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1 FORWARD AND BACKWARD ALGORITHMS

1 Forward and Backward Algorithms

Here we give the details of an EM algorithm which jointly estimates (a, 0,1, ¢€) for a simple
error model, given below. The EM algorithm involves iteratively calculating expected values
for latent variables, given a current value of the parameters, and then updating the parameter
estimates based on the expectations computed previously. We first derive the forward and
backward algorithms for the model with genotyping error. These are necessary for subsequent
calculations. For simplicity, we let v denote («, 0, 7).

The forward and backward probabilities ¢, and 3, are given by

. Tiky ko)
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where v = (,0,r) and Iy is the indicator function, equal to one if A is true and zero
otherwise. Let j;, denote the number jumps (to new clusters) in the interval between
markers m — 1 and m for individual i, with

(1- rm)2 , a=0,
p(jim = a|r) =<c2r(l—=ry), a=1,

2 a = 2.
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The forwards calculation is given by
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form=1,...,M — 1, where gbf,,e(l, {k1, kg}) = p(gi1|zzf1 ={ky, kao}, v, e)akllak21 and
2
P(gim|Z£m = {ki, k2}>97€> = Zp(gim|$z‘m = G,E)P(lfim = alz;,, = {ki, k’2}ﬂ9)~ (1)

The expression p(gim|:rim, e) is given by the relevant error model. The second factor in the
summand of (1) is given by

(1 - eklm)(l - 9:’92771)7 a =0,
p<xim = (I|Zztm = {kla k?}a 0) = eklm(l - 91{22?71) + ekgm(l - eklm)a a=1,
eklmekzma a=2.
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1 FORWARD AND BACKWARD ALGORITHMS

Then the probability of the data for one individual may be calculated as
p(gilv.€) Z Z (M, {1, ka}),
k1=1ko=1

fori=1,...,n.
The backwards recursion is

ve(m = 1K1, K5}) = p(jim =0| )P(giml»Zém = {k, K}, v, €) B (m, {K, 5 })
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for m =2,..., M, and with 3] (M, {k1, k2}) := 1, for all kq, ko. For the parameter estima-
tors, we require the following:

p(zlfm = {ki1, k2 }|gi, v, 6) x ¢i,e(m7 {k1, k2})21{k1¢k2}55,6 (m7 {k1, k2}); (2)

K K
with the constraint that Y > p(2, = {k1, ko}|gi, v, €) = 1.
k=1 ka=k



2 EM ALGORITHM

2 EM Algorithm

Here we present estimators for «, 6, r, and ¢, based on the 4-parameter error model (given
in Methods), allowing error rates to vary by SNP.

Let Q(V,e|y*,e*) denote E,- .+ log [p(g,x,z,ﬂoz?é’,r, (—:)|g], the expected complete-data
loglikelihood, where the complete-data likelihood is given by

p(g: Z, Z,j|Oé, 07 Ty E) = Hp(g“ L Zi7ji|a7 07 Ty 6)?
i=1
with
P(guﬂfuzia]'i’aﬁﬂ’, 6) :p(9i|$z’,6)2?(%"21'7e)p(zﬂji)P(ji\Oéﬂ”)-
Setting the partial derivatives of @) to zero and solving for (a, 0,1, ¢€) leads to the following
estimators:
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Given error rates €, we assume the “transitions” from the true genotypes x to observed
genotypes g occur marginally at each SNP, according to a multinomial distribution. We apply
a prior distribution to e, specifically assuming that € and €2 are independently distributed
as Beta (a,b) and (¢'°,1 — €' — €'?,€!?) are distributed as Dirichlet (a,b,a), where a = -%
and b = 2. At each iteration of the EM, we obtain the posterior mode of the distribution of
€, which leads to the following estimators:

Zp(x’m = O‘ga V*7€*)Ig¢m=1 +a—1

0 =
T S p(wm = Olg v ) Fatb—2
2 p(@im = 1lg,v*,€) Ig=0 +a — 1
6/1\0 .

me Zp(xim:1|g,y*,e*)+2a+b—3'



2 EM ALGORITHM

Exp/r\essions are given for gbm and e/l\om. From these, analogous expressions may be obtained
for €2,, and €'2,, by appropriate substitution.

Estimators for a and r depend on the expected number of jumps in an interval to par-
ticular clusters (jini). These expectations are given by

K
. Oem
El/,e []zmk|g} = 7 1N |: jzm 1|’l” ¢ - 17 {kla k//})
p(gi|y, 6) 142:1 14/21
+2p(jzm - 2| ) (gz <m-1) |V G)Oék/ :|
X p(gim|z;m = {k,k'},0, e) ,16 (m, {k, k/}),

form=1,.... Mand k=1,... K.
Finally we give the following formula for computing p (2|9, v), which allows computa-
tion of the expected number of errors, given the observed data:

K K
p(xim|gial/7 6) Ocp(gzm‘xzrrne) Z Z p(%m’?«’lm = {klakZ}ve)X

k1=1 ka=k1

(gz(<m7 Zim {klakQ}’V 6) ( ?{klakQ})7

with the constraint Zz:op(%‘m =a|-) =1, and where
P(Gic<mys i = {k1, ka2 }|v,€) = 21{]“#2}%,5 (m —1,{k1, k2})p(jim = O]r) +

K
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k'=1

= Iy i / p<jim: 1’7’)
Olkym Z 21k ¢k1}¢y7€(m -1, {/{7,/{31}) #—i—

k=1
211242} g, kD (Gi(<m—1) | Vs €) P (Jim = 2|7).

This EM algorithm is O(K?Mn), linear in the amount of data and K?.



3 SENSITIVITY TO CHOICE OF PRIOR AND NUMBER OF CLUSTERS

3 Sensitivity to choice of prior and number of clusters

Here we investigate the effects of various combinations of parameters, in particular the prior
distributions for the error rates e and the number of assumed clusters K (Table 1). Dis-
crepancies are tabulated between genotype calls in the HapMap database and the duplicate
genotypes calls obtained from the Affymetrix platform (see Methods in main text). Here, as
for comparisons presented in the main text, we assume the HapMap genotype calls are cor-
rect, which, although is not uniformly the case, gives a first approximation to the accuracy
of corrections.

% Reduction (% Attempted)

No. clusters (K) / HapMap MIs HapMap/Affy. discrepancies

(a,b) CEU YRI CEU YRI JPT-+CHB
K=5

(1,1) 1 (61) |16 (.60) | -41.7 (.301) | -40.6 (.326) | -25.0 (.238)
(£,2) 41 (32) |40 (37)| -1.3 (157)| 6.1 (.166) | 0.3 (.140)
(2,20) 24 (.09) |29 (14)| 01 (.008)| 0.3 (.010)| 1.7 (.023)
K=38

(1,1) 4 (52) |15 (54) | -26.3 (.258) | -30.5 (.289) | -16.6 (.215)
(£,2) 30 (.28) |38 (32)| 83 (125)| 27 (131)| 6.9 (.117)
(,20) 20 (.08) |25 (11)| 04 (.005)| 0.6 (.005)| 24 (.018)
K=12

(1,1) 9 (49) | 13 (.50) | -18.0 (.228) | -24.4 (.262) | -11.5 (.197)
(£,2) 35 (.25) 136 (.28)| 13.3 (102)| 7.6 (.104) | 10.8 (.100)
(2,20) 18 (.07) |22 (09)| 04 (003)| 06 (.003)| 24 (.013)

Table 1:  Percent reduction in MlIs and discrepancies from correcting genotypes under various
parameters. We correct all genotypes calls if a posterior probability of a genotype different than what
is observed exceeds 0.5. Prior distributions for € are Beta(a,b) and Dirichlet(a,b,a) distributions.
Reduction in MIs/discrepancies is calculated as 1 minus the total number of MIs/discrpancies
divided by the number of MIs/discrepancies in the original data sets, given as a percentage. The
percent corrected, given to the right of each reduction value, is the percentage of genotypes in the
original data sets that were corrected at the 0.75 probability threshold. A negative value indicates
an increase rather than a reduction.
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4 Sensitivity of alternate error models

Here we briefly investigate the performance of several alternative error models, which are
given below. For the reference model (used in the main text) and models A, B, and C, the
error rates are allowed to vary across SNPs, although the subscript for the SNP index is
suppressed for clarity.

Reference model. This model is the same as that given in the main text. It has 4 error
rates for each SNP.

observed, ¢
0 1 2
0]1—¢€ e’ 0
true, z 1| € 1 — (% +¢!2) €2
2 0 €2 1 — €,

A. This model has 2 parameters, with separate error rates for homozygous and heterozy-
gous genotypes. In contrast with the reference model, the error rates for the two types of
homozygotes are constrained to be equal, as are the error rates if the true genotype is a
heterozygote.

observed, ¢
0 1 2
0|1—¢ e’ 0
true, x 1 % 1—¢t %
2 0 e? 1—é,

B. Same as (A) above, except here a homozygote may be observed if the truth is a ho-
mozygote of the other allele.

observed, ¢
0 1
60 EO
0 1 —1 60 5 q
true, x 1 % 1—¢ S
2| ¢ < 1—¢,

C. This is a simple error model, with only one parameter (error rate) per marker. The
probability of an error does not depend on the underlying (true) genotype.

observed, ¢
0 1 2
01 - € 5 §
true, x 1 g 1 : € 5
2 5 5 1-— €,



4 SENSITIVITY OF ALTERNATE ERROR MODELS

D. Same as (C) above, with the constraint that the error rates are constant for all SNPs.
(In practice, since parameter estimation was conducted independently among chromosomes,
the error rates are constant across SNPs on a single chromosome.)

Comparison of results from different error models. As above, discrepancies are tab-
ulated between genotype calls in the HapMap database and Affymetrix duplicate genotypes.
Corrected genotypes are scored assuming the HapMap calls are correct.

HapMap /Affymetrix

HapMap MIs (CEU) Discrepancies
Reference | 35.2 (.250) | 13.3 (.102)
A 22.2 (.082) | 0.01 (.017)
B 25.3 (.094) | -0.14 (.011)
C 3.2 (.010) | ~0 (.002)
D 1.6 (.004) | =0 ~0

Table 2:  Percent reduction in MIs and discrepancies from correcting genotypes under alterna-
tive error models. Reduction in MIs/discrepancies is calculated as 1 minus the total number of
MIs/discrpancies divided by the number of MIs/discrepancies in the original data sets, given as a
percentage. The percent corrected, given to the right of each reduction value, is the percentage of
genotypes in the original data sets that were corrected at the 0.75 probability threshold. A negative
value indicates an increase rather than a reduction.



5 HAPMAP SNPS AND CORRECTED GENOTYPES

5 HapMap SNPs and Corrected Genotypes

We list approximately 600 SNPs with high LD error rates (> 10%) and zero discerpancies
(http://www-personal.umich.edu/~pscheet /Lderror/). Additionally, this resource contains
the SNPs with high estimated LD error rates among the JPT-+CHB sample, in addition to

corrected genotypes.



6 LARGE VERSION OF FIGURES

6 Large Version of Figures

Here we print larger versions of the intensity plots of Figures 1 and 2 from the main text.

Figure 1. SNP-specific estimates of number of errors based on LD correlate with number
of MIs and discrepancies. Each plot contains a box corresponding to the number of observed
MIs or discrepancies (horizontal axis). The position of the bottom and top of a box relates
the first and third quartiles of the estimated number of MIs or discrepancies (vertical axis),
with the median displayed as a horizontal line in the middle of each box. The red dotted line
indicates equality between the number of estimated errors and observed MIs or discrepancies.
First row: The total number of expected errors at each SNP, based on LD, was calculated
for the HapMap data and plotted against the number of MIs. Second row: The total number
of expected errors at each SNP, based on LD, was calculated for the Affymetrix data, and
plotted against the number of discrepancies between the Affymetrix and HapMap genotype
calls. In general, the median and the upper quartile for the number of estimated errors
increase with the number of discrepancies. This relationship is rather strong for the upper
quartile.
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Figure 1 (a). HapMap MIs; CEU
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Figure 1 (b). HapMap MIs; YRI
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Figure 2. FEzxample genotype intensity scatter plots from Affymetriz 500K technology on
unrelated HapMap samples. Original calls from the Affymetrix data are indicated by color
and shape of the small solid points (homozygotes: #, e, heterozygotes: A). The larger, open
symbols (¢, (), /\ ) represent corrected genotype calls from applying our LD-based method
to the Affymetrix data. The shapes of the open orange-colored symbols (¢, (), /\ ) represent
genotype calls according to the HapMap database. LD-based error rate estimates are those
obtained from applying the LD-based method to the Affymetrix data. Panel a) shows plots
for three SNPs with large numbers of discrepancies between HapMap and Affymetrix calls,
but low LD-based error rate estimates and clean intensity plots, with three well-separated
clusters. The likely explanation for these results is that the discrepancies are due to errors in
the HapMap database, and not the Affymetrix calls on which the LD-based error rates are
based. Panel b) shows plots for three SNPs with 0 discrepancies, but high LD-based error
rate estimates and unusual intensity plots. The unusual intensity results, combined with the
fact that genotypes identified as likely to be incorrect by the LD-based method tend to cluster
together, suggests that the high LD-based error rates reflect genuine signal at these SNPs,
such as genotyping errors or other anomolies (e.g. Copy Number Variation). This illustrates
the potential for the LD-based method to detect problems that duplicate genotyping may
miss. Panel ¢) shows plots for three SNPs with high LD-based error rate estimates, and
large numbers of discrepancies, where the intensity plots are relatively clean, but where
the genotyping algorithm appears to have done a poor job of clustering the genotypes. In
each case the LD-based method succesfully identifies and corrects most of these erroneous
genotypes. Although all these examples were chosen to illustrate particular points, they are
not atypical in that we saw many other examples of each type of behaviour.
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