38, RPL41, RPLP0, RPLP1, RPLP2, FBL, RPS2, RPS3, RPS3A, RPP40, RPS5, RPS6, MRM1, SENP3, RPS7, RPS8, RPS9, NOL6, WDR46, RPS11, RPS12, BMS1, RPS13, RPS14, RPS15, RPS15A, PNO1, RPS16, RPS17, WDR18, RIOK3, EXOSC8, RPS18, RPS19, RPS20, RPS21, EXOSC5, RPS23, RPS24, RPS25, RPS26, RPS27, RPS27A, RPS28, RPS29, RPL39L, TEX10, ELAC2, WDR43, RPL10A, RPP25, RPL23, WDR3, UBA52, TRMT10C, FAU, DIMT1, WDR75, GAR1, UTP15, RRP36, IMP4, EXOSC6, PWP2, BYSL, EMG1, C1D, SNU13, NOC4L, UTP20, RRP7A, BOP1, NOP10, RPL22L1, UTP3, TSR3, NOP2, EXOSC4, MRM2, NSUN4, RPL36, EXOSC9, EXOSC10, XRN2, RIOK1, DCAF13, DDX49, WDR36, NOP56, DHX37, DDX52, TRMT112, NOB1, RPP30, RPP38, EXOSC3, EXOSC1, NOL11, THUMPD1, RPSA, RPL14, HEATR1, NOL9, ERI1, RPP14, KRR1, NHP2, MTERF4, EXOSC2, TBL3, RPS27L, BUD23, FCF1, MRM3, NOP58, UTP18, NOP14, UTP25, TFB1M, PELP1, TSR1, CSNK1D, UTP11, CSNK1E, RRP9, RPL26L1, UTP4, PES1, NAT10, RCL1, PDCD11, WDR12, ISG20L2, LTV1, MPHOSPH10, MPHOSPH6, RPL35, PRORP, MTREX, RPL13A, RIOK2, EXOSC7, IMP3, RPL3, RPL4, RPL5, RPL6, RPL7, RPL7A, RPL8, RPL9, RPL11, RPL12, RPL13, RPL15, RPL17, UTP14C, RPL18, RPL18A, RPL19

1270158	Metabolism of amino acids and derivatives	BioSystems: REACTOME	8.68	5.93	5.88	288 / 367	RPL21, RPL22, RPL23A, TPO, RPL24 HGD, RPL26, EPRS1, RPL27, RPL30, RPL27A, RPL28, PHYKPL, RPL29, RPL31, RPL32, RPL34, RPL35A, RPL36AL, RPL37, RPL37A, RPL38, RPL41, GLS2, RPLPO, RPLP1, GAMT, ACADSB, IDO1, AUH, RPLP2, ACAT1, AIMP1, PDHB, RPS2, RPS3, MARS1, RPS3A, MAT1A, RPS5, PSMA1, RPS6, PSMA2, PSMA3, PSMA4, PSMA5, PSMA6, BCKDK, PSMA7, RPS7, PSMB1, PSMB2, RPS8, RPS9, PSMB3, PSMB4, PSMB5, RPS11, PSMB6, RPS12, PSMB7, RPS13, NMRAL1, RPS14, PSMB8, RPS15, PSMB9, RPS15A, SRM, PSMB10, PSMC1, GATM, PIPOX, PSMC2, PSMC3, PSMC4, PSMC5, RPS16, BCAT1, PSMC6, RPS17, PSMD1, BCAT2, PSMD2, PSMD3, PSMD4, RPS18, GCDH, RPS19, DARS1, PSMD5, RPS20, PSMD7, BCKDHA, SERINC2, BCKDHB, PSMD8, PSMD9, RPS21, RPS23, RPS24, PSMD11, PSMD12, RPS25, PSMD13, MCCC2, UROC1, RPS26, PSME1, RPS27, RPS27A, PSME2, RPS28, MCCC1, PSPH, RPS29, DBT, TST, GNMT, RPL39L, NDUFAB1, DCT, HNMT, SQOR, DDC, ENOPH1, PHGDH, NAGS, CKB, TXNRD1, IVD, RPL10A, AFMID, PAOX, RPL23, PSMD6, CKMT1B, FAH, CKMT2, UBA52, DUOX1, FAU, KARS1, SARS1, PSME4, HIBCH, GRHPR, SUOX, GCLC, GCLM, HPD, SERINC1, CSAD, GLS, GLUD1, AHCY, GLUL, NQO1, DIO1, DIO2, PYCR1, ALDH18A1, DLAT, SECISBP2, DLD, SERINC3, LIPT2, DLST, RPL22L1, ALDH9A1, PYCR2, SMOX, QARS1, CARNS1, GPT2, QDPR, DHTKD1, IL4I1, BBOX1, ALDH6A1, KYNU, PYCR3, TAT, GOT1, GOT2,

							CKMT1A, EEFSEC, LIAS, PSAT1, RPL36, NAALAD2, PSMF1, MRI1, ASRGL1, AIMP2, RARS1, HYKK, FOLH1, AZIN2, SEM1, ASPG, IARS1, EEF1E1, GPT, IYD, LARS1, SHMT1, DUOX2, OAT, DDO, RPSA, OAZ1, OAZ2, OCA2, SCLY, RPL14, ODC1, PPM1K, PAPSS2, PAPSS1, OGDH, HIBADH, PDHX, KYAT1, KMO, GSR, SLC3A2, RPS27L, AZIN1, ARG2, APIP, GSTZ1, SLC6A12, LIPT1, PSTK, SEPSECS, CRYM, ACAD8, MTAP, ADO, GCAT, AASS, RPL26L1, INMT, ETHE1, ASL, SLC25A15, ASNS, SLC25A10, ASS1, CNDP2, MTR, AGMAT, MTRR, HAAO, KYATЗ, SLC7A5, ALDH4A1, CTH, PSME3, CARNMT1, RPL35, ADI1, SERINC5, AADAT, RPL13A, PCBD1, PSMD14, OAZ3, RPL3, RPL4, RPL5, RPL6, RPL7, RPL7A, RPL8, ALDH7A1, RPL9, RPL11, RPL12, RPL13, RPL15, HDC, RPL17, RPL18, RPL18A, TPH1, RPL19

1269056	Infectious disease	BioSystems: REACTOME	3.17	6.06	6.05	349 / 393	RPL21, CBLL1, CDK9, RPL22, RPL23A, TPR, SEH1L, RPL24, RPL26, RPL27, RPL30, EPS15, RPL27A, RPL28, STAM2, RPL29, RPL31, RPL32, ERCC2, RPL34, RPL35A, RPL36AL, ERCC3, RPL37, RPL37A, RPL38, RPL41, RPLPO, NUP85, RPLP1, HLA-A, RPLP2, RPS2, RPS3, RPS3A, RPS5, RPS6, RPS7, RPS8, RPS9, RPS11, RPS12, RPS13, RPS14, RPS15, RPS15A, RPS16, APOBEC3G, RPS17, RPS18, RPS19, RCC1, RPS20, RPS21, TSG101, RPS23, NUP62, RPS24, RPS25, HMGA1, RPS26, RPS27, RPS27A, RPS28, RPS29, RPL39L, NUP54, TXNRD1, RPL23, MET, KPNA7, UBA52, UBB, UBC, AP2M1, FAU, AP1S1, AP2S1, AP2A1, AP2A2, AP1B1, AP2B1, AP1G1, NUP37, NMT2, CLTA, FEN1, CLTC, GTF2H5, ANTXR1, CCR5, RPL22L1, HSPA1A, MNAT1, HSP90AA1, HSP90AB1, CHMP4C, MAP2K4, RPL36, PSMF1, VPS37A, RAE1, SLC25A4, AP1S3, NELFCD, NELFA, VPS4B, POLR2A, CHMP5, POLR2B, SH3GL1, POLR2C, POLR2D, SH3GL3, POLR2E, POLR2G, POLR2H, POLR2I, POLR2J, NELFB, POLR2K, POLR2L, VTA1, XPO1, XRCC4, XRCC5, SKP1, POM121C, PPIA, ARF1, NUP35, CHMP2B, NCBP2, PACS1, ATP6V1H, CHMP4A, NDC1, NUP155, ISG15, NUP133, CHMP3, NUP93, CTNNB1, CTNND1, MAP2K1, MAP2K2, FYN, MAP2K3, MAP2K6, MAP2K7, EIF2AK2, DNAJC3, XRCC6, NUP50, RNMT, RNGTT, VPS4A, PSMA1, PSMA2, PSMA3, PSMA4, PSMA5, B2M, PSMA6, PSMA7, PSMB1, PSMB2, SRC, PSMB3, PSMB4, PSMB5, PSMB6, PSMB7, PSMB8, PSMB9, PSMB10, PSMC1, PSMC2, PSMC3, PSMC4, PSMC5,

							PSMC6, PSMD1, PSMD2, PSMD3, PSMD4, NCBP1, PSMD5, PSMD7, PSMD8, PSMD9, PSMD11, PSMD12, PSMD13, PSME1, PSME2, NUP58, SSRP1, CHMP2A, CCNK, BANF1, ELMO1, NUP205, RPL10A, PSMD6, CHMP7, CPSF4, STX1A, POM121, ANTXR2, PSME4, SV2B, SUPT4H1, CXCR4, SV2A, SUPT5H, NUP210, VAMP1, VAMP2, SYT1, AP1M1, TAF2, TAF4, TAF4B, TAF5, TAF6, TAF7, TAF9, TAF10, TAF11, TAF12, NMT1, TAF13, NUP160, BTRC, VPS37D, NUP153, RAC1, RBX1, KPNA1, TBP, KPNB1, KPNA2, KPNA3, KPNA4, NELFE, KPNA5, DOCK2, IPO5, NPM1, TCEA1, VPS37C, ELOC, ELOB, ELOA, RAN, RANBP1, RANBP2, RANGAP1, CHMP6, NEDD4L, PDCD6IP, CALM1, NUP107, CALM2, CALM3, SEM1, CALR, HBEGF, CANX, NUP88, NUP98, GRB2, AP1M2, NUP43, RPSA, NUP214, RPL14, SYT2, NUP42, STAM, LCK, CBL, CHMP4B, VPS37B, GRSF1, RPS27L, TGFB1, CUL5, CCNH, CCNT1, CCNT2, LIG1, GTF2A1, LIG4, GTF2A2, GTF2B, GTF2E1, GTF2E2, EEF2, GTF2F1, GTF2F2, GTF2H1, TAF3, GTF2H2, AAAS, CD247, GTF2H3, CD4, CD8B, CD9, PSIP1, GUCY2C, PABPN1, CD28, RPL26L1, FURIN, HGS, SUPT16H, CTDP1, PAK2, PSME3, NUP188, RPL35, VPS28, LTF, RPL13A, PSMD14, CDH1, PDZD3, RPL3, RPL4, RPL5, HCK, RPL6, RPL7, ELL, RPL7A, RPL8, RPL9, RPL11, RPL12, RPL13, RPL15, RPL17, RPL18, CDK7, RPL18A, RPL19

1268685	Ribosomal scanning and start codon recognition	BioSystems: REACTOME	1.47	6.48	6.46	$53 / 63$	FAU, EIF4H, RPS2, RPS3, EIF2S1, RPS3A, RPS5, RPS6, EIF4A1, EIF4A2, EIF4B, EIF4E, RPS7, RPS8, EIF3L, RPS9, EIF4G1, RPS11, EIF3E, RPS12, EIF2S2, RPS13, EIF5, RPS14, RPS15, RPS15A, EIF3K, RPS16, RPS17, RPS18, RPS19, RPS20, RPSA, RPS21, RPS23, RPS24, EIF3A, EIF3B, RPS25, RPS26, EIF3C, EIF3D, RPS27, RPS27A, EIF3F, RPS28, EIF3G, EIF3H, RPS29, EIF3I, EIF3J, EIF3M, RPS27L
1268683	Activation of the mRNA upon binding of the capbinding complex and elFs, and subsequent binding to 43S	BioSystems: REACTOME	2.01	6.44	6.40	$54 / 65$	FAU, EIF4H, RPS2, RPS3, EIF2S1, RPS3A, RPS5, RPS6, EIF4A1, EIF4A2, EIF4B, EIF4E, RPS7, RPS8, EIF3L, EIF4EBP1, RPS9, EIF4G1, RPS11, EIF3E, RPS12, EIF2S2, RPS13, RPS14, RPS15, RPS15A, EIF3K, RPS16, RPS17, RPS18, RPS19, RPS20, RPSA, RPS21, RPS23, RPS24, EIF3A, EIF3B, RPS25, RPS26, EIF3C, EIF3D, RPS27, RPS27A, EIF3F, RPS28, EIF3G, EIF3H, RPS29, EIF3I, EIF3J, PABPC1, EIF3M, RPS27L

Table S5. Differentially expressed (DE) genes in the maternal asthma-discriminatory pathways of the turquoise module (see Figure 2 of the main paper) for bronchial (discovery) and nasal (replication) epithelial cells. Of 535 genes that were annotated in the 16 pathways and expressed in bronchial epithelial cells, one gene was DE between asthma cases with ($N=27$) and without $(N=48)$ an asthmatic mother ($\mathrm{FDR}<0.10$). Of 531 genes that were annotated in the 16 pathways and expressed in nasal epithelial cells, 27 genes were $D E$ between asthma cases with $(N=82)$ and without $(N=46)$ an asthmatic mother at ($F D R<0.10$). These genes were among 13 of the 16 maternal asthma-discriminatory pathways.

Bronchial epithelial cells (one DE gene)					
Gene	Name	Pathway(s)	logFC	P -value	FDR-adjusted P-value
ICOS	Inducible T Cell Costimulator	Intestinal immune network for IgA production	-0.97	1.61E-04	0.062
Nasal epithelial cells (27 DE genes)					
Gene	Name	Pathway(s)	logFC	P -value	FDR-adjusted P-value
IL2RB	Interleukin 2 Receptor Subunit Beta	Th17 cell differentiation	-0.54	1.05E-06	5.58E-04
CCL5	C-C Motif Chemokine Ligand 5	Rheumatoid arthritis, Influenza A, Interleukin-10 signaling	-0.37	3.13E-06	8.32E-04
CD3E	CD3e Molecule	Translocation of ZAP-70 to immunological synapse, TCR signaling in naïve CD4+ T cells	-0.35	4.52E-05	8.00E-03
CD3D	CD3d Molecule	Hematopoietic cell lineage, Th17 cell differentiation, Translocation of ZAP-70 to immunological synapse, TCR signaling in naïve CD4+ T cells	-0.32	7.59E-05	0.010
CD8A	CD8a Molecule	Hematopoietic cell lineage	-0.43	1.29E-04	0.012
TCIRG1	T Cell Immune Regulator 1, ATPase H+ Transporting V0 Subunit A3	Rheumatoid arthritis	0.11	1.36E-04	0.012
C1QA	Complement C1q A Chain	Staphylococcus aureus infection	-0.30	4.04E-04	0.031
C1QC	Complement C1q C Chain	Staphylococcus aureus infection	-0.43	6.10E-04	0.040
CD2	CD2 Molecule	Hematopoietic cell lineage	-0.28	7.28E-04	0.041
FYN	FYN Proto-Oncogene, Src Family Tyrosine Kinase	Viral myocarditis, Osteoclast differentiation, TCR signaling in naïve CD4+ T cells	-0.29	7.85E-04	0.041
C4B	Complement C4B (Chido Blood Group)	Staphylococcus aureus infection	-0.65	8.78E-04	0.041
STAT1	Signal Transducer And Activator Of Transcription 1	Tuberculosis, Th17 cell differentiation, Toxoplasmosis, Influenza A, Osteoclast differentiation	-0.16	9.32E-04	0.041
PLK3	Polo Like Kinase 3	Tuberculosis	0.28	1.09E-03	0.044

MAP4K1	Mitogen-Activated Protein Kinase Kinase Kinase Kinase 1	TCR signaling in naïve CD4+ T cells	-0.38	$1.38 \mathrm{E}-03$	0.052
PRF1	Perforin 1	Viral myocarditis	-0.54	$1.63 \mathrm{E}-03$	0.058
HIF1A	Hypoxia Inducible Factor 1 Subunit Alpha	Th17 cell differentiation	0.14	$1.75 \mathrm{E}-03$	0.058
PML	PML Nuclear Body Scaffold	Influenza A	-0.12	$1.96 \mathrm{E}-03$	0.060
RASSF5	Ras Association Domain Family Member 5	TCR signaling in naïve CD4+ T cells	0.15	$2.02 \mathrm{E}-03$	0.060
IL7	Interleukin 7	Hematopoietic cell lineage	-0.24	$2.24 \mathrm{E}-03$	0.063
LAMB2	Laminin Subunit Beta 2	Toxoplasmosis	0.18	$2.54 \mathrm{E}-03$	0.066
FPR1	Formyl Peptide Receptor 1	Staphylococcus aureus infection, Interleukin-10 signaling	0.38	$2.63 \mathrm{E}-03$	0.066
CD9	CD9 Molecule	Hematopoietic cell lineage	0.05	$3.08 \mathrm{E}-03$	
EP300	E1A Binding Protein P300	Tuberculosis, Influenza A	0.10	$3.09 \mathrm{E}-03$	
IL4R	Interleukin 4 Receptor	Hematopoietic cell lineage, Th17 cell differentiation	0.14	$3.58 \mathrm{E}-03$	
PIK3R5	Phosphoinositide-3-Kinase Regulatory Subunit 5	Toxoplasmosis	0.36	$4.19 \mathrm{E}-03$	0.079
SIRPB1	Signal Regulatory Protein Beta 1	Osteoclast differentiation	0.56	$4.39 \mathrm{E}-03$	
HSPA2	Heat Shock Protein Family A (Hsp70) Member 2	Toxoplasmosis, Influenza A	0.27	$4.44 \mathrm{E}-03$	0.087

Table S6. Detailed functional information for each hub DMC.

IImnID	Module	CHR	BP (Build 37)	UCSC_RefGene_Name	UCSC_RefGene_Accession	UCSC_RefGene_Group
cg05277504	Green	17	79961614	ASPSCR1	NM 024083	Body
cg21531873	Green	12	110778616	ATP2A2	NM_001681	Body
cg20436206	Green	5	146910671			
cg07317846	Green	2	42648344			
cg09459548	Black	5	119942454	PRR16	NM_016644	Body
cg25921502	Black	10	50363896	C10orf128	NM_001010863	3'UTR
cg07270021	Black	8	60627336			
cg11964006	Black	10	53852689	PRKG1	NM_001098512	Body
cg03296565	Black	17	51191056			
cg16284238	Black	6	87196595			
cg09175338	Black	17	10372273	MYH4	NM_017533	5'UTR
cg20699079	Black	2	137199850			
cg18437033	Black	12	130188284	TMEM132D	NM_133448	Body
cg03179496	Blue	15	29212340	APBA2	NM_005503	TSS1500
cg00030588	Blue	16	87100811			
cg15787712	Blue	19	13948243	MIR24-2	NR_029497	TSS1500
cg14236389	Blue	20	58631038	C20orf197	NM_173644	1stExon
cg04661929	Blue	17	75320035	SEPT9	NM_001113492	5'UTR
cg24292665	Blue	11	69065779			
cg11850468	Blue	5	180231185	MGAT1	NM_001114620	TSS1500
cg05007163	Blue	22	39266069	CBX6	NM_014292	Body
cg14993283	Red	6	100906182	SIM1	NM_005068	Body
cg17098147	Red	10	22634142	SPAG6	NM_172242	TSS1500
cg07416383	Red	7	155302899	CNPY1	NM_001103176	5'UTR
cg22717227	Red	10	50887568	C10orf53	NM_182554	TSS200
cg16066272	Red	14	52535949	NID2	NM_007361	TSS200
cg05323725	Red	17	35294713	LHX1	NM_005568	1stExon
cg00073837	Red	2	223177008			
cg04030584	Turquoise	16	67871218	CENPT	NM_025082	5'UTR
cg22689324	Turquoise	1	1562397	MIB2	NM_001170687	Body
cg10410146	Turquoise	7	44112411	POLM	NM_013284	3'UTR
cg01259126	Turquoise	22	29705157	GAS2L1	NM_152237	Body
cg09440150	Turquoise	5	6159585			
cg05991685	Turquoise	16	2818793	SRRM2	NM_016333	Body
cg04662250	Turquoise	17	21157499	C17orf103	NM_152914	TSS1500
cg01005308	Turquoise	20	48768686	TMEM189	NM_001162505	Body
cg12492380	Turquoise	7	98872169	MYH16	NR_002147	Body

cg06082897	Turquoise	1	7767716	CAMTA1	NM_015215	Body
cg19874640	Turquoise	5	134527449			
cg04841389	Turquoise	6	32015083	TNXB	NM_019105	Body
cg13120756	Turquoise	17	42386950	RUNDC3A	NM_001144826	Body
cg14444710	Turquoise	16	2587080	PDPK1	NM_031268	TSS1500
cg04662836	Turquoise	15	95334933			
cg01191154	Turquoise	22	37593672			
cg04329382	Turquoise	22	46480891	LOC400931	NR_027033	TSS1500
cg08758352	Turquoise	17	46205147			
cg24221742	Turquoise	17	74868220	MGAT5B	NM_198955	TSS1500
cg09690040	Yellow	3	126569599	CHCHD6	NM_032343	Body
cg05877397	Yellow	16	49672444	ZNF423	NM_015069	Body
cg19807237	Yellow	1	218470982	RRP15	NM_016052	Body
cg19077494	Yellow	2	158723291	ACVR1	NM_001105	5'UTR
cg00251716	Yellow	1	243479948	SDCCAG8	NM_006642	Body
cg22060153	Yellow	2	101889653	SNORD89	NR_003070	TSS200
cg07016095	Yellow	15	71519190	THSD4	NM_024817	Body
cg25061701	Yellow	17	62608856	SMURF2	NM_022739	Body
cg25697442	Yellow	6	1708713	GMDS	NM_001500	Body

Table S7. Associations between co-methylation modules and clinical measures after correcting for hub DMCs. (A) For each module, the number of correlated genes and hub DMCs are shown. No genes were associated with any of the modules after correcting for all of the module's respective hub DMCs (FDR-corrected $P>0.999$). (B) Correlation coefficients and p-values are shown between clinical measures and module eigenvectors. Significant p-values after Bonferroni-correcting for nine tests (clinical phenotypes; $p<5.56 \times 10^{-3}$) are shown in bold. The numbers of subjects with measurements for each variable are shown. Asthma severity is determined by STEP classification (1). ns, not significant ($p>0.05$).

Variables	WGCNA co-methylation modules (number of DMCs)						
	NMA-associated		MA-associated				
	Orange (31)	Green (35)	Black (15)	Blue (74)	Red (17)	Turquoise (73)	Yellow (24)
A. Correlated Genes and hub DMCs							
Number of correlated genes		0	0	0	0	0	0
Number of hub DMCs	0	4	9	8	7	19	9
B. Clinical Measures							
Asthma Severity $(N=142)$		$\begin{gathered} -4.21 \\ 4.6 \times 10^{-5} \\ \hline \end{gathered}$	$\begin{aligned} & -2.34 \\ & 0.021 \end{aligned}$	$\begin{gathered} -3.07 \\ 2.5 \times 10^{-3} \\ \hline \end{gathered}$	ns	$\begin{gathered} -3.04 \\ 2.8 \times 10^{-3} \\ \hline \end{gathered}$	$\begin{gathered} 3.07 \\ 2.6 \times 10^{-3} \\ \hline \end{gathered}$
$\begin{gathered} \mathrm{FEV}_{1} \% \text { Predicted } \\ (\mathrm{N}=142) \\ \hline \end{gathered}$		ns	ns	ns	ns	ns	ns
$\begin{aligned} & \mathrm{FEV}_{1} / \mathrm{FVC} \\ & (\mathrm{~N}=142) \end{aligned}$		ns	ns	$\begin{gathered} 0.20 \\ 0.018 \end{gathered}$	ns	ns	ns
Total Serum IgE $(\mathrm{N}=141)$		ns	$\begin{gathered} \hline 0.21 \\ 0.013 \\ \hline \end{gathered}$	ns	ns	ns	$\begin{aligned} & \hline-0.18 \\ & 0.037 \\ & \hline \end{aligned}$
$\begin{gathered} \text { FeNO } \\ (\mathrm{N}=135) \end{gathered}$		ns	ns	ns	ns	ns	ns
BAL Eosinophilia $(\mathrm{N}=140)$		ns	ns	ns	ns	ns	ns
BAL Neutrophilia $(\mathrm{N}=140)$		ns	ns	ns	ns	ns	ns
Blood Eosinophilia $(N=141)$		ns	ns	ns	ns	ns	ns
Body Mass Index $(N=142)$		ns	ns	ns	ns	ns	ns

Table S8. Covariate selection. Principal Components Analysis (PCA) of the 398,186 CpGs that passed quality control was performed using the R function, prcomp, to identify potential technical or biological confounders. The DNA methylation PC1-PC10 and the \% variance explained by each PC are shown in the first column, followed by four potential technical (platform, batch, chip, recruitment source), seven biological (age, sex, self-reported race/ethnicity, current smoking, and ancestry PCs 1-3) covariates. The p-values for tests of association between each PC and each variable are shown. Associations were tested in a step-wise fashion, regressing out the effects of covariates in succession until there were no significant correlations with any of the top 10 DNA methylation PCs. Pvalues for the associations are shown for the (A) raw data, (B) after removing "chip effect" using ComBat (24), and (C) after further regressing out the effects of sex, age, current smoking status, and the first three ancestry PCs. The latter six variables, along with cigarette smoking at time of bronchoscopy, were included as covariates in all analyses. Although the smoking variable was not associated with any of the 10 DNA methylation PCs, we included it as a covariate because smoking is known to have strong effects on global DNA methylation levels. Significant p-values after correcting for 11 tests (potential confounders) using a Bonferroni correction ($\mathrm{p}<4.55 \times 10^{-3}$) are shown in bold font. The effects of asthma and maternal asthma on each of the 10 DNA methylation PCs are also shown.

A. Raw													
	Technical Variables				Biological Variables							Asthma	Maternal Asthma
k	Platform	Batch	Chip	Recruitment Source	Age	Sex	Self-reported Race/Ethnicity	Current Smoking	Ancestry PC1	Ancestry PC2	Ancestry PC3		
$\begin{gathered} \hline \text { PC1 } \\ (19 \%) \end{gathered}$	5.11E-109	3.95E-107	2.81E-111	1.46E-04	0.356	0.504	0.722	0.117	0.058	0.573	0.223	0.019	0.966
$\begin{gathered} \text { PC2 } \\ (12 \%) \\ \hline \end{gathered}$	0.817	0.010	4.67E-07	1.60E-03	0.287	0.182	2.72E-03	0.385	0.027	0.668	0.730	0.315	0.870
$\begin{aligned} & \mathrm{PC} 3 \\ & \text { (9\%) } \end{aligned}$	0.621	2.20E-18	1.73E-25	2.35E-17	0.647	0.936	0.034	0.186	0.006	0.176	0.134	0.432	0.367
$\begin{aligned} & \text { PC4 } \\ & (5 \%) \\ & \hline \end{aligned}$	0.171	5.43E-04	4.37E-07	0.011	3.35E-03	0.182	0.608	0.120	0.588	0.544	0.133	0.168	0.230
$\begin{aligned} & \text { PC5 } \\ & (4 \%) \end{aligned}$	0.669	0.093	0.577	5.26E-05	2.15E-17	0.409	0.022	0.501	0.696	0.069	0.327	$\begin{gathered} \hline 7.98 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	0.303
$\begin{aligned} & \text { PC6 } \\ & (2 \%) \\ & \hline \end{aligned}$	0.415	1.75E-03	6.23E-14	4.80E-04	0.542	0.249	5.40E-04	0.694	2.46E-04	0.029	0.365	0.045	0.014
$\begin{aligned} & \hline \text { PC7 } \\ & (2 \%) \\ & \hline \end{aligned}$	0.747	0.288	0.082	7.46E-06	0.065	0.889	4.19E-14	0.564	3.78E-20	1.24E-06	0.198	0.855	0.874
$\begin{aligned} & \hline \text { PC8 } \\ & (2 \%) \\ & \hline \end{aligned}$	0.454	0.609	4.92E-08	0.195	0.088	0.941	0.571	0.735	0.911	0.984	0.663	0.096	0.309
$\begin{aligned} & \text { PC9 } \\ & (1 \%) \\ & \hline \end{aligned}$	0.757	0.741	0.308	0.113	9.05E-05	0.080	2.18E-07	0.417	3.95E-09	0.002	0.478	$\begin{gathered} 9.67 \mathrm{E}- \\ 05 \\ \hline \end{gathered}$	0.021
$\begin{aligned} & \text { PC10 } \\ & (1 \%) \end{aligned}$	0.935	2.98E-03	$3.78 \mathrm{E}-11$	0.005	0.810	0.071	0.560	0.104	0.589	0.933	0.557	0.089	0.764
B. After ComBat													
	Technical Variables				Biological Variables								
k	Platform	Batch	Chip	Recruitment Source	Age	Sex	Self-reported Race/Ethnicity	Current Smoking	Ancestry PC1	Ancestry PC2	Ancestry PC3	Asthma	Maternal Asthma
$\begin{gathered} \text { PC1 } \\ (14 \%) \\ \hline \end{gathered}$	0.791	0.937	1.000	0.208	0.328	0.322	0.036	0.604	0.479	0.131	0.294	0.052	0.401
$\begin{aligned} & \mathrm{PC2} \\ & (7 \%) \end{aligned}$	0.507	0.859	0.999	0.549	0.020	0.107	0.130	0.395	0.641	0.662	0.891	0.020	0.089
$\begin{aligned} & \text { PC3 } \\ & (6 \%) \\ & \hline \end{aligned}$	0.969	0.777	1.000	8.93E-04	1.70E-18	0.485	0.112	0.114	0.435	0.241	0.093	$\begin{gathered} 8.09 \mathrm{E}- \\ 05 \end{gathered}$	0.716
$\begin{aligned} & \hline \text { PC4 } \\ & \text { (3\%) } \end{aligned}$	0.858	0.329	0.999	8.85E-05	0.658	0.155	6.27E-16	0.584	7.93E-24	2.60E-08	0.505	0.404	0.425
$\begin{aligned} & \text { PC5 } \\ & (2 \%) \end{aligned}$	0.812	0.920	1.000	0.288	2.73E-03	0.273	0.720	0.571	0.622	0.777	0.103	$\begin{gathered} 2.64 \mathrm{E}- \\ 05 \\ \hline \end{gathered}$	1.08E-03
$\begin{aligned} & \text { PC6 } \\ & (2 \%) \end{aligned}$	0.688	0.976	1.000	0.737	0.003	0.076	2.46E-07	0.871	2.19E-08	1.03E-03	0.734	0.040	0.461
$\begin{aligned} & \text { PC7 } \\ & (2 \%) \\ & \hline \end{aligned}$	0.690	0.889	1.000	0.015	0.005	$\begin{gathered} \text { 9.27E- } \\ 06 \\ \hline \end{gathered}$	0.013	0.408	0.023	0.017	0.021	0.779	0.333
$\begin{aligned} & \text { PC8 } \\ & (1 \%) \\ & \hline \end{aligned}$	0.893	0.873	1.000	0.555	0.990	0.292	0.080	0.698	0.138	0.461	0.602	0.207	0.405
$\begin{aligned} & \hline \text { PC9 } \\ & (1 \%) \\ & \hline \end{aligned}$	0.929	0.969	1.000	0.215	0.203	0.046	0.061	0.241	0.232	0.694	0.612	0.099	0.511
$\begin{aligned} & \text { PC10 } \\ & (1 \%) \end{aligned}$	0.252	0.690	1.000	0.422	0.038	0.823	0.256	0.791	0.078	0.083	0.264	0.154	0.636
C. After ComBat, ancestry PCs 1-3, age, sex, and current smoking status													

	Technical Variables				Biological Variables								
k	Platform	Batch	Chip	Recruitment Source	Age	Sex	Self-reported Race/Ethnicity	Current Smoking	$\begin{gathered} \text { Ancestry } \\ \text { PC1 } \end{gathered}$	Ancestry PC2	$\begin{gathered} \text { Ancestry } \\ \text { PC3 } \end{gathered}$	Asthma	Maternal Asthma
$\begin{gathered} \hline \text { PC1 } \\ (15 \%) \end{gathered}$	0.569	0.849	1.000	0.148	0.887	1.000	0.729	0.570	0.944	0.996	0.878	0.095	0.660
$\begin{aligned} & \mathrm{PC2} \\ & (8 \%) \end{aligned}$	0.404	0.749	0.998	0.903	0.834	1.000	0.406	0.832	0.917	0.994	0.822	0.172	0.156
$\begin{aligned} & \text { PC3 } \\ & (4 \%) \\ & \hline \end{aligned}$	0.932	0.998	1.000	0.099	0.854	1.000	0.614	0.206	0.927	0.995	0.843	$\begin{gathered} 1.51 \mathrm{E}- \\ 08 \\ \hline \end{gathered}$	0.010
$\begin{aligned} & \text { PC4 } \\ & (3 \%) \end{aligned}$	0.982	0.817	1.000	0.112	0.994	1.000	0.984	0.567	0.997	1.000	0.994	0.061	0.094
$\begin{aligned} & \text { PC5 } \\ & (2 \%) \end{aligned}$	0.438	0.520	0.999	0.601	0.908	1.000	0.846	0.730	0.954	0.997	0.901	0.103	0.643
$\begin{aligned} & \mathrm{PC6} \\ & (2 \%) \end{aligned}$	0.466	0.897	1.000	0.817	0.971	1.000	0.653	0.345	0.986	0.999	0.969	0.440	0.422
$\begin{aligned} & \text { PC7 } \\ & (2 \%) \end{aligned}$	0.270	0.426	0.999	0.465	0.838	1.000	0.987	0.072	0.919	0.994	0.826	0.793	0.808
$\begin{aligned} & \text { PC8 } \\ & \text { (1\%) } \end{aligned}$	0.696	0.955	1.000	0.701	0.912	1.000	0.706	0.325	0.956	0.997	0.906	0.623	0.882
$\begin{aligned} & \text { PC9 } \\ & \text { (1\%) } \end{aligned}$	0.486	0.747	1.000	0.010	0.909	1.000	0.610	0.133	0.955	0.997	0.902	0.023	0.996
$\begin{aligned} & \text { PC10 } \\ & (1 \%) \end{aligned}$	0.629	0.875	1.000	0.865	0.946	1.000	0.894	0.962	0.973	0.998	0.942	0.066	0.748

Supplementary References

1. A. Tandon, N. Patterson, D. Reich, Ancestry informative marker panels for African Americans based on subsets of commercially available SNP arrays. Genet Epidemiol 35, 80-83 (2011).
2. G. Jun et al., Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. Am J Hum Genet 91, 839-848 (2012).
3. S. Andrews (2010) FastQC: a quality control tool for high throughput sequence data.
4. A. Dobin, T. R. Gingeras, Mapping RNA-seq Reads with STAR. Curr Protoc Bioinformatics 51, 11.14.11-11.14.19 (2015).
5. M. D. Robinson, A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11, R25 (2010).
6. C. W. Law, Y. Chen, W. Shi, G. K. Smyth, voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15, R29 (2014).
7. P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
8. N. A. E. a. P. Program, Expert Panel Report 3 (EPR-3): Guidelines for the Diagnosis and Management of Asthma-Summary Report 2007. J Allergy Clin Immunol 120, S94-138 (2007).
9. J. Chen, E. E. Bardes, B. J. Aronow, A. G. Jegga, ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37, W305-311 (2009).
10. A. J. Coyle, J. C. Gutierrez-Ramos, The role of ICOS and other costimulatory molecules in allergy and asthma. Springer Semin Immunopathol 25, 349-359 (2004).
11. H. Maazi, O. Akbari, ICOS regulates ILC2s in asthma. Oncotarget 6, 24584-24585 (2015).
12. K. H. Shalaby et al., ICOS-expressing CD4 T cells induced via TLR4 in the nasal mucosa are capable of inhibiting experimental allergic asthma. J Immunol 189, 2793-2804 (2012).
13. A. Rossnerova et al., Factors affecting the 27 K DNA methylation pattern in asthmatic and healthy children from locations with various environments. Mutat Res 741-742, 18-26 (2013).
14. K. K. Belanger, B. T. Ameredes, I. Boldogh, L. Aguilera-Aguirre, The Potential Role of 8Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma. Mediators Inflamm 2016, 3762561 (2016).
15. S. Liong, R. Lim, G. Barker, M. Lappas, Hepatitis A virus cellular receptor 2 (HAVCR2) is decreased with viral infection and regulates pro-labour mediators OA. Am J Reprod Immunol 78 (2017).
16. E. Noguchi et al., Positional identification of an asthma susceptibility gene on human chromosome 5q33. Am J Respir Crit Care Med 172, 183-188 (2005).
17. H. Z. Shi, Z. F. Xie, J. M. Deng, Y. Q. Chen, C. Q. Xiao, Soluble CD86 protein in serum samples of patients with asthma. Thorax 59, 870-875 (2004).
18. P. Balbo, M. Silvestri, G. A. Rossi, E. Crimi, S. E. Burastero, Differential role of CD80 and CD86 on alveolar macrophages in the presentation of allergen to T lymphocytes in asthma. Clin Exp Allergy 31, 625-636 (2001).
19. Z. Zhang, J. Wang, O. Chen, Identification of biomarkers and pathogenesis in severe asthma by coexpression network analysis. BMC Med Genomics 14, 51 (2021).
20. K. Amin, C. Janson, I. Harvima, P. Venge, G. Nilsson, CC chemokine receptors CCR1 and CCR4 are expressed on airway mast cells in allergic asthma. J Allergy Clin Immunol 116, 1383-1386 (2005).
21. K. J. Carpenter et al., Therapeutic targeting of CCR1 attenuates established chronic fungal asthma in mice. Br J Pharmacol 145, 1160-1172 (2005).
22. P. Joubert et al., Expression and regulation of CCR1 by airway smooth muscle cells in asthma. J Immunol 180, 1268-1275 (2008).
23. M. Gruchała-Niedoszytko et al., Analysis of the differences in whole-genome expression related to asthma and obesity. Pol Arch Med Wewn 125, 722-730 (2015).
24. J. T. Leek, J. D. Storey, Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet 3, 1724-1735 (2007).
