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ABSTRACT

This dissertation studies causal inference and its applications in empirical political economy.

Chapter 1 studies a binary Imbens-Angrist instrumental variable model for persuasion. In the

empirical study of persuasion, researchers often use a binary instrument to encourage individ-

uals to consume information and take some action. We show that with the Imbens-Angrist

instrumental variable model assumptions and the monotone treatment response assumption,

it is possible to identify the joint distributions of potential outcomes among compliers. This

is necessary to identify the percentage of persuaded individuals and their statistical char-

acteristics. Specifically, we develop a weighting method that helps researchers identify the

statistical characteristics of persuasion types: compliers and always-persuaded, compliers

and persuaded, and compliers and never-persuaded. These findings extend the "κ weight-

ing" results in Abadie [2003]. We also provide a sharp test on the two sets of identification

assumptions. The test boils down to testing whether there exists a nonnegative solution to

a possibly under-determined system of linear equations with known coefficients. An appli-

cation based on Green et al. [2003] is provided. The result shows that among compliers,

roughly 10% voters are persuaded. The results are consistent with the findings that voters’

voting behaviors are highly persistent.

Chapter 2 applies the methods developed in the first chapter to three empirical examples

[Enikolopov et al., 2011, Blattman and Annan, 2016, Chen and Yang, 2019]. The results

illustrate the usefulness of the methods. Re-analyzing Enikolopov et al. [2011] informed us

that most of the voters were persuaded, and the persuaded voters were likely to be middle-

aged and male. Re-analyzing Blattman and Annan [2016] informed us that around 20%

of the Liberian ex-fighters were persuaded, and the persuaded ex-fighters were more likely

to be risky type. Re-analyzing Chen and Yang [2019] informed us that roughly 20% of

the students were persuaded, and the persuaded students were likely to come from wealthy

families, come from coastal areas, less risk-loving, and less likely to believe in the inherent
xiii



goodness of people.

Chapter 3, coauthored with Hongchang Guo, studies when the validity of triple differ-

ence depends on functional form. Here, the functional form refers to the transformations

on the outcome variables (e.g., taking the logarithm of the outcome variable). Build on

Roth and Sant’Anna [2023], we provide a novel characterization: the “modified” parallel

trends assumption in the triple difference design holds under all measurable transformations

of the outcome if and only if a stronger “modified” parallel trends-type condition holds for

the cumulative distribution function of untreated potential outcomes. Another equivalent

condition for “modified” parallel trends to be insensitive to functional form is that the pop-

ulation can be partitioned into subgroups for which the treatment is effectively not (as-if)

randomly assigned and a remaining part that is stable over time, which contrasts sharply

to the decomposition results in Roth and Sant’Anna [2023]. These conditions have testable

implications on the distribution of the unobservable but identifiable untreated potential out-

comes for the treated group in the treated period. Testing these implications boils down

to testing a family of moment inequalities. We revisit Muralidharan and Prakash [2017] to

illustrate the methodology we propose.
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CHAPTER 1

A BINARY IV MODEL FOR PERSUASION: PROFILING

PERSUASION TYPES AMONG COMPLIERS

1.1 Introduction

In the empirical study of persuasion, researchers are interested in the treatment effect of

information on political choices. Since the decision to consume information is endogenous,

researchers often rely on instrumental variables (IVs) that capture exogenous variation in

that decision making process. Previous research on instrumental variables has focused on

the marginal distribution of potential outcomes: the share of people that take an action

under treatment and the share of people that do so under control [Imbens and Rubin, 1997].

However, persuasion involves moving a single person from one kind of action to another. This

paper shows that under certain assumptions, a binary instrumental variable (IV) model can

identify the proportion of individuals who are persuaded, those that are “always persuaded”,

and those that are “never persuaded”, and describe their profiles in terms of pre-treatment

covariates.

In a binary IV model of persuasion, the outcome, treatment, and instrument are all

dichotomous. Therefore, we can classify individuals into four persuasion types: (1) always-

persuaded, or those who will take the action of interest regardless of whether receive the

information treatment or not; (2) never-persuaded, or those who will not take the action

of interest regardless of the treatment; (3) persuaded, or those who will take the action of

interest only if they are exposed to the information treatment; and (4) dissuaded, or those

who will take the action of interest if they are not exposed to the information treatment but

not take the action of interest if they are exposed to the information treatment. Similarly, we
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can classify individuals into four compliance types: always-takers, never-takers, compliers,

and defiers.

We first show that in a binary Imbens-Angrist IV ("IA IV" hereafter) model with the

monotone treatment response assumption [Imbens and Angrist, 1994, Manski, 1997], the joint

distribution of potential outcomes among compliers is point identified. Note that these two

assumptions rule out the dissuaded and the defiers. Therefore, treated individuals are at least

as likely to take action as an individual who is untreated. This implies that the percentage of

persuaded individuals among compliers is equal to the local average treatment effect (LATE).

Furthermore, under monotone treatment response, the event in which an individual is always-

persuaded is equivalent to the event that an individual would take action without treatment.

The latter event only involves the marginal distribution of potential outcomes, which is point

identified. [Imbens and Rubin, 1997, Abadie, 2002, 2003]. By applying a similar argument,

we can identify the proportion of never-persuaded among compliers.

Given the ability to identify persuasion types, we can also profile them by using pre-

treatment covariates. We begin by extending the κ weighting result in Abadie [2003] to the

local persuasion rate developed by Jun and Lee [2023]. Specifically, we show that with the

IA IV assumption, we can identify the statistical characteristics measured by pre-treatment

covariates of the locally persuadable, by which we mean those who are compliers and who

will not take the action of interest without being exposed to the treatment.

We then extend this analysis to show that, under the monotone treatment response as-

sumption, we can characterize the statistical characteristics across persuasion types: always-

persuaded compliers, never-persuaded compliers, and persuaded compliers, by reweighting

the data to “find” them. This result extends the classic κ weighting result in Abadie [2003]

because we now can learn the statistical characteristics of different persuasion types among

compliers.
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The new identification results follow from the monotone treatment response assumption,

which may not be applicable in situations where researchers are uncertain about the direc-

tion of the treatment effect. To guide researchers in the applicability of these results, we

provide a sharp test on the two sets of identification assumptions and a sensitivity analysis.

The sharp test closely relates to the result in Balke and Pearl [1997]. The test exploits

the fact that a binary IA IV model with monotone treatment response assumption implies

an under-determined system of linear equations with known coefficients. Thus, testing the

validity of the identification assumptions boils down to testing whether there exists a non-

negative solution to the implied system of linear equations. We implement the test using

the subsampling method [Bai et al., 2022a]. We also provide a sensitivity result based on

the idea in Balke and Pearl [1997]. Specifically, since in the binary IV model, the observed

quantity is a linear system equation of the unobserved outcome and compliance types, we

can vary the size of the violation of the monotone treatment response assumption among

compliers to see how our point identification results change.

We also provide estimation and inference results. Our identification results show that

most of the estimands share a similar flavor with the Wald estimands. Therefore, the esti-

mation and inference results can be obtained by directly applying the classic results in the

IV literature. Moreover, they can be easily implemented in standard statistical software,

say, Stata.

Finally, we illustrate the usage of our methods by providing an application based on

Green et al. [2003]. Green et al. [2003] conduct a field experiment to use the Getting Out

the Vote (GOTV) program to persuade voters to vote. Specifically, the instrument is the

randomly assigned GOTV program. The treatment is the actual take-up of the GOTV

program. The outcome is whether or not voters turn out to vote. The results show that

among compliers, around 10% individuals are persuaded. Moreover, we find that among

compliers, the chance for always-persuaded voters to vote in the last presidential election

3



is the highest, and the chance for never-persuaded voters to vote in the last presidential

election is the lowest. These results are consistent with the interpretation that voters’ voting

behaviors are habit-forming, hence are highly persistent [Gerber et al., 2003]. Moreover,

our results show that the voting propensity of those persuaded is close to those always-

persuaded, which is consistent with the finding in Enos et al. [2014] that GOTV program

mobilizes high-propensity voters. Moreover, in Bridgeport, the results show that the chance

of being a Democrat among the persuaded voters and compliers is high, though the estimate

is quite noisy.

This paper is closely related to Abadie [2003], who provides results on identifying the

statistical characteristics measured by pre-treatment covariates for compliers. We extend

Abadie’s κ result by identifying statistical characteristics measured by the pre-treatment

covariates of the persuasion types (i.e., always-persuaded, never-persuaded, and persuaded)

among compliers under a binary IA IV model with an additional monotone treatment re-

sponse assumption.

Moreover, this paper also relates to the literature on identifying the distribution of po-

tential outcomes in an IV model. Prior work proposes three approaches: (1) focuses on

identifying the marginal distribution of potential outcomes among compliers [Imbens and

Rubin, 1997, Abadie, 2002, Abadie et al., 2002, Abadie, 2003]; (2) makes a rank invariance

assumption to point identify quantile treatment effect [Chernozhukov and Hansen, 2004,

2005, Vuong and Xu, 2017, Feng et al., 2019]; (3) constructs nonparametric sharp bounds on

the joint distribution of potential outcomes [Torgovitsky, 2019, Russell, 2021]. In this paper,

the identification of the joint distribution of potential outcomes among compliers depends

on the binary nature of the outcome and the assumption of the direction of the treatment

effect.

This paper also closely relates to Jun and Lee [2023]. Jun and Lee [2023] provides a set

of point/partial identification results for the persuasion rate and the local persuasion rate
4



under different data scenarios. One main focus of this paper is to profile the persuasion

types among compliers. Moreover, this paper provides a sharp test on the assumptions in

a binary IV model for persuasion. The sharp test itself also speaks to a large literature on

testing IA IV model validity [Balke and Pearl, 1997, Heckman and Vytlacil, 2005, Kitagawa,

2015, Huber and Mellace, 2015, Wang et al., 2017, Mourifié and Wan, 2017, Machado et al.,

2019, Kédagni and Mourifié, 2020]. The sharp test follows the tradition of the literature by

using the simple fact that the observed quantity in the data is a linear combination of the

probability of the unobserved outcome and compliance types. Furthermore, we also provide a

necessary and sufficient condition under which the “approximated” persuasion rate proposed

by DellaVigna and Kaplan [2007] equals the local persuasion rate proposed by Jun and Lee

[2023] when there is one-sided non-compliance in the experiment design. Finally, we also

provide a simple sensitivity analysis approach to assess the robustness of the results for the

violation of the monotone treatment response assumption.

The remainder of the paper proceeds as follows. In Section 2, we set up a binary IV model

of persuasion. In Section 3, we define the target parameters. Section 4 presents the point

identification results of the distribution of potential outcomes among compliers. Section 5

presents the identification results that identify the statistical characteristics of persuasion

types among compliers. Section 6 presents the estimation and inference results. Additional

discussions can be found in Section 7. We provide an application in Section 8 and conclude

in the final section.

1.2 Model Setup

In empirical study of persuasion, researchers often collect data on a binary information treat-

ment Ti, and a binary behavioral outcome Yi. In the GOTV experiment, the outcome of

interest is whether or not voters vote, and the information treatment is the information on

5



the timing and the location of the upcoming election. Since information consumption is

endogenous, researchers often employ an instrument Zi which creates exogenous variations

for an individual’s information consumption decision. In many experiments, the instrument

Zi is also binary. In the GOTV experiment, the instrument is the randomly assigned access

to the GOTV treatment, which contains information on the timing and location of the up-

coming election. Besides the aforementioned variables, researchers also collect pre-treatment

covariates Xi ∈ Rk.1 Define Yi(1) and Yi(0) as the potential outcomes that an individual

would attain with and without being exposed to the treatment, and Ti(1) and Ti(0) as the

potential treatments that an individual would attain with and without being exposed to the

instrument. For a particular individual, the variable Yi(t, z) represents the potential outcome

that this individual would obtain if Ti = t and Zi = z.

Formally speaking, researchers make the following assumptions in a binary IV model of

persuasion with the potential outcome and potential treatment notations.

Assumption 1.2.1. (A Binary IV Model of Persuasion)

1. Exclusion restriction: Yi(t, z) = Yi(t), for t, z ∈ {0, 1},

2. Exogenous instrument: Zi ⊥⊥ (Yi(0), Yi(1), Ti(0), Ti(1), Xi),

3. First stage: P[Ti = 1|Zi = 1] ̸= P[Ti = 1|Zi = 0],

4. IV Monotonicity: Ti(1) ≥ Ti(0) holds almost surely,

5. Monotone treatment response: Yi(1) ≥ Yi(0) holds almost surely, and Yi(0), Yi(1) ∈

{0, 1}.

Assumptions 1 to 4 are the assumptions in the IA IV model. In what follows, we use the

IA IV assumptions and the LATE assumptions interchangeably to refer to Assumptions 1

1. In what follows, we assume without loss of generality that k = 1.
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to 4. Note that it is not new to assume the direction of the treatment effect in econometrics

literature [Manski, 1997, Manski and Pepper, 2000, Okumura and Usui, 2014, Kim et al.,

2018]. This type of assumption is attractive when researchers have strong prior for the

direction of the treatment effect. Similar to the IV monotonicity in the IA IV assumption,

this assumption rules out the type of individuals who will take the action of interest if the

treatment switches off but will not take the action of interest if the treatment switches on.

In other words, this assumption assumes that there are no dissuaded people.

As pointed out by Machado et al. [2019], the results in Vytlacil [2002] imply that As-

sumption 1.2.1 is equivalent to the following triangular system model:

1. Yi(t) = 1{Ui ≤ γ(t)}, where γ : T → R is a measurable function with γ(0) < γ(1),

2. Ti(z) = 1{Vi ≤ ν(z)}, where ν : Z → R is a measurable function with ν(0) < ν(1),

3. Zi ⊥⊥ (Vi, Ui, Xi),

where Ui is the latent utility in the outcome process, and Vi is the latent utility in the

selection process.

Assumption 1.2.1 can be applied in cases other than persuasion.2 For instance, re-

searchers are interested in studying the effect of participating in a job training program on

the decision to join a rebellion group in a fragile state [Blattman and Annan, 2016, Blattman

et al., 2017, 2020]. Blattman and Annan [2016] conducted an experiment in Liberia that ran-

domly assigned Liberian ex-fighters to a free agricultural training program. The treatment

is the actual participation in the agricultural training program. The outcome of interest

is whether or not the Liberian ex-fighters are employed in the legal sector. Here, the IV

2. Besides the applications mentioned in the main text, the binary IA IV model with monotone treatment
response can further be applied to the study of the persuasion effect of political messages on political behavior
in democracy and autocracy [DellaVigna and Kaplan, 2007, Enikolopov et al., 2011], the persuasion effect of
uncensored internet on the views of censorship [Chen and Yang, 2019], persuading donors to donate [Landry
et al., 2006], etc.
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monotonicity condition is likely to hold because the program should decrease the cost of the

training program for all of the ex-fighters. The monotone treatment response assumption is

likely to hold as the training program is expected to increase the human capital of ex-fighters,

thereby increasing their wage return from getting a job in the legal sector and raising their

opportunity cost of getting a job in the illegal sector.

By Assumption 1.2.1, we can classify individuals into 9 groups. Since the outcome is bi-

nary, the monotone treatment response assumption implies that we can classify individuals as

always-persuaded, never-persuaded, and persuaded. By the IV monotonicity assumption, we

can classify the individuals as always-takers, never-takers, and compliers. The classification

is presented in Table 1.1.

Table 1.1: Types of Individuals

Yi(0) Yi(1) Ti(0) Ti(1) Persuasion Types Compliance Types
0 0 0 0 Never-Persuaded Never-Takers
0 1 0 0 Persuaded Never-Takers
1 1 0 0 Always-Persuaded Never-Takers
0 0 0 1 Never-Persuaded Compliers
0 1 0 1 Persuaded Compliers
1 1 0 1 Always-Persuaded Compliers
0 0 1 1 Never-Persuaded Always-Takers
0 1 1 1 Persuaded Always-Takers
1 1 1 1 Always-Persuaded Always-Takers

1.3 Target Parameters

In the empirical study of persuasion, researchers are interested in the “effect” of the informa-

tion treatment on individuals’ behaviors. One target parameter proposed by Jun and Lee

[2023] is the local persuasion rate:

θlocal := P[Yi(1) = 1|Yi(0) = 0, Ti(1) > Ti(0)].
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The local persuasion rate measures the percentage of compliers who take the action of interest

if exposed to the treatment among those who will not take the action of interest without

being exposed to the information treatment.3 In the GOTV experiment, the local persuasion

rate measures the percentage of voters who would vote if they had been exposed to the

GOTV program among compliers and those who would not vote were they not exposed to

the GOTV program. Given Assumption 1.2.1, Jun and Lee [2023] have shown that θlocal is

point identifiable.

Compared to the LATE, the local persuasion rate focuses on a smaller subpopulation.

LATE is the average treatment effect for compliers. The local persuasion rate further con-

ditions on those who will not take the action of interest without the information treatment

(i.e., [Yi(0) = 0]). In the GOTV experiment, the local persuasion rate conditions on those

who will not vote without being exposed to the GOTV program and those who comply with

the experiment design.

We propose three sets of new target parameters in this paper. First, we are interested in

the joint distribution of potential outcomes among compliers. Persuasion involves moving

an individual from one kind of action to another. Therefore, to gain a deeper understanding

of the effectiveness of information intervention, researchers need information about the joint

distribution of potential outcomes.

Second, we are interested in the statistical characteristics measured by pre-treatment

covariates for the locally persuadable. Here, the locally persuadable is the subpopulation

that θlocal conditions on: [Yi(0) = 0, Ti(1) > Ti(0)]. Learning the statistical characteristics

3. As summarized in DellaVigna and Gentzkow [2010], another popular target parameter in the empirics
of persuasion is the persuasion rate: θ := P[Yi(1) = 1|Yi(0) = 0]. DellaVigna and Gentzkow [2010] suggests to
use an estimand proposed in DellaVigna and Kaplan [2007] to measure θ: θDK = P[Yi=1|Zi=1]−P[Yi=1|Zi=0]

P[Ti=1|Zi=1]−P[Ti=1|Zi=0] ×
1

1−P[Yi(0)=1] , where researchers use P[Yi = 1|Zi = 0] to approximate P[Yi(0) = 1]. As pointed out in Jun
and Lee [2023], θDK is not a well defined conditional probability. Hence, it does not measure the persuasion
rate for any subpopulation. Moreover, Jun and Lee [2023] show that under Assumption 1.2.1, θ is not point
identifiable. They instead provide sharp bounds for θ.
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of the locally persuadable can help researchers assess the strength of the study’s external

validity. If the statistical characteristics of the locally persuadable are not similar to the

general population, researchers need to be cautious about generalizing their conclusion to

the general population.

The third set of target parameters refers to the statistical characteristics of the per-

suasion types among compliers (i.e., always-persuaded, never-persuaded, and persuaded).

Understanding these characteristics can help researchers assess the experiment’s success in

achieving specific goals and its potential policy outcomes. For instance, in the GOTV ex-

periment, researchers aimed to mobilize underrepresented minorities to vote, so estimating

the likelihood of persuaded and compliers being part of this group is crucial. Additionally,

researchers may want to determine the types of voters mobilized, such as their likelihood of

being Democrats. This information can help researchers evaluate the policy impact of the

mobilization effort.

1.4 Identification of the Potential Outcome Distributions for

Compliers

In this section, we present the results of the identification of the joint distribution of potential

outcomes among compliers. We first show that in a binary IA IV model with monotone

treatment response assumption, the joint distribution of potential outcomes among compliers

can be identified from the marginal distribution of potential outcomes among compliers. We

then show that the results can be extended to the case of a non-binary instrument.
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1.4.1 Identification of the Joint Distribution of Potential Outcomes for

Compliers in a Binary IV Model

As is well known, given the IA IV assumptions, we can point identify the marginal distri-

bution of potential outcomes among compliers [Imbens and Rubin, 1997, Abadie, 2003, Jun

and Lee, 2023]. In other words, we can know the percentage of voters who will vote if they

receive the GOTV treatment and the percentage of voters who will vote if they do not receive

the GOTV treatment among compliers. For the sake of completeness, we restate this classic

result in Lemma 1.4.1.

Lemma 1.4.1. Assume that the 1 to 4 in Assumption 1.2.1 hold, then, with binary Yi, the

marginal distribution of potential outcomes conditional on compliers is point identified:

P[Yi(0) = y | Ti(1) > Ti(0)] =
P[Yi = y, Ti = 0 | Zi = 0]− P[Yi = y, Ti = 0 | Zi = 1]

E[Ti | Zi = 1]− E[Ti | Zi = 0]

P[Yi(1) = y | Ti(1) > Ti(0)] =
P[Yi = y, Ti = 1 | Zi = 1]− P[Yi = y, Ti = 1 | Zi = 0]

E[Ti | Zi = 1]− E[Ti | Zi = 0]
,

where y ∈ {0, 1}.

The intuition of the identification results in Lemma 1.4.1 is the following. To make the

discussion more concrete, let us consider the untreated potential outcome in the GOTV

experiment. Among the voters who are not randomly assigned to the GOTV treatment (i.e.,

those with Zi = 0), for those who do not receive the GOTV experiment (i.e., those with

Ti = 0), we know that: (1) we observe their untreated potential outcome, Yi(0); (2) by the

IV monotonicity in Assumption 1.2.1, they are either compliers or never-takers. Among the

voters who are randomly assigned to the GOTV treatment (i.e., those with Zi = 1), for those

who do not receive the GOTV experiment (i.e., those with Ti = 0), we know that: (1) we

observe their untreated potential outcome; (2) by the IV monotonicity assumption, they are

never-takers. Subtracting the two groups then gives us compliers. Similarly, for the treated
11



potential outcome, subtracting a mixture of always-takers and compliers from always-takers

gives us compliers.

The two estimands in Lemma 1.4.1 are similar to the Wald estimand in the IA IV model.

Consider the marginal distribution of Yi(1) among compliers, the estimand is equivalent to

a Wald estimand with treatment variable being Ti, instrument being Zi, and the outcome

variable being 1{Yi = y, Ti = 1} with y ∈ {0, 1}. For the marginal distribution of Yi(0)

among compliers, it is the negative of the Wald estimand with the outcome variable being

the following indicator variable: 1{Yi = y, Ti = 0} with y ∈ {0, 1}.

The identification results in Lemma 1.4.1 only use the IA IV assumptions. Remarkably,

if we further assume the treatment response is monotone, we can point identify the joint

distribution of potential outcomes among compliers. Thus, this lemma strengthens the classic

results in the LATE literature that identifies the quantities of the marginal distribution of the

potential outcome of compliers [Imbens and Angrist, 1994, Angrist et al., 1996]. Lemma 1.4.1,

In other words, under Assumption 1.2.1, we can know the percentage of always-persuaded,

never-persuaded, and persuaded among compliers.

Lemma 1.4.2. Suppose Assumption 1.2.1 holds, the joint distribution of potential outcomes

among compliers is point identified:

P[Yi(1) = 1, Yi(0) = 1 | Ti(1) > Ti(0)]

=
P[Yi = 1, Ti = 0 | Zi = 0]− P[Yi = 1, Ti = 0 | Zi = 1]

E[Ti | Zi = 1]− E[Ti | Zi = 0]

P[Yi(1) = 1, Yi(0) = 0 | Ti(1) > Ti(0)]

=
E[Yi | Zi = 1]− E[Yi | Zi = 0]

E[Ti | Zi = 1]− E[Ti | Zi = 0]

P[Yi(1) = 0, Yi(0) = 0 | Ti(1) > Ti(0)]

=
P[Yi = 0, Ti = 1 | Zi = 1]− P[Yi = 0, Ti = 1 | Zi = 0]

E[Ti | Zi = 1]− E[Ti | Zi = 0]
.
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Here is the intuition behind the identification results in Lemma 1.4.2. By the monotone

treatment response in Assumption 1.2.1, we know the following three things: (1) for those

who will vote without receiving the GOTV treatment (i.e., those with Yi(0) being 1), they

will also vote with receiving the GOTV treatment (i.e., their Yi(1) is also 1); (2) for those

who will not vote with receiving the GOTV treatment (i.e., those with Yi(1) being 0), they

will also not vote without receiving the GOTV treatment (i.e., their Yi(0) is also 0); (3)

Yi(1)− Yi(0) = 1 if and only if Yi(1) = 1, Yi(0) = 0, thus, LATE becomes the proportion of

mobilizable voters among compliers.4

Note that we only need the monotone treatment response assumption to hold among com-

pliers for Lemma 1.4.2, because we are “solving” the joint distribution of potential outcomes

among compliers from the marginal distribution. However, throughout the text, we maintain

the assumption that the monotone treatment response holds almost surely for simplicity.

1.5 Profiling Persuasion Types

This section offers results that profile the persuasion types among compliers, in addition to

determining the size of the persuasion effect. We present a series of results that help identify

the statistical characteristics of the locally persuadable (that is, [Yi(0) = 0, Ti(1) > Ti(0)]) as

well as the three other persuasion types defined by the marginal potential outcomes. Next,

we provide results that identify the statistical characteristics of the three persuasion types

among compliers as defined in Table 1.1.5

4. We discuss the extension of the identification results in Lemma 1.4.2 to non-binary outcomes and
instruments in Appendix A.1. The results are negative for the former and positive for the latter.

5. We also extend some of our findings to always-takers and never-takers, see Appendix A.4.
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1.5.1 Profiling the Locally Persuadable

Given the IA IV assumption, we can identify the statistical characteristics of the subpopu-

lation defined by the following event: [Yi(0) = 0, Ti(1) > Ti(0)], i.e., the locally persuadable.

We do not directly observe this subpopulation because it involves potential outcomes and

a pair of potential treatments. In the GOTV experiment, the locally persuadable are those

who are compliers and those who will not vote if they do not receive the GOTV treatment.

We formally state the results below.6

Theorem 1.5.1. Suppose that 1 to 4 in Assumption 1.2.1 hold. Let g : R → R be measur-

able such that E[|g(Xi)|] < ∞, then, E[g(Xi) | Yi(0) = 0, Ti(1) > Ti(0)] is point identified:

E[g(Xi) | Yi(0) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 0, Ti = 0} | Zi = 0]− E[g(Xi)1{Yi = 0, Ti = 0} | Zi = 1]

P[Yi = 0, Ti = 0 | Zi = 0]− P[Yi = 0, Ti = 0 | Zi = 1]
.

We provide examples of g(Xi) below. For instance, if we choose g(Xi) = X
p
i where

p ∈ R+, we can identify any moments of a covariate Xi that exist. In the GOTV experiment,

Xi can be a binary partisanship variable, indicating whether or not i is a Democrat. Choosing

p = 1, we can identify the probability of a locally persuadable voter being a Democrat.

Another example is g(Xi) = 1{Xi ≤ x} with x ∈ R. With this choice, we can identify the

cumulative distribution function of Xi among the locally persuadable. For instance, if Xi is

personal income, we can identify the cumulative distribution function of income among the

locally persuadable voters.

Theorem 3.1 in Abadie [2003] shows that any statistical characteristic that can be defined

6. In Appendix A.8, we show that we can use the weighting results in Abadie [2003] to derive the same
result in Theorem 1.5.1.
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in terms of moments of the joint distribution of (Yi, Ti, Xi) is identified for compliers:

E[g(Yi, Ti, Xi) | Ti(1) > Ti(0)] =
1

P[Ti(1) > Ti(0)]
E[κg(Yi, Ti, Xi)],

where κ := 1 − Ti(1−Zi)
P[Zi=0]

− (1−Ti)Zi
P[Zi=1]

. Theorem 1.5.1 strengthens Abadie’s κ by further

conditioning on those with an untreated potential outcome of 0. Thus, a natural question is

whether or not we can point identify E[g(Yi, Ti, Xi) | Yi(0) = 0, Ti(1) > Ti(0)] under the IA

IV assumption. The answer is no. To see this:

E[g(Yi, Ti, Xi) | Yi(0) = 0, Ti(1) > Ti(0)]

= E[g(Yi(1)Zi + Yi(0)(1− Zi), Zi, Xi) | Yi(0) = 0, Ti(1) > Ti(0)]

= E[g(Yi(1)Zi, Zi, Xi) | Yi(0) = 0, Ti(1) > Ti(0)]

= E[g(Yi(1), 1, Xi) | Zi = 1, Yi(0) = 0, Ti(1) > Ti(0)]P[Zi = 1 | Yi(0) = 0, Ti(1) > Ti(0)]

+ E[g(0, 0, Xi) | Zi = 1, Yi(0) = 0, Ti(1) > Ti(0)]P[Zi = 0 | Yi(0) = 0, Ti(1) > Ti(0)]

= E[g(Yi(1), 1, Xi) | Yi(0) = 0, Ti(1) > Ti(0)]P[Zi = 1]

+ E[g(0, 0, Xi) | Yi(0) = 0, Ti(1) > Ti(0)]P[Zi = 0],

where the first equality uses the fact that Ti = Zi for compliers, the fourth equality uses the

IV independence assumption. Due to the presence of E[g(Yi(1), 1, Xi) | Yi(0) = 0, Ti(1) >

Ti(0)]P[Zi = 1], which is about the joint distribution of potential outcomes, E[g(Yi, Ti, Xi) |

Yi(0) = 0, Ti(1) > Ti(0)] is not point identified with the IA IV assumptions.

Theorem 1.5.1 can be applied to continuous Yi by defining a new indicator variable, Ỹi =

1{Yi ∈ B}, where B is a measurable set, and a new potential outcome, Ỹi(0) = 1{Yi(0) ∈ B}.

The result in Theorem 1.5.1 holds for Ỹi under the IA IV assumptions in Assumption 1.2.1.

An example of B is: B = 1{Yi(0) ≤ ỹ}. That is, researchers can identify characteristics

measured by Xi of compliers and those with untreated outcomes less than ỹ.
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Since the marginal distribution of potential outcomes among compliers is identifiable, a

natural extension of Theorem 1.5.1 is to extend the results to the following subpopulations:

[Yi(0) = 1, Ti(1) > Ti(0)], [Yi(1) = 0, Ti(1) > Ti(0)], and [Yi(1) = 1, Ti(1) > Ti(0)].

Proposition 1.5.1. Assume that 1 to 4 in Assumption 1.2.1 hold, and let g : R → R be

measurable such that E[|g(Xi)|] < ∞, then, the following conditional expectations of g(Xi)

are point identified:

E[g(Xi) | Yi(0) = 1, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 1, Ti = 0} | Zi = 0]− E[g(Xi)1{Yi = 1, Ti = 0} | Zi = 1]

P[Yi = 1, Ti = 0 | Zi = 0]− P[Yi = 1, Ti = 0 | Zi = 1]
,

E[g(Xi) | Yi(1) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 0, Ti = 1} | Zi = 1]− E[g(Xi)1{Yi = 0, Ti = 1} | Zi = 0]

P[Yi = 0, Ti = 1 | Zi = 1]− P[Yi = 0, Ti = 1 | Zi = 0]
,

E[g(Xi) | Yi(1) = 1, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 1, Ti = 1} | Zi = 1]− E[g(Xi)1{Yi = 1, Ti = 1} | Zi = 0]

P[Yi = 1, Ti = 1 | Zi = 1]− P[Yi = 1, Ti = 1 | Zi = 0]
.

By the identical reasoning after Theorem 1.5.1, we have the following three remarks on

Proposition 1.5.1. First, the results show that any conditional moments defined by pre-

treatment covariate Xi can be identified as long as the moments are finite. Second, pick

g(Xi) = 1{Xi ≤ x} with x ∈ R, the results show that the conditional cumulative functions

are identified. Third, Proposition 1.5.1 strengthens Abadie’s κ by further conditioning on

the potential outcome. However, by the same token in the discussion before, the power of

Abadie’s κ is not fully preserved here, because we cannot identify g(Yi, Ti, Xi) conditional

on the three subpopulations above.
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1.5.2 Identification: Compliance and Persuasion

An implication of Lemma 1.4.2 is that we can point identify the statistical properties of

always-persuaded, never-persuaded, and persuaded among compliers. The results follow

because the joint distribution of potential outcomes among compliers is point identified

under the monotone treatment response assumption in the binary IA IV model. The results

are summarized in Theorem 1.5.2.

Theorem 1.5.2 (Compliance and Persuasion). Suppose Assumption 1.2.1 holds, let g :

R → R be measurable such that E[|g(Xi)|] < ∞, then, the moments of g(Xi) conditional on

always-persuaded compliers, never-persuaded compliers, and persuaded compliers are point

identified:

E[g(Xi)|Yi(1) = Yi(0) = 1, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 1, Ti = 0}|Zi = 0]− E[g(Xi)1{Yi = 1, Ti = 0}|Zi = 1]

P[Yi = 1, Ti = 0|Zi = 0]− P[Yi = 1, Ti = 0|Zi = 1]
,

E[g(Xi)|Yi(1) = Yi(0) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 0, Ti = 1}|Zi = 1]− E[g(Xi)1{Yi = 0, Ti = 1}|Zi = 0]

P[Yi = 0, Ti = 1|Zi = 1]− P[Yi = 0, Ti = 1|Zi = 0]
,

E[g(Xi)|Yi(1) = 1, Yi(0) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 1}|Zi = 1]− E[g(Xi)1{Yi = 1}|Zi = 0]

E[Yi|Zi = 1]− E[Yi|Zi = 0]
.

We now give three remarks for Theorem 1.5.2. By the identical argument in Theo-

rem 1.5.1, the conditional distribution functions of Xi given persuasion types and compliers

are also identifiable, because we can let g(Xi) being g(Xi) = 1{Xi ≤ x} with x ∈ R.

Furthermore, for measurable g, the expectations of g(Xi) conditional on the three subpop-

ulations are also identifiable given the expectation is well-defined. An implication is any

statistical moments of the always-persuaded, never-persuaded, and persuaded among com-
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pliers are identifiable. Thus, this theorem extends the weighting results in Abadie [2003] by

further conditioning on the persuasion types defined by the pair of potential outcomes.

The aforementioned statistics provide significant aid in comprehending the intervention’s

impact and mechanism. To illustrate, consider the GOTV experiment. Theorem 1.5.2 estab-

lishes the identification of the probability of a complier-persuaded voter being a Democrat.

In other words, although GOTV experiments are not typically partisan ex ante, they can

produce partisan mobilization outcomes. For instance, the data may indicate that among

compliers, the likelihood of a persuaded voter being a Democrat is exceedingly high. If

conducted in a swing state, the mobilization experiment could potentially alter the election

results. Furthermore, the results of Theorem 1.5.2 can facilitate our evaluation of the mech-

anisms by which the treatment affects the outcome. In the GOTV experiment, the afore-

mentioned results can be employed to evaluate the hypothesis that voting is habit-forming

[Gerber et al., 2003]. We can utilize prior voting records as a metric for the voting propensity.

If the hypothesis in Gerber et al. [2003] is accurate, we should observe that always-persuaded

voters among compliers exhibit the highest voting propensity while never-persuaded voters

demonstrate the lowest voting propensity.7

In addition to Theorem 1.5.2, there are several other ways to profile voters using ob-

servable covariates. For instance, researchers might be interested in the following quantity:

among the compliers and those who will not vote without being exposed to the treatment

(i.e., the locally persuadable), what are the characteristics of those who will vote with being

exposed to the treatment. For example, in the GOTV experiment, this quantity would be

the chance of locally persuadable individuals being a Democrat and will if they are exposed

to the treatment. Due to the monotone treatment response and binary outcome, there are

five other estimands that share a similar flavor with this example. The identifiability of these

7. In Appendix A.3, we present results that identify the proportion of persuasion types among compliers
while conditioning on covariates.
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estimands follows from the fact that the monotone treatment response assumption implies

the identifiability of the joint distribution of the potential outcomes among compliers. These

results are formally stated in Proposition 1.5.2.

Proposition 1.5.2. Suppose Assumption 1.2.1 holds, let g : R → R be measurable such

that E[|g(Xi)|] < ∞, then, the following conditional expectations are identifiable:

E[g(Xi)1{Yi(1) = 0} | Yi(0) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 0, Ti = 1} | Zi = 1]− E[g(Xi)1{Yi = 0, Ti = 1} | Zi = 0]

P[Yi = 0, Ti = 0 | Zi = 0]− P[Yi = 0, Ti = 0 | Zi = 1]

E[g(Xi)1{Yi(1) = 1} | Yi(0) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 1} | Zi = 1]− E[g(Xi)1{Yi = 1} | Zi = 0]

P[Yi = 0, Ti = 0 | Zi = 0]− P[Yi = 0, Ti = 0 | Zi = 1]

E[g(Xi)1{Yi(1) = 1} | Yi(0) = 1, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 1, Ti = 0} | Zi = 0]− E[g(Xi)1{Yi = 1, Ti = 0} | Zi = 1]

P[Yi = 1, Ti = 0 | Zi = 0]− P[Yi = 1, Ti = 0 | Zi = 1]

E[g(Xi)1{Yi(0) = 0} | Yi(1) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 0, Ti = 1} | Zi = 1]− E[g(Xi)1{Yi = 0, Ti = 1} | Zi = 0]

P[Yi = 0, Ti = 1 | Zi = 1]− P[Yi = 0, Ti = 1 | Zi = 0]

E[g(Xi)1{Yi(0) = 1} | Yi(1) = 1, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 1, Ti = 0} | Zi = 0]− E[g(Xi)1{Yi = 1, Ti = 0} | Zi = 1]

P[Yi = 1, Ti = 1 | Zi = 1]− P[Yi = 1, Ti = 1 | Zi = 0]

E[g(Xi)1{Yi(0) = 0} | Yi(1) = 1, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 1} | Zi = 1]− E[g(Xi)1{Yi = 1} | Zi = 0]

P[Yi = 1, Ti = 1 | Zi = 1]− P[Yi = 1, Ti = 1 | Zi = 0]

1.6 Estimation and Inference

This section provides estimation and inference results for the estimands we proposed in

Sections 4 and 5. Note that the estimands we proposed in prior sections usually take the
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form of a Wald estimand:

E[f(Xi, Yi, Ti) | Zi = 1]− E[f(Xi, Yi, Ti) | Zi = 0]

E[h(Yi, Ti) | Zi = 1]− E[h(Yi, Ti) | Zi = 0]
. (1.1)

where f and h are measurable functions that map from R to R. It is easy to see that the

numerator in Equation 1.1 is the coefficient of Zi from regressing f(Xi, Yi, Ti) on Zi and

a constant, while the denominator in Equation 1.1 is the coefficient of Zi from regressing

h(Yi, Ti) on Zi and a constant. Therefore, the standard estimation and inference theory for

Wald estimand applies immediately to the current case with i.i.d. data of (Yi, Ti, Zi, Xi).

We can either employ the conventional asymptotic results for hypothesis testing or use the

Anderson-Rubin test which is robust to weak identification. 8 Note that both inferential

methods can be easily implemented in standard statistical software, say, ivreg2 and weakiv

in Stata.9

1.7 Discussion

In this section, we discuss three points on identification results from previous sections.

Firstly, we compare θlocal with classic estimands. Next, we provide necessary and sufficient

conditions for approximated θDK to equal θlocal under one-sided non-compliance. Addition-

ally, we propose a test for Assumption 1.2.1, and a simple method to assess the sensitivity

of results to the monotone treatment response assumption.

8. We provide a more detailed discussion on inference issues in Appendix A.5.

9. ivreg2 does not produce a confidence interval for the Anderson-Rubin test, while weakiv does.
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1.7.1 Comparison with Existing Estimands

Complier Causal Attribution Rate

The most closely related target parameter to the local persuasion rate is the causal attribu-

tion rate, which measures the proportion of observed outcome prevented by the hypothetical

absence of the treatment [Pearl, 1999]. With the presence of a binary instrument, Yamamoto

[2012] defines the complier causal attribution rate denoted by pC :

pC = P[Yi(0) = 0|Yi(1) = 1, Ti = 1, Ti(1) > Ti(0)],

which measures the proportion of observed outcome prevented by the hypothetical absence

of treatment among compliers.

One main difference between pC and θlocal is that pC conditions on [Yi(1) = 1, Ti =

1, Ti > Ti(0)] but θlocal conditions on [Yi(0) = 0, Ti > Ti(0)]. Therefore, a natural way to

extend the local persuasion rate is to define the local persuasion rate on the untreated:

θlocal untreated := P[Yi(1) = 1|Yi(0) = 0, Ti = 0, Ti(1) > Ti(0)].

We can point identify θlocal untreated given Assumption 1.2.1. The intuition of the iden-

tification of θlocal untreated is that conditioning on compliers implies that Ti = Zi, thus,

θlocal untreated = θlocal. We formally state the result in Claim 1.7.1.

Claim 1.7.1. Assume that Assumption 1.2.1 holds, then, θlocal untreated is point identifiable:

θlocal untreated =
P[Yi = 1|Zi = 1]− P[Yi = 1|Zi = 0]

P[Yi = 0, Ti = 0|Zi = 0]− P[Yi = 0, Ti = 0|Zi = 1]
.
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Equivalence between the Approximated Persuasion Rate and the Local Persua-

sion Rate with One-Sided Non-Compliance

As summarized in DellaVigna and Gentzkow [2010], one popular estimand in the empirics

of persuasion is the “approximated” persuasion rate θ̃DK:

θ̃DK =
P[Yi = 1|Zi = 1]− P[Yi = 1|Zi = 0]

P[Ti = 1|Zi = 1]− P[Ti = 1|Zi = 0]
× 1

1− P[Yi = 1|Zi = 0]
.

As noted in Jun and Lee [2023], θ̃DK is not a well-defined conditional probability. Therefore,

θ̃DK does not measure persuasion rate for any subpopulation.

In this subsection, we present conditions for θ̃DK to equal θlocal in experiments with one-

sided non-compliance, which is empirically relevant in some persuasion experiments. For

instance, non-compliance issues arise in the treatment group of the GOTV experiment in

Green et al. [2003].

The results below show that for one-sided non-compliance, θ̃DK equals θlocal under specific

conditions on the distribution of potential outcomes and treatments. If there is one-sided

non-compliance in the treatment group, the two estimands are equivalent if and only if the

untreated potential outcome is independent of the treated potential treatment. If there is

none-sided non-compliance in the control group, the two estimands are equal if and only if

the proportion of untreated potential outcome being 0 among untreated potential treatment

being 0 equals the proportion of never-persuaded among the never-takers.

Theorem 1.7.1. Assume that Assumption 1.2.1 holds, if there is one-sided non-compliance

in the control group, then θDK = θlocal if and only if P[Yi(0) = 0|Ti(0) = 0] = P[Yi(1) =

0|Ti(0) = 1], if there is one-sided non-compliance in the treatment group, then θDK = θlocal

if and only if Yi(0) ⊥⊥ Ti(1).

These results contrast sharply with the results in Jun and Lee [2023], which state that
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these two quantities are equivalent to each other if: (1) Ti = Zi holds almost surely, that is,

we are in the sharp persuasion design; (2) Ti ⊥⊥ (Yi(0), Yi(1)); 3) Yi(1) = Yi(0) = 1 for all i,

or Yi(1) = Yi(0) = 0 for all i.

1.7.2 A Sharp Test of the Identification Assumptions

The main identification results in Theorem 1.5.2 rely on two assumptions: the IA IV as-

sumptions and the monotone treatment response assumption. These assumptions impose

restrictions on individuals’ choice behaviors by ruling out the dissuaded and the defiers and

are thus subject to criticism for being too strong. To address this issue, we propose a sharp

test for Assumption 1.2.1.

The idea of the test proposed here closely relates to Balke and Pearl [1997]. A binary IA

IV model with monotone treatment response assumption implies that the observed quantity,

say P[Yi = 0, Ti = 0, Zi = 0, Xi ∈ A], with A measurable, is a linear combination of the

probability of the unobserved outcome and compliance types:

Aobsp = b, (1.2)

where Aobs is a matrix that reflects the restrictions on the data, p is a vector of the unob-

served persuasion and compliance types defined in Table 1.1, b is a collection of observed

quantities, for example P[Yi = 0, Ti = 0, Xi ∈ A | Zi = 0]. An example of Aobs, p, and

b can be found in Appendix A.6. Thus, the observed quantity b is consistent with As-

sumption 1.2.1 if there exists a solution to the system of linear equations in 1.2. We now

summarize this observation to Proposition 1.7.1.

Proposition 1.7.1. If Assumption 1.2.1 holds, then, there exists p ≥ 0 such that Aobsp = b

for all measurable set A.
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An implication of Proposition 1.7.1 is that to test the validity of Assumption 1.2.1, for

observed data {Yi, Ti, Zi, Xi}ni=1 that is an independently and identically distributed sample

drawn from P ∈ P, it suffices to test the null hypothesis:

H0 : P ∈ P0 versus H1 : P ∈ P \P0 (1.3)

where P0 := {P ∈ P : ∃p ≥ 0 s.t. Aobsp = b}, which is the set of distributions that is

consistent with Assumption 1.2.1. Thus, if H0 is rejected, we have strong evidence against

the validity of Assumption 1.2.1. However, if H0 is not rejected, we cannot confirm the

validity of Assumption 1.2.1. In this precise sense, Assumption 1.2.1 is a refutable but

nonverifiable hypothesis [Kitagawa, 2015].

In terms for the implementation of testing 1.3, with discrete Xi, we can set A to be the

support of Xi, and proceed the test using the recent advancement on testing whether there

exists a nonnegative solution to a possibly under-determined system of linear equations with

known coefficients [Bai et al., 2022a, Fang et al., 2023]. One computationally intensive, yet

feasible method for testing H0 proposed in Bai et al. [2022a] is to use subsampling method.

With the subsampling method, by using the classic results in Romano and Shaikh [2012],

Bai et al. [2022a] shows that the test controls size uniformly over P. The test statistic in

Bai et al. [2022a] is given by:

Tn := inf
p≥0:Bp=1

√
n
∣∣∣Aobsp− b̂

∣∣∣ ,
where b̂ is an estimator of b.10 For the subsampling-based test, Bai et al. [2022a] defines

10. We choose ℓ2 norm when computing the test statistic. One advantage of using ℓ2 norm is that it
formulates a convex optimization problem that can be efficiently solved by standard statistical software, say,
R [Boyd and Vandenberghe, 2004, Fu et al., 2017]. For more discussions on computing the test statistic, see
Appendix A.7.
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the following quantity:

Ln(t) :=
1

Nn

∑
1≤1≤Nn

1

{
inf

p≥0:Bp=1

√
n
∣∣∣Aobsp− b̂j

∣∣∣ ≤ t

}
,

where Nn =
(n
b

)
, j indexes the jth subsample of size b, b̂j is b̂ evaluated at jth subset of

the data. The subsampling-based test in Bai et al. [2022a] is:

T sub
n := 1{Tn > L−1

n (1− α)}.

1.7.3 Sensitivity Analysis: the Monotone Treatment Response Assumption

Besides testing the identification assumptions jointly in the previous subsection, we now

develop a sensitivity analysis approach to help researchers assess to what extent the point

identification results are sensitive to the monotone treatment response assumption. Note

that we apply the sensitivity analysis to the identification results in Lemma 1.4.2.

The sensitivity analysis builds on the idea in Balke and Pearl [1997]. Note that the

marginal distribution of potential outcomes is the marginal distribution of the potential

outcomes among compliers can be represented as the following linear systems of equations:



1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1





P[Yi(0) = 0, Yi(1) = 0|Ti(1) > Ti(0)]

P[Yi(0) = 0, Yi(1) = 1|Ti(1) > Ti(0)]

P[Yi(0) = 1, Yi(1) = 0|Ti(1) > Ti(0)]

P[Yi(0) = 1, Yi(1) = 1|Ti(1) > Ti(0)]


=



P[Yi(0) = 0|Ti(1) > Ti(0)]

P[Yi(0) = 1|Ti(1) > Ti(0)]

P[Yi(1) = 0|Ti(1) > Ti(0)]

P[Yi(1) = 1|Ti(1) > Ti(0)].



Therefore, we can vary the size of P[Yi(0) = 1, Yi(1) = 0|Ti(1) > Ti(0)] to see how the

point identification results for the joint distribution of potential outcomes change. Here,

with known P[Yi(0) = 1, Yi(1) = 0|Ti(1) > Ti(0)], we can point identify P[Yi(0) = 0, Yi(1) =

25



0|Ti(1) > Ti(0)], P[Yi(0) = 0, Yi(1) = 1|Ti(1) > Ti(0)], and P[Yi(0) = 1, Yi(1) = 1|Ti(1) >

Ti(0)] from the system of equations above.

1.8 Empirical Application: Revisit Green et al. [2003]

This section demonstrates the application of the methods using Green et al. [2003] as an

example. First, we provide information on the empirical setup. Then, we illustrate our main

identification results with data from Green et al. [2003]. Finally, we conduct the test for the

identification assumptions and sensitivity analysis.

1.8.1 Empirical Setup

Green et al. [2003] conducted randomized voter mobilization experiments before the Novem-

ber 6, 2001 election in the following six cities: Bridgeport, Columbus, Detroit, Minneapolis,

Raleigh, and St. Paul. The instrument Zi is a randomly assigned face-to-face contact from

a coalition of nonpartisan student and community organizations, encouraging voters to vote.

The treatment Ti is whether or not voters indeed received face-to-face contact. The outcome

variable Yi is voter turnout in various elections in 2001. There are two pre-treatment covari-

ates that we are interested in. For the full sample, we are interested in whether or not voters

voted in the 2000 presidential election. We also restrict the analysis to Bridgeport. For

Bridgeport, we are interested in whether or not voters are Democrats. A summary statistics

table is provided in Table 1.2.

1.8.2 Empirical Results

We first present the results for the marginal and joint distribution of potential outcomes of

compliers in Table 1.3. Our results reveal two interesting patterns. First, conditional on
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Table 1.2: Summary Statistics in Green et al. [2003]

Observations Mean Std. Dev. Min Max
Panel A: Full Sample
Yi: Vote 18,933 0.296 0.457 0 1
Ti: Take-up of the GOTV 18,933 0.136 0.342 0 1
Zi: Assignment the GOTV 18,933 0.461 0.498 0 1
Voted in 2000 18,933 0.608 0.488 0 1
Panel B: Bridgeport
Yi: Vote 1,806 0.118 0.323 0 1
Ti: Take-up of the GOTV 1,806 0.137 0.344 0 1
Zi: Assignment the GOTV 1,806 0.496 0.5 0 1
Democrat 1,806 0.539 0.499 0 1

Note: This table provides summary statistics for Green et al. [2003]. Std.
Dev. stands for standard deviation.

compliers, most of them are never-persuaded in both samples. Second, only 7.9% of voters

are persuaded conditional on compliers in the full sample, and 13.9% of voters are persuaded

conditional on compliers in Bridgeport.

We now apply Theorem 1.5.1 and Theorem 1.5.2 to this experiment. The results are

presented in Table 1.4. For the full sample, the probability of voting in the 2000 presidential

election conditional on the locally persuadable (that is, those who do not vote without

the information treatment and compliers) is 60.3%. A more interesting finding is that the

subpopulation of always-persuaded compliers has the highest probability (that is, 95.4%)

of voting in the 2000 presidential election. The results show that if always-persuaded and

complier voters vote in the low-profile local elections regardless of the GOTV intervention,

they will very likely vote in the high-profile 2000 presidential elections. This empirical

pattern is consistent with the robust findings on the persistent of voting behavior [Gerber

et al., 2003]. One potential explanation of the persistent of the voting behavior is that

voting behavior is habit-forming [Gerber et al., 2003]. As expected, the subpopulation of

never-persuaders and compliers has the lowest probability of voting in the 2000 presidential

election.
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Table 1.3: Distribution of Potential Outcomes in Green et al. [2003]

Estimates 95% CI 95% AR CI
Panel A: Full Sample
P[Yi(0) = 1|Ti(1) > Ti(0)] 0.302 (0.261, 0.343) (0.263, 0.343)
P[Yi(1) = 1|Ti(1) > Ti(0)] 0.381 (0.364, 0.398) (0.365, 0.397)
P[Yi(0) = 1, Yi(1) = 1|Ti(1) > Ti(0)] 0.302 (0.261, 0.343) (0.263, 0.343)
P[Yi(0) = 0, Yi(1) = 0|Ti(1) > Ti(0)] 0.619 (0.602, 0.636) (0.603, 0.635)
P[Yi(0) = 0, Yi(1) = 1|Ti(1) > Ti(0)] 0.079 (0.035, 0.123) (0.036, 0.122)
Panel B: Bridgeport
P[Yi(0) = 1|Ti(1) > Ti(0)] 0.111 (0.019, 0.202) (0.02, 0.202)
P[Yi(1) = 1|Ti(1) > Ti(0)] 0.25 (0.197, 0.303) (0.196, 0.303)
P[Yi(0) = 1, Yi(1) = 1|Ti(1) > Ti(0)] 0.111 (0.019, 0.202) (0.02, 0.202)
P[Yi(0) = 0, Yi(1) = 0|Ti(1) > Ti(0)] 0.75 (0.697, 0.803) (0.697, 0.804)
P[Yi(0) = 0, Yi(1) = 1|Ti(1) > Ti(0)] 0.139 (0.033, 0.245) (0.034, 0.244)

Note: This table provides estimated marginal and joint distributions of potential
outcomes among compliers for Green et al. [2003]. CI stands for confidence interval.
AR stands for Anderson-Rubin.

Another interesting finding is that the voting propensity in the 2000 presidential election

of the persuaded and compliers is very close to the always-persuaded and compliers. It is

consistent with the findings that GOTV experiments mobilize the high-propensity voters

[Enos et al., 2014]. One potential explanation is that the GOTV programs only mobilize

the voters who are on the margin of not voting. Hence, the persuaded voters should have a

voting propensity that is close to the always-persuaded voters.

For the Bridgeport sample, the most interesting result is that among compliers and

persuaded, the chance of them being a Democrat is very high. However, its confidence

interval is pretty wide. Mobilizing more Democrats in the school board election in Bridgeport

has practical implications for two reasons. First, Democrats are more pro-union. Second, the

turnout rate in school board elections is usually low.11 The mobilized voters might vote for

pro-union candidates and help select candidates who were more likely to increase teachers’

salaries and benefits and improve their working conditions [Anzia, 2011].

11. According to Green et al. [2003], the turnout rate in Bridgeport school board election in the control
arm is 9.9%
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Table 1.4: Profiling Persuasion Types in Green et al. [2003]

Estimates 95% CI 95% AR CI
Panel A: Full Sample
P[Voted in 2000 = 1|Locally Persuadable] 0.603 (0.547, 0.659) (0.549, 0.659)
P[Voted in 2000 = 1|AP, C] 0.954 (0.914, 0.994) (0.914, 0.994)
P[Voted in 2000 = 1|NP, C] 0.511 (0.489, 0.534) (0.489, 0.533)
P[Voted in 2000 = 1|P, C] 0.885 (0.715, 1) (0.657, 1)
Panel B: Bridgeport
P[Democrat = 1|Locally Persuadable] 0.515 (0.35, 0.68) (0.349, 0.681)
P[Democrat = 1|AP, C] 0.507 (0.078, 0.935) (0, 0.920)
P[Democrat = 1|NP, C] 0.538 (.467, 0.609) (0.467, 0.609)
P[Democrat = 1|P, C] 0.813 (0.437, 1) (0.346, 1)

Note: This table provides the results of profiling different persuasion types using pre-
treatment covariates. CI refers to confidence interval. AR refers to Anderson-Rubin.
Locally persuadable refers to the following event: [Yi(0) = 0, Ti(1) > Ti(0)]. C refers to
the following event: [Ti(1) > Ti(0)]. AP refers to the following event: [Yi(1) = Yi(0) = 1].
NP refers to the following event: [Yi(1) = Yi(0) = 0]. P refers to the following event:
[1 = Yi(1) > Yi(0) = 0].

1.8.3 Testing Identification Assumptions and Sensitivity Analysis

We implement the test for the Assumption 1.2.1 by using Proposition 1.7.1. We use the

subsampling method in Bai et al. [2022a] for this test.12 The results in Figure 1.1 show that

we cannot reject the validity of the identification assumptions at the 5% level for both the full

sample and the Bridgeport sample. Furthermore, we provide the sensitivity analysis result

on the joint distribution of potential outcomes in Table 1.5 by varying the degree to which

the monotone treatment response assumption is violated among compilers. Interestingly,

when the violation becomes larger, the proportion of persuaded among compliers increases.

12. The subsampling test in Bai et al. [2022a] requires us to pick a size for the subsample with bn −→ ∞
and bn

n −→ 0. We set bn to n
2
3 here.
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Figure 1.1: Test Identification Assumptions using Bai et al. [2022a]

Note. These figures present the results for testing identification assumptions. Figure 1.1a presents the results
using the full sample. Figure 1.1b presents the results using the sample from Bridgeport. The solid lines are
the critical values for a 5% level test. The dashed lines are the test statistics.

1.9 Conclusion

In the empirical study of persuasion, researchers often use a binary instrument to encourage

individuals to consume information. The outcome of interest is also binary. Under the IA

IV assumptions and the monotone treatment response assumption, we first show that it is

possible to identify the joint distributions of potential outcomes among compliers. In other

words, we can identify the percentage of the always-persuaded (that is, individuals who

take the action of interest with and without the information treatment), the percentage of

the never-persuaded (that is, individuals who do not take the action of interest with and

without the information treatment), and the persuaded (that is, those who are mobilized

by the treatment into taking the action of interest). These new quantities can thus provide

richer information on the distribution of the treatment effects of the information treatment.

Furthermore, we develop a weighting method that helps researchers identify the statisti-

cal characteristics measured by the pre-treatment covariates of persuasion types: compliers

and always-persuaded, compliers and persuaded, and compliers and never-persuaded. These
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Table 1.5: Sensitivity for Distribution of Potential Outcomes in Green et al. [2003]

Panel A: Full Sample
Sensitivity Parameter
P[Yi(1) = 0, Yi(0) = 1|Ti(1) > Ti(0)] 0.1 0.12 0.14 0.16 0.18 0.2
Identified Parameters
P[Yi(1) = 1, Yi(0) = 1|Ti(1) > Ti(0)] 0.202 0.182 0.162 0.142 0.122 0.102
P[Yi(1) = 0, Yi(0) = 0|Ti(1) > Ti(0)] 0.519 0.499 0.479 0.459 0.439 0.419
P[Yi(1) = 1, Yi(0) = 0|Ti(1) > Ti(0)] 0.179 0.199 0.219 0.239 0.259 0.279
Panel B: Bridgeport
Sensitivity Parameter
P[Yi(1) = 0, Yi(0) = 1|Ti(1) > Ti(0)] 0.05 0.06 0.07 0.08 0.09 0.1
Identified Parameters
P[Yi(1) = 1, Yi(0) = 1|Ti(1) > Ti(0)] 0.061 0.051 0.041 0.031 0.021 0.011
P[Yi(1) = 0, Yi(0) = 0|Ti(1) > Ti(0)] 0.7 0.69 0.68 0.67 0.66 0.65
P[Yi(1) = 1, Yi(0) = 0|Ti(1) > Ti(0)] 0.189 0.199 0.209 0.219 0.229 0.239

Note: This table provides sensitivity analysis on the joint distribution of potential
outcomes among compliers by varying the size of the dissuaded among compliers.

findings extend the "κ weighting" results in Abadie [2003], which can profile the character-

istics of compliers measured by pre-treatment covariates. This method can provide richer

information on the treatment effect. For instance, some GOTV experiments aim at mo-

bilizing underrepresented minorities. With this methodology, researchers can estimate the

chance of the compliers and mobilizable voters being underrepresented minorities. Thus,

researchers can assess whether or not their interventions achieve their normative goals.

To address the criticism on the monotone treatment response assumption, we provide two

sets of solutions. First, we provide a sharp test on these two identification assumptions. The

test boils down to testing whether there exists a nonnegative solution to a possibly under-

determined system of linear equations with known coefficients. we also develop a simple

sensitivity analysis to assess the sensitivity of the results with respect to the monotone

treatment response assumption.

An application based on Green et al. [2003] is provided. The result shows that among

compliers, roughly 11% voters are persuaded. Moreover, we find that among compliers, the
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chance for always-persuaded voters to vote in the 2000 presidential election is the highest,

and the chance for never-persuaded voters to vote in the 2000 presidential election is the

lowest. These results are consistent with the interpretation that voters’ voting behaviors are

habit-forming, hence are highly persistent [Gerber et al., 2003]. Moreover, our results show

that the voting propensity of those persuaded is close to those always-persuaded, which is

consistent with the finding that GOTV programs mobilize high-propensity voters [Enos et al.,

2014]. Furthermore, in Bridgeport, the results show that the chance of being a Democrat

among the persuaded voters and compliers in Bridgeport is high, though the estimate is

quite noisy.

As pointed out in the paper, the results for the binary instrument can be easily gener-

alized to discrete-valued instrument. However, the composition of compliers changes with

any components in {z, z′} changes. This creates an aggregation problem. Furthermore,

with discrete-valued instrument, researchers can apply the partial identification approach in

Mogstad et al. [2018] to partially identify the persuasion rate, which can help researchers

assess the welfare impact of the information treatment. These constitute interesting topics

for future research.

32



CHAPTER 2

PROFILING PERSUASION TYPES IN A BINARY IA-IV

MODEL: THREE EMPIRICAL APPLICATIONS

2.1 Introduction

In this chapter, I apply the methods I developed for profiling persuasion types to three papers

[Enikolopov et al., 2011, Blattman and Annan, 2016, Chen and Yang, 2019]. Applying the

methods to Enikolopov et al. [2011] yields the following findings. First, among the compliers,

the majority of them were persuaded, and very few of them were always-persuaded. The

empirical results here contrast sharply to the other applications in which the percentage

of persuaded among compliers is usually very small. Second, the persuaded voters were

less likely to be male and the average persuaded voters were middle-aged, while the never-

persuaded voters were more likely to be male and the average never-persuaded voters were

more likely to be young adults.

Applying the methods to Blattman and Annan [2016] yields the following findings.

Around 25% of the Liberian ex-fighters were persuaded, while more than half of them were

always-persuaded. The persuaded Liberian ex-fights were likely to have fewer kids, fewer

years of schooling and younger. The always-persuaded Liberian ex-fighters, on the other

hand, were likely to have more kids, higher years of schooling and be in their early 30s. The

demographic variables of the never-persuaded Liberian ex-fighters were between the always-

persuaded and persuaded ex-fighters. Moreover, the persuaded ex-fighters were likely to

be more aggressive, less easy to reintegrate, and riskier. Meanwhile, the always-persuaded

ex-fighters were less aggressive, easier to reintegrate, and less risky.

Applying the methods to Chen and Yang [2019] yields the following findings. Among

the compliers, the majority of the students were never persuaded, and roughly 20% of the
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students who comply were persuaded. Furthermore, always-persuaded students were more

likely to come from wealthier families and less likely to be members of the CCP. The per-

suaded students were also from financially well-off families and were more likely from the

coastal areas. The always-persuaded students exhibited higher levels of risk index, patience

index, and were more likely to believe that people are good. In contrast, the persuaded

students displayed the opposite traits compared to the always-persuaded students.

2.2 Revisit Enikolopov et al. [2011]

This section demonstrates the application of the methods using Enikolopov et al. [2011] as

an example. First, we provide information on the empirical setup. Then, we present the

empirical results on the joint distribution of potential outcomes. Finally, we present the

results for profiling the persuasion types among compliers using voters’ demographic and

political variables.

2.2.1 Empirical Setup

What is the effect of watching independent media on whether or not voters voted for Putin?

To address this question, researchers need to resolve the endogeneity problem. For example,

voters who actively seek and access uncensored media might have systematically different

political preferences. To answer this question, Enikolopov et al. [2011] finds exogenous

variations to the access of NTV, an independent media in Russia around 2000, to evaluate

the impact of watching NTV on voters’ voting choices.

Enikolopov et al. [2011] used the data on the location of NTV transmitters inherited

from a Soviet educational channel and geographical variation in signal propagation, they

then calculated the strength of the signal in each locality in Russia, and on the basis of the
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signal strength predict the availability of NTV. Following Jun and Lee [2023], we create a

binary instrument

Zi = 1{Signal Poweri > median(Signal Poweri)},

by using the original continuous instrument. As documented in Enikolopov et al. [2011],

there is noncompliance with this instrument.

Enikolopov et al. [2011] examined multiple outcomes, including voting for the most pop-

ular opposition party OVR (“Fatherland–All Russsia”), voting for the pro-government party

“Unity”, etc. In our analysis below, we will focus on the outcome variable that measures

whether the voters voted for OVR. The summary statistics are presented in Table 2.1.

Table 2.1: Enikolopov et al. [2011]: Summary Statistics

N Mean Standard Deviation Min Max

Vote OVR 1,624 0.094 0.292 0 1
NTV 1,624 0.629 0.483 0 1
IV 1,624 0.477 0.500 0 1
Male 1,624 0.373 0.484 0 1
Age 1,624 30.326 16.863 0 71
High School 1,619 0.786 0.410 0 1
Marriage 1,620 0.582 0.493 0 1
Vote Yabloko 646 0.099 0.299 0 1
Vote KPRF 646 0.296 0.457 0 1
Vote LDPR 646 0.080 0.272 0 1
Vote DVR 646 0.031 0.173 0 1
Vote 1995 789 0.828 0.378 0 1

This table presents summary statistics for the sample used in our
empirical analysis.
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2.2.2 Empirical Results

We first present the results for the joint distribution of potential outcomes of compliers in

Table 2.2. There are three interesting findings. First, we cannot reject the null hypothesis

that the proportion of the always-persuaded voters is 0. Second, 31.7% of the voters were

never-persuaded. Third, the majority (that is, around 66.9%) of voters were persuaded. This

effect is very large compared with the other applications that we used.

Table 2.2: Enikolopov et al. [2011]: Joint Distribution of Potential Outcomes for Voting for
OVR

Share

AP 0.013
(0.027)

NP 0.317
(0.064)

P 0.669
(0.057)

This table presents
the estimated joint
distribution of po-
tential outcomes
among compliers.
AP refers to the
following event:
[Yi(1) = Yi(0) = 1].
NP refers to the
following event:
[Yi(1) = Yi(0) = 0].
P refers to the fol-
lowing event: [1 =
Yi(1) > Yi(0) = 0].

The results for profiling the persuasion types among compliers using the demographic

variables are presented in Table 2.3. Note that the results for the always-persuaded are

noisy, which is consistent with the finding in Table 2.2 that there are very few always-

persuaded voters. However, the results for the never-persuaded and persuaded voters are
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informative.

Regarding the male variable, the results show that the never-persuaded voters are more

likely to be male, compared with average voter. For the persuaded voters, we fail to reject

that the chance of them being a man is 0.

Regarding the age variable, there are two interesting findings. First, the average age of

the never-persuaded voters was around 26 years old. In other words, the never-persuaded

voters were likely to be young adults. Second, the average age of the always-persuaded voters

was around 37. In other words, the persuaded voters were likely to be middle-aged, and were

older than average voter.

Regarding the education variable which measures whether or not the person at least

attended high school, the results show that both the never-persuaded and persuaded voters

were likely to attend at least high school.

Regarding the marriage status, roughly half of the never-persuaded and persuaded voters

married.

The results for profiling the persuasion types among compliers using the political variables

are presented in Table 2.4. Considering that approximately 50% of the samples have missing

values on the political variables, the results should be interpreted with caution.

Three findings of profiling persuasion types with political variables merit discussion.

First, among the never-persuaded voters, 36.5% of them voted for Yabloko (“Russian United

Democratic Party”) in 1995. Second, among the never-persuaded and persuaded voters, the

likelihood of them voting in 1995 was approximately 70%. Third, the other voting variables

are imprecisely estimated.

We implement a joint test for testing the identification assumptions in the binary IV

model of persuasion. We use the subsampling method in Bai et al. [2022a] for this test.
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Table 2.3: Enikolopov et al. [2011]: Profiling Demographic Variables among Compliers for
Voting for OVR

AP NP P Summary

Male 1.433 0.695 0.085 0.373
(2.708) (0.121) (0.103) (0.484)

Age 16.137 25.999 37.037 30.326
(49.945) (3.744) (3.355) (16.863)

High School 1.543 0.953 0.823 0.786
(1.996) (0.089) (0.070) (0.410)

Marriage 0.071 0.477 0.502 0.582
(1.493) (0.115) (0.099) (0.493)

This table presents the results for profiling the per-
suasion types among compliers. For the first three
columns, standard errors are presented in the paren-
theses. The last column presents the sample averages
of the pre-treatment covariates, and standard devia-
tions are presented in parentheses. AP refers to the
following event: [Yi(1) = Yi(0) = 1]. NP refers to the
following event: [Yi(1) = Yi(0) = 0]. P refers to the
following event: [1 = Yi(1) > Yi(0) = 0].

The subsampling test in Bai et al. [2022a] requires us to pick a size for the subsample with

bn −→ ∞ and bn
n −→ 0 as n −→ ∞. We set bn to n

2
3 here. The results in Figure 2.1 show that

we cannot reject the validity of the identification assumptions at the 5% level.

Finally, we provide a comparison between the local persuasion rate proposed by Jun and

Lee [2023] and the persuasion measure proposed by DellaVigna and Kaplan [2007]. The

results are presented in Table 2.5. The results show a huge discrepancy between the two

persuasion measures. Moreover, θDK is far above one, which illustrates the fact that it is

not a well-defined conditional probability.
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Figure 2.1: Enikolopov et al. [2011]: Testing Identification Assumptions

The figure presents the results for testing identification assumptions in Enikolopov et al. [2011]. The solid
line is the critical value for a 5% level test. The dashed line is the test statistic.

2.3 Revisit Blattman and Annan [2016]

This section demonstrates the application of the methods using Blattman and Annan [2016]

as an example. First, we provide information on the empirical setup. Then, we present

the empirical results on the joint distribution of potential outcomes. Finally, we present

the results for profiling the persuasion types among compliers using Liberian ex-fighters’

demographic and violence variables.

2.3.1 Empirical Setup

What is the effect of job training programs for ex-fighters on rehabilitating high-risk men

in a post-war fragile society? To address this question, researchers need to resolve the

endogeneity problem, specifically, the fact that ex-fighters possess a comparative advantage
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Table 2.4: Enikolopov et al. [2011]: Profiling Political Variables among Compliers for Voting
for OVR

AP NP P Summary

Vote Yabloko 0.324 0.365 0.036 0.099
(0.506) (0.119) (0.100) (0.299)

Vote KPRF 1.295 -0.146 -0.046 0.296
(1.429) (0.177) (0.281) (0.457)

Vote LDPR 0.647 0.137 -0.098 0.080
(0.826) (0.084) (0.212) (0.272)

Vote DVR -0.530 0.115 0.186 0.031
(0.933) (0.067) (0.119) (0.173)

Vote 1995 3.253 0.751 0.712 0.828
(11.985) (0.121) (0.174) (0.378)

This table presents the results for profiling the per-
suasion types among compliers. For the first three
columns, standard errors are presented in the paren-
theses. The last column presents the sample averages
of the pre-treatment covariates, and standard devia-
tions are presented in parentheses. AP refers to the
following event: [Yi(1) = Yi(0) = 1]. NP refers to the
following event: [Yi(1) = Yi(0) = 0]. P refers to the
following event: [1 = Yi(1) > Yi(0) = 0].

in violence and frequently lack the human, social, and physical capital needed to succeed in

peacetime labor markets [Blattman and Annan, 2016]. To answer this question, Blattman

and Annan [2016] conducted a randomized controlled trial to evaluate the impact of job

training programs on the career choices of Liberian ex-fighters who were illegally mining or

occupying rubber plantations.

In Blattman and Annan [2016], the instrument Zi is the randomly assigned job training

program by the nonprofit Action on Armed Violence (AoAV). Specifically, there are four

components in the job training program: (1) residential coursework and practical training in

agricultural work; (2) counseling and a "life skills" class; (3) transportation to a community

of the trainees’ choice; and (4) a two-stage package of tools/supplies tailored to the trainee’s
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Table 2.5: Enikolopov et al. [2011]: Comparison Between θlocal and θDK

Persuasion Rate Measures

DK Persuasion Rate 2.969
(0.747)

Local Persuasion Rate 0.322
(0.062)

This table presents the results of comparing θlocal and
θDK. Standard errors are presented in the parenthe-
ses.

interests, such as vegetable farming or animal husbandry.

There were noncompliance issues in this experiment. 74% of those assigned to the job

training program complied, in that they attended the program at least a day. 94% of those

who attended a day graduated at the end [Blattman and Annan, 2016]. Blattman and

Annan [2016] coded treatment Ti as 1 if person i attended the program for at least a day.

The summary statistics are presented in Table 2.6.

Table 2.6: Blattman and Annan [2016]: Summary Statistics

N Mean Standard Deviation Min Max

Agricultural Work 1,164 0.731 0.444 0 1
Legal Work 1,167 0.653 0.476 0 1
Treatment 1,274 0.398 0.490 0 1
IV 1,274 0.562 0.496 0 1
Number of Children 1,274 2.263 2.072 0 13
Education 1,274 5.632 3.831 0 16
Age 1,274 29.790 7.704 18 57
Closeness to Former Commanders 1,274 -0.021 0.970 -0.365 5.299
Was a Combatant 1,274 0.670 0.471 0 1
Aggression Index 1,274 1.338 1.940 0 12
Ease of Reintegration 1,274 -0.042 0.976 -0.891 2.919
Patience Index 1,274 2.985 0.872 0 4
Risk Index 1,274 0.329 0.587 0 3

This table presents summary statistics for the sample used in our empirical analysis.

Blattman and Annan [2016] examined the effect of the training program on many out-
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comes in their paper. In this empirical study, we will investigate the two main outcomes:

(1) whether the individual engaged in agricultural work after the training, and (2) whether

the individual fully participated in legal activities. We focus on these two outcomes for two

reasons. First, Blattman and Annan [2016] found strong effects of the training program on

these two outcome variables. Second, the monotone treatment response assumption is more

likely to hold for those two outcome variables. The job training program enhances each

trainee’s human capital in agricultural work and other soft skills necessary for success in

the labor market. Consequently, it increases the trainee’s likelihood of working in the legal

sector.

2.3.2 Empirical Results

We first present the results for the joint distribution of potential outcomes of compliers

for agricultural work and legal activities in Table 2.7 and Table 2.8, respectively. There

are two interesting patterns. First, conditional on compliers, more than half of them were

always-persuaded for both outcomes. Second, in terms of the agricultural work, 16% of

the ex-fighters who were compliers were persuaded, while 34.8% of the ex-fighters who were

compliers were persuaded. The observation that the effect was more significant for legal

activities aligns with findings suggesting that job training programs teaching ex-fighters

"soft skills" enhance their abilities not only to succeed in agricultural jobs but also to excel

in the labor market during peacetime [Blattman et al., 2017].

We now present the results for profiling compliers using the demographic variables. We

look at three specific demographic variables, namely, the number of kids, education level,

and age. The results for agricultural work and legal activities are presented in Table 2.9 and

Table 2.10, respectively.

There are three interesting empirical findings. First, for the persuaded trainees, we fail

42



to reject the null that the number of children they have is 0. This is consistent with the

finding that they are the youngest among the three persuasion types. On the other hand,

trainees who are always persuaded have roughly three children. This is consistent with the

interpretation that they bear the responsibility of childbearing and provide financial support

through the labor market. Moreover, the never-persuaded trainees have fewer kids than the

always-persuaded trainees.

Second, as for the education variable, the level of education measured by years of schooling

is the lowest among the persuaded trainees, although the point estimate for the legal activities

outcome is not precisely estimated. This finding can be interpreted as evidence of the higher

marginal return of the training program for individuals with lower levels of education. In

contrast, the always-persuaded trainees have the highest level of education. This finding is

consistent with the opportunity cost hypothesis of crime [Becker, 1968, Grossman, 1991].

Individuals with higher levels of education possess higher human capital, allowing them

to earn higher wages in the labor market. This raises their opportunity cost of joining a

rebellious group, making it more likely for them to work in the legal sector.

Thirdly, regarding the age variable, persuaded trainees are the youngest, whereas always-

persuaded individuals are the oldest. It’s worth noting that the average age is not precisely

estimated for the persuaded group when legal activities are used as the outcome variable.

These findings are consistent with the findings for the number of children.

We now present the results for profiling compliers using the variables that measure the

tendency for violence. Specifically, we look at six variables, namely, closeness to former

commanders, whether the person was a combatant or not, aggression index, ease of reinte-

gration, patience index, and risk index. The results for agricultural work and legal activities

are presented in Table 2.11 and Table 2.12, respectively.

There are six interesting findings. Regarding the closeness to former commanders, per-
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suaded trainees have the lowest score on this, though the estimates when the outcome is en-

gaging in legal activities are not precisely estimated. Interestingly, always-persuaded trainees

have the highest level of being close to former commanders. Moreover, the persuaded ex-

fighters are much less close to former commanders than average ex-fighters.

For the variable that measures whether or not the trainees were a combatant before, the

results show that the chance of being a combatant is around 70% across three persuasion

types when the outcome variable is agricultural work. We observe similar patterns when

engaging in legal activities is used as the outcome variable, although the estimates for the

persuaded group become much noisier.

For the variable that measures individuals’ aggression level, the always-persuaded trainees

have the lowest measure for the aggression index. This finding is again consistent with the

opportunity cost hypothesis for crime [Becker, 1968, Grossman, 1991]. Individuals with lower

aggression levels have a comparative advantage in the labor market, enabling them to earn

higher wages. This increased earning potential raises their opportunity cost of joining a

rebellious group, making it more likely for them to choose legal employment. However, the

results for the never-persuaded and persuaded are less conclusive. Moreover, the persuaded

ex-fighters’ aggression level is higher than average ex-fighters.

For the variable that measures individuals’ ease of integration, an interesting finding is

that this index is low for the never-persuaded trainees. This finding again is consistent with

the opportunity cost hypothesis for crime [Becker, 1968, Grossman, 1991]. Individuals who

are more difficult to integrate might have a comparative advantage in rebellious activities,

which raises their opportunity cost of working in the legal sector, making it less likely for

them to choose legal employment. The results for always-persuaded and persuaded are

less conclusive. However, the point estimates show that, compared with never-persuaded

trainees, always-persuaded trainees are easier to integrate, whereas persuaded trainees are

more difficult to integrate. Moreover, the persuaded ex-fighters’ ease of reintegration is far
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lower than average ex-fighters.

For the variable that measures individuals’ level of patience, we find that the persuaded

trainees have the highest level of patience, while the never-persuaded trainees have the lowest

level of patience. The patience index of the always-persuaded trainees is in the middle.

For the variable that measures individuals’ level of risk, we find that the always-persuaded

trainees have the lowest level of risk, and the persuaded trainees have the highest level of

risk. However, a caveat is that the estimates for the persuaded trainees are noisy. The risk

index of the never-persuaded trainees is in the middle.

We implement a joint test for testing the identification assumptions in the binary IV

model of persuasion. We use the subsampling method in Bai et al. [2022a] for this test.

The subsampling test in Bai et al. [2022a] requires us to pick a size for the subsample with

bn −→ ∞ and bn
n −→ 0 as n −→ ∞. We set bn to n

2
3 here. The results in Figure 2.2 show

that we cannot reject the validity of the identification assumptions at the 5% level for both

outcome variables.

Finally, we provide a comparison between the local persuasion rate proposed by Jun and

Lee [2023] and the persuasion measure proposed by DellaVigna and Kaplan [2007]. The

results for agricultural work and legal activities are presented in Table 2.5 and Table 2.14

respectively.. The results show a huge discrepancy between the two persuasion measures.

Moreover, θDK is far above one, which illustrates the fact that it is not a well-defined

conditional probability.

2.4 Revisit Chen and Yang [2019]

This section demonstrates the application of the methods using Chen and Yang [2019] as

an example. First, we provide information on the empirical setup. Then, we present the
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Figure 2.2: Blattman and Annan [2016]: Testing Identification Assumptions

The figures present the results for testing identification assumptions in Blattman and Annan [2016]. The
left panel presents the results when the outcome variable is agricultural work. The right panel presents the
results when the outcome variable is legal work. The solid lines are the critical values for a 5% level test.
The dashed lines are the test statistics.

empirical results on the joint distribution of potential outcomes. Finally, we present the

results for profiling the persuasion types among compliers using students’ demographic and

preference variables.

2.4.1 Empirical Setup

What is the effect of uncensored media on individuals’ political outcomes in authoritarian

regimes? To address this question, researchers need to resolve the endogeneity problem. For

example, individuals living under autocracies who actively seek and access uncensored media

might have systematically different political preferences. To answer this question, Chen and

Yang [2019] conducted a randomized controlled trial among the students at Peking University

to evaluate the impact of uncensored internet on various political and economic outcomes.

In Chen and Yang [2019], the instrument Zi is the encouragement to view foreign news

websites and/or the randomly assigned access to the virtual proxy network (VPN) that can
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aid internet users in China to gain access to websites blocked by the Great Firewall.1 In Chen

and Yang [2019], the instrument is discrete. Specifically, there were four assigned groups

in the original study: (1) the control group; (2) an encourage treatment that encourages

students to visit foreign news websites blocked by the Great Firewall; (3) an access treatment

that gives students free access to uncensored internet; (4) an access and encouragement

treatment that gives students both free access to uncensored internet and the encouragement

treatment.

In the analysis below, we only keep the control group and the treatment group for both

received the encouragement and the access. We focus on these two groups because the treat-

ment effects in Chen and Yang [2019] are the strongest for the access and the encouragement

group.

There were noncompliance issues in this experiment. In the treatment group that both

receives the access and the encouragement, roughly 50% of students become active users of

the VPN. Note that active users are defined as students whose accounts show at least one

browsing activity per day for more than 40 days after the encouragement treatment ends

[Chen and Yang, 2019]. The summary statistics are presented in Table 2.15.

Chen and Yang [2019] examined the effect of uncensored internet on many outcomes,

including media-related behaviors and beliefs, knowledge of recent events, economic beliefs,

political beliefs, and planned behaviors. In this empirical study, we will focus on one outcome

variable, which measures whether or not the student trusts foreign media.

1. The Great Firewall, a major part of the umbrella Golden Shield Project directed by China’s Ministry of
Public Security, has operated since 2003 and serves as the main infrastructure blocking access to potentially
unfavorable incoming data from foreign media outlets [Chen and Yang, 2019].
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2.4.2 Empirical Results

We first present the results for the joint distribution of potential outcomes of compliers

in Table 2.16. There are three interesting patterns. First, conditional on compliers, more

than half of them were never-persuaded. Second, roughly one-quarter of the students were

always-persuaded. Third, around 20% of the students were persuaded.

We now present the results for profiling compliers using the demographic variables. We

look at nine specific demographic variables, namely, whether or not they are a member of the

Chinese Communist Party (CCP), household income, Han ethnicity, Hukou status, gender,

number of siblings, born in costal areas or not, live in costal areas or not, and English ability.

The results are presented in Table 2.17.

For the CCP member, there are three interesting findings. First, for the always-persuaded

students, we cannot reject the null hypothesis that the probability of them being a CCP

member is 0. Second, among the never-persuaded and persuaded students, the chance of

them being a CCP member is around 10%. Note that in this sample, 6.77% of the students

were CCP members. Moreover, the always-persuaded students were much less likely to be

CCP members, whereas the never-persuaded students were more likely to be CCP members.

For the household income, there are three findings. First, the always-persuaded students’

household income is the highest among the three persuasion groups. Second, the never-

persuaded students’ household income is the lowest among the three persuasion groups. The

findings are consistent with the findings in Roberts [2018] that the people who circumvented

the censorship tool in China were those who were richer. Moreover, the always-persuaded

students were richer than average students, and the never-persuaded students were less rich

than average students.

Regarding Hukou status, the three groups have approximately the same probability of

having a city Hukou.
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For the gender variable, we find that the always-persuaded students are more likely

to be men than the never-persuaded and persuaded. Note that there were 53.41% of the

respondents in the sample were men.

For the number of siblings, there are two interesting findings. First, for the always-

persuaded students, we cannot reject the null that the number of siblings was 0. In other

words, we cannot reject the null hypothesis that the always-persuaded student was a sin-

gle child. However, the never-persuaded and persuaded students were more likely to have

siblings.

For whether or not the students were born and lived in coastal areas, there are two

findings. First, the point estimates for always-persuaded are noisy, that is, we cannot reject

the null hypothesis that the chance that always-persuaded students were born and lived in

coastal areas is 0. Second, we find that the persuaded students are more likely to be born and

live in coastal areas than the never-persuaded students. The second finding is also consistent

with the findings in Roberts [2018].

For English ability measures, the profiling results are noisy for the three outcome groups.

Nevertheless, the point estimates for the persuaded are larger: the persuaded students have

higher English ability than the other two groups.

We now present the results for profiling compliers using the preference variables. We

look at seven preference variables collected by Chen and Yang [2019], namely, risk attitude,

patience index, whether you will punish others or not when you are treated unfairly, whether

you will punish others or not when others are treated unfairly, altruism, reciprocity, and belief

that people are good. The results are presented in Table 2.18.

In terms of the risk measure, the always-persuaded students had the highest risk pref-

erences, whereas the risk preferences of never-persuaded and persuaded students were quite

similar.
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Regarding the patience measure, the always-persuaded students exhibited the highest

level of patience, while the patience measures for the never-persuaded and persuaded students

were similar.

When it came to the question of whether one would punish those who treated them un-

fairly, our findings indicated that both always-persuaded and never-persuaded students were

more inclined to punish those who treated them unfairly compared to persuaded students.

Regarding the question of whether individuals would punish others when other people

were treated unfairly, all three groups demonstrated an equal willingness to punish in such

scenarios.

Additionally, our study revealed that the three persuasion types have similar measures

for altruism and reciprocity measures.

Finally, our results show that the always-persuaded students were more inclined to believe

that people are good, compared with the never-persuaded and persuaded. Furthermore,

the never-persuaded and persuaded students shared a similar inclination to believe in the

inherent goodness of people.

We implement a joint test for testing the identification assumptions in the binary IV

model of persuasion. We use the subsampling method in Bai et al. [2022a] for this test.

The subsampling test in Bai et al. [2022a] requires us to pick a size for the subsample with

bn −→ ∞ and bn
n −→ 0 as n −→ ∞. We set bn to n

2
3 here. The results in Figure 2.3 show that

we cannot reject the validity of the identification assumptions at the 5% level.

Finally, we provide a comparison between the local persuasion rate proposed by Jun

and Lee [2023] and the persuasion measure proposed by DellaVigna and Kaplan [2007].

The results are presented in Table 2.19. The results show a discrepancy between the two

persuasion measures, although the difference is not as large as the differences in the other

two applications.
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Figure 2.3: Chen and Yang [2019]: Testing Identification Assumptions

The figure presents the results for testing identification assumptions in Chen and Yang [2019]. The solid line
is the critical value for a 5% level test. The dashed line is the test statistic.

2.5 Conclusion

We applied the methods developed in the first chapter to three empirical examples [Enikolopov

et al., 2011, Blattman and Annan, 2016, Chen and Yang, 2019]. The results illustrate the

usefulness of the methods. Re-analyzing Enikolopov et al. [2011] informed us that most of

the voters were persuaded, and the persuaded voters were likely to be middle-aged and male.

Re-analyzing Blattman and Annan [2016] informed us that around 20% of the Liberian ex-

fighters were persuaded, and the persuaded ex-fighters were more likely to be risky type.

Re-analyzing Chen and Yang [2019] informed us that roughly 20% of the students were per-

suaded, and the persuaded students were likely to come from wealthy families, come from

coastal areas, less risk-loving, and less likely to believe in the inherent goodness of people.
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Table 2.7: Blattman and Annan [2016]: Joint Distribution of Potential Outcomes for Agri-
cultural Work

Share

AP 0.703
(0.029)

NP 0.137
(0.035)

P 0.160
(0.020)

This table presents
the estimated joint
distribution of po-
tential outcomes
among compliers.
All regressions in-
clude block dummies
for block random-
ization. Standard
errors are presented
in the parentheses.
AP refers to the
following event:
[Yi(1) = Yi(0) = 1].
NP refers to the
following event:
[Yi(1) = Yi(0) = 0].
P refers to the fol-
lowing event: [1 =
Yi(1) > Yi(0) = 0].
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Table 2.8: Blattman and Annan [2016]: Joint Distribution of Potential Outcomes for Legal
Activities

Share

AP 0.614
(0.030)

NP 0.038
(0.038)

P 0.348
(0.025)

This table
presents the
estimated joint
distribution of po-
tential outcomes
among compliers.
All regressions
include block
dummies for block
randomization.
Standard errors
are presented in
the parentheses.
AP refers to the
following event:
[Yi(1) = Yi(0) =
1]. NP refers
to the following
event: [Yi(1) =
Yi(0) = 0]. P
refers to the
following event:
[1 = Yi(1) >
Yi(0) = 0].
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Table 2.9: Blattman and Annan [2016]: Profiling Demographic Variables among Compliers
for Agricultural Work

AP NP P Summary

Number of Children 2.975 1.640 -0.940 2.263
(0.169) (0.250) (1.453) (2.072)

Education 5.890 5.215 4.624 5.632
(0.268) (0.539) (1.913) (3.831)

Age 31.486 27.313 23.913 29.790
(0.591) (0.970) (4.480) (7.704)

This table presents the results profiling the compliers with
demographic variables. All regressions include block dum-
mies for block randomization. For the first three columns,
standard errors are presented in the parentheses. The last
column presents the sample averages of the pre-treatment
covariates, and standard deviations are presented in paren-
theses. AP refers to the following event: [Yi(1) = Yi(0) = 1].
NP refers to the following event: [Yi(1) = Yi(0) = 0]. P refers
to the following event: [1 = Yi(1) > Yi(0) = 0].

Table 2.10: Blattman and Annan [2016]: Profiling Demographic Variables among Compliers
for Legal Activities

AP NP P Summary

Number of Children 2.836 1.991 -5.452 2.263
(0.171) (0.157) (8.771) (2.072)

Education 5.956 5.288 3.418 5.632
(0.299) (0.325) (6.940) (3.831)

Age 30.885 28.948 20.623 29.790
(0.603) (0.648) (16.551) (7.704)

This table presents the results profiling the compliers with de-
mographic variables. All regressions include block dummies for
block randomization. For the first three columns, standard er-
rors are presented in the parentheses. The last column presents
the sample averages of the pre-treatment covariates, and stan-
dard deviations are presented in parentheses. AP refers to the
following event: [Yi(1) = Yi(0) = 1]. NP refers to the follow-
ing event: [Yi(1) = Yi(0) = 0]. P refers to the following event:
[1 = Yi(1) > Yi(0) = 0].
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Table 2.11: Blattman and Annan [2016]: Profiling Variables that Measure the Level of
Violence among Compliers for Agricultural Work

AP NP P Summary

Closeness to Former Commanders 0.140 -0.010 -1.064 -0.021
(0.080) (0.147) (0.574) (0.970)

Was a Combatant 0.767 0.692 0.780 0.670
(0.033) (0.061) (0.222) (0.471)

Aggression Index 1.178 1.606 1.591 1.338
(0.123) (0.278) (0.918) (1.940)

Ease of Reintegration 0.090 -0.322 -0.434 -0.042
(0.074) (0.098) (0.517) (0.976)

Patience Index 2.985 2.754 3.106 2.985
(0.060) (0.136) (0.441) (0.872)

Risk Index 0.314 0.387 0.421 0.329
(0.043) (0.091) (0.300) (0.587)

This table presents the results profiling the compliers with variables that
measure individuals’ levels of violence. All regressions include block
dummies for block randomization. For the first three columns, stan-
dard errors are presented in the parentheses. The last column presents
the sample averages of the pre-treatment covariates, and standard devi-
ations are presented in parentheses. AP refers to the following event:
[Yi(1) = Yi(0) = 1]. NP refers to the following event: [Yi(1) = Yi(0) = 0].
P refers to the following event: [1 = Yi(1) > Yi(0) = 0].
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Table 2.12: Blattman and Annan [2016]: Profiling Variables that Measure the Level of
Violence among Compliers for Legal Activities

AP NP P Summary

Closeness to Former Commanders 0.137 -0.069 -2.910 -0.021
(0.085) (0.081) (3.403) (0.970)

Was a Combatant 0.737 0.739 1.120 0.670
(0.037) (0.038) (0.872) (0.471)

Aggression Index 1.176 1.419 2.253 1.338
(0.134) (0.182) (3.169) (1.940)

Ease of Reintegration 0.094 -0.164 -1.267 -0.042
(0.080) (0.081) (2.075) (0.976)

Patience Index 2.947 2.842 4.381 2.985
(0.064) (0.078) (2.008) (0.872)

Risk Index 0.308 0.344 0.777 0.329
(0.048) (0.056) (1.091) (0.587)

This table presents the results profiling the compliers with variables that
measure individuals’ levels of violence. All regressions include block
dummies for block randomization. For the first three columns, stan-
dard errors are presented in the parentheses. The last column presents
the sample averages of the pre-treatment covariates, and standard devi-
ations are presented in parentheses. AP refers to the following event:
[Yi(1) = Yi(0) = 1]. NP refers to the following event: [Yi(1) = Yi(0) = 0].
P refers to the following event: [1 = Yi(1) > Yi(0) = 0].

Table 2.13: Blattman and Annan [2016]: Comparison Between θlocal and θDK for Agricul-
tural Work

Persuasion Rate Measures

DK Persuasion Rate 2.349
(0.854)

Local Persuasion Rate 0.459
(0.084)

This table presents the results of comparing θlocal and
θDK when the outcome variable is agricultural work.
Standard errors are presented in the parentheses.
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Table 2.14: Blattman and Annan [2016]: Comparison Between θlocal and θDK for Legal
Activities

Persuasion Rate Measures

DK Persuasion Rate 6.918
(67.334)

Local Persuasion Rate 0.147
(0.098)

This table presents the results of comparing θlocal
and θDK when the outcome variable is legal activities.
Standard errors are presented in the parentheses.

Table 2.15: Chen and Yang [2019]: Summary Statistics

N Mean Standard Deviation Min Max

Trust Foreign Media 886 0.644 0.479 0 1
Treatment 886 0.275 0.447 0 1
IV 886 0.553 0.497 0 1
CCP 886 0.068 0.251 0 1
House Income 886 136,168 175,178 5,000 1,050,000
Han 886 0.910 0.287 0 1
Hukou 886 0.228 0.420 0 1
Male 865 0.534 0.499 0 1
Siblings 886 0.572 1.121 0 9
Born Costal 886 0.394 0.489 0 1
Live Costal 886 0.409 0.492 0 1
English Ability 886 -0.051 0.960 -0.891 2.235
Risk 886 5.589 1.918 0 10
Patience 886 5.992 2.184 0 10
Punish when Unfair (Self) 886 5.472 2.421 0 10
Punish when Unfair (Others) 886 4.519 2.298 0 10
Altruism 886 6.924 2.219 0 10
Reciprocity 886 8.909 1.290 0 10
People Are Good 886 5.959 2.694 0 10

This table presents summary statistics for the sample used in our empirical analysis.
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Table 2.16: Chen and Yang [2019]: Joint Distribution of Potential Outcomes for Trust in
Foreign Media

Share

AP 0.239
(0.061)

NP 0.552
(0.067)

P 0.209
(0.029)

This table presents
the estimated joint
distribution of po-
tential outcomes
among compliers.
Standard errors
are presented in
the parentheses.
AP refers to the
following event:
[Yi(1) = Yi(0) = 1].
NP refers to the
following event:
[Yi(1) = Yi(0) = 0].
P refers to the fol-
lowing event: [1 =
Yi(1) > Yi(0) = 0].
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Table 2.17: Chen and Yang [2019]: Profiling Demographic Variables among Compliers for
Trust in Foreign Media

AP NP P Summary

CCP -0.011 0.137 0.101 0.068
(0.091) (0.054) (0.048) (0.251)

House Income 150,560.393 98,039.216 136,803.978 136,168.172
(63,244.897) (17,534.713) (33,530.237) (175,178.169)

Han 0.837 0.902 0.959 0.910
(0.107) (0.046) (0.055) (0.287)

Hukou 0.209 0.216 0.199 0.228
(0.154) (0.064) (0.081) (0.420)

Male 0.646 0.490 0.487 0.534
(0.193) (0.079) (0.098) (0.499)

Siblings 0.426 0.549 0.402 0.572
(0.464) (0.136) (0.214) (1.121)

Born Costal 0.143 0.373 0.465 0.394
(0.197) (0.075) (0.097) (0.489)

Live Costal 0.095 0.392 0.515 0.409
(0.205) (0.076) (0.098) (0.492)

English Ability -0.293 -0.016 0.113 -0.051
(0.377) (0.119) (0.196) (0.960)

This table presents the results for profiling the persuasion types among
compliers. Standard errors are presented in the parentheses. AP refers
to the following event: [Yi(1) = Yi(0) = 1]. NP refers to the following
event: [Yi(1) = Yi(0) = 0]. P refers to the following event: [1 = Yi(1) >
Yi(0) = 0].
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Table 2.18: Chen and Yang [2019]: Profiling Preference Variables among Compliers for Trust
in Foreign Media

AP NP P Summary

Risk 6.201 5.667 5.319 5.589
(0.747) (0.292) (0.379) (1.918)

Patience 6.454 5.725 5.856 5.992
(0.797) (0.324) (0.408) (2.184)

Punish when Unfair (Self) 6.010 6.275 4.904 5.472
(0.936) (0.337) (0.482) (2.421)

Punish when Unfair (Others) 4.348 4.392 4.577 4.519
(0.850) (0.298) (0.447) (2.298)

Altruism 6.941 6.412 6.654 6.924
(0.798) (0.342) (0.437) (2.219)

Reciprocity 8.994 8.843 8.713 8.909
(0.507) (0.176) (0.263) (1.290)

People Are Good 7.126 5.784 5.661 5.959
(1.023) (0.408) (0.520) (2.694)

This table presents the results for profiling the persuasion types
among compliers. Standard errors are presented in the parenthe-
ses. AP refers to the following event: [Yi(1) = Yi(0) = 1]. NP refers
to the following event: [Yi(1) = Yi(0) = 0]. P refers to the following
event: [1 = Yi(1) > Yi(0) = 0].

Table 2.19: Chen and Yang [2019]: Comparison Between θlocal and θDK

Persuasion Rate Measures

DK Persuasion Rate 0.919
(0.085)

Local Persuasion Rate 0.725
(0.044)

This table presents the results of comparing θlocal and
θDK. Standard errors are presented in the parenthe-
ses.
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CHAPTER 3

WHEN IS TRIPLE DIFFERENCE SENSITIVE TO

FUNCTIONAL FORM?

3.1 Introduction

This paper studies when the “modified” parallel trends assumption necessary for the identi-

fication of the average treatment effect on the treated (ATT) in a triple difference design is

insensitive to functional form. Studying this property is worthwhile for at least two reasons.

The triple difference design has become increasingly popular in economics in recent years

[Olden and Møen, 2022]. Moreover, it is often not clear from theory that the “modified”

parallel trends should hold for a particular choice of functional form. For example, an em-

pirical researcher may be interested in the ATT in levels for a particular treatment that

is of economic relevance. However, it is not obvious that the treatment at the state-level

generates parallel trends specifically in levels rather than in logs or some other transforma-

tion. The triple difference design thus will be more credible if its validity does not depend

on a particular functional form. In this paper, we provide precise conditions under which

the triple difference is robust to functional form, we also suggest that researchers should be

careful when they give a justification specific for a functional form when the conditions are

not plausible.

We present two characterizations of when the "modified" parallel trends assumption is

insensitive to functional form, meaning that it holds for all measurable transformations of

the outcome variable. Firstly, we show that the "modified" parallel trends assumption is

insensitive to functional form if and only if a corresponding condition holds for the entire

cumulative distribution function of the untreated potential outcomes. Secondly, we show that

if the distribution of the untreated potential outcome can be decomposed into two group-
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specific trends and a group-specific stationary part, then, the “modified” parallel trends

assumption is robust to functional form.

These conditions for triple difference being invariant to transformations have testable

implications. The testable implications explore the fact that the distribution of the untreated

potential outcomes in the treated group and the treated period can be identified if the

triple difference design is insensitive to functional form. Therefore, if the triple difference

design is insensitive to functional form, the identified (or, implied) density, should be non-

negative almost everywhere. The statistical tests proposed in this paper can be useful in

terms of warning researchers when they should be particularly careful about justifying the

“modified” parallel trends assumption for some specific functional forms that they chose for

their analysis. We illustrate the tests using Muralidharan and Prakash [2017], who use a

triple difference design to study the effect of a bicycle program for girls in India’s Bihar state

on their academic performance.

Prior research has noted and shown that the parallel trends assumption in DID may

hold in levels but not logs or vice versa [Meyer, 1995, Kahn-Lang and Lang, 2020, Athey

and Imbens, 2006, Roth and Sant’Anna, 2023]. However, to the best of our knowledge, we

extend their insights in DID to triple difference and provide the first full characterization

of when the triple difference is insensitive to functional form. The conditions we prove are

distinct from the assumptions needed for identifying distributional treatment effects in DID

setting [Athey and Imbens, 2006, Bonhomme and Sauder, 2011, Callaway and Li, 2019].

The remainder of the paper is organized as follows. In Section 2, we set up a canonical

triple difference model. We provide the two characterizations of when triple difference is

insensitive to functional form in Section 3. Section 4 provides a small simulation to illustrate

the characterizations in Section 3. Section 5 discusses why we cannot directly apply Roth

and Sant’Anna [2023] to an equivalent form of the triple difference estimand, that is, a DID

with the transformed outcomes. Section 6 provides comparisons with distributional DID.
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Section 7 provides a sharp testable implication from the triple difference being invariant to

functional form. Section 8 provides an empirical application using data from Muralidharan

and Prakash [2017]. The last section provides a concluding discussion on common empirical

settings in which our approach is particularly useful.

3.2 Setup

Consider the canonical triple difference design in Olden and Møen [2022]. Units are indexed

by i. There are two periods Ti ∈ {0, 1}. There are two group indicators: Gi, Hi ∈ {0, 1}.

An example of Gi can be rural and urban areas in the United States. An example of Hi can

be two binary demographic groups, say, black and white [Aaronson and Mazumder, 2011].

The treated population, denoted by Di, consists of those units for which both Gi and Hi

are equal to 1:

Di = GiHi . (3.1)

Moreover, for the treated population, the treatment is assigned in the first period. All the

remaining three groups are the control population.

The potential outcomes for unit i in period t is denoted by Yit(0), Yit(1). Given the

stable unit treatment value (SUTVA) assumption, the observed outcome is:

Yit = Yit(1)Di + Yit(0)(1−Di) . (3.2)

The target parameter with the triple difference design is the average treatment effect on
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the treated (ATT):

τATT := E[Yi1(1)− Yi1(0) | Di = 1]

= E[Yi1(1)− Yi1(0) | Gi = 1, Hi = 1] .

We first assume that there are no anticipatory effects, that is, there is no treatment effect

prior to the implementation of the treatment:

Assumption 3.2.1. (No Anticipatory Effects) Yi0(0) = Yi0(1) for all i with Di = 1.

Assumption 3.2.1 is a crucial but often hidden assumption for identifying τATT . Without

Assumption 3.2.1, the changes in the outcome for the treated population between period 0

and 1 may reflect not just the causal effect in period Ti = 1, but also an anticipatory effect

in period Ti = 0 [Abbring and Van den Berg, 2003, Malani and Reif, 2015].

Olden and Møen [2022] points out that the other main identification assumption is the

“modified” parallel trends assumption. The “modified” parallel trends assumption requires

the relative outcome of group 1 (i.e., Hi = 1) and group 0 (i.e., Hi = 0) in the treatment

state (i.e., Gi = 1) to trend in the same way as the relative outcome of group 1 and group

0 in the control state in the absence of treatment:

Assumption 3.2.2. (“Modified” Parallel Trends)

(E[Yi1(0)− Yi0(0) | Gi = 1, Hi = 1])− (E[Yi1(0)− Yi0(0) | Gi = 0, Hi = 1])

= (E[Yi1(0)− Yi0(0) | Gi = 1, Hi = 0])− (E[Yi1(0)− Yi0(0) | Gi = 0, Hi = 0]) ,

where the expectations above are finite.

Under the “modified” parallel trends assumption, we allow the parallel trends to be vi-

olated for the group Hi = 1. Since parallel trends violation is the same between Hi = 0
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and Hi = 1, we can use the placebo group (i.e., Hi = 0) to de-bias the bias caused by the

violation of parallel trends in the group Hi = 1. Therefore, under the no anticipatory effect

and the “modified” parallel trends assumption, the ATT is identified by:

τATT = (E[Yi1 − Yi0 | Gi = 1, Hi = 1]− E[Yi1 − Yi0 | Gi = 0, Hi = 1])

− (E[Yi1 − Yi0 | Gi = 1, Hi = 0]− E[Yi1 − Yi0 | Gi = 0, Hi = 0]) .

3.3 Invariance of Parallel Trends

Following Athey and Imbens [2006] and Roth and Sant’Anna [2023], we say that the “mod-

ified” parallel trends assumption is invariant to transformations if the “modified” parallel

trends assumption holds for all measurable transformations of the outcome.

Definition 3.3.1. We say that the “modified” parallel trends assumption is invariant to

transformations (i.e., insensitive to functional form) if

(E[g(Yi1(0))− g(Yi0(0)) | Gi = 1, Hi = 1])− (E[g(Yi1(0))− g(Yi0(0)) | Gi = 0, Hi = 1])

= (E[g(Yi1(0))− g(Yi0(0)) | Gi = 1, Hi = 0])− (E[g(Yi1(0))− g(Yi0(0)) | Gi = 0, Hi = 0]),

for all measurable functions g such that the expectations above are finite.

Remark 3.3.1. Compared with the invariance criteria in Roth and Sant’Anna [2023], the

class of functions in Definition 3.3.1 is larger, because Roth and Sant’Anna [2023] focus on the

strictly monotone transformations. However, similar to the results in Roth and Sant’Anna

[2023], the “modified” parallel trends assumption holds for all measurable transformations is

in fact equivalent to the “modified” parallel trends assumption holds for all strictly monotonic

transformations.

Proposition 3.3.1 provides a characterization when the “modified” parallel trends assump-
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tion is invariant to all measurable transformations on the outcome variables. Note that this

is a direct extension of Proposition 3.1 in Roth and Sant’Anna [2023] to the triple difference

setting.

Proposition 3.3.1. The “modified” parallel trends is invariant to transformations if and

only if for all y ∈ R,

(FYi1(0)|Gi=1,Hi=1(y)− FYi0(0)|Gi=1,Hi=1(y))− (FYi1(0)|Gi=0,Hi=1(y)− FYi0(0)|Gi=0,Hi=1(y))

= (FYi1(0)|Gi=1,Hi=0(y) − FYi0(0)|Gi=1,Hi=0(y))− (FYi1(0)|Gi=0,Hi=0(y)− FYi0(0)|Gi=0,Hi=0(y)) .

(3.3)

Remark 3.3.2. The result shows that the “modified” parallel trends assumption is invariant

to transformations if and only if a stronger “modified parallel trends”-type condition holds

for the cumulative distribution functions of the untreated potential outcomes.

Remark 3.3.3. If the outcome variable is binary, Yi ∈ {0, 1}. Then, Proposition 3.3.1

implies that whenever the “modified” parallel trends assumption holds, applying bijective

functions on the outcome variables (i.e., replacing {0, 1} with {a, b}, where a ̸= b) will also

satisfy the “modified” parallel trends assumption. This holds because the expectation of a

binary outcome fully characterizes its distribution.

The following result provides a characterization of how distributions satisfying the invari-

ance assumption (i.e., Equation 3.3) can be generated. The result below is not a necessary

and sufficient characterization, as the necessary direction requires an additional assumption.

Note that this is not a direct extension of Proposition 3.2 in Roth and Sant’Anna [2023] to

the triple difference setting.

Proposition 3.3.2. Suppose that the distribution of Yit(0) | Gi = g,Hi = h for all t, g, h ∈

{0, 1} have a Radon–Nikodym density with respect to a common dominating, positive σ-

finite measure.
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(i) The “modified” parallel trends is invariant to transformations if

FYit(0)|Gi=g,Hi=h = αF
g
t + βFh

t + ηF gh ,

where α, β, η ∈ [0, 1], α + β + η = 1, F
g
t is any valid distribution that depends on

g and t, Fh
t is any valid distribution that depends on h and t, and F gh is any valid

distribution that depends on g and h.

(ii) Suppose the “modified” parallel trends is invariant to transformations, and FYit(0)|Gi=g,Hi=h

can be decomposed as

FYit(0)|Gi=g,Hi=h =
K∑
k=1

θkJk ,

where θk ∈ [0, 1] for k = 1, ..., K,
∑K

k=1 θk = 1, {Jk}Kk=1 are valid CDFs, and none

of {Jk}Kk=1 depends on t, g, and h simultaneously. Then, {Jk}Kk=1 must include the

following three components: (1) F
g
t , a valid distribution that depends on t and g; (2)

Fh
t , a valid distribution that depends on t and h; (3) F gh, a valid distribution that

depends on g and h.

Remark 3.3.4. If F g
t is included in the decomposition, then Ft or F g is redundant. This

is because if FYit(0)|Gi=g,Hi=h can be decomposed as

FYit(0)|Gi=g,Hi=h = θ1F
g
t + θ2Ft + θ3F

g +
K∑
k=4

θkJk ,
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where θk ∈ [0, 1] for k = 1, ..., K, and θ1 > 0, then it can be rewritten as:

FYit(0)|Gi=g,Hi=h = θ1F
g
t + θ2Ft + θ3F

g +
K∑
k=4

θkJk

= (θ1 + θ2 + θ3)

(
θ1

θ1 + θ2 + θ3
F
g
t +

θ2
θ1 + θ2 + θ3

Ft +
θ3

θ1 + θ2 + θ3
F g

)
+

K∑
k=3

θkJk

= (θ1 + θ2 + θ3)H
g
t +

K∑
k=3

θkJk ,

where H
g
t ≡ θ1

θ1+θ2+θ3
F
g
t + θ2

θ1+θ2+θ3
Ft +

θ3
θ1+θ2+θ3

F g, which is another valid CDF depends

on t and g. By a similar argument, we can show that Ft or Fh is redundant if we include

Fh
t in the decomposition.

Remark 3.3.5. Consider the following CDFs: F k
t and F l

t , where k = 1 if either g = 1, h = 1

or g = 0, h = 0, and k = 0 otherwise, and l = 1 if g = g′ and h = h′ for some g′, h′ ∈ {0, 1}

and l = 0 otherwise. Both CDFs cannot be included in the decomposition. The reason is

that doing so will make the "modified" parallel trends assumption not invariant to functional

form.

Remark 3.3.6. If FYit(0)|Gi=g,Hi=h can be decomposed as

FYit(0)|Gi=g,Hi=h =
K∑
k=1

θkJk ,

where θk ∈ [0, 1] for k = 1, ..., K,
∑K

k=1 θk = 1, {Jk}Kk=1 are valid CDFs, and none of

{Jk}Kk=1 depends on t, g, and h simultaneously, then θk cannot depend on any of t, g, or h.

Otherwise, “modified” parallel trends is not invariant to functional form.
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3.4 A Simulation for the Decomposition Results

Based on the decomposition results in Proposition 3.3.2, we conduct a simulation in which

the untreated potential outcome is a mixture of log normal distributions:

FYit(0)|Gi=g,Hi=h = αF
g
t + βFh

t + ηF gh ,

where α = 1
2 and β = η = 1

4 , and the distributions of F g
t , Fh

t , and F gh are:

F
g
t ∼ lognormal(1 + t+ 2× g, 1) ,

Fh
t ∼ lognormal(10 + 2× t+ 3× h, 1) ,

F gh ∼ lognormal(g + h, 1) .

The simulation results are displayed in Figure 3.1. As we can see in the figure, the dis-

tributions of the untreated potential outcomes for the four groups differ from each other

in both pre-treatment and post-treatment periods. Moreover, the distributions of the un-

treated potential outcomes change over time. However, the triple difference of the PDFs

is the same. Therefore, our results imply that the “modified” parallel trends hold for all

measurable transformations of the outcome.

(a) Pre-Treatment Period (b) Post-Treatment Period
(c) DDD of CDF of Untreated
Potential Outcomes

Figure 3.1: Illustration: DDD Invariance of Mixtures of Distributions
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3.5 Triple Difference as Difference in Differences

As pointed out by Olden and Møen [2022], the triple difference estimator can be written

as a difference in differences (DID) estimator with a differential as the new outcome vari-

able. We thus can apply the same idea to the triple difference identification assumption.

The “modified” parallel trends (i.e., Assumption 3.2.2) can be rewritten as a parallel trends

assumption with a differential as the new outcome variable. To see this, first observe that

Assumption 3.2.2 can be re-written as:

(E[Yi1(0) | Gi = 1, Hi = 1]− E[Yi1(0) | Gi = 1, Hi = 0])

− (E[Yi0(0) | Gi = 1, Hi = 1]− E[Yi0(0) | Gi = 1, Hi = 0])

= (E[Yi1(0) | Gi = 0, Hi = 1]− E[Yi1(0) | Gi = 0, Hi = 0])

− (E[Yi0(0) | Gi = 0, Hi = 1]− E[Yi0(0) | Gi = 0, Hi = 0]) .

(3.4)

Furthermore, some algebraic manipulations yield:

E[Yit(0) | Gi = g,Hi = h] = E
[

Yit(0)1{Hi = h}
P[Hi = h | Gi = g]

| Gi = g

]
.

Therefore, we can re-write Equation 3.4 as:

E
[

Yi1(0)1{Hi = 1}
P[Hi = 1 | Gi = 1]

− Yi1(0)1{Hi = 0}
P[Hi = 0 | Gi = 1]

| Gi = 1

]
− E

[
Yi0(0)1{Hi = 1}
P[Hi = 1 | Gi = 1]

− Yi0(0)1{Hi = 0}
P[Hi = 0 | Gi = 1]

| Gi = 1

]
= E

[
Yi1(0)1{Hi = 1}
P[Hi = 1 | Gi = 0]

− Yi1(0)1{Hi = 0}
P[Hi = 0 | Gi = 0]

| Gi = 0

]
− E

[
Yi0(0)1{Hi = 1}
P[Hi = 1 | Gi = 0]

− Yi0(0)1{Hi = 0}
P[Hi = 0 | Gi = 0]

| Gi = 0

]
.

(3.5)

Equation 3.5 is the “modified” parallel trends assumption written in the parallel trends

assumption for a new outcome variable, the difference in weighted outcomes between two
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groups (i.e., between Hi = 0 and Hi = 1).

One significance of Equation 3.5 is that our results do not directly follow from applying the

results in Roth and Sant’Anna [2023] by using a DID with differential outcomes. The reason

is that our invariance definition only requires transforms on the untreated potential outcomes,

namely, g(Yit(0)), t ∈ {0, 1}, while the invariance with respect to the transformed outcome re-

quires transforms on the new outcome variables, namely, g
(
Yit(0)1{Hi=1}
P[Hi=1|Gi=g]

− Yit(0)1{Hi=0}
P[Hi=0|Gi=g]

)
,

t ∈ {0, 1}. Hence, there is no clear economic interpretation of this transformed outcome.

There is a special case in which Equation 3.5 can be collapsed to a simple DID at Gi with

unweighted differential outcomes. Let us consider the case when P[Hi = h | Gi = g] = 1
2 ,

with g, h ∈ {0, 1}. An example of such a case is when Gi is a state variable and Hi is a sex

variable and there is a strong gender balance within the two states. In this case, Equation 3.5

becomes:

E[Yi1(0)(1{Hi = 1} − 1{Hi = 0}) | Gi = 1]− E[Yi0(0)(1{Hi = 1} − 1{Hi = 0}) | Gi = 1]

= E[Yi1(0)(1{Hi = 1} − 1{Hi = 0}) | Gi = 1]− E[Yi0(0)(1{Hi = 1} − 1{Hi = 0}) | Gi = 0].

(3.6)

In other words, we can view Equation 3.6 as parallel trends at the Gi level with the untreated

outcome being a simple difference of the untreated potential outcomes between group Hi = 1

and Hi = 0. In this case, our results still do not directly follow from Roth and Sant’Anna

[2023]. To see this, applying the results in Roth and Sant’Anna [2023] requires us to define

the invariance for the transformed outcome, namely, g(Yit(0)(1{Hi = 1} − 1{Hi = 0})),

t ∈ {0, 1}. Hence, there is still no clear economic interpretation of this new outcome variable.
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3.6 Comparison with Distributional DID

An immediate consequence of Proposition 3.3.1 is that the cumulative distribution function of

the untreated outcomes conditional on the treated group in the treated period is identifiable:

FYi1(0)|Gi=1,Hi=1(y)

= FYi0(0)|Gi=1,Hi=1(y) + (FYi1(0)|Gi=1,Hi=0(y)− FYi0(0)|Gi=1,Hi=0(y))

+ (FYi1(0)|Gi=0,Hi=1(y)− FYi0(0)|Gi=0,Hi=1(y))

− (FYi1(0)|Gi=0,Hi=0(y)− FYi0(0)|Gi=0,Hi=0(y)) .

(3.7)

Therefore, the quantile treatment effect on the treated is identified:

QTT(τ) = F−1
Yi1(1)|Gi=1,Hi=1

(τ)− F−1
Yi1(0)|Gi=1,Hi=1

(τ) .

We can also adapt distributional DID models [Athey and Imbens, 2006, Bonhomme and

Sauder, 2011, Callaway and Li, 2019] to identify QTT(τ) in the triple difference setting.

However, this is beyond the scope of the paper, hence, we leave a formal analysis of dis-

tributional triple difference to future research. Nevertheless, we provide some comparisons

between Equation 3.7 and other distributional DID models.

Remark 3.6.1 (Relationship to Athey and Imbens [2006]). The first approach in distribu-

tional DID is to invoke the rank invariance assumption [Athey and Imbens, 2006]. The rank

invariance assumption implies that the untreated potential outcome for the treated group in

the first period can be identified by mapping between the quantiles of the untreated potential

outcomes for the treated and control groups. However, Equation 3.7 does not restrict the

dependence of the untreated potential outcomes between the treatment and control groups.

Hence, these two approaches are non-nested.

Remark 3.6.2 (Relationship to Bonhomme and Sauder [2011]). The distributional DID
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model in Bonhomme and Sauder [2011] implies a “parallel trend” condition for the log of the

characteristic function:

ln
(
Ψ
Yi1(0)
Di=1 (s)

)
− ln

(
Ψ
Yi0(0)
Di=1 (s)

)
= ln

(
Ψ
Yi1(0)
Di=0 (s)

)
− ln

(
Ψ
Yi0(0)
Di=0 (s)

)
,

where Ψ
Yit(0)
Di=d(s) is the characteristic function of Yit(0) | Di = d, with d, t ∈ {0, 1}. Instead,

Equation 3.3 implies a “modified” parallel trend condition for the characteristic function:

(
Ψ
Yi1(0)
Gi=1,Hi=1(s)−Ψ

Yi0(0)
Gi=1,Hi=1(s)

)
−
(
Ψ
Yi1(0)
Gi=0,Hi=1(s)−Ψ

Yi0(0)
Gi=0,Hi=1(s)

)
=

(
Ψ
Yi1(0)
Gi=1,Hi=0(s)−Ψ

Yi0(0)
Gi=1,Hi=0(s)

)
−

(
Ψ
Yi1(0)
Gi=0,Hi=0(s)−Ψ

Yi0(0)
Gi=0,Hi=0(s)

)
.

Thus, the two conditions above are generally non-nested.

Remark 3.6.3 (Relationship to Callaway and Li [2019]). The distributional DID model

in Callaway and Li [2019] makes two identification assumptions. First, Yi1(1) − Yi0(0) is

fully independent of the treatment assignment Di. Second, within the treated population,

the dependence between Yi1(1) − Yi0(0) and Yi0(0) is identical to the dependence between

Yi0(1)−Yi−1(0) and Yi−1(0). However, Equation 3.7 does not restrict the dependence of the

untreated potential outcome across periods conditional on the treated population. Hence,

these two approaches are non-nested.
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3.7 Testable Implications

Proposition 3.3.1 also implies the following condition for the probability distribution of the

untreated potential outcome in the treated group and treated period:

PYi1(0)|Gi=1,Hi=1(Yi1(0) ∈ A)

= PYi0(0)|Gi=1,Hi=1(Yi0(0) ∈ A)

+ (PYi1(0)|Gi=1,Hi=0(Yi1(0) ∈ A)− PYi0(0)|Gi=1,Hi=0(Yi0(0) ∈ A))

+ (PYi1(0)|Gi=0,Hi=1(Yi1(0) ∈ A)− PPYi0(0) | Gi = 0, Hi = 1(Yi0(0) ∈ A))

− (PYi1(0)|Gi=0,Hi=0(Yi1(0) ∈ A)− PYi0(0)|Gi=0,Hi=0)(Yi0(0) ∈ A)) ,

(3.8)

where A ∈ B(R). Then, by the SUTVA assumption, the implied probability distribution for

Yi1(0) | Gi = 1, Hi = 1 is:

Pimplied
Yi1(0)|Gi=1,Hi=1

(Yi1(0) ∈ A)

= P(Yi0 ∈ A | Gi = 1, Hi = 1)

+ (P(Yi1 ∈ A | Gi = 1, Hi = 0)− P(Yi0 ∈ A | Gi = 1, Hi = 0))

+ (P(Yi1 ∈ A | Gi = 0, Hi = 1)− P(Yi0 ∈ A | Gi = 0, Hi = 1))

− (P(Yi1 ∈ A | Gi = 0, Hi = 0)− P(Yi0 ∈ A | Gi = 0, Hi = 0)) ,

(3.9)

where A ∈ B(R).

Note that for Pimplied
Yi1(0)|Gi=1,Hi=1

(A), Equation 3.9 is guaranteed to be:

Pimplied
Yi1(0)|Gi=1,Hi=1

(Ω) = 1,

Pimplied
Yi1(0)|Gi=1,Hi=1

(∅) = 0,

and countably additive. Therefore, if the “modified” parallel trends assumption is invariant to
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transformations, the implied probability density should be non-negative almost everywhere,

i.e., Pimplied
Yi1(0)|Gi=1,Hi=1

(Yi1(0) ∈ A) ≥ 0, for all A ∈ B(R). This is a sharp testable implication.

We formalize this in Proposition 3.7.1.

Proposition 3.7.1. (Sharp Characterization)

(i) If the “modified” parallel trend is invariant (i.e., Definition 3.3.1 holds), then:

Pimplied
Yi1(0)|Gi=1,Hi=1

(Yi1(0) ∈ A) ≥ 0,

for any A ∈ B(R).

(ii) For any joint distribution of observed data (Yi0, Yi1, Gi, Hi) such that the implied

density is non-negative almost everywhere:

Pimplied
Yi1(0)|Gi=1,Hi=1

(Yi1(0) ∈ A) ≥ 0, ∀A ∈ B(R),

there exists a joint distribution of: (Yi1(1), Yi0(1), Yi1(0), Yi0(0), Gi, Hi), such that

it induces the observed data (Yi0, Yi1, Gi, Hi), and the “modified” parallel trends is

invariant to transformations (in Definition 3.3.1).

With a discrete outcome, the testable implication implies the following null hypothesis:

H0 : −E[1{Yi1(0) = y} | Gi = 1, Hi = 1] ≤ 0,

for all y ∈ supp(Yi), where E[1{Yit(0) = y} | Gi = 1, Hi = 1] is defined by the right hand

side of Equation 3.9. Note that this is a standard problem of testing moment inequalities.

There are a variety of methods for testing such null hypothesis [Canay and Shaikh, 2017].

Furthermore, the test can be extended to the case with non-discrete outcome variables

easily by possibly converting the testing problem to a high dimensional moment inequality
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testing problem [Bai et al., 2022b]. Specifically, when the outcome variable is not discrete,

the null hypothesis becomes:

H0 : −E[1 {Yi1(0) ∈ A} | Gi = 1, Hi = 1] ≤ 0,∀A ∈ B(R) ,

where E[1 {Yi1(0) ∈ A} | Gi = 1, Hi = 1] is defined by Equation 3.9. To apply Bai et al.

[2022b], let {Aj}1≤j≤p be a partition of real line R with Aj ∈ B(R) for 1 ≤ j ≤ p. We can

pick a sequence of such partitions, with the number of Borel sets equal to pn, where pn grows

to infinity with sample size under a suitable rate. Note that the regularity conditions in Bai

et al. [2022b] work here because the support of P̂Yi1(0)|Gi=1,Hi=1(Yi1(0) ∈ A) is bounded

uniformly in P ∈ Pn.

3.8 Empirical Illustration

We conclude with an empirical illustration of our theoretical results using data from Mu-

ralidharan and Prakash [2017], who study the effect of the Cycle program on girls’ education

outcome using a triple difference design.

We now provide a brief description of the empirical setting and refer the reader to Mu-

ralidharan and Prakash [2017] for a more detailed description. The Government of Bihar of

India launched the Chief Minister’s Bicycle program (hereafter referred to as the Cycle pro-

gram) in Bihar in 2006 to boost girls’ education outcomes. The program provided girls who

enrolled in secondary school with a free bicycle to reduce the transportation cost of going

to school. The control state is Jharkhand, and the placebo group is boys. We focus on two

continuous educational outcome variables on appearance and performance in the secondary

school (SSC) certificate exams: log(number of candidates who appeared for the 10th grade
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exam) and log(number of candidates who passed the 10th grade exam).1 Thus, the unit of

analysis here is at the school level. Due to the two-year lag between enrollment in secondary

school and the exam, the control years are from 2004 to 2007, while the treatment period

covers 2009-2010.2

We use both the least favorable method in Canay and Shaikh [2017] and the two-step

method in Romano et al. [2014] and Bai et al. [2022b] to test whether or not the “modified”

parallel trends assumption is invariant to transforms. To implement both methods, we dis-

cretize the continuous outcome variables with equidistant bins (p = 24 in this example) and

treat them as discrete outcomes. See Appendix B for more details about the implementation

of the tests.

Figure 3.2 presents the implied density plots and the corresponding p-values using the

least favorable method in Canay and Shaikh [2017]. The results show that we fail to reject

the null hypothesis that the “modified” parallel trends assumption is invariant to transforms

at 5% level.. Moreover, the two-step method in Romano et al. [2014] and Bai et al. [2022b]

produces the same result, namely, we fail to reject the null hypothesis that the “modified”

parallel trends assumption is invariant to transforms at 5% level.

3.9 Concluding Remarks

Our paper suggests the following different paths that empirical researchers can take for jus-

tifying the identification assumption when using a triple difference design. First, researchers

can use contextual knowledge and economic theory to argue for the validity of the “mod-

ified” parallel trends assumption for a particular functional form. Second, researchers can

1. These are the outcome variables in Table 4 in Muralidharan and Prakash [2017].

2. Muralidharan and Prakash [2017] dropped the year 2008 in their analysis because they argue it’s the
transition year.
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Figure 3.2: Implied Densities and p-Values using Least Favorable Test

impose additional distributional assumptions to point identify the distribution of Yi1(0) for

the treated group. For example, imposing the “modified” parallel trends of CDFs ensures

the validity of the triple difference estimator for all (measurable) transforms of the outcome

variable. To conclude, we hope that the results in this paper will help applied researchers to

have a more clear justification when they use triple difference design.
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APPENDIX A

APPENDIX FOR CHAPTER 1

A.1 Identifiability of the Joint Distribution of Non-Binary

Instruments or Outcomes

This section covers two potential directions for extending Lemma 1.4.2. The first direction

explores the positive outcomes that arise from utilizing a non-binary instrument to extend

Lemma 1.4.2. Following this, we delve into the negative outcomes associated with using a

non-binary outcome to extend 1.4.2.

A.1.1 Non-Binary Instrument

Assumption 1.2.1 is adjusted to accommodate a discrete-valued instrument in two ways.

Firstly, the IV monotonicity condition is crucially modified. With a discrete-valued instru-

ment, the IV “monotonicity" condition must be satisfied for each pair of instruments. That

is, changing the instrument from z to z′ will either encourage or discourage every individual

from taking up the treatment. Secondly, the IV relevance assumption is also revised. In this

case, at least one instrument value must lead to changes in selection behavior. The formal

statement of the revised assumption is now presented as Assumption A.1.1.

Assumption A.1.1. (Potential Outcome and Treatment Model with Discrete Valued In-

strument)

1. Monotone treatment response: Yi(1) ≥ Yi(0) holds almost surely with Yi(0) and Yi(1)

binary,

2. Exclusion restriction: Yi(t, z) = Yi(t), for t, z ∈ supp(Ti, Zi),
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3. Exogenous instrument: Zi ⊥⊥ (Yi(0), Yi(1), Ti(0), Ti(1), Xi),

4. First stage: P[Ti = 1|Zi = z] is a non-trivial function of z,

5. IV Monotonicity: either Ti(z) ≥ Ti(z
′) or Ti(z) ≤ Ti(z

′) holds almost surely for z ̸= z′

with z, z′ ∈ supp(Zi).

With Assumption A.1.1, we can point identify the joint distribution of potential outcomes

among each complier group. The intuition of the result is that with Assumption A.1.1, the

proof proceeds “as-if” we are using a binary IV with support being {z, z′}. We now formally

state the results in Corollary A.1.1.

Corollary A.1.1. Suppose Assumption A.1.1 holds, conditional on z, z′ compliers (that is,

z, z′ ∈ supp(Zi) and Ti(z) = Ti(z
′) does not hold almost surely), the joint distribution of

potential outcome is point identified,:

P[Yi(1) = 1, Yi(0) = 1 | Ti(z) ≥ Ti(z
′)]

=
P[Yi = 1, Ti = z′ | Zi = z′]− P[Yi = 1, Ti = z′|Zi = z]

E[Ti|Zi = z]− E[Ti | Zi = z′]

P[Yi(1) = 1, Yi(0) = 0 | Ti(z) ≥ Ti(z
′)]

=
E[Yi | Zi = z]− E[Yi | Zi = z′]
E[Ti | Zi = z]− E[Ti | Zi = z′]

P[Yi(1) = 0, Yi(0) = 0 | Ti(z) ≥ Ti(z
′)]

=
P[Yi = 0, Ti = z | Zi = z]− P[Yi = 0, Ti = z|Zi = z′]

E[Ti | Zi = z]− E[Ti|Zi = z′]
.

Just as with a discrete-valued instrument, the identification assumptions will be modified

for a continuous instrument. These modifications concern the IV monotonicity and IV

relevance assumptions. In this case, we use an indicator selection equation to describe the

first stage selection process. With this representation, it is easy to characterize the treatment

effect on different margins of self-selecting into the treatment. We also assume that at least
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one instrument value leads to changes in the treatment-taking behavior. Assumption A.1.2

formally states the identification assumptions for this scenario.

Assumption A.1.2. (Binary Treatment and Outcome Model with a Continuous Instru-

ment)

1. Yi(0) ≤ Yi(1) holds almost surely, and Yi(0), Yi(1) ∈ {0, 1},

2. Ti(z) = 1{Vi ≤ ν(z)}, where ν : Z → R is a non-trivial measurable function with

respect to z and assume without loss of generality that Vi ∼ U [0, 1],

3. Zi ⊥⊥ (Yi(0), Yi(1), Vi, Xi).

Before proceeding to present the identification results, we give two remarks related to

Assumption A.1.2. First, the indicator selection equation is equivalent to the monotonicity

condition in the IA IV model [Vytlacil, 2002]. To see this, observe that a change in z induces

a shift either toward or away from treatment for the support of Vi. Second, instead of

assuming Vi ∼ U [0, 1], we can also assume Vi being continuously distributed. This implies

that we can normalize the distribution of Vi to be uniformly distributed over [0, 1]. A

consequence of this normalization is that ν(z) = P (z), where P (z) is the propensity score:

P (z) ≡ P[Ti = 1|Zi = z].

Corollary A.1.2. Assume that Assumption A.1.2 holds, and assume supp(P (Zi)) = [0, 1],

then, the joint distribution of potential outcomes at each margin of selecting into the treat-
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ment is identified:

P[Yi(1) = 1, Yi(0) = 0 | Vi = v]

=
∂

∂v
E[Yi | P (Zi) = v],

P[Yi(1) = Yi(0) = 1 | Vi = v]

= P[Yi = 1 | P (Zi) = v, Ti = 0]− (1− v)
∂P[Yi = 1 | P (Zi) = v, Ti = 0]

∂v
,

P[Yi(1) = Yi(0) = 0 | Vi = v]

= P[Yi = 0 | P (Zi) = v, Ti = 1] + v
∂P[Yi = 0 | P (Zi) = v, Ti = 1]

∂v
.

A.1.2 Non-Binary Outcome

We now discuss whether we can extend the identification of the joint distribution of potential

outcomes in Lemma 1.4.2 to the case when the outcome is trinary. In the empirical study

of persuasion, there are three possible outcomes: 0 is an outside option, 1 is the target

action of persuasion, and −1 is any other action. Without the monotone treatment response

assumption, we can classify individuals into nine types according to the potential outcomes.1

Table A.1 presents the classification.

With the trinary outcome, two types of monotone treatment response assumptions were

made in the previous literature. Jun and Lee [2023] assumed that the information treatment

has a monotone treatment effect on the target action of persuasion: we rule out the type of

individuals who will take the action of interest without being exposed to the treatment but

1. Jun and Lee [2023] does not use the conventional potential outcome notation in their discussion.
Jun and Lee [2023] first writes out the choice set facing agent i. They use the following notation: S =
{0, 1,−1}. To write out agent i’s potential outcomes, Jun and Lee [2023] uses the following notation:
Yi(t) = (Yi0(t), Yi1(t), Yi,−1(t)), where t ∈ {0, 1}. Yi0(t) denotes whether the individual choose to take the
action 0 if the treatment is t. Yi1(t) and Yi,−1(t) are defined similarly. Moreover,

∑
j∈S Yij(t) = 1 for

t ∈ {0, 1}. That is, the choices in S are exclusive and exhaustive. It is easy to see that there is a duality
between the notation in Jun and Lee [2023] and conventional potential outcome notation used in Table A.1.
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Table A.1: Types of Individuals with Trinary Outcome

Yi(0) Yi(1)
−1 −1
−1 0
−1 1
0∗∗ −1∗∗

0 0
0 1
1∗ −1∗

1∗ 0∗

1 1

will choose the outside action or any other action with being exposed to the treatment. In

other words, with the monotone treatment response assumption made in Jun and Lee [2023],

the seventh and eighth row (those with ∗) in Table A.1 occur with probability zero.

A stronger monotone treatment response assumption was made in Manski [1997]. The

monotone treatment response assumption in Manski [1997] assumes that Yi(1) ≥ Yi(0) holds

with probability one: the fourth row (those with ∗∗), and the seventh and the eighth rows

(those with ∗) happen with zero probability. Manski [1997] further assumes out the type of

individuals who will take the outside action without being exposed to the treatment but will

take any other action with being exposed to the treatment.

Given the monotone treatment response assumption in Jun and Lee [2023], we know that

there are seven unknown probabilities for the joint distribution of potential outcomes among

compliers. Moreover, by the classic results of Imbens and Rubin [1997], we know that the

marginal distribution of potential outcomes among compliers is point identifiable. Among

compliers, the joint distribution of potential outcomes is a function of the marginal distri-

bution of potential outcomes. In other words, we have a system of linear equations with six

known probabilities of the marginal distribution of potential outcomes among compliers and

seven unknown probabilities of the joint distribution of potential outcomes among compliers.

Therefore, the marginal distribution of potential outcomes is not point identified given the
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monotonicity assumption in the trinary outcome case in Jun and Lee [2023].

A remaining question to ask is whether we can point identify the joint distribution of po-

tential outcomes with the monotone treatment response assumption made in Manski [1997].

Again, the answer is no. The reason is that even though we have six unknowns and six equa-

tions, the information in the data is repetitive. We formally state the show the impossibility

results in the following Proposition.

Proposition A.1.1. Assume that the potential outcomes are trinary, i.e., Yi(t) ∈ {−1, 0, 1}

for t ∈ {0, 1}. Furthermore, assume the following monotone treatment response assumption:

Yi(1) ≥ Yi(0) holds with probability one. Moreover, assume assumptions 1 to 4 in Assump-

tion 1.2.1 hold. Then, the joint distribution of potential outcomes among compliers is not

point identified.

Even though we cannot point identify the joint distribution of potential outcomes among

compliers in this case, We can still partially identify the joint distribution of potential out-

comes among compliers using the approaches in Balke and Pearl [1997]. For example, to

construct sharp bounds for P[Yi(0) = −1, Yi(1) = −1|Ti(1) > Ti(0)], we can form a linear

program with the objective function being P[Yi(0) = −1, Yi(1) = −1|Ti(1) > Ti(0)] and the

constraints being the linear system of equations in the proof of Proposition A.1.1.

One way to restore the point identification of the joint distribution of potential outcomes

with non-binary Yi under the monotone treatment response and IA IV assumptions is to

binarize the outcome variable. To see this, assume without loss of generality that Yi(1) ≥

Yi(0) holds almost surely. Define the following two binary random variables: 1{Yi(1) ≥ x}

and 1{Yi(0) ≥ x} with x ∈ R. Then, by the monotone treatment response, it follows

immediately that 1{Yi(1) ≥ x} ≥ 1{Yi(0) ≥ x} holds almost surely. Thus, the results in

Lemma 1.4.2 hold for the new binarized outcome variable.
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A.2 Profiling Compliers with a Non-Binary Instrument

In Appendix A.1.1, we have shown that the joint distribution of potential outcomes is iden-

tifiable with a non-binary instrument. As a result, the profiling results presented in Theo-

rem 1.5.2 can be readily applied to this case. The profiling results for a discrete instrument

and a continuous instrument are presented in Corollary A.2.1 and Corollary A.2.2 respec-

tively.

Corollary A.2.1. Assume that Assumption A.1.1 holds, and let g : R −→ R be measurable

with E[|g(Xi)|] < ∞, then, conditional on z, z′ compliers (that is, z, z′ ∈ supp(Zi), Ti(z) =

Ti(z
′) does not hold almost surely, and assume without loss of generality that Ti(z) ≥ Ti(z

′)

holds almost surely), the expectation of g(Xi) is identified:

E[g(Xi)|Yi(1) = Yi(0) = 1, Ti(z) ≥ Ti(z
′)]

=
E[g(Xi)1{Yi = 1, Ti = 0}|Zi = z′]− E[g(Xi)1{Yi = 1, Ti = 0}|Zi = z}]

P[Yi = 1, Ti = 0|Zi = z′]− P[Yi = 1, Ti = 0|Zi = z]
,

E[g(Xi)|Yi(1) = Yi(0) = 0, Ti(z) ≥ Ti(z
′)]

=
E[g(Xi)1{Yi = 0, Ti = 1}|Zi = z]− E[g(Xi)1{Yi = 0, Ti = 1}|Zi = z′]

P[Yi = 0, Ti = 1|Zi = z]− P[Yi = 0, Ti = 1|Zi = z′]
,

E[g(Xi)|Yi(1) = 1, Yi(0) = 0, Ti(z) ≥ Ti(z
′)]

=
E[g(Xi)1{Yi = 1}|Zi = z]− E[g(Xi)1{Yi = 1}|Zi = z′]

E[Yi|Zi = z]− E[Yi|Zi = z′]
.

Corollary A.2.2. Assume that Assumption A.1.2 holds, and assume that supp(P (Zi)) =

[0, 1]. Let g : R −→ R be measurable with E[|g(Xi)|] < ∞, then, conditional at each margin
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of selecting into the treatment, the expectation of g(Xi) is identified:

E[g(Xi) | Yi(1) = 1, Yi(0) = 0, Vi = v]

=
∂
∂vE[g(Xi)Yi | P (Zi) = v]

∂
∂vE[Yi | P (Zi) = v]

E[g(Xi) | Yi(1) = Yi(0) = 1, Vi = v]

=
E[g(Xi)Yi | P (Zi) = v, Ti = 0]− (1− v)

∂E[g(Xi)Yi|P (Zi)=v,Ti=0]
∂v

P[Yi = 1 | P (Zi) = v, Ti = 0]− (1− v)
∂P[Yi=1|P (Zi)=v,Ti=0]

∂v

E[g(Xi) | Yi(1) = Yi(0) = 0, Vi = v]

=
E[g(Xi)1{Yi = 0} | P (Zi) = v, Ti = 1] + v

∂E[g(Xi)1{Yi=0}|P (Zi)=v,Ti=1]
∂v

P[Yi = 0 | P (Zi) = v, Ti = 1] + v
∂P[Yi=0|P (Zi)=v,Ti=1]

∂v

.

A.3 A Different Quantity of “Profiling”

A different quantity of interest is the following: conditional on compliers and the pretreat-

ment covariates, the probability of being different persuasion types (i.e., always-persuaded,

persuaded, never-persuaded). Given the strong IV independence assumption, such quantity

is point identifiable because the strong IV independence assumption, we have:

P[Yi(1) = 0, Yi(0) = 0 | Ti(1) > Ti(0), Xi]

=
P[Yi = 1, Ti = 0 | Zi = 0, Xi]− P[Yi = 1, Ti = 0 | Zi = 1, Xi]

E[Ti | Zi = 1, Xi]− E[Ti | Zi = 0, Xi]
,

P[Yi(1) = 1, Yi(0) = 0 | Ti(1) > Ti(0), Xi]

=
E[Yi | Zi = 1, Xi]− E[Yi | Zi = 0, Xi]

E[Ti | Zi = 1, Xi]− E[Ti | Zi = 0, Xi]
,

P[Yi(1) = 1, Yi(0) = 1 | Ti(1) > Ti(0), Xi]

=
P[Yi = 0, Ti = 1 | Zi = 1, Xi]− P[Yi = 0, Ti = 1 | Zi = 0, Xi]

E[Ti | Zi = 1, Xi]− E[Ti | Zi = 0, Xi]
.
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These quantities might be useful for optimal treatment allocation with non-compliance [Kita-

gawa and Tetenov, 2018, Athey and Wager, 2021]. This is beyond the scope of this paper,

and we leave it for future research.

A.4 Identification: Always-Takers and Never-Takers

For always-takers, we observe their Yi(1). For never-takers, we observe their Yi(0). Therefore,

the weighting method developed in Theorem 1.5.1 can be extended to always-takers and

never-takers. The results are presented in Proposition A.4.1.

Proposition A.4.1. Assume that Assume that 1 to 4 in Assumption 1.2.1 hold, furthermore,

assume that we observe pre-treatment covariates Xi, and let g(·) be any measurable real

function of Xi such that E[|g(Xi)|] < ∞, then, for y ∈ {0, 1}, we have the following:

E[g(Xi)|Yi(1) = y, Ti(1) = Ti(0) = 1] = E[g(Xi)|Yi = y, Ti = 1, Zi = 0]

E[g(Xi)|Yi(0) = y, Ti(1) = Ti(0) = 0] = E[g(Xi)|Yi = y, Ti = 0, Zi = 1].

With the IA IV assumption, Proposition A.4.1 states that the conditional moments of

Xi conditional on always-takers and their treated potential outcomes and the conditional

moments of Xi conditional on never-takers and their untreated potential outcomes are iden-

tifiable. Furthermore, Proposition A.4.1 implies that the conditional cumulative distribution

functions are identifiable. This follows because g(x) = 1{Xi ≤ x} is a bounded measurable

map.

For always-takers, if we further assume the monotone treatment response, we can identify

the statistical characteristics measured by pre-treatment covariates of the never-persuaded

and always-takers. For never-takers, if we further assume the monotone treatment response,
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we can identify the statistical characteristics measured by pre-treatment covariates of the

always-persuaded and never-takers.

A.5 More on Estimation and Inference

In this appendix, we offer more detailed discussions on the estimation and inference issues

related to the estimands proposed in Section 4 and 5. Our first focus is on the estimation

and inference results with strong identification. Afterward, we shift our discussion to the

inference results when identification is weak.

A.5.1 Estimation and Inference under Strong Identification

Recall that our identification results give us the following βIV estimand:

βIV =
E[f(Xi, Yi, Ti) | Zi = 1]− E[f(Xi, Yi, Ti) | Zi = 0]

E[h(Yi, Ti) | Zi = 1]− E[h(Yi, Ti) | Zi = 0]
.

We can use the sample analog to estimate βIV :

β̂IV =

 1

n

n∑
i=1

 1

Zi

 (1, h(Yi, Ti))


−1 1

n

n∑
i=1

 1

Zi

 f(Xi, Yi, Ti)

 ,

with β̂IV being the second component of β̂IV . Using a standard argument (e.g., see Chapter

12 in Hansen [2022]), we can show the consistency and asymptotic normality of β̂IV under

suitable regularity conditions. We now formally claim the results below.

Proposition A.5.1. Assume that the following conditions hold:

1. E[f(Xi, Yi, Ti)
4] < ∞,
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2. E


 1

Zi

 (1, Zi)

 is positive definite,

3. E


 1

Zi

 (1, h(Yi, Ti))

 is rull rank,

4. E


 1

Zi

 ei

 = 0, where ei is the residual from regressing f(Xi, Yi, Ti) on h(Yi, Ti),

5. E[h(Yi, Ti)4] < ∞,

6. E[Z4
i ] < ∞,

7. Ω = E


 1

Zi

 (1, Zi)ei

 is positive definite,

then,
√
n
(
β̂IV − βIV

)
is asymptotically normal:

√
n
(
β̂IV − βIV

) D−→ N

0,E


 1

Zi

 (1, h(Xi, Ti))


−1

ΩE


 1

h(Xi, Ti)

 (1, Zi)


−1

 .

Moreover, a consistent estimator for E


 1

Zi

 (1, h(Xi, Ti))


−1

ΩE


 1

h(Xi, Ti)

 (1, Zi)


−1

is:

 1

n

n∑
i=1

 1

Zi

 (1, h(Xi, Ti))


−1

Ω̂

 1

n

n∑
i=1

 1

h(Xi, Ti)

 (1, Zi)


−1

,

where Ω̂ =

 1
n

∑n
i=1

 1

Zi

 (1, Zi)
(
f(Xi, Yi, Ti)− (1, h(Yi, Ti))β̂IV

).
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Before we proceed, we now give a remark on the consistency of the estimator we proposed.

Let g(Xi) = 1{Xi ≤ x}, Theorem 1.5.1 shows that we can point identify the conditional

distribution function among the locally persuadable:

P[Xi ≤ x|Yi(0) = 0, Ti(1) > Ti(0)]

=
P[Xi ≤ x, Yi = 0, Ti = 0|Zi = 0]− P[Xi ≤ x, Yi = 0, Ti = 0|Zi = 1]

P[Yi = 0, Ti = 0|Zi = 0]− P[Yi = 0, Ti = 0|Zi = 1]
.

It is easy to see that P̂[Xi ≤ x|Yi(0) = 0, Ti(1) > Ti(0)] is a (pointwise) consistent estimator

for P[Xi ≤ x|Yi(0) = 0, Ti(1) > Ti(0)]. By the same idea in the Glivenko-Cantelli Theorem

(see, e.g., Theorem 2.4.7 in Durrett [2010]), we can strengthen the pointwise consistency to

uniform consistency:

sup
x∈R

∣∣∣P̂[Xi ≤ x|Yi(0) = 0, Ti(1) > Ti(0)]− P[Xi ≤ x|Yi(0) = 0, Ti(1) > Ti(0)]
∣∣∣ P−→ 0.

We prove this uniform consistent result in Appendix A.9.15.

A.5.2 An Anderson-Rubin Test under Weak Identification

Note that the estimand in Equation 1.1 is a function of two regression coefficients:

p =
β1
β2

≡ E[f(Xi, Yi, Ti) | Zi = 1]− E[f(Xi, Yi, Ti) | Zi = 0]

E[h(Yi, Ti) | Zi = 1]− E[h(Yi, Ti) | Zi = 0]
.

A concern regarding the asymptotic approximation discussed in the previous section is that

the denominator β2 may be close to zero. When faced with weak identification, the asymp-

totic approximation discussed earlier may not perform well. Fortunately, in the current

exact identified scenario, we can use the Anderson-Rubin test to circumvent the issue of

weak identification.
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Note that under the null hypothesis H0 : p = p0, we have that p0β2− β1 = 0. Therefore,

by using the delta method, the limiting distribution of
√
n(p0β̂1 − β̂2) under H0 is:

√
n(p0β̂1 − β̂2)

D−→ N(0, γ),

where γ = Var(β1)− 2p0Cov(β1, β2)) + p20Var(β2).

Therefore, a test statistic is:

Tn =
n(p0β̂1 − β̂2)

2

γ̂
,

where γ̂ is a consistent estimator for γ. By Slutsky’s Lemma, we further know that:

Tn
D−→ χ(1).

Using the AR statistic, we can form an AR test of H0 : p = p0 as:

ϕAR(p0) = 1{Tn > χ21,1−α},

where χ21,1−α is the 1−α quantile of χ21 distribution. As noted by Staiger and Stock [1997],

this yields a size-α test that is robust to weak identification. We then can form a level 1−α

weak-identification-robust confidence set by collecting the nonrejected values.
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A.6 A System of Equation for the Binary IV Model with

Monotone Treatment Response

Assumption 1 to 4 in Assumption 1.2.1 implies the following system of linear equations:

Aobsp = b,

where Aobs is defined as:

Aobs =



1 1 0 1 1 0 0 0 0

1 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1

0 0 0 0 1 1 0 1 1



,
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and p is defined as the following with A being a measurable set:

p =



P[Yi(0) = 0, Yi(1) = 0, Ti(0) = 0, Ti(1) = 0, Xi ∈ A]

P[Yi(0) = 0, Yi(1) = 0, Ti(0) = 0, Ti(1) = 1, Xi ∈ A]

P[Yi(0) = 0, Yi(1) = 0, Ti(0) = 1, Ti(1) = 1, Xi ∈ A]

P[Yi(0) = 0, Yi(1) = 1, Ti(0) = 0, Ti(1) = 0, Xi ∈ A]

P[Yi(0) = 0, Yi(1) = 1, Ti(0) = 0, Ti(1) = 1, Xi ∈ A]

P[Yi(0) = 0, Yi(1) = 1, Ti(0) = 1, Ti(1) = 1, Xi ∈ A]

P[Yi(0) = 1, Yi(1) = 1, Ti(0) = 0, Ti(1) = 0, Xi ∈ A]

P[Yi(0) = 1, Yi(1) = 1, Ti(0) = 0, Ti(1) = 1, Xi ∈ A]

P[Yi(0) = 1, Yi(1) = 1, Ti(0) = 1, Ti(1) = 1, Xi ∈ A]



,

and b is defined as the following with A being a measurable set:

b =



P[Yi = 0, Ti = 0, Xi ∈ A | Zi = 0]

P[Yi = 0, Ti = 0, Xi ∈ A | Zi = 1]

P[Yi = 0, Ti = 1, Xi ∈ A | Zi = 0]

P[Yi = 0, Ti = 1, Xi ∈ A | Zi = 1]

P[Yi = 1, Ti = 0, Xi ∈ A | Zi = 0]

P[Yi = 1, Ti = 0, Xi ∈ A | Zi = 1]

P[Yi = 1, Ti = 1, Xi ∈ A | Zi = 0]

P[Yi = 1, Ti = 1, Xi ∈ A | Zi = 1]



.
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A.7 Implementing the Test in Section 1.7.2

Recall that in Section 1.7.2, the test statistic is given by:

Tn := inf
p≥0:Bp=1

√
n
∣∣∣Aobsp− b̂

∣∣∣ .
To compute the test statistic, we choose the ℓ2 norm. Thus, the minimizer to the minimiza-

tion problem in the test statistic can be obtained by solving:

min
p

∣∣∣∣∣∣Aobsp− b̂
∣∣∣∣∣∣
2

subject to p ≥ 0,

dim(p)∑
i=1

pi = 1,

where the inequality in the constraint is interpreted to hold component-wise. Note that the

minimizer of the optimization problem above is equivalent to the minimizer of the following

minimization problem:

min
p

pTAT
obsAobsp− 2pTAT

obsb̂

subject to p ≥ 0,

dim(p)∑
i=1

pi = 1,

The minimization problem above is a convex problem [Boyd and Vandenberghe, 2004], and

can be efficiently solved by using CVXR package in R [Fu et al., 2017].

After solving the optimal p∗, we then can compute the test statistics by computing:

Tn =
√
n
∣∣∣Aobsp

∗ − b̂
∣∣∣ .
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A.8 An Equivalence Result

We now use the weighting methods developed in Abadie [2003] to derive the results in

Theorem 1.5.1. The results in Abadie [2003] reweight the observations, which enables us to

“find” the compliers and those who do not take the action of interest without being exposed

to the treatment. We now formally state the results in Proposition A.8.1.

Proposition A.8.1. Assume that 1 to 4 in Assumption 1.2.1 hold, then, the distribution of

Xi conditional on [Yi(0) = 0, Ti(1) > Ti(0)] is point identified. Let A be a measurable set:

P[Xi ∈ A|Yi(0) = 0, Ti(1) > Ti(0)]

=
P[Xi ∈ A]× (P[Ti = 1|Xi ∈ A,Zi = 1]− P[Ti = 1|Xi ∈ A,Zi = 0]− E[κ0Yi|Xi ∈ A])

P[Yi = 0, Ti = 0|Zi = 0]− P[Yi = 0, Ti = 0|Zi = 1]
,

where κ0 = (1− Ti)
(1−Zi)−P[Zi=0]
P[Zi=0]P[Zi=1]

.

We can also show that the identification results in Theorem 1.5.1 and Proposition A.8.1

are equivalent. We formally state this equivalence result in Proposition A.8.2.

Proposition A.8.2. The identification results for P[Xi ∈ A | Yi(0) = 0, Ti(1) > Ti(0)] in

Theorem 1.5.1 and Proposition A.8.1 are equivalent.

A.9 Proofs

A.9.1 Proof of Lemma 1.4.1

The results have been shown by Imbens and Rubin [1997] and Abadie [2003]. Since the proof

is brief, we include it here for completeness.
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For P[Yi(t) = y|Ti(1) > Ti(0)] where y ∈ {0, 1} and t ∈ {0, 1}, we have the following:

P[Yi(t) = y|Ti(1) > Ti(0)] =
P[Yi(t) = y, Ti(1) = 1, Ti(0) = 0]

P[Ti(1) = 1, Ti(0) = 0]

=
P[Yi(t) = y, Ti(1) = 1, Ti(0) = 0]

E[Ti|Zi = 1]− E[Ti|Zi = 0]
,

where the second equality uses Lemma 2.1 in Abadie [2003].

For P[Yi(t) = y, Ti(1) = 1, Ti(0) = 0] with y ∈ {0, 1} and t ∈ {0, 1}:

P[Yi(t) = y, Ti(1) = 1, Ti(0) = 0]

= P[Yi(t) = y, Ti(t) = t]− P[Yi(t) = y, Ti(t) = t, Ti(1− t) = t]

= P[Yi(t) = y, Ti(t) = t]− P[Yi(t) = y, Ti(1− t) = t]

= P[Yi(t) = y, Ti(t) = t|Zi = t]− P[Yi(t) = y, Ti(1− t) = t|Zi = 1− t]

= P[Yi = y, Ti = t|Zi = t]− P[Yi = y, Ti = t|Zi = 1− t],

where the first and the second equality uses IV monotonicity in Assumption 1.2.1, the third

equality uses IV exogeneity in Assumption 1.2.1. Now, the desired results follow immediately.

A.9.2 Proof of Lemma 1.4.2

By the monotone treatment response assumption in Assumption 1.2.1, P[Yi(1) = 1, Yi(0) =

1|Ti(1) > Ti(0)] = P[Yi(0) = 1|Ti(1) > Ti(0)]. The desired result follows immediately from

Lemma 1.4.1 that P[Yi(0) = 1|Ti(1) > Ti(0)] is identifiable.

The result for P[Yi(1) = 0, Yi(0) = 0|Ti(1) > Ti(0)] can be derived analogously by ob-

serving that monotone treatment response assumption in Assumption 1.2.1 implies [Yi(1) =

0, Yi(0) = 0] = [Yi(1) = 0] and using Lemma 1.4.1.

For P[Yi(1) = 1, Yi(0) = 0|Ti(1) > Ti(0)], note that the monotone treatment response
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assumption in Assumption 1.2.1 implies P[Yi(1) = 1, Yi(0) = 0|Ti(1) > Ti(0)] = E[Yi(1) −

Yi(0)|Ti(1) > Ti(0)]. By Theorem 1 in Imbens and Angrist [1994], E[Yi(1) − Yi(0)|Ti(1) >

Ti(0)] is identifiable under the IA IV assumptions.

A.9.3 Proof of Theorem 1.5.1

For E[g(Xi) | Yi(0) = 0, Ti(1) > Ti(0)]:

E[g(Xi) | Yi(0) = 0, Ti(1) > Ti(0)] =
E[g(Xi)1{Yi(0) = 0, Ti(1) > Ti(0)}]

P[Yi(0) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi(0) = 0, Ti(1) > Ti(0)}]

P[Yi = 0, Ti = 0|Zi = 0]− P[Yi = 0, Ti = 0|Zi = 1]
,

where the second equality uses Lemma 1.4.1.

For E[g(Xi)1{Yi(0) = 0, Ti(1) > Ti(0)}]:

E[g(Xi)1{Yi(0) = 0, Ti(1) > Ti(0)}]

= E[g(Xi)1{Yi(0) = 0, Ti(0) = 0}]− E[g(Xi)1{Yi(0) = 0, Ti(1) = 0}]

= E[g(Xi)1{Yi(0) = 0, Ti(0) = 0} | Zi = 0]− E[g(Xi)1{Yi(0) = 0, Ti(1) = 0} | Zi = 1]

= E[g(Xi)1{Yi = 0, Ti = 0} | Zi = 0]− E[g(Xi)1{Yi = 0, Ti = 0} | Zi = 1],

where the first equality uses the IV monotonicity in Assumption 1.2.1, the second equality

uses the IV independence in Assumption 1.2.1 and a fact that independence is preserved

under measurable transform (e.g., see Theorem 2.1.6. in Durrett [2010]).

A.9.4 Proof of Proposition 1.5.1

The desired results follow immediately by using the identical arguments in Theorem 1.5.1.
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A.9.5 Proof of Theorem 1.5.2

For E[g(Xi) | Yi(1) = Yi(0) = 1, Ti(1) > Ti(0)]. Note that the monotone treatment response

assumption in Assumption 1.2.1 implies [Yi(1) = Yi(0) = 1] = [Yi(0) = 1]. Now, the desired

result follows immediately from Proposition 1.5.1.

Similarly, by Proposition 1.5.1 and the fact that [Yi(1) = Yi(0) = 0] = [Yi(1) = 0] which

is implied by the monotone treatment response assumption in Assumption 1.2.1, the desired

result for E[g(Xi) | Yi(1) = Yi(0) = 1, Ti(1) > Ti(0)] follows immediately.

For E[g(Xi) | Yi(1) = 1, Yi(0) = 0, Ti(1) > Ti(0)], we have the following:

E[g(Xi) | Yi(1) = 1, Yi(0) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi(1) = 1, Yi(0) = 0, Ti(1) > Ti(0)}]

P[Yi(1) = 1, Yi(0) = 0, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi(1) = 1, Yi(0) = 0, Ti(1) > Ti(0)}]

E[Yi | Zi = 1]− E[Yi | Zi = 0]
,

where the second equality uses Theorem 1 in Imbens and Angrist [1994].

For E[g(Xi)1{Yi(1) = 1, Yi(0) = 0, Ti(1) > Ti(0)}]:

E[g(Xi)1{Yi(1) = 1, Yi(0) = 0, Ti(1) > Ti(0)}]

= E[g(Xi)(Yi(1)− Yi(0))(Ti(1)− Ti(0))]

= E[g(Xi)(Ti(1)Yi(1) + (1− Ti(1))Yi(0)]

− E[g(Xi)(Ti(0)Yi(1) + (1− Ti(0))Yi(0)]

= E[g(Xi)(Ti(1)Yi(1) + (1− Ti(1))Yi(0) | Zi = 1]

− E[g(Xi)(Ti(0)Yi(1) + (1− Ti(0))Yi(0) | Zi = 0]

= E[g(Xi)1{Yi = 1} | Zi = 1]− E[g(Xi)1{Yi = 1} | Zi = 0],
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where the third equality uses the IV independence assumption in Assumption 1.2.1.

A.9.6 Proof of Proposition 1.5.2

First, consider E[g(Xi)1{Yi(1) = 1} | Yi(0) = 1, Ti(1) > Ti(0)] and E[g(Xi)1{Yi(0) = 0} |

Yi(1) = 0, Ti(1) > Ti(0)]. For t ∈ {0, 1}:

E[g(Xi)1{Yi(t) = t} | Yi(1− t) = t, Ti(1) > Ti(0)] = E[g(Xi) | Yi(1− t) = t, Ti(1) > Ti(0)],

where the equality follows from the outcome monotonicity assumption in Assumption 1.2.1.

Second, consider E[g(Xi)1{Yi(1) = 1} | Yi(0) = 0, Ti(1) > Ti(0)] and E[g(Xi)1{Yi(0) =

0} | Yi(1) = 1, Ti(1) > Ti(0)]. For t ∈ {0, 1}:

E[g(Xi)1{Yi(1− t) = 1− t} | Yi(t) = t, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi(1− t) = 1− t, Yi(t) = t, Ti(1) > Ti(0)}]

P[Yi(t) = t, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = 1} | Zi = 1]− E[g(Xi)1{Yi = 1} | Zi = 0]

P[Yi = t, Ti = t | Zi = t]− P[Yi = t, Ti = t | Zi = 1− t]
,

where the second equality uses Lemma 1.4.1 and Theorem 1.5.2.

Finally, consider E[g(Xi)1{Yi(1) = 0} | Yi(0) = 0, Ti(1) > Ti(0)] and E[g(Xi)1{Yi(0) =

1} | Yi(1) = 1, Ti(1) > Ti(0)]. For t ∈ {0, 1}:

E[g(Xi)1{Yi(1− t) = t} | Yi(t) = t, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi(1− t) = t, Yi(t) = t, Ti(1) > Ti(0)}]

P[Yi(t) = t, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi(1− t) = t, Ti(1) > Ti(0)}]

P[Yi(t) = t, Ti(1) > Ti(0)]

=
E[g(Xi)1{Yi = t, Ti = 1− t} | Zi = 1− t]− E[g(Xi)1{Yi = t, Ti = 1− t} | Zi = t]

P[Yi = t, Ti = t | Zi = t]− P[Yi = t, Ti = t | Zi = 1− t]
,
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where the second eqaulity uses the monotone treatment response assumption in Assump-

tion 1.2.1, the third equality uses Lemma 1.4.1 and Theorem 1.5.2.

A.9.7 Proof of Proposition A.4.1

For E[g(Xi)|Yi(t) = y, Ti(1) = Ti(0) = t], where t ∈ {0, 1} and y ∈ {0, 1}, we have the

following:

E[g(Xi)|Yi(t) = y, Ti(1) = Ti(0) = t] = E[g(Xi)|Yi(t) = y, Ti(1− t) = t]

= E[g(Xi)|Yi(t) = y, Ti(1− t) = t, Zi = 1− t]

= E[g(Xi)|Yi = y, Ti = t, Zi = 1− t],

where the first equality uses the IV monotonicity assumption in Assumption 1.2.1, the second

equality uses the IV independence assumption in Assumption 1.2.1.

A.9.8 Proof of Claim 1.7.1

Note that among compliers, Ti = Zi. Now the desired result follows immediately by observ-

ing that Zi is exogenous assumed in Assumption 1.2.1 and using Theorem 6 in Jun and Lee

[2023].
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A.9.9 Proof of Theorem 1.7.1

Recall the formulas of the approximated θ̃DK and the identified θlocal from Theorem 6 in

Jun and Lee [2023]:

θ̃DK =
P[Yi = 1|Zi = 1]− P[Yi = 1|Zi = 0]

(P[Ti = 1|Zi = 1]− P[Ti = 1|Zi = 0])× (1− P[Yi = 1|Zi = 0])

θlocal =
P[Yi = 1|Zi = 1]− P[Yi = 1|Zi = 0]

P[Yi = 0, Ti = 0|Zi = 0]− P[Yi = 0, Ti = 0|Zi = 1]
,

thus, θ̃DK = θlocal if and only if:

(P[Ti = 1|Zi = 1]− P[Ti = 1|Zi = 0])× P[Yi = 0|Zi = 0]

= P[Yi = 0, Ti = 0|Zi = 0]− P[Yi = 0, Ti = 0|Zi = 1]. (A.1)

Consider the first case in which there is non-compliance in the control group, i.e., P[Ti =

1|Zi = 1] = 1. In this case, there is no never-taker. Then, for the denominator of θ̃DK:

(P[Ti = 1|Zi = 1]− P[Ti = 1|Zi = 0])× (1− P[Yi = 1|Zi = 0])

= (1− P[Ti = 1|Zi = 0])× (P[Yi = 0|Zi = 0])

= P[Ti = 0|Zi = 0]× (P[Yi = 0, Ti = 0|Zi = 0] + P[Yi = 0, Ti = 1|Zi = 0])

= P[Ti(0) = 0]× (P[Yi(0) = 0, Ti(0) = 0] + P[Yi(1) = 0, Ti(0) = 1]),

where the first equality uses the assumption that there is non-compliance in the control

group. For the denominator of θ̃DK, by the assumption that there is non-compliance in the
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control group:

P[Yi = 0, Ti = 0|Zi = 0]− P[Yi = 0, Ti = 0|Zi = 1]

= P[Yi = 0, Ti = 0|Zi = 0]

= P[Yi(0) = 0, Ti(0) = 0].

Thus, by Equation A.1, θ̃DK = θlocal if and only if:

P[Yi(0) = 0, Ti(0) = 0] = P[Ti(0) = 0]× (P[Yi(0) = 0, Ti(0) = 0] + P[Yi(1) = 0, Ti(0) = 1])

⇔ P[Ti(0) = 1]× P[Yi(0) = 0, Ti(0) = 0] = P[Ti(0) = 0]× P[Yi(1) = 0, Ti(0) = 1]

⇔ P[Yi(0) = 0|Ti(0) = 0] = P[Yi(1) = 0|Ti(0) = 1].

Consider the second case in which there is non-compliance in the treatment group, i.e.,

P[Ti = 0|Zi = 0] = 1. In this case, there is no always-taker. Then, for the denominator of

θ̃DK:

(P[Ti = 1|Zi = 1]− P[Ti = 1|Zi = 0])× (1− P[Yi = 1|Zi = 0])

= P[Ti = 1|Zi = 1]× P[Yi = 0, Ti = 0|Zi = 0]

= P[Yi = 0, Ti = 0|Zi = 0]− P[Ti = 0|Zi = 1]× P[Yi = 0, Ti = 0|Zi = 0],

where the first equality uses the assumption that there is non-compliance in the treatment
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group. Thus, by Equation A.1, θ̃DK = θlocal if and only if:

P[Yi = 0, Ti = 0|Zi = 0]− P[Yi = 0, Ti = 0|Zi = 1]

= P[Yi = 0, Ti = 0|Zi = 0]− P[Ti = 0|Zi = 1]× P[Yi = 0, Ti = 0|Zi = 0]

⇔ P[Yi = 0, Ti = 0|Zi = 1] = P[Ti = 0|Zi = 1]× P[Yi = 0, Ti = 0|Zi = 0]

⇔ P[Yi(0) = 0, Ti(1) = 0] = P[Ti(1) = 0]× P[Yi(0) = 0, Ti(0) = 0]

⇔ P[Yi(0) = 0|Ti(1) = 0] = P[Yi(0) = 0]

⇔ Yi(0) ⊥⊥ Ti(1),

where the third line uses the assumption that P[Ti(0) = 0] = 1.

A.9.10 Proof of Proposition A.1.1

Note that the marginal distribution of potential outcomes among compliers is point identified

[Imbens and Rubin, 1997, Abadie, 2003]. Moreover, we can rewrite the marginal distribution

of potential outcomes among compliers as a system of linear equations of the joint distribution
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of potential outcomes among compliers:



1 1 1 0 0 0

0 0 0 1 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 1 0 0

0 0 1 0 1 1

1 1 1 1 1 1





P[Yi(0) = −1, Yi(1) = −1|Ti(1) > Ti(0)]

P[Yi(0) = −1, Yi(1) = 0|Ti(1) > Ti(0)]

P[Yi(0) = −1, Yi(1) = 1|Ti(1) > Ti(0)]

P[Yi(0) = 0, Yi(1) = 0|Ti(1) > Ti(0)]

P[Yi(0) = 0, Yi(1) = 1|Ti(1) > Ti(0)]

P[Yi(0) = 1, Yi(1) = 1|Ti(1) > Ti(0)]



=



P[Yi(0) = −1|Ti(1) > Ti(0)]

P[Yi(0) = 0|Ti(1) > Ti(0)]

P[Yi(0) = 1|Ti(1) > Ti(0)]

P[Yi(1) = −1|Ti(1) > Ti(0)]

P[Yi(1) = 0|Ti(1) > Ti(0)]

P[Yi(1) = 1|Ti(1) > Ti(0)]

1



,

where the rank of the coefficient matrix is five. Thus, there is no unique solution to the

system of linear equations above.

A.9.11 Proof of Corollary A.1.1

The desired results follow immediately using the identical arguments in Lemma 1.4.1 and

Lemma 1.4.2.
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A.9.12 Proof of Corollary A.1.2

The desired result follows immediately by using the result in Heckman and Vytlacil [2005]

and Carneiro and Lee [2009] and the monotone treatment response assumption in Assump-

tion A.1.1. Since the argument is brief, we include it here for completeness.

Note that by the monotone treatment response assumption in Assumption A.1.2 and the

fact that Yi is binary:

P[Yi(1) = 1, Yi(0) = 0 | Vi = v] = E[Yi(1)− Yi(0) | Vi = v]

P[Yi(1) = Yi(0) = 1 | Vi = v] = P[Yi(0) = 1 | Vi = v]

P[Yi(1) = Yi(0) = 0 | Vi = v] = P[Yi(1) = 0 | Vi = v].

To identify E[Yi(1)− Yi(0) | Vi = v], consider E[Yi | Vi = v]:

E[Yi | Vi = v] = E[Yi(0) | P (Zi) = v] + E[Ti(Yi(1)− Yi(0)) | P (Zi) = v]

= E[Yi(0) | P (Zi) = v]

+ E[Yi(1)− Yi(0) | Ti = 1, P (Zi) = v]P[Ti = 1 | P (Zi) = v]

= E[Yi(0) | P (Zi) = v]

+ E[Yi(1)− Yi(0) | Vi ≤ v, P (Zi) = v]P[Vi ≤ v | P (Zi) = v]

= E[Yi(0)] + E[Yi(1)− Yi(0) | Vi ≤ v]v

= E[Yi(0)] + E[(Yi(1)− Yi(0))1{Vi ≤ v}]

= E[Yi(0)] + E[1{Vi ≤ v}E[Yi(1)− Yi(0) | Vi = u]]

= E[Yi(0)] +
∫ v

0
E[Yi(1)− Yi(0) | Vi = u]du,

where the third equality uses the selection equation in Assumption A.1.2, the fourth equality

uses the independence of Zi and Vi ∼ U [0, 1] in Assumption A.1.2. Now the desired result
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follows immediately by differentiating both sides of the equation with respect to v.

To identify P[Yi(0) = 1 | Vi = v], consider (1− v)E[g(Yi) | P (Zi) = v, Ti = 0], where g is

a measurable map:

(1− v)E[g(Yi) | P (Zi) = v, Ti = 0] = (1− v)E[g(Yi(0)) | Vi > v]

= E[g(Yi(0))1{Vi > v}]

= E[1{Vi > v}E[g(Yi(0)) | Vi = u]]

=

∫ 1

v
E[g(Yi(0)) | Vi = u]du,

where the first equality uses the selection equation in Assumption A.1.2, the fourth equality

uses Vi ∼ U [0, 1] in Assumption A.1.2. Now the desired result follows immediately by

differentiating both sides of the equation with respect to v and defining g as: g(Yi) =

1{Yi = 1}.

To identify P[Yi(1) = 0 | Vi = v], consider vE[g(Yi) | P (Zi) = v, Ti = 1], where g is a

measurable map:

vE[g(Yi) | P (Zi) = v, Ti = 1] = vE[g(Yi(1)) | Vi ≤ v]

= E[g(Yi(1))1{Vi ≤ v}]

= E[1{Vi ≤ v}E[g(Yi(1)) | Vi = u]]

=

∫ v

0
E[g(Yi(1)) | Vi = u]du,

where the first equality uses the selection equation in Assumption A.1.2, the fourth equality

uses Vi ∼ U [0, 1] in Assumption A.1.2. Now the desired result follows immediately by

differentiating both sides of the equation with respect to v and defining g as: g(Yi) =

1{Yi = 0}.
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A.9.13 Proof of Corollary A.2.1

The desired results follow immediately using the identical arguments in Theorem 1.5.2.

A.9.14 Proof of Corollary A.2.2

For E[g(Xi) | Yi(1) = 1, Yi(0) = 0, Vi = v]:

E[g(Xi) | Yi(1) = 1, Yi(0) = 0, Vi = v] =
E[g(Xi)1{Yi(1) = 1, Yi(0) = 0} | Vi = v]

P[Yi(1) = 1, Yi(0) = 0 | Vi = v]

=
E[g(Xi)(Yi(1)− Yi(0)) | Vi = v]

E[Yi(1)− Yi(0) | Vi = v]

=
∂
∂vE[g(Xi)Yi | P (Zi) = v]

∂
∂vE[Yi | P (Zi) = v]

,

where the second equality uses the monotone treatment response assumption, and the third

equality uses the independence assumption in Assumption A.1.2 and Corollary A.1.2.

Now. consider E[g(Xi) | Yi(1) = Yi(0) = 1, Vi = v] and E[g(Xi) | Yi(1) = Yi(0) = 0, Vi =

v]. For t ∈ {0, 1}:

E[g(Xi) | Yi(1) = Yi(0) = 1− t, Vi = v] = E[g(Xi) | Yi(t) = 1− t, Vi = v]

=
E[g(Xi)1{Yi(t) = 1− t} | Vi = v]

P[Yi(t) = 1− t | Vi = v]
,

where the second equality uses the monotone treatment response assumption. Now the

desired result follows immediately from the independence assumption in Assumption A.1.2

and Corollary A.1.2.
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A.9.15 A Glivenko-Cantelli Theorem for Conditional Cumulative

Distribution Function

In fact, we can strengthen the statement in Appendix A.5 from convergence in probability

to almost sure convergence:

sup
x∈R

∣∣∣P̂[Xi ≤ x|Yi(0) = 0, Ti(1) > Ti(0)]− P[Xi ≤ x|Yi(0) = 0, Ti(1) > Ti(0)]
∣∣∣ a.s.−−→ 0.

Moreover, the uniform convergence result follows immediately from the uniform convergence

of the empirical conditional cumulative distribution function. Thus, we only provide a proof

for the uniform convergence of the empirical conditional cumulative distribution function in

this section.

Theorem A.9.1. Consider a pair of random variable (Xi, Zi) : (Ω,F) −→ (R2, σ(B(R2))),

where F is a sigma field on the outcome space Ω, and σ(B(R2)) denotes the Borel sigma

algebra on R2. Let A ∈ σ(B(R2)) with P[Zi ∈ A] ̸= 0. Then:

sup
x∈R

∣∣∣P̂[Xi ≤ x|Zi ∈ A]− P[Xi ≤ x|Zi ∈ A]
∣∣∣ a.s.−−→ 0,

where P̂[Xi ≤ x|Zi ∈ A] =
En[1{Xi≤x,Zi∈A}]

En[1{Zi∈A}] with En denotes sample average.

Proof. We first show that supx∈R |En[Xi ≤ x, Zi ∈ A]− P[Xi ≤ x, Zi ∈ A]| a.s.−−→ 0. For 1 ≤

j ≤ k − 1, let xj,k = inf{y : P[Xi ≤ x, Zi ∈ A] ≥ j
kP[Zi ∈ A]}. Thus, by the Strong Law of

Large Numbers, there exists Nk such that if n ≥ Nk, then:

|En[Zi ∈ A]− P[Zi ∈ A]| < P[Zi ∈ A]

k
,∣∣En[Xi ≤ xj,k, Zi ∈ A]− P[Zi ∈ A]

∣∣ < P[Zi ∈ A]

k
,∣∣En[Xi < xj,k, Zi ∈ A]− P[Xi < xj,kZi ∈ A]

∣∣ < P[Zi ∈ A]

k
,
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for 1 ≤ j ≤ k − 1. With x0,k = −∞ and xk,k = ∞, then the last two inequalities hold for

j = 0 and j = k.

For x ∈ (xj−1,k, xj,k) with 1 ≤ j ≤ k and n ≥ Nk:

En[Xi ≤ x, Zi ∈ A] ≤ En[Xi < xj,k, Zi ∈ A]

≤ E[Xi < xj,k, Zi ∈ A] +
P[Zi ∈ A]

k

≤ E[Xi < xj−1,k, Zi ∈ A] +
2P[Zi ∈ A]

k

≤ E[Xi ≤ x, Zi ∈ A] +
2P[Zi ∈ A]

k
,

En[Xi ≤ x, Zi ∈ A] ≥ En[Xi ≤ xj−1,k, Zi ∈ A]

≥ E[Xi ≤ xj−1,k, Zi ∈ A]− P[Zi ∈ A]

k

≥ E[Xi ≤ xj,k, Zi ∈ A]− 2P[Zi ∈ A]

k

≥ E[Xi ≤ x, Zi ∈ A]− 2P[Zi ∈ A]

k
,

thus, we conclude that supx∈R |En[Xi ≤ x, Zi ∈ A]− P[Xi ≤ x, Zi ∈ A]| a.s.−−→ 0.
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For supx∈R
∣∣∣P̂[Xi ≤ x|Zi ∈ A]− P[Xi ≤ x|Zi ∈ A]

∣∣∣:
sup
x∈R

∣∣∣P̂[Xi ≤ x|Zi ∈ A]− P[Xi ≤ x|Zi ∈ A]
∣∣∣

= sup
x∈R

∣∣∣∣En[1{Xi ≤ x, Zi ∈ A}]
En[1{Zi ∈ A}]

− P[Xi ≤ x|Zi ∈ A]

∣∣∣∣
= sup

x∈R

∣∣∣En[1{Xi ≤ x, Zi ∈ A}]
En[1{Zi ∈ A}]

− En[1{Xi ≤ x, Zi ∈ A}]
P[{Zi ∈ A}]

+
En[1{Xi ≤ x, Zi ∈ A}]

P[{Zi ∈ A}]
− P[Xi ≤ x|Zi ∈ A]

∣∣∣
≤ sup

x∈R

∣∣∣∣En[1{Xi ≤ x, Zi ∈ A}]
En[1{Zi ∈ A}]

− En[1{Xi ≤ x, Zi ∈ A}]
P[{Zi ∈ A}]

∣∣∣∣
+ sup

x∈R

∣∣∣∣En[1{Xi ≤ x, Zi ∈ A}]
P[{Zi ∈ A}]

− P[Xi ≤ x|Zi ∈ A]

∣∣∣∣
=

∣∣∣∣ 1

En[1{Zi ∈ A}]
− 1

P[{Zi ∈ A}]

∣∣∣∣ sup
x∈R

|En[1{Xi ≤ x, Zi ∈ A}]|

+
1

P[Zi ∈ A]
sup
x∈R

|En[1{Xi ≤ x, Zi ∈ A}]− P[Xi ≤ x, Zi ∈ A]|

≤
∣∣∣∣ 1

En[1{Zi ∈ A}]
− 1

P[{Zi ∈ A}]

∣∣∣∣
+

1

P[Zi ∈ A]
sup
x∈R

|En[1{Xi ≤ x, Zi ∈ A}]− P[Xi ≤ x, Zi ∈ A]|

a.s.−−→ 0,

where the first inequality uses the triangle inequality, the second inequality uses the fact

that:

sup
x∈R

|En[1{Xi ≤ x, Zi ∈ A}]| ≤ 1,

which holds by construction, and the last line uses the Strong Law of Large Numbers and

the continuous mapping theorem.
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A.9.16 Proof of Proposition A.8.2

First note that for P[Xi ∈ A, Yi = 0, Ti = 0|Zi = 0]− P[Xi ∈ A, Yi = 0, Ti = 0|Zi = 1]:

P[Xi ∈ A, Yi = 0, Ti = 0|Zi = 0]− P[Xi ∈ A, Yi = 0, Ti = 0|Zi = 1]

= P[Yi = 0, Ti = 0|Zi = 0, Xi ∈ A]P[Xi ∈ A|Zi = 0]

− P[Yi = 0, Ti = 0|Zi = 1, Xi ∈ A]P[Xi ∈ A|Zi = 1]

= (P[Yi = 0, Ti = 0|Zi = 0, Xi ∈ A]− P[Yi = 0, Ti = 0|Zi = 1, Xi ∈ A])× P[Xi ∈ A],

where the second equality uses the assumption that Xi ⊥⊥ Zi.

Thus, to show the numerical equivalence between the two formulas in Theorem 1.5.1 and

Proposition A.8.1, it suffices to show the equivalence between the numerators in the two

formulas:

P[Ti = 1|Xi ∈ A,Zi = 1]− P[Ti = 1|Xi ∈ A,Zi = 0]− E[κ0Yi|Xi ∈ A]

= P[Yi = 0, Ti = 0|Zi = 0, Xi ∈ A]− P[Yi = 0, Ti = 0|Zi = 1, Xi ∈ A].

Observe that for P[Ti = 1|Xi ∈ A,Zi = 1]− P[Ti = 1|Xi ∈ A,Zi = 0]− E[κ0Yi|Xi ∈ A]:

P[Ti = 1|Xi ∈ A,Zi = 1]− P[Ti = 1|Xi ∈ A,Zi = 0]− E[κ0Yi|Xi ∈ A]

= P[Ti = 0|Xi ∈ A,Zi = 0]− P[Ti = 0|Xi ∈ A,Zi = 1]− E[κ0Yi|Xi ∈ A]

= P[Yi = 1, Ti = 0|Xi ∈ A,Zi = 0] + P[Yi = 0, Ti = 0|Xi ∈ A,Zi = 0]

− P[Yi = 1, Ti = 0|Xi ∈ A,Zi = 1]− P[Yi = 0, Ti = 0|Xi ∈ A,Zi = 1]− E[κ0Yi|Xi ∈ A]
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We now proceed to simplify E[κ0Yi|Xi ∈ A]:

E[κ0Yi|Xi ∈ A]

= E[κ0Yi|Xi ∈ A, Ti = 0, Zi = 0]× P[Ti = 0, Zi = 0|Xi]

+ E[κ0Yi|Xi ∈ A, Ti = 0, Zi = 1]× P[Ti = 0, Zi = 1|Xi]

+ E[κ0Yi|Xi ∈ A, Ti = 1, Zi = 0]× P[Ti = 1, Zi = 0|Xi]

+ E[κ0Yi|Xi ∈ A, Ti = 1, Zi = 1]× P[Ti = 1, Zi = 1|Xi]

= E[κ0Yi|Xi ∈ A, Ti = 0, Zi = 0]× P[Ti = 0, Zi = 0|Xi]

+ E[κ0Yi|Xi ∈ A, Ti = 0, Zi = 1]× P[Ti = 0, Zi = 1|Xi]

=
1

P[Zi = 0]
× P[Yi = 1|Xi ∈ A, Ti = 0, Zi = 0]× P[Ti = 0, Zi = 0|Xi ∈ A]

− 1

P[Zi = 1]
× P[Yi = 1|Xi ∈ A, Ti = 0, Zi = 1]× P[Ti = 0, Zi = 1|Xi ∈ A]

=
1

P[Zi = 0|Xi ∈ A]
× P[Yi = 1|Xi ∈ A, Ti = 0, Zi = 0]× P[Ti = 0, Zi = 0|Xi ∈ A]

− 1

P[Zi = 1|Xi ∈ A]
× P[Yi = 1|Xi ∈ A, Ti = 0, Zi = 1]× P[Ti = 0, Zi = 1|Xi ∈ A]

= P[Yi = 1, Ti = 0|Zi = 0, Xi ∈ A]− P[Yi = 1, Ti = 0|Zi = 1, Xi ∈ A]

where the second equality uses the fact that Ti = 1 implies κ0 = 0, the fourth inequality

uses IV independence assumption, the fifth equality uses the Bayes rule.

Now the desired equivalence result follows immediately.
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APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Proof of Proposition 3.3.1

(⇐) Integrating on both sides of the equation yields:

(∫
g(y)dFYi1(0)|Gi=1,Hi=1(y)−

∫
g(y)dFYi0(0)|Gi=1,Hi=1(y)

)
−

(∫
g(y)dFYi1(0)|Gi=0,Hi=1(y)−

∫
g(y)dFYi0(0)|Gi=0,Hi=1(y)

)
=

(∫
g(y)dFYi1(0)|Gi=1,Hi=0(y) −

∫
g(y)dFYi0(0)|Gi=1,Hi=0(y)

)
−

(∫
g(y)dFYi1(0)|Gi=0,Hi=0(y)−

∫
g(y)dFYi0(0)|Gi=0,Hi=0)(y)

)
,

provided g is measurable and the integral exists.

(⇒) The desired result follows immediately by defining: g(y) = 1{y ≤ ỹ}, where ỹ ∈ R.

B.2 Proof of Proposition 3.3.2

The first statement follows immediately from some simple calculations.

For the second statement, let’s show that the decomposition
∑K

k=1 θkJk must include F g
t ,

and similar arguments follow for Fh
t and F gh. We proceed with the proof by contradiction.

Suppose the decomposition does not include F
g
t , then, we can get a new decomposition:

γ
K∑
k=1

θkJk + (1− γ)F
g
t ,

113



where γ ∈ (0, 1), such that the “modified” parallel trends assumption is invariant to trans-

formations, which is a contradiction to the claim that the decomposition {Jk}Kk=1 does not

include F
g
t .

B.3 Proof of Proposition 3.7.1

The first part of the statement follows directly from Equations 3.1, 3.2, and 3.9.

For the second part of the statement, note that since Pimplied
Yi1(0)|Gi=1,Hi=1

(Yi1(0) ∈ A) ≥ 0

for any A ∈ B(R), and the right-hand side of Equation 3.9 are all probability measures,

Pimplied
Yi1(0)|Gi=1,Hi=1

is a valid probability measure.

Given that P
implied
Yi1(0)|Gi=1,Hi=1

(Yi1(0) ∈ A) is a valid marginal probability distribution,

we first construct a valid joint distribution of potential outcomes and group variables (i.e.,

(Yi1(1), Yi0(1), Yi1(0), Yi0(0), Gi, Hi)), which is denoted by P∗.

By the Product Measure Theorem (e.g., Theorem 1.7.1. in Durrett [2010]), the fact that

B(Rk × Rm) = σ(B(Rk) × B(Rm)) for k,m ∈ N+, and the fact that Pimplied
Yi1(0)|Gi=1,Hi=1

is a

valid probability measure, there exists a unique probability measure µ11 on B(R4) such that

µ11((Yi0(0), Yi1(1)) ∈ B1, Yi1(0) ∈ A1, Yi0(1) ∈ A2)

= P((Yi0, Yi1) ∈ B1 | Gi = 1, Hi = 1)× Pimplied
Yi1(0)|Gi=1,Hi=1

(Yi1(0) ∈ A1)

× P(Yi0 ∈ A2 | Gi = 1, Hi = 1) ,

where B1 ∈ B(R2), and A1, A2 ∈ B(R). Similarly, for g, h ∈ {0, 1} such that g × h = 0,
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there exists a unique probability measure µgh on B(R4) such that

µgh((Yi0(0), Yi1(0)) ∈ B1, (Yi0(1), Yi1(1)) ∈ B2)

= P((Yi0, Yi1) ∈ B1 | Gi = g,Hi = h)× ((Yi0, Yi1) ∈ B2 | Gi = g,Hi = h) ,

where B1, B2 ∈ B(R2). Therefore, there exists a probability measure P∗ on the Borel σ-

algebra on R× R× R× R× {0, 1} × {0, 1} such that

P∗((Yi0(0), Yi1(1)) ∈ B1, Yi1(0) ∈ A1, Yi0(1) ∈ A2 | Gi = 1, Hi = 1)

= µ11((Yi0(0), Yi1(1)) ∈ B1, Yi1(0) ∈ A1, Yi0(1) ∈ A2) ,

where B1 ∈ B(R2), and A1, A2 ∈ B(R), and for g, h ∈ {0, 1} such that g × h = 0,

P∗((Yi0(0), Yi1(0)) ∈ B1, (Yi0(1), Yi1(1)) ∈ B2 | Gi = g,Hi = h)

= µgh((Yi0(0), Yi1(0)) ∈ B1, (Yi0(1), Yi1(1)) ∈ B2) ,

where B1, B2 ∈ B(R2).

Our next step is to check that the constructed joint distribution induces the observed

distribution in the data. To see this,

Pinduced((Yi0, Yi1) ∈ B|Gi = 1, Hi = 1)

= P∗((Yi0(0), Yi1(1)) ∈ B|Gi = 1, Hi = 1)

= P((Yi0, Yi1) ∈ B | Gi = 1, Hi = 1)× Pimplied
Yi1(0)|Gi=1,Hi=1

(Yi1(0) ∈ R)

× P (Yi0 ∈ R | Gi = 1, Hi = 1)

= P((Yi0, Yi1) ∈ B|Gi = 1, Hi = 1) ,
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and

Pinduced((Yi0, Yi1) ∈ B|Gi = g,Hi = h)

= P∗((Yi0(0), Yi1(0)) ∈ B|Gi = g,Hi = h)

= P(Yi0, Yi1) ∈ B1 | Gi = g,Hi = h)× P(Yi0, Yi1) ∈ R2 | Gi = g,Hi = h)

= P(Yi0, Yi1) ∈ B1 | Gi = g,Hi = h) ,

for g, h ∈ {0, 1} such that g × h = 0.

Finally, we verify that the constructed joint distribution satisfies the invariance condition.

This follows immediately from the SUTVA condition.

B.4 Implementing the Least Favorable Method in Canay and

Shaikh [2017]

Below are the steps of the least favorable test in Canay and Shaikh [2017]:

1. Resample the data with replacement with sample size n;

2. Compute the implied densities for the bootstrapped sample;

3. Repeat the previous two steps B = 1000 times and get a matrix of results, where there

are B rows, and columns are implied densities for different Borel sets. Denote each

row b as (f̂∗1,b, ..., f̂
∗
p,b), where p is the number of Borel sets

4. Use the results matrix in the previous step to calculate the correlation matrix. Denote

the correlation matrix as {σ̂∗m,n}1≤m,n≤p
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5. Calculate the test statistic

Tn = max
1≤j≤p

−
√
nf̂j

σ̂∗j,j
,

where {f̂j}1≤j≤p is the implied density of the real data

6. Denote T ∗
n,b = max1≤j≤p

−
√
nf̂∗j,b

σ̂∗j,j
. Compute the (1 − α)-th quantile of {T ∗

n,b}1≤b≤B .

Denote this quantile by ĉ(1− α). Moreover, ĉ(1− α) is the critical value for a level α

test in the least favorable method.

7. Reject the null hypothesis if Tn > ĉ(1− α). Moreover, the p-value is the proportion of

{T ∗
n,b}1≤b≤B that are larger than Tn.

B.5 Implementing the Two-Step Method in Romano et al. [2014]

and Bai et al. [2022a]

Let Wi = (Yi0, Yi1, Gi, Hi), and let {Aj}
p
j=1 be a finite partition of real line R such that

Aj ∈ B(R) for 1 ≤ j ≤ p. We want to test the following null hypothesis:

H0 :E[−1{Yi0(0) ∈ Aj} | Gi = 1, Hi = 1]

+ (E[−1{Yi1(0) ∈ Aj} | Gi = 1, Hi = 0]− E[−1{Yi0(0) ∈ Aj} | Gi = 1, Hi = 0])

+ (E[−1{Yi1(0) ∈ Aj} | Gi = 0, Hi = 1]− E[−1{Yi0(0) ∈ Aj | Gi = 0, Hi = 1}])

− (E[−1{Yi1(0) ∈ Aj} | Gi = 0, Hi = 0]− E[−1{Yi0(0) ∈ Aj} | Gi = 0, Hi = 0]) ≤ 0,

∀1 ≤ j ≤ p .
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Furthermore, we can rewrite the null hypothesis above as:

E[−1{Yi0(0) ∈ Aj} | Gi = 1, Hi = 1]

+ (E[−1{Yi1(0) ∈ Aj} | Gi = 1, Hi = 0]− E[−1{Yi0(0) ∈ Aj} | Gi = 1, Hi = 0])

+ (E[−1{Yi1(0) ∈ Aj} | Gi = 0, Hi = 1]− E[−1{Yi0(0) ∈ Aj} | Gi = 0, Hi = 1])

− (E[−1{Yi1(0) ∈ Aj} | Gi = 0, Hi = 0]− E[−1{Yi0(0) ∈ Aj} | Gi = 0, Hi = 0])

= E[−1{Yi0 ∈ Aj} | Gi = 1, Hi = 1]

+ (E[−1{Yi1 ∈ Aj} | Gi = 1, Hi = 0]− E[−1{Yi0 ∈ Aj} | Gi = 1, Hi = 0])

+ (E[−1{Yi1 ∈ Aj} | Gi = 0, Hi = 1]− E[−1{Yi0 ∈ Aj} | Gi = 0, Hi = 1])

− (E[−1{Yi1 ∈ Aj} | Gi = 0, Hi = 0]− E[−1{Yi0 ∈ Aj} | Gi = 0, Hi = 0])

= E

[
−1{Yi0 ∈ Aj}1{Gi = 1, Hi = 1}

E[1{Gi = 1, Hi = 1}]

+
(−1{Yi1 ∈ Aj}+ 1{Yi0 ∈ Aj})1{Gi = 1, Hi = 0}

E[1{Gi = 1, Hi = 0}]

+
(−1{Yi1 ∈ Aj}+ 1{Yi0 ∈ Aj})1{Gi = 0, Hi = 1}

E[1{Gi = 0, Hi = 1}]

−
(−1{Yi1 ∈ Aj}+ 1{Yi0 ∈ Aj})1{Gi = 0, Hi = 0}

E[1{Gi = 0, Hi = 0}]

]
,

where the first equality rewrites the observed potential outcomes as observed outcomes, and

the second equality uses the definition of conditional expectation.
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Moreover, denote Xij as the following:

Xij =
−1{Yi0 ∈ Aj}1{Gi = 1, Hi = 1}

E[1{Gi = 1, Hi = 1}]

+
(−1{Yi1 ∈ Aj}+ 1{Yi0 ∈ Aj})1{Gi = 1, Hi = 0}

E[1{Gi = 1, Hi = 0}]

+
(−1{Yi1 ∈ Aj}+ 1{Yi0 ∈ Aj})1{Gi = 0, Hi = 1}

E[1{Gi = 0, Hi = 1}]

−
(−1{Yi1 ∈ Aj}+ 1{Yi0 ∈ Aj})1{Gi = 0, Hi = 0}

E[1{Gi = 0, Hi = 0}]
,

Xi = (Xi1, ..., Xip)
′ .

Thus, our original null hypothesis can be written as

H0 : E[Xi] ≤ 0 .

Note that Xi is infeasible in our setting since it involves unknown population parameters,

E[1{Gi = g,Hi = h}], g, h ∈ {0, 1}. We use a feasible Xi, which uses the sample analog

Ê[1{Gi = g,Hi = h}] to estimate E[1{Gi = g,Hi = h}]. We use X̂i to denote the feasible

Xi that we propose. We then apply the two-step procedure in Romano et al. [2014] and Bai

et al. [2022b] using X̂i. After replacing Xi with X̂i, we conjecture that the procedure in

Romano et al. [2014] and Bai et al. [2022b] is still valid.
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Moreover, denote X̂ij by:

X̂ij =
−1{Yi0 ∈ Aj}1{Gi = 1, Hi = 1}

Ê[1{Gi = 1, Hi = 1}]

+
(−1{Yi1 ∈ Aj}+ 1{Yi0 ∈ Aj})1{Gi = 1, Hi = 0}

Ê[1{Gi = 1, Hi = 0}]

+
(−1{Yi1 ∈ Aj}+ 1{Yi0 ∈ Aj})1{Gi = 0, Hi = 1}

Ê[1{Gi = 0, Hi = 1}]

−
(−1{Yi1 ∈ Aj}+ 1{Yi0 ∈ Aj})1{Gi = 0, Hi = 0}

Ê[1{Gi = 0, Hi = 0}]
,

X̂i = (X̂i1, ..., X̂ip)
′ ,

X̂j,n =
1

n

n∑
i=1

X̂ij ,

X̂n =
1

n

n∑
i=1

X̂i = (X̂1, ..., X̂p)
′ ,

Ŝ2
j,n =

1

n

n∑
i=1

(X̂ij − X̂j)
2 ,

where

Ê[1{Gi = g,Hi = h}] = 1

n

n∑
i=1

1{Gi = g,Hi = h} ,

for g, h ∈ {0, 1}.

Note that we have the following numerical relationship:

X̂j,n = P̂implied
Yi1(0)|Gi=1,Hi=1

(Yi1(0) ∈ Aj),

for 1 ≤ j ≤ p. Then, we can compute the test statistic by using the two-step procedure
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proposed by Romano et al. [2014] and Bai et al. [2022b]:

Tn = max

{
max
1≤j≤p

√
nX̂j,n

Ŝj,n
, 0

}
.

Before computing the critical value, we first introduce some notations. Let X̂∗
i denote an

i.i.d. sequence of random vectors with distribution P̂n conditional on {X̂i}ni=1. We further

denote X̂
∗
j,n and Ŝ∗

j,n as:

X̂
∗
j,n =

1

n

n∑
i=1

X̂∗
ij

(Ŝ∗
j,n)

2 =
1

n

n∑
i=1

(X̂∗
ij − X̂

∗
j,n)

2 .

Then, we can compute the critical value in the following way:

ĉ
(2)
n (1− α + β)

= inf
{
c ∈ R : P

{
max

{
T

two-step
n , 0

}
≤ c | {X̂i}ni=1

}
≥ 1− α + β

}
,

where

T
two-step
n = max

1≤j≤p

√
n(X̂

∗
j,n − X̂j,n + ûj,n)

Ŝ∗
j,n

,

ûj,n = min

{
X̂j,n +

Ŝj,n√
n
ĉ
(1)
n (1− β), 0

}
,

ĉ
(1)
n (1− β) = inf

c ∈ R : P

 max
1≤j≤p

√
n(X̂j,n − X̂

∗
j,n)

Ŝ∗
j,n

≤ c | {X̂i}ni=1

 ≥ 1− β

 .

Then, the rejection rule we use is:

ϕRSWn = 1{Tn > ĉ
(2)
n (1− α + β)} .
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Note that β is the level of the test in the pre-testing step in the two-step method in Romano

et al. [2014]. Following Romano et al. [2014], we set β = α
10 .
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