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“Oh, she says, well, you’re not a poor man. You know, why don’t you go online and buy a

hundred envelopes and put them in the closet? And so I pretend not to hear her. And go

out to get an envelope because I’m going to have a hell of a good time in the process of

buying one envelope. I meet a lot of people. And see some great looking babies. And a fire

engine goes by. And I give them the thumbs up. And I’ll ask a woman what kind of dog

that is. And, and I don’t know. The moral of the story is - we’re here on Earth to fart

around. And, of course, the computers will do us out of that. And what the computer

people don’t realize, or they don’t care, is we’re dancing animals. You know, we love to

move around. And it’s like we’re not supposed to dance at all anymore." — Kurt Vonnegut
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ABSTRACT

Suspensions are mixtures of solid particles in a liquid medium. As the volume fraction of the

suspending particles approaches the maximal jamming packing fraction, ϕJ , the material

properties of these seemingly simple systems can exhibit discontinuous shear thickening

(DST) where the viscosity increases discontinuously with shear rate, and even transition to a

solid in a process known as shear jamming (SJ). Despite being simple and ubiquitous systems,

many open questions in suspension science remain. Among them are the following questions:

how do nanoscale and chemical features of the suspended particles and suspending media

impact the bulk flow and solidification behavior, how do rigid frictional force networks inside

suspension flow impact dissipation, and how do suspended particles with similar chemical

characteristic but different morphological characteristics differ in their non-Newtonian flow

behavior. This work touches on all three of those questions and finds new solvent chemical

knobs to tune shear thickening and shear jamming, new phases of suspension flow where

solid structures are embedded in flowing systems, and similarities and differences between

different starch suspensions. This dissertation provides fundamental insights into how to

control dense suspension systems using the chemistry of the suspending solvent, understand

new dissipation mechanisms beyond interparticle forces, and insights into how different starch

systems can show dramatically different rheological responses.
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CHAPTER 1

INTRODUCTION

Dense suspensions are simple mixtures of solid particles suspended in a liquid and this

simplicity makes them ubiquitous in natural processes that span a massive range of length

scales from debris flow to blood flow in addition to being indispensable in industrial processes

and products, such as slurry processing or paints. Their material properties can be either

liquid-like or solid-like with the operative variables to tune between the two states being

the volume fraction of suspended particles and the applied stress (5; 6; 7). In the liquid

phase they can show non-Newtonian properties such as shear thickening, where the viscosity

of the material increases with applied stress. At sufficiently high volume fractions and

stresses the flow arrests and the material transitions into a solid phase that, depending on

the morphology, chemistry, and size of suspended particles, can have a range of material

properties (2; 8; 9; 10; 11). Despite this ubiquity, it is only in the last decade that physicists

have begun bringing these materials into the fold of condensed matter physics by rigorously

characterizing their properties and various phases.

These advances were enabled by establishing a model system of monodisperse or bidis-

perse hard-sphere suspensions that allowed experimentalists and theorists to develop a base-

line for the underlying physics(12; 13; 14; 1; 15; 16; 17). In turn, this has only enabled more

lines of inquiry that connect suspension physics to chemistry, statistical physics, material

science, among other fields. In this thesis, we will will investigate the connections between

suspension flow and nano-scale tribology, rigidity theory, and how suspension flows connect

to everday materials. Before delving into those connections we first have to establish the

phenomenology of suspension physics as well as a chapter about how experiments are con-

ducted. My hope is that this document will serve not only as a culmination of my findings

on suspension flow, but also as a useful document for future researchers who wish to learn

how to do dense suspension experiments.
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1.1 Shear Thickening and Shear Jamming Suspensions

As mentioned in the introduction, suspensions are solid particles suspended in a liquid

medium. For this work we consider a liquid medium that is a Newtonian liquid, meaning its

viscosity is not a function of shear rate. By suspending solid particles in a Newtonian liquid

one often gets another fluid that is non-Newtonian with a wide range of responses to shear

rate such as shear thickening, shear jamming, shear thinning, thixotropy, anti-thixotropy,

etc (18; 19; 9). We will only consider suspensions that show shear thickening (ST) where the

viscosity of the fluid increases with shear rate and shear jamming (SJ) where the suspension

solidifies under applied stress. Examples of a shear thickening response measured using a

rheometer are shown in Fig. 1.1, while an example of shear jamming response is shown in

two different cornstarch suspensions that have solidified under extensional stresses Fig 1.2a

and under impact in Fig 1.2b. Both ST and SJ can be found in granular suspensions where

the diameter roughly exceeds 1um, rendering Brownian motion negligible, and colloidal dis-

persions where the diameter is less than 1um and Brownian motion is important(12).

1.1.1 Packing fraction ϕ

For an example of shear thickening we plot the viscosity vs shear stress for fumed silica

suspensions of various volume fractions in Fig. 1.1a and we plot the same data as a function

of shear rate in Fig. 1.1b. Higher packing fraction ϕ give a stronger shear thickening response

as measured by the slope (β) of the curves when undergoing shear thickening when the

viscotiy η is plotted as a function of shear stress τ . Here the packing fraction, ϕ, is defined

as the ratio of volume of solid particles to the total volume:

ϕ =
VP

VP + VS
(1.1)
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where VP is the volume of the particles and VS is the volume of the suspending medium.

Preparing suspensions with precise packing fractions and best practices for measuring data

like that in Fig. 1.1 is the subject of Chapter 2. There are two types of shear thickening

shown in Fig. 1.1. The first is continuous shear thickening (CST) which is echibited by

the lowest packing fraction, ϕ = 27.1, where in Fig. 1.1b the viscosity of this suspension

increases continuously with shear rate. The highest packing fraction ϕ = 33.2 shows discon-

tinuous shear thickening (DST) in Fig. 1.1b, where the viscosity increases discontinuously

as a function of shear rate. These same suspensions can also show shear jamming (SJ) at

higher stresses which are accessible by doing impact testing which is discussed in Chapter

3. Shear thickening suspensions often show shear jamming if prepared at higher packing

fractions or stresses. Where these transitions occur in ϕ-τ phase space is the subject of the

last two sections of this chapter.

1.1.2 Frictional Contacts and Shear Thickening and Shear Jamming

Strong shear thickening, like the DST shown in Fig. 1.1, and shear jamming, have their

origins in networks of suspended particles interacting frictionally (15; 12; 10; 20; 21). These

networks of frictional contacts can be visualized in simulations as in Fig. 1.3, by red lines

that connect particles where the width of the line indicates the strength of this frictional

interaction. In the case of shear thickening the viscosity increase is primarily due to the

continual formation and destruction of these force chains, where in shear jammed materials

these force chains arrest into an anisotropic load bearing configuration.

Only in the last decade has the insight that frictional force chains are chiefly responsible

for DST and SJ emerged with new insights that have grown up around it. I will highlight

three here but this is far from an exhaustive list. Researchers have modulated the bulk ST and

SJ responses by tuning the frictional interactions engineered at the nanoscale properties of

the suspended particles to have a greater propensity to interact chemically or sterically(1; 22).
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Figure 1.1: Steady state rheometry data from suspensions of Aerosil OX-50 particles in
polyethylene glycol 200 (PEG200). Reduced viscosity is plotted as a function of shear stress
τ in (a) and as a function of shear rate γ̇ (b). The black line in (a) has a slope of 1 indicating
that the flow curve corresponding to a packing fraction ϕv = .332 is undergoing discontinuous
shear thickening (DST), as confirmed by the same curve plotted as a function of shear rate
in (b).
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Figure 1.2: Two examples of shear jammed solids showing material failure under applied load.
(a) Is an example of a cornstarch suspension undergoing extensional stresses and fracturing
into two separate pieces. Picture taken from (1). (b) Example of cornstarch suspension
being impaled by a falling rod which drives shear jamming and eventually showing brittle
fracture with radial crack patterns. Picture taken from (2) .

Figure 1.3: Representative snapshot of a simulated 2D dense suspension flow with bidisperse
particles in periodic boundary at an area fraction of ϕ = 0.78 and a normalized imposed
stress of τ

τ∗ = 100. Red lines are frictional forces, blue lines are hydrodynamic lubrication
forces, grey lines are purely repulsive forces with the width of each line indicating the strength
of the interaction. For more information about this simulation see chapter 4.
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High stress regions have have been discovered in suspensions undergoing shear thickening

using boundary stress measurements that suggest localized transient jamming events (23).

Lastly, shear jammed suspensions have been shown to not only solidify under stress but also

show different types of solid-like material failure, indicating the yielding of the underlying

frictional network (2; 1).

1.2 Phase Behavior of Suspensions

One combination of particles and suspending medium can show CST, DST, and SJ all by

tuning either the packing fraction, the stress applied, or both. Producing a steady state phase

diagram of this behavior has been done experimentally, computationally, and theoretically

and this section will briefly go over each. It should be emphasized that these phase diagrams

are for the steady-state behavior of suspensions and this ignores transient phenomena such

as start up flows or relaxation dynamics.

1.2.1 Phase Boundaries Measured Experimentally or Computationally

Measuring the phase boundaries between CST, DST, and SJ can be done by preparing a range

of volume fractions ϕ for a single suspension system and then measuring every suspension

for a range of stresses τ. This sounds simple enough but measurements between the DST

and SJ states are difficult as the suspension is transitioning from an incredibly viscous liquid

to a solid. Rheometers, the instruments typically used to measure the viscosity of materials,

are ill-equipped to study this transition. This is because as the suspension transitions into a

solid-state it often does it heterogeneously and will eject from the instrument before the full

sample has solidified. One study exists that exhaustively measures this boundary between

CST, DST, and SJ. It used a couette cell to overcome the difficulties with ejection and the

phase diagram measured from that work is recreated in Fig 1.5a. These phase boundaries

are often measured in computational systems where it is straightforward to measure CST,
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Figure 1.4: Phase diagrams for experimental data from Peters et al. (3) and simulation data
taken from Singh et al. (4) (a) Dense suspension phase diagram plotting volume fraction
against shear stress for cornstarch particles suspended in a density matched solvent of water
and glycerol with cesium chloride dissolved. Phases were determined by a combination of
couette cell rheology and particle image velocimetry of the top flows. Red region is where
DST was measured, green region is where SJ was measured, data with no color showed
CST, and grey region is any volume fraction beyond the jamming point for this system.
For more information, including the meaning of the different symbol types, please refer to.
(b) Dense suspension phase diagram for simulated data with dimensionless stress on the y-
axis and packing fraction on the x-axis. CST flows are all points outside of the DST and SJ
region. DST1 corresponds to DST flows that transition to a liquid at high stresss while DST2
corresponds to DST flows that transition to SJ solid at high stresses. For more information
on the meaning of points and how the solid lines are derived see(4) .

DST, and with some computing power SJ systems as well. An example of a resulting phase

diagram from simulations that is then compared with a model phase diagram from the next

section is presented in Fig 1.5. Both plots in Fig 1.5 have the same structure which is

that there is a region at low stresses and packing fractions that show CST or Newtonian

flows, followed by a region that shows DST at higher stresses and packing fractions, and

culminating in either shear jammed or jammed states at the highest packing fractions and

stresses.
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1.2.2 Extracting Phase Boundaries from Wyart-Cates Models

Measuring the phase boundary between DST and SJ either computationally or experimen-

tally, as in the last section, can be incredibly challenging. In simulations the calculations

required to evolve the equations of motion near the SJ phase boundary become prohibitively

long and measuring the divergence of viscosity and seeing the arrest of the flow experimen-

tally is difficult as ejection from the rheometer and heterogeneous stress profiles leads to

pockets of solidified and liquified suspension throughout the sample. This motivates an-

other way of determining the phase boundary, with a popular method being to use theory

to extrapolate this boundary from simulations or measurements at lower packing fractions

and shear stresses. To do this one needs to first measure the shear thickening response of a

suspension system over a range of packing fractions and stresses, as in Fig. 1.1. Then this

data is fit to a model, the most common being the Wyart-Cates model (24), and then the

fit parameters are used to extract the phase boundaries.

I define a Wyart-Cates’ like model as any model of the viscosity of a suspension, η, as a

function of volume fraction ϕ and imposed stress τ that has the following form:

η(τ, ϕ) = η0(1−
ϕ

ϕJ (τ)
)−α, (1.2)

where η0 is the viscosity of the suspending medium, ϕJ (τ) is a stress dependent jamming

packing fraction, and β is a fit parameter that is usually equal to α = 2. In Wyart-Cates’

original publication they used ϕJ (τ) = (1 − f(τ))ϕSJ + f(τ)ϕ0 where ϕ0 is the frictionless

jamming packing fraction, ϕSJ is the shear jamming packing fraction, and f(τ) is the fraction

of frictional contacts as a function of stress(24). f(τ) is usually taken to be a smooth function

that satisfies f(0) = 0 (no frictional contacts when the stress is zero) and f(∞) = 1 (maximal
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frictional contacts at high stress). Often the function

f(τ) = exp((
τ∗

τ
)κ), (1.3)

is used, where τ∗ is some stress-scale and κ is a fit parameter. Finally, ϕ0 is the frictionless

jamming packing fraction and ϕSJ is the minimum packing fraction where one can measure

SJ.

Measuring η(τ, ϕ) for a single suspension system entails measuring the viscosity of mul-

tiple suspensions of different ϕ over some range of stress τ , after which one can fit the

Wyart-Cates form of η(τ, ϕ) using one’s favorite fitting method. This will yield as many as

five fit parameters β, ϕ0, ϕSJ , τ∗, and κ although typically α = 2, κ = 1, and ϕ0, ϕSJ can

be measured by other mean leaving as little as one fit parameter (τ∗) in η(τ, ϕ). Once all the

parameters are measured one can extract the phase boundary for both where DST begins

and where SJ begins. To do this one imposes the condition dη
dγ̇ = ∞ and solves for ϕ(τ) for

the DST boundary and imposes η = ∞ for the SJ boundary. This is done in the appendix

A but the result for a general Wyart-Cates model as defined above is given by:

ϕDST (τ) =
ϕ2J (τ)

ϕJ (τ)− ατϕ′J (τ)
(1.4)

and

ϕSJ (τ) = ϕJ (τ). (1.5)

for the DST and SJ boundaries, respectively. If we use ϕ0 = 0.85, ϕSJ = 0.795, τ∗ = 1.5Pa,

α = 2, and κ = 1 we get Fig. 1.5 where ϕSJ (τ) is the green line and ϕDST (τ) is the dashed

purple line. The purple region is where the model predicts one would measure DST, the

green region is where SJ occurs, and the grey region is where isotropic jamming happens

as those are where the packing fractions exceed the frictionless jamming packing fraction,

ϕ > ϕ0. These models have been done a reasonable job of fitting experimental data and a

9



Figure 1.5: Phase diagram from a Wyart-Cates model that uses ϕJ (τ) = (1 − f(τ))ϕSJ +

f(τ)ϕ0 with f(τ) = exp((τ
∗
τ )κ). For model parameters I used ϕ0 = 0.85, ϕSJ = 0.795,

τ∗ = 1.5Pa, α = 2, and κ = 1. ϕDST (τ) is shown in the dashed purple line and ϕSJ (τ) is
the solid green line.

better job of fitting data from simulation.

1.3 Thesis Overview

I have organized this thesis so that it begins with how I performed the experiments that I

did during my PhD and then the following chapters are the research that I performed. In the

next chapter I describe how to prepare suspensions in detail as well as how to decide which

rheometer geometry is the best to use for a particular experiment. Chapter Three is based

on the paper I published in my third year in Soft Matter titled "The role of solvent molecular

weight in shear thickening and shear jamming". This paper outlines how solvation forces can

be used to tune both the shear thickening and shear jamming response of a system of fumed

silica suspensions. Chapter 4 is based on a paper that has just been accepted into Nature
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Physics, titled "Minimally Rigid Clusters in Dense Suspension Flow", where I use a rigidity

metric originally used in dry granular matter to establish a new region of dense suspension

phase space. Chapter 5 is the last chapter of research and is unpublished work that pertains

to the rheology of suspensions of different starch suspensions. I use rheology and modeling

to estimate the phase behavior of potato starch, cornstarch, and wheat starch suspensions.

Finally, I conclude and summarize follow by an outlook on the field of suspension science

generally. Additionally, the chapters 3, 4, and 5 have corresponding appendices A, B, and

C, respectively.
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CHAPTER 2

SHEAR RHEOLOGY EXPERIMENTS

2.1 Introduction

This chapter provides information on how to both prepare and measure dense suspensions,

as well as common pitfalls to avoid. For this chapter to be most useful I strongly recom-

mend getting trained on a rheometer and doing some simple measurements. Another great

resource for getting started when measuring dense suspensions the chapter titled "Experi-

mental challenges of shear rheology: how to avoid bad data" in the book "Complex Fluids in

Biological Systems" or watch Randy Ewoldt’s Youtube video where he goes over the salient

points(25). Additionally, Macosko’s book on rheology is an indispensable resource for anyone

doing any rheology measurements (26). At the time of this writing there is only one edition

but I have heard a rumor that Christopher Macoscko, Gareth McKinley, and Randy Ewoldt

are currently writing edition 2.

2.2 Sample Preparation

Before measuring anything in a rheometer it is important to first make sure the sample is

worth measuring, This seemingly simple task of mixing solid particles into a suspending

solvent can range from an incredibly easy and taking only a couple of minutes to a difficult

multi-day endeavor. Suspensions that are not well mixed will show thixotropy (viscosity

changes with shear history) as measuring them further disperses the particles, changing the

sample viscosity. Some mixtures of particles and solvent will never form suspensions; an

instructive example is to imagine "sticky" hydrophobic particles in water. In that system,

the particles will always have a greater affinity for each other than the solvent and therefore

will aggregate. Provided that the combination of particles and solvent will form a suspension,

this section contains strategies for how to fully disperse those particles in the solvent and
12



determining if the particles are well dispersed. This section is split into the preparation

of suspensions with "larger" particles (≳ 1um) and the preparation of suspensions with

"small" particles (≲ 1um); this distinction is necessary as preparation of the first is relatively

straightforward while the latter is much more difficult.

It is important to have a good scale when preparing dense suspensions as the relative

amount of suspending particles to solvent, measured as a mass fraction, ϕm, or more com-

monly as a volume fraction, ϕv, is one of the most important quantities determining rhe-

ological behavior. More accurate scales allow for greater precision when determining ϕm

and ϕv. This precision becomes most important when working with suspensions near their

jamming packing fractions, ϕJ , as near this volume fraction the viscosity begins to diverge.

To determine what precision is required, it is useful to calculate the error in ϕv or ϕm. For

example, ϕv is given by:

ϕv =
VP

VP + VS
, (2.1)

where VP is the volume of particles and VS is the volume of the solvent. Usually, neither

of these quantities are known directly but what is known is the densities of the solvent and

suspended particles as well as their relative masses so it is possible to calculate ϕv as

ϕv =
VP

VP + VS
=

ρP
mP

ρP
mP

+ ρS
mS

, (2.2)

where ρP and ρS are the densities of the particles and solvents, respectively, and mP and

mS are the masses of the particles and solvents, respectively. With ϕV being function of the

densities and masses we can now propagate the error in those measured quantities to get the

error for the packing fraction, δϕV , assuming that there are no correlations between any of

the measured quantities this will be given by

δϕV =

√
δρ2P (

∂ϕV
∂ρP

)2 + δρ2S(
∂ϕV
∂ρS

)2 + δm2
P (

∂ϕV
∂mP

)2 + δm2
s(
∂ϕV
∂ms

)2, (2.3)
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where δρP and δρS are the uncertainties in the densities of the particles and solvents, re-

spectively, and mP and mS are the uncertainties in the masses of the particles and solvents,

respectively. It is easy to make mistakes when calculating δϕV by hand so it is recommend

to do this calculation in Mathematica. Doing this computationally also allows for easily

tuning the values of ρP , ρS , mP , mS , and their respective uncertainties to find the value of

δϕV , the precision in ϕV , that is required.

There are a couple of useful tools when making suspensions besides the obvious scale

and mixing spatula. This section assumes that preparation of approximately milliliters of

suspension, for larger samples some of these methods are going to be altered. The first tool

is a sonicator, preferably one that can run indefinitely it does not have to be continually

turned back on. Keeping samples in a sonicator is a good passive way to mix samples. The

second is a centrifuge, which is useful for separating particles and solvent but also for early

stages of mixing nanoparticle suspensions which will be explained later. Finally, if working

with easily aersolized powders then working is a fume hood is required.

Lastly, I want to caution against two tools that might seem useful in preparing suspensions

but are either too effective or ineffective. First and foremost is a tip sonicator, which works

by putting a piece of metal into a sample and then driving it at ultrasonic frequencies. These

are not for mixing, but instead for destruction. They have been observed to fuse together

iron particles that are in suspension and destroy suspended carbon nanotubes. If it can

shatter a carbon nanotube, it can likely irreparably damage suspending particles or degrade

solvent. The last tool I will caution against are roll mixers or any large amplitude mixer.

These work well if mixing large samples of suspension or if the suspending solvent viscosity

is very low. But for small samples in viscous suspending solvents I have found that time in

a sonicator is much more effective.
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2.2.1 Large Particle Suspensions (≳ 1um)

Suspensions of large particles such as cornstarch suspended in water or large silica parti-

cles (1um <) in glycerol are very easy to prepare. It is so easy that oobleck (suspensions

of cornstarch and water) is a common physics demo for kids of all ages as the directions

for preparing it is to simply mix cornstarch and water until there is no visible dry pow-

der remaining. While these simple directions give qualitatively reproducible results for a

physics demos, it can be difficult to get quantitively reproducible rheology from cornstarch

suspensions without some care. These difficulties stem from cornstarch particles ageing in

almost all solvents as the particles slowly adsorp solvent which slowly inflates the particles

and increases the packing fraction. Additionally there is a decent variation in polydispersity

and mean particle size from batch to batch of cornstarch particles, even when buying from

laboratory suppliers such as Sigma-Aldrich. These two facts mean that to fairly compare

rheology between two cornstarch suspensions one should 1. adhere to a strict preparation

protocol so that the two suspensions have aged approximately the same amount and 2. use

particles come from the same batch of cornstarch.

In addition to particle swelling, which can occur in nanoparticle suspensions as well, a

unique difficulty of measuring large particle suspensions is that they sediment over long time

scales. We can estimate this timescale given the density of the particle ρr, the radius of the

particle Rp, the density of the fluid ρf , the fluids viscosity η0 one can calculate the terminal

sedimentation velocity of the particle vT =
2(ρp−ρf )gR

2
p

9η0
. Assuming our particle attains this

speed immediately and that it needs to sediment a length L before reaching the bottom of

the container our sedimentation timescale becomes:

tsediment =
9η0L

2(ρr − ρf )gR
2
p
. (2.4)

Ultimately we need this timescale to be much greater than the timescale of our rheology
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experiment and so it is best to try to maximize this timescale.

Looking at the equation for tsediment, the most obvious strategy to maximize tsediment is

is to density match the particles and fluid ρp ≈ ρf . This is possible for suspensions of starch

particles in water by dissolving salts, such as cesium chloride, to increase the density of the

water. But for silica particles with a density of ρ ≈ 1.8 g
cc it becomes much more difficult to

find liquids that have these densities. For silica particles or other dense particles we can use

very viscous solvents so that η0 is maximal, such as glycerol. Finally, working with smaller

particles drastically increases tsediment.

2.2.2 Small Particle Suspensions (≲ 1um)

Nanoparticle suspensions are often substantially harder to disperse than larger particle sus-

pensions. Typically requiring tens of minutes of manual mixing followed by hours and some-

times days of sonication and further manual mixing. For concreteness,in this subsection I

will outline how I mix suspensions of fumed silica into polar solvents, such as ethylene glycol

(EG) or some polymer of EG, at high concentrations (mass fractions exceeding 50 percent)

of fumed silica. This is an instructive system because it is by far the most difficult system

to mix that I encountered during my PhD.

I would begin by massing out the desired proportion of fumed silica and EG into a vial

that is contained inside of fume hood, as fumed silica is an annihilation hazard. I would

then use a small spatula to combine the dry powder and the solvent as best as possible

by stirring the vial while holding it under the fume hood. Once all the dry powder has

been incorporated, the suspension will be a very stiff gel and will be more solid than liquid.

Continue mixing until the opaque gel melts into a clear liquid, this process can take upwards

of 20 minutes and like kneading dough to make bread, it can be useful to set a timer. While

mixing the gel it will occasionally get coated onto the walls of the vial making mixing difficult,

when this happens I would put the vial in a centrifuge for less than a minute to collect the
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gel at the bottom of the vial.

Once the gel has been mixed into a viscous liquid I would begin to measure the suspension

to determine if it is well mixed. This consists of cycling between measuring the suspensions

viscosity then mixing it further and measuring it again to see if the viscosity has changed after

further mixing. Once reaching a state where the viscosity measurements do not change with

further mixing, I would consider the suspension well mixed. For the fumed silica suspension

that I was referring I would typically measure the viscosity of the suspension with a forward

and backward stress ramp using a parallel plate geometry followed my manual mixing of the

suspension and three or four hours of sonication before measuring again. This is a general

strategy to determine if a suspension is well mixed, the viscosity measurement should be

reproducible after further mixing. In particular, as the suspension becomes further mixed

the viscosity should decrease as the aggregation of particles breaks down the and particles

become suspended. As the material is further mixed the onset stress for shear thickening

increases as the particle size is decreasing and the onset stress for shear thickening scales as

τ0 ∼ F0
a2

, where F0 is a repulsive force at particle-particle contact and the a is the radii of

the two particles.

If the materials viscosity does not go down after further mixing or does not show shear

thickening at all it is possible that the suspension has flocculated and/or that the suspen-

sion is thixotropic or antithixotropic. A flocculated suspension is typically one where the

particle-particle interaction exceeds that of the particle-solvent to the point that it is impos-

sible to suspend the particles in the solvent as the particles instead aggregate. Thixotropic

or antithixotropic suspensions have a viscosity that depends on the shear history of the sus-

pension and therefore one should apply a pre-shear to the suspension before measuring to

standardize the shear history between samples.
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2.3 Measurement Geometry

The first choice when using any rheometer is what measurement geometry one uses. The

most commonly used for measuring dense suspensions are parallel plate, cone and plate, and

concentric cylinders, as shown in Fig. 2.1. These geometries all have their pros and cons

which I will go over below, but all fundamentally work in the same way by measuring a

torque M and an angular rotation rate ω̇ and converting them into a shear stress τ and

a shear rate γ̇. This allows for a measurement of the shear viscosity η = τ
γ̇ . Both the

equations themselves and their derivations can be found Macosko’s book on rheology (26)

and taking a look at the equations before using a particular geometry is generally a good

idea. By understanding how to derive these equations one will understand the limitations

of the rheometer by seeing the assumptions that are required for calculating the shear rates

and shear stresses in each geometry. Before going into detail on the pros and cons of the

three most common measurement geometries, I will go over some relevant information for

every geometry.

All of the three geometries shown in Fig. 2.1 work by placing a material in a gap between

a moving and a fixed surface. Ordering of the suspeded particles near the fixed surface can

lead to irreproducible and incorrect results, so best practice is that the gap exceed ten times

to the size of the suspending particle. This is especially relevant when measuring larger

particle suspensions such as cornstarch where the particle size can be as large as 40um,

necessitating a gap of at least 0.4mm. Another potential artifact is wall slip, where the

fluid layer touching the moving surface moves at a speed slower than that of the moving

surface. In order to eliminate wallslip sandpaper can be bought with adhesive backing that

can be attached the the rheoemeter surface. This roughened surface will stop wall slip

and the data with the roughened rheometer surface can be compared to the data taken

with non-roughend surface and large mismatches can indicate wallslip is present. A final

artifact that is endemic to every geometry is either evaporation of the suspending solvent
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Figure 2.1: Most common rheometer geometries used when measuring dense suspensions
where the sample is depicted blue, components of the rheometer in grey, and relevant geom-
etry lengthscales labeled in red. (a) Parallel plate geometry. (b) Cone and plate geometry,
both θ and ht are exaggerated in this picture. Typically θ is between 1◦ and 2◦ while ht is
often around 50um (c) Concentric cylinders otherwise known as a Couette cell.

or adsorption of water vapor. Both lead to irreproducible results as the packing fraction of

the suspension increases with time. To avoid evaporation one can use non-volatile solvents

such polyethylene glycol or polyproplyene glycol or use temperature and humidity controls.

A common attachment for any geometry is a solvent trap that insulates samples from the

environment allowing for minimal evaporation. Avoiding solvent adsorption can be achieved

by either doing measurements much faster than the timescale of adsorption or working with

non-adsorbing particles such as as silica.

2.3.1 Parallel Plate Geometry

Parallel plate shear rheology, as depicted in Fig. 2.1a, consists of putting a sample between

two parallel plates of radius R with gap height h and then shearing the top or bottom plate

with shear rate γ̇ or shear stress τ .
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One convenience of the parallel plate geometry is that the experimentalist gets to choose

the measurement gap height h and it typically ranges from .1mm to 1mm. When measur-

ing any fluid in either a parallel plate or cone and plate rheometer one has to be careful

to avoid surface instabilities and eventual ejection at the free surface. These instabilities

form when the centrifugal force begins to approach the surface tension that confines the

suspension. To avoid these instabilities it is best to determine the minimum shear stress

at which these instabilities form by visually inspecting the free surface during an increasing

ramp of shear stress. The shear stress where the instability begins to form is where the data

from the rheometer becomes less reliable, as the boundary conditions assumed to derive our

expressions for shear stress and shear rate are no longer true. Empirically I have found that

decreasing the measurement gap height increases the stress where the instability occurs, so

minimizing the measurement gap height (while not going below 10 particle diameters) is

typically best practice when measuring high stresses. Both the parallel plate measurement

geometry and the cone and plate measurement geometry in the next section have the benefit

of using minimal sample and therefore are best for suspensions where the components are in

short supply.

2.3.2 Cone and Plate Geometry

Cone and plate shear rheology, as depicted in Figure Fig. 2.1b, consists of putting a sample

between two parallel plates of radius R with gap height h and then shearing the top plate

with shear rate γ̇ or shear stress τ . Unlike the parallel plate rheometer the gap height is

fixed to a relatively small height, for the tool in our lab it is mm. Since this gap is small and

non-negotiable this geometry is mainly used for nanoparticle suspensions where one can have

more than ten particles underneath the lowest level of the gap and thus avoiding the afore-

mentioned ordering near boundaries artifact. This fixed gap height can make measurements

difficult as the experimenter needs to guess how much suspension needs to be put on the
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bottom plate and if they underestimate they have to reload the sample and if they overesti-

mate they have to trim the excess sample off the boundary. Because of the applicability of

this geometry exclusively nanoparticle suspensions and the difficulty of these measurements

the cone and plate geometry is mainly used when one is interested in measuring the first

normal stress difference N1 = τ11 − τ22. This quantity is presently only accessible using

this measurement geometry and for suspensions it is conjectured that it is a measure of the

amount of frictional contacts in the system (27).

2.3.3 Concentric Cylinder Geometry

In the concentric cylinder geometry the sample fills a cup of radius Rout and a bob of radius

Rinner is lowered into the filled cup, as depicted in Figure Fig. 2.1c. This geometry requires

a sample volume that is orders of magnitude greater than the previous two geometries and

therefore is not often used for suspensions with custom synthesized particles that are usually

made in small batches. The main benefit of this geometry is that there is no free boundary for

the suspension to eject from and therefore out of the previous two geometries this is the best

geometry to measure shear jamming suspensions (9). Furthermore, as the gap between the

inner and outer cylinder is often on the order of a 1cm it is possible to measure suspensions

large particles without worrying about ordering near the walls. One of the main difficulties

in using this geometry is when lowering the inner cylinder into the suspension the normal

forces on the inner cylinder can be so large that they can damage the normal force sensor

of the tool. To avoid damaging the rheometer one must lower the tool into the suspension

very slowly to avoid the extensional shear thickening and/or shear jamming response. This

process can be sped up by occasionally turning the rheometer tool which lowers the normal

force on the tool. For dense starch suspensions it can take tens of minutes to submerge the

tool to the measurement height.
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CHAPTER 3

THE ROLE OF SOLVENT MOLECULAR WEIGHT IN SHEAR

THICKENING AND SHEAR JAMMING

3.1 Introduction

In this Chapter, we measure the rheology of fumed silica particles suspended in polyethylene

glycol (PEG) of various molecular weights (MW) in the olgermic limit. We find that increas-

ing the MW of the PEG induces stronger shear thickening and elicits shear jamming. We

propose a mechanism for this observed change in rheology by considering solvation forces

and how they inhibit the formation of frictional contacts. This leads to a simple way to

predict the rheology of a shear thickening suspension given knowledge of how the solvent

molecules and surface of the suspending particles interact chemically. These ideas are not

only validated by our rheological results but also supported by measurements found in the

literature from rheology, atomic force microscopy, and surface adsorption studies.

Over the past decade, simulations and experiments have shown that discontinuous shear

thickening (DST) and shear jamming (SJ) are macroscopic consequences of microscopic

stress-activated frictional contacts between particles which constrain their relative motion

(28; 4; 29; 21; 6; 11). Initially “lubricated" particle contacts are converted into “frictional"

contacts by the mechanical stress applied (14; 30). Increasing the applied stress increases

the fraction of frictional contacts and eventually generates “force chains" of particles that

underlie dramatic increases in viscosity and jamming behavior (7; 31; 20). Taking cues from

dry granular physics, much work has focused on factors that directly modify the frictional

. The research described in this chapter has been published in: van der Naald, M., Zhao, L., Jackson,
G. L., and Jaeger, H. M. The role of solvent molecular weight in shear thickening and shear jamming. Soft
Matter 17, 3144-3152 (2021).
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properties of surfaces such as changing the sliding friction (or rolling friction) coefficient

and related experimental studies which have investigated the effects of particle roughness,

size, aspect ratio, or surface chemistry (32; 1; 33; 34; 35; 36; 37; 38; 12). However, the

fundamental difference between dry granular media and a suspension is the presence of a

suspending liquid, the solvent, which wets and lubricates each particle. The transition to a

“frictional" particle contact thus necessarily involves displacement of the intervening solvent

and desolvation of the particle surface. As such, for a given solvent its chemical properties

such as molecular weight or pH are important and easily tunable parameters that can affect

the nature of frictional contacts between particles.(39)

Though the role of polymeric solvent molecular weight (MW) in strongly shear-thickening

(nearly DST) suspensions has been investigated in several prior studies, the outcome has not

been clear. Some of these studies found that increasing the MW diminishes shear thickening

(40; 41; 42), while others show that it enhances shear thickening instead (43; 44). Specifi-

cally, for glass or zirconium dioxide particles in silicone oil, Xu et al. found that increasing

the MW of the oil led to a smooth crossover from highly non-Newtonian, essentially DST

behavior to completely Newtonian flow (40). Conversely, studies by Raghavan et al., using

fumed silica in polypropylene glycol (PPG), showed that increasing the MW led to more pro-

nounced non-Newtonian behavior, from continuous shear thickening (CST) to nearly DST

(44). These findings indicate some of the complexity associated with the interactions be-

tween particle surfaces and the solvent molecules. To gain further insight, we here extend

earlier investigations in two ways. First, we focus on the limit of very small MW so that

we can track the evolution of suspension behavior as the solvent molecules are increased in

chain length from monomers to oligomers. Second, we extend the upper range of applied

shear stress in order to go beyond the DST regime and test how SJ is affected by changing

the solvent.

Our experiments use fumed silica particles suspended in polyethylene glycol (PEG). Com-
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pared to other materials often used in studies of shear thickening that are available in bulk

quantities, such as cornstarch, fumed silica has the advantage that DST can be observed at

very low packing fractions, due to the particles’ highly non-spherical shape. Fumed silica

also is non-porous and has a well-controlled surface chemistry. As solvents we use three

different molecules of similar chemical structure, but increasing number n of ethylene oxide

repeat units: ethylene glycol (EG, n = 1), PEG-200 (n ≈ 4), and PEG-400 (n ≈ 8). We

characterize the steady-state flow behavior of these fumed silica suspensions using a stress-

controlled rheometer in parallel plate geometry. At identical volume fractions, we observe

the least shear thickening in EG, followed by PEG-200, and the strongest shear thickening

in PEG-400. We use high-speed ultrasound imaging to visualize the transient flow fields

under impact. While we observe a localized flow field around the impactor typical of a

viscous, fluid-like response for EG suspensions, PEG-200 suspensions yield extended, highly

correlated motion indicative of a shear jammed solid. This result constitutes the first direct

observation of propagating jamming fronts associated with shear jamming in a fumed silica

suspension. We then develop a scenario in which we relate the propensity of forming fric-

tional interparticle contacts to the strength of solvation layers surrounding the particles. We

use this to explain both the observed enhancement of non-Newtonian stress response for n

up to 8 and its demise for larger n.

3.2 Materials and Methods

3.2.1 Suspension Preparation

The solid particles used in this study are fumed silica (Aerosil® OX50, Evonik) with specific

density ρ = 2.2g cc−1. They are aggregates of 40 nm glass spheres that irreversibly fused

during the manufacturing process to form irregularly shaped particles approximately 500 nm

in size.

24



Figure 3.1: (a)-(c) Representative SEM micrographs Aerosil OX50 aggregates. Each scale
bar is 500nm. d. Schematic illustration of a fumed silica aggregate composed of smaller
primary silica particles (40nm) that fused together. The average aggregate is 500nm with a
broad size distribution.

Representative scanning electron microscope (SEM) pictures of these aggregates are

shown in Fig. 3.1(a-c) while a schematic of the particles is shown in Fig. 3.1(d). We suspended

these particles in ethylene glycol (EG) (Fisher Chemical, MW = 67.07 g
mol), PEG-200 (Al-

pha Aesar, average MW = 200 g
mol), and PEG-400 (Sigma-Aldrich, average MW = 400 g

mol).

These solvents are linear chains containing n ethylene oxide repeat units. We measured the

viscosity of each solvent η0 to calculate the reduced viscosity of our suspensions, ηR = η
η0

,

and ensure that each solvent is a Newtonian fluid, as shown in figure S2. For EG, n = 1, while

on average, PEG-200 has n = 4 and PEG-400 has n = 8. We needed to make large amounts

of suspension (≈ 100 mL) for our impact experiments and smaller amounts (≈ 1 mL) for

steady-state rheometry. We found that large quantities required much longer mixing times.

For this reason we developed two suspension preparation protocols described below. To de-

termine the packing fraction ϕv we weighed both the solvent and solid particles using an

analytical balance and converted to volumes fractions using their respective densities. Since

our particles are porous amorphous aggregates, some of the suspending liquid is inside the

particle and the packing fractions reported here should be regarded as effective packing frac-
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tions. For small volumes of suspension (≈ 1 mL), the mixture was stirred manually with a

spatula until all dry powder had been mixed in. Caution: Dry fumed silica powder is easily

fluidized and represents an inhalation hazard. Therefore, all handling of fumed silica powder

was conducted in a fume hood. Subsequently, large air bubbles were removed by placing

the suspension in a centrifuge at 1000 rpm for 1 minute. The samples were then placed in a

water bath sonicator at 40 kHz and 130 W for six hours. These lengthy mixing and sonica-

tion times were necessary to ensure that micron-scale agglomerates of particles were broken

up and individual particle aggregates (Fig. 3.1) were well-dispersed, a key requirement for

reproducible rheometry.

For large amounts of suspension (≈ 100 mL), the particle-fluid mixture was stirred using

an overhead mixer in a fume hood at 200 rpm until there was no more visible dry powder,

usually taking two hours. Mixing for extended periods of time at such high rotation rates

introduced large air bubbles into the suspension. These were especially problematic in impact

experiments, as they strongly scatter sound waves and significantly limit ultrasound imaging

quality. In order to debubble our suspension, we sealed it and placed it on a 3Hz linear

shaker for five hours. This removed all of the large air bubbles but left a number of evenly

distributed very small air bubbles, which then served as tracers during ultrasound imaging.

3.2.2 Steady State Rheology

Steady-state shear experiments used a stress-controlled Anton Paar MCR301 rheometer with

a parallel plate (25mm in diameter) geometry. All experiments were performed within a tem-

perature range of 22-25 ◦°C and all runs were conducted less than one hour after sonication.

The gap size between the parallel plates was set as needed, but kept between 0.1-0.2 mm,

which we found helped in accessing higher stresses without sample ejection. Before measure-

ments we applied a pre-shear at constant shear rate 501s for 200 s to a produce homogeneous

starting condition for all samples. To check for wall slip, we measured our highest packing
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fractions in PEG-200 and PEG-400 in a 25mm parallel plate geometry at two different gap

heights, 25mm parallel plate geometry with roughened top and bottom plates at two different

gap heights, and a 25mm cone and plate geometry with roughened top and bottom plates

shown in Figure. S1. While there was some deviation between the different geometries, this

is mainly in the low stress behavior which we found to be dependent on how the plates were

roughened, the gap size, and whether we imposed a constant stress or constant rate. This

indicates that the low stress behavior in these systems is delicate and requires future study

but the enhancement of shear thickening with increasing MW is independent of measure-

ment geometry or boundary roughness. Note that, despite the high shear rates used in our

measurement, the high viscosity of the suspending liquid ensures that we are operating well

below the regime where secondary flows emerge. Additionally, the highest particle Reynold’s

number reached was 0.00005 ≪ 1, meaning that particle inertia can safely be neglected.

We checked for edge fracture in all of our samples using a high speed video camera (Phan-

tom v12) equipped with a 200 mm lens to observe the sample edge during our rheological

measurements. We did not observe edge fracture as observed in polymeric systems (45) but

instead observed portions of the suspension-air interface change in reflectivity and surface

texture, as also previously observed by video in suspensions in the DST regime just before

jamming (46; 47).

3.2.3 Impact Experiments

To study the transient behavior, we used high-speed ultrasound imaging to track the flow

field inside the suspension under impact (11; 48; 10; 49). The setup is illustrated in Fig. 3.2.

The suspension was placed in a 3D-printed cylindrical container with an inner diameter

of 5 cm. An impactor driven at adjustable speed Up by a linear actuator (SCN5, Dyadic

Systems) was mounted above the container. The impactor employed a cylindrical rod with

a hemispherical cap of diameter 1 cm. An ultrasound transducer (Philips L7-4) was placed
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Figure 3.2: Schematic of the impact experiments. The suspension is placed in a cylindrical
container of diameter 5.0 cm and impacted with a rod that has a hemispherical cap of
diameter 1.0 cm. Once the impactor approaches the suspension surface, ultrasound imaging
at 4,000 frames per second is triggered and provides a video of a slice of the flow-field in the
x-z plane.
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under the bottom of the container, coupled acoustically through a layer of ultrasound gel.

This transducer consisted of a linear array of 128 piezoelectric elements and was aligned

along the x direction.

In the experiments reported here, the rod moved vertically downward along the central

axis of the container at constant speed Up = 300mm
s and impacted the suspension directly

above the transducer. Ultrasound imaging was triggered to begin when the rod reached a

position 1 mm above the surface of the suspension and collected 500 consecutive frames at

a rate of 4000s−1. The impactor pushed vertically 15 mm deep into the suspension, so that

it stopped before the ultrasound imaging ended . The images are 2D slices in the x-z plane

under the rod, as displayed in Fig. 3.2. Impact experiment were repeated nine to fifteen times

for each suspension, and the resulting flow fields, extracted from particle image velocimetry

(PIV), were averaged. After each impact, the suspension was fully relaxed by stirring with

a spatula as well as by gently shaking and rotating the container.

3.3 Results

3.3.1 Steady State Rheology

In Fig. 3.3a and 3.3b we plot the flow curves for four different packing fractions ϕv, reported

as shear stress τ , versus reduced viscosity ηR = η
η0

for both PEG-200 and EG. Here η0 is

the viscosity of the suspending solvent. The upper limit in each case was chosen such that

we could measure the greatest extent of thickening without sample ejection or free surface

deformation during or after each test. All curves in Fig. 3.3 are an average of two forward

and backwards ramps; that they all lay approximately on top of each other indicates that

we were sampling the steady state viscosity. Error bars are calculated from the standard

deviation in the forward and backward ramp and are on the order of the marker size.

All suspensions show shear thinning at low stresses followed by a minimum in the viscosity
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a. b.

c. d.

Figure 3.3: Steady state rheometry data from suspensions of Aerosil OX-50 particles. Vis-
cosity is plotted as a function of shear stress in PEG-200 (a) and EG (b). The black line
in (a) has a slope of 1 indicating that the flow curve corresponding to a packing fraction
ϕv = .332 is undergoing discontinuous shear thickening (DST). Viscosity curves for solvents
of different MW but similar packing fraction are plotted as a function of shear stress (c) and
shear rate (d).
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Figure 3.4: Velocity fields and vz isocontours for impact into Aerosil OX50 suspensions
with ϕv ≈ 0.33. Shown are snapshots at times t = 15.5 ms (a,d), t = 19.5 ms (b,e), and
t = 23.5 ms (c,f) after the impactor reached the suspension surface. Two different solvents
are used. The top row (a)-(c) shows results for EG and the bottom row (d)-(f) for PEG-200.
Suspension surfaces are at z = 0 m and the container bottoms are at z = −0.03 m and
z = −0.045 m for the top and bottom row, respectively. Small green arrows indicate local
velocities vx and vz. The color mapping tracks vz, with the upper limit (white) corresponding
to the impactor speed (Up). The actual positions of the impactor in each time frame are
outlined. The grey regions indicate the remaining height of the suspension from the field of
view of the ultrasound images to the top surface of the suspension.
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and subsequent shear-thickening beyond an onset stress (τc). From Fig. 3.3a and Fig. 3.3b

we see that increasing the packing fraction in PEG-200 enhances both the shear thinning

and the degree of thickening, while increasing the packing fraction in EG only enhances

the degree of thickening. Comparison between similar packing fractions from Fig. 3.3a and

Fig. 3.3b indicates markedly different slopes for the shear thickening as a function of solvent

MW. Flow curves that only show mild CST in EG (slope 0.44 on a log-log plot of viscosity

as a function of shear stress) now exhibit clear DST in PEG-200 (slope 1). Associated with

this change in the thickening behavior in going from EG to PEG-200, we find an increase in

the shear thinning, and the minimum in viscosity shifts from a stress of τc = 11Pa in EG to

a stress of τc = 100Pa in PEG-200. To further highlight the role of solvent MW we directly

compare suspensions at similar particle concentration ϕv ≈ 0.33 but different solvent. This

is shown in Fig. 3.3c as a function of stress and in Fig. 3.3d as a function of rate.

3.3.2 Transient Dynamics

To analyze the flow fields of the suspensions under impact, we used a particle imaging

velocimetry (PIV) algorithm to extract local velocities v = (vx, vz) from the displacement of

tiny air bubbles between successive ultrasound images. Because of the cylindrical symmetry

in our system, these two velocity components suffice to reconstruct the entire 3D flow field

(10). The impactor hit the suspension surface z = 0 mm at t = 0 s and continued to move

downwards at Up = 300mm
s into the suspension. Figure. 3.4 shows how the flow fields evolve

with time after this impact for suspensions of ϕv ≈ 0.33 in PEG-200, one suspended in

PEG-200 and the other in EG. The colormap shows the value of vz, the velocity component

in the z direction.

Here we first consider the suspension in EG, shown in the top row of Fig. 3.4. In all three

time frames, the flow is highly localized within one centimeter around the impactor tip. This

highly dissipative response is what one expects from a viscous liquid. In contrast, we observe
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Figure 3.5: Local shear intensity expressed by the strain rate scalar Ė at times t = 15.5ms
(a, d), t = 19.5ms (b, e), and t = 23.5ms (c, f) after the impactor reached the surface of
the suspension. The suspensions are the same as in Fig. 3.4: Aerosil in EG (top row) and
PEG (bottom row). The color map corresponds to the value of Ė. Red curves show the
isocontours of vz from vz = 0.1Up to vz = 0.9Up, with increments of 0.1Up. The thick curves
show vz = 0.5Up, which we define as the locus of the jamming fronts. The grey region
indicates the remaining height of the suspension from the field of view of the ultrasound
images to the free top surface.
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a dramatically different response in PEG-200, shown in the bottom row of Fig. 3.4. We see

a large region, shown as the bright area, which expands into the bulk of the material in both

longitudinal and transverse directions. This bright area exhibits a large downward velocity

but small internal velocity gradient, as expected for a solid-like state, while the dark region

ahead of it is still quiescent. This indicates a large local shear rate at the leading edge of the

solid-like region, which is the signature of a shear jamming front, as previously discovered in

cornstarch suspensions at much higher packing fraction (10).

To more quantitatively prove that the jamming front forms only in the PEG-200 suspen-

sion, we calculate the spatial shear rate distribution. The strain rate tensor in a rotational

symmetric system is given by (49)

ε̇ =


∂vr
∂r 0 1

2(
∂vr
∂z + ∂vz

∂r )

0 vr
r 0

1
2(

∂vr
∂z + ∂vz

∂r ) 0 ∂vz
∂z

 . (3.1)

We can express the effective magnitude of local shear by a strain rate scalar

Ė =
√(

λ21 + λ22 + λ23
)
/2, (3.2)

where λ1, λ2, and λ3 are the eigenvalues of ε̇ in Eq. (3.1). Ė for the ϕv ≈ 0.33 OX50-

EG suspension at three time frames is shown in Fig. 3.5 (a)-(c). We see that the distance

between the rod tip and the vz = 0.5Up isocontour remains constant during the whole impact

process. Also, the region with maximum Ė is concentrated immediately next to the rod.

Taken together, this reveals that the OX50-EG suspension under impact does not jam into

a solid-like region with a propagating leading edge (jamming front), but remains a viscous

fluid.

The bottom row of Fig. 3.5 shows Ė for the same three time frames when the solvent is

switched to PEG-200. Behind the shear jamming front, the dark blue region indicates a low
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Figure 3.6: Schematic depiction of solvation layers that resist the formation of frictional
interparticle contacts and that change as a function of increasing solvent molecular weight.
Shaded regions in orange, blue, green, and red surrounding the particles depict the solvation
layer of strongly bound solvent molecules. For EG the solvation layer is strong and the
applied stress cannot overcome the energetic penalty for desolvation. But in both PEG-200
and PEG-400 the solvation layer is relatively weak, so an applied stress τ can give rise to
frictional contacts. *We conjecture that if we could measure fumed silica suspensions in
higher MW PEG’s (higher MW PEG’s are solid at room temperature) that this trend of
decreasing solvation layer strength would eventually reverse and the stress required to form
frictional contacts would start to increase.

shear rate, which corresponds to a solid-like region continuously propagating and expanding

into the suspension. Ė peaks in the shell-like region close to the isocontour vz = 0.5Up for

all time frames, while it is almost invariant along this shell. This coincides with the rapid

decrease in velocity at the boundary between the jamming front and the unjammed, still

liquid-like suspension ahead of it.
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3.3.3 Discussion

Many studies have demonstrated that the dramatic increases in viscosity associated with

DST and the solid-like behavior seen in SJ result from the formation of frictionally-stabilized,

percolating contact networks (7; 15; 29; 50; 6; 12; 17). However, these frictional contacts can

only form once the applied stress overcomes the repulsive barriers associated with surface

solvation (i.e. lubrication breakdown). The data reported here for fumed silica demonstrate

that increasing the MW of the suspending solvent elicits DST in PEG-200 at packing frac-

tions that exhibit only CST in EG. Furthermore, in PEG-200 at concentrations far below

those required with cornstarch, the suspensions show solid-like, shear jammed behavior un-

der impact, while in EG they behave like viscous fluids. Increasing the MW further by going

to PEG-400 only enhances shear thickening. The dramatically different stress responses in-

dicate that even subtle changes in solvent MW affect the ability of the force chain network

to resist applied shear.

This effect could be due to either changes in the effective friction coefficient (µeff ) be-

tween particle surfaces or changes in the stress-dependent balance of lubricated to frictional

contacts. However, as the particle surface chemistry is the same in all suspensions studied

here, the friction coefficient between desolvated surfaces is likely identical. This reasoning

implies that the solvent MW tunes the repulsive force profile between approaching silica

surfaces responsible for resisting frictional interparticle contacts. This scenario, whereby

weakening the repulsive barrier between particles leads to more particles interacting fric-

tionally and thus enhanced shear thickening, has recently been suggested to explain similar

results in suspensions with polymer additives (51).

The scenario we are proposing, therefore, is that an increase in the solvent MW decreases

the strength of the surface solvation layer and enables particles to enter into frictional contact

at lower applied stresses (Fig. 6). In other words, the force profile between silica surfaces

in PEG-200 is less repulsive than in EG. Thus, a greater applied stress is required to force
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particles into frictional contact in EG. Our reasoning is consistent with measurements of the

second virial coefficient for dilute samples of 40nm silica dispersed in polyethylene glycol

melts (52). Anderson and Zukoski observed a highly repulsive interaction between silica

particles in EG, whereas the interparticle potential in PEG-400 and longer PEGs is only

slightly more repulsive than their hard-sphere equivalents. While we are unaware of studies

in higher MW PEG, atomic force microscopy (AFM) measurements similarly reported a steep

and long-ranged repulsive force that extends over 5 nm between silica surfaces in EG (53).

These literature precedents coupled with our rheological and impact experiments suggest

that the force required to make frictional contacts decreases with increasing MW (Fig. 3.6).

While not the focus of this study, we note that the enhanced shear thinning behavior

at low applied stress or shear rate as we move from EG to PEG-400 signals an increase

in long-ranged attractive forces between particles (54). As a result of the enhanced shear

thinning, also the characteristic stress τc associated with the minimum of the viscosity curve

ηr(τ) moves to larger values (see Fig. 3c). While this minimum stress is sometimes identified

with the onset of shear thickening, i.e., with the critical stress required to push particles into

frictional contact, we caution against this interpretation since the true onset stress is likely

obscured by the strong shear thinning in all samples, as has been noted in other studies

(54; 55).

We now turn our attention to the specific molecular mechanisms that underlie the relative

solvent layer strengths. The adhesion energy and resulting conformation of polymer chains at

particle surfaces is well known to influence the macroscopic properties of composite materials

(56; 57; 58). Polyethylene glycol chains primarily interact with surface silanol (Si-OH) groups

through hydrogen bonds with backbone ether (-O-) or terminal hydroxyl (-OH) groups. The

hydroxyl end groups have a much larger binding affinity for the silica surface than the

ether oxygens (56; 57; 58). As the MW increases, the concentration of hydroxyl end groups

decreases and results in a less strongly bound surface solvation layer. Furthermore, increasing
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polymer MW results in less dense surface layers by virtue of their less compact conformation

at the particle surface (59; 60; 57). The solvation layer in EG is thus denser and also has

a larger enthalpic cost for desolvation. Furthermore, solvation of the silica surface by EG

facilitates silanol group dissociation (Si-OH → Si-O− + H+) (52). In summary, consistent

with arguments by Raghevan, Walls and Khan (44), the increased hydrogen bonding between

particle and solvent leads to a stronger, enthalpically stabilized surface solvation layer in EG

that stabilizes the dispersed or “lubricated” state. Increasing the MW decreases this barrier

and facilitates frictional interparticle interactions at lower applied stresses. To be sure this

phenomena is driven mainly by solvation forces we can follow Raghevan, Walls and Khan

(44) and estimate the van der Waal’s forces between the particles in the three suspending

solvents. Using index of refraction values and dielectric constants from the literature (61)

we find that the van der Waal’s forces for particles in PEG-200 and PEG-400 nearly vanish,

while for EG there is a small repulsion that contributes to the particles having the largest

barrier to frictional contact in EG.

Our current results and interpretation differ from a number of other studies (41; 40; 42;

43), which concluded that increasing solvent MW suppresses shear thickening due to a more

strongly adsorbed surface polymer layer. However, these other studies did not investigate

the low MW regime of monomer to oligomer and only investigated polymers with 7 or more

repeat units. Surprisingly, even increasing the degree of polymerization of polypropylene

glycol (PPG) from n=7 to 17 already shows a (small) decrease in shear thickening (42; 44).

In this slightly higher MW regime, a number of studies demonstrated that overall surface

coverage increases with MW (57; 62; 63). In other words, the multidentate binding with

increasing MW beyond a certain limiting value of n (perhaps around 8-10 in our case) leads

to a reduced translational entropy cost for each subsequent binding event and leads to a

higher binding coefficient per polymer segment. This entropically bound polymer layer could

then lead to a steric barrier that inhibits frictional particle contacts, which could explain the
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decreased shear thickening and shift towards higher τc with higher MW reported by Shenoy

and Wagner (41). Alternatively, as Xu et al. (40) observed no change in τc but decreased

shear thickening with increasing MW, the bound polymer layer could simply “cap” surface

hydroxyl groups and lead to a lower effective interparticle friction coefficient. Thus, beyond a

certain characteristic MW the trend can reverse and frictional interactions start to diminish

(Fig. 3.6, top row). Where this cross-over takes place is likely to depend on details of the

particle surfaces. For example, if the very rough fumed silica agglomerates are replaced by

comparatively smooth silica spheres, this cross-over might shift to slightly lower n. Indeed,

we find a similar increase in shear thickening strength when switching from EG to PEG-200,

but for PEG-400 there is already an indication that the maximum in frictional interaction

has been exceeded, as shown in Fig. S3

3.4 Conclusion

The rheological response of shear thickening fluids is a consequence of microscopic interac-

tions. As such, macroscopic changes in the flow profiles are in fact a sensitive reporter of

subtle changes in molecular-level interactions. In this study, we investigated the effect of

PEG MW on the shear thickening behavior of fumed silica suspensions. By steady-state

rheology, we observed that increasing PEG MW led to increased shear thickening. Similarly,

by high-speed ultrasound imaging, we observed, for the first time directly, how increasing

the MW elicits SJ under impact. We find that the extent of shear thickening and the ability

to enter the SJ state are highly dependent on the choice of suspending solvent, which we

interpret in light of the stress-dependent balance of lubricated versus frictional contacts.

On the basis of prior adsorption and AFM studies we argue that increasing the number of

polymer solvent repeat units, n, up to a certain characteristic value weakens the solvation

layer surrounding the particles by decreasing the density of more strongly binding -OH end

groups. This weakening of the solvation layer lowers the stress required to push particles into
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frictional contact which is ultimately responsible for the increase in shear thickening. While

PEG solvents with higher MW, i.e., larger n, are solid under our experimental conditions,

comparisons with literature precedents of analogous PPG suspensions (44; 42) suggest that

even slightly increasing the PEG MW further would actually suppress shear thickening as

the system crosses over from a regime where solvation layers are enthalpically-stabilized at

low MW (≤ 400 g
mole for PEG) to one where they are entropically-bound at higher MW. As

a consequence of such crossover, shear thickening may in fact be most pronounced at some

intermediate MW. This crossover resolves the apparent contradiction between our current

results and previous studies (41; 40; 42) as those studies investigated the higher MW regime

where polymers are entropically bound to the particle surface.

Taken together, these findings also open up new opportunities to control both shear

thickening and shear jamming in industrial settings, as changing the relative surface affinity

of the solvent is much easier than modifying particle properties such as size, shape, or

surface chemistry. Our results show that shear jamming during suspension processing can

be suppressed (or enhanced) through judicious selection of a solvent that will strongly (or

weakly) solvate particle surface chemical functionalities and therefore inhibit (or facilitate)

frictional interparticle contacts.
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CHAPTER 4

MINIMALLY RIGID CLUSTERS IN DENSE SUSPENSION

FLOW

4.1 Introduction

In this Chapter, we explore how transient rigid structures embedded inside of dense suspen-

sion flows can contribute to the dissipation of the system. We measure rigidity by importing

tools from dry granular materials that were originally used to study jamming in frictional

disks to study how the evolution of force chains in dense suspension flows can solidify and

yield under imposed stress. Strikingly, we find that system spanning rigid clusters embed

themselves into the flow at sufficiently high stresses and packing fractions. Surprisingly,

where these rigid clusters begin to span the system do not coincide with bulk rheological sig-

natures, such as DST, although the packing fraction at which rigid clusters span the system

and where DST occurs do coincide.

When small particles are suspended in a liquid and the particle packing fraction ϕ is

close to, but below, the packing fraction ϕ
µ
J for jamming, the viscosity can increase orders of

magnitude with increasing shearing intensity through a process called shear thickening (64;

65). Current models of strong shear thickening in dense suspensions are based on mean-field

ideas, whereby stress τ in excess of some characteristic value τ0 punctures the particle-

particle lubrication by the liquid and activates frictional contact with friction coefficient

µ (66; 24; 67; 68; 69; 70; 65; 71). Since the viscosity η diverges as a power law with distance

|ϕµJ − ϕ| from the jamming point ϕµJ and since ϕ
µ
J for finite µ is smaller than for µ = 0, this

. The research described in this chapter has been published in: van der Naald, A., Singh, T., Eid, K.,
Tang, de Pablo, J., and Jaeger, H. M. Minimally Rigid Clusters in Dense Suspension Flow Nature Physics,
Accepted
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leads to potentially very large viscosity increases at fixed ϕ.

Mean-field modeling expresses the crossover from lubricated to frictional behavior in

terms of the fraction of local frictional contacts that have been activated (72; 24; 73; 69; 71).

While successful in predicting the steady-state, strain-averaged flow behavior of suspensions

as a function of packing fraction and stress (67; 73; 69; 74), this approach is agnostic of the

structural consequences of proliferating frictional contacts, such as the emergence of a meso-

scale contact network and its properties. In particular, the degree to which this network

of frictional contacts is mechanically stable and can resist deformation has so far not been

considered in its effect on viscosity. To address this we here use ideas from rigidity theory.

Rigidity theory predicts the mechanical properties of materials by comparing the number

of local constraints to the number of global degrees of freedom (75; 76; 77). If the number

of local constraints exceeds or is equal to the number of global degrees of freedom, then the

system is mechanically rigid (75; 76). This counting argument was originally formulated

by Maxwell to assess the rigidity of mechanical trusses (75), and it has since been used to

describe rigidity transitions in granular materials, structural glasses, proteins, and models of

cells (78; 79; 76; 80; 81; 82; 83; 84; 85; 86; 87; 88).

In these systems, atoms, molecules, or particles form the nodes of a network, while

interactions between these entities become bonds that connect the nodes and provide con-

straints to relative node movement, in analogy to the beams in Maxwell’s trusses. For

example, constraints in dry granular systems arise from contacts between neighboring parti-

cles (89; 90; 78; 79; 91; 92) while constraints in molecular glasses arise from chemical bonds

between adjacent molecules (76; 84; 80). Once interparticle interactions have been mapped to

interparticle constraints, constraint counting can then be performed using various methods,

including the widely-used algorithm called the pebble game (93; 94; 79; 78). This algorithm

decomposes the network into rigid and floppy subsections by counting constraints for each

local cluster of nodes, with bulk rigidity corresponding to the limit where the rigid clusters

42



link up and percolate across the whole network.

Here we apply constraint counting in a new context. Rather than testing the mechanical

rigidity of a static network, we analyze snapshots from simulations of the continually evolving

network of frictional contacts among particles in a dense suspension under shear. Our goal

is to extract mesoscale information about the occurrence of transiently rigid clusters within

this frictional contact network and correlate this to the degree of global resistance to flow,

as measured by the suspension viscosity.

4.2 Results and Discussion

Analyzing the frictional forces with the pebble game we convert them to interparticle con-

straints, allowing us to extract from the networks the subset of mechanically rigid particle

clusters. We are principally concerned with the rigidity of the frictional force network as the

frictional forces have been implicated as the primary forces responsible for DST as well as SJ

(65; 3; 95). In the appendix C we investigate how our results change when we incorporate

also the repulsive and hydrodynamic forces into the pebble game.

Since the pebble game algorithm is generally limited to two-dimensional (2D) networks

(an exception is the application to the special case of protein flexibility (96)), we perform

our simulations in 2D as well. Prior work has shown that flow curves simulated for dense

suspensions in 2D can reproduce 3D results semi-quantitatively if the volume fraction ϕ is

translated appropriately (97; 98).

We find the emergence of extended, rigid sub-structures within the network to be a func-

tion of stress, from states with no or only small, localized rigid clusters to states with a

single system-spanning rigid cluster. Note that when we label clusters here for brevity as

“rigid" this should be understood as “minimally rigid." We make this distinction with prior

work (79; 78) on dry granular systems to emphasize that our rigidity metric assesses the

mechanical stability of only the sub-network of frictional contacts and is ignorant of friction-
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less contacts and hydrodynamic contacts, which ultimately destabilize clusters the algorithm

identified as mechanically rigid and force them to evolve into different configurations, thus

enabling viscous flow. Analyzing the strain evolution of the extended rigid structures in the

large stress limit reveals that for low volume fractions they are fleeting, appearing and imme-

diately dissolving into smaller clusters. However, for higher packing fractions we find large

stresses to generate a continuous sequence of system-spanning rigid clusters that reconfigure

from one imposed strain step to the next, thereby driving the largest viscosity increases.

Our simulations include hydrodynamic lubrication interactions, purely repulsive contact

forces, as well as friction. Unless indicated the data shown are for N = 2000 particles

(see appendix C for more detail and larger system sizes). Forces on the particles obey the

overdamped equation of motion FN
C + FT

C + FH = 0 where FN
C is the purely repulsive

normal contact force, FT
C is tangential Coulombic friction contact force, and FH is the

hydrodynamic lubrication force. The repulsive contact force has an associated stress scale

τ0, which controls the stress required to make frictional contact. In the simulations discussed

here, the Coulombic friction force constrains only sliding motion and the friction coefficient is

set to µ = 1 (see Methods for details and appendix C for data using other friction coefficients).

This simulation scheme has been used extensively in recent years as it is a simple method

that can recreate the experimentally measured features of shear thickening suspensions (99;

66; 72; 73; 69; 100; 70; 71).

Using stress-controlled conditions, we simulate different packing fractions from ϕ = 0.766

to 0.79 over a range of stresses τ
τ0

∈ [10−1, 102].

4.2.1 Decomposing Frictional Force Chains Into Rigid Clusters

Figure 4.1a shows a typical force network resulting from the simulations. Line segments

that connect neighboring particle centers are color-coded according to the type of force they

represent and form bonds in the associated force network, with the magnitude of the force
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represented by the width of the line.

We decompose the network of frictional contacts, shown in red in Fig. 4.1a, into subnet-

works of rigid clusters. To do this, we apply a particular version of the pebble game, the

so-called (3,3) variant, which was originally developed for dry granular systems with fric-

tion (79; 78). This algorithm assigns the local constraints on each particle by determining

whether the force at a given contact is below or at the Coulomb threshold for sliding, which

decides whether that contact constrains two or one degrees of freedom, respectively. The

result for the network in Fig. 4.1a is shown in Fig. 4.1b, where orange bonds are below the

Coulomb threshold and black bonds are at the threshold. Once the local constraints on each

particle have been established, the (3,3) pebble game returns the minimally rigid cluster

decomposition shown in Fig. 4.1c.

(Additional information on the simulation method as well as the pebble game algorithm

can be found in the Methods section.) As we see from comparing Figs. 4.1a and c, a

dense network of frictional forces, even if highly coordinated and system-spanning, does not

necessarily imply the presence of extended minimally rigid clusters.

4.2.2 Emergence of System Spanning Clusters

We now sweep through a range of packing fractions ϕ just below ϕ
µ=1
J to generate the family

of steady-state flow curves shown in Fig. 4.2a, where we plot the effective suspension viscosity

ηr = η−1
0 τ/γ̇, normalized by the viscosity η0 of the suspending liquid, as a function of

normalized shear rate γ̇/γ̇0. Here γ̇0 = τ0/η0. Figure 4.2a shows the typical shear thickening

behavior of dense suspensions, where for each packing fraction the viscosity transitions, as

a function of shear intensity, between a low and high viscosity plateau. As ϕ increases,

this transition steepens from continuous shear thickening, where the maximum slope of

η(γ̇) is positive and finite, to discontinuous thickening (DST), where this slope diverges (at

ϕDST ≃ 0.775). For purely stress-controlled shearing conditions, as here, the flow curves
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Figure 4.1: Decomposition of the frictional contact network into rigid clusters. (a)
Simulation snapshot with hydrodynamic forces shown in blue, repulsive forces in grey, and
frictional forces in red. Force magnitudes are given by the widths of the line segments, but
have been rescaled between different force types so that lines for all types are visible. (b)
The contact friction subnetwork, shown by the red lines in panel (a), has been decomposed
into contacts that are below the Coulomb threshold (yellow) and contacts at the Coulomb
threshold (black). (c) Further decomposition of the network shown in (b) into minimally
rigid clusters (green) as a result of applying the (3,3) pebble game algorithm. All simulations
use periodic boundary conditions.

develop an S-shape once ϕ > ϕDST , but in typical experiments, this is an unstable region

and the flow curves still jump discontinuously between the low and high viscosity branches.

To visualize at the particle level how the rigid clusters emerge and percolate across

the system, we show in Fig. 4.2b-d representative snapshots of the frictional forces (top

panel) and their corresponding rigid cluster decomposition (bottom panel) for ϕ = 0.78,

i.e. just above the DST onset. Since frictional interactions are activated by stress, we pick

three representative stress levels (in Fig. 4.2a indicated by the red boxes). For the lowest

stress τ
τ0

= 1, frictional contacts only form short, chain-like structures and we find no rigid

clusters. At higher stresses, the suspension is being driven sufficiently strongly to form fully

percolating frictional contact networks. Nevertheless, the rigid cluster decomposition can

show dramatic differences. For τ
τ0

= 10 the rigid clusters are mostly small and disparate,

while at τ
τ0

= 100 there is a single system-spanning cluster.
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Figure 4.2: Rheology, frictional contact force networks, and rigidity. (a) Relative
viscosity ηr as a function of shear rate γ̇ for different packing fractions ϕ. With increasing ϕ
the onset of discontinuous shear thickening (DST) corresponds to the first trace that exhibits
a vertical jump between the low and high viscosity plateaus. In the 2D suspensions simulated
here this occurs at ϕDST ≃ 0.775. (b-d) Force networks (top) and associated minimally rigid
clusters (bottom) at three stress levels for ϕ = 0.780: τ

τ0
= 1 (b), 10 (c), and 100 (d); the

corresponding viscosities are indicated by the red boxes in panel (a). The color coding for
the different forces is the same as in Fig. 4.1.

4.2.3 Rigid Cluster State Transitions

To track this quantitatively, we define the size S of a given, minimally rigid cluster as the

number of participating particles. Taking snapshots as in Figs. 4.3b-d at strain increments

δγ = 0.1 over large intervals in the steady-state, we compile rigid cluster size distributions

P (S). As we are interested in networks that potentially generate the largest resistance to

shear and thus the highest viscosity, we focus in the following on the distribution of the

largest rigid clusters, P (Smax). Figures 4.3a-c show representative examples of P (Smax) for

the same three stress values as in Figs. 4.2b-d at packing fractions ϕ = 0.77, 078, and 0.79.

We plot P (Smax) for ϕ = 0.776 and ϕ = 0.774 (just above and below the onset of DST) in

the SI. The associated behavior of Smax as a function of strain γ is shown in the insets.

For all packing fractions τ
τ0

= 5 produces small clusters and thus small Smax values. At

ϕ = 0.77, we find that clusters involving more than 10 percent of the particles appear only

at the largest stress and then only fleetingly (Fig. 4.3a). Increasing the packing fraction to
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Figure 4.3: Steady-state dynamics of the largest rigid clusters. (a-c): Size distribu-
tions P (Smax) for the largest rigid clusters within the network of frictional contacts. Data
shown are for three stresses each at packing fractions ϕ = 0.77, ϕ = 0.78, and ϕ = 0.79.
Cluster size S is the number of participating particles. Insets: Evolution of maximum rigid
cluster size Smax as a function of strain γ for the same three stresses. (d-f): Return maps at
various stresses (see legend to the right of panel (f)) for volume fractions ϕ = 0.77, ϕ = 0.78,
and ϕ = 0.79. The maps show how the largest cluster at strain γ, which has size Smax(γ),
evolves to a new size, Smax(γ + δγ) , one strain increment δγ later. In our simulations δγ =
0.1.

ϕ = 0.78 bimodal distributions emerge (Fig. 4.3b), where large clusters form often but then

collapse (for τ
τ0

= 10) or where large clusters are the typical state and where they quickly

reconstitute after a collapse (for τ
τ0

= 100). As the packing fraction is increased further to

ϕ = 0.79 (Fig. 4.3c) system-spanning rigid clusters become much more prevalent even at τ
τ0

=

10, and the suspension evolves from one such cluster to the next, only temporarily jumping

to smaller cluster sizes. The intermittent dynamics of these clusters switching between

essentially two states is reminiscent of fluctuations seen in boundary stress measurements by

Rathee et al., who find intermittent bursts in regions with high stress (23; 101). A movie

of the evolution of interparticle forces and rigid clusters with packing fraction and strain for

the systems shown in Fig. 4.3 a-c is available in the SI.
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A convenient way to analyze the cluster size fluctuations and how this behavior evolves

with stress and packing fraction is via return maps of the maximum cluster size, Smax.

This is done in Fig. 4.3d-f. Each point on these return maps refers to a consecutive pair

of simulation snapshots, where the x-coordinate corresponds to the largest rigid cluster at

strain step Smax(γ) and the y-coordinate to the largest rigid cluster at the next strain step

Smax(γ+δγ). For example, points near the lower left corner refer to transitions from a state

having small clusters to another state with small clusters, while points in the upper right

refer to transitions from one large, system-spanning cluster to the next.

For ϕ = 0.77 (Fig. 4.3d) almost all points cluster around the bottom left corner, indicating

that large clusters rarely form and when they do they fail to persist for more than a single

strain step. For ϕ = 0.78 (Fig. 4.3e) the majority of points reside near the bottom left or top

right corners. This reflects the bimodal character of the cluster distribution and the abrupt

onset of system-spanning minimally rigid clusters. Occasionally some points populate the

top left and bottom right corners corresponding to the formation and destruction of system-

spanning minimally rigid clusters, respectively. However, the majority of points with τ
τ0

≥ 20

populate the area near the top right, indicating long sequences where one system-spanning

minimally rigid cluster under strain reconfigures into another cluster of the same type. As

the packing fraction reaches ϕ = 0.79, we see that almost all points reside in the bottom

left or top right corner (Fig. 4.3f). Interestingly, there are very few points in the middle

of the return maps, indicating that intermediate sized clusters are rare and unstable when

they form. We find that the return maps are insensitive to the strain step if we instead plot

Smax
γ+2δγ , Smax

γ+3δγ , or Smax
γ+4δγ on the y-axis, as shown in the SI.

4.2.4 Dense Suspension Phase Diagrams and Rigid Clusters

Given the asymmetric and often bimodal character of the distributions P (Smax), we charac-

terize them by their median. Figure 4.4a shows that sizeable median values, corresponding
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Figure 4.4: System-spanning rigid cluster statistics define new regime in the sus-
pension state diagram. (a) Evolution of the rigid cluster statistics, taken here as the
median of Smax/N as a function of normalized shear stress τ/τ0. Data for different packing
fractions ϕ are delineated by color. The onset of system-spanning rigid clusters occurs at
ϕrig ≃ 0.775. Inset: Median of Smax as function of average coordination number Zfric of
the frictional contact network.(b) Normalized viscosity as function of the median of Smax/N
for different packing fractions ϕ, with color coding given by the legend. The same color cod-
ing applies to the data in panel (a). (c) State diagram delineating flow behaviors of dense
suspensions as a function of stress and packing fraction. Blue data points: states without a
system-spanning rigid cluster in 75% of simulation snapshots. Red data points: states with
a system-spanning rigid cluster in 75% of snapshots. Blue or red triangles indicate where
discontinuous shear thickening (DST) is observed in the simulations, while circles indicate
that DST is not observed. The state diagram also shows the different flow regimes based on
mean-field theory: shear jammed (green), DST (purple), and isotropically jammed (gray).
The boundaries of the purple and green regions were generated by fitting flow curves, as in
Fig. 4.2a, near the onset of DST to the Wyart-Cates (WC) mean-field model (Ref.4). Note
that the simulation data (triangles) show the onset of DST at a packing fraction slightly
lower (by about 0.01) than predicted by the WC model.
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to rigid clusters that involve the majority of all particles, occur only once ϕ approaches

ϕDST . In fact, the transition in the high-stress limit from only small, isolated rigid clusters

(median [P (Smax)] < 0.1N) to high likelihood for observing a fully system-spanning rigid

cluster proceeds abruptly in the vicinity of ϕDST . Associated with this increase is a subtle

enhancement of the local connectivity of the nodes in the network of frictional contacts, seen

in the average coordination number Zfric (Fig. 4.4a inset): system-spanning rigid cluster

require Zfric > 2.7. These data also make clear that the frictional contact network be-

comes (momentarily) rigid well before the suspension jams and the flow arrests completely

at Z = Ziso = 3. Note that a related observation about onset of rigidity not coinciding with

isostaticity has been made in dry granular materials (78).

A second remarkable feature of the data in Fig. 4.4a is the abrupt increase in the size of

rigid clusters with stress, especially for the larger ϕ values. To confirm that this behavior

is not a finite-size effect, we carried out additional simulations for systems with N = 5000

and N = 10000 and found the transition to be just as abrupt (see Fig. S1). This abrupt

transition is strikingly different from the smooth change of other network measures across the

shear thickening transition, for example, measures based on persistence homology or force

tile analysis (97; 102; 103; 104). Instead, it is reminiscent of the sharp transitions seen in

dry granular systems where system spanning clusters appear as a function of contact number

Z (78; 79? ). In those works the transition corresponds to the jamming transition where

the system solidifies and has been measured to occur for Zcrit ≈ 2.4 in experiment(78)

and Zcrit ≈ 2.9 in simulation (79). Our finding of Zcrit ≈ 2.7 is within this range, but

further investigation characterizing the distribution of clusters is needed to determine if

the transition we find lies in the newly discovered frictional universality class for frictional

rigidity transitions (? ), in particular regarding the location and sharpness of the transition

as friction is changed. The nature of the transition might be different as all suspensions

studied here are continually flowing and not static.
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Plotting the viscosity as a function of median Smax/N gives further insight (Fig. 4.4b).

We find that the increase of the normalized viscosity during shear thickening proceeds in

two steps: over the first decade and a half the dominant contribution is from the local

frictional interactions in contact force networks that are not mechanically rigid, until at

higher packing fractions and stresses these frictional contacts begin to act cooperatively and

form extended, minimally rigid clusters that are responsible for the last decade of viscosity

increase. Put another way, for the most highly dissipative states it is not sufficient to have

a fully saturated and percolated networks of frictional contacts; additionally these networks

need to be mechanically rigid.

Figures 4.4a and b show that a minimum packing fraction is required for system-spanning

rigid clusters to emerge. Using as our criterion that system-spanning rigid clusters appear in

75% of all analyzed strain increments, we find that this minimum packing fraction, ϕrig, ap-

pears essentially indistinguishable from the minimum packing fraction required for observing

DST, ϕDST ≈ 0.775 (different criteria do not change ϕrig by more than 0.005; see the SI).

This finding is particularly interesting if we overlay the probability of finding minimal

rigid clusters onto a mean-field state diagram for dense suspensions (24; 3; 69; 65), which

delineates the onset of DST (purple region) and shear-jamming (green region) as a function

of packing fraction and shear stress. This is done in Fig. 4.4c, where the regime of system-

spanning rigid clusters is indicated by the red data points (note that in this work we restrict

ourselves to ϕ < ϕ
µ=1
J , i.e., to suspensions that always flow and do not jam at the largest

stresses). Red hollow data symbols in Fig. 4.4c correspond to simulations where fewer

snapshots to average over were available, given that simulations in the regime very close to

shear jamming are computationally expensive. We note a slight discrepancy between the

mean-field model prediction for the onset of DST (ϕ ≈ 0.784) and what is obtained from

simulation (ϕ ≈ 0.775).

As indicated by the only partial overlap between the red data points and the DST regime
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in Fig. 4.4c, frictional network rigidity clearly does not equate with with DST, despite the

onsets nearly coinciding in terms of packing fraction, i.e., ϕrig ≃ ϕDST . This shows that

DST flows cannot be understood as simply a strain- (or time-)average over a sequence of

jamming/unjamming events, since the granular backbone attains rigidity only at higher

stresses. As we see from Fig. 4.4c, rigidity starts to occur within the DST regime only

when ϕ gets close to ϕ
µ
J and then only for stress levels well beyond the stress range over

which DST occurs. At lower packing fractions where ϕ gets closer to ϕDST , extended rigid

network structures that could temporarily jam do not even appear within the stress range

where DST occurs and only emerge in the upper (Newtonian) viscosity plateau, well above

the DST “nose."

4.3 Conclusion

From this analysis a new flow regime emerges within the ϕ−τ state diagram that starts at, or

very close to, the packing fraction where DST is first observed, but is distinct from the DST

regime in that it marks, as a function of stress, when system-spanning rigid clusters start

to drive the dissipation and enable very high viscosities ηr > 500 − 1000 (Fig. 4.4b). Since

this occurs via continual breakup and reconfiguration of extended rigid clusters (Fig. 4.3)

we interpret the new regime, rather than DST, as a true precursor of flow arrest through

jamming.

Our results demonstrate that analyzing the rigidity of the frictional contact networks

in dense suspensions provides new information that goes beyond what can be extracted

from measuring the local connectivity or the percolation of frictional forces. An interesting

line of future work will be investigating how our rigidity-based analysis compares to recent

connectivity-based network measures such as the k-neighbor particle analysis reported by

Goyal et al. (105). As such the deconstruction of these networks into mechanically rigid and

non-rigid components might enable theoretical advances to go beyond current mean-field
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models (24; 72; 73; 69). We envision that this approach can be powerful also when applied

to a wide range of other flowing amorphous systems, including emulsions, gels, and foams.

4.4 Methods

4.4.1 Simulation Scheme

In order to simulate dense suspensions near their frictional jamming point ϕ
µ
J we use the

well established simulation scheme “Lubricated flow DEM (LF DEM)" (106). The simula-

tion scheme marries lubricated interactions with a discrete element method (DEM) contact

model (72) and has been succesful reproducing many experimental features observed in ex-

periments (107; 69; 100; 70; 71). We simulate a two dimensional monolayer of non-Brownian

spherical particles immersed in a Newtonian fluid. The simulation scheme presented here is,

in principle, similar to Seto et al. (66), where a fixed shear rate was applied to the system.

However, since the interest here is to analyze dense suspensions close to their jamming limit

ϕ
µ
J , we simulate dense suspensions under constant shear stress, following Mari et al. (107).

Our procedure amounts to implementing pairwise hydrodynamic forces between particles

within a range of 0.2a where a is the radius of the smaller particles. This follows previ-

ous studies that considered simple shear using only lubrication interactions while neglecting

long-range hydrodynamics for dense suspensions. The gain here is twofold: first, excellent

agreement with experimental data sets indicates that considering only lubrication is sufficient

to capture the essential particle dynamics in these conditions (107; 71); second, consider-

ing only lubrication speeds up the simulations since including long-range hydrodynamics

makes the problem extremely difficult computationally in crowded conditions (108; 65). We

use Lees-Edwards periodic boundary conditions and impose a shear stress on the system τ

(107; 69). In strictly monodisperse 2D simulations of discs it is difficult to avoid crystallisa-

tion regardless of interaction potential, packing preparation, or shear protocol (109; 110? ?
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). To avoid ordering in simulations of disks it is common to use a mixture of particles with

a size ratio of 1:1.4 (72; 95; 111; 109; 110? ? ), and we follow that convention here.

We work in the inertialess limit and consider contact (F⃗C) and hydrodynamic (F⃗H) forces

between particles. Thus, the motion of each particle is obtained by solving the following force

balance equations:

0⃗ = F⃗H(X⃗, U⃗) + F⃗C(X⃗) , (4.1)

where X⃗ and U⃗ denote the positions and velocities/angular velocities of all particles, respec-

tively. The equation of motion is coupled with the constraint of the imposed flow at constant

shear stress τ . At a given time, the stress in the suspension is given by the summation of

hydrodynamic τH and contact τC contributions:

τ = τxy = γ̇η0

(
1 +

5

2
ϕ

)
+ γ̇ηH + τC , (4.2)

where η0 is the suspending fluid viscosity, ηH = V −1
{
(RSE−RSU ·R−1

FU ·RFE) : Ê
∞}

xy, τC =

V −1
{
XFC−RSU ·R−1

FU ·FC
}
xy, with RSU and RSE being the resistance matrices to calculate

the lubrication stress based on particle velocity and deformation resistance (72; 112), E∞

is the the rate-of-strain tensor, : stands for a double dot product,
{
}xy denotes taking the

xy entry of the resulting matrix inside the brackets, and V is the volume of simulation box.

RFU and RFE are position dependent resistance matrices contain the “squeeze,” “shear,” and

“pump” modes of pairwise lubrication along with one-body Stokes drag. Imposing this shear

stress leads to a time-dependent shear rate γ̇(t) which we then use to calculate the viscosity.

Rheology data presented here are averages of ηr = τ/γ̇/η0 over a time window equivalent to

30 strain units.

Finally, to introduce the rate dependence we employ a critical load model (CLM) (95; 72;

73). The contact force between particles i and j is purely in the normal direction until the

normal force exceeds some critical load FCL and then Coulombic sliding friction is turned
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on. Thus the friction law reads:

|F⃗ i,j
C,tan| ≤

 µ(|F⃗ i,j
C,norm| − FCL) : |F⃗ i,j

C,norm| ≥ FCL

0 : otherwise

 (4.3)

where we use a coefficient of sliding friction µ = 1 for most of the work here (for different

values of µ see the SI; we do not consider rolling friction separately). The force scale FCL

sets a stress scale τ0 = FCL/6πa
2, such that for τ ≪ τ0 the contacts are frictionless,

whereas for τ ≫ τ0 contact friction dominates. We non-dimensionalize the shear rate γ̇/γ̇0

using γ̇0 = FCL/6πη0a
2 with η0 being the viscosity of the background solvent. For more

information about the CLM, the hydrodynamic forces, contact forces, and the simulation

scheme see (95; 72; 69).

4.4.2 Pebble Game Algorithm

To find rigid clusters in our frictional contact networks we use the pebble game algorithm.

This algorithm finds rigid clusters by comparing the local constraints in a network to the

global degrees of freedom to determine if any portions of the network are fully constrained,

and therefore rigid. To apply this algorithm we map particles to nodes in the network and

frictional contacts to bonds. In general, there exists a (k,l) pebble game where k is the

number of degrees of freedom for each particle and l is the number of total global degrees

of freedom for the system (94). In this work we study two dimensional frictional contact

networks with three degrees of freedom per particle and three global degrees of freedom,

thus we restrict ourselves mainly to the (3,3) pebble game, but find that our results are

nearly identical if we instead use the (3,2) pebble game, as shown in the SI. The (3,3) game

was originally used in simulations of two-dimensional packings of dry frictional particles

by Henkes et al. (79), while the (3,2) game has been used in frictionless packings (113).

In order to construct the constraint network for the (3,3) pebble game we consider how
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each contact constrains particle motion. We use Coulombic friction so there are two types

of constraints between frictional particles, sliding and non-sliding contacts. For contacting

particles below the Coulomb threshold (FC,tan < µFN ) motion is constrained in both the

normal and tangential directions, giving two constraints to particle motion. Particles at the

Coulomb the threshold (FC,tan = µFN ) have met the threshold to slide and only constrain

the normal direction of motion, giving a single constraint to particle motion. After mapping

the contact network to a constraint network we run the (3,3) pebble game algorithm. Results

presented in the main text include exclusively frictional forces in the constraint network, as

they play a predominant role in stabilizing the force chains leading to rigidity in the system.

However, in the SI we include multiple attempts to incorporate hydrodynamic lubrication

forces and purely repulsive forces into the (3,3) pebble game to see how those alterations to

the pebble game impact the cluster size statistics. For implementation of the (3,3) pebble

game see (87; 79). In our simulations we perform the (3,3) pebble game for simulation

snapshots separated by a strain increment δγ = 0.1. We chose this strain step such that each

simulation snapshot would sample a different ensemble of clusters so that we can adequately

correlate cluster size to strain-averaged, steady-state quantities like viscosity. The modeling

based on the pebble game algorithm comes with some limitations. As mentioned in the

introduction, the currently available algorithm extracts rigid clusters accurately for 2D but

not for 3D networks. This limitation in 3D comes from the occurrence of network structures

that the pebble game misidentifies as rigid (? ). These misidentifications also happen in 2D

but are rare in disordered networks such as the ones we investigated in this work (93; 78)
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CHAPTER 5

RHEOLOGY OF COMMON STARCH SUSPENSIONS

5.1 Introduction

In this chapter we explore the rheology of suspensions of common household starches such

as corn, potato, and wheat starch. Cornstarch suspension rheology is commonly measured

in dense suspension studies and serves as a prototypical shear thickening and shear jamming

suspension both for research but also for physics demonstrations (9; 114; 1). Despite corn-

starch suspensions common use in research and outreach, other starch suspensions have not

been studied.

Dense suspension flows are ubiquitous across many length scales from geophysical debris

flows to colloidial flows relevant in biological processes and 3D printing. One rheological

behavior that is commonly measured in these flows is shear thickening, where the viscosity

of the suspension increases with applied stress. Even more striking, is when these flows arrest

and the suspension solidifies in a process called shear jamming (SJ), a property that is often

exploited in physics demonstrations. Both shear thickening and shear jamming have been

the subject of intense study over the last decade, and in that time a consensus has emerged

that both of these properties arise suspended particles interacting frictionally. This insight

has led to designer suspensions where particles and solvents are modified to allow for either

a greater number of frictional contacts, stronger frictional contacts, or both which enhances

the shear thickening response (115; 1).

As mentioned, the most commonly encountered shear thickening and shear jamming

material is a simple suspension of cornstarch and water, sometimes called "Oobleck". This

system is often studied in research of dense suspensions as it is available in large quantities

and easy to prepare. It is also used regularly in science outreach where it serves as a striking

example of non-Newtonian fluid flow. Despite this ubiquity, the rheology of other common
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household starches in suspensions has not been studied. Simple questions such as do other

starch suspensions shear thicken, how does the viscosity diverge as the packing fraction is

increased, and other questions have been left unaswered in the literature.

In this study, we measure the rheology of suspensions of cornstarch, potato starch, and

wheat starch to determine if potato starch and wheat starch suspensions show similar rheol-

ogy to that of the prototypical cornstarch suspension. By comparing similar packing fractions

from different starch systems we find that the qualitative behavior of thickening is similar

to that of cornstarch suspensions but quantatively there are stark differences. In particular,

we find that the viscosity of wheat starch suspensions and potato starch suspensions diverge

much differently than that of cornstarch. We quantify these differences by fitting all starch

rheology to a Wyart-Cates model that allows us to concretely identify the differences in phase

behavior between the three suspensions. These findings constitute the first evidence that

other starch systems show qualitatively similar rheology to that of cornstarch suspensions,

but with different details about how changes in packing fraction impact their non-Newtonian

behavior.

5.2 Measurements

All three starches used in this study, corn, potato, and wheat were sourced from Sigma-

Aldrich. Particles were suspended in de-ionized water that is X percent Cesium Chloride by

weight in order to density match the particles to the suspending medium to avoid sedimen-

tation during experiments. To prepare suspensions of known volume fractions we massed

out mixtures of particles and suspending medium and converted their masses to volumes

using their densities. To ensure reproducible results the suspensions were then let to sit for

an hour and were measured within 12 hours of preparation.

Rheology of all suspensions was carried using an Anton-Paar MCR-31 stress controlled

rheometer using a 25mm parallel plate geometry. We used a solvent trap to mitigate evap-
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oration during our measurements. Gap heights for all measurements were kept near 1cm,

a length that exceeds ten particle diameters in order to avoid ordering near the walls. To

standardize the shear history for all samples we apply a preshear of x Pa of shear stress

for y seconds after loading. Following our preshear we measure two successive forward and

backward shear stress sweeps and report the average the viscosity over all four runs. The

highest stress measured was set by observing when the exposed surface of the suspension

began to go unstable and then stopping the experiment and using that stress as the highest

stress in the stress sweep.

5.3 Results

5.3.1 Steady State Rheology

Steady state rheology for a variety of packing fractions for each starch system is shown

in Fig. 5.1, with Fig. 5.1a showing potato starch rheology, Fig. 5.1b showing cornstarch

rheology, and finally Fig. 5.1c showing wheat starch rheology. Each suspension shows shear

thickening at higher packing fractions and an approximately Newtonian rheology for the

lowest packing fractions. Qualitatively these curves look similar in that they show shear

thickening but looking at similar packing fractions across the three different starch systems

shown in Fig. 5.2 reveals stark differences.

5.3.2 Fitting Rheology Data to Wyart-Cates Model

Beyond comparing individual flow curves as is done in Fig. 5.2, we can fit the flow curves

to a Wyart-Cates model to extract phase diagrams, as is outlined in 1.2.2. In particular, we

are going to use the following form of the Wyart-Cates model that assumes the viscosity of
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Figure 5.1: Shear rheology for various packing fractions of potato starch suspensions (a),
cornstarch suspensions (b), and wheat starch suspensions (c). Colors in the legends denote
the packing fractions. Each curve is an average of four measurements that come from two
forward and backward stress sweeps that were taken after an initial preshear. Error bars are
given by the standard deviation of the four measurements at this scale is often smaller than
the point size.
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Figure 5.2: Steady state shear rheology with viscosity η plotted as a function of shear stress
τ. Data shown for three different approximately equal packing fractions, ≈ 0.32 in (a), ≈ 0.35
in (b), and ≈ 0.38 in (c). from three starch systems, cornstarch in dark blue, potato starch
in light blue, and wheat starch in red.
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a suspension as a function of stress τ and packing fraction ϕ takes the following form:

η = η0(1−
ϕ

ϕJ (τ)
)−α, (5.1)

where η0 is the suspending solvent viscosity, α is a fit parameters, and we take the stress

dependent jamming packing fraction to be ϕJ (τ) = ϕm(1− exp( τ
τ∗ ))+ϕ0 exp(

τ
τ∗ ) where ϕm

is the shear jamming packing fraction, ϕ0 is the frictionless jamming packing fraction, and τ∗

is the characteristic stress scale for shear thickening. With four fit parameters to determine

for each starch system, ϕ0, ϕm, τ∗, and α, fitting each data set in Fig. 5.1 is difficult unless

we can isolate some of these fit parameters and determine them without knowing the others.

To do this we note that Wyart-Cates theory tells us that the low viscosity data should diverge

as:

ηr = (1− ϕ

ϕ0
)−α, (5.2)

and the high viscosity data should diverge as:

ηr = (1− ϕ

ϕm
)−α. (5.3)

Therefore we can fit the lowest viscosity data points for each curve in Fig. 5.1 to equation

(5.2) and fit the highest viscosity data points for each curve in Fig. 5.1 to (5.3). With the

parameters ϕm, ϕ0, and α determined for each starch system we can get an idea of the

quality of the fits by plotting η
− 1

α
r vs ϕ as in Fig. 5.3a and η

− 1
α

r vs ϕ as in Fig Fig. 5.3b.

The data is shown as colored triangles, with red for potato starch, blue for wheat starch,

and green for cornstarch and each colored line is the corresponding fit. With ϕm, ϕ0, and α

determined the only remaining parameter to fit to is τ∗. To do this we fit equation (5.1) to

the data in Fig. 5.1 for each starch system after inputting their respective values of ϕm, ϕ0,

and α.
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Figure 5.3: Packing fraction ϕ plotted against η
− 1

α
r for low viscosity data in (a) and high

viscosity data in (b). Colors correpond to the different starch systems, red for potato starch,
green for wheat starch, and blue for cornstarch. The intersection at the x-axis is the relevant
jamming packing fraction ϕ0 for (a) and ϕm for (b).

5.3.3 Starch suspensions phase diagrams

These four fit parameters used in the Wyart-Cates model are physically significant but are

easiest to interpret if used to calculate each starch suspensions phase diagram, as shown

in Fig. 5.4a for wheat starch, Fig. 5.4b for cornstarch, and Fig. 5.4c for potato starch.

Generating this phase diagram from fit data is the subject of appendix A. These phase

diagrams plot the packing fraction ϕ against the applied shear stress τ and everywhere that

is white is where CST or Newtonian like rheology is predicted, the red region is DST is

predicted, and the green and grey regions are where solidification is predicted. With the

green region being an anisotropic shear jammed solid that requires stress to exist and the

grey region being an isotropically jammed solid that is solid at all stresses.

5.4 Discussion

All starch systems shear thicken, which is perhaps unsurprising as all of these starches are

used as thickeners in cooking, but the way in which they thicken is very different. This is
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Figure 5.4: Dense suspension phase diagrams of packing fraction ϕ vs shear stress τ for each
starch system (a) wheat starch, (b) cornstarch, and (c) potato starch. White region is where
each suspension system shows Newtonian and CST flows, red is DST flows, and green and
grey regions are jammed states. The green region is where the system is a shear jammed
solid, jammed only because of the stress applied. The grey region is where the system is
isotropically jammed, and thus is solid at all packing fractions and stresses.
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most clear in Fig. 5.2 where similar packing fractions are co-plotted for the three different

starch systems. cornstarch and wheat starch suspensions consistently shear thicken at a

consistent onset shear stress for all packing fractions while potato starch has seemingly two

onset stresses. This could be due to the wide distribution of particle sizes within potato

starch samples, as the size of potato starch granules spans a range from 5um-100um while

wheat and cornstarches have a more monodisperse distribution spanning 20um–25um and

10um-15um, respectively (116; 117). This is supported by the fact that in monodisperse

systems the onset stress for shear thickening scales with the particle size as a−2, and thus two

different onset stresses could be multiple different particle diameters competing to thicken

the suspension(12). Beyond particle size differences, the shape of these particle is often

different with cornstarch being faceted, wheat starch being lenticular, and potato starch

being rounded(116; 117).

Another striking difference that can be seen comparing the various figures in Fig. 5.2 is

that the stress where the maximum viscosity is achieved for wheat starch and cornstarch

systems stays approximately constant while potato starch shifts from ≈ 30Pa for ϕ = 0.3259

and ϕ = 0.3504 to ≈ 300Pa for the highest packing fraction ϕ = 0.39. This again could be due

to potato starch being polydisperse, as monodisperse suspensions typically have a constant

onset stress and the stress where the viscosity is maximal is also constant (12; 118; 64).

How flow curves evolve with increasing viscosity is the defining rheological difference

between these systems. This is hard to appreciate by looking at the rheology in Fig. 5.1 or

Fig. 5.2, but is exactly what the fitting parameters and phase diagrams in Fig. 5.4 capture.

We can see that the packing fraction for the onset of DST, SJ, and isotropic jamming are

very different between all three systems. In particular, we find that the cornstarch system

has the highest shear jamming volume fraction while also having the lowest packing fraction

where DST is possible.

What separates these three starch systems is the morphology of the particles as all three
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starch systems are made up of two polymers amylose and amylopectin. With cornstarch

being 26% amylose and 74% amylopectin, wheat starch composed of 25% amylose and 75%

amylopectin, and potato starch composed of 21% amylose and 79% amylopectin (119). This

indicates that the large differences in the phase behavior seen in Fig. 5.4 are mainly due

to the aforementioned morphological differences in the particle size, and not their chemical

composition.

Therefore, this study serves as not only a case study into whether starch suspensions other

than cornstarch suspensions shear thicken, but also an example of how polydispersity can

drastically impact the phase behavior of these suspensions. An interesting question posed

by this research is that while the shear jamming packing fraction, ϕm, changes drastically

across the three starch systems, it is unclear if the resulting shear jammed solid has similar

properties to that seen in shear jammed cornstarch suspensions, where the suspension jams

into an incredibly rigid structure that can even show brittle fracture (9; 2). Doing material

tests on the jammed structures of wheat and potato starch suspensions could give insight

into how the shear jammed solid phase not only changes where it occurs in ϕ-τ space due to

polydispersity, but also changes the material properties of the jammed structure.

By measuring the rheology of various starch suspensions we have shown that all starches

considered shear thicken similar to cornstarch suspensions. By fitting each set of starch rhe-

ology data to the well-established Wyart-Cates in two steps we were able to attain physcally

meaninful fit paramters such as the two jamming packing fractions ϕ0 and ϕm, as well as

a characteristic stress scale for thickening τ∗. Using these parameters we constructed the

phase diagram for each starch system that showed striking differences between the three

different starch systems, despite begin chemically similar. As the chemsitry is nearly the

same across all three systems, we posit that these large differences in the phase behavior of

these suspensions is due to their differences in particle polydispersity, as measured by other

studies. Therefore, this work provides a definitive answer to whether or not other starch sys-
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tems shear thicken but also elucidates how their thickening scales with changes in packing

fraction. Beyond establishing that these suspensions thicken, this data also serves as a case

study for how polydispersity can drastically impact the phase behavior of dense suspensions.
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CHAPTER 6

CONCLUSIONS

This body of work comprised three distinct, but related, studies of dense suspension flow

that ultimately examines how these complex flows can be understood using tools spanning

chemistry to computational physics. As demonstrated by the previous chapters, the study of

dense suspensions demands an interdisciplinary approach as many of the unexplored ques-

tions lie at the intersection of granular matter, tribology, statistical physics, among other

disciplines. I will briefly recap the big picture of each chapter before concluding with an

outlook on future research in dense suspensions.

After the introduction chapter, I outlined how to prepare and measure dense suspensions

in the laboratory. This chapter describes how a simple mixture of particles and liquid can

be deceivingly difficult to measure, depending on the constituents. Care needs to given

to density matching, adsorption timescales, thorough mixing, and other issues in order to

get reproducible results. Beyond sample preparation, measuring the resulting suspension

using a rheometer requires a setup with consistent temperature, humidity, and shear history.

Furthermore, watching the rheology tests for ejection or surface instabilities requires careful

observation during the test and knowledge of how the rheometer is measuring the shear

stress, shear rate, and ultimately viscosity. My hope is that this chapter will serve as a guide

for new researchers who want to study these fascinating systems.

Chapter 3 showed how solvation forces that depend on the chemical identity of the sol-

vent and suspending particle surface can shape suspension flows. By increasing the polymer

molecular weight of the suspending solvent, an easily addressable component of the experi-

mental system, we could elicit a shear jamming response. Before this study, tuning a single

suspension to elicit a stronger shear thickening response or even a SJ response was thought

to require particle scale modification. This is understandable as frictional interactions are

the dominant contribution to the viscosity increase during DST and the solidification seen
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during SJ, but ignores that to first establish these frictional contacts one must pierce the

film of solvent separating the two particles. By invoking ideas from nanotribology and sur-

face chemistry we argued that when this film becomes comparable to the size of the solvent

molecule, the force required to break this film becomes strongly dependent on the chem-

istry of solvent and suspending particles. In particular, the solvation forces that depend on

the affinity for the solvent molecule to the surface of the suspending particle can strongly

influence how much force is required it is to make frictional contacts.

Following my experimental investigations, the next chapter was a computational investi-

gation into transient rigid structures inside suspensions flows. This study addressed a long

standing question in the dense suspension community, namely is the drastic viscous response

seen during DST a product of intermittent jamming events from the frictional force network?

To answer this question we simulated 2D dense suspension flows and then used a rigidity

metric first introduced for studying jamming in dry granular matter. We found that system

spanning rigid clusters can be found in the flow at variety of packing fractions and stresses,

but strikingly where system spanning rigidity occurs is distinct from that where DST was

measured. This surprising result answers the question posed at the beginning of this para-

graph: incipient jamming events are not responsible for DST and instead DST occurs at

lower shear stresses than where system spanning rigidity occurs. This narrows the search

for physical mechanisms underlying DST, and suggests that any explanation of DST must

include not just rigidity and frictional forces but how they conspire with the non-frictional

forces to produce this dramatic flow behavior.

My final chapter addresses a common question when dealing with the prototypical shear

thickening and shear jamming suspension, cornstarch suspended in water, do other starch

suspensions show the same rheological behavior. In particular,namely whether do other com-

mon household starches such as wheat starch and potato starch also show shear thickening?

Through rheological tests we established that other starch systems do indeed show shear
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thickening in a qualitatively similar way to that of cornstarch, but quantitatively very differ-

ent in terms of how the shear thickening behavior changes with respect to changes in packing

fraction. To do this, we fit our data to the Wyart-Cates model to produce a phase diagram

of when these three different starch systems show CST, DST, and SJ. We find striking dif-

ferences in the jamming packing fractions of these three different systems as well different

stress ranges where CST, DST, and SJ are observed. We argue that the differences in the

phase behavior between these three starch systems is likely due to morphological differences

in the starch particles themselves, as the chemical composition between the three is similar.

This work provides not only a definitive answer to whether other starch systems show sim-

ilar rheological behavior to that of cornstarch suspensions, but also provides a compelling

case study on how small changes in physical morphology can lead to drastic changes in the

rheology of suspension systems.

6.1 Outlook

As mentioned in the previous section, the physics of dense suspensions necessitates insights

from many different seemingly disparate fields of science. This necessity made suspension

science an incredibly rewarding topic to do my PhD on, as I was in constant conversation

with scientists with different backgrounds from my own. These collaborations also shaped

my ideas of what I find to be the most interesting or important questions that remain and

is the topic of this final section.

In chapter 3 I investigated how solvation forces shape suspension flows and how they can

elicit dramatic responses such as DST and SJ. As explained in the chapter, solvation forces

are dominant only at nanometer scales, just before frictional contact is made and all solvent

is evacuated between the two suspending particles. This and other studies have established

that these nanoscale features such as solvation forces, particle asperties, or capacity for the

particles to hydrogen bond have massive impacts on the bulk rheology. This suggests a fun-
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damental connection between the field of tribology and dense suspension flows. Groups with

expertise in atomic force microscopy have already begun to tease out this connection by using

measurements of the particle surfaces at the nanoscale to explain the rheological behavior of

particle suspensions. This correspondence between the bulk rheology and nanoscale prop-

erties suggests an interesting inverse problem, can we use the bulk rheology of suspensions

to ascertain nanoscale features of the suspending particles? While this inverse problem may

be underconstrained, i.e. multiple types of nanoscale features correspond to the same bulk

rheology, even if qualitative features of the nanoscale features can be gleaned from rheo-

logical measurements this would be an incredibly powerful correspondence. It would mean

that experimentalists interested in nanoscale features could do suspension rheology as a first

pass test to determine if they should explore more difficult experiments such as atomic force

microscopy.

Chapter 4 computationally explored the rigidity of frictional force networks inside of dense

suspension flows and uncovered a new region in the dense suspension phase diagram where

rigid structures span the system. When I embarked on this project originally I hoped that

system spanning rigidity would not be a new region of the dense suspension phase diagram,

but instead overlap exactly with DST and therefore provide a physical mechanism. This

leaves a longstanding and interesting question open, is there a microscopic or mesoscopic

mechanism for DST? I believe the coincidence between the onset packing fraction for system

spanning rigidity and DST is a compelling reason to think that they might be related, but

clearly more is required to understand the mechanisms of DST. One proposition to reconcile

the two ideas is to figure out a way to meaningfully include non-frictional forces into rigidity

metrics such as the (3,3) pebble game. My naive attempts to include non-frictional forces into

the (3,3) pebble game were unsuccessful (see appendix C) but I’m hopeful that hydrodynamic

forces may one day be included into rigidity metrics.

To conclude, I believe that dense suspension research is entering an exciting new era.
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Many questions that were simply out of reach by experimental and computational physicists

a decade ago are now within reach due to advances in a variety of technologies. Furthermore,

the last decade has been ripe with insights that have pushed the field to a point where many

of the fundamentals have been ironed out, but there are still many major open questions.
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APPENDIX A

APPENDIX A: DERIVING PHASE BOUNDARIES FROM

WYART-CATES MODELS

In the introduction a Wyart-Cates model is defined as any model of viscosity, η, that has

the following form:

η = η0(1−
ϕ

ϕJ (τ)
)−α, (A.1)

where η0 is the suspending medium viscosity, ϕ is the volume fraction of the suspension,

ϕJ (τ) is a jamming packing fraction that is stress dependent, and α is a fit parameter. In

order to we find the phase boundaries for DST and SJ we impose dη
dγ̇ = ∞ for DST and

η = ∞ for SJ and solve for ϕ(τ).

A.1 DST Boundary

We will first derive the phase boundary for ϕDST (τ). Instead of using dη
dγ̇ = ∞ we will

change variables by noting that η = τ
γ̇ , where γ̇ is the shear rate. This gives the following

condition:
dη

dγ̇
=

d τγ̇
dγ̇

=
1

γ̇

dτ

dγ̇
− τ

γ̇2
= ∞ ⇒ 1

γ̇

dτ

dγ̇
= ∞. (A.2)

This new condition for DST can be further simplified by noting γ̇ > 0 and reciprocating to

give:
dγ̇

dτ
= 0. (A.3)

To use this new condition we again note that η = τ
γ̇ so (6.1) can be rearranged to give:

γ̇ =
τ

η0
(1− ϕ

ϕJ (τ)
)α (A.4)
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and now using that dγ̇
dτ = 0 gives:

dγ̇

dτ
=

1

η0
((1− ϕ

ϕJ (τ)
)α +

ατϕϕ′J (τ)

ϕ2J (τ)
(1− ϕ

ϕJ (τ)
)α−1) = 0. (A.5)

To find the solutions we can factor this expression to give:

1

η0
(1− ϕ

ϕJ (τ)
)α(1 +

ατϕϕ′J (τ)

ϕ2J (τ)− ϕJ (τ)ϕ
) = 0, (A.6)

which yields two solutions:

ϕ = ϕJ (τ) (A.7)

and

ϕ(τ) =
ϕ2J (τ)

ϕJ (τ)− ατϕ′J (τ)
. (A.8)

The solution is actually the SJ boundary which we will see in the next section and the second

solution describes the DST boundary in a Wyart-Cates model:

ϕDST (τ) =
ϕ2J (τ)

ϕJ (τ)− ατϕ′J (τ)
. (A.9)

A.2 SJ Boundary

This calculation is substantially more simple and the solution is one that we got as a bonus

from the previous calculation. To derive the SJ line one imposes η = ∞ which gives:

η = η0(1−
ϕ

ϕJ (τ)]
)−α = ∞ (A.10)

which clearly only has solution ϕ = ϕJ (τ) so the SJ boundary is given by:

ϕSJ = ϕJ (τ). (A.11)
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APPENDIX B

APPENDIX B: SUPPORTING INFORMATION FOR CHAPTER

3

In this appendix we include the three plots that appear in the supporting information for

the paper "The Role of Solvation Forces in Dense Suspension Flow", which is the paper

chapter 3 is based on. Here, we include rheology data that was taken with various different

conditions to reduce wall-slip, exhibit the Newtonian rheology of the suspendind mediums

used in that paper, and show that the role of solvation forces is important for more than

just fumed silica suspensions.

Figure B.1: Steady state rheometry data from suspensions of Aerosil OX-50 particles with
ϕ = 0.337 in PEG-200 and ϕ = 0.339 in PEG-400. Measured separately with a 25mm parallel
plate (PP) geometry with roughened top and bottom plates at two different gap heights,
25mm cone and plate (CP) geometry with β = 1◦ and roughened top and bottom plates,
and a smooth 25mm parallel plate geometry with at two different gap heights. Viscosity is
plotted as a function of shear stress for suspensions in (a) PEG-200 and (b) PEG-400.
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Figure B.2: Steady state rheometry data for the Newtonian suspending liquids used in the
study in chapter 3 EG, PEG-200, and PEG-400.
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Figure B.3: Steady state rheometry data from suspensions of spherical silica particles with
a diameter of 500nm. Reduced viscosity is plotted as a function of shear stress in EG, PEG-
200, and PEG-400.
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APPENDIX C

APPENDIX C: SUPPORTING INFORMATION FOR CHAPTER

4

This appendix is based off of the supporting information that was published with the paper

"Minimally Rigid Clusters in Dense Suspension Flow" which is what chapter four is based off

of. Here, we explore what happens to the cluster formation and statistics for various values

of interparticle friction, different system sizes, and lastly what happens when one includes

non-frictional forces into the (3,3) pebble game.

C.1 Changing sliding friction µ

We investigated as a function of sliding friction µ the minimum packing fraction for which

shear jamming and DST occur and for which system-spanning clusters emerge. This is

shown in Fig. C.1. The red and blue lines are obtained by fitting flow curves to the Wyart-

Cates model (24) to extract ϕDST and ϕSJ . The black line indicates the minimum packing

fraction where system-spanning clusters appear in at least 75% of the simulation snapshots

at the highest stress simulated τ/τ0 = 100. For each friction we simulate a range of packing

fractions with a step size of ϕ = 0.005.

We find that, within numerical accuracy of our simulations, ϕrig and ϕDST nearly coin-

cide for the range of sliding frictions µ ∈ [0.5, 1]. This happens to be the relevant µ range for

most experiments and also the range for which simulations using only sliding friction provide

the best fits to typical experimental data on dense suspensions (71). However, outside this

range there are significant differences that grow as µ decreases below 0.5 or increases beyond

1.
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Figure C.1: Dependence of the onset packing fraction for minimally rigid, system-spanning
clusters on sliding friction. Black data indicate when minimally rigid clusters first begin to
span the system in the high stress state τ/τ0 = 100. This is compared with the packing
fractions where shear jamming occurs (red data) and where DST is first measured (blue
data).

C.2 Identifying ϕrig

Since the suspensions are sheared and the contact networks are evolving continuously, finding

a system-spanning network in one simulation snapshot does not guarantee the occurrence

of another system-spanning network in the next snapshot a small strain increment later.

Therefore, to identify the onset of system-spanning minimally rigid clusters for phase dia-

grams as in Fig. 4c of the main text a threshold for the likelihood of finding such clusters

is needed. In Fig. 4c the red region corresponds to states where there are system-spanning

clusters in at least 75% of the simulation snapshots. In Fig. S3a and Fig. S3b, below, we

used two different thresholds, 65% and 85%, respectively. The figures show that the border

between the red and blue regions changes only very slightly and that the value of ϕrig is

rather insensitive to changes in thresholding.
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Figure C.2: Figure 4c from the main text but with different rigidity thresholds. Points in
(a) are colored red if 65% of snapshots exhibit a system-spanning rigid cluster and points in
(b) are colored red if 85% of snapshots exhibit a system-spanning rigid cluster. Red hollow
data symbols correspond to simulations where fewer snapshots to average over were avail-
able, given that simulations in the regime very close to shear jamming are computationally
expensive.

C.3 Incorporating repulsive and hydrodynamic lubrication forces

as constraints into the (3,3) pebble game

In the main text the (3,3) pebble game takes into account only the frictional forces as those

are the forces that have been shown to be most responsible for strong shear thickening and

necessary for shear jamming. In this section we explore four ways to incorporate, in addition

to friction, also the compressive and hydrodynamic lubrication forces into the (3,3) pebble

to see how it changes the onset of system spanning rigidity. First, we incorporate only the

compressive forces as a single constraint and find that it changes the onset of system spanning

rigidty only slightly. Next, we explore three different ways to include the hydrodynamic

lubrication forces as constraints. The first two ways are to ascribe hydrodynamic lubrication

forces either a single or double constraint, regardless of the polarity of the force, while giving

the compressive forces a single constraint. Both of these approaches make system spanning

clusters appear at much lower stresses for reasons that are discussed below. Finally, we assign
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both repulsive hydrodynamic lubrication forces and compressive forces a single constraint

while allowing the attractive hydrodynamic lubrication forces to act as anti-constraints and

find that this leads to no system spanning clusters at all packing fractions and all stresses.

It is straightforward to include also the purely repulsive forces (grey lines in Figure 1a

of main text) into the pebble game analysis by considering each purely repulsive contact as

constraining a single degree of freedom. This corresponds to asking how does electrostatic

repulsion contribute to the transient rigidity of the system. To show how these repulsive

forces change the onset of system-spanning clusters we plot in Fig. C.3 the median of the

maximum cluster distribution normalized by system size vs the normalized shear stress for

all packing fractions both including the repulsive forces and frictional forces (open circles -

dashed lines) and including only frictional forces (circles - solid lines). Adding the repulsive

forces as constraints is seen to produce only very small shifts in the size of the clusters and

leaves the onset stress for the transition nearly unchanged. Curves with the same color

completely agree at low stresses where there are little to no frictional or repulsive contacts

yet, and they nearly agree at high stresses where almost all repulsive contacts have been

converted into frictional contacts.

We now turn our attention to attempting to incorporate the hydrodynamic lubrication

forces as constraints into the pebble game. Compared to including the repulsive forces

this is non-trivial as the hydrodynamic lubrication forces (in the lubrication approximation)

can be both attractive or repulsive. The two simplest approaches would be to assign each

hydrodynamic lubrication force a single or double constraint on particle motion, regardless

of the polarity of the force. To determine how this inclusion of hydrodynamic lubrication and

compression forces changes the onset of system-spanning clusters we compare in Fig. C.4 the

median of the maximum cluster distribution normalized by system size vs the normalized

shear stress for all packing fractions for the case including both the hydrodynamic lubrication

forces and compression forces as a single constraint (circles - dashed lines), the case where
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Figure C.3: Figure 4a from the manuscript but now co-plotting the results from the (3,3)
pebble game that only incorporates frictional constraints (circles - solid lines) with additional
data that includes compression forces (open circles - dashed lines). Median of Smax/N as a
function of normalized shear stress τ/τ0, data for different packing fractions ϕ are delineated
by color.

83



hydrodynamic lubrication forces act as a double constraint and compression forces act as

a single constraint (triangles - dashed lines), and the case including only frictional forces

(circles - solid lines; same data as in Fig. 4a in the main text).

We first analyze the scenario where we inclusion of all non-frictional forces as single

constraints while including the frictional forces in the usual way (data shown in open circles

and dashed lines in Fig. C.4). We find that this way of including hydrodynamic lubrication

and compressive forces produces a sharp transition to states with system-spanning rigid

clusters at the same τ
τ0

≈ 1 for all volume fractions. This stress is precisely when frictional

contacts begin to appear. It indicates that if one considers all hydrodynamic lubrication

forces to be single constraints regardless of whether they are attractive or repulsive, then

additional constraints from small amounts of frictional contacts are required for the system

to form system-spanning rigid clusters. Furthermore, these clusters are quite different from

the ones formed by purely frictional contacts as they include every particle in the system:

the curves plateau at Smax
N = 1 instead of Smax

N ≈ 0.8 for the analysis with only frictional

constraints.

We can rationalize the onset of these clusters at τ
τ0

≈ 1 as follows. With only one

constraint per interaction one would need six interactions per particle for it to be fully

constrained in the (3,3) pebble game. To see this, consider a network of N particles where

each particles has six bonds to its nearest neighbors (a triangular lattice, for example) and

where each bond provides a single constraint. If we use the (3,3) pebble game to determine

the rigidity of this structure we assign three pebbles per particle and distribute a single pebble

to each bond. There will be 3N pebbles to distribute to 6N bonds, but since each bond is

shared between two particles there are 3N unique bonds to distribute the pebbles to. With

the number of pebbles to distribute exactly matching the number of bonds to distribute them

to we can conclude that a six-coordinated structure is the minimally coordinated structure

that can be rigid if bonds provide only one constraint. In our simulations, the hydrodynamic
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lubrication forces extend out to a cut-off distance of 0.2a where a is the radius of the smallest

particles. This makes the lubrication forces longer ranged than the compressive or frictional

forces, and as a consequence they form a well coordinated network even at low stresses

τ
τ0

< 1. Still, we find that the connectivity in this network is not yet large enough to form

system-spanning rigid clusters. This changes once frictional interactions become activated at

τ
τ0

≈ 1 because now each of the bonds associated with friction can carry two pebbles instead

of just one.

Next, we analyze the scenario where we include compressive forces as single constraints,

hydrodynamic lubrication forces as double constraints, and the frictional forces in the usual

way (data shown in open triangles and dashed lines in Fig. C.4). In this case there are

system spanning clusters at all stresses and all packing fractions as the highly coordinated

network of hydrodynamic lubrication forces provides enough constraints to fully constrain

all particles in the system, even in the low stress states (as far as the (3,3) pebble game

is concerned, letting bonds associated with the lubrication forces carry two pebbles makes

them effectively equivalent to frictional bonds). Since dense suspensions are known to exhibit

a finite onset stress (or, equivalently, onset shear rate) for strong shear thickening and in

particular DST, this assignment double constraints to lubrication forces appears produce

unphysical outcomes.

While we only simulate volume fractions in the range of ϕ ∈ [0.766, 0.79] we anticipate

that our results for including hydrodynamic lubrication forces as either single or double

constraint carry over to lower packing fractions as long as they show strong shear thickening.

This is because at any packing fraction that is dense enough for strong shear thickening there

will be a highly coordinated network of hydrodynamic lubrication forces, even at low stresses.

In the case where the hydrodynamic lubrication forces act as a single constraint the data

in Fig. C.4 suggest that already a small amount of additional frictional constraints below

the Coulomb threshold is enough to push the system to form system-spanning rigid clusters
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(we note that it is important for the frictional forces to be below the Coulomb threshold:

that way they provide two constraints to particle motion instead of just the one that the

repulsive or hydrodynamic lubrication forces provided before the requisite stress for frictional

contacts was reached). When hydrodynamic lubrication forces act as a double constraint

one can get system-spanning clusters with as little as three interactions per particle, which

happens already at very low packing fractions.

Figure C.4: Figure 4a from the manuscript but now co-plotting the results from the (3,3)
pebble game that only incorporates frictional constraints (circles - solid lines) with additional
data generated by our first strategy to include hydrodynamic lubrication forces as constraints
by assigning all hydrodynamic lubrication forces a single constraint, regardless of the polarity
(open circles - dashed lines). Median of Smax/N as a function of normalized shear stress
τ/τ0, data for different packing fractions ϕ are delineated by color.

Our final scenario is motivated by considering the effect hydrodynamic forces can have

when a particle under shear approaches an existing cluster or is moving away from it. In

the first case the lubrication interaction will be repulsive and in the second case attractive.

We therefore include hydrodynamic lubrication forces into the pebble game by adding a

single constraint when a repulsive lubrication force emerges, akin to sliding frictional forces
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and compressive forces, and by treating an attractive lubrication force, which we view as

able to disrupt existing configurations in the cluster, as an anti-constraint that can cancel

out constraints from the frictional forces, compressive forces, or repulsive hydrodynamic

lubrication forces. This works by assigning every repulsive force a number of constraints

(2 for non-sliding frictional contacts, 1 for every other repulsive force) and assigning each

attractive hydrodynamic lubrication force the ability to prune a constraint. After pruning

all possible constraints we then play the (3,3) pebble game with the remaining constraints.

Algorithmically this proceeds as follows:

1. Classify all repulsive forces as constraints with hydrodynamic, compressive, and frictional

forces at the Coulomb criterion constraining 1 degree of freedom and the frictional forces

below the Coulomb criterion constraining 2 degrees of freedom. Next, classify all attractive

hydrodynamic lubrication forces as “disruptors" which are capable of pruning a constraint

that constrains 1 degree of freedom.

2. For every hydrodynamic lubrication force Fi,j classified as a disruptor attempt to find

a corresponding constraint that involves particle i or particle j and delete that constraint.

Note that this is not always possible as sometimes there is no corresponding constraint on

particle i or j to prune.

3. With this new list of pruned constraints play the (3,3) pebble game.

This procedure captures the constraints from the repulsive hydrodynamic lubrication forces

but underestimates the disrupting nature of the attractive hydrodynamic lubrication forces.

Thus this procedure should give a lower bound on the ability for hydrodynamic lubrication

forces to disrupt clusters. We have performed this modified pebble game and again plot the

median of the maximum cluster size normalized by system size again normalized shear stress

for all packing fractions both including all the forces in this modified pebble game approach

(open circles - dashed lines) and including only frictional forces (circles - solid lines) shown

in Fig. C.5. It is apparent that his ad-hoc method of including all forces into the constraint
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counting procedure acts to destabilize all clusters for all packing fractions and stresses. There

are at least two ways in which incorporating hydrodynamic lubrication forces as constraints

in this way is incomplete. The first is that it completely ignores the tangential components

of the hydrodynamic lubrication forces, although these are a logarithmic in the separation

distance as opposed to a linear dependence that the normal component has. Second, and

perhaps more importantly, this algorithm is liable to use minuscule attractive hydrodynamic

lubrication forces to disrupt a frictional force constraint that is orders of magnitude larger

in force.

In summary, we have analyzed non-frictional forces in the (3,3) pebble game in four dis-

tinct ways: (1) we included the compressive forces as a single constraint, (2) we considered

hydrodynamic lubrication forces and compressive forces as a single constraint, (3) we in-

cluded hydrodynamic lubrication forces as a double constraint and compressive forces as a

single constraint, and (4) we developed an ad-hoc method where compressive and repulsive

forces are included as a single constraint while attractive hydrodynamic lubrication forces

are modeled as disruptors to constraints. Including only compressive forces as a single con-

straint only slightly shifts the onset of system-spanning rigid clusters and has no impact on

the results from the main text. Including the hydrodynamic lubrication forces is much less

straightforward and, since these forces are ultimately the forces that lubricate particle inter-

actions and keep the system flowing, the interpretation of the clusters is not as clear. Despite

this, if we include hydrodynamic lubrication forces by ascribing a single constraint to each

compressive and hydrodynamic lubrication force, regardless of the polarity of the force, we

find that all packing fractions show system-spanning rigid clusters near τ
τ0

≈ 1. If we ascribe

a double constraint to each hydrodynamic lubrication force along with a single constraint for

each compressive force, this leads to system-spanning rigid clusters at all packing fractions

and all stresses. Finally, if we ascribe a single constraint to repulsive hydrodynamic lubri-

cation forces and a single anti-constraint to attractive hydrodynamic lubrication forces, this
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leads to the absence of system-spanning rigid clusters at all packing fractions and stresses.

The upshot is that those interactions dominate the behavior for which double constraints

have been assigned. The (3,3) pebble game for dry granular systems and as well as sus-

pensions assigns double constraints to frictional contacts below the Coulomb threshold (but

note that in suspensions, motivated by the underlying physics, there is not only a Coulomb

threshold but also a minimum stress scale τ0 for thin lubrication layers to rupture and con-

tact friction to set in). Whenever these double constraint interactions are present, and only

once they become activated, system-spanning rigid clusters can form. But the clusters that

consist of hydrodynamic lubrication constraints are fundamentally different from those that

consist of purely repulsive or frictional constraints and it is unclear if they constrain the

particles in a way that meaningfully corresponds to rigidity. This implies that none of the

above scenarios for including hydrodynamic lubrication forces into the pebble game quite

captures the correct physics of dense suspensions. Extending the pebble game algorithm in

a way that can properly deal with both hydrodynamic and frictional forces is not straight-

forward and care will be needed because the physics behind these two types of forces is very

different. This remains an interesting direction for future exploration.

C.4 (3,3) vs (3,2) Pebble Game

For systems in two dimensions with periodic boundary conditions, as studied here, global

rotations are not allowed due to symmetry arguments. Therefore, there are only two degrees

of freedom per particle coming from the two translational degrees of freedom suggesting that

we should instead play the (3,2) pebble game instead of the (3,3) pebble game. In practice, we

find that our results are largely insensitive to this detail. This is indicated by Fig. C.6 here we

co-plot the median of Smax/N as a function of normalized shear stress τ/τ0 for results from

the (3,3) pebble game (circles - solid lines) together with the results from the (3,2) pebble

game (open circles - dashed lines). While some points move around slightly, the position
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Figure C.5: Figure 4a from the manuscript but now co-plotting the results from the (3,3)
pebble game that only incorporates frictional constraints (circles - solid lines) with additional
data generated by our second strategy to include hydrodynamic lubrication forces as both
constraints and disruptors to constraints (open circles - dashed lines). Median of Smax/N
as a function of normalized shear stress τ/τ0, data for different packing fractions ϕ are
delineated by color. The red-boxed inset plot corresponds to a zoomed in version of the
data contained in the red box in the lower right-hand corner of the plot that contains all the
results from the second strategy to include hydrodynamic lubrication forces into the pebble
game.
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Figure C.6: Figure 4a from the manuscript but now co-plotting the results from the (3,3)
pebble game (circles - solid lines) with the results from the (3,2) pebble game (open circles
- dashed lines). Median of Smax/N as a function of normalized shear stress τ/τ0, data for
different packing fractions ϕ are delineated by color.

of the transition to system spanning clusters remains unchanged, similar to what has been

found in 2D frictional granular packing’s (79). One reason for the close agreement between

the (3,3) and (3,2) pebble game results is that many of the clusters we measure are system

spanning clusters, where fixed wall boundary conditions and periodic boundary conditions

provide similar constraints. This also explains why the maximum disparity between the (3,3)

and (3,2) pebble games is for packing fractions where we do not yet find system spanning

clusters.

C.5 Larger Strain Return Maps

We have re-plotted the return maps from Figure 3(d-f) of the main text but instead of

plotting the largest cluster from the subsequent snapshot Smax
γ+δγ on the y-axis we plot Smax

γ+2δγ

in Fig. C.5(a-c), Smax
γ+3δγ in Fig. C.5(d-f), and Smax

γ+4δγ in Fig. C.5(g-i). Where the first column
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of plots corresponds to ϕ = 0.77, the second column of plots corresponds to ϕ = 0.78, and

finally the third column shows ϕ = 0.79. Looking down each column we see that while

individual points move around in their positions, the overall clustering at specific stresses

does not change qualitatively. Furthermore, at each packing fraction the return maps are

qualitatively similar to those for Smax
γ+δγ , as in the main text. We would expect to see a

qualitative difference between Fig. C.5 and Figure 3(d-f) from the main text if we chose a δγ

that is comparable with the lifetime of an individual cluster. With no qualitative difference

between Fig. C.5 and Figure 3(d-f) from the main text we conclude that our strain step of

δγ = 0.1 is sufficiently large to sample a new population of clusters at each step. This is

further corroborated by the movie included in this SI.

C.6 Maximum Cluster Distributions for Systems Above and

Below DST

Here, we investigate further maximum cluster distributions above and below the DST tran-

sition. In Fig. C.8a-b we plot the maximum cluster distributions for just below the DST

transition at ϕ = 0.774 for stresses τ
τ0

= 5, τ
τ0

= 50 in plot a and τ
τ0

= 10, τ
τ0

= 30, and

τ
τ0

= 80 in plot b. In Fig. C.8c-d we plot the maximum cluster distributions for just above

DST at ϕ = 0.776 for stresses τ
τ0

= 5, τ
τ0

= 50 in plot a and τ
τ0

= 10, τ
τ0

= 30, and τ
τ0

= 80.

We see that Fig. C.8a and Fig. C.8d look very similar just as Fig. C.8b and Fig. C.8c look

very similar. The main changes between the distributions of these two packing fractions is

that there are slightly larger populations of large clusters for the higher packing fraction,

something that is also reflected in Figure 4a from the main text.
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Figure C.7: Return maps from Figure 3 in the main text but now with the y-axis we
plot Smax

gamma+2δγ(a-c), Smax
gamma+3δγ(d-f), and Smax

gamma+4δγ(g-i). The first column shows the
return maps for ϕ = 0.77, second column is forϕ = 0.78, and the final column corresponds
to ϕ = 0.79. Inset shows zoom of data including all forces.
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Figure C.8: Size distributions P (Smax) for the largest rigid clusters within the network of
frictional contacts. Plots (a-b) correspond to ϕ = 0.774 for three different stresses in each
plot and plots (c-d) correspond to ϕ = 0.776 for three different stresses in each plot.
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