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Abstract

Background/Objective: Non-clinical aspects of life, such as social, environmental, behavioral,
psychological, and economic factors, what we call the sociome, play significant roles in shaping
patient health and health outcomes. This paper introduces the Sociome Data Commons (SDC),
a new research platform that enables large-scale data analysis for investigating such factors.
Methods: This platform focuses on “hyper-local” data, i.e., at the neighborhood or point level, a
geospatial scale of data not adequately considered in existing tools and projects. We enumerate
key insights gained regarding data quality standards, data governance, and organizational
structure for long-term project sustainability. A pilot use case investigating sociome factors
associated with asthma exacerbations in children residing on the South Side of Chicago used
machine learning and six SDC datasets. Results: The pilot use case reveals one dominant spatial
cluster for asthma exacerbations and important roles of housing conditions and cost, proximity
to Superfund pollution sites, urban flooding, violent crime, lack of insurance, and a poverty
index. Conclusion: The SDC has been purposefully designed to support and encourage
extension of the platform into new data sets as well as the continued development, refinement,
and adoption of standards for dataset quality, dataset inclusion, metadata annotation, and data
access/governance. The asthma pilot has served as the first driver use case and demonstrates
promise for future investigation into the sociome and clinical outcomes. Additional projects will
be selected, in part for their ability to exercise and grow the capacity of the SDC to meet its
ambitious goals.

Introduction

Non-clinical aspects of life, such as social, environmental, behavioral, psychological, and
economic factors, play significant roles in shaping patient health and health outcomes. These are
broadly studied as Social Determinants of Health, which theWorld Health Organization defines
as “conditions in which people are born, grow, live, work and age” and “fundamental drivers of
[health] [1].” Including sociome datasets is often a burdensome data problem, both in finding
and integrating disparate datasets, where clinical patient data have to be integrated with other
data sources to characterize a patient’s life outside of their clinical interactions. We refer to the
entirety of these non-clinical or social factors as a patient’s “sociome.” Due to the diversity of
data sources and file types that sociome research has to consider, key bottlenecks in scaling such
research to large patient populations include data integration [2], data harmonization [3],
uneven data quality [4], and statistical modeling of multimodal datasets [5]. Consequently,
studies often focus on one factor, a composite index, or a set of highly related factors [6], where
potentially crucial nuances and interactions among factors can be lost.

Here, we report on the design and implementation of the Sociome Data Commons (SDC).
Leveraging the expertise of the Pediatric Cancer Data Commons in collecting, harmonizing, and
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sharing data [7], we created a repository of pre-harmonized,
geospatial sociome datasets that can be used in concert with clinical
data to predict a variety of outcomes. To this end, we:

• Assembled and integrated publicly available geocoded data-
sets about social, environmental, behavioral, psychological,
and economic exposures.

• Developed a data governance framework using a structured,
standardized metadata model that conforms to FAIR
(findable, accessible, interoperable, reusable) [8] principles.

• Established a statistical methodology for analyzing sociome
datasets of varying scope and quality, and for scaling and
sustaining such analysis over large populations, environ-
ments, and diverse data sources.

To evaluate the SDC, we performed a pilot use case to identify
sociome factors associated with pediatric asthma exacerbations
on the South Side of Chicago. Pediatric asthma was selected as it is
a community priority [9], has well-documented social disparities
[10], and is known to have many sociome influences, including
housing and environmental conditions [11,12]. In addition,
clinical factors alone or models with limited variables have lacked
sufficient predictive power for asthma outcomes [6,13,14].

Materials and Methods

In this manuscript, we use the following terms as defined below:

• Sociome Data Commons (SDC): A cloud-based repository
of datasets characterizing a variety of local social, environ-
mental, behavioral, psychological, and economic exposures.

• Metadata: Standardized descriptions of the content, quality,
ownership, lineage, and scope of a dataset in the SDC.

• Model: A statistical or machine learning analysis that
associates factors in the SDC to an outcome, often derived
from the electronic health record (EHR) or a clinical study.

• Data Governance: The overall management and control of
the assets in SDC, encompassing the policies, procedures, and
frameworks that ensure data quality, accessibility to
researchers, ethics, and privacy throughout its lifecycle.

• Generalizability: 1. The ability of the SDC to store and serve
multiple types of data and multiple types of models.

2. Purposefully, only generalizable data is included in the
SDC, whether probability-based survey data, modeled
environmental metrics, direct measurements, or surveillance
records.

• Sustainability: The software infrastructure and organiza-
tional processes that govern the SDC will persist beyond
initial pilot studies. The SDC is intended to be a persistent
platform that can be meaningfully engaged by researchers
across disciplines. It is built with the guiding principles
described in Fig. 1. Each of the guiding principles is
elaborated in the supplement.

Software Implementation

The SDC team has assembled and integrated diverse datasets into a
simple, well-documented interoperable format. Researchers can use
an application programing interface (API) to access these datasets
directly from code or via an interactive website (Fig. 1). The datasets
are categorized with a structured, standardized metadata model that
conforms to FAIR principles. These sociome datasets can be pulled
into a protected enclave where they can be joined to clinical data
(protected health information or a limited data set). Deployments
behind an appropriate firewall can simplify privacy and security
requirements for PHI, while a cloud-based multi-tenant solution
could facilitate larger-scale collaborative research projects. Each
dataset is documented with metadata describing its scope, quality,
and units of measure. The project utilizes a Python toolkit (that will
be made available with an open-source license) to aid with common
data integration and harmonization steps that researchers using the
data might encounter. Researchers can identify the types of sociome
factors they wish to investigate and easily build an integrated profile
for a certain region.

Governance and Sustainability

The SDC establishes standards for dataset quality, dataset
inclusion, metadata annotation, and data access. These standards
will help promote trust in the included data and any derived
conclusions. Details are included in the supplement. Novel
contributions are presented in Table 1.

Figure 1. Sociome Data Commons (SDC): guiding principles (left), interface showing four datasets for illustration (right).
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Asthma Pilot Methodology

We conducted a pilot use case of the SDC for demonstration and to
test workflows, beginning with a period of discovery. The pilot
investigated sociome factors potentially related to pediatric asthma
exacerbations. Clinical data was extracted from the University of
Chicago Hospital’s EHR for all pediatric visits (age<18). Data
management and analysis of the extracted data occurred mainly in
Python [15]. All clinical data (address history, demographics,
diagnoses, and encounters) were stored and analyzed on
University of Chicago HIPAA-compliant compute and storage
infrastructure. Some potentially important clinical data, including
allergy testing, asthma control test score, and overweight status,
were not available at the time of this pilot. This study was approved
by the University of Chicago BSD IRB, #21-1920, and a waiver of
consent was granted for this retrospective study.

Geocoding

To adhere to privacy requirements for PHI, an on-site geocoder
was preferred. To test and show robustness between available
geocoder platforms (both cloud-based and on-premises), a test was
performed using 1,000 randomly selected publicly available
Chicago addresses [16] as well as systematic misspellings of
Chicago’s city hall address (a public landmark). We tested batch
geocoding with Decentralized Geomarker Assessment for Multi-
Site Studies (DeGAUSS, locally-hosted geocoding software) [17]
against industry standards: OpenStreetMap, GoogleV3 (both via
GeoPy [18]), and the Census geocoder [19]. DeGAUSS performed
as well as GoogleV3 and the Census, and all outperformed
OpenStreetMap. Details are in the supplement.

Missing Data

The level of missingness in the clinical data was low. Insurance was
5% missing, race/ethnicity 2%, and gender<1%. Missingness was
resolved in two phases. First, by patient and sorted by date, values
were filled forward and backward. Second, remaining missingness
(2% for race/ethnicity, <1% for insurance and gender) was
resolved with multiple imputations [6,20].

Outcome Definition

Visits for asthma and asthma exacerbations were categorized
by the encounter text description including “asthma” and

“exacerbation,” respectively. Using text captured 2,010 additional
asthma encounters (out of 3.3 million total visits, 2006–2021) than
using ICD codes alone. Both terms were required in the visit text to
qualify for a visit for an acute asthma exacerbation.

Spatial Clustering

Spatial clustering is based on the assumption that “location
matters.” Events near each other are often related more than events
far apart. Clustering combines geographic areas (here, census
tracts) together to maximize similarity among the census tracts and
maximize dissimilarity between the clusters. This clustering is
performed to find meaningful spatial commonalities. Further,
clustering reduces the size of large location datasets. For example,
over 300 census tracts on the South Side of Chicago can be reduced
to fewer than 10 spatial clusters. Different clusters can have
different characteristics, summary descriptions, and, especially of
interest here, risk profiles.

Clustering itself is an unsupervised learning problem in that the
researcher does not know which areas will be grouped together
(though the researcher does need to decide on the number of
clusters). We used the skater algorithm [21] in R [22], which
creates a connectivity graph of tracts’ central points as well as edges
from tracts’ contiguous borders. The “cost” of each edge is
established from the dissimilarity between neighboring tracts, and
edges with greater costs are pruned. Statistical significance is
assessed with Moran’s I statistic, which measures spatial
autocorrelation (observations at locations that are either contigu-
ous or not) [23].

Spatial clustering was conducted with exacerbation visits as a
proportion of all asthma visits and only for tracts with at least 10
visits. The exacerbation percentage was then mean-centered and
standardized. Since we did not know how many clusters would be
meaningful, we output five different spatial clustering variables.
These variables had different numbers of cluster assignments –
between three and seven – and were designed to be tested in our
later model. That is, the model would determine whether three
total clusters or up to seven total were more important
(described below).

Sociome Data Commons

For SDC datasets, a breadth of high-quality data types were chosen
for this pilot study. All data were consistently aggregated at the

Table 1. Sociome Data Commons (SDC) standards

Establishment of data documentation
standards

Each dataset in the SDC is annotated with a comprehensive data dictionary that adheres to FAIR principles.
The structure of this dictionary is derived from the Data Documentation Initiative [58].

Establishment of data quality standards The project establishes data quality norms to help researchers understand data veracity. Each dataset is
assigned a data quality score on a scale of 1 (worst) to 5 (best). The score includes any errors in the
dataset as well as missing, malformatted, or obvious outlier data using an error taxonomy developed in
prior work [59]. Next, sampling biases in the dataset are evaluated to determine how representative the
dataset is of the true underlying population (methodology described in detail in the supplement).

Multi-disciplinary research review The SDC is managed by a multidisciplinary team that includes clinicians, informatics researchers, computer
scientists, social scientists, and community members. The SDC is designed to be both a data and code
repository where research artifacts can be reviewed by a multidisciplinary team to ensure reliable,
reproducible, and ethical research.

Differential access Where needed, authorization can be tailored to the user’s role, allowing certain users access to different
data, depending on privacy requirements.

FAIR= findable, accessible, interoperable, reusable.
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census tract level to match the included American Community
Survey (ACS) 2015–2019 planning database [24] and to avoid the
modifiable areal unit problem of using different geographic levels
in the same study [25]. As available, data were reduced to years
2017–2019 to match the clinical data. Chicago crime [26] was
characterized via FBI guidelines [27] as violent or not and rates for
all crime, violent crime, and homicide (as a subset of violent crime)
were created. Rates were also created for Chicago building code
violations [26]. ChiVes, the Chicago data collaborative and
community mapping application, assembled a novel dataset
including tree cover, biodiversity, summer PM (particulate matter)

2.5 estimates, traffic levels, and housing cost burden, among
others [28]. We developed a housing dataset, including building
age and repair condition, sourced from the Cook County Tax
Assessor’s Office [29]. The Environmental Protection Agency
(EPA)’s Environmental Justice mapping and screening tool (EJ
Screen) data was also included [30].

Select variables in the ACS planning database [24] are relative to
the population (census tract averages, percentages, or median
values). ACS average and percentages variables with less than a
10% range were also excluded, as data needs to vary to find
meaningful differences. Census tract race/ethnicity distributions

Table 2. University of Chicago asthma visits for Chicago pediatric patients, 2017–2019: A. All patients residing in Chicago; B. All patients residing on the South Side of
Chicago; and C. All patients residing in spatial cluster 1

A. Chicago
2017–2019

B. South Side
2017–2019 South Side % of Chicago

C. Cluster 1
2017–2019 Cluster 1 % of South Side

Asthma visits 12,392 11,871 96% 10,501 88%

2017 3,867 3,697 96% 3,232 87%

2018 3,964 3,791 96% 3,369 89%

2019 4,561 4,383 96% 3,900 89%

Outpatient 5,353 5,035 94% 4,258 85%

Emergency 5,554 5,414 97% 4,976 92%

Inpatient 1,485 1,422 96% 1,267 89%

Median age at visit (range) 8 (0–17) 8 (0–17) 7 (0–17)

Asthma exacerbations 3,602 3,497 97% 3,256 93%

Unique asthma patients 5,826 5,585 96% 4,665 84%

Tracts per patient: Median (range) 1 (1–3) 1 (1–3) 1 (1–3)

Insurance

Public: Medicaid 4,511 4,361 97% 3,633 83%

Private 991 913 92% 760 83%

Private with Medicaid 95 90 95% 75 83%

Miscellaneous and unknown 223 215 96% 192 89%

Public: Medicare 6 6 100% 5 83%

Race/ethnicity

Hispanic 294 271 92% 83 31%

Non–Hispanic

American Indian or Alaska Native 2 2 100% 2 100%

Asian/Mideast Indian 46 36 78% 33 92%

Black/African–American 5,197 5,034 97% 4,366 87%

Native Hawaiian/Other Pacific Islander 1 1 100% 1 100%

White 183 149 81% 112 75%

More than one race 61 56 92% 39 70%

Unknown 42 36 86% 29 81%

Gender

Female 2,476 2,228 90% 2,001 90%

Male 3,350 3,007 90% 2,664 89%

Number of visits: median (range) 1 (1–92) 1 (1–92) 1 (1–92)

Days between visits (gt 0): median (range) 397 (1–1,078) 398 (1–1,078) 402 (1–1,073)
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were also excluded to prevent overfitting on race. Reciprocal
measures (e.g., percentage of male and female) were reduced to one
variable.

To account for poverty and still identify other components of
neighborhood conditions, we collapsed all ACS poverty-related
variables together. Correlations were assessed relative to the
percentage of persons living below the poverty level. The inclusion
threshold was set at |0.5|. Both Pearson (linear relationships) and
Spearman (monotonic) methods were used to maximize inclusion.
Principal component analysis (PCA), which combines variables
together with a linear orthogonal transformation, was conducted
for feature reduction for the poverty-correlated variables (hereafter
“poverty PCA”) [31,32].

Model

Data were modeled on the visit level and restricted to asthma
visits. To avoid a UChicago-specific EHR artifact that occurred in
late 2016 as well as COVID-19 pandemic complications, data
were restricted to visits from 2017 to 2019. Because of sparse data
outside of the South Side of Chicago, this pilot was limited to
census tracts on the South Side (Table 2 and Fig. 2). Patient
race/ethnicity and insurance variables were excluded: race/
ethnicity to prevent overfitting on race as well as to permit
later bias testing and insurance status because public health
insurance is a proxy for poverty. All 5 spatial cluster variations
were included to determine which provided the most information
to the model.

One nonlinear machine learning algorithm, a boosted decision
tree [33], was piloted. Decision trees are non-parametric and do
not make assumptions about the form of the data, can manage
correlated data, have high dimensionality, and tolerate missing-
ness. Boosted trees are an ensemble meta-algorithm, converting
weak learning decision trees to strong ones in an iterative manner,
such that each new tree improves upon the previous one. The

strengths of decision tree-based modeling provide the researcher
the ability to include data elements not previously identified as
risks in the literature, allowing for discovery of novel influences
upon an outcome. Diverse datasets (including factors known to be
related to asthma in the literature and, purposefully, elements that
are not in the literature) were included in the model to allow for
novel factor discovery. After this pilot period of discovery, more
specific modeling will be undertaken.

Decision tree models allow more flexibility and use of more
complex datasets but also risk overfitting to the noise or
randomness in the data. To assess overfitting, we split the data
into train and test sets. The model is designed (“fit”) on train data
only, and then solely “run” on the test data to predict outcomes.
Model prediction accuracy, defined below, is compared between
train and test datasets to determine if the model is overfitting on
the initial train data.

The outcomes were slightly imbalanced in that there were 2.4
times as many routine asthma visits as for exacerbations; this can
affect prediction accuracy, especially for the minority group
(exacerbations). The XGBoost model allows for rebalancing to
prevent this via adjusting weights as a model hyperparameter.
Othermodel hyperparameters were optimized withHyperopt [34],
and manually adjusted after fit assessment with a 70/30 train/test
split; with the final hyperparameters, shuffled 5-fold cross-
validation was conducted.

Evaluation

Metrics center on comparing model predictions to actual values.
“Positive” indicates the outcome of interest, here, an asthma
exacerbation, while “negative” indicates no exacerbation. “True”
indicates that the actual outcome in the data matches the model-
predicted outcome, while “false” indicates amismatch between real
and predicted outcomes. The metrics are: true positive (TP); true
negative (TN); false positive (FP); and false negative (FN).

Figure 2. Asthma visits 2017–2019 by census tract. a. Asthma visit counts (continuous); b. Exacerbations as a proportion of all asthma visits; and c. Spatial clustering for
exacerbations. The University of Chicago hospital is in red and its 5-mile perimeter is represented with a dashed red line.
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Accuracy is the proportion of correct predictions ((TPþ TN) /
(TPþ FPþ TNþ FN)). Test accuracy is the accuracy of the model
on only the test dataset. Recall is the proportion of actual positives
identified correctly (TP / (TPþ FN)).

Variable importances were determined by gain, which is the
relative improvement in accuracy contributed by a particular
feature. Gain provides a ranking of all variables in the model to
indicate which are most important. It is vital to note that decision
trees are not regression lines. If two variables are correlated, the
decision tree will rank as more important whichever variable
provides better accuracy. For example, we included five different
spatial clustering variables to test whichmodel ranked highest, that
is, which of the five provided the most gain. This served as variable
selection for spatial clusters for future efforts.

A baseline model included clinical and ACS data only. This was
followed by a model with all SDC datasets and clusters to
determine any improvement in predictive power. Further, the
model would decide which of the five cluster variations provided
the most gain to the model and, additionally, if clusters were at all
important relative to other variables.

Protocol Testing

Two data-driven inclusion protocols were tested as future optional
tools for users, and each used lasso-regularized logistic regression
[35] and added SDC datasets one by one to the clinical data
(serially, not cumulatively). The first protocol assessed including
full datasets via the AIC metric (Akaike information criterion; the
lower the value, the better the model quality) [36]. The second
protocol used lasso as variable selection. Each variable that reached
statistical significance (p< .05) was included. Lasso regularization
compresses coefficients to reduce bias and is a useful technique for
variable selection. (See the supplement.)

Challenges

Challenges for this pilot include clinical data availability and the
relatively low predictive power of variables (“signal”) with the high
variability of individual patients (“noise”). There is also a sampling
bias in that the University of Chicago sees a distinct patient
population – demographically, socio-economically, and
geographically – which likely does not generalize to other
populations.

Results

Sociome Data Commons

We report initial technical metrics for the SDC.

SDC Scope and Quality

The initial data repository consists of 22 total datasets and
375 individual metadata entries documenting their quality,
provenance, and scope. Dataset content categories include
environmental exposures (n = 16), public safety (n= 3), demo-
graphics (n= 2), access and mobility (n= 2), property (n= 1), and
economic activity (n= 1). The geographic levels include street
addresses (n= 14), census tract (n= 7), census block (n= 1), and
latitude/longitude points (n= 3).

In the initial pilot use case, only high-quality datasets were
included. All 22 datasets to date have a data quality score of four
or higher (see the supplement) and three of the datasets have a
score of five. Furthermore, we found that datasets had varying

geographic granularities. The fine-grained data, i.e., data at a finer
precision than census tract, were in varying formats and scope.
This requires significant efforts to harmonize and align with the
other datasets using our software toolkit. In all, the datasets include
1906 total variables.

Usability Metrics

We evaluated the incremental cost of adding new datasets to the
SDC by measuring the time required by a data engineering intern.
These datasets had already been assessed by the team for relevance
and quality. The metrics measure the time needed to use the
automated harmonization software to reformat the data and enter
the metadata into the commons. Over 13 random datasets, the
average time to find and add to the SDC was 25 minutes with a
wide standard deviation of 21 minutes; this does not include data
cleaning or any integration activities.

CONSORT and Clinical Trial Ethos

We leveraged the deep expertise of the clinicians on the SDC team
to develop a dataset inclusion pipeline that resembles a clinical trial
flowchart [37]. Datasets are assessed through a review process and
progress through a number of stages until inclusion. Fig. 3 shows
the current status of this inclusion process.

Asthma Pilot Results

Clinical data
Using DeGauss, 93% of all clinical data were successfully geocoded
from patient address to latitude and longitude, census block, and
census tract. The other 7% of addresses were post office boxes
(0.4%), non-address text (0.2%), and “imprecise” (6.9%), where
“the address was geocoded, but results were suppressed because the
precision was intersection, zip, or city and/or the score was less
than 0.5 [38].”Table 2 is restricted to asthma visits among residents
of Chicago between 2017 and 2019.

The UChicago pediatric asthma patient population is 77%
Medicaid and 89% non-Hispanic Black (Table 2.A). Given the
hospital’s location and consequent patient catchment, restricting
the data to the South Side of Chicago captured most asthma visits
(Table 2.B). However, population changes from this restriction
included reductions in the non-Hispanic Asian/Mideast Indian
(78%) andWhite (81%) patients, while 97% of non-Hispanic Black
and 92% of Hispanic patients remained, reflecting the segregation
by race/ethnicity in Chicago. Moving between census tracts was
not common, with a median count of census tract per patient
of 1 (range 1–3).

Spatial clustering of census tract exacerbations as percentage of
asthma visits was significant (Moran’s I= 0.5958, p< .0001) and
also showed a dominant and geographically large cluster 1 where
39% of asthma visits were for exacerbations (Fig. 3c). In contrast,
only 18% of visits were for exacerbations in cluster 5. The University
of Chicago hospital itself resides within cluster 1, though the cluster
extends far to the south andwest (Fig. 3c). Restricting clinical data to
patients within cluster 1,most asthma visits were retained. However,
important changes include a dramatic reduction in the South Side
Hispanic population (31%, Table 2.C).

Sociome Data Commons datasets

For the poverty PCA, Spearman added four additional variables
not included in the Pearson results, while Spearman alone would
have excluded eight identified from Pearson. Twenty-nine
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variables correlated with percent below the poverty level at |0.5| or
above (see the supplement) and, along with percent below the
poverty level, were mean-centered and standardized [31]. These
variables were reduced to one PCA loading, which explained 56%
of variance.

Model

A baseline boosted tree was run with only clinical and ACS data
(which included the poverty PCA) with a test accuracy of 58%.
With all datasets for the entire South Side, accuracy was increased
to 62%, with recall for one (an asthma exacerbation) at 65%.

Feature importance for the South Side (Fig. 4a) revealed clear
outliers for gain around 21 and again at 28 (Fig. 4c). Most
features were at the lowest end of gain. Spatial clustering
appeared twice in the top features. Seven clusters and the average
age of housing provided the most gain in accuracy, followed by
age at visit, proximity to Superfund pollution sites (marked for
decontamination by the EPA), median rent, and the violent
crime rate. The proportion of residential housing, urban flood

susceptibility, and three spatial clusters followed in the top 10
variables.

Given the geographic dominance of spatial cluster 1 and its high
proportion of asthma exacerbations, we ran a model only on those
patients residing within that cluster. Cross-validated accuracy was
57%, accuracy was 61%, and recall for one was 60%.

For cluster 1, there is a clear grouping of top feature
importances at gain above 25. Otherwise, there is an accumulation
of features around 8. (Fig. 4d) The average age of housing units, the
percentage of those under age 19 with no health insurance, the visit
month, and the patient’s age at visit were dominant variables in the
model (Fig. 4b). These were followed by a second grouping of
features in the top 10 of those 65 and over with no health insurance,
housing cost burden, foreign born residents, median cost of rent,
the poverty PCA, and several variables indicating a lack of health
insurance.

Variable importances changed between the model including
all of the South Side (Fig. 4a) and the model restricted to cluster 1
(Fig. 4b). Housing age (Fig. 5a) remained a top variable, as did
patient age and median rent. However, moving from the full

Figure 3. Sociome Data Commons (SDC): data pipeline.
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South Side to only cluster 1, housing cost burden (Fig. 5b)
appeared in the top variables while urban flood susceptibility
(Fig. 5c), the violent crime rate (Fig. 5d), and proximity to
Superfund sites (Fig. 5e) left the top 10 important variables.
Instead, lack of health insurance variables and the poverty PCA
(Fig. 5f) gained importance.

Conclusion

Platform Discussion

The SDC has been purposefully designed to support and encourage
extension of the platform into new data sets as well as the
continued development, refinement, and adoption of SDC

Figure 4. Variable importance: a. Top 10 variables for the full south side; b. Top 10 variables for cluster 1; c. Histogram of gain for all variables, full south side; and d. Histogram of
gain for all variables, cluster 1 only.
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standards for dataset quality, dataset inclusion, metadata anno-
tation, and data access/governance. The asthma pilot has served as
the first driver use case for the SDC. Additional projects will be
selected, in part for their ability to exercise and grow the capacity of
the SDC to meet its ambitious goals. The purpose of this study is
twofold: (1) to further the understanding of sociome factors in a
variety of pathologies and (2) to understand principles of
sustainable data commons design.

The first purpose has parallels to other similarly-intentioned
ongoing efforts. The National Neighborhood Data Archive
(NaNDA) at the University of Michigan [39], the Health Equity
Explorer (H2E) at Boston Medical Center [40], Exposomics from
the University of Utah [41], the City Health Dashboard from New
York University [42], PopHR at the University of Tennessee [43],
and SDOH and Place [44] are among many groups aggregating
important data expressly to enable researchers’ use of sociome
factors.

We believe the second purpose – to understand the principles of
sustainable data commons design – is unique to this project. The
SDC is studying the design and implementation of such a data
commons as a scientific problem including establishing quanti-
tative metrics for assessing data quality, ease of use, researcher
adoption, and sustainability. This manuscript contributes a
framework for evaluating such criteria and we believe this to be
an important contribution to this research area.

This pilot andmanuscript have been tailored to Chicago, but we
are collecting national datasets and can build additional location-
specific datamarts as needed. However, local understanding
provides critical context to properly using the data, and our group
holds high knowledge of Chicago and available datasets. Key

informant interviews with community members and other content
experts are underway, and the Institute for Translational
Medicine’s Community and Collaboration core is currently
conducting community outreach activities. Notably, not all cities
have tools such as the City of Chicago’s Data Portal [26].

In ongoing work, the team plans to make the entire SDC
infrastructure publicly available and open source. It will include the
software artifacts designed as a part of the project, such as the data
harmonization and analysis code. It will further open-source the
management infrastructure of how to host and serve these datasets.
Furthermore, we will release policy templates for data governance
and quality assurance. Once we finish integration of datasets, the
SDC will serve as a reference implementation for data commons
across a variety of social contexts of health research problems.

Analysis Discussion

The pilot use case reported above was helpful in providing
direction for our future SDC and analytic efforts. Spatial clustering
of exacerbations, housing conditions, proximity to Superfund sites,
violent crime, urban flood susceptibility, lack of health insurance,
and the poverty PCA all contributed importantly to prediction of
asthma exacerbation. Some of these reflect current literature on
risks for asthma, such as housing conditions and violence [45,46].
Further, housing variables appeared in the top 20 variables, such as
the building violation rate and mobile home percentage (see the
supplement).

Of course, these housing quality indicators are only proxy
estimates for each individual patient’s actual housing conditions
and exposures, such as indoor air quality, first, second, or third-

Figure 5. Select south side maps: a. Average housing age; b. Median rent; c. Urban flood susceptibility; d. Violent crime rate; e. Proximity to superfund sites; and f. Poverty
principal component analysis (PCA). Cluster 1 census tracts are outlined in white, and the University of Chicago hospital is in red with its 5-mile perimeter represented with a
dashed red line.
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hand smoke exposure, and mold or pest exposure [47–50]. Given a
subset of patients’ actual housing and indoor air quality, we could
work to identify which, if any, SDC datasets could serve as the best
proxy [51]. The addition of personal exposure data might increase
predictive accuracy, and the extent to which this occurs would
inform how well (or not) generalized survey data like the sociome
datasets perform in their stead.

Proximity to Superfund sites merits further exploration of these
and other pollution sites such as landfills and risk management
plan sites. Exploring patient-level distance to these, rather than
census tract estimates, is a next step. Notably, known risks such as
PM2.5 exposure and traffic proximity [48] did not appear in the
top 10 variables, though they are in the top 20 (see the supplement).

Other findings, such as the violent crime rate and lack of
insurance, also replicate the literature [46,52]. Rarely-seen findings
[53] to be further explored and include urban flood susceptibility,
which could indicate poorer housing quality and perhaps indicate
susceptibility to damp housing and mold growth. Further
exploration of flooding is needed.

In this pilot, spatial clustering proved to be important. Model
stratification was only conducted for the dominant cluster 1.
A comparison of top variable importances demonstrates the
promise of providing geography-specific risks (Fig. 4), though
further work is needed to clarify the reasons for the cluster
differences, as well as a comparison model for the full South Side
excluding clustering variables. Still, future work exploring cluster-
specific models could inform geographically tailored interventions.

Limitations

This study suffers from several data set limitations. For example,
some probability surveys (such as NHANES [54]) contain
important sociome data but are not publicly available at the
census tract level.

The models resulted in rather weak signals. While we
anticipated that the importance might lie in an aggregation of
multiple weak signals, predictive improvement is still needed. By
choosing just a few datasets, we might not have yet included the
most important datasets. We anticipate that broadening the range
of sociome factors in an expanded SDC (which we are currently
building) may increase model performance.

The University of Chicago catchment area does not generalize
to all pediatric asthma patients in Chicago. Varied data are needed
to appreciate differences, and we need EHR data from other
metropolitan Chicago health systems to provide greater patient
heterogeneity. Efforts to expand the data are underway with our
partners from the Institute for Translational Medicine [55].

The spatial clustering of exacerbations might be affected by
proximity to the UChicago hospital, as exacerbations are often
urgent or emergency events. However, cluster 1 does extend far to
the south and southwest of the hospital. Adding other hospitals’
data should clarify clustering of exacerbations against hospital
proximity.

Analysis needs to be expanded. We piloted data as cross-
sectional, and future efforts will use longitudinal methods and
correct for this temporal bias. Including both temporality-based
regression discontinuity and high-dimensionality mediation
analyses will also enable causal exploration. Patient-level, rather
than visit-level, analysis (as a multilevel generalized estimating
equation) might also increase predictive performance, as many of
the asthma exacerbation visits could have been from a particular
subset of patients. By matching patients to specific locations in our

housing dataset, we can move to sub-census tract metrics. Future
efforts should include patient-specific distance to the nearest
hospital and also investigate asthma exacerbations in more detail,
for example, if a visit to the emergency department was needed.
Modeling itself needs to be expanded. With machine learning,
multiplemodels can be combined, leveraging themodels’ strengths
and balancing their respective deficiencies.

For this pilot study, we were missing data on many traditional
clinical phenotypes (disease severity, atopic status, comorbidities)
and all biological (genetic, epigenetic) information about the
pediatric asthma patients included in this study. As a next step, via
the structured flow sheet, we will include the asthma control test in
future efforts. Asthma exacerbations will also be defined via
medication prescriptions, though pharmacy dispensing informa-
tion is not available. Phenotypes (atopic/non, obesity related,
etc.) will be assigned. If we are able to obtain biomarker data for
select patients, that could allow identification of gene-environment
interactions.

The users were restricted to the project team with insights and
guidance provided by the team. A robust governance framework
will be crafted. In addition to the data governance discussed here,
we will address appropriate use, responsible use, and community
impact including a flexible regulatory module to meet varied and
changing requirements. We will activate a multi-disciplinary work
group composed of technical, research, legal experts, ethicists, and
community representatives.

In sum, the pilot study reported here demonstrates promise for
future analyses of the complex interactions of the sociome and
clinical health factors using the SDC. We expect that its further
development, including accounting for dataset quality metrics, will
facilitate the accounting for sociome factors in a wide range of
clinical research topics, from analysis of response to cancer
immunotherapy to pandemic preparedness [56], to common
complex diseases like diabetes mellitus [57], and more.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/cts.2023.670.
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