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ABSTRACT

Quantum many-body system is principally a complicated problem with high complexity,

where emergent phenomena are hidden behind strong correlations beyond the mean-field.

Due to its exponential scaling, direct solution is beyond our ability and multiscale methods

provide a natural framework for conquering strong correlations within the system with cost

being reduced to an affordable level. In Ch. 1 I will briefly summarize the definition of

quantum many-body systems and the ongoing efforts to the problems. After that, I will

approach quantum many-body systems from three different aspects: two novel multiscale

initialization methods inspired by multigrid method and mean-field theory respectively to

solve quantum ground-state problems in Ch. 2, a fast Green’s function representation applied

to dynamical mean-field theory in Ch. 3, and a novel Green’s function embedding framework

called quantum defect embedding theory to approach strongly correlated electronic states in

solids in Ch. 4. Finally, I will summarize what have been done and propose future steps in

Ch. 5. The new methods developed allow a combination of low computational cost and good

accuracy, helping people understand novel physical phenomena from their many-body nature.
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CHAPTER 1

INTRODUCTION

The behavior of a system composed of a large number of interacting quantum particles is

governed by quantum physics. When the system size is small, the quantum equations for

the system could be solved exactly. However, when the system size is mid-level or large, the

quantum equations become intractable and can no longer be solved exactly, as the quantum

complexity grows exponentially w.r.t. the system size, different from the linear scaling of

classical physics. Although the exponential scaling is beyond our computational abilities, in

many cases the physical essence allow us to treat every single particle as separate within

a mean-field medium, and as a result the scaling is greatly reduced but key information is

still kept. Famous examples include Hartree-Fock theory (HF), density functional theory

(DFT) under its Kohn-Sham implementation [124, 155, 216, 192, 134, 36], the GW method

(GW ) [9, 94] etc.

However, mean-field approximations are not omnipotent and in general these methods

fail when the interactions (attraction, repulsion, correlation), or quantum entanglement

between the particles are very strong, i.e. where strong interactions exist. These problems are

generally called quantum many-body problems. Usually interesting emergent phenomena are

originated from and hidden behind these strong correlations, e.g. Mott phase transition [126],

high-temperature superconductivity [169], spin liquid [346] etc.

Specific strategies and methods need to be implemented to obtain as accurate as possible

information from a large-scale but strongly correlated system [195]. Particularly, multiscale

methods provide a bridge to keep pivotal information but simultaneously reducing the

computational cost to an acceptable level [72]. In applied mathematics, multiscale methods

refer to the technique that the systems or computational tasks are separated into different

levels of scales, from which we keep information being focused on at a fine level but reducing

computational cost at a coarse level. In the case of quantum many-body systems, scientists
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have been approaching the problems from different perspectives using multiscale techniques.

From wavefunction perspective, the many-body wavefunction of a strongly correlated system

is far beyond a single Slater determinant. Apart from including the contributions from

high order Slater determinants into many-body Hamiltonian explicitly, i.e. the so-called

exact diagonalization or configuration interaction [292], scientists design tensor networks as

ansatz of the many-body wavefunction to include the high order contributions implicitly. In

tensor networks, the many-body interaction is separated into local parts where interactions

with other parts are incorporated into tensor contractions. This allows for optimizing local

tensors only in a systematic manner until convergence, i.e. the so-called density-matrix

renormalization group [329, 330, 263, 264]. In this technique people replace solving the full

many-body Hamiltonian by solving a group of local optimization problems while keeping

descent accuracy. Apart from wavefunction perspective, scientists have been developing

quantum embedding methods [289]. As the name suggests, in quantum embedding the

full system is separated into two accuracy levels based on either real space or some other

strategies such as Feynmann diagrams in Green’s function theories, two famous examples of

which are many-body perturbation theory (MBPT) [286] and dynamical mean-field theory

(DMFT) [82, 81]. For the one we are focusing on a higher level of theory is applied, while

for the one we do not care much about a lower level of theory is applied instead. Examples

include DFT embedding [173, 95, 96] where a higher level of DFT/wavefunction method is

embedded in a lower level of DFT, density-matrix embedding theory [335, 153, 154] where

an exact diagonalization is embedded in a Hartree-Fock mean-field, DFT+DMFT [8, 156]

where DMFT local diagrams are embedded in a DFT mean-field, and GW+DMFT [24] where

DMFT local diagrams are embedded in GW non-local diagrams etc.

In this thesis I aim to develop advanced multiscale methods for a few types of quan-

tum many-body systems. Specifically, I will discuss two tensor network based multiscale

initialization method for solving quantum-ground state problems in Ch. 2, low-rank Green’s

2



function applied to dynamical mean-field theory in Ch. 3, and Green’s function formulation

of quantum defect embedding theory in Ch. 4.

3



CHAPTER 2

MULTISCALE INITIALIZATION METHODS FOR QUANTUM

GROUND-STATE PROBLEMS

2.1 Introduction

Tensor networks [226] provide a mathematical framework for representing and manipulating

high-dimensional data structures, such as quantum states in physics [227] or large-scale data

in machine learning [53]. They allow for the decomposition of complex structures into a

network of simpler tensors connected by edges. Tensor networks enable efficient calculations

and extractions of information by contracting or summing over shared indices. One popular

type of tensor network is the tensor-train (TT) [228], or matrix product state (MPS) [264],

which is particularly useful for describing one-dimensional systems. In combination with

density matrix renormalization group (DMRG) [264], which is a numerical method based on

tensor networks, primarily used for studying one-dimensional quantum systems, it allows for

efficient approximations of ground states and low-lying excited states of quantum systems,

especially those with strong correlations. To use DMRG, a TT ansatz is initially given and

randomly initialized as the many-body ground state. By optimizing each tensor node of the

TT iteratively, DMRG captures the most important correlations while keeping computational

costs manageable. DMRG is a powerful tool for understanding strongly correlated systems,

such as spin chains or one-dimensional lattice models.

Recently researchers at Chicago proposed a new density estimation framework using tensor

networks called tensor sketching [125]. Inspired by the randomized SVD, this technique

introduces a group of left and right sketching functions as a tool to capture the row and

column information of the tensor respectively, with which an iteration of conpressed equations

can be built up for tensor cores and solved based on the density samples. Different from

using tensor networks as an ansatz, this technique committed to generating an approximation

4



tensor network to the true density distribution. So far this technique has been applied to

TT [125] as well as the tree tensor network (TTN) [293, 231]. Among these algorithms, one

algorithm called hierarchical tensor sketching [231] is particularly interesting. In hierarchical

tensor sketching, a hierarchical tree tensor network is aimed for an approximate density and

each tensor cores are solved hierarchically from the top node to each layer of the tree until

the bottom layer, while the sketching functions are built up based on a set of cluster basis to

capture information from the samples.

In this work we focus on building an approximate solution to quantum ground-state

problems. Different from density estimation, in this case there is no sampled data as

a priori. As such, instead of using sketching functions to capture information from the

sampled tensor, i.e. the so called tensor sketching, we develop a systematic multiscale

initialization framework (MI) including two methods called top-down initialization and

bottom-up initialization respectively to construct an approximate solution of the problem

in a TTN format. Specifically, the top-down method allows a systematic refinement of the

solution using a progressively finer Galerkin space built up from cluster sketch functions

at different levels. This strategy follows the same spirit as multigrid methods in solving

eigenvalue problems and PDEs. The bottom-up method constructs the solution in the spirit

of but as a generalization of mean-field theory. We find that both of the methods are stable

and the accuracy is not compromised, even though we choose a small number of basis set at

each step.

2.2 Background

In this section, we give a concise summary of background knowledge for our new algorithms.

Specifically, we describe our target problem, the quantum ground-state problem in Subsec.

2.2.1, tensor-train representation in Subsec. 2.2.2, tree tensor network representation in

Subsec. 2.2.3, and density-matrix renormalization group algorithm in Subsec. 2.2.4.
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2.2.1 Quantum ground-state problem as an optimization problem

Mathematically, the quantum ground-state problem is formulated by the following eigenvalue

problem, i.e.,

Hψ = Eψ. (2.1)

Here H is the quantum Hamiltonian under a many-body basis. E as well as ψ are its

eigenvalue and eigenfunction respectively. We are interested in the lowest eigenvalue and the

corresponding eigenvector, which is also the solution of the following optimization problem,

i.e.,

min
ψ
⟨ψ,Hψ⟩, ⟨ψ, ψ⟩ = 1. (2.2)

2.2.2 Tensor-train representation

For a d-dimensional tensor ψ : n1×n2×· · ·×nd −→ R, a TT/MPS decomposition corresponds

to the following low-rank approximation, i.e.,

ψ(i1, i2, . . . , id) ≈
r1∑

α1=1

r2∑
α2=1

· · ·
rd−1∑

αd−1=1

G1(i1, α1)G2(α1, i2, α2) · · ·Gd(αd−1, id). (2.3)

Here Gk is called the k-th tensor core of the TT/MPS. In Fig. 2.1 we introduce a tensor

diagram as a concise representation of the above TT/MPS.

G1 G2 · · · Gd

i1 i2 id

α1 α2 αd−1

Figure 2.1: Tensor diagram for a matrix product state (MPS). {Gk}dk=1 corresponds to the d
tensor cores. {ik = 1, . . . , nk}dk=1 corresponds to the d tensor indices. {αk = 1, . . . , rk}d−1k=1
corresponds to the d− 1 contraction indices between the tensor cores.
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For a 2 × d-dimensional tensor H : n1 × n′1 × n2 × n′2 × · · · × nd × n′d −→ R, a MPO

decomposition corresponds to the following low-rank approximation, i.e.,

H(i1, i
′
1, i2, i

′
2, . . . , i8, i

′
8) ≈

r1∑
α1=1

r2∑
α2=1

· · ·
rd−1∑

αd−1=1

G1(i1, i
′
1, α1)G2(α1, i2, i

′
2, α2) · · ·Gd(αd−1, id, i′d).

(2.4)

Here Gk is called the k-th tensor core of the MPO. In Fig. 2.2 we introduce a tensor diagram

as a concise representation of the above MPO.

i′1

G1

i1

i′2

G2

i2

· · ·

i′d

Gd

id

α1 α2 αd−1

Figure 2.2: Tensor diagram for a matrix product operator (MPO). {Gk}dk=1 corresponds to
the d tensor cores. {ik = 1, . . . , nk}dk=1 and {i′k = 1, . . . , nk}dk=1 corresponds to the 2 × d
tensor indices. {αk = 1, . . . , rk}d−1k=1 corresponds to the d− 1 contraction indices between the
tensor cores.

2.2.3 Tree tensor network representation

In general a d-dimensional tensor ψ : n1 × n2 × · · · × nd −→ R can be decomposed into

tree-like structure. We denote the number of levels by M . For simplicity, here we discuss a

M = 3 level specific binary tree tensor network as an example. The low-rank decomposition

7



of this TTN is

ψ(i1, i2, . . . , i8) ≈
r1∑

α11α
1
2=1

r2∑
α21α

2
2α

2
3α

2
4=1

G0
1(α

1
1, α

1
2)

G1
1(α

1
1, α

2
1, α

2
2)G

1
2(α

1
2, α

2
3, α

2
4)

G2
1(α

2
1, i1, i2)G

2
2(α

2
2, i3, i4)G

2
3(α

2
3, i5, i6)G

2
4(α

2
4, i7, i8).

(2.5)

Here Gmn is the tensor core of TTN with indices (m,n). In Fig. 2.2 we introduce a tensor

diagram as a concise representation of this TTN.

G0
1

G1
1

G2
1 G2

2

G1
2

G2
3 G2

4

α1
1

α2
1

i1 i2

α2
2

i3 i4

α1
2

α2
3

i5 i6

α2
4

i7 i8

Figure 2.3: Tensor diagram for a tree tensor network (TTN). {Gmn } corresponds to the tensor
cores. {ik}8k=1 corresponds to the d tensor indices. {αmn } corresponds to the contraction
indices between the tensor cores.

2.2.4 Density-matrix renormalization group

Under tensor-train representation, the optimization problem in Eq. 2.2 can be denoted by a

tensor diagram shown in Fig. 2.4. Instead of optimizing the whole tensor-train, the density-

matrix renormalization group (DMRG) aims at optimizing each tensor core sequentially and

approach the global minimum after sets of iterations. There are two types of algorithms
8



called 1-site and 2-site DMRG respectively. In the following we give an example of how 1-site

DMRG iterations work, schematically described in Figs. 2.5 and 2.6.

At the beginning each tensor nodes of ψ are randomly initialized. If we minimize over ψ1

node with other tensor nodes fixed in Fig. 2.4, we can obtain a local eigenvalue problem w.r.t.

ψ1 shown in Fig. 2.5. We note that this step requires that the environment of ψ1 donoted

by R1 made up of all other nodes of ψ but ψ1, are orthogonalized and thus ψ is in a form

of Schmidt decomposition, i.e. ψ(i1, . . . , id) =
∑r1
α1=1 λα1 × ψ1(i1, α1)× R1(α1; i2, . . . , id).

Here R1 satisfies R1R
′
1 = I and can be computed by a pre-orthogonalization process such as

a series of RQ decompositions from ψd to ψ2. The lowest eigenvector of the local problem

yields newly computed ψ1.

Similarly, minimization over ψ2 with other nodes fixed (including the newly computed

ψ1) in Fig. 2.4 leads to a local problem w.r.t. ψ2, as shown in Fig. 2.6. This step requires

that the environment of ψ2 donoted by E2 made up of all other nodes of ψ but ψ2, are

orthogonalized and thus ψ is in a form of Schmidt decomposition, i.e. ψ(i1, . . . , id) =∑r1
α1=1

∑r2
α2=1 λα1α2 × L2(i1;α1) × ψ2(α1, i2, α2) × R2(α2; i3, . . . , id). Here L1 satisfies

L′1L1 = I and can be computed by a QR decomposition of ψ1. R2 satisfies R2R
′
2 = I and

can be computed by a pre-orthogonalization process from ψd to ψ3. The lowest eigenvector

of the local problem yields newly computed ψ2.

Following this procedure, DMRG gradually optimizes each tensor node from left to right

(called right sweeping), and from right to left (called left sweeping) until the lowest eigen

energy from local eigenvalue problem converges.

2.3 Multiscale initialization methods for quantum ground-state

problems

We aim at generating an approximate solution of Eq. 2.2 in TTN format withH in MPO format.

First we consider a simple case where H is a matrix and the solution is a vector. Inspired

9



ψ1

H1

ψ1

ψ2

H2

ψ2

· · ·

· · ·

· · ·

ψd

Hd

ψd

i′1

i1

i′2

i2

i′d

id

β1 β2 βd−1

α′
1 α′

2
α′
d−1

α1 α2 αd−1

−E

ψ1

ψ1

ψ2

ψ2

· · ·

· · ·

ψd

ψd

i1 i2 id

α′
1 α′

2
α′
d−1

α1 α2 αd−1

+E

Figure 2.4: Tensor-train format of minimization problem Eq. 2.2. {Hi}di=1 corresponds to
the tensor cores of H. {ψi}di=1 corresponds to the tensor cores of ψ. {ii}di=1 and {x′i}di=1

corresponds to the d tensor indices. {αi}d−1i=1 , {α′i}d−1i=1 and {βi}d−1i=1 corresponds to the
contraction indices between the tensor cores. E denotes the Lagrangian multiplier.

H1

ψ1

ψ2

H2

ψ2

· · ·

· · ·

· · ·

ψd

Hd

ψd

i′1

i1

i′2

i2

i′d

id

β1 β2 βd−1

α′
1 α′

2
α′
d−1

α1 α2 αd−1

= E

ψ1

i′1
α′
1

Figure 2.5: Local eigenvalue problem for ψ1 in DMRG. E is the lowest eigenvalue.

by the randomized SVD algorithm, we can build up approximate local core optimization

problems by discretizing H in a way such that the Galerkin space is spanned by a fixed group

of basis functions, which are used to capture both row and column space of H.

Supposing Q is the matrix composing of basis functions in its column, we have

H ≈ QQ′HQQ′ = QHeffQ′. (2.6)

Here the approximate equal sign would be strictly established if Q can capture the range

space of H completely. By diagonalizing Heff instead of H, we obtain a rough spectral
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ψ1

H1

ψ1

H2

ψ2

· · ·

· · ·

· · ·

ψd

Hd

ψd

i′1

i1

i′2

i2

i′d

id

β1 β2 βd−1

α′
1 α′

2
α′
d−1

α1 α2 αd−1

= E

ψ2

i′2
α′
1 α′

2

Figure 2.6: Local eigenvalue problem for ψ2 in DMRG. E is the lowest eigenvalue.

solution of H, i.e.,

H ≈ Q(G′DG)Q′ = (GQ′)′D(GQ′). (2.7)

In principle, we can express the true solution ψ for each TTN tensor node {Gmn } by the

following formula, i.e.,

ψ = Qmn G
m
n := (Cm+1

2×n−1 ⊗ Cm+1
2×n ⊗ Emn )Gmn . (2.8)

Here Qmn denotes the Galerkin matrix contructed for Gmn , which is further expressed as a

tensor product of three parts including two sub-branches Cm+1
2×n−1 as well as Cm+1

2×n and on

environment Emn . A schematic diagram is presented in Fig. 2.7. In the figure we show that

the environment tensor Emn contains all information outside of the two sub-branches.

To obtain an approximate Gmn with low cost, a must do strategy is to obtain approximate

Cm+1
2×n−1, C

m+1
2×n and Emn tensor nodes with αmn , αm+1

2×n−1 and αm+1
2×n in low bond dimensions.

For this purpose, we can either approximate the two sub-branches, or approximate the

environment. In the following two subsections (Subsec. 2.3.1 and 2.3.2), I will present two

different algorithms, called top-down initialization and bottom-up initialization respectively,

corresponding to the two approximation strategies mentioned above.
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Em
n

Gm
n

Cm+1
2×n−1 Cm+1

2×n

αm
n

αm+1
2×n−1

i(n−1)×2M−m+1+1 . . . i(n−1)×2M−m+1+2M−m

αm+1
2×n

i(n−1)×2M−m+1+2M−m+1 . . . in×2M−m+1

All other i indices
. . .

Figure 2.7: Left and right sub-matrices Cm+1
2×n−1 as well as Cm+1

2×n and environment tensor
Emn for the target node Gmn . “All other i indices” represents i indices not included in the left
and right sketching sub-matrices.

2.3.1 Top-down initialization

Considering that the root node G0
1 has no environment, we can generate an approximate tree

from the root to the leaves with the two sub-branches approximated for each node, i.e.,

Cmn ≈ Smn . (2.9)

Here Smn is called a sketching matrix. We note that the two sketching matrices are aimed at

reducing the global degrees of freedom, the left of which is reduced from n2
M−m

(assuming

n1 = n2 = . . . = nd = n) to αm2×n−1 under Sm2×n−1 and the right of which is reduced from

n2
M−m

to αm2×n under Sm2×n.

We use a graphic figure shown in Fig. 2.8 to illustrate the definition of a sketching matrix

Smn . The corresponding MPO fragment of Smn is denoted by H̃m
n . From the figure we see that

Smn can be defined in a way that some specific sequences of indices of H̃m
n are kept and the

others are ignored. The contraction of Smn and H̃m
n yields a four-dimension tensor (βl−1 = 1

if l = 1 and βr = 1 if r = d). Essentially, we use Smn to keep only a set of the indices and

12



reduce the dimension subsequently.

Below we give a few examples on how sketching matrices can be defined. The first

example is called k-cluster sketching matrix, which keeps the k-cluster basis only, i.e. all

k-combinations from r − l + 1 indices and fixing all other indices to be 1, from all basis.

As such, αmn = α′mn = C(n, k) × n2 (assuming n1 = n2 = . . . = nd = n). Here C(n, k) is

the binomial coefficient. As an example, the 1-cluster sketching matrix keeps the following

sequences, which reads

H̃m
n (βl−1, il, i

′
l, 1, 1, . . . , 1, 1, βr)

where il, i
′
l = 1, . . . , nl,

H̃m
n (βl−1, 1, 1, il+1, i

′
l+1, . . . , 1, 1, βr)

where il+1, i
′
l+1 = 1, . . . , nl+1,

· · ·

H̃m
n (βl−1, 1, 1, 1, 1, . . . , ir, i

′
r, βr)

where ir−1, i′r−1 = 1, . . . , nr−1.

(2.10)

Another example is called nearest-neighbor sketching matrix, which keeps the nearest-

neighbor 2-cluster basis only from from all basis. As such, the following sequences of indices

13



of H̃m
n is kept, i.e.,

H̃m
n (βl−1, il, i

′
l, il+1, i

′
l+1, 1, 1, 1, 1, . . . , 1, 1, 1, 1, βr)

where il, i
′
l = 1, . . . , nl, and il+1, i

′
l+1 = 1, . . . , nl+1,

H̃m
n (βl−1, 1, 1, il+1, i

′
l+1, il+2, i

′
l+2, 1, 1, . . . , 1, 1, 1, 1, βr)

where il+1, i
′
l+1 = 1, . . . , nl+1, and il+2, i

′
l+2 = 1, . . . , nl+2,

H̃m
n (βl−1, 1, 1, 1, 1, il+2, i

′
l+2, il+3, i

′
l+3, . . . , 1, 1, 1, 1, βr)

where il+2, i
′
l+2 = 1, . . . , nl+2, and il+3, i

′
l+3 = 1, . . . , nl+3,

· · ·

H̃m
n (βl−1, 1, 1, 1, 1, 1, 1, 1, 1, . . . , ir−1, i

′
r−1, lr, l

′
r, βr)

where ir−1, i′r−1 = 1, . . . , nr−1, and ir, i′r = 1, . . . , nr.

(2.11)

As a result, αmn = α′mn = (r − l)× n2 (assuming n1 = n2 = . . . = nd = n).

For simplicity we consider a 3-level binary tree network as an example where L = 3 and

d = 2L = 8. In Fig. 2.9 we show a representation of the approximate solution ψ using G0
1

and its two sketching sub-matrices, i.e.,

ψ = Q0
1G

0
1 ≈ (S11 ⊗ S12)G0

1. (2.12)

We can obtain G0
1 by solving the core determining equation (CDE), i.e. a local eigenvalue

problem similar to that in DMRG,

(S11 ⊗ S12)TH(S11 ⊗ S21)G0
1 := H0

1G
0
1 = EG0

1. (2.13)

Similarly, we can obtain a an iterative set of CDEs using H as well as sketching functions

for the second level G1
1 and G1

2 and the third level G2
1, G

2
2, G

2
3 as well as G2

4. The corresponding

graphics of ψ are shown in Fig. 2.10 and Fig. 2.11 respectively. Accordingly, each core
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H̃m
n

βl−1 βr

il il+1 · · · ir

i′l i′l+1 · · · i′r

αm
n

Sm
n

α′m
n

Sm
n

Figure 2.8: Dimension reduction of MPO fragment H̃m
n by sketching sub-matrix Smn .

βl−1, il, i′l, il+1, i
′
l+1, . . . , ir, i

′
r, βr are tensor indices of H̃m

n . βl−1, αmn , α′
m
n , βr are new tensor

indices after dimension reduction by Smn .
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determining equations is a local eigenvalue problem, i.e.,

Hm
n G

m
n = EGmn . (2.14)

Here Hm
n is the local Hamiltonian where Sm+1

2×n−1, S
m+1
2×n and Emn have been contracted with

the global H. This procedure is exactly the same as that in density-matrix renormalization

group (DMRG) algorithm. Gmn corresponds to the lowest eigenvector of this local problem.

By solving these equations hierarchically and iteratively, we can finally obtain a full TTN

as an approximation to ψ. This procedure resembles multigrid method to extract more

information from finer and finer grid at each level and obtain the final result at the last step.

For this reason, we expect that the lowest eigenvalue from Eq. 2.14 decreases monotonically

after each CDE step. Also, we expect that the results would be better when increasing the

size of basis set, such as replacing 1-cluster basis by 2-cluster basis.

It is noteworthy that at each step we can keep all nodes but the one to be determined

orthogonal using QR as well as RQ techniques, and we can use SVD to reduce the dimension

of each node, i.e. αmn , after solving each CDE.

G0
1

S1
1 S1

2

α1
1

i1 i2 i3 i4

α1
2

i5 i6 i7 i8

Figure 2.9: Approximate wavefunction ψ for the first level. Target node G0
1 is marked yellow.
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1

S2
1 S2

2

S1
2

α1
1

α2
1

i1 i2

α2
2

i3 i4

α1
2

i5 i6 i7 i8

G0
1

G1
1

S2
1 S2

2

G1
2

S2
3 S2

4

α1
1

α2
1

i1 i2

α2
2

i3 i4

α1
2

α2
3

i5 i6

α2
4

i7 i8

Figure 2.10: Approximate wavefunction ψ for the second level. Nodes marked yellow are to
be determined. Nodes marked green are known.

2.3.2 Bottom-up initialization

Considering that the sub-branches of leaf nodes are known, we can generate an approximate

tree from bottom to up with the environment approximated for each node, i.e.,

Emn ≈ Smn . (2.15)

Here sketching sub-matrix Smn is aimed at reducing the environment degrees of freedom

to αmn . For simplicity again we consider a 3-level binary tree network. In Fig. 2.12 we

show a representation of the approximate solution ψ using each of the leaf nodes and the

corresponding sketching sub-matrices. For instance, the formula for G2
1 node is given by

ψ = Q2
1G

2
1 ≈ S21G

2
1, (2.16)

and the corresponding CDE is given by

S21HS
2
1G

2
1 := H2

1G
2
1 = EG2

1. (2.17)

Similarly, we can obtain a an iterative set of CDEs using H as well as sketching functions
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Figure 2.11: Approximate wavefunction ψ for the third level. Nodes marked yellow are to be
determined. Nodes marked green are known.

for the other leaf nodes, the second level G1
1 and G1

2 and the first level G0
1. The corresponding

graphics of ψ are shown in Fig. 2.13 and Fig. 2.14 respectively. Accordingly, each core

determining equations is again a local eigenvalue problem defined in Eq. 2.14 but Hm
n is the

local Hamiltonian where Cm+1
2×n−1, C

m+1
2×n and Smn have been contracted with the global H.

Again, after solving each local problems iteratively, we can obtain a full TTN as an

approximation to ψ. Different from top-down algorithm, in this approach there does not

exist a gradual Galerkin space expansion. The full Galerkin space expanded by the MPO

would be completely used after solving all leaf nodes. As such, instead of expecting a gradual

refinement of eigenvalue we expect that the lowest eigenvalue would be relatively stable

after solving the last leaf node. Similarly, we expect that the results would be better when
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Figure 2.12: Approximate wavefunction ψ for the third level. Nodes marked yellow are to be
determined. Nodes marked green are known.

increasing the size of basis set only for the leaf nodes.

2.4 Numerical examples

2.4.1 1D transverse-field Ising model

In this section, we benchmark the accuracy and complexity of the method using periodic 1D

transverse-field Ising model (1D-TFI), i.e.,

H1D-TFI = g
d∑
i=1

σix + J(
d−1∑
i=1

σizσ
i+1
z + σdzσ

1
z). (2.18)
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Figure 2.13: Approximate wavefunction ψ for the second level. Nodes marked yellow are to
be determined. Nodes marked green are known.

Here σix and σiz are Pauli matrices for the i-th site on the x and z directions respectively,

where

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (2.19)

MPO is built up using the finite automata method [264].

We note that our experiments show that 1-cluster sketching basis is good enough to

produce converged results w.r.t. the set of basis set. As such, below we present results

obtained from 1-cluster sketching matrices. Besides, we use exact diagonalization to solve

CDEs and fix all bond dimensions within the TTN to be 2.

In Fig. 2.15 we show the energy per site (lowest eigenvalue divided by the number of

sites) for a 32-site system after determining each tensor core from Eq. 2.14. We can see that

the lowest eigenvalue from the top-down algorithm is gradually decreasing, in accordance

with the Galerkin space expansion. Besides, it is noteworthy that the curve is composed of

5 linear segments, corresponding to the 5 layers of the TTN. The lowest eigenvalue from

bottom-up is gradually decreasing before reaching a plateau until the 16th step corresponding

to the last leaf node. This also meets our expectation of the algorithm.

In Fig. 2.16 we show the comparison of the energy per site from MI (both top-down and
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Figure 2.14: Approximate wavefunction ψ for the first level. Target node G0
1 is marked

yellow.

bottom-up), DMRG (both 1-site and 2-site) and analytical method for a 32-site system with

different magnetic fields (g). In DMRG calculations we also set MPS bond dimensions to be

2. We can see that the values obtained from MI are close to those obtained from analyatical

method and DMRG.

In Fig. 2.17 we show the comparison of eigenvalues from MI (both top-down and bottom-

up), DMRG and analytical method at the critical point (J = g = 1) with different number of

sites. From here we can see that DMRG produces data very close to true values, indicating

excellent performance for 1D system. Results converge quickly at around 32 sites. Although

discrepancies exist between results from MI and true values, the results are not bad. The

discrepancy can be understood from the insufficiency of basis set using MI, especially at large

system size.

In Tab. 2.1 we show the overlap between the final wavefunction from MI and true

wavefunction from exact diagonalization for a 8-site system and a 12-site system respectively.

Here we also consider the critical point. From the figure we learn that the overlap is generally

around 70%, close to the results from DMRG. This indicates considerable accuracy and
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Figure 2.15: Energy per site (lowest eigenvalue divided by the number of sites) obtained from
Eq. 2.14 after solving each core determining equation for a 32-site 1D transverse-field Ising
model using the top-down algorithm (left figure) and the bottom-up algorithm (right figure).
We set J = g = 1 in Eq. 2.18, which is also the most challenging case, corresponding to the
critical point of this model. There exist 4 levels for a 32-site model. Thus, the total number
of sites is 1 + 2 + 4 + 8 + 16 = 31.

quality of the final eigenvector.

d = 8 d = 12
1-site DMRG 0.7520 0.7308
2-site DMRG 0.7532 0.7320

top-down 0.7101 0.6727
bottom-up 0.7079 0.6631

Table 2.1: Overlap between the final wavefunction from MI (both top-down and bottom-up)
and the true wavefunction from exact diagonalization for a 8-site and a 12-site 1D transverse-
field Ising model respectively. We set J = g = 1 in Eq. 2.18. The results are compared with
those from DMRG.

2.4.2 Stationary Fokker-Planck equation

In this section, we benchmark the accuracy and complexity of the method by solving a

high-dimensional stationary Fokker-Planck equation (FP). FP is originally a PDE in the

following form, i.e.,

Lρ = 0, ρ ≥ 0,

∫
ρ(x)dx = 1. (2.20)
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Figure 2.16: Final Energy per site obtained from MI (top-down on the left and bottom-up
on the right), DMRG and analytical method for a 32-site periodic 1D-TFI with different
magnetic fields. We set J = 1 in Eq. 2.18.

L is called Fokker-Planck operator, which is defined by

L =
1

T
∇2 +∇V · ∇+∇2V. (2.21)

Here T is the temperature and V ∈ C2(Rd) is a smooth confining potential. L is a real

non-positive operator in C2
0 (R

d)∩L2(Rd; ρ−1β ). For this reason, finding the solution of Eq. 2.21

is equivalent to solving the following eigenvalue problem, i.e.,

min
ρ
⟨ρ,−Lρ⟩, ⟨ρ, ρ⟩ = 1. (2.22)

It is straightforward to verify that the equilibrium density distribution ρβ = e−βV is the

solution of Eq. 2.20. More importantly, ρβ is the only vector in the null space of L and serves

as the ground truth of the problem Eq. 2.22.
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Figure 2.17: Final Energy per site obtained from MI (top-down on the left and bottom-up
on the right), DMRG and analytical method for periodic 1D-TFI with different number of
sites. We set J = g = 1 in Eq. 2.18.

Double well potential In this work we fix T = 1, and test a simple case where V is

completely separable, i.e.,

V = V1 ⊗ V2 ⊗ V2 ⊗ . . .⊗ V2. (2.23)

Here V1(x) = (x2 − 1)
2 and V2(x) = 3x2. Accordingly, L can be written in the following

form, i.e.,

L = L1 ⊗ I ⊗ . . .⊗ I + I ⊗ L2 ⊗ . . .⊗ I + . . .+ I ⊗ I ⊗ . . .⊗ L2. (2.24)

Here L1 = β d2

dx2
+ dV1

dx
d
dx + d2V1

dx2
and L2 = β d2

dx2
+ dV2

dx
d
dx + d2V2

dx2
. Since x is a continuous

extended variable, numerically we fix the space to be [−2, 2] for each dimension, discretize

L1 and L2 using the top 20 eigenfunctions of Laplace operator with Dirichlet boundary

conditions on the space in the spirit of spectral method, and build up L using the finite

automata method.

Similar to 1D-TFI case, here we adopt 1-cluster sketching basis. We use exact diagonal-

ization to solve CDEs and fix all bond dimensions within the TTN to be 2. Also, we note

that to reduce the computational cost we control every environment indices to be 2 in the
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Figure 2.18: 1-marginal obtained from MI, DMRG and analytical method for stationary
Fokker-Planck equation with double well potential.

bottom-up algorithm when building up local problems. For example, the sketching matrix S21

shown in first subplot of Fig. 2.12 only selects indices where i3, i4, . . . , i8 ∈ {1, 2}, i.e. the

first 2 basis functions.

In Fig. 2.18 we show the comparison of 1-marginal of the solution ρ, which is defined by∫
ρ(x1, x2, . . . , xd)dx2 . . . dxd, between ground truth, DMRG (both 1-site and 2-site), and

MI (both top-down and bottom-up) with four different dimensions d = 4, 8, 16, 32. From the

figures we see although some discrepancies appear in d = 4 and d = 16 cases, in general MI

produces data very close to ground truth and DMRG, indicating excellent performance.
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Ginzburg-Landau potential The Ginzburg-Landau theory (GL) was developed to provide

a mathematical description of superconductivity [123]. In GL theory, V has the following

form

V (x1, x2, . . . , xd) =
d+1∑
i=1

λ

2
(
xi − xi−1

h
) +

1

4λ
(1− x2i )

2
, (2.25)

with boundary conditions x0 = xd+1 = 0. We fix T = 1, h = 1/(d+ 1) and λ = 0.03. We

take the exact discretization as well as the computational setup to the double well case.

Same to double well case, we fix the space to be [−2, 2] for each dimension, discretize

L1 and L2 using the top 20 eigenfunctions of Laplace operator with Dirichlet boundary

conditions on the space in the spirit of spectral method, and build up L using the finite

automata method.

In Fig. 2.19 we show the comparison of 1-marginal for this system. We use 1-marginal

computed from DMRG-cross algorithm [258] as an approximation to the ground truth. From

the figures we see that different from double well case, DMRG encounters difficulties finding

true solution of this system. On the contrary, MI still performs outstandingly well. The

example shows the bottleneck of DMRG and an exceptional advantage of MI.

2.5 Conclusion

In this work we propose two multiscale initialization methods top-down and bottom-up for

quantum ground-state problems (large-scale eigenvalue problems). The proposed methods

follow the spirit of multigrid method and mean-field theory respectively. We demonstrate

the accuracy of the methods using 1D periodic transverse-field Ising model and stationary

Fokker-Planck equation. In general, our results suggest that multiscale initialization method

can be used to solve eigenvalue problems to certain accuracy. Also, our results on high-

dimensional stationary Fokker-Planck equation with Ginzburg-Landau potential indicates that

density-matrix renormalization group faces difficulties in certain high-dimensional problems
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Figure 2.19: 1-marginal obtained from MI, DMRG and analytical method for stationary
Fokker-Planck equation with Ginzburg-Landau potential.

and the new methods proposed are advantageous. We believe that the algorithms have

broader prospects in 2D/3D problems and can be very promising in solving high-dimensional

partial differential equations.
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CHAPTER 3

LOW-RANK GREEN’S FUNCTION REPRESENTATIONS

APPLIED TO DYNAMICAL MEAN-FIELD THEORY

This chapter was previously published as Ref. 272.

3.1 Introduction

In the past several decades, dynamical mean-field theory (DMFT) [83] has become a standard

method for studying interacting fermionic lattice problems. In combination with first-

principles methods [156, 114], it has been widely adopted to calculate properties of strongly

correlated materials. In such DMFT calculations of real materials, the low temperature regime

is of particular importance, as numerous experimental examples show: the critical temperature

TC for superconductivity in Sr2RuO4 is as low as approximately 1.5K ≈ 10−4eV [182]; the

magnetic ordering in double-perovskite iridates sets is below 2K [294]. In these cases, the

ordering temperature energy scale differs by about five orders of magnitude from the high

energy cutoff of approximately 10 eV.

The single-particle Green’s function, a central quantity in DMFT, is often calculated in

the imaginary time or Matsubara frequency domain. The standard representation on an

equispaced grid in imaginary time, or on Matsubara frequencies up to a cutoff, is low-order

accurate, and requires

N = O (βωmax) (3.1)

degrees of freedom. Here, β is the inverse temperature, and ωmax is the high energy cutoff of

the spectral function (i.e., ρ(ω) = 0 outside [−ωmax, ωmax]). In typical DMFT calculations,

computing the local Green’s function requires a possibly expensive Brillouin zone (BZ)

integration for each Matsubara frequency grid point and each iteration of a self-consistency

loop determining the chemical potential. This cost can become substantial as the temperature
28



is decreased.

A significant research effort has recently focused on developing compact and generic

representations of imaginary time and Matsubara frequency Green’s functions, beginning with

orthogonal polynomial bases [26, 138, 103, 67] and adaptive grid representations in imaginary

time [161, 138]. More recently, optimized basis sets obtained from low-rank compression

of the Lehmann integral representation have been developed, along with associated stable

interpolation grids allowing recovery of Green’s functions from a small number of samples in

either the imaginary time or Matsubara frequency domains. This began with the introduction

of the orthogonal intermediate representation (IR) basis [275, 48]. Interpolation grids for

the IR were later developed using the sparse sampling method [170]. Recently, some of

the authors introduced the DLR [143], which uses a non-orthogonal but explicit basis of

exponentials, with associated DLR interpolation grids. Both the IR and DLR bases, and

their interpolation grids, contain only

N = O
(
log(βωmax) log

(
ϵ−1
))

(3.2)

degrees of freedom, with ϵ a user-provided error tolerance. They therefore yield exceptionally

compact representations with controllable, high-order accuracy. Fortran, Python, and Julia

libraries are available for both the IR with sparse sampling [314] and the DLR [144]. Low-rank

Green’s function representations have been used to solve self-consistent diagrammatic equa-

tions in a variety of applications, including the SYK model [143, 144, 145], the self-consistent

finite temperature GW method [170, 338], Eliashberg-type equations for superconductiv-

ity [319, 38, 318, 214], and Bethe-Salpeter-type equations for Hubbard models [316].

In this work we investigate the applicability and robustness of the DLR in self-consistent

DMFT calculations. Specifically, we replace the standard Matsubara frequency grid with

the compact DLR grid in the calculation of the local Green’s function and all subsequent

expressions in the DMFT equations. We find that this method is stable, even in the

29



presence of noisy Green’s function data as obtained from continuous-time quantum Monte

Carlo (CTQMC) impurity solvers, and that neither the convergence nor the accuracy of

self-consistent iteration is compromised. We demonstrate a reduction in computational effort

and memory required to calculate the local Green’s function by over two orders of magnitude

for the correlated Hund’s metal Sr2RuO4 at T = 50K. Although the expensive solution of

the impurity problem remains a barrier in many DMFT calculations, our approach therefore

dramatically reduces the other significant cost in the DMFT loop, and leads to a more

automated procedure.

3.2 Background

3.2.1 The dynamical mean-field theory loop

We briefly outline the DMFT equations, and refer the reader to Refs. [83, 156] for a more

comprehensive overview. The central quantity of interest is the local Green’s function,

Gloc(iνn) =

∫
BZ

dk

VBZ
[iνn − ϵk + µ− Σ(k, iνn)]

−1. (3.3)

Here iνn = i(2n+1)π/β is the Matsubara frequency variable (for fermionic Green’s functions),

ϵk is the non-interacting lattice Hamiltonian, µ is the chemical potential, Σ(k, iνn) is the

lattice self-energy, and VBZ is the volume of the BZ. The chemical potential can be computed

self-consistently in each DMFT iteration in order to maintain the correct particle density.

In DMFT, the self-energy is approximated as a local quantity, and is computed from the

Green’s function Gimp(iνn) of an effective impurity problem via the Dyson equation

Σ(k, iνn) ≈ Σimp(iνn) = G−10 (iνn)−G−1imp(iνn) . (3.4)
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Figure 3.1: The steps of the DMFT loop. The arrows around the formula for Gloc indicate
that this quantity is computed self-consistently with the chemical potential to maintain
the correct particle density. Our approach improves the efficiency of the DMFT loop by
making two simple changes compared with the standard algorithm: (1) All operations in the
Matsubara frequency domain are carried out only at the DLR nodes νn = νnk , rather than
the full Matsubara frequency grid, and (2) the imaginary time hybridization function ∆(τ) is
obtained from the computed values ∆(iνnk) by forming a DLR expansion and obtaining its
Fourier transform analytically.
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Here, the effective non-interacting bath is represented by the Weiss mean-field,

G−10 (iνn) = G−1loc(iνn) + Σimp(iνn) , (3.5)

obtained from the local Green’s function (3.3). The local Green’s function is obtained self-

consistently, and convergence is reached when Gloc = Gimp. For concreteness, we focus in

this work on the continuous-time hybridization expansion (CTHYB) impurity solver [268], in

which the impurity problem is defined through the local non-interacting Hamiltonian

H0,loc =

∫
BZ

dk

VBZ
ϵk − µ (3.6)

and the Matsubara frequency hybridization function

∆(iνn) = iνn − G−10 (iνn)−H0,loc, (3.7)

or its Fourier transform ∆(τ) to the imaginary time domain. We emphasize, however, that

compact representations of the type used here are in principle equally applicable for other

types of impurity solvers.

The DMFT loop, outlined above, is summarized in Fig. 3.1. Although the solution of the

impurity problem is often the most computationally intensive and technical step in the DMFT

loop, it is outside the scope of our current discussion. Rather, we focus on the calculation

of Gloc(iνn), which requires the evaluation of a BZ integral for each Matsubara frequency

grid point iνn. In typical calculations all Matsubara frequency points are used up to a cutoff

O (ωmax) (yielding O (βωmax) points in total), in order to capture the effective energy scales

of the system. We demonstrate here that the number of Matsubara frequency points at which

Gloc(iνn) must be computed can be dramatically reduced.
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3.2.2 Discrete Lehmann representation and compact Matsubara frequency

grids

The DLR method provides a compact, explicit basis for Matsubara Green’s functions and

self-energies, along with associated interpolation grids. We give a brief review of these

concepts here, and refer to Ref. [143] for a detailed presentation and analysis.

Each Matsubara Green’s function G(iνn) has a spectral Lehmann representation

G(iνn) = −
∫ ∞
−∞

K(iνn, ω) ρ(ω) dω, (3.8)

where ρ(ω) is the spectral function, and the analytic continuation kernel K is given by

K(iνn, ω) ≡ (ω − iνn)−1. (3.9)

In most practical applications, ρ is unknown, but G(iνn) can either be sampled directly or

obtained from samples of the imaginary time Green’s function G(τ). We assume ρ can be

truncated beyond a frequency cutoff |ω| = ωmax. Defining the dimensionless parameter

Λ ≡ βωmax,

and nondimensionalizing variables by νn ← βνn and ω ← βω, we obtain the truncated

Lehmann representation

G(iνn) = −
∫ Λ

−Λ
K(iνn, ω) ρ(ω) dω, (3.10)

where νn is given as above with β = 1, and the arguments of G, ρ have been suitably rescaled.

It can be shown that the kernel of this integral representation, K(iνn, ω), has super-

exponentially decaying singular values [275, 48]. This low-rank structure is indicative of the
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well-known ill-conditioning of analytic continuation from the Matsubara Green’s function

to the spectral function on the real frequency axis [276]. However, it is advantageous for

the representation of Matsubara Green’s functions themselves, implying that K(iνn, ω) can

be approximated for any ω ∈ [−Λ,Λ] as a linear combination of a small number of basis

functions. In particular, the DLR approach uses frequency samples of the kernel itself as

basis functions:

K(iνn, ω) ≈
r∑
l=1

K(iνn, ωl)πl(ω). (3.11)

The r DLR frequencies ωl can be selected automatically by the pivoted Gram-Schmidt

algorithm such that the approximation in (3.11) is numerically stable, and accurate to a user-

provided error tolerance [45]. Substitution of (3.11) into (3.10) demonstrates the existence of

an expansion of an arbitrary Matsubara Green’s function in the basis K(iνn, ωl),

G(iνn) ≈
r∑
l=1

K(iνn, ωl)ĝl, (3.12)

with ĝl = −
∫ Λ
−Λ πl(ω)ρ(ω) dω.

The rapid decay of the singular values of K implies the scaling r = O
(
log (Λ) log

(
ε−1
))

,

yielding exceptionally compact expansions at high accuracies and low temperatures. For

example, Matsubara Green’s functions with Λ = 100 can be represented to 6-digit accuracy

by fewer than 20 basis functions; with Λ = 104 to 6-digit accuracy by fewer than 50 basis

functions; and with Λ = 106 to 10-digit accuracy by fewer than 120 basis functions. By

contrast, in a typical calculation, for example with β = 1000 eV−1 and ωmax = 10 eV

(Λ = 104), one would typically require on the order of tens of thousands of Matsubara

frequencies. We emphasize that given Λ and ε, the representation is universal; that is,

independent of the specific structure of the spectral function ρ characterizing the Green’s

function, which is already taken into account by the automatic compression of the kernel K.

Since ρ is typically not known and the DLR coefficients ĝl cannot be computed directly,
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they can in practice be recovered by fitting, or by interpolation at a collection of r DLR

Matsubara frequency nodes {iνnk}rk=1 [143]. These nodes can be obtained automatically, using

a process similar to that used to obtain the DLR frequencies, to ensure stable interpolation.

Thus, a Green’s function G can be characterized, to within a controllable error, by its values

G(iνnk) at the DLR nodes.

The Fourier transform of (3.12) yields an imaginary time representation,

G(τ) ≈
r∑
l=1

K(τ, ωl)ĝl, (3.13)

with

K(τ, ω) ≡ e−ωτ

1 + e−ω

in the transformed variables τ ← τ/β, ω ← βω. As for the Matsubara frequency expansion,

G(τ) can either be recovered by least squares fitting, or by interpolation at a collection

of automatically selected DLR imaginary time nodes {τk}rk=1. We note that the DLR

interpolation procedure is similar to the method of sparse sampling used in conjunction with

the IR basis, in which interpolation nodes are selected based on the extrema of the highest

degree IR basis function [170].

3.3 Restriction to compact Matsubara frequency grid

We propose the following procedure to improve the efficiency of the DMFT loop: Given the

self-energy Σimp, the local Green’s function Gloc is evaluated only at the r DLR Matsubara

frequency nodes {iνnk}rk=1, as are the Weiss mean-field G0 from (3.5) and the hybridization

function ∆ from (3.7). At this point, the DLR expansion of ∆(iνn) is formed by interpolation

from its values at the DLR nodes using the representation in (3.12), with G replaced by ∆.

∆(τ) is then given analytically by a DLR expansion in imaginary time, as in (3.13). The rest

of the DMFT procedure can be carried out without modification.
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Figure 3.2: Hybridization function ∆ and self-energy Σimp during the first iteration of the
DMFT loop for the Sr2RuO4 example, demonstrating the use of the DLR procedure. (a)
∆(iνn) (from initial guess with zero self-energy) given by (3.7), with DLR nodes indicated.
(b) ∆(τ) obtained using the standard method, i.e. asymptotic expansion and discrete Fourier
transform, and DLR interpolation from the values ∆(iνnk). (c) Σimp(iνn) calculated after
the impurity problem is solved with the hybridization function obtained using both methods.

The primary purpose of this work is to verify that systematic or statistical error generated

by the quantum impurity solver does not destabilize our proposed procedure. Although this

question depends on the specific choice of impurity solver, we carry out tests using the most

popular solver, CTQMC. We show in the next section that the interpolation procedure is

stable to Monte Carlo noise, and that the convergence of the DMFT loop is not affected by

the reduction of the Matsubara frequency grid.

3.4 Numerical example: Strontium Ruthenate

We demonstrate our procedure using the correlated Hund’s metal Sr2RuO4 [84] at low T .

We compute the electronic structure using the planewave-based Quantum ESPRESSO

package [87] using the standard Perdew–Burke–Ernzerhof exchange-correlation functional,

and scalar-relativistic ultrasoft pseudopotentials [80]. After structural optimization on a

12×12×12 Monkhorst-Pack grid, we obtain lattice parameters that correspond to a = 3.880Å

and c = 12.887Å in the conventional unit cell (space group I4/mmm (139)). The primitive unit

cell contains one ruthenium site with a partially filled t2g shell for which we construct three

maximally localized Wannier functions [211], representing the degenerate dxz/dyz orbitals
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Figure 3.4: Converged results for the Sr2RuO4 example using standard and DLR procedures:
(a) local Green’s function, and (b) impurity self-energy in a low-frequency window.
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and the dxy orbital. We recompute the Hamiltonian on a 40 × 40 × 40 k-point grid using

Wannier interpolation in order to compute the BZ integrals in (3.3) by equispaced integration.

We add a local rotationally invariant Hubbard-Kanamori interaction with U = 2.3 eV and

J = 0.4 eV [84]. The impurity problem is solved using TRIQS/CTHYB [268] in the TRIQS

library [229]. To address the well-known numerical instability of computing the self-energy via

the Dyson equation in (3.4) in the presence of quantum Monte Carlo (QMC) noise, we replace

this formula at high frequencies with an asymptotic expansion. This expansion is given by a

polynomial in (iνn)
−1, fit to Σimp in a window in which the QMC noise is sufficiently small

so that (3.4) is valid.

The DMFT calculation is implemented using the TRIQS library [229], and the Python

library pydlr provided by libdlr [144, 146] is used for DLR calculations. We solve the DMFT

equations at β = 232 eV−1, which corresponds to T = 50K. At this temperature, without the

DLR, approximately 12000 Matsubara frequency nodes are required to adequately capture the

slowly-decaying tail of the Green’s functions to allow for accurate Fourier transforms. More

specifically, in the TRIQS library, the Fourier transform ∆(τ) of ∆(iνn) is obtained by the

following procedure: (1) fit an asymptotic expansion in inverse powers of iνn to ∆(iνn), (2)

Fourier transform this asymptotic expansion analytically, (3) Fourier transform the difference

between ∆(iνn) and its asymptotic expansion, which is rapidly decaying, by a discrete Fourier

transform on the Matsubara frequency grid, and add the results. Choosing ωmax = 12 eV

and ϵ = 10−6 eV−1, the number of DLR basis functions and Matsubara frequency nodes is

r = 36, reducing the number of BZ integrals required to calculate Gloc in (3.3) by a factor of

over 300. Furthermore, our approach avoids the complicated Fourier transform procedure

used with the standard Matsubara frequency grid, since ∆(τ) is obtained from the DLR

expansion of ∆(iνn) by analytical Fourier transform.

Fig. 3.2 shows the first iteration of the DMFT loop comparing the hybridization function

and the self-energy obtained using the standard method and the DLR approach (shown in
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markers/dashed lines and solid lines, respectively). In our scheme, we first compute Gloc, G0,

and ∆ at the DLR nodes iνn = iνnk , using zero self-energy as an initial guess in (3.3). The

hybridization function ∆(iνn) is shown in Fig. 3.2a on the full Matsubara frequency grid,

as used in the standard method, with the DLR nodes used in our method indicated. The

DLR expansion of ∆(τ) obtained from interpolation at these nodes and analytical Fourier

transform is shown in Fig. 3.2b. Since no Monte Carlo noise has been introduced at this

stage, the DLR expansion of ∆(τ) is correct to the DLR tolerance ϵ. We then solve the

impurity problem using the DLR expansion of ∆(τ) to obtain the impurity Green’s function,

and subsequently the self-energy Σ(iνn), shown in Fig. 3.2c. We see that the self-energies

obtained using the hybridization function obtained using the full grid DMFT procedure

(shown at all Matsubara frequencies as dots) and the DLR procedure (shown at the DLR

nodes as open circles) in the impurity solver agree to within the Monte Carlo noise level.

We next run the standard and modified DMFT loops until self-consistency. Convergence

is measured by monitoring the quantity

E =

√
1

β

∫ β

0
dτ
∥∥Gimp(τ)−Gloc(τ)

∥∥2
F , (3.14)

where ∥·∥F indicates the Frobenius norm, and the normalization prevents a trivial scaling

of the error with β, assuming a uniform distribution of Monte Carlo error. Fig. 3.3 shows

that the convergence behavior is nearly identical for the two approaches, with both reaching

self-consistency after after approximately 20 iterations. Finally, Fig. 3.4 shows Gloc(iνn) and

Σimp(iνn) at convergence, demonstrating that the final results of the two calculations agree

to within the Monte Carlo noise level.
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3.5 Conclusion

Our proposed method improves the efficiency of the DMFT procedure by replacing the

standard full Matsubara frequency grid with a highly compact grid compatible with interpo-

lation using the DLR basis. We demonstrate the effectiveness of this approach for a DMFT

calculation of Sr2RuO4 using CTQMC as the impurity solver. In general, our results suggest

that the standard representations of quantities appearing in the DMFT loop can be replaced

by much more efficient representations, such as the DLR, without incurring a penalty in

accuracy or stability. We note that the same approach should be applicable to other impurity

solvers, in particular fast approximate solvers used in real materials applications.

40



CHAPTER 4

GREEN’S FUNCTION FORMULATION OF QUANTUM DEFECT

EMBEDDING THEORY

This chapter was previously published as Ref. 273.

4.1 Introduction

Electronic structure calculations of solids and molecules rely on the solution of approximate

forms of the Schrödinger equation, for example using density functional theory [124, 155,

216, 192, 134, 36], many-body perturbation theory [286, 195, 94], or quantum chemistry

methods [16, 343, 115] and, in some cases, quantum Monte Carlo [195]. Employing theoretical

approximations is almost always necessary, as the solution of the electronic structure problem

using the full many-body Hamiltonian of the system is still prohibitive, from a computa-

tional standpoint, for most molecules and solids, even in the case of the time independent

Schröedinger equation.

Interestingly, there are important problems in condensed matter physics, materials science

and chemistry for which a specific region of interest may be identified, a so-called active region,

surrounded by a host medium, and for which the electronic structure problem can be solved

at a high level of theory, for example, by exact diagonalization. An active region may be

associated, for instance, to point defects in materials, active site of catalysts or nanoparticles

embedded in soft or hard matrices. All of these problems may then be addressed using

embedding theories [289, 133, 312] which separate the electronic structure problem of the

active region from that of the host environment. Each part of the system is described at the

quantum-mechanical level [289], at variance with quantum embedding models, e.g. QM/MM,

where only the active space or region is described with quantum-mechanical methods, while

the environment is treated classically [265, 181].
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Several embedding techniques have been proposed in the literature in recent years, which

may be classified by the level of theory chosen to describe the different portions of the system.

Density-based theories encompass density-functional-theory embedding in-density- functional-

theory (DFT-in-DFT) and wavefunction embedding in-DFT (WF-in-DFT) [173, 95, 96]. In

these schemes the environment is described within DFT and the active region with a level of

DFT higher than that adopted for the environment or with quantum-chemical, wave-function

based methods. Density-matrix embedding theory (DMET) [335, 153, 154, 57, 238, 117,

237] employs instead the density matrix of the system to define an embedding protocol.

Finally, Green’s (G) function-based quantum embedding methods include the self-energy

embedding [164, 342, 250] , dynamical mean field (DMFT) [82, 83, 81, 8, 156] and the

quantum defect embedding theories (QDET) [185, 188, 312].

QDET is a theory we have recently proposed for the calculation of defect properties in

solids, with the goal of computing strongly correlated states which may not be accurately

obtained using mean field theories, such as DFT, when using large supercells. However, the

applicability of the theory is not restricted to defects in solids and QDET may be used to

study, in general, a small guest region embedded in a large host condensed system. Similar

to all Green’s function based methods, in QDET the active space is defined by a set of

single-particle electronic states. The set includes the states localized in proximity of the

defect or impurity and, in some cases, contains additional single-particle orbitals.

The embedding protocol used in QDET leads to a delicate problem that many embedding

theories have in common, at least conceptually: the presence of “double counting” terms in

the effective Hamiltonian of the active regions. These are terms that are computed both

at the level of theory chosen for the active region and at the lower level chosen for the

environment. Hence corrections (often called double counting corrections) are required to

restore the accuracy of the effective Hamiltonian.

In the original formulation of QDET presented in Ref. 188, we adopted an approximate
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double counting correction based on Hartree-Fock theory. Here we present a more rigorous

derivation of QDET based on Green’s functions and we derive a double counting correction

that is exact within the G0W0 approximation and when retardation effects are neglected. We

call this correction EDC@G0W0 (exact double counting at G0W0 level of theory). We then

apply QDET with the EDC@G0W0 scheme to several spin defects in solids and we present

a strategy to systematically converge the results as a function of the composition and size

of the active space. Finally we show that using the EDC@G0W0, we obtain results for the

electronic structure of spin defects consistent with experiments and in good agreement with

results obtained with other embedding theories [207].

The rest of the chapter is organized as follows. Section 4.2 presents the formulation of

QDET and Section 4.3 its implementation. Our results are presented in Section 4.4 and

conclusions in Section 4.5.

4.2 Formulation of quantum defect embedding theory (QDET)

In Ref. 185, 188 we introduced the Quantum Defect Embedding Theory (QDET), an embed-

ding scheme that describes a condensed system where the electronic excitations of interest

occur within a small subspace (denoted as the active space A) of the full Hilbert space of the

system. The formulation is based on the description of the system using periodic DFT and

assumes that the interaction between active regions belonging to periodic replicas may be

neglected (i.e the dilute limit). We summarize below the original formulation of the QDET

method, including the approximate double counting scheme used in Ref. 185, 188. We then

present a Green’s function formulation of QDET which enables the definition of an improved

correction to the double counting scheme originally adopted, which is exact within the G0W0

approximation.

In QDET an active space is defined as the space spanned by an orthogonal set of functions

{ζi}, for instance, selected eigenstates of the Kohn-Sham (KS) Hamiltonian describing a solid,
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or localized functions, e.g., Wannier orbitals constructed from Kohn-Sham eigenstates through

a unitary transformation. Within the Born-Oppenheimer and nonrelativisitic approximations,

the many-body effective Hamiltonian of a system of interacting electrons within a given active

space takes the following form:

Heff =
A∑
ij

teffij a
†
iaj +

1

2

A∑
ijkl

veffijkla
†
ia
†
jalak, (4.1)

where teff and veff are one- and two-body terms that include the influence of the environment

on the chosen active space. In QDET, these terms are determined by first carrying out

a mean-field calculation of the full solid using, e.g., DFT. Once the KS eigenstates and

eigenvalues of the full system are obtained, the two-body terms veff are computed as the

matrix elements of the partially screened static Coulomb potential WR
0 , i.e.,

veffijkl =
[
WR

0

]
ijkl

:=

∫
dxdx′ζi(x)ζk(x)W

R
0 (x,x′;ω = 0)ζj(x

′)ζl(x
′). (4.2)

The term WR
0 in Eq. 4.2 is obtained by screening the bare Coulomb potential v with the

reduced polarizability PR0 , defined by the following equation:

WR
0 = v + vPR0 W

R
0 . (4.3)

The reduced polarizability may be obtained by subtracting from the total irreducible polariz-

ability of the periodic system the contribution from the active space, namely PR0 = P0 − PA0 .

Within the Random-Phase Approximation (RPA), the active space polarizability PA0 is given
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by

PA0 (x1,x2;ω) =
occ∑
i

unocc∑
j

(
fAψKS

i

)
(x1)

(
fAψKS

j

)
(x1)

(
fAψKS

j

)
(x2)

(
fAψKS

i

)
(x2)

×
(

1

ω − (ϵKS
j − ϵKS

i ) + iη
+

1

ω + (ϵKS
j − ϵKS

i )− iη

)
,

(4.4)

where ψKS
i and ϵKS

i are the Kohn-Sham eigenfunctions and -values, respectively and “occ” and

“unocc” denote sums over occupied and empty states, respectively. Here, we have introduced

the projector fA =
∑A
i |ζi⟩⟨ζi| on the active space. An expression of the total irreducible

polarizability may be obtained by omitting the projectors fA on the RHS of Eq. 4.4. In

Refs. 185, 188 we proposed an efficient implementation of Eq. 4.4 that does not require any

explicit summation over unoccupied states, thus enabling the application of QDET to large

systems.

The definition of veff given above includes contributions to the Hartree and exchange

correlation energies that are also included in the DFT calculations for the whole solid, i.e., it

contains so-called double counting (dc) terms. The latter are subtracted (that is corrections

to double counting contributions are applied) when defining the one-body terms teff ,

teffij = HKS
ij − tdcij , (4.5)

where HKS is the Kohn-Sham Hamiltonian.

4.2.1 QDET based on density functional theory

In previous applications of QDET, the double counting term tdc was approximated, since

within a DFT formulation of the theory, one cannot define an explicit expression for the

exchange and correlation potential for a subset of electronic states. Therefore, an approximate
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form of tdc inspired by Hartree-Fock was used, given by:

tdcij ≈
A∑
kl

([
WR

0 (ω = 0)
]
ikjl
−
[
WR

0 (ω = 0)
]
ijkl

)
ρAkl, (4.6)

where the reduced density matrix of the active space A is given by ρAij =
∑occ
k ⟨ζi|ψk⟩⟨ψk|ζj⟩.

Once the terms in the Hamiltonian of Eq. 4.1 are defined, the electronic structure of the

correlated states in the active space A is obtained from an exact diagonalization procedure,

using the full configuration interaction (FCI) method.

We note that within Hartree-Fock theory, the expression of tdc, where v replaces WR
0

on the RHS of Eq. 4.6, is exact; however Eq. 6 turns out to be an approximate expression

when used within DFT. While QDET with an approximate double counting scheme has

been successfully applied to a range of defects in diamond and SiC, the influence of the

approximation used for tdc deserves further scrutiny. Most importantly, a formulation without

double counting approximations is desirable.

In the next section, we present a Green’s function formulation of QDET and we derive

an analytical expression for teff that in turns leads to an expression for the double counting

term tdc which is exact within the G0W0 approximation.

4.2.2 Green’s function formulation of QDET

Instead of starting by a DFT formulation, we describe the interacting electrons in a solid

by defining the one-body Green’s function G and the screened Coulomb potential W . The

reason to introduce a Green’s function description stems from the fact that the self-energy Σ

and its irreducible polarizability P can be written as sums of contributions from different
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portions of the entire system. The basic equations relating G, W , Σ and P are:

G−1 = g−1 − Σ (4.7)

W−1 = v−1 − P, (4.8)

where v is the bare Coulomb potential; the bare Green’s function g = (ω − h)−1 with

h = −1
2∇2 + vion, where vion is the electrostatic potential of the nuclei.

We chose two different levels of theory to describe different portions of the system, namely

we describe the active space with a so-called higher level theory (high) than that applied to

the whole system (low). We write the self-energy and polarizability of the whole system as:

Σ = Σlow +
(
Σhigh − Σdc

)
A

(4.9)

P = P low +
(
Phigh − Pdc

)
A
. (4.10)

Here, we introduced the double counting terms Σdc and Pdc that correct for the contributions

to the self-energy and polarizability of the active space A, which are included both in the

high- and low-level descriptions of A. The terms with subscript A in Eqs. 4.9 and 4.10 are

defined in the subspace A. Inserting Eqs. 4.9 and 4.10 into Eq. 4.7 and 4.8, respectively, leads

to

G−1 =
[
GR
]−1
− Σ

high
A (4.11)

W−1 =
[
WR

]−1
− Phigh

A , (4.12)

where we have defined the renormalized Green’s function GR and partially screened potential
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WR as:

[
GR
]−1

= g−1 − Σlow + Σdc
A (4.13)[

WR
]−1

= v−1 − P low + Pdc
A . (4.14)

Comparing Eq. 4.11 and 4.12 with Eq. 4.7 and 4.8, we find that the problem of determing

G and W for the total system A + E has been simplified: only a solution with the high-

level method within A is necessary to obtain G and W . To obtain such solution, the bare

Green’s function g and bare Coulomb potential v should be replaced by their renormalized

counterparts GR and WR, respectively. We now turn to derive expressions for Σlow and

P low, and Σhigh and Phigh, which will then allow for the definition of all terms entering the

effective Hamiltonian of the active space.

Effective Hamiltonian Under the assumption that retardation effects may be neglected,

i.e., assuming that one- and two-body interactions within A are instantaneous, we can derive

a simple equation relating GR and WR and the parameters of the effective Hamiltonian in

Eq. 4.1. In the absence of retardation effects, the effective Green’s function GR is given by

the Lehmann representation and we have:

GR(ω) ≈
[
ω − teff

]−1
. (4.15)

Note that the validity of this equation rests on the assumption that the non-diagonal

terms of the self-energy coupling the active space and the environment are negligible, i.e.(
Σlow

)
AE

= 0. Eq. 4.15 defines the one-body terms teff of Eq. 4.1. To derive the two-body

terms, we neglect the frequency dependence of the screened Coulomb interaction and write:

veffijkl ≈
∫
dxdx′ζi(x)ζk(x)W

R(x,x′, ω = 0)ζj(x
′)ζl(x

′). (4.16)
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We note that the static approximation of the screened Coulomb interaction is commonly

employed to calculate neutral excitations in solids and molecules within many-body pertur-

bation theory (MBPT) [195], and it has been shown to yield neutral excitations in a wide

range of materials with excellent accuracy. In order to obtain the expressions of teff and veff

for which an analytic expression of tdc can be derived, we turn to the G0W0 approximation,

which we use as low level of theory for the entire system. Such a choice of low-level theory

enables the separation of the self-energy as required by Eq. 4.9.

G0W0 approximation as low-level theory We use the G0W0 approximation and write

Σlow = ΣG0W0 with

ΣG0W0 = VH + Σxc = vρ+ iG0W0. (4.17)

We evaluate the Green’s function G0 using the KS Hamiltonian, i.e.,

G0(ω) = (ω −HKS)−1 . (4.18)

The screened Coulomb potential is obtained as W−10 = v−1 − P0, with

P0 = −iG0G0. (4.19)

Double counting correction To derive the double counting terms Σdc and Pdc, we

require that the chain rule be satisfied, i.e., that when using the low-level of theory to

describe both the total system (A+E) and the active space (A), the total self-energy and

the total polarizability on the LHS of Eq. 4.9 and 4.10 are the same as Σlow and P low,

respectively. This requirement implies that Σdc and Pdc coincide with the self-energy and

the polarizability derived from the effective Hamiltonian expressed at the low-level of theory.

Within the G0W0 approximation, this requirement leads to the following expressions
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Σdc = Σeff
G0W0

(4.20)

Pdc = P eff
0 . (4.21)

Here the superscript ‘eff’ indicates that the the self-energy and polarizabilities are computed

for Heff ; these quantities are different from the corresponding ones evaluated for H projected

onto A. The double counting contribution to the polarizability, Pdc, is obtained with Eq. 4.19

after restricting the Green’s function to A, i.e.,

Pdc = PA0 = −iGA0 GA0 , (4.22)

with GA0 = fAG0f
A. Eq. 4.14 and 4.22 allow us to determine the partially screened Coulomb

potential WR
0 as

[
WR

0

]−1
= v−1 −

(
GA0 G

R
0 +GR0 G

A
0 +GR0 G

R
0

)
= v−1 − PR0 , (4.23)

where we have defined the reduced Kohn-Sham Green’s function GR0 = G0−GA0 . The matrix

elements of WR
0 thus enter the definition of the two-body terms of the effective Hamiltonian.

Hence we have shown that by framing QDET within the context of Green’s embedding

theories we recover Eq. 4.3.

Similar to the derivation of Pdc, the double counting contribution to the self-energy, Σdc,

is given by the G0W0 self-energy associated to Heff , i.e., Σeff
G0W0

= veffρA + iGA0W
eff
0 , where

veff = WR, ρeff = ρA, Geff
0 = GA0 , and W eff

0 = W0. The final result reads

Σdc = WR
0 ρ

A + iGA0W0. (4.24)

We note that in the second term of Eq. 4.24, the screened Coulomb potential in A is obtained
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by adding to WR
0 the screening potential generated by the polarizability PA0 . This addition

yields by definition the total screened Coulomb potential, since W−10 =
[
WR

0

]−1
− PA0 . We

note that the chain rule by construction leads to a Hartree double-counting self-energy (the

first term of Eq. 4.24) that is defined in terms of the partially screened Coulomb potential.

This is essential to remove the Hartree self-energy of the effective Hamiltonian that is already

accounted for in the G0W0 calculation of the total system (A+E). Equivalently, the second

term in Eq. 4.24 removes the exchange-correlation self-energy of the effective Hamiltonian at

the G0W0 level, as this self-energy has already been accounted for in the G0W0 calculation

of the total system.

Having obtained explicit expressions for the double counting terms, we can finally deter-

mine the one-body parameters of the effective Hamiltonian. We write GR as:

[
GR
]−1

= g−1 − [VH + iG0W0] +
[
WR

0 (ω = 0)ρ+ iGA0W0

]
= ω −HKS + Vxc +WR

0 ρ
A − iGR0 W0.

(4.25)

By comparing the equation above with Eqs. 4.5 and 4.15, we obtain the double counting

contribution to the effective one-body terms as:

tdc = Vxc +WR
0 (ω = 0)ρA − iGR0 W0. (4.26)

In general, the one-body terms should be frequency-dependent, due to the frequency depen-

dency of GR0 (ω) and W0(ω). To obtain static expressions for the one-body terms, we evaluate

iGR0 W0 at the quasi-particle energies. More details are provided in Sec. 4.3.

As we will see in Sec. 4.4, the double counting scheme defined here yields more accurate

results that the Hartee-Fock one, since it satisfies the chain rule by construction. On the

contrary, the Hartree-Fock double counting scheme used in Ref. 25, 187, 185, 188, 213, 236

does not satisfy the chain rule and thus may introduce errors originating from the separation
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between active space and environment.

4.3 Implementation

The QDET method and the double counting scheme of Eq. 4.26 are implemented in the

WEST [99] (Without Empty States) code, a massively parallel open-source code designed

for large-scale MBPT calculations of complex condensed-phase systems, such as defective

solids. In the WEST code, a separable form of W0 is obtained using the projected eigen-

decomposition of the dielectric matrix (PDEP) [331, 99], which avoids the inversion and

storage of large dielectric matrices. Importantly, explicit summations over empty KS orbitals

entering the expressions of P0 and G0 are eliminated using density functional perturbation

theory (DFPT) [15] and the Lanczos method [303, 217], respectively. The implementation

of WR
0 in WEST has been reported previously [188]. In the following, we focus on the

implementation of the double counting term entering Eq. 4.26.

In our current implementation, the active space A is defined by a set of Kohn-Sham

eigenstates, and GR0 is given by

GR0 (x,x
′;ω) =

E∑
i

ψKS
i (x)ψKS

i (x′)
ω − ϵKS

i + iη sgn(ϵKS
i − ϵF)

, (4.27)

where E is the environment, sgn is the sign function and ϵF is the Fermi energy. The term

∆Σxc = iGR0 W0 in Eq. 4.26 is given by

∆Σxc(ω) = i

∫
dω′

2π
GR0 (ω + ω′)W0(ω

′), (4.28)

where the integration is performed using a contour deformation technique [91, 89, 99]. Finally,

to obtain static double counting terms, we evaluate Eq. 4.28 at the quasiparticle energies
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ϵ
QP
i , i.e.,

[∆Σxc]ij =
1

2
Re

[
[∆Σxc]ij (ϵ

QP
i ) + [∆Σxc]ij (ϵ

QP
j )

]
, (4.29)

where the quasi-particle energies are obtained by solving iteratively the equation ϵ
QP
i =

ϵKS
i + ⟨ψKS

i |Σxc(ϵ
QP
i )− Vxc|ψKS

i ⟩. We note that Eq. 4.29 has also been used in Ref. 305 to

implement the self-consistent GW method.

4.4 Results

4.4.1 Computational setup

The electronic structure of a supercell representing a defect within a periodic solid is initially

obtained by restricted close-shell DFT calculations, with an optimized geometry from unre-

stricted open-shell calculations. We use the Quantum Espresso [88] code, with the PBE [232]

or DDH functional [279], SG15 norm-conserving pseudopotentials [262] and a 50 Ry kinetic

energy cutoff for the plane wave basis set. Only the Γ-point is employed to sample the

Brillouin zone of the supercell.

The selection of the defect orbitals defining the active space may be performed by manually

identifying a set of KS eigenstates localized around the defect of interest [187, 185, 188] or by

using Wannier functions [213]. However these procedures do not offer a systematic means to

verify convergence as a function of the composition and size of the active space.

Here we introduce a localization factor, a scalar LV , associated to each KS orbital:

LV (ψ
KS
n ) =

∫
V⊆Ω

|ψKS
n (x)|2dx, (4.30)

where V is a chosen volume including the defect, smaller than the supercell volume Ω. The

value of LV varies between 0 and 1. The active space for a given defect is then defined by

those KS orbitals for which LV is larger than a given threshold. Decreasing the value of the
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Figure 4.1: Localization factor (LV , see Eq. 4.30) as a function of the energy of the
Kohn-Sham orbitals, relative to the energy of the valence band maximum (VBM), for a NV–

center in diamond. We present results for supercells of three different sizes. The threshold
used to define the active space is 5% (see text).

threshold allows for a systematic change in the composition and number of orbitals belonging

to the active space.

In our calculations, the parameters of the effective Hamiltonian are obtained using

constrained RPA (cRPA) calculations with the double counting correction of Eq. 4.26, called

EDC@G0W0. The number of eigenpotentials NPDEP used for the spectral decomposition

of the polarizability is set to 512 in all calculations. Eigenvalues and eigenvectors of the

active-space Hamiltonian are obtained with full-configuration interaction (FCI) calculations

as implemented in the PySCF [288] code.
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Figure 4.2: Computed vertical excitation energies of the NV– center in diamond as a function
of the chosen threshold of the localization factor LV (see Eq. 4.30). States are labeled using
the irreducible representation of the C3v point group. We present results obtained with the
PBE functional for cells of three different sizes. We note that 80% corresponds to a (4o, 6e),
(3o, 4e) or (3o, 4e) active space for a 63-, 215- or 511-atom supercell respectively, and 5%
corresponds to a (22o, 42e), (14o, 26e) or (12o, 22e) active space for a 63-, 215- or 511-atom
supercell respectively.

4.4.2 Negatively-charged nitrogen vacancy center in diamond

As a prototypical spin qubit for quantum information science [60, 246, 93], the NV– center in

diamond has been extensively studied on different levels of theory [65, 197, 49, 25, 185, 187].

It is generally recognized [183, 66] that the four dangling bonds around the defect form a

minimal model for the active space, with two non-degenerate a1 orbitals, and two degenerate

orbitals with e character.

Instead of constructing a model with a priori knowledge of the defect electronic structure,

we determine the active-space composition and size with the help of the localization factor

defined in Eq. 4.30, as shown in Fig. 4.1. When using 63-, 215- and 511-atom supercells,

irrespective of the threshold used to define LV , we find three defect orbitals with energies

within the band gap of diamond, corresponding to the two degenerate e orbitals and to one
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Figure 4.3: Computed vertical excitation energies for the NV– in diamond. We show
converged results (see Fig. 4.2) at 5% localization threshold as a function of the supercell
size, obtained with the PBE functional.

of the a1 orbital of the minimal model. In the 63- and 215-atom supercells, we find that

one of the a1 orbitals belonging to the minimal model is below the VBM of diamond; in the

511-atom cell we find instead that three localized orbitals are below the VBM, indicating

that at least 6 orbitals are required to define the active space. This suggests that the minimal

model with a fixed number of orbitals may be insufficient to accurately describe the system

with a large supercell.

In Fig. 4.2 we show the vertical excitation energies of the NV– center obtained by

diagonalizing the effective Hamiltonian (Eq. 4.1), as a function of the localization threshold

chosen to define LV . Irrespective of the chosen threshold, we find that the ground state

has 3A1 symmetry. We also find that the lowest excited states with 1E and 1A1 symmetry

converge much faster as a function of the LV threshold than 3E, since 3E arises from a11e
3

configurations rather than a a21e
2 configurations, as in the case of 3A2, 1E and 1A1. Most

orbitals added to the active space when decreasing the localization threshold exhibit a1

character. We note that the convergence of the 1A1 state in the 63-atom cell is not smooth,

probably due to orbitals with e character being part of the active space as the threshold value

is decreased. Overall our results point at the need to converge the composition and size of the
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active space both as a function of LV and cell size. In Fig. 4.3 we show the vertical excitation

energies of the NV– center as a function of supercell size, and the values are summarized in

Tab. 4.1. We chose a 5% LV threshold, i.e. all orbitals with LV ≥ 0.05 are included in the

active space A. As shown in Tab. 4.1, results obtained using the EDC@G0W0 correction are

much closer to the experimental values than those computed using the original Hartree-Fock

double counting correction (see Section 4.2.2), which we call here HFDC. Furthermore, we

find unphysical excitations (i.e. states that do not have any experimental counterpart)

with HFDC; however such unphysical states are not present when we use the EDC@G0W0

correction.

In our previous work, using HFDC corrrections we found substantial differences between

results obtained with the PBE or the hybrid functional DDH [279, 280, 33, 32, 85, 345]. Hence

we analyze the influence of the chosen functional when using the EDC@G0W0 correction. In

Fig. 4.4 and 4.5, we compare PBE and DDH results for the NV– center, for converged active

space in a 215-atom cell. Our results indicate that, except for a widening of the bandgap, the

electronic structure is almost insensitive to the choice of the functional. The order of localized

defect states within the gap and their localization properties are nearly identical when using

PBE and DDH, and the shift of the position of the defect orbitals relative to the band edges

is mostly due to the difference in the PBE and DDH bandgaps. The excitation energies of

DDH calculations are less than 0.1 eV higher than their PBE counterparts. It is reasonable to

expect that the insensitivity to the functional found here in the case of the NV– center may

apply more generally to other classes of covalently bonded semiconductors; it appears that the

sensitivity observed with the HFDC scheme may have been caused by the incomplete double

counting correction of the DFT exchange-correlation effects. However obtaining results for

additional defects and solids will be necessary to come to a firm conclusion.
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Table 4.1: Computed vertical excitation energies (eV) for the NV– in diamond for three
states (see Fig. 4.3) obtained with QDET, the PBE functional and 511-atom supercells. We
show results using the Hartree-Fock double counting (HFDC) and exact double counting
(EDC@G0W0) schemes (see text). We also report experimental results (Exp), including
results for zero-phonon lines (ZPL), and results obtained using GW and the Bethe-Salpeter
Equation (BSE), model fit from GW solved by configuration interaction (CI), model obtained
from constrained random phase approximation (cRPA) solved by CI, and quantum chemistry
results on clusters from complete active space self-consistent field (CASSCF), multireference
configuration interaction (MRCI) and Monte Carlo configuration interaction (MCCI).

Reference\Electronic States 1E 1A1
3E

Exp [60] 2.18
Exp ZPL[60, 246, 148, 93, 92] 0.34–0.43 1.51–1.60 1.945
QDET (EDC@G0W0) 0.463 1.270 2.152
QDET (HFDC) 0.375 1.150 1.324
GW + BSE [189] 0.40 0.99 2.32
Model fit from GW + CI [49] 0.5 1.5 2.1
Model from CRPA + CI [25] 0.49 1.41 2.02
C85H76N

– CASSCF(6,6)[22] 0.25 1.60 2.14
C49H52N

– CASSCF(6,8)[175] 2.57
C19H28N

– MRCI(8,10)[349] 0.50 1.23 1.36
C42H42N

– MCCI [63] 0.63 2.06 1.96

4.4.3 Neutral group-IV vacancy centers in diamond

In the last decade, a number of studies have investigated group-IV vacancy centers in

diamond [78, 295, 102, 296, 344, 185, 187], using either a four-orbital [296] or a nine-orbital

minimal model[187].

Similar to the case of the NV– in diamond, we determine the active space using the

localization factor shown in Fig. 4.6. We find a considerable number of localized orbitals.

We exclude from the active space the localized conduction band orbitals, which are around 5

eV in SiV0, since we found their contribution to the excitation energies to be negligible. We

also exclude the defect atom’s strongly-bound atomic orbitals, present at about -20 eV in

GeV0, SnV0 and PbV0, which have almost no hybridization with the host orbitals.

The vertical excitation energies of SiV0 as a function of the localization threshold is

reported in Fig. 4.7. In all three supercells we find a slow convergence of the excitation
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Figure 4.4: Localization factor (LV , see Eq. 4.30) as a function of the energy of the
Kohn-Sham orbitals, relative to the energy of the valence band maximum (VBM), for a NV–

center in diamond. We present results for 215-atom cell obtained with the PBE and DDH
functionals. The threshold used to define the active space is 5% (see text).

energies, indicating that the excited states of this system are the result of the combination

of many single-particle orbitals, and that a minimal model may be insufficient to obtain

reliable excitation energies. Using the converged excitation energies for a given supercell,

we show the convergence with supercell size in Fig. 4.8. Similar to the case of the NV–

center, the low-energy excitations are well converged with a 63-atom supercell, while the

convergence of the 3A2u, 3Eu, 1A1u, and 3A1u states is slower. In Tab. 4.2, we compare our

best converged values obtained with the EDC@G0W0 correction with those obtained with

the HFDC correction, as well as with available experimental and theoretical data. In general,

the energies predicted using EDC@G0W0 are higher than those obtained with HFDC, and in

better agreement with those of quantum chemical cluster calculations [207]. We note that

the experimental zero phonon line (ZPL) corresponding to the 3Eu level is 1.31 eV, but the

contribution from the dynamical Jahn-Teller effect is unknown. Furthermore, the excitation

energies computed with EDC@G0W0 show faster convergence compared to those with HFDC.
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Figure 4.5: Computed vertical excitation energies of the NV– center in diamond as a function
of the chosen threshold of the localization factor LV (see Eq. 4.30) to define the active space.
States are labeled using the irreducible representation of the C3v point group. We present
results for 215-atom cell obtained with the PBE and DDH functionals. We note that 80%
threshold corresponds to a (3o, 4e) active space, and 5% threshold corresponds to a (14o,
26e) or (15o, 28e) active space for PBE or DDH respectively.

For example, using EDC@G0W0 (HFDC) we find a difference of 0.15 (0.65) eV with 63-atom

and 215-atom cells. As shown in Figs. 4.9 and 4.10, our results with the EDC@G0W0 scheme

showed insensitivity to the choice of the functional. Our results for GeV0, SnV0 and PbV0

are similar to those of SiV0 and are summarized in Tab. 4.2.

4.5 Conclusion

In summary, in this work we presented a Green’s function formulation of the quantum defect

embedding theory (QDET) that enables the definition of an improved correction to the double

counting scheme originally adopted in Refs 185, 188. We defined an effective Hamiltonian for

the active space within a Green’s function formalism, where the effective interaction is static

and the self-energy cross-terms between the active space and the environment are neglected.

Our results show that these approximations are appropriate to describe the localized defect
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Figure 4.6: Localization factor (LV , see Eq. 4.30) as a function of the energy of the
Kohn-Sham orbitals, relative to the energy of the valence band maximum (VBM), for a SiV0

center in diamond. We present results for supercells of three different sizes. The threshold
used to define the active space is 5% (see text).

states in semiconductors investigated in this work. Within the Green’s function formalism

adopted here, we derived an exact double counting scheme (EDC@G0W0) replacing the

approximate scheme originally adopted in Refs 185, 188. We emphasize that the double

counting correction EDC@G0W0 enables the removal of any double counting terms arising

from the separation of the whole system into active space and environment. We then described

the implementation of the scheme within the WEST code [99], including a strategy to ensure

convergence of our calculations with respect to the size and composition of the active space.

Further, we demonstrated that QDET with exact double counting provides reliable results

for several defects in diamond, with negligible dependence on the functional chosen for the

underlying DFT calculations of the defects. Work is in progress to apply QDET with the
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Figure 4.7: Computed vertical excitation energies of the SiV0 center in diamond as a function
of the chosen threshold of the localization factor LV (see Eq. 4.30) to define the active space.
States are labeled using the irreducible representation of the D3d point group. We present
results obtained with the PBE functional for cells of three different sizes. We note that a
40%, 50% or 30% threshold corresponds to a (7o, 12e), (5o, 8e) or (9o, 16e) active space for a
63-, 215- or 511-atom supercell respectively, and 5% threshold corresponds to a (32o, 62e),
(40o, 78e) or (48o, 94e) active space for a 63-, 215- or 511-atom supercell respectively.
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Figure 4.8: Computed vertical excitation energies for the SiV0 in diamond. We show
converged results (see Fig. 4.2) at 5% localization threshold, as a function of the supercell
size, obtained with the PBE functional.

EDC@G0W0 scheme to more complex systems, such as defects in oxides and molecules on

surfaces.
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Table 4.2: Computed vertical excitation energies (eV) for the SiV0, GeV0, SnV0 and PbV0 in
diamond for six states (see also Fig. 4.8 for the SiV0 results) obtained with QDET, the PBE
functional and 511-atom supercells. We show results using the Hartree-Fock double counting
(HFDC) and exact double counting (EDC@G0W0) schemes (see text). We also report
experimental results for zero-phonon lines (ZPL), and results obtained with a combination of
second-order N -electron valence state perturbation theory (NEVPT2) and density matrix
embedding theory (DMET), and quantum chemistry calculations on clusters from NEVPT2.

System Reference\Electronic States 1Eg
1A1g

3A2u
3Eu

1A1u
3A1u

SiV0

Exp ZPL 1.31
QDET (EDC@G0W0) 0.321 0.642 2.146 2.161 2.183 2.260
QDET (HFDC) 0.236 0.435 1.098 1.096 1.111 1.188
NEVPT2-DMET(10,12)[207] 0.51 1.14 2.39 2.47 2.61
C84H78Si0 NEVPT2(10,12)[207] 0.54 1.10 2.10 2.16 2.14

GeV0 QDET (EDC@G0W0) 0.357 0.717 2.924 2.925 2.940 2.970
QDET (HFDC) 0.289 0.554 1.456 1.443 1.443 1.495

SnV0 QDET (EDC@G0W0) 0.295 0.596 2.590 2.571 2.561 2.616
QDET (HFDC) 0.276 0.551 1.459 1.444 1.436 1.491

PbV0 QDET (EDC@G0W0) 0.319 0.640 3.095 3.072 3.056 3.099
QDET (HFDC) 0.302 0.600 1.788 1.768 1.755 1.796
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Figure 4.9: Localization factor (LV , see Eq. 4.30) as a function of the energy of the
Kohn-Sham orbitals, relative to the energy of the valence band maximum (VBM), for a SiV0

center in diamond. We present results for a 215-atom cell obtained with the PBE and DDH
functionals. The threshold used to define the active space is 5% (see text).
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Figure 4.10: Computed vertical excitation energies (eV) of the NV– center in diamond as
a function of the chosen threshold of the localization factor LV (see Eq. 4.30). States are
labeled using the irreducible representation of the D3d point group. We present results for a
215-atom cell obtained with the PBE and DDH functionals.
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CHAPTER 5

CONCLUSION AND OUTLOOK

In this thesis I discussed three different approaches to understanding quantum many-body

systems.

In the first approach, I develop two novel multiscale initialization methods top-down and

bottom-up, following the spirit of multigrid method and mean-field theory respectively, to

solve large-scale eigenvalue problems. I test the algorithm using 1D periodic transverse-field

Ising model and high-dimensional Fokker-Planck equations. The results demonstrates good

accuracy and advantage of the algorithms compared to density-matrix renormalization group.

The algorithms are promising for solving high-dimensional partial differential equations and

2D/3D quantum systems and these would be future works.

In the second approach, I apply a newly developed low-rank Green’s function represen-

tation, i.e. the discrete Lehmann representation (DLR), to dynamical mean-field theory

(DMFT), which is a key theory understanding properties of strongly correlated materials.

With the low-rank representation, we reduce two orders of magnitude of the number of

frequency points in the whole DMFT loop and thus allowing great acceleration. Since DLR

is a general representation for all finite-temperature Green’s function theories, in the future I

plan to apply the method to other methods such as finite-temperature GW method.

In the third approach, I develop a new quantum embedding framework, called quantum

defect embedding theory (QDET), to study strongly correlated electronic states in materi-

als. The embedding is theoretically equivalent to GW+DMFTΓ but focusing on different

applications. Prototypical systems include spin defects in materials, heterogeneous center in

liquids, molecules on surface etc. We test the applicability of the method using a few spin

qubit candidates. The results show good comparison to experimental data, indicating good

accuracy and excellent convergence of the method. The effects of frequency-dependent effects

can possibly be studied for QDET.
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