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B Cell Antigen Receptor Signaling and
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Engagement of the B cell antigen receptor initiates two concurrent processes, signaling and receptor internalization.
While both are required for normal humoral immune responses, the relationship between these two processes is
unknown. Herein, we demonstrate that following receptor ligation, a small subpopulation of B cell antigen receptors
are inductively phosphorylated and selectively retained at the cell surface where they can serve as scaffolds for the
assembly of signaling molecules. In contrast, the larger population of non-phosphorylated receptors is rapidly
endocytosed. Each receptor can undergo only one of two mutually exclusive fates because the tyrosine-based motifs
that mediate signaling when phosphorylated mediate internalization when not phosphorylated. Mathematical
modeling indicates that the observed competition between receptor phosphorylation and internalization enhances
signaling responses to low avidity ligands.
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Introduction

The recognition of polyvalent antigens by the B cell
antigen receptor (BCR) initiates a complex web of signaling
events that determine cellular responses [1]. Polyvalent
antigen also induces the rapid internalization of engaged
receptors which is required for the effective presentation of
antigen-derived MHC class II restricted peptides to T cells [2].
As important as these two processes are, the relationships
between them are poorly understood.

Through the work of numerous investigators, a clear
picture of initial signaling through the BCR has emerged
[3]. Receptor engagement induces the phosphorylation of
tyrosines contained within conserved motifs (immunorecep-
tor tyrosine-based activation motifs or ITAMs) in the
cytosolic tails of the receptor constituents Iga and Igf [4,5].
The initial phosphorylation of the ITAM tyrosines is
mediated by both Syk [6,7] and members of the Src-family
of tyrosine kinases (SFTKs) including Lyn, Fyn, and Blk [6,8].
Once phosphorylated, Igo/Ilgf ITAMs serve to recruit and
activate the tyrosine kinase Syk [9-11]. The SFTKs can also be
activated by recruitment to the receptor [12], although
dephosphorylation by CD45 is likely to be the major
mechanism of SFTK activation [13,14]. Once activated, the
SFTKs and Syk initiate distinct and inter-related signaling
pathways. SFTKs are required for the activation of NFkB [7]
and serve to phosphorylate additional important signaling
substrates such as CD22 [15] and BAM32 [16-18]. Syk
phosphorylates BLNK (also termed BASH or SLP65) [19-
22], a scaffolding molecule that is recruited to the BCR
through a unique phosphorylated non-ITAM tyrosine in the
Iga cytosolic tail [23,24]. BLNK coordinates the assembly and
activation of a receptor-retained signalsome containing
PLCy2, Vav, Btk, Nck, and Grb2 [25].

Concurrent with signal initiation, the majority of aggre-
gated BCR complexes are rapidly cleared from the cell
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surface. The endocytosis of receptor-bound antigen is the
first in a series of signaling-mediated events that ensures that
low affinity antigens are efficiently captured, processed, and
presented to cognate T cells [26]. These include the rapid
sorting of internalized antigens to late endosomal antigen
processing compartments [27,28] and the acidification and
remodeling of these targeted late endosomes [29,30]. BCR
signaling also enhances the synthesis of MHC class II [31] and
the co-stimulatory molecules B7-1 and B7-2 [32]. In the
absence of BCR-mediated activation, resting B cells cannot
productively capture and present antigen to T cells.

While the necessity of BCR internalization for antigen
presentation is clear, its relationship to signal propagation is
largely unknown. Recent observations in clathrin-deficient
DT40 cells [33] suggest that internalization may extinguish
receptor signaling. However, studies of BCR internalization
using pharmacological inhibitors have yielded seemingly
contradictory results [18,34]. In contrast, internalization of
the growth factor receptors, such as epidermal growth factor
receptor, may be required for the efficient activation of
selected signaling molecules including Erk [35,36].
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Much of the uncertainty regarding the impact of BCR
endocytosis on signaling is due to our incomplete knowledge
of the mechanisms governing internalization. BCR endocy-
tosis requires clathrin and actin polymerization [33,37-39]. It
also requires activation of a SFTK [18,40], which may function
to phosphorylate clathrin heavy chain [39]. BAM32, which is
also phosphorylated by the SFTKs, is required for efficient
receptor internalization [18]. This scaffolding molecule
probably contributes to endocytosis by regulating Racl and
the remodeling of actin. The molecular linkage between these
signaling pathways, clathrin and the BCR remains enigmatic.
It has been postulated that lipid rafts are the intermediate
between the BCR and clathrin [39]. However, BCR complexes
can be efficiently internalized without segregating to lipid
rafts [41]. Within the BCR complex, the multiple tyrosine-
based motifs could serve as binding sites for clathrin adaptors
[42]. However, there has not been a systematic analysis of
their contribution to receptor endocytosis [43,44].

Herein, we demonstrate that non-ITAM tyrosines, and to a
lesser degree the ITAM tyrosines, determine BCR internal-
ization. This finding suggested that phosphorylated, and
therefore actively signaling receptor complexes, are prefer-
entially retained on the cell surface. This prediction was
confirmed in both biochemical and confocal microscopy
studies. Based on these results, we developed a mathematical
model of the observed exclusive relationship between
receptor internalization and phosphorylation that was then
compared to a hypothetical non-exclusive model. Analysis of
the exclusive model indicated that it could account for
previous seemingly contradictory observations on the rela-
tionship between BCR internalization and signaling. Fur-
thermore, it revealed that retaining phosphorylated BCRs on
the cell surface should preferentially enhance signaling
responses to low avidity ligands.

Results

The Tyrosines within Iga Are Required for Internalization
Tyrosine-based motifs consisting of YXX¢ are well de-
scribed binding sites for AP (adaptor protein)-2, and other
adaptors, which mediate receptor endocytosis [45]. Surpris-
ingly, there has been no systematic examination of the role of
the Igo/IgP cytosolic tyrosines in BCR internalization. There-
fore, we undertook such an analysis with a focus on Iga because
it is the main signaling chain of the BCR [46,47], and it has been
implicated in constitutive receptor internalization [44].

To simplify our initial analysis, we chose to examine the
cytosolic tail of Iga in isolation as a chimera with the
extracellular and transmembrane domains of human platelet
derived growth factor receptor (PDGFR) [47,48]. For these
experiments, we derived chimeras containing several Iga
cytosolic mutants. DNA fragments encoding each PDGFRp/
Iga chimera were cloned into a retroviral vector (MIGRI)
containing an IRES/EGFP cassette. The murine FcR™ B cell
lymphoma A20IIA1.6 was infected with viral stocks encoding
each chimera, and cell populations expressing similar surface
levels of each receptor were isolated by flow cytometry
(unpublished data). We first compared the internalization of
wild-type Iga (Iga*") to Iga in which the ITAM tyrosines were
mutated to either phenylalanines (IgotYAF“‘}Q’l(”3
(IgocYAAmQ’l%). Conservative mutations to phenylalanines
prevent Syk recruitment [9] but should not interfere with
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Figure 1. BCR Endocytosis Is Determined by Cytosolic Tyrosine-Based

Motifs

A20I1IA1.6 cells expressing chimeras containing the cytosolic tail of either
wild-type Iga or Iga in which the ITAM or non-ITAM tyrosines were
mutated were assayed for endocytosis.

(A) Comparison of Iga™* (solid squares) to Iga in which ITAM tyrosines
were mutated to phenylalanines (IgaY4%'82193) (open triangles) or
alanines (IgoYAA182193) (open squares).

(B) Comparison of the internalization of Iga™* (solid squares), a cytosolic
tail truncation of Iga (AT, open triangles), and a ITAM/non-ITAM Igo.
mutant (IgoYAA176,182,193,204 open squares).

(C and D) Igawt (C) or IgoYAA176,182,193,204 (D) were assayed for
endocytosis in the presence (closed symbols) or absence of Latrunculin
A (open symbols).

DOI: 10.1371/journal.pbio.0040200.g001

the recruitment of putative adaptors involved in receptor
internalization [49]. In contrast, mutations to alanine should
prevent the recruitment of both Syk and any adaptor
molecules [45,50]. Endocytosis of each ligated chimera was
assayed by flow cytometry and the percent of internalized
receptor was plotted as a function of time. As can be seen in
Figure 1A, mutation of the ITAM tyrosines to phenylalanines
had little effect on receptor endocytosis while mutation to
alanines slightly delayed receptor internalization (n = 4).
Endocytosis of the endogenous BCR on each test cell
population was similar (unpublished data) confirming that
there were no clonal differences in internalization capacity.
These data indicate that the Igo ITAM tyrosines make a
modest contribution to receptor internalization.

We next derived and analyzed additional Igo. mutants to
examine if the non-ITAM tyrosines contributed to receptor
internalization (IgotYAAl7(:"182’193’204
contained other functional domains (IgotAC). As can be seen in
Figure 1B, additive mutation of the non-ITAM tyrosines

) and if the cytosolic tail

inhibited both the rate and magnitude of internalization by
approximately 70%. Single additive mutation of y!76
(IgaYAA176,182,193) or Y204 (lguYAA182,193,204) revealed that each
contributed to efficient receptor internalization (unpub-
lished data). As mutation of the non-ITAM tyrosines alone
has little effect on receptor internalization [24], we conclude
that both the ITAM and non-ITAM tyrosines contribute to
BCR internalization.

Interestingly, truncation of the Iga cytosolic tail completely

July 2006 | Volume 4 | Issue 7 | €200



inhibited internalization. These data indicate that additional,
unidentified domains within the cytosolic tail contribute to
BCR internalization. However, as demonstrated below, it is
the tyrosine-based motifs that determine which BCR com-
plexes are internalized.

Recent observations suggest that actin cytoskeleton remod-
eling is important for BCR internalization [18,51]. Therefore,
we assayed whether tyrosine-mediated Igo internalization was
dependent or independent of actin polymerization. Cells
expressing IgcxWt (Figure 1C) or IgOLYAAl76’182‘193’204 (Figure 1D)
were stimulated as above in the presence of Latrunculin A. As
can be seen, Latrunculin A inhibited the internalization of
Iga™ but had no effect on the internalization of
IgOLVAAWG’mQ’]%’Q(M. These data indicate that tyrosine-mediated
internalization depends on actin polymerization. The mech-

wit

anisms underlying the residual tyrosine-independent and
actin-independent receptor internalization are not known.

Phosphorylated BCR Complexes Are Retained on the Cell
Surface

With other receptors that depend upon tyrosine-based
motifs for internalization, phosphorylation at these residues
impedes endocytosis [49,52]. Therefore, our data predicted
that following engagement, phosphorylated BCR complexes
would be preferentially retained on the cell surface while
non-phosphorylated complexes would be internalized. To
test this prediction, resting wild-type A20IIA1.6 cells were
surface labeled on ice with Sulfo-NHS-SS-Biotin, a reagent
that attaches biotin to surface proteins through a linker
containing a thiol-cleavable bond. Cell aliquots were either
left unstimulated or stimulated through the BCR for the
indicated times at 37 'C. Cells were then treated on ice with
reduced glutathione which is a cell impermeable reducing
agent that strips biotin from surface, but not internalized,
receptor complexes. Lysates from each sample were sequen-
tially precipitated with strepavidin-Sepharose followed by
anti-Igo. antibodies. Precipitations were resolved by SDS-
PAGE, transferred to membranes and then probed with
either anti-phosphotyrosine (4G10) or anti-Iga antibodies
(Figure 2A). In the strepavidin precipitations, little Iga was
precipitated from resting cells, but progressively more
material was detected over time, reflecting progressive
internalization of the stimulated BCR. Although Iga was
readily detected in these precipitations, there was essentially
no phosphorylated Iga detected. In contrast, phosphorylated
Iga was readily detected in subsequent anti-Igo. immunopre-
cipitations (n = 5).

The results in Figure 2A could have been obtained if
surface-labeled complexes were not phosphorylated follow-
ing BCR ligation or if they were not efficiently precipitated
with strepavidin. Therefore, cells were stimulated as in Figure
2A but without subsequent incubation with glutathione.
Stepavidin precipitations were then sequentially Western
blotted with 4G10 followed by anti-Iga antibodies. As can be
seen in Figure 2B, phosphorylated Iga was readily detected in
the strepavidin precipitations. To assess the efficiency of
surface biotinylation, resting cells were surface-biotinylated,
lysed, and then sequentially precipitated with strepavidin and
anti-Igo. antibodies (Figure 2C). Approximately 50% of the
detectable Iga was present in the strepavidin precipitations
indicating that Igo was efficiently labeled on the cell surface.
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Figure 2. Following BCR Stimulation, Phosphorylated Igo. Is Retained on
the Cell Surface

(A) A20I11A1.6 cells were surface-biotinylated with Sulfo-NHS-SS-Biotin on
ice, stimulated with anti-IgG for the indicated times (min) and then biotin
was stripped from the cell surface. Lysed samples were precipitated
sequentially with streptavidin and then anti-lga antibodies. Parallel
samples were then immunoblotted with anti-phosphotyrosine (4G10) or
anti-lga antibodies.

(B) Cells were labeled and stimulated as above except that biotin was not
stripped from the cell surface. Streptavidin precipitations were then
sequentially immunoblotted with 4G10 and anti-lga antibodies.

(C) Resting surface-biotinylated cells were directly lysed and sequentially
precipitated with streptavidin and then anti-lga antibodies. Precipita-
tions were Western blotted with anti-lgo antibodies.

DOI: 10.1371/journal.pbio.0040200.9002

Direct Visualization of Phosphorylated BCR Complexes

Previously, we had demonstrated in pull-down and far
Western assays that the BLNK SH2 domain bound directly and
specifically to phosphorylated Y201 Iga [23]. Given the
specificity of this interaction, we reasoned that a GST fusion
protein containing the BLNK-SH2 domain could be used to
visualize BCR receptor complexes in which Iga Y*** was
phosphorylated. To test this idea, we first coupled a GST fusion
protein containing the BLNK-SH2 domain [23] to phycoery-
thrin (PE). A20IIA1.6 cells expressing PDGFR chimeric
receptors containing the cytosolic tail of either Iga. or IgOLYAFQO4
were stimulated through the chimera with FITC-conjugated
antibodies for 10 min; fixed, permeablized, and counterstained
with PE-BLNK-SH2. Staining was only observed in those cells
stimulated with a receptor containing an intact Iga cytosolic
tail (Figure 3A). Although specific staining was observed, there
was also significant background. We postulated that this could
be due to competition with endogenous BLNK. Therefore, we
derived A20IIA1.6 cells in which BLNK had been knocked
down with shRNA (BLNde, Figure S1).

BLNK"* cells were stimulated with Cyb-conjugated anti-IgG
antibodies for 10 min. Samples were then fixed, permeabi-
lized, and counterstained with PE-BLNK-SH2. As can be seen,
there was no PE-BLNK-SH2 staining in unstimulated cells
(Figure 3B). In contrast, specific co-localization with surface
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Figure 3. Direct Visualization of BCR Complexes Containing Iga. Phospho-Y?%*

(A) A2011A1.6 cells expressing PDGFR chimeric receptors containing the cytosolic tail of either Iga or Igo were stimulated through the chimera with
FITC-conjugated antibodies for 10 min, fixed, permeabilized, and counterstained with PE-BLNK-SH2 (SH2). Cells were then visualized using confocal
microscopy.

(B) BLNK*? cells were stimulated with Cy5-conjugated anti-lgG antibodies for 10 min. Samples were then fixed, permeabilized, counterstained with PE-
BLNK-SH2, and visualized by confocal microscopy. Typical results are shown (n = 150 cells from three independent experiments).

(C) Purified BLNK”~ splenic B cells were stimulated with FITC-conjugated anti-lgM F(ab), fragments for 10 or 15 min and then fixed, permeabilized,
counterstained with PE-BLNK-SH2, and visualized by confocal microscopy. Small arrowheads indicate internalized non-phosphorylated BCR complexes
while large arrowheads indicate locations of phosphorylated surface BCRs.

YAF204

DOI: 10.1371/journal.pbio.0040200.9g003

BCR complexes was seen in stimulated cells. Only surface-
retained BCR patches were phosphorylated while no inter-
nalized BCR complexes were detectably phosphorylated (n =
150 cells, with internalized BCR complexes from three
independent experiments). Similar results were obtained
when cells were stimulated for 15 min while by 30 min after
stimulation, phosphorylated complexes were no longer
detectable (unpublished data).

We next sought to extend our studies to splenic B cells. In
BLNK " mice, there is a partial block in B cell development
[53]. However, peripheral IgM" B cell populations accumulate
after birth [53,54] (unpublished data). Therefore, purified
BLNK '~ splenic B cells were stimulated with FITC-con-
jugated anti-IgM F(ab)s fragments for 10 or 15 min and then
fixed, permeabilized, and counterstained with PE-BLNK-SH2.
In contrast to A20IIA1.6 cells, ligation of the BCR on BLNK "~
splenic B cells rapidly induces a single cap containing most of
the ligated BCR complexes (Figure 3C). However, only a
fraction of the receptors in each cap were phosphorylated
and no internalized BCR complexes were demonstrably
phosphorylated as measured by BLNK-SH2 binding (n =
100, four experiments). From these studies, we conclude that
following BCR stimulation, phosphorylated BCRs are re-
tained on the cell surface and are not internalized.

@ PLoS Biology | www.plosbiology.org

Interestingly, only a minority of surface BCRs were
phosphorylated. This is most clearly seen in the A20IIA1.6
cell line in which only 10%-20% of surface patches, or
approximately 1 to 2 surface patches per cell, contained
detectably phosphorylated BCR complexes. These results
suggest that only rare surface BCR complexes initiate
signaling and that these then segregate into common patches.
Therefore, we next quantitated the fraction of surface Iga
that was phosphorylated following BCR engagement. Aliquots
of wild-type A20IIA1.6 cells were surface-biotinylated and
then stimulated through the BCR for the indicated times
(Figure 4). Following lysis, cells were precipitated with anti-
Iga. antibodies, strepavidin, or 4G10. Precipitations were
resolved by SDS-PAGE, transferred to membranes, and
immunoblotted sequentially with 4G10 (Figure 4A) and then
anti-Igat antibodies (Figure 4B). Precipitation with either
strepavidin or anti-phosphotyrosine antibodies readily cap-
tured phosphorylated Iga (Figure 4, upper panel) with the
4G10 immunoprecipitations being slightly more efficient. As
expected, phosphorylation of Igo was greatest at 2 min with
substantial decay at 10 and 15 min. To determine what
fraction of surface Iga was phosphorylated, membranes were
stripped and immunoblotted with anti-Iga antibodies. As can
be seen, precipitation with either anti-Igot antibodies or
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Figure 4. Only a Small Fraction of Iga Is Phosphorylated following BCR
Stimulation

Aliquots of wild-type A20IIA1.6 cells were surface-biotinylated and then
stimulated through the BCR for the indicated times. Following lysis, cells
were precipitated with strepavidin, 4G10, or anti-lgo. antibodies.
Precipitations were resolved by SDS-PAGE, transferred to nylon
membrane and immunoblotted sequentially with 4G10 (A) and then
anti-lgo antibodies (B). Results of a typical experiment are presented (n=
3). Arrows denote Igo.

DOI: 10.1371/journal.pbio.0040200.g004

strepavidin precipitated readily detectable amounts of Iga. In
marked contrast, very little Igo. was present in the corre-
sponding 4G10 immunoprecipitation. Comparison of the Iga
32-kDa band densities at the 2-min stimulation time point
revealed that 5% —10% of surface Iga was phosphorylated
following BCR stimulation (typical results, n = 4). As the 4G10
immunoprecipitations were more efficient than the strepa-
vidin precipitations, this may be a slight overestimation.
Regardless, these results are consistent with those in Figure
3B indicating that signaling is propagated by a small minority
of surface-retained BCR complexes.

Inhibiting BCR Endocytosis Has a Modest Effect on Signal
Propagation

Given that phosphorylated, and therefore signaling, re-
ceptor complexes are normally retained on cell surface, we
predicted that inhibiting receptor internalization would not
directly modulate receptor initiated signaling. Therefore, we
expressed in A20IIA1.6 cells a dominant negative variant of
dynamin (K44A), which prevents the scission of clathrin-
coated vesicles [55] and has been used by others to examine
the inter-relationships between internalization and signaling
[61,56]. As expected, retroviral-mediated expression of dn-
dynamin-inhibited ligand induced BCR internalization by
more than 90% [57]. These cells were used to assess the effect
of internalization on BCR-initiated signaling.

Aliquots of cells expressing either dn-dynamin or empty
vector were stimulated with anti-IgG antibodies for the
indicated times, and total inductive tyrosine phosphorylation

i) PLos Biology | www.plosbiology.org
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was assayed in Western blots with 4G10. As demonstrated in
Figure 5A, blocking receptor internalization led to a modest
decrease in global tyrosine phosphorylation without an
appreciable change in activation kinetics. We then examined
the inductive phosphorylation of specific substrates. Cell
aliquots were stimulated as before and immunoprecipitates
of Iga, BLNK, or PLCy2 were resolved by SDS-PAGE and
immunoblotted with 4G10. As can be seen in Figure 5B, there
was an approximate 60% decrease in inductive BLNK
phosphorylation at all time points examined. There was a
more modest but reproducible (n = 4) decrease in Igo
phosphorylation in cells expressing dn-dynamin. In contrast,
there was no significant change in PLCy2 phosphorylation.
To assess if downstream signaling pathways were affected,
cell aliquots were stimulated for the indicated times and total
cell lysates were immunoblotted with either anti-phospho Erk,
Jnk, or p38 antibodies. Blots were then stripped and
immunoblotted with antibodies to detect the total amount of
kinase in each lane. As can be seen in Figure 5C, there were no
significant differences in the magnitude or duration of Erk,
Jnk, or p38 activation. It is possible that subtle differences in
mitogen-activated protein (MAP) kinase activation were
obscured because the BCR was maximally stimulated in these
experiments. However, when we titered the stimulating anti-
body over a 200-fold range, no differences were observed in
Erk activation between dn-dynamin and control cells (Figure
5D). Consistent with our model in which internalization per se
does not directly attenuate BCR signaling, expression of dn-
dynamin modestly inhibited some aspects of proximal BCR
signaling and had little effect on distal MAP kinase activation.

Modulation of BCR Signaling through the Internalization
of Non-Phosphorylated Receptor Complexes

To explore the functional consequences of the observed
competition between phosphorylation and internalization, we
constructed a mathematical model (Figure 6A). In this model,
when the BCR engages antigen, one of two things can happen.
One possible fate is that the engaged receptor is phosphory-
lated. For simplicity, the kinase-mediating receptor phosphor-
ylation is Syk bound to another phosphorylated BCR (BCRp).
The Src kinases also contribute to BCR phosphorylation [3].
However, recent observations suggest that this contribution is
minor [6] (Clark, et al., unpublished data). Generating more
phosphorylated BCRs, which can then bind and activate more
Syk [9-11], amplifies signaling through a positive feedback
mechanism [6]. The other possible fate is that the engaged
receptor associates with an AP which sequesters and then
removes the receptor from the cell surface.

Sequestered BCRs are assumed to hinder the propagation
of phosphorylation and are thus modeled as competitive
inhibitors of the kinase, although they are not in fact
expected to interact with it directly. Including this ansatz
enables the model to account for some seemingly contra-
dictory results that have been obtained using different
strategies to inhibit BCR endocytosis. For example, in our
experiments, expression of dn-dynamin slightly attenuated
proximal signaling while deletion of clathrin has been
reported to augment signaling [33]. Because dn-dynamin
inhibits receptor internalization after receptors fated for
endocytosis are already segregated into clathrin-coated pits
[58], in the model the dn-dynamin mutant corresponds to
inhibiting the removal of sequestered BCRs. As a result,
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Figure 5. Inhibiting BCR Internalization Has Minimal Effect on Signaling

In (A-C), A20IIA1.6 wild-type- or dn-dynamin-expressing cells were stimulated with anti-lgG for the indicated times (min). (A) Total cell lysates were
immunoblotted with 4G10. (B) BLNK, Iga, or PLCy2 immunoprecipitates were resolved by SDS-PAGE and then immunoblotted as indicated. (C) Total cell
lysates were immunoblotted with phospho-specific antibodies to Erk, Jnk, or p38. Membranes were then stripped and reprobed with antibodies against
Erk, Jnk, or p38 as indicated. (D) Cells were stimulated with decreasing amounts of anti-lgG (shown in pg/ml) for 3 min. Cells were then assayed for Erk

activation as in (C).
DOI: 10.1371/journal.pbio.0040200.g005

receptors accumulate in the sequestered state, which limits
the spread of phosphorylation. In contrast, in the absence of
clathrin, coated pits cannot form, and the signal propagates
freely through the receptor population (Figure 6B).

We next examined how the observed mechanism of
internalization might influence signaling responses to ligands
of different avidity. For these studies, we compared the
exclusive model to a conventional non-exclusive model in
which phosphorylation and internalization were independent
events (boxed reactions in Figure 6A; see Materials and
Methods for a discussion of necessary modifications to the
equations and parameters). As can be seen in Figure 6C, when
signaling and internalization are mutually exclusive, signal
intensities in response to low avidity ligands are preferen-
tially enhanced as compared to the non-exclusive model. This
effect derives from the fact that, in the former model, BCRp
complexes are not removed from the surface, which makes it
easier to overcome the action of phosphatases when relatively
few receptors are engaged. On the other hand, at high
avidities, the signal is lower relative to that predicted by the
non-exclusive model. When phosphorylation and internal-
ization are exclusive, the signal can only propagate to the
relatively few BCRs not bound by an AP at any given time.
The latter trend is more pronounced if one examines
phosphorylation integrated over time (unpublished data).
The essential difference between the low and high avidity
regimes is that in the former, BCRp-Syk (the active catalyst) is
limiting, while in the latter, Ag-BCR (the substrate) is limiting.
These calculations thus indicate that the exclusive mechanism
enhances the responses to low avidity ligands, which is likely
to be important for initial detection in physiological
contexts.
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Interestingly, the exclusive model predicts that the time
required to reach peak signal intensity will significantly vary
with ligand avidities (Figure 6C, inset). The effect is predicted
to be especially pronounced at low avidities where the time to
peak signal intensity should be significantly delayed. The
physical basis for the delay is that selective endocytosis leaves
BCRp on the surface to amplify the signal, but the signal
spreads slowly due to the fact that relatively few BCRs are
productively engaged by antigen. The non-exclusive model
does not as readily support this scenario because BCRp does
not persist on the surface. This predicted delay in peak-
signaling intensity in response to low avidity ligands is a well-
described feature of signaling through the BCR [59,60].

Discussion

In this paper, we provide direct evidence that once a BCR
engages antigen it is either phosphorylated (and retained at
the cell surface) or it is internalized. This was demonstrated
using both biochemical and confocal microcopic techniques.
The latter experiments made use of the unique binding
specificity of the BLNK SH2 domain which allowed us to
directly visualize the phosphorylated BCR. Within the
sensitivity limits of our experiments, we never detected
internalized phosphorylated receptors. Signaling and inter-
nalization are mutually exclusive events because the tyrosine-
based motifs that mediate signaling when phosphorylated,
mediate internalization when they are not phosphorylated.

It is well known that receptor endocytosis mediated by
tyrosine-based motifs is subject to regulation by phosphor-
ylation. The best-characterized example in lymphocytes is
CTLA-4, where tyrosine phosphorylation of the cytosolic tail
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Figure 6. Mathematical Analysis of Interrelationships between Antigen Receptor Signaling and Internalization

(A) Schematic representation of the exclusive and independent models of BCR phosphorylation and internalization. The independent model includes all
the reactions in the exclusive model plus the additional ones indicated. Eliminating the sequestration reaction corresponds to clathrin deletion while
eliminating the removal reaction corresponds to dn-dynamin (see discussion).

(B) Extent of phosphorylation for wild-type (red), dn-dynamin (green), and clathrin mutant scenarios (blue).

(C) Maximal signaling through the BCR, as assayed by Igo phosphorylation, as a function of ligand avidity. A comparison of exclusive (red) and
independent (green) signaling and internalization models is provided (inset).

Time to maximum BCR signal intensity as a function of ligand avidity as predicted for the exclusive (red) and independent (green) models. The
parameters used to generate the figure are ko =2.0 min~', k., =k_,=4.0 min ', k,s=8.0 min"", k.s=4.0 min", ko =10.0 min~", k,=5.0 min~", k.=4.0
min~', kg=2.0 min~', and kg=2.0 min~"; K;= Ky, = 0.1 in units such that the initial BCR concentration is unity. The rate parameters were selected to give
for the wild-type a maximum phosphorylation of about 10% at 2-3 min and decay on the order of 10 min. In the case of the non-exclusive model, we
substitute either k, = 12.0 min™" (faster phosphorylation), k. = 2.0 min™" (slower sequester) or kg = 8.0 min~' with k; = 4.0 min~"' (faster removal) to
maintain the same maximum integrated phosphorylation to facilitate comparison. Data for scaled k4 and kg are shown; scaled k, and k. give
qualitatively similar behavior.

DOI: 10.1371/journal.pbio.0040200.g006

leads to the accumulation of CTLA-4 on the cell surface [49]. phosphorylated receptor complexes. However, in all of our
Surface expression of the adhesion molecule L1 is regulated biochemical (Figure 2) and confocal (Figure 3) studies, this
in a similar manner [52]. was never observed. This might be due, in part, to the slower
However, in contrast to CTLA-4 and L1 in which single kinetics of these secondary endocytosis mechanisms. Another
tyrosines determine receptor endocytosis, multiple tyrosines possibility is that our mutational analysis underestimated the
within Iga, and probably IgP, contribute to internalization of importance of the tyrosines as determiners of internalization.
the ligated receptor. Conservative mutations to phenyl- In the activated receptor complexes, these tyrosines would
alanines had no detrimental effect on internalization while not only be phosphorylated but would be bound to multi-
non-conservative mutations to alanine abrogated receptor meric signaling complexes, which could limit the effective-
internalization. These findings are consistent with recogni- ness of other secondary internalization mechanisms.
tion by an AP-2-like adaptor complex [42]. Both of the Iga Previous studies examining the role of the Iga and IgP

ITAM tyrosines and the non-ITAM Y*** tyrosine are within ITAM tyrosines in receptor endocytosis have concluded that
predicted AP-2 binding sites (YXX®, where @ is a bulky they did not make a significant contribution [43,44]. Indeed,

hydrophobic amino acid)[61]. The second non-ITAM tyrosine in our own studies, isolated mutation of the ITAM tyrosines
at Y'”® has a glutamate at the Y + 3 position that should had only a modest effect on receptor internalization.
preclude recognition by AP-2 [62]. Furthermore, Y'7% does However, when mutated in combination with the non-ITAM
not appear to be phosphorylated in vivo following BCR tyrosines, endocytosis was significantly inhibited. The impor-
ligation [23]. These latter observations suggest that the tance of the non-ITAM tyrosines had been overlooked until it
regulation of receptor internalization is complex and is not was demonstrated that Y*** was robustly phosphorylated in
simply determined by the presence or absence of potential vivo and that it served to directly recruit the SH2 domain of
AP-2 binding motifs. BLNK [23]. In addition to a role in activating BLNK-

Indeed, even with mutation of all the Iga tyrosines there dependent pathways, Y24 s required for normal receptor
was some residual receptor internalization. It might have endocytic trafficking [24] and for peripheral B cell selection
been predicted that this secondary mechanism of receptor (A.B. Cooper, L.D. Wang, and M.R. Clark, unpublished data).
internalization would lead to the endocytosis of some Therefore, the tyrosines within the BCR complex that
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mediate receptor internalization are of demonstrated func-
tional and biological importance.

It has been suggested that lipid rafts may play a role in BCR
endocytosis [39]. However, in immature B cells the activated
BCR is excluded from lipid rafts, yet is efficiently internalized
[41], indicating that lipid rafts are not obligatory. Cholester-
ol-rich microenvironments could play a role in modulating
receptor endocytosis possibly by facilitating access to SFTKs
[63]. Residency of the receptor in lipid rafts could also
protect the receptor from dephosphorylation and subsequent
endocytosis [64].

While conservative mutation of the ITAM tyrosines
prevents the inductive tyrosine phosphorylation of cytosolic
substrates [23], receptor internalization is unaffected (Figure
2). The dispensability of the ITAM tyrosines for endocytosis is
consistent with previous studies demonstrating that Syk
activation is not required for internalization [9,40]. Activa-
tion of a SFTK is necessary [18,40], and evidence suggests that
this can happen in the absence of an intact ITAM. It has been
demonstrated that in vitro non-phosphorylated Igo can
assemble with the SFTKs [12]. SFTKs can also be co-
immunoprecipitated with the resting BCR in the absence of
significant receptor phosphorylation [65]. These, and other
observations [6,7], indicate that the BCR may active the
SFTKs and Syk through different mechanisms, and that each
kinase modulates divergent downstream signaling pathways.

Cross-linking the BCR likely orchestrates multiple pro-
cesses required for receptor internalization. The SFTKs can
phosphorylate clathrin heavy chain enhancing its recruit-
ment to the plasma membrane [66]. Other critical compo-
nents of the endocytic machinery such as BAM-32 [16-18],
AP-2 [67], and Epsl5 [68] are also regulated by phosphor-
ylation. In addition, ligand-induced receptor conformational
changes can facilitate receptor endocytosis by revealing
cryptic AP-2 binding sites [69]. These, and other mechanisms
[70], probably sequester ligated receptors into clathrin-
coated vesicles.

Some receptors, such as the EGFR, continue to signal after
internalization and this appears to be necessary for the
efficient activation of selected MAP kinase pathways [35,36].
Recent studies with pharmacological inhibitors of internal-
ization have suggested that the BCR might function in a
similar manner [18]. However, our observation that only non-
phosphorylated BCR complexes are internalized argues that
signaling occurs at the cell surface and does not persist after
internalization. In support of this conclusion, inhibiting
receptor internalization had no impact on distal MAP kinase
pathway activation (Figure 5). Furthermore, it is likely that
the structural constraints imposed by intracellular trafficking
preclude prolonged signaling from endocytic compartments.
Internalized aggregated BCRs are rapidly delivered into
multivesicular late endosomes [26]. In these compartments,
the internalized BCR resides within intraluminal vesicles with
the tails of Iga/IgP separated from the cytosol by two limiting
membranes.

Interestingly, phosphorylated receptor complexes were
present in only a small minority of surface BCR patches.
This corresponded to biochemical studies demonstrating that
only a small fraction of surface BCR complexes were
phosphorylated following ligation. Similar inefficiencies in
the productive phosphorylation of TCR{ have been reported
[71]. Phosphorylation of the BCR is initiated within 15 s of
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receptor ligation and reaches a maximum within 1-2 min
[65,72]. This is before clear patches are formed on the cell
surface [73,74]. Therefore, it is likely that unphosphorylated
and phosphorylated receptors are sorted into different
patches. This would be consistent with our model in which
receptors, based on their phosphorylation status, would be
functionally segregated into different groups. In regards to
non-phosphorylated receptors, it is likely that surface
aggregates are defined by localization to common clathrin
cages [33,37-39]. The mechanisms resulting in the local
concentrations of phosphorylated BCRs are not known.
However, it is unlikely to simply arise from passive exclusion
from clathrin-coated pits.

Retention of Iga/IgP on the cell surface might be advanta-
geous for propagating signals, but it would apparently
impede the other function of the BCR, which is to capture
antigen for processing and presentation to cognate T cells.
However, it has been reported that following receptor
stimulation, the BCR can become destabilized and that Igo/
IgB can dissociate from mlg [75]. Although originally
reported in the context of anergy [76], it has recently been
reported to occur in response to activating ligands [77]. Once
disassociated, mlg and IgafIgf are endocytosed separately
[77,78]. Given the infrequency of inductive BCR phosphor-
ylation, it is likely that only a small fraction of engaged BCRs
are destabilized. This conclusion is consistent with recent
elegant studies demonstrating that the bulk of surface BCR
complexes remain intact following ligation [79]. However, for
those receptors that have productively engaged antigen,
dissociation into antigen binding and signaling subunits
would allow each to adopt different subcellular fates better
suited for their intrinsic function.

Mathematical analysis of the exclusive model allowed us to
relate our findings to the wider body of experimental
observations concerning the relationship between BCR
signaling and internalization. This was particularly helpful
in understanding how blocking endocytosis at different steps
could result in dramatically different signaling phenotypes
[33,58] (Figure 6B). Our analysis also provided insights into
other observed behaviors of the BCR including the attenu-
ation of signaling in response to high avidity ligands [80]. This
aspect of BCR signaling may contribute to the observed in
vivo ceilings in antibody affinity maturation [81].

Mathematical modeling also provided insights into the
consequences of exclusive internalization and signaling that
could not be obtained experimentally. This is because BCRs
following either exclusive or non-exclusive mechanisms of
internalization cannot be derived. However, such compar-
isons are necessary for understanding how a particular
internalization mechanism could influence signaling in
response to ligands of varying avidity (Figure 6C).

Through the studies presented in this paper, we provide a
new model for dissecting the complex dynamics of BCR
internalization and signaling. As described above, this model
may help explain seemingly disparate observations in the
literature on how the BCR is spatially regulated. Further-
more, by identifying how receptors are selected for internal-
ization, one can then begin to address how signaling is
modulated by ligands of different avidity and how this
translates into different cell fates during peripheral immune
responses.
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Materials and Methods

Plasmid construction and derivation of cell lines. Construction of
the platelet-derived growth factor receptor B (PDGFRp)/Igo chimera
has been previously described [23]. The tyrosine-to-alanine mutations
of Iga. were generated by QuickChange site-directed mutagenesis kit
(Stratagene, La Jolla, California, United States). These chimeras and a
dominant negative dynamin (K44A, S. Schmid, Scripps Research
Institute, La Jolla, California, United States) were subcloned into the
green fluorescent protein (GFP) containing retrovirus vector MIGR1
(H. Singh, University of Chicago, Chicago, Illinois, United States).
Virus was produced in the packaging cell line GP293 (Clontech, Palo
Alto, California, United States). 48 h later, supernants were collected
and transfected into A20IIA1.6 cells. Cells were sorted for GFP
expression by flow cytometry (MoFlo-HTS, DakoCytomation, Glostr-
up, Denmark). Surface expression of chimeric receptors was assayed
by surface staining with mouse anti-hPDGFRP antibodies (R&D
Systems, Minneapolis, Minnesota, United States) followed by PE-
conjugated anti-mouse IgG1 (BD Pharmingen, San Diego, California,
United States). Samples were then examined by flow cytometry
(FACScan, Becton Dickinson, Palo Alto, California, United States).

Receptor internalization. Cell aliquots (2 X 10° cells/sample) were
stimulated via the chimeric receptor by incubation with platelet
derived growth factor-BB (PDGF-BB)(100 ng/ml; Sigma, St. Louis,
Missouri, United States) for 5 min followed by anti-hPDGFRJ (5pg/ml)
for 5 min. Cells were washed and then incubated with PE-conjugated
anti-mouse IgG1 (5ug/ml) for 15 min on ice. Cells were then washed
and resuspended in 100 pl of ice-cold FACS buffer (3% BSA in PBS),
then incubated at 37 °C for the indicated intervals. To terminate
internalization, cells were placed on ice. To assay BCR internal-
ization, cells were stained with PE-conjugated anti-mouse IgG2a (5 pg/
ml; BD Pharmingen) for 30 min on ice, then incubated at 37 °C for
the indicated times. To remove surface-bound Ab, 300 pl of stripping
buffer (100 mM glycine, 100 mM NaCl [pH 2.5]) was added to
resuspend cells at room temperature for 2 min followed by washing
in FACS buffer. In the indicated experiments, cells were pre-treated
with Latrunculin (0.25 pg/ml, Molecular Probes, Eugene, Oregon,
United States) at 37 °C for 1 h.

Fluorescence was measured using flow cytometry and receptor
internalization was calculated using the following formula: % SRt =
100 X (ARFt-AF)/(SF-AF) where SRt is the percent of surface receptor
internalized at time “t,” ARFt is the acid-resistant fluorescence at
time “t,” AF indicates cellular autofluorescence of cells (median
fluorescence of unstained cells or cells that were stained and then
acid-stripped), and SF refers to the median fluorescence of cells that
were stained for 30 min at 4 °C.

Biochemical identification of internalized BCRs. A20IIA1.6 cell
aliquots were suspended at a concentration of 25X 10° cells/ml in ice-
cold PBS. Cells were pulse-labeled by adding 80 pl of 10 mM Sulfo-
NHS-SS-Biotin (Pierce, Rockford, Illinois, United States) per milli-
liter of reaction volume at 4 °C for 40 min. Cells were then washed
with ice-cold phosphate buffered saline (PBS). Cells were incubated
on ice with rabbit anti-mouse IgG (Jackson ImmunoResearch, West
Grove, Pennsylvania, United States) at a final concentration of 5 pg/
ml and then warmed to 37 °C for the indicated times. Surface
retained biotin was removed using reduced glutathione (50 mM
glutathione, 75 mM NaCl, 1 mM EDTA, 1% bovine serum albumin
(BSA), 0.75% [vollvol] 10 N NaOH). Cells were then washed with ice-
cold PBS at 4 °C and lysed in 1 ml of NP-40 lysis buffer [47] for 30 min
on ice. Lysates were clarified by centrifugation. Following pre-
clearing with Protein A-Sepharose (Amersham, Little Chalfont,
United Kingdom), supernatants were sequentially precipitated with
streptavidin-Sepharose (Amersham) followed by anti-Iga antibodies
[47] precoupled to protein A-Sepharose. Following washing, samples
were boiled in Laemmli reducing SDS sample buffer, subjected to
SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred
to polyvinylidene difluoride (PVDF) membranes (Millipore, Billerica,
Massachusetts, United States).

Immunoprecipitations and immunoblotting. Cell aliquots (1.5 X
10° for whole cell lysates or 107 for immunoprecipitations) were
incubated with rabbit anti-mouse IgG (final concentration 20 pg/ml)
for 5 min and then transferred to 37 °C for the indicated times.
Stimulated cells were washed with ice-cold PBS and lysed in 1% NP-
40 lysis buffer [47]. For immunoprecipitations, lysates were clarified
by centrifugation, precleared with protein A-Sepharose, and then
subjected to immunoprecipitation with protein A-Sepharose-coupled
antibodies at 4 °C. Laemmli SDS reducing sample buffer was added to
all samples, which were then subjected to SDS-PAGE followed by
transfer to PVDF membranes, which were then blocked in 3% BSA-
Tris-buffered saline with 1% Triton X-100 (TBST). Membranes were
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then incubated with the indicated antibodies, washed with TBST,
incubated with horseradish peroxidase-labeled secondary antibodies
(Amersham), and then washed with TBST. ECL (Amersham) was used
to visualize immunoreactive proteins. To strip blots, membranes were
incubated in TBST-0.4% SDS [pH 2.5] for 1 h at room temperature
before being washed and reblotted as described above. Antibodies
utilized included antiphosphotyrosine (4G10, Upstate Biotechnology,
Lake Placid, New York, United States), anti-ERK (Zymed, Invitrogen),
anti-phospho-ERK (Cell Signaling Technology, Massachusetts, United
States), anti-J]NK (BD Pharmingen), anti-phospho-]NK (Promega,
Madison, Wisconsin, United States), anti-p38 (Santa Cruz Biotechnol-
ogy, Santa Cruz, California, United States), anti-phospho-p38 (Cell
Signaling), anti-PLCy2 (Santa Cruz Biotechnology), and anti-Igf
extracellular domain (BD Pharmingen). The anti-Iga and anti-BLNK
antibodies have been described previously [23].

Confocal microscopy. Spleens were isolated from BLNK '~ mice
[53] and wild-type littermate controls. Following hypotonic lysis, cells
were incubated with biotinylated anti-CD11b, anti-Grl, anti-CD3,
anti-CD4, anti-CD8, anti-NK1.1, and anti-TER 119 (BD Pharmingen)
on ice for 30 min, washed, then incubated with streptavidin
microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany) for 30
min at 4 °C. Following separation by MACS column (Miltenyi Biotec),
purity of B cells was assayed by flow cytometry. Only populations of
greater than 90% purity were used in experiments. To stimulate the
BCR, cells were stained with FITC-conjugated goat anti-mouse IgG +
IgM F(ab)s (5 pg/ml, Jackson ImmunoResearch) on ice for 15 min. For
BLNK knockdown AZ20IIA1.6 cells, BCR were incubated with Cy5
conjugated goat anti-mouse IgG (Jackson ImmunoResearch) on ice
for 15 min. Cells were then warmed to 37 °C for the indicated times.
Following fixation in 3% paraformaldehyde/3% sucrose/PBS, cells
were permeabilized with 0.05% saponin and stained by PE-
conjugated GST-BLNK-SH2 [23] on ice for 1 h. Images were collected
using Leica (Wetzlar, Germany) SP2 AOBS LSM confocal microscope.

Mathematical modeling. In the model, the antigen, AP protein, and
Syk proteins are treated implicitly, which corresponds to assuming
that these species are in excess of their bound forms. The resulting
equations for the exclusive model are:

d[BCR
[ 0 l_ —kon[BCR] + kyy/[Ag - BCR] (1)
d[Ag-BCR]  —k,,[Ag-BCR|+k_,[Ag-BCR - AP

dt  _, [Ag-BCRp-Syk][Ag-BCR]
?[Ag-BCR] + (1 + [BCRs]/K))K,,

+ k,[Ag - BCRp]
(2)

Ag - BCRp] + k_,[Ag - BCRp - Syk]
Ag - BCRp - Syk][Ag - BCR
[Ag p - Syk][Ag | ~ k[Ag- BCRp]

d[Ag-BCRp] hsl
hy [Ag-BCR] + (1 + [BCRs|/K;)K,,
(3)

dt

d[Ag - BCRp - Syk
diAg-BCRp-SYK| _ ) Ag-BCRp] -k ,[Ag- BCRp-Syk] (4)

dt
d[Ag-BCR-AP]  +k,,[Ag-BCR] — k_,[Ag- BCR - AP]
T @ —(k+h)[Ag-BCR - AP] ()
BCR
w = +k[Ag BCR - AP] — ky[BCRs| (6)

As described in Results, there are essentially two competing
pathways: phosphorylation and internalization. The behavior of the
model depends most sensitively on the parameters k, and k, because
their relative sizes control how BCR partition between these reaction
channels. We thus adjusted the values of k, and k, with remainder of
the parameters set to values on the order of one, so that they were not
rate-limiting; %, was varied to make the peak in phosphorylation
comparable to the observed level (about 10%), and k, was varied to
match the overall experimental time course of phosphorylation
(about 10 min). The remaining parameters were then adjusted by
trial-and-error to refine the wild-type phosphorylation profile for
better agreement with the experimental data. Clearly, this procedure
does not define a unique set of parameter values, but our objective in
exploring the model is to obtain qualitative insight rather than to
extract quantitative estimates for the kinetics of specific processes.
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To validate the above procedure, we varied the rate constants from
0.1 to 100 min' and examined the effects on the phosphorylation
peak height and time (Figure S2). In the case of reversible processes
(binding, phosphorylation, and sequestration), the kinetic parameters
for the forward and backward reactions were changed together to
maintain their ratio; otherwise (removal), parameters were changed
individually. The remaining parameters were held fixed at their
values in the Figure 6 legend. Consistent with our expectations, we
found that the peak was most sensitive (by a factor of two to three) to
ky and k, (together with k. and k_,).

Setting kq = 0 corresponds to dn-dynamin and k. = 0 to clathrin
deletion. The trends for the mutants (decrease in phosphorylation for
dn-dynamin and increase in phosphorylation for clathrin deletion)
are robust to variations in the parameters given the ansatz that
sequestered BCR inhibit further phosphorylation and a reasonable
wild-type profile. This insensitivity to the choice of parameters
derives from the fact that sequestered BCR appears only in the
denominator of the phosphorylation rate law, so that raising [BCRs]
always decreases d[Ag-BCRp]/dt, and lowering [BCRs] always increases
d[Ag-BCRp]/dt. In turn, d[BCRs]/d¢ depends monotonically on k. and
kq, but with opposite signs.

To obtain the non-exclusive model, it is necessary to add reaction
channels corresponding to phosphorylation of the AP-associated
receptor and AP binding to BCRp. This results in one additional
reaction:

d[Ag - BCRp - AP
% +hyo[Ag- BCRp] — k_,[Ag - BCRp - AP]
— (k. + ky)[Ag - BCRp - AP]
. _[AgBCRp-Syk|[Ag BCR-AP]
R TAg BCR-AP+(1+[BCRS] /K, ) K.,
— k,[Ag - BCRp - AP]

as well as two additional terms in Equation 5:
. [Ag-BCRp - Syk|[Ag- BCR - AP]
?[Ag-BCR - AP] + (1 + [BCRs|/K)K,,

+ k[Ag - BCRp - AP,

two additional terms in Equation 3:
—kyq[Ag - BCRp] + k_,[Ag - BCRp - AP],
and one additional term in Equation 6:
+k.[Ag- BCRp - AP]

Simply adding the reaction channels indicated in the box in
Figure 6A with the same values for the kinetic parameters as in the
exclusive model results in very little phosphorylation at all times
because phosphorylated BCRs are removed before they can activate
Syk and propagate the signal. To meaningfully relate the exclusive
and non-exclusive models, we thus adjusted one parameter in the
latter such that the integrated phosphorylation was the same in
both cases. The qualitative behavior we report was observed
regardless of whether the phosphorylation rate was increased or
the amount of sequestration was decreased (Figure 6, legend).
Because sequestered BCR still inhibit phosphorylation in the
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Supporting Information

Figure S1. Knockdown of BLNK in A20IIA1.6 Cells

(A) Total cell lysates from cells expressing a BLNK specific shRNA, or
vector alone, were immunoblotted with anti-BLNK and anti-Igo
antibodies. (B) Indicated cells were stimulated with anti-IgG for 3 min
and total cell lysates immunblotted with anti-phosphotyrosine anti-
bodies (4G10). Position of BLNK indicated (¥). (C) Cells expressing
indicated shRNA were stimulated with anti-IgG (3 min), lysed, and
PLCy2 immunoprecipitated. Samples were resolved by SDS-PAGE
and probed sequentially with 4G10 and anti-PLCy2 antibodies.
Methods: BLNK knockdown cell line was made by shRNAs targeting
nucleotides 909-937 and 1054-1081 in the BLNK open reading
frame. The Hannon algorithm was used to select and design shRNAs
to target the BLNK open reading frame (http://katahdin.cshl.org:9331/
RNAI). PCR was performed on a pGEM vector containing the U6/SP6
promoter with primer sets encoding shRNAs predicted to target
BLNK. The resulting 500 base pair fragments were cloned into
pPENTR/D-TOPO vector (Invitrogen, Carlsbad, California, United
States) and then shuttled into MSCV PIG (puromycin/IRES/GFP)
Gateway vector (Invitrogen). A20IIA1.6 cells were transfected with
these constructs by using retrovirus collected from packaging cell line
GP-293 (Clontech), and high GFP clones were selected by flow
cytometry (MoFlo).

Found at DOL 10.1371/journal.pbio.0040200.sg001 (1.2 MB TIF).

Figure S2. Sensitivity of Model Results to Parameter Values

Variation in the (A) height and (B) time of the peak in phosphor-
ylation as rate constants indicated were varied from 0.1 to 100 min '
with the remainder fixed at their values (given in the legend to Figure
6 in the main text). The ratios kylk,, kyulk_., kislk s, and konlkoe were
held fixed.

Found at DOL 10.1371/journal.pbio.0040200.sg002 (747 KB EPS).
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