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SOM 1: Modeling the frequency of an allele experienc-

ing drive

Suppose that the current frequency of the hotspot allele is x, in a diploid population with

effective size Ne. The expected frequency of the A allele in the next generation is

E(x′) = (1 − µD)
[

x2 + 2x(1 − x)
{

1/2(1 − rA − rB) + rAp + rB(1 − p)
}

]

. (1)

Assuming that rA, rB and µD are small (such that rAµD ≈ 0 and rBµD ≈ 0) and writing

rA − rB = rH then the expected change in frequency, E(x′) − x, is

−2rH(1/2 − p)x(1 − x) − µDx. (2)
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where the first term is the change due to the drive in heterozygotes and the second term to

mutation out of the hotspot allele. For a large effective population size Ne, this model is

well approximated as a simple diffusion process (scaling time in units of 2Ne, as Ne tends

to infinity, see Ewens [2] for an introduction) with diffusion parameter x(1 − x) and drift

parameter

−4NerH(1/2 − p)x(1 − x) − 2NeµDx, (3)

which is merely equation (2) scaled by 2Ne.

SOM 2: Obtaining human parameters

In order to obtain the estimated human drive parameters shown in table 1 of the main

text, we based calculations on (3) with µD ≈ 0, and Ne = 10, 000. For each hotspot, the

intensity of crossover in males has previously been estimated [7] (DNA1–3), [10] (NID1) and

[14] (SHOX). At two of these hotspots, DNA2 [9] and NID1 [10] a marker was identified for

which one of the two types disrupted hotspot activity, and estimates were obtained of both

the crossover rate rh, and the probability p′ of transmission of this marker in recombinants,

for heterozygotes. We assumed the same rates in females as in males throughout.

It is easy to show that the population scaled drive parameter (3) is given by

8NerH(1/2 − p) = 8Nerh(1/2 − p′)

and we substituted in p′ = 0.24 for DNA2 and p′ = 0.26 for NID1 to obtain the strength of

drive for these hotspots. To estimate crossover-based drive for the other hotspots, we used

the same p′ as for DNA2 and a crossover rate as shown in the table.

To estimate the gene-conversion based drive we modified the above to include the fact

that at a chosen marker, under the DSB model we can only observe gene conversion occurring

if the initiating chromosome is transmitted to the offspring (with probability 1/2). If rh is

now the observed gene conversion rate, and p′ is the proportion of gene conversion products

carrying the disrupting allele, and rH is now the rate (in heterozygotes) of DSBs that result

in gene conversion, the contribution of simple gene conversion to the scaled drive is
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8NerH(1/2 − p) = 16Nerh(1/2 − p′).

Finally, to estimate the gene-conversion contribution we used direct estimates of rh =

1.3 × 10−4 and p′ = 0.29 for NID1 [10], and for the other hotspots we used the same value

of p′, estimates of rh = 1.3− 3.4× 10−3 for the most-frequently converted marker at hotspot

DNA3 [8], and then assumed the same ratio of crossover to conversion at the remaining

four hotspots as for DNA3. The estimates produced are therefore very approximate, since

recombination rates in females are unknown, there is uncertainty in the rate estimates, and

p′ and the assumed gene conversion rates are extrapolated from other hotspots in most

cases. The SHOX hotspot is in the psuedoautosomal region of the Y chromosome, which

is subject to an obligate crossover in males, and likely to be much less active in females.

We have assumed that the SHOX hotspot is inactive in females, and so the sex-averaged

recombination rate for the SHOX hotspot is half that observed in males. Further, we have

assumed implicitly here that in heterozygotes for the disrupting mutation the recombination

rate would equal the current population rate; an additive model of intensity might instead

suggest a smaller recombination rate in heterozygotes, perhaps as little as half the population

rate, and in this case the drive parameter should be reduced by this factor.

SOM 3: Probability that a hotspot survives uncooled

from ancestral populations

Using the parameterisation defined in the main text and standard diffusion theory, an allele

that arises via a single mutation (so at frequency 1/2N), and lowers the rate of DSB initiation

by rH , has an approximate probability

2gNe/
(

N(1 − exp(−4Neg))
)

(4)

of achieving fixation (and thereby weakening, or removing, the hotspot). Mutations that

disrupt the hotspot occur at rate 2NµD, therefore the rate at which disrupting alleles arise
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and fix in the population is approximately 2NµD× eq(4). As rH becomes large, this death

rate increases approximately linearly with hotspot intensity, the mutation rate (or the num-

ber of sites able to disrupt the hotspot through their mutation) and the effective population

size Ne. Neglecting the possibility of a currently segregating disrupting allele, or of several

disruptive mutations co-segregating within the population at one time, the probability of

survival of a hotspot in both species from the ancestral population to the current day is

approximated by

exp

{

−2NeµD

2g

1 − exp(−4Neg)
× 2T

}

. (5)

This approximation is commonly used for selected alleles [11] and we found it to provide

an excellent approximation, for the parameter values used in this paper, to the probability

obtained via direct simulation using a Wright-Fisher simulation (results not shown).

SOM 4: The frequency spectrum of hotspot alleles

Suppose within a region of DNA sequence, the rate of introduction of hotspot alleles is µH

and the rate of introduction of a mutation killing any such hotspot is µD (note that µD

is the rate per hotspot, while µH is the rate of hotspot introduction in the region). Then

the expected number of hotspots with population frequency in a small frequency interval

[x, x + dx) is given by

4NµH

exp
(

− 4Negx
)

x(1 − x)1−4NeµD

dx. (6)

This equation is obtained by modifying the expected number of selected alleles with frequency

x in a model with one way mutation [13], to reflect the hotspot parameters. Note that the

above expression implies that exactly as for polymorphic sites there could potentially be a

large number of hotspot alleles segregating at low frequency in the population. We assume

that the effective population size is the census population size here in order to simplify our

results (this assumption is common and in our case has little effect as it scales only the

mutation rates).
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SOM 5: Simulations to investigate demography

We sought to consider whether human population size changes might strongly influence the

evolution of hotspots, and in particular if such events could result in more active hotspots

reaching high frequency in the population. Human populations are likely to have experienced

both recent expansion and bottleneck events. Population growth from some ancestral size

will increase the efficacy of drive against hotspots relative to the ancestral size, and so result

in fewer hot hotspots reaching fixation, so we did not consider this possibility in detail.

The intensities we use to illustrate the likely strength of drive for human hotspots were all

estimated in European populations, which are highly likely to have experienced a bottleneck

[18], so it is important to consider the effect of such events. We therefore examined whether

hotspots of the observed intensities of each of DNA1, DNA2, DNA3 and NID1 were likely to

have arisen against biased gene conversion under realistic population scenarios incorporating

such a bottleneck. Voight et al. [18] provided a range of bottleneck intensities and durations

for a European Italian population consistent with multiple aspects of genetic data, and

the historical relationships between populations. We separately simulated the evolution of

hotspots with each drive parameter 2rH(1/2 − p), estimated for DNA1, DNA2, DNA3 and

NID1, for two different demography models, representing the extremes consistent with the

European data of Voight et al. [18]). The first demographic model has constant population

size 10,659 until a severe bottleneck beginning 40,000 years (1600 generations of 25 years)

ago, and reducing the population size 10-fold for 400 generations, before a return to the

original population size, whilst the second has a milder bottleneck beginning at the same

time but reducing the population size 2.5-fold for 1600 generations. Although neither of these

models is likely to be perfect, we believe they do provide a sense of the impact of plausible

population size changes, at least in the European group, on hotspot intensity distributions.

For each model, we set the mutation rate away from hotspots to be low, and 25 times the

mutation rate towards hotspots (10−8), as in Figure 3. (The effect of altering these mutation

rates is chiefly to alter the absolute number of hotspots in the population, rather than the

relative counts of hotspots as a function of heat.) For each of the four intensities and the two
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demographic models, we simulated 25,000,000 generations of evolution of the population, to

ensure convergence to stationarity, 20,000 times and measured the proportion of simulations

that a hotspot at frequency above 50% in the population was observed in the present day (in

fact we increased the efficiency of simulation by reducing all times and population sizes by a

factor of 10, while increasing the recombination and mutation parameters by factors of 10,

to achieve the same population dynamics but at 100-fold reduced computational cost). The

results, shown graphically in Figure 3, indicated at most a weak impact of these bottlenecks

on the hotspot distribution relative to constant population size models, and in particular

we never observed hotspots as intense as either NID1 or DNA3 in our simulations. We

also performed similar simulations for a constant population size of 10,000 - the results (not

shown) showed excellent agreement with the theoretical predictions plotted on Figure 3.

SOM 6: Upper bound on the number of hotspot alleles

with apparent population heat rH

It is reasonable to assume that the rate of recombination inferred by an LD based approach

for a segregating hotspot can be thought of crudely representing a time average of the mean

heat of the hotspot across individuals in the population. Thus an intense hotspot that has

always been at low frequency would be inferred to be a less intense hotspot by LD based

methods. To capture in part this effect we construct an upper bound on the “apparent” in-

tensity of a segregating very intense hotspot allele, and consider the spectrum of population

intensities of hotspots using our upper bound.

Consider a hotspot allele (with recombination rate rH) presently at frequency x in the

population. Imagining that the hotspot allele was held at this frequency through time, it

would appear to have a rate of recombination rHx in the population (i.e. the rate inferred by

LD based approaches). However if this hotspot allele has a high rate of recombination and

hence strong drive against it, in the past the allele will typcially have had frequency below
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x (its current frequency will be the highest frequency achieved, as for intense hotspots the

frequency will decrease roughly deterministically backward in time). Thus rHx is normally

an upper bound on the population estimated rate of an intense hotspot allele with current

frequency x. Assuming this upper bound, each hotspot of heat rH/x which are currently at

a frequency x in the population has an apparent heat r′H . The density of hotspots with heat

rH and at frequency x is:

4NeµH

exp
(

− 8NerH(1/2 − p)x
)

x(1 − x)1−4NeµD

drHdx (7)

and we can transform to units of apparent heat r′H using the relationship r′H = rHx) to give

density of hotspots of inferred heat r′H and at frequency x:

4NeµH

exp
(

− 8Ner
′

H(1/2 − p)
)

x2(1 − x)1−4NeµD

dr′Hdx. (8)

Finally, to find the total density of hotspots with an upper bounded heat of r′H we integrate

over the frequency of the hotspot allele

4NeµH exp
(

− 8Ner
′

H(1/2 − p)
)

∫

1

α

1

x2(1 − x)1−4NeµD

dx (9)

where the lower limit on the integral, α ≥ 1/2N , is the minimum frequency a hotspot needs

to achieve in practice to have apparent intensity r′H (and in particular if any new hotspots

have maximal intensity c, α ≥ r′H/c). Thus for large hotspot intensities the number of

hotspots estimated to have heat r′H decreases at least exponentially.

SOM 7: Some alternative models of selection for recom-

bination due to correct segregation

It is straightforward to show that under more general models of selection for crossing over, an

expression of the same form as equation (4) of the main text holds for the drive parameter,

where we must merely substitute w′ for w to obtain the appropriate (modified) scaled drive

7



parameter:

−8NerH(1/2 − p(1 − q + q/w′)). (10)

For example, our model of selection for recombination may be more appropriate for female

meiosis, where a far higher percentage of gametes with an incorrect number of chromosomes

are allowed to proceed through meiosis [6] and thus perhaps lower reproductive success. In

contrast, a relatively low recombination rate in male meiosis, although lowering the propor-

tion of viable sperm, might have somewhat less of an effect on male fertility. In fact, the

qualitative effect of such selection is similar whether recombination fraction in males affects

fertility or not. In this case, where the recombination rate only influences fertility in females,

we find w′ = 2w/(1 + w), where w is the probability of crossing over in a region in females.

Similarly, under an even more dramatic model of selection for recombination where fitness

is proportional to the number of crossover events C, and if this number of events has finite

expectation E(C) then w′ = (1 + 1/E(C))−1 (corresponding to more favourable conditions

for a hotspot allele compared to the previous cases, by Jensen’s inequality).

SOM 8: Expected number of fixed hotspot alleles

A slightly more general form of the expected number of fixed hotspot alleles, equation (6) of

the main text, can be derived. We assume that the hotspot allele increases the probability

of a DSB initiation by r∗H , and that any locally disrupting mutation reduces this probability

of initiation by rH . In a heterozygote for the ancestral and hotspot allele the probability

that the initiating allele is transmitted is p∗. Similarly, in a heterozygote for the disrupting

and hotspot allele the probability that the initiating allele is transmitted is p.

Hotspot alleles, as before, are introduced at rate 2NeµH and reach fixation with the

probability given by equation (4) modified to reflect that the drive 8Ner
∗

H(1/2 − p∗) acts

against the allele instead of for it. Note that for p∗ = 1/2 this probability converges to

1/2Ne, since the allele experiences no drive and therefore acts as a neutral allele. The
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probability of a disrupting allele reaching fixation is given by equation (4). The expected

number of currently fixed hotspots in the region is then simply the ratio of the rate at

which hotspots arise and fix to the rate at which each given hotspot is lost by fixation of

a disrupting allele. The distribution of the number of fixed hotspots is Poisson (through a

simple application of queuing theory), with expectation

µHr∗H(1/2 − p∗)/
(

exp(8Ner
∗

H(1/2 − p∗) − 1)
)

µDrH(1/2 − p)/
(

1 − exp(−8NerH(1/2 − p))
) . (11)

In addition to mutations that locally disrupt the hotspot, a hotspot may also be disrupted

by alleles at remote loci that do not benefit from the drive. However, unless the rate at

which these arise is much greater than the rate at which locally disrupting alleles arise they

are unlikely to play a strong role in the evolution of hotspots. They may however, play a

part in the evolution of relatively cold hotspots.

SOM 9: The Coalescent process with biased transmis-

sion

We suppose that the DSB initiation process is additive, i.e. the rate of initiation in AA ho-

mozygotes is 2rA and that the rate of initiation in BB homozygotes is 2rB (the fully general

case is easily treated in the same way as presented here). Table 1 shows the joint probability

of the offspring allelic type (denoted by O) and the DSB events that could have occurred in

the parents (given that the frequency of the A allele in the parental generation is x). Us-

ing these joint probabilities we can construct the conditional probabilities of various events.

Note that the first and second row of the table sum approximately x and 1 − x respectively

(as the frequency of a particular allelic type, P (0), alters little between two generations).
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O No DSB DSB in homozygote DSB in heterozygote

A (1 − rA − rB)x(1 − x) + (1 − 2rA)x2 2rAx2 2(rAp + rB(1 − p))x(1 − x)

B (1 − rA − rB)x(1 − x) + (1 − 2rB)(1 − x)2 2rB(1 − x)2 2(rBp + rA(1 − p))x(1 − x)

Table 1: The joint probability of the offspring type O and events in the parent, given that

the frequency of the A allele in the parental generation is x.

SOM 10: Background-specific rate of recombination

In the normal ancestral process both backgrounds A and B recombine at the same rate.

Consideration must be given now to the probability that a DSB happens in the previous

generation, on a haplotype with a particular allele, A or B; this will be influenced by not

just the differing probabilities of initiation, but also by the very fact that this allele was

transmitted through the recombination event. If the frequency of the A allele in the previous

generation is x, then conditional on the offspring type in the current generation, O, being

A, the probability of a DSB in the previous generation is

P (DSB|O = A) = P (DSB, O = A)/P (O = A)

=
1

x

{

2x2rA + 2x(1 − x)(rAp + rB(1 − p)) + (1 − x)2 × 0
}

= 2
{

xrA + (1 − x)(rAp + rB(1 − p))
}

, (12)

and by a similar argument

P (DSB | O = B) = 2
{

(1 − x)rB + x(rA(1 − p) + rBp)
}

. (13)

Note that although this formula strictly applies to the probability of DSBs on each back-

ground, it is directly applicable to the probability of crossover, if we instead let rA and rB be

the crossover rates for the two alleles and p be the transmission probability of the initiating

allele conditional on a crossover in a heterozygote. For example, in the case of the NID1

hotspot the allele disrupting the hotspot has the same conversion transmission properties

(i.e. the same p) regardless of whether or not the conversion is accompanied by crossover,

and so P (crossover | O = A) = qP (DSB | O = A) where q is the fraction of DSBs that
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result in crossover (and likewise for P (crossover | O = B)). Similarly, we can directly apply

it to the case where gene conversion is not accompanied by crossover; this is useful in full

consideration of the ancestry (see the next section).

When the DSB process is completely biased against the initiating allele, i.e. p = 0, then

from equations (12) and (13) both A and B lineages recombine at rate 2[xrA + (1 − x)rB].

This at first seems counterintuitive, since forward in time more recombination occurs on the

hotspot allelic background. However, the fact that the allele was transmitted acts in such

a way as to counter this effect. The argument for equal rates can be phrased as follows

for p = 0. The offspring of recombinants are always the non-initiating allele, and the a

type of the non-initiating allele is simply drawn from the population frequency at random.

Following lineages back in time, we are constantly following non-initiating types through

any recombination events encountered. Further, since at any such recombination these are

drawn at random from the population, the type of a lineage gives no information about the

recombination rate on that lineage.

In contrast, if p = 1 the initiating allele is always passed on, and in this case equations

(12) and (13) give P (DSB | O = A) = 2rA and P (DSB | O = B) = 2rB, and so there can

be a distinct difference between the rates of recombination on either background. In a more

general setting where initiation rates are nonadditive (e.g. when there is no dosage effect on

the rate of DSB initiation, as found at a hotspot in mice [20], and equally consistent with

observations in humans at the DNA2 hotspot [9]) a similar simple formula can be obtained,

and in this setting it is even possible for the B background to have a higher historical rate

than the A background!
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SOM 11: Background-specific choice of parental alleles

Conditional on a DSB on a particular allelic background, A or B, one of the parental allelic

types must be the same as the offspring (we view the allelic type, A or B as determined

essentially at a single locus) as it has transmitted this allelic type information. We need to

calculate the conditional probability of the allelic type of the other parental chromosome

being either A or B (this is important since both parents will contribute some genetic

material to the offspring chromosome). When considering an allele which does not affect

the probability of transmission or the rate of recombination, the other parental allele is

picked at random from the current population frequency of the allele [5]. However in this

case the choice of parental allele is influenced by the fact that a recombination has happened,

as forward in time the probability of a DSB is altered by whether the parent is AA or AB. We

now turn our attention to the choice of parental allelic types that formed the DSB resulting

in the offspring chromosome. One parental chromosome determines the offspring allele type,

and in SOM 10 we consider what other material is copied this chromosome. Given a DSB

in the previous generation producing an offspring type A, one parental chromosome is also

of type A (transmitting this allelic type to the offspring chromosome) and the other can be

A or B. The unknown parental genotype is denoted by G, where G = AA or G = AB, and

the offspring type by O = A. The probability that both parental chromosomes that formed

the DSB are of type A given an offspring of type A can be written as

P (G = AA | DSB, O = A) =
P (G = AA, DSB, O = A)

P (G = AA, DSB, O = A) + P (G = AB, DSB, O = A)

=
2x2rA

2x2rA + 2x(1 − x)(rAp + rB(1 − p))

=
xrA

xrA + (1 − x)(rAp + rB(1 − p))
, (14)

and by a similar argument for an offspring of type B

P (G = BA | DSB, O = B) =
x(rA(1 − p) + rBp)

x(rA(1 − p) + rBp) + (1 − x)rB

. (15)

Once again, these results may be applied directly to crossing over by considering the pa-

rameters rA and rB as the probability of crossing over for the two alleles, and p as the
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probability of transmission of the initiating allele given a crossover in a heterozygote. Sim-

ilarly it is applicable to gene conversion events unaccompanied by crossing over, with the

corresponding probabilities. In the case of perfect biased transmission against the initiating

allele, p = 0, then the type of the nontransmitted allele is chosen to be A with probability

xrA/
(

xrA + (1 − x)rB

)

, regardless of the allelic type of offspring chromosome. If rA >> rB

then this last result shows that the nontransmitted allele is always of type A. This result is

clear if we look at the example of the ancestry of a B chromosome; if a type B ancestor to

this chromosome was in a BB homozygote then a DSB can not have been initiated, while

if this ancestor was in a AB heterozygote the A allele must have been the chromosome that

initiated the DSB and so was not passed on. On the other hand, when p = 1 then with

probability x the nontransmitted allele is of type A. This is the same as randomly drawing

the allelic type from the population, which is the correct sampling method when there is no

difference in the rate of initiation between the allelic types.

SOM 12: Choice of Parental material

Finally, conditional on occurrence of a DSB and the types of the parents we are required to

choose what material is given to the offspring, from each parental chromosome. For a gene

conversion event this probability determines which chromosome contributes the majority of

the material and which has been copied only for the gene conversion tract; and in the case

of a crossing over event, this probability gives which parental chromosome is copied for the

material to the left of the DSB and then the other is copied for material to the right.

The region of intense gene conversion associated with the hotspot is small [8]. For sim-

plicity we consider only markers outside this region, as there will be few markers within this

region (other than the hotspot locus). We also do not model gene conversion outside of the

hotspot. A full treatment would have to model the ancestral gene conversion fragments, for

example as described in Wiuf and Hein [19]. We effectively assume that the hotspot has
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zero width, but finite heat, which allows us to consider gene conversion within the hotspot

that does not result in crossing over as a process that merely switches the background of the

ancestral haplotype outside of the hotspot. Conditional on a gene conversion event, we can

ignore the parent contributing at most the small gene converted fragment, and need follow

only the other parent back. For an offspring of type A with parental genotype AB, we follow

the A chromosome with some probability fA, and otherwise the B chromosome. We assume

both chromosomes produced by a gene conversion are equally likely to be passed down to the

offspring, and consider the case where initiation takes place on an allele’s own strand. The

initiating allele is passed down with probability pnc which is half the probability that the

gene conversion tract does not include the rate determining locus. This enables calculation

of the required probability, and we obtain the following;

fA =
rApnc + rB/2

rApnc + rB(1 − pnc)
(16)

Similar formulas can be obtained in more general cases, or in the case that an allelic type

initiates recombination on the other strand. In this simple formulation, gene conversion

essentially just results in ‘migration’ between types A and B backward in time, with a bias

towards migration to the A type from the B type if pnc < 1/2.

Analogously, when a DSB results in crossing over the recombinant has two parents, one

of these contributes material to the left of the hotspot, and the other to the right. The

contribution of the parental can be chosen at random unless the parent chromosomes are of

type A and B, i.e. a heterozygote. In this case the probabilities for the two possibilities; A

contributing the left or right half; will not be equal in general, and will depend on the off-

spring type. Arguing similarly to the gene conversion case above, and again assuming that

both products are equally likely to be transmitted, a corresponding expression can again

be derived (not shown). This can be written in terms of qrA, qrB, pc, and an additional

parameter pcl, the proportion of crossovers whose gene conversion tract lies entirely to the

left of the allele-determining locus, where pcl ≤ 2pc.
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SOM 13: How can we model population genetic data

featuring a segregating hotspot allele?

Several computational approaches have recently been developed that utilise population ge-

netic data in order to infer variable historical recombination rates and hotspot locations

[3, 12, 15]. These offer a distinct approach, with unique advantages and disadvantages, that

complements those of linkage and sperm studies. The rate found by methods using popula-

tion genetic data is clearly in a sense “averaged” over a great number of generations, implying

that the experimentally verified hotspots, such as those in the MHC and Beta Globin regions,

all of which have an effect on patterns of LD (see for example Fearnhead et al. [3]), must

have been active for considerable periods of time. The possibility of segregating hotspot

alleles raise a number of interesting questions for detection of hotspots based on variation

data. For example: what power do we have to detect such hotspots; how does the heat we

infer relate to the true heat; if a hotspot has gone extinct at some time in the past how

much of a signal remains, and can we distinguish it from a currently active hotspot? Here

we describe a method to simulate the ancestry of a sample, and hence sample variation data,

conditional on a current (or at least recent) segregating hotspot allele, in order to enable

future quantitative investigation of these questions. We also briefly consider the implications

of the derived backward process.

To explore the effect of a segregating hotspot allele in detail, we can model the underlying

genealogy by a modified coalescent process. The rate of DSB initiation and the choice of

parental background depend on the frequency of the A and B alleles. As noted before the

drive is exactly analogous to genic selection. This means that we need to consider simultane-

ously, backward in time, the ancestry of the sample and the frequency of the hotspot allele.

This can be modeled in a similar way to modeling the genealogy when selection acts at a

single site, as described in Hudson and Kaplan [5] (see Nordborg [16] for an introduction).

Conditional on the frequency of the hotspot allele through time, the genealogical process
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can be modeled as a subdivided population where the frequency of each allele gives the

population sizes.

Let crossing over result from a DSB with probability q. When a DSB is initiated, if

crossing over does not occur the initiating allele is transmitted with probability pnc, while if

crossing over does result, it is transmitted with probability pc. Combining the results of the

previous three sections, the following algorithm describes how to simulate from the process.

• Simulate the frequency {Xt} of the hotspot allele in the population backward in time

from the present day, to the eventual loss of the A allele, approximating the conditional

backward diffusion using a birth and death process as described in Griffiths [4] and

implemented in Coop and Griffiths [1] (see SOM 12 for more details).

• Initially set t = 0, and sample the initial numbers nA of type A haplotypes and nB

of type B haplotypes according to the appropriate ascertainment model for sampled

sequences.

• At a time t into the past, with current frequency Xt = x of the hotspot allele A in the

population, some totals nA of type A haplotypes and nB of type B ancestral haplotypes

still remain. Then events occur to the nA +nB ancestors of the sample at the following

instantaneous rates:

1. Coalescence of two ancestral A haplotypes: nA(nA − 1)/2x;

2. Coalescence of two ancestral B haplotypes: nB(nB − 1)/2(1 − x);

3. Mutation of an ancestral haplotype of allelic type B to type A (this is the one

way mutation out of A viewed in reverse): nBµDx/(1 − x);

4. Gene conversion (not accompanied by crossing over) on one of the A or B ancestral

haplotypes, rates nA×eqn.(12) and nB×eqn.(13) respectively; using (1 − q)rA,

(1 − q)rB and pnc in place of rA, rB and p;
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5. Crossing over on one of the A or B ancestral haplotypes, rates nA×eqn.(12) and

nB×eqn.(13) respectively; using qrA, qrB and pc in place of rA, rB and p.

• Allow the above process to continue until all sequences have reached a single ancestor

(i.e. nA + nB = 1)

For gene conversion and crossover events, one parental chromosomes will be the same allelic

type as the offspring. The allelic type of the nontransmitted allele must also be chosen, using

(1− q)rA, (1− q)rB and pnc for gene conversion (without crossing over) and qrA, qrB and pc

for crossing over, from equation (14) or (15) if the ancestral haplotype is A or B respectively.

In addition, the material that the respective parents contribute to the offspring must also

be chosen, and the probabilities associated with this choice are described in SOM 10.

As usual, the above algorithm can be adapted to save computational time by only follow-

ing lineages containing DNA material ancestral to the sample, and at positions which have

not yet reached a most recent common ancestor (we must also keep track of the type, A or

B, at the hotspot allele on such lineages). We can also easily extend to allow crossing over

outside of the hotspot region which is dealt with in the usual way, i.e. by drawing the allelic

type of the parental chromosome from the current population frequency of the hotspot allele

when the crossing over occurs [5].

SOM 14: Simulating the hotspot allele frequency backward through

time

The Moran model, a birth and death process, may be used to approximately model the

frequency of the hotspot allele through time. This uses the population scaled drift coefficient

µ(x) = −4NerH(q(1/2 − pc) + (1 − q)(1/2 − pnc))x(1 − x) − 2NeµDx, (17)

which is a version of equation (3) modified to reflect the differing biases in the products of

DSBs that are and are not accompanied by crossover. The approximating Moran model has
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a population size of N chromosomes; which for computational convenience is less than 2Ne.

If there are currently j (0 < j < N) chromosomes with the hotspot allele in the population,

the Moran model has birth rate

N(Nx(1 − x) + µ(x))/2 (18)

and death rate

N(Nx(1 − x) − µ(x))/2 (19)

where x = j/N . Note that we do not have to condition on eventual loss back in time, since

this is guaranteed by the one-way mutation towards the B allele.
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