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ABSTRACT

Quality of Experience (QoE) plays a key role in determining the revenue of Internet ap-

plications, such as web services and video streaming. While researchers work to improve

low-level system performance metrics by using system resources (e.g., network bandwidth

and compute cycles) more efficiently, better low-level performance does not always corre-

spond to a better QoE. This is because of users’ different QoE sensitivities across different

contexts (e.g., application content, user preferences, environments, etc.). Not all low-level

system performance improvements are perceptible by users.

In this thesis, we introduce a novel user-centric approach to QoE optimization. This

approach prioritizes resource allocation based on the dynamic user QoE sensitivities towards

performance metrics. However, implementing this approach in Internet applications is not

straightforward. Firstly, learning QoE sensitivity can be expensive as it varies significantly

across numerous contexts, necessitating this learning for each context. Secondly, such fine-

grained resource allocation can introduce substantial system overhead.

In this work, we address these challenges and apply our proposed approach to web services

and on-demand video streaming. We also introduce a user-study tool to help researchers learn

QoE sensitivity more efficiently in terms of monetary cost and latency. Our experiments with

real users demonstrate that through this approach, we can either improve user QoE without

additional system resource consumption or achieve consistent QoE using fewer resources.

xiii



CHAPTER 1

INTRODUCTION

The landscape of networked applications has changed rapidly, with a sharp increase of ap-

plications now relying on high-quality video streams and fast web services, a proliferation

of higher resolution videos (4K, 8K, and virtual reality), and above all, users becoming less

patient with low-quality services. These changes greatly increase resource demands, in both

network bandwidth and compute cycles, of today’s Internet applications. This has created a

significant challenge since scaling applications requires either lowering service quality or up-

grading the network and backend system infrastructure (which can be slow and expensive).

Although researchers have worked on improving user perception of Internet applications

(video and web) for decades, the research community on computer systems has followed

chiefly a system-centric approach, intending to maximally utilize system resources to opti-

mize a predetermined set of low-level system metrics (e.g., video bitrate, system processing

latency, etc.).

We argue that these system-centric optimizations are not necessarily aligned with im-

provements in user perception since the users might perceive the same system metric in

different ways. For instance, in a sports video, viewers might care more about the video

quality of key moments, like a soccer goal, compared to other parts. So, if these impor-

tant moments are of poor quality, viewers will be significantly more disappointed than if

less critical parts were not of good quality. Our key insight is that such differences in user

perception are large, and there are many types of user perception differences across different

contexts, such as video content, internet connectivity, user preferences, etc. (more analysis

for web services and on-demand video streaming are shown in Chapters 2 and 3). Such dy-

namic differences in user perception provide us with a new design space to optimize Internet

application systems.

For instance, in a sports video, viewers might care more about the clarity of key moments,

like a soccer goal, compared to other parts. So, if these important moments are of poor
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quality, viewers will be significantly more disappointed than if less critical parts were unclear.

What we’ve realized is that users perceive quality in varied ways depending on the context,

be it the type of video content, their internet speed, or personal preferences. This variation

in user perception, which we’ll explore further in Chapters 2 and 3, suggests new ways to

enhance how Internet applications are designed and optimized.

This thesis delves into a user-centric approach for optimizing user perceptions of Internet

applications, thereby enhancing the Quality of Experience (QoE). This entails collecting

data on user perceptions to understand dynamic QoE perceptions across various contexts,

followed by resource allocation based on these insights. Two primary challenges confront

this approach: 1) the high cost of understanding perceptions for each context and 2) the

potential system overhead from detailed resource allocation. To address the former, we

employ crowdsourcing-based user studies for efficient data collection. For the latter, we

employ perception dynamics at a coarse granularity to curtail system overhead.

In particular, this thesis focuses on applying our user-centric approaches to two popular

applications: web services and on-demand video streaming. We also have designed a user-

study tool that enables fast collection of user perception data at a low cost:

E2E is a resource allocator deployed on a web server. The users’ sensitivity to web

server delay is not the same, and it depends on the external delay experienced on the system

components outside the web servers, e.g., data transmission over the Internet. E2E has an

efficient algorithm to automatically identify each web request’s web server delay sensitiv-

ity and prioritizes the sensitive requests by allocating more computational resources with

marginal system overhead.

Sensei leverages the significant heterogeneity in user perceptions of video content and

user quality preferences to optimize the QoE of on-demand video streaming since users are

more sensitive to quality issues when watching interesting content. In Sensei, we first model

the user perception sensitivity to different content in a fast and cost-efficient fashion and

then utilize the model to optimize video QoE by trading off video-streaming quality during
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insensitive content and quality during sensitive content under limited network bandwidth.

VidPlat is a crowdsourcing tool that helps researchers measure QoE with low monetary

cost and latency. Different from the traditional tools that must determine low-quality issues

to measure before the user study begins, VidPlat enables the researchers to dynamically

determine those issues during the user study based on the past QoE measurements. It enables

dynamic pruning of low-quality issues to measure for saving cost without conducting multiple

sequential user-study tasks, significantly reducing user-study latency. Also, researchers can

dynamically determine the number of QoE measurements needed for each low-quality issus,

further saving the cost. We have open-sourced this tool online: https://github.com/

QoEStudies/Tool.

The rest of this thesis is structured as follows. We first present E2E in Chapter 2, Sensei

in Chapter 3, and VidPlat in Chapter 4, respectively. Chapter 5 concludes this thesis and

discusses the future work.
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CHAPTER 2

E2E: EMBRACING USER HETEROGENEITY TO IMPROVE

QUALITY OF EXPERIENCE ON THE WEB

2.1 Introduction

Improving end-to-end performance is critical for web service providers such as Microsoft,

Amazon, and Facebook, whose revenues depend crucially on high quality of experience

(QoE). More than ten years have passed since Amazon famously reported every 100ms

of latency cost them 1% in sales, and Google found 0.5s of additional load time for search

results led to a 20% drop in traffic [15]. Today, latency remains critical but the consequences

have gotten steeper: an Akamai study in 2017 showed every 100ms of delay in website load

time hurt conversion rates by 7% [16], and Google reported higher mobile webpage load

times more than double the probability of a bounce [17]. Naturally, web service providers

strive to cut server-side delays—the only delays they can control—to improve the end-to-end

performance of each web request. Following this conventional wisdom, a rich literature has

developed around reducing web service delays (e.g., [149, 163, 77, 101, 51, 92, 155]).

Our work is driven by a simple observation: although reducing server-side delay generally

improves QoE, the amount of QoE improvement varies greatly depending on the external

delay of each web request, i.e., the total delay experienced prior to arriving at the web service

due to ISP routing, last-mile connectivity, and so forth. In other words, if we define QoE

sensitivity as the amount QoE would improve if the server-side delay were reduced to zero,

there is substantial heterogeneity in QoE sensitivity across users. This heterogeneity results

from two empirical findings. First, as illustrated in Figure 2.1(a), QoE typically decreases

along a sigmoid-like curve as delay increases. When the external delay is very short or very

long (e.g., A or C on the curve), QoE tends to be less sensitive to the server-side delay than

when the external delay is in the middle (e.g., B on the curve). We verified this trend using

traces from Microsoft’s cloud-scale production web framework, as well as a user study we
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Figure 2.1: (a) An example of three requests with different QoE sensitivities to server-side
delays, and (b) the potential QoE/throughput improvement if we leverage user heterogeneity.
These figures are illustrative; actual figures from our evaluation and trace analysis appear
later (e.g., Figures 2.3, 2.6).

ran on Amazon MTurk to derive QoE curves for several popular websites (§2.2.2).

Second, external delays are inherently diverse across user requests to the same web ser-

vice, due to factors that are beyond the control of the web service provider: e.g., ISP routing,

last-mile connectivity, DNS lookups, and client-side (browser) rendering and processing. Our

analysis of our traces reveals substantial variability in external delays even among requests

received by the same frontend web server, for the same web content (§2.2.2). The hetero-

geneity in QoE sensitivity implies that following the conventional wisdom of minimizing

server-side delays uniformly across all requests can be inefficient, because resources may be

used to optimize requests that are not sensitive to this delay. Instead, we should reallocate

these resources to requests whose QoE is sensitive to server-side delay.

At a high level, user heterogeneity is inherent to the Internet’s loosely federated archi-

tecture, where different systems are connected together functionally (client devices, ISPs,

cloud providers, etc.), but delay optimization is handled separately by each system. Our

work does not advocate against this federated architecture; rather, we argue that web ser-

vice providers should embrace the heterogeneity of QoE sensitivity across users to better

allocate server-side resources to optimize QoE. Using our traces, we show that if we could

reshuffle server-side delays among concurrent requests so that requests with more sensitive

QoE get lower server-side delays, we could increase the average duration of user engagement

(a measure of QoE) by 28% (§2.2.3).
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To explore the opportunities of leveraging user heterogeneity, we present E2E, a resource

allocation system for web services that optimizes QoE by allocating resources based on each

user’s sensitivity to server-side delay.1 E2E can be used by any shared-resource service;

for example it can be used for replica selection in a distributed database to route sensitive

requests to lighter-loaded replicas.

The key conceptual challenge behind E2E is that, unlike static properties of a request

(e.g., basic vs. premium subscription, wireless vs. wired connectivity), one cannot determine

the QoE sensitivity of an arriving request based solely on its external delay. Instead, QoE

sensitivity depends on the server-side delay as well. As we show in §2.3.2, if the server-side

delay is large enough, it could cause a seemingly less sensitive request (A) to suffer more

QoE degradation than a seemingly more sensitive request (B). Thus, one cannot prioritize

the allocation of resources without taking into account both the external delay distribution

and the server-side delay distribution. The latter distribution, in turn, is affected by the

resource allocation itself, which makes the problem circular and computationally expensive

to solve at the timescale of a web serving system.

E2E addresses this challenge from both the algorithmic perspective and the systems per-

spective. From the algorithmic perspective, E2E decouples the resource allocation problem

into two subproblems, each of which can be solved efficiently: (1) a workload allocation pro-

cess, which determines the server-side delay distribution without considering QoE sensitivity;

and (2) a delay assignment process, which uses graph matching to “assign” the server-side

delays to individual requests in proportion to their QoE sensitivity. E2E solves the two

subproblems iteratively until it finds the best workload allocation and delay assignment

(§2.4).

From the systems perspective, E2E further reduces the cost of processing each request by

coarsening the timescale and the granularity of resource allocation decisions. Observing that

the optimal allocation is insensitive to small perturbations in the external delay and server-

1. E2E takes an “end-to-end” view of web request delays.
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side delay distributions, we allow the system to cache allocation decisions in a lookup table

and only update them when a significant change is detected in either distribution (§2.5).

We demonstrate the practicality of E2E by integrating it into two open-source systems to

make them QoE-aware: replica selection in a distributed database (Cassandra) and message

scheduling in a message broker (RabbitMQ) (§2.6). We use a trace-driven evaluation and

our testbed deployments to show that (1) E2E can improve QoE (e.g., duration of user

engagement) by 28%, or serve 40% more concurrent requests without any drop in QoE; and

(2) E2E incurs negligible (4.2%) system overhead and less than 100µs delay (§2.7).

This paper focuses on applying E2E to an individual service, or to multiple services that

serve unrelated requests. In a production web framework, it is often the case that multiple

backend services work together to complete the same (high-level) web request. Focusing on

individual backend services allows us to develop our key idea of prioritizing requests based

on how sensitive their QoE is to server-side delays, without the added complexity introduced

by dependencies across services. We discuss these issues in §2.9.

2.2 Motivation

We first use our traces to show the prevalence of heterogeneity in how server-side delays

impact the QoE of different users (§2.2.2). Then, we analyze the potential QoE improvement

that could be attained by exploiting this heterogeneity for server-side resource allocation

(§2.2.3).

2.2.1 Dataset

Our dataset consists of the traces of all web requests served by a production web framework

cluster during one day in February 2018. The cluster is one of several located in an Eastern

US datacenter serving the major websites and online storefront properties of Microsoft.2

2. Examples include: microsoft.com, xbox.com, msn.com, etc..
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Page Type 1 Page Type 2 Page Type 3
Page loads (K) 682.6 314.1 600.2

Web sessions (K) 564.8 265.7 512.2
Unique URLs (K) 3.8 1.5 3.2
Unique users (K) 521.5 264.2 481.8

Table 2.1: Dataset summary (date: 02/20/2018)

Importantly, the traces include both client-side (browser) and server-side event logs: the

client-side logs record all page rendering events and issued requests, while the server-side

logs record all backend processing operations required to fulfill each request. Overall, the

dataset spans 1.17M unique users and 1.6M page load events, as summarized in Table 2.1.

For each web request, we define three delay metrics, shown visually in Figure 2.2:

• The total delay (also known as page load time) is the duration between when a user

clicks a link that issues the request and when the last object associated with the request

is rendered.

• The server-side delay is the time to process all server-side operations on the backend,

which may involve multiple steps, such as fetching product IDs from a database and

then querying a product catalog for HTML description snippets, before aggregating

the results and sending them to the user.

• The external delay includes all delays beyond the purview of server-side operations,

e.g., transferring data over the wide-area network, routing the request to the service,

decoding and rendering the response in the client-side browser, etc..

We measure these delay metrics for each web request using the timestamps recorded in

our traces. The total delay is measured by the difference between the first and the last

timestamps associated with the request.

The server-side delay is measured by the total delay of all backend operations (with

overlapping delays excluded). As mentioned above, we assume there is a single backend

service; we discuss complex dependencies between backend services in §2.9. Finally, the
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Figure 2.2: The life cycle of a web request, showing the total delay, server-side delay, and
external delay.

external delay of a web request is calculated by subtracting the server-side delay from the

total delay; it includes both wide-area network and datacenter delays, as shown in Figure 2.2.

Note that this estimate of external delay is conservative because the actual delay may be

smaller if server-side processing overlaps with wide-area transfers or browser rendering—our

results improve as server-side delay becomes larger relative to external delay.

2.2.2 QoE sensitivity and its heterogeneity

Our basic intuition is that the impact of the server-side delay of a request on its QoE, i.e.,

its QoE sensitivity, varies greatly across users. This follows directly from two observations,

which we empirically demonstrate here: the sigmoid-like relationship between QoE and total

delay, and the variability in requests’ external delays.

Sigmoid-like QoE-delay relationship: The key to understanding the user heterogeneity

lies in the non-linear relationship between QoE and delay. Figure 2.3 shows the QoE-delay

relationship of requests to one particular page type. Like prior work, we estimate QoE by

“time-on-site”, measured as the difference between the start and end timestamps of their

web session. A web session includes all of the user’s engagement on the website, such as

subsequent clicks and other interactions, with no period of inactivity greater than 30 minutes.

Figure 2.3 groups the total delays into equal-sized buckets, each with at least 5,000 users,

and plots the average QoE of users in each bucket. The key property of this graph is its
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sigmoid-like shape. Initially the total delay is small and the QoE is almost insensitive to any

change in delay (the delay is too short for users to perceive); then the QoE starts to drop

sharply with slope peaking at around 2,000 ms (this is the region where reducing total delay

makes a difference); finally, when the total delay exceeds about 5,800 ms, the QoE becomes

insensitive again (the delay is long enough that a little additional delay, while noticeable,

does not substantially affect QoE). Accordingly, we can roughly categorize all user requests

into three sensitivity classes:

• Too-fast-to-matter (left blue-shaded area): QoE is not sensitive to server-side delay if

total delay is below 2000 ms.

• Sensitive (middle orange-shaded area): QoE is sensitive to server-side delay when total

delay is between 2000 ms and 5,800 ms.

• Too-slow-to-matter (right red-shaded area): QoE is not sensitive to server-side delay if

total delay exceeds 5,800 ms.

The sigmoid-like curve may look similar to deadline-driven utility curves commonly used

in prior work (e.g., [131, 51]), but there is a difference. Traditionally, a service deadline is

set where the QoE starts to drop. But our analysis shows that when the total delay exceeds

any threshold, the QoE does not drop to zero immediately, and instead decreases gradually

as total delay increases. As we will see in §2.7.4, this difference can cause deadline-driven

schemes to have suboptimal QoE.

We acknowledge that time-on-site may not always reflect how satisfied users are with the

web loading experience. Therefore, we complement the above analysis with an IRB approved

user study3 on Amazon MTurk [1]. We describe the detailed setup in Appendix .2 and only

give a summary here. Following similar work in the crowdsourcing literature [156], we asked

participants to watch a web page load with different total delays and then to rate their

experience on a scale of 1-5. The total delays were randomly permuted per user to avoid

3. Our study was approved by University of Chicago, IRB18-1096. It does not raise ethical issues.
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Figure 2.3: We observe a non-linear relationship between QoE and total delay (a), so re-
ducing delay by the same amount can have a dramatically different impact on QoE. We
highlight different sensitivity regions with different colors. The same QoE-delay relationship
is observed in our MTurk-based user study (b).

any bias due to ordering. We ran this user study on the same web page as in Figure 2.3(a)

and plot the resulting QoE curve in Figure 2.3(b). As the figure shows, the curve from the

user study shares the same sigmoid-like shape as the curve from our trace analysis. We also

repeated the user study on four other popular websites; all websites yielded similar sigmoid-

like QoE curves, though the boundaries of the three sensitivity regions vary slightly across

the sites.

Although our observations about the QoE-delay relationship do not seem different from

prior work (e.g., [35, 55]), they have deeper implications when combined with the next

empirical observation on the variability of external delays.

Variability in external delays: The sigmoid-like relationship between QoE and delay

means that the sensitivity of QoE to server-side delay depends heavily on the external delay.

Figure 2.4 shows the distribution of external delays among requests for the same web page

received at the same frontend web cluster. We see a substantial fraction of requests in

each of the three sensitivity classes (25% too-fast-to-matter, 50% sensitive, 25% too-slow-to-

matter). The same kind of distribution holds across web pages and is stable over time in our

traces.4 Note that the variance in Figure 2.4 is unlikely due to datacenter-level geographical

4. The total delay distributions in our traces are consistent with those observed in prior work [38], though
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web server cluster for the same page content.

differences, since our traces use a global network of edge proxies to route users from the same

region to the same datacenter cluster, although this does not exclude geographical differences

users in the same region. It is also unlikely due to application-level differences, since the

requests are all targeting the same web page. In practice, a web service provider may see

even greater variability in external delays if its edge proxies are less widely distributed than

our traces (causing each datacenter cluster to serve a larger geographic region), or if requests

are processed by a more centralized architecture (e.g., in many video streaming CDNs [170]).

Since external delays are beyond the control of the web service provider, they are an

inherent property of the request from the perspective of the service provider. This is in

contrast to server-side delays, which the service can influence.

2.2.3 Potential for improvement

We now use a trace-driven simulation to demonstrate the opportunity of leveraging the

heterogeneity of QoE sensitivity to server-side delays. Suppose the dataset has n requests

R = {r1, . . . , rn}, and the server-side delay and external delay of request ri are si and ci,

respectively. Let Q(·) be the QoE function that takes total delay as input and returns the

expected QoE. The current QoE of ri can thus be denoted by V old
i = Q(si + ci). Table 2.2

summarizes our notation.

Reshuffling server-side delays: Now, let us consider a simple analysis to counterfactually

they may still vary with website type (e.g., online shopping vs. search engine).
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estimate the benefit of allocating resources based on QoE sensitivity. We preserve both the

external delay of each request and the collection of server-side delays, but we re-assign

the server-side delays to requests as follows. We first rank all requests in order of their

derivative on the QoE curve, − dQ
dx

∣∣∣
x=ci

, representing the impact on QoE of a small change

in server-side delay. Then, we assign the kth-largest server-side delay to the request with

the kth-smallest derivative (i.e., the kth-least sensitive request to server-side delay). Let π

denote the resulting permutation of server-side delays, i.e., request ri now has server-side

delay sπ(i). So the new QoE of request ri is V
new
i = Q(sπ(i) + ci).

Intuitively, the above re-assignment gives small server-side delays to requests that are

sensitive to them, and larger delays to requests that are less sensitive. If the server-side

delays si are sufficiently small, this assignment can be shown to be optimal, as follows. The

average QoE can be written as 1
n

∑n
i=1Q(sπ(i) + ci) =

1
n

∑n
i=1 sπ(i)Q

′(ci) +
1
n

∑n
i=1Q(ci).

Suppose the ci are given and w.l.o.g. c1 ≤ · · · ≤ cn, then this expression is maximized when

sπ(1) ≤ · · · ≤ sπ(n).

Practicality of simulation: To avoid assigning improbable server-side delays to the

requests, we first grouped the requests by page type within one-minute time windows, and

only re-assigned server-side delays among requests in the same group and 10-second time

window. In other words, we do not assign the server-side delay of an off-peak-hour request

to a peak-hour request, or the server-side delay of a simple static page request to a complex

page request. We also verified that the server-side delay distributions exhibit only negligible

changes within a time window. Nonetheless, there are two important caveats. First, our

analysis assumes the server-side delays can be arbitrarily re-assigned among requests, which

of course is impractical. Second, the analysis uses a very simple algorithm that assumes

the set of server-side delays is fixed. In practice, server-side delays are difficult to predict

and depend on how resources are allocated to requests. These issues make it challenging

to achieve the QoE gains predicted by our simulation; later sections address the issues to

extract as much gain as we can manage.
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Figure 2.5: Potential QoE gains through better allocation of server-side resources based on
QoE sensitivity. By reshuffling server-side delays (solid yellow line), we achieve significant
QoE gains that are close to the (unrealizable) ideal of zero server-side delays (dashed blue
line).

Potential gains in QoE and throughput: Figure 2.5 shows the distribution of QoE

improvements over all requests, i.e., (Qnew
i − Qold

i )/Qold
i , as predicted by our simulation.

We see that a small fraction of requests (less than 15.2%) suffer a marginally worse QoE under

the new assignment, but a substantial fraction of requests (over 27.8%) see QoE improve

by at least 20%. Overall, the new average QoE is 15.4% higher than the old QoE. These

improvements are consistent across different page types in the traces. Note that although the

new assignment may worsen tail QoE, requests at the tail have such small QoE derivatives

that the additional degradation is marginal. We conclude that there is substantial room

to improve QoE for a substantial fraction of users, without changing the distribution of

server-side delays.

Similarly, we can also support more concurrent requests, i.e., higher throughput, while

maintaining a similar level of QoE. To estimate the gain in throughput, we apply our reshuf-

fling of server-side delays to peak hours (higher throughput but worse QoE) and to off-peak

hours (lower throughput but better QoE). Figure 2.6 shows the throughput and QoE during

these two periods of time. We randomly select web requests from two peak hours (4pm and

9pm) and three off-peak hours (12am, 3am, 10pm), all in the Eastern Time Zone. For every

10 minutes, we pick the last 10-second window, reshuffle the server-side delays within the

time window, and measure the new QoE as above. We can see that the new average QoE

during peak hours is similar to (even higher than) the old QoE during off-peak hours. In
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Figure 2.7: Current server-side delays are uncorrelated with external delays, showing that
the existing resource allocation policy is agnostic to QoE sensitivity. (Candlesticks show
{5, 25, 50, 75, 95} percentiles.)

other words, if we only apply our approach during peak hours, we could support 40% more

users without any drop in average QoE.

Now, there are two contributing factors that suggest why these potential gains can be

realized over existing systems.

1. Existing systems are agnostic to user heterogeneity. Figure 2.7 shows the distribution

of server-side delays in a 10-second window for requests whose external delays fall into

different ranges. We see that there is little correlation between the external delay and

the corresponding server-side delay, which suggests that current resource allocation

and processing of these requests is agnostic to QoE sensitivity. Our discussions with

the Microsoft product teams represented in our traces corroborate this finding.

2. Server-side delays are highly variable. Figure 2.8 shows that there is a substantial
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Figure 2.8: Server-side delays are highly variable, and not just at the tail. This holds for
different page types.

variability in server-side delays even among requests for the same page type. Part

of this variance is due to tail performance (as observed in prior work), but the lower

percentiles also show substantial variance. This variance in server-side delays creates

the “wiggle room” that makes the improvements in Figure 2.5 possible.

2.2.4 Summary of key observations

The findings in this section can be summarized as follows:

• The variability of external delays across users and the sigmoid-like relationship between

QoE and page load time give rise to heterogeneity in the QoE sensitivity of users to

server-side delays.

• Our trace-driven simulation shows that by allocating server-side delays based on the

QoE sensitivity of each request, one could potentially improve QoE by 20% with the

same throughput, or improve throughput by 40% with the same QoE.

• Existing server-side resource allocation is largely agnostic to external delays, while

server-side delays exhibit high variance, which together create the opportunity to sig-

nificantly improve QoE over current schemes.
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Figure 2.9: Overview of E2E.

2.3 E2E: Overview

The next few sections describe E2E, a general resource allocation system for web services

that realizes the potential QoE and throughput gains of leveraging user heterogeneity.

2.3.1 Architecture

Figure 2.9 illustrates the main components of E2E and how it interacts with a web service

system. Typically, a web request is first received by a frontend web server (Figure 2.9

depicts only one web server, but there may be multiple), which then forwards the request

to a backend infrastructure service (e.g., a distributed database or a message broker) whose

compute/network resources are shared across requests. E2E provides a resource allocation

policy for the shared service that makes a decision for each request, e.g., telling it which

replica to route the request to in a distributed database, or what priority to assign the request

in a message broker. Figure 2.9 depicts only one shared-resource service, but in general E2E

can serve multiple services (or multiple applications within a service) simultaneously, provided

these services do not interact on the same request. We discuss interrelated services, such as

those used to aggregate results for a high-level web request, in §2.9.

E2E takes as input three variables: an offline-profiled QoE model (such as the ones in

Figure 2.3), an external delay model from the frontend web servers, and a server-side delay
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model from the shared-resource service. The external delay model provides the distribution of

external delays across requests and an estimate of the current request’s external delay. This

external delay is then tagged as an additional field on the request and on any associated sub-

requests (similar to [51]). The server-side delay model provides an estimate of the server-side

delay of a request based on the decision and the current workload. Based on these inputs,

E2E returns a decision per request for how to allocate resources to it.

We discuss how server-side delays and external delays are estimated in §2.6.

Figure 2.10 gives two illustrative examples of how E2E might affect resource allocation

policies, for a distributed database and a message broker. In particular, E2E can improve the

requests’ QoE in two ways. First, E2E can assign more QoE-sensitive requests to decisions

that have lower server-side delays, e.g., a less loaded replica in a distributed database.

Second, E2E can allocate resources to affect the server-side delays, in order to reduce the

delays for QoE-sensitive requests. Even if E2E cannot predict server-side delays exactly, it

can still create a discrepancy between the delays experienced by requests of different QoE

sensitivities. For instance, as illustrated in Figure 2.10(a), E2E can assign uneven loads

across the replicas of a distributed database, so that less loaded replicas are available to

process QoE-sensitive requests with faster response times.

The next two sections present E2E’s resource allocation policy and control interface, using

the distributed database and message broker as two concrete examples of a shared-resource

service. In general, E2E makes very few assumptions about how a shared service processes

requests or physically shares its resources; it only requires the service to expose an API for

controlling decisions (e.g., the replica to select, the priority of a request, etc.). Also, our work

places less emphasis on the prediction of external/server-side delays, or the implementation

of a control plane on which E2E’s resource allocation policy may run. Existing work already

addresses and provides general solutions for these aspects (e.g., [131, 51, 50]).
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Requests sensitive to server-side delay
Requests insensitive to server-side delay

Default policy
(Load balanced)

New policy
(Aware of QoE sensitivity)

(a) Replica selection in distributed database

Default policy 
(FIFO)

New policy
(Aware of QoE sensitivity)

(b) Scheduling in message broker

Figure 2.10: Examples of how E2E may allocate resources differently in (a) a distributed
database and (b) a message broker.
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Figure 2.11: Illustration of how allocating resources based solely on requests’ external delays
can lead to suboptimal QoE. Scenarios 1 and 2 have the same pair of requests but different
server-side delays. We use the assignment of server-side delays to represent resource alloca-
tion. In scenario 1, assigning the shorter server-side delay (s2) to B and the longer one (s1)
to A leads to better overall QoE. But in scenario 2, giving the shorter delay (s′2) to A leads
to worse overall QoE.

2.3.2 Key challenge

The key challenge behind E2E is that the optimal decision for a request cannot be determined

from the request alone. Instead, the decision depends on the external delay distribution of

other requests as well as the server-side delay distribution, which itself is a function of these
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decisions. Figure 2.11 illustrates a simple example where prioritizing requests purely based

on external delay can lead to a bad decision, and shows how to improve it by taking the

server-side delays and other requests’ external delays into account. The key observation is

that the non-convexity of the QoE-delay curve may cause the sensitivity of a request’s QoE

to flip depending on the external delay and the magnitude of the server-side delay.

This property makes it challenging to design a scalable decision-making policy. In par-

ticular, the circular dependence between server-side delays and resource allocation decisions

makes the problem algorithmically expensive; and the need to account for other request’s

external delays adds processing overheads.

The above makes E2E conceptually different from many other request scheduling prob-

lems where each request has an innate property that indicates its urgency, such as subscrip-

tion type (e.g., premium vs regular users) or the application’s delay sensitivity (e.g., video

streaming vs. web pages). Notably, Timecard [131] and DQBarge [51], two closely related

systems to ours, use the external delay to directly determine the processing deadline of each

request in isolation, without considering other requests or the global impact on available

resources (see §2.8).

2.4 E2E: decision policy

This section describes E2E’s decision-making policy for allocating resources to requests.

2.4.1 Problem formulation

We start by formulating the problem of E2E. Table 2.2 summarizes our terminology. We

use ri, ci, si, zi to denote the ith request, its external delay, server-side delay, and allocation

decision, respectively. Given n concurrent requests r1,..., rn whose external delays ci..., cn

are provided by the external delay model, E2E finds the decision vector Z=(z1,..., zn) that
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Term Brief description

ri;
R

request; vector of requests

ci;
C

external delay of ri; vector of external de-
lays

si;
S

server-side delay of ri; vector of server-
side delays

Q(·) QoE model; Q(d) returns the QoE of total
delay d

zi;
Z

allocation decision of ri; vector of deci-
sions

G(·) server-side delay model; G(Z) returns the
server-side delay vector of decision vector
Z

Table 2.2: Summary of terminology

Replicas Requests Slots

𝑐1

𝑐2

𝑐3

𝑠𝑥

𝑠𝑥

𝑠𝑦

𝑄 𝑐2 + 𝑠𝑥

Requests Slots

𝑐1

𝑐2

𝑐3

𝑠𝑥

𝑠𝑥

𝑠𝑦

𝑠𝑥

𝑠𝑥

𝑠𝑦

x

y

(a) Obtain server-side delays of the 

decision allocation from G()

(c) Find a maximum 

bipartite matching

(b) Construct a bipartite graph 

between requests and decisions

(d) Translate bipartite matching 

into replica selection decisions

Requests

𝑐1

𝑐2

𝑐3

x

y

ReplicasSlots

Figure 2.12: Running our request-decision mapping algorithm on an example replica selection
scenario with three requests (c1, c2, c3) and two replicas (x, y). The given decision allocation
is two requests for replica x and one request for the replica y. The final request-decision
assignment is optimal for the decision allocation if and only if the corresponding bipartite
matching is maximum.

maximizes

1

n

n∑
i=1

Q(ci +G(zi, Z)),

where Q(d) is the QoE of a request with total delay d, as estimated by the QoE model; and

G(z, Z) is the server-side delay of a request assigned to decision z given that the complete

decision vector is Z, as estimated by the server-side delay model. We assume that the QoE,

external delay, and server-side delay models are known and provided as input; we discuss

their implementation in §2.6. For now we assume the server-side delay model G(·) returns
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precise (noise-free) estimates; we relax this assumption at the end of §2.4.3.

Unfortunately, solving this problem is computationally hard, because it has to take two

dependencies into account:

1. The amount of resource allocated by zi to a request i depends on how much impact

the resource would have on the request’s QoE. But this impact is not linear: as more

resources are given to the request, the improvement to its QoE may increase or diminish

(since Q is non-linear with respect to server-side delay G(zi)).

2. The resource allocation among a set requests depends on the server-side delay distri-

bution, which is itself a function of the resource allocation.

Mathematically, this problem is NP-hard; the proof is beyond the scope of this paper

(readers can refer to [154]), but the basic hardness lies in the non-convexity of function Q.

2.4.2 Two-level decision-making policy

Our approach to addressing the above intractability is to decouple the problem into two levels,

as shown in Algorithm 1). The bottom level finds the best request-decision mapping for a

given decision allocation, where a decision allocation is the number of requests assigned with

each possible decision (e.g., in a distributed database the possible decisions are the different

replicas). The top level uses a simple hill-climbing search to try different decision allocations,

find the best request-decision mapping for each allocation (by invoking the bottom level),

and repeating until a decision allocation with the best QoE is found. The rationale behind

this search strategy is that requests are functionally identical, so the server-side delay model

depends only on the decision allocation—e.g., the number of requests assigned to each replica,

not which specific requests are assigned—allowing us to drastically reduce the search space

from all possible resource allocations to all possible decision allocations. Since the number

of possible decisions is typically small (e.g., the number of replicas or priority levels), this is

a large savings.
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Algorithm 1: E2E’s two-level decision-making policy.

Input: 1) A vector of n requests (r1, . . . , rn),
2) external delay of ri is ci,
3) Number of possible decisions k
Output: Decision vector Z = (z1, . . . , zn), zi is decision of ri
/* Initialize decision allocation */

1 (n, 0, . . . , 0) → W
/* Find the best decisions and QoE under W */

2 RequestDecisionMappingAlgorithm(W ) → Z
3
∑

iQ(ci +G(zi, Z)) → q
4 while HillClimbing(W ) → W ′ ̸= ϕ do
5 RequestDecisionMappingAlgorithm(W ′) → Z ′

6
∑

iQ(ci +G(z′i, Z
′)) → q′

/* Update Z if hillclimbing step improves QoE */

7 if Q′ > Q then
8 Z ′ → Z, q′ → q

On the other hand, finding the best request-decision mapping for a given decision alloca-

tion can be done optimally and efficiently, by viewing it as a graph matching problem. We

present the details of this algorithm next.

2.4.3 Request-decision mapping algorithm

For a given decision allocation, we compute the optimal assignment of requests to decisions

by following a four-step process, illustrated in Figure 2.12 through the example of a replica

selection scenario:

1. Figure 2.12(a): Create n “slots” corresponding to the decision allocation and obtain

their server-side delays from G(·). In this case there are three slots, two for replica x

and one for replica y, with server-side delays sx, sx, sy.

2. Figure 2.12(b): Construct an n-to-n bipartite graph where nodes on the left are

requests and nodes on the right are slots, and the weight of the edge from request ri to

slot s is Q(ci + s), i.e., the expected QoE of the request if assigned with this decision.
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3. Figure 2.12(c): Find a maximum bipartite matching, i.e., a subgraph where each

node has exactly one edge and the total weight is maximized.

4. Figure 2.12(d): Translate the matching to a request-decision assignment: each re-

quest is assigned the decision corresponding to the slot it is linked to. In this example

the final decisions are: c2 → x, c3 → x, c1 → y.

The key insight is to cast the problem of maximizing the QoE of a request-decision mapping

to that of maximizing a matching in a bipartite graph, for which polynomial-time algorithms

exist [95, 66]. The polynomial is cubic in the number of requests, so care must be taken to

ensure an efficient implementation; this is addressed in §2.5.

In practice, the server-side delay model G(·) estimates a distribution of the server-side

delay, not an exact value, so the request-decision mapping algorithm (Figure 2.12) needs to

be modified as follows. Instead of labeling each slot with a fixed value in Figure 2.12(a)

(e.g., sx), we label it with a probability distribution fx(s) (provided by G(·)), and label

the edge in Figure 2.12(b) between request ri and the slot with the expected QoE over this

distribution, i.e.,
∫∞
0 Q(ci + s)fx(s)ds.

2.5 E2E: Decision overhead

E2E’s has to make a resource allocation decision for each request, and this decision might

change if one or more of the input variables (QoE model, external delay model, server-side

delay model) changes. This overhead can quickly become unscalable if left unchecked.

Our idea for reducing the decision-making overhead is to coarsen the granularity of deci-

sions along two dimensions: (1) spatially grouping requests with similar characteristics, and

(2) temporally caching decisions that are updated only when a significant change occurs in

the input variables. Although these are heuristics with no formal guarantees, we find that

they work well in practice (§2.7).
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2.5.1 Coarsening spatial granularity

We coarsen decisions spatially by grouping requests into a constant number of buckets based

on their external delays. Specifically, we split the range of external delays into k intervals, and

all requests whose external delays fall in the same interval are grouped in the same bucket.

We then run E2E’s decision-making policy over the buckets rather than individual requests,

and assign the same final decision to all requests in a bucket. This coarsening ensures that

the running time of the decision-making process is always constant, rather than growing with

the cube of the number of requests (the fastest bipartite matching algorithm [66, 95]). To

minimize the amount of QoE degradation caused by making decisions at the bucket level,

the external delay intervals satisfy two criteria: (1) they evenly split the request population,

and (2) the span of any interval does not exceed a predefined threshold δ. Our evaluation

shows these criteria are effective.

2.5.2 Coarsening temporal granularity

We have empirically observed that the same decision assignment can yield close-to-optimal

QoE even if some of the inputs to E2E’s decision-making policy have changed slightly. There-

fore, E2E caches its decision assignment in a decision lookup table that the shared-resource

service can query for every new request. The keys in this table are the buckets of the exter-

nal delays, and the corresponding value is the decision assigned to each bucket. The exact

definition of decisions varies across use cases. For instance, in a distributed database, the

decision of a specific external delay bucket is the probability of sending a request to each

of the replicas, if the request’s external delay falls in the bucket. The lookup table is only

updated when one of the input variables has changed by a “significant amount”. The policy

for deciding this is orthogonal and not something we prescribe; e.g., it could be if the J-S

divergence [116] between the new and old distributions exceeds a certain threshold.
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Figure 2.13: Use cases of E2E

2.5.3 Fault tolerance of E2E controller

In E2E, a request needs to wait for its resource allocation decision from the E2E controller,

which can therefore become a single point of failure for the whole system. This can be

mitigated in three ways. First, if the E2E controller fails, the shared-resource service can

still make QoE-aware decisions by looking up the request’s external delay in the most re-

cently cached decision lookup table (see above). Second, the E2E controller is replicated

with the same input state (QoE model, external delay model, server-side delay model), so

when the primary controller fails, a secondary controller can take over using standard leader

election [37, 88]. Finally, in the case of total E2E failure, the shared-resource service can

simply bypass E2E and use its default resource allocation policy.

2.6 Use Cases

We demonstrate E2E’s practical usefulness by integrating it into two popular web infras-

tructure services, depicted in Figure 2.13: replica selection in a distributed database and

message scheduling in a message broker. In both cases, E2E makes minimal changes to the

shared-resource service and only relies on the control interface exposed by them. We evaluate

E2E’s overhead in §2.7.3.
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2.6.1 Use case #1: Distributed database.

We choose Cassandra [2] as the distributed database, and use E2E to select the replica for

each request (this operation is common to other distributed databases, and not specific to

Cassandra). In particular, we made two changes. First, we modified the existing replica

selection logic (getReadExecutor of ReadExecutor) of the Cassandra client. Our new logic

stores the decision lookup table (§2.5) received from the E2E controller in a local data

structure. When a new request arrives, it looks up the request’s external delay in the table

to get the selected replica’s IP. Second, we modified the client service callback function (in

RequestHandler) to keep track of the load (number of concurrent requests) and the observed

(server-side) delay of each replica. In practice, the replication level, i.e., the number of

replicas for each key, is usually much smaller than the total number of servers. A simple

replication strategy, adopted by Cassandra and other databases like MongoDB [9], is to

divide the servers into replica groups and store a copy of the entire database in each group.

This replication strategy is a good fit for E2E, which now simply has to choose a replica

group for each incoming request. It also allows E2E to affect server-side delays by ensuring

that some replica groups are less loaded and used to process QoE-sensitive requests.

2.6.2 Use case #2: Message broker.

We choose RabbitMQ [10] as the message broker (other message brokers can work with

E2E in a similar way). RabbitMQ manages its resource by using priority queues and as-

sociating each request with a priority level. Requests with high priority are served be-

fore requests with low priority. Similar to the Cassandra implementation, we made two

changes to integrate E2E. First, we wrote the E2E controller logic in a python script

and pass it to RabbitMQ as the default scheduling policy (through queue bind) when

the RabbitMQ service is initialized. Second, we modified the per-request callback function

(confirm delivery) to track each request’s progress and the queueing delay in the message

broker.
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2.6.3 Implementation details

E2E requires three models as input in order to run. We describe our realizations of these

models below, though other approaches are certainly possible.

• QoE model: Our E2E prototype uses the QoE models derived from the Microsoft traces

and our MTurk user study, shown in Figure 2.3 and detailed in Appendix .2. The QoE

model needs to be updated only when the web service changes its content substantially;

we do not update it in our prototype.

• External delay model: Our E2E prototype builds the external delay distribution from

per-request external delay measurements in recent history. The external delays are

currently provided by our traces and are not calculated in real-time for each request,

though the latter is necessary in a production deployment (see §2.9). We use batched

updates to reduce the overhead of keeping the distribution up-to-date. Specifically,

we found in our traces that it is sufficient to update the external delay distribution

every 10 seconds, because a 10-second time window usually provides enough requests

to reliably estimate the distribution, and the distribution remains stable within this

window.

• Server-side delay model: Our prototype builds the server-side delay model offline, by

measuring the service delay distributions induced by different resource allocations. For

instance, to build a server-side delay model for the distributed database, we measure

the processing delays of one server under different input loads: {5%, 10%,. . . , 100%}

of the maximum number of requests per second. For the message broker the profiling

is slightly more complicated: we have to consider both the number of requests at each

priority level and the total number of requests at higher priority levels. In practice we

need not profile all possible allocations: it is sufficient to sample some of them and

extrapolate the others. Also, the requests are homogeneous in both of our uses cases,

as is typically the case in web services. For services that serve heterogeneous requests
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(e.g., both CPU-intensive and memory-intensive jobs), or where the effects of different

resource allocations do not easily extrapolate to each other, more advanced techniques

may be required to ensure the profiling is efficient.

2.7 Evaluation

We evaluate E2E using a combination of trace-driven simulations and real testbed experi-

ments. Our key findings are:

• E2E can substantially improve QoE: Users spend 11.9% more web session time (more

engagement) compared to the default resource allocation policy in our traces; this

improvement accounts for 77% of the best-possible improvement if server-side delays

were zero. (§2.7.2)

• E2E has low system overhead: E2E incurs only 0.15% additional server-side delay and

requires 4.2% more compute resources per request. (§2.7.3)

• E2E can tolerate moderate estimation errors (up to 20%) on the external delays, while

still retaining over 90% of the QoE improvement attainable if there are no errors.

(§2.7.4)

2.7.1 Methodology

Both our trace-driven simulator and our testbeds use the external delay model derived from

our traces (Table 2.1) and the QoE model from Figure 2.3. The simulator is described in

more detail in §2.2.3.

Testbed setup: To complement our trace-driven simulations, which unrealistically assume

the server-side delay distribution is fixed, we create two real testbeds on Emulab—one for

Cassandra and one for RabbitMQ, as described in §2.6. We feed requests from our traces to

each testbed in chronological order with their recorded external delays, and use the actual
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testbed processing time as the server-side delays. To show the impact of system load, we

speed up the replay by reducing the interval between two consecutive requests by a speedup

ratio (e.g., a speed-up ratio of 2 means we halve the interval between every two consecutive

requests). In the Cassandra (distributed database) testbed, each request is a range query for

100 rows in a table of 5 million keys, which are replicated to three replicas (three Emulab

nodes), so each replica has a copy of each key. The key size is 70B and the value size is

1KB. In the RabbitMQ (messaging broker) testbed, each request is a 1KB message sent to

RabbitMQ (one Emulab node), and a consumer pulls a message from RabbitMQ every 5ms.

Each Emulab node has one 3.0GHz Intel Xeon processor, 2GB RAM, and 2x146GB HDD

storage, and are connected to each other by a 1Gbps Ethernet link.

We do not claim that this testbed is a faithful replication of the production system that

generated our traces. Rather, we use the testbeds to allow resource allocation policies to

affect the server-side delay distributions, as opposed to being constrained by the fixed server-

side delays in our traces. We use the traces only to reflect the real external delays of users

issuing requests to a service.

Baselines: We compare E2E against two baseline policies:

• Default policy (unaware of the heterogeneity of QoE sensitivity): In the simulator, it

simply gives each request its recorded server-side delay. In RabbitMQ, it uses First-In-

First-Out (FIFO) queueing. In Cassandra, it balances load perfectly across replicas.

• Slope-based policy (aware of the heterogeneity of QoE sensitivity but suffers from the

problem described in §2.3.2): In the simulator, it gives the shortest server-side delay to

the request whose external delay has the steepest slope in the QoE model, and so forth

(see §2.2.3). In RabbitMQ, it gives the highest priority to the request whose external

delay has the steepest slope in the QoE model, and so forth. In Cassandra, it is the

same as E2E’s policy, except it replaces the request-decision mapping algorithm with

the slope-based algorithm above.
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Metric of QoE gain: We measure the QoE gain of E2E (and its variants) by the rel-

ative improvement of their average QoE over that of the default policy, i.e., (QE2E −

Qdefault)/(Qdefault).

2.7.2 End-to-end evaluation

Overall QoE gains: Figure 2.14 compares the QoE gains of E2E and the slope-based

policy over the existing default policy, in our traces and our testbeds. For page types 1 and

2 we use time-on-site as the QoE metric (with Figure 2.3(a) as the QoE model), and for

page type 3 we use user rating as the QoE metric (with Figure 2.3(b) as the QoE model).

Using user rating vs. time-on-site has negligible impact on our conclusions, as they lead to

very similar QoE models (Figure 2.3).

Figure 2.14(a) shows that in our traces, E2E achieves 12.6–15.4% better average QoE

than the default policy, whereas the slope-based policy has only 4–8% improvement. This

suggests that E2E addresses the limitation of the slope-based policy discussed in §2.3.2. To

put these gains into perspective, we consider an idealized policy (labeled “idealized” in the

figure) that cuts all server-side delays to zero (i.e., the best a web service could possibly

do by cutting server-side delays). We see that the QoE gain of E2E already accounts for

74.1–83.9% of the QoE gain of this idealized policy.

Figure 2.14(b) also compares the QoE of E2E and the baseline policies when feeding

requests of page type 1 to the Cassandra and RabbitMQ testbeds. We used a 20× speedup

ratio to sufficiently load the systems (we explore the tradeoff between system load and QoE

gain below). The results show similar gains in QoE, with both systems achieving a large

fraction of the best possible gains.

Better QoE-throughput tradeoffs: Figure 2.15 compares the QoE of E2E and the

default policy under different loads, in our traces and our testbeds. E2E strikes a better

QoE-throughput tradeoff than both the default policy and the slope-based policy.

Figure 2.15(a) shows the results for different hours of the day in our traces (12am, 4am,
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3pm, 8pm, 10pm all in US Eastern Time), which exhibit a natural variation in load. Com-

pared to the off-peak hour (leftmost, at 0.6), the peak hour (rightmost, at 1.0) sees 40%

more traffic and, as a result, has 20.1% lower QoE. E2E achieves similar QoE during the

peak hour as the default policy does during the off-peak hour. In other words, E2E achieves

40% higher throughput than the default policy without a drop in QoE.

Figures 2.15(b) and (c) compare the QoE of E2E with those of the baseline policies in

our testbeds, while varying the load (speedup ratio 15× to 25×, normalized as 0.6 to 1

throughput). E2E always improves QoE, though to varying degrees. E2E’s gain is marginal
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Figure 2.16: The additional overhead of E2E vs. the total overhead of running the testbeds.

under low load, since all decisions have similar, good performance (e.g., all replicas have low

read latency when Cassandra is under-loaded). As the load increases, however, E2E’s gain

grows rapidly: at system capacity, E2E achieves 25% QoE gain over the default policy. This

can be explained as follows (using Cassandra as an example). The default policy (perfect

load balancing) drives every replica to a moderately high load, so all requests are affected

by bad tail latencies. In contrast, E2E allocates load unevenly so that at least one replica is

fast enough to serve the QoE-sensitive requests.

2.7.3 Microbenchmarks

We examine the overheads incurred by E2E in computing cost, decision delay, and fault

tolerance.

System overhead: We compare the total resource consumption of running each testbed

with and without E2E. Figure 2.16 shows the additional overhead of E2E in CPU and RAM

usage. We see that the overhead of E2E is several orders of magnitude lower than the total

overhead of running the Cassandra or RabbitMQ testbeds themselves. Moreover, the CPU

and RAM overheads grow more slowly than those of the testbed service as the load increases.

Decision delay: Figure 2.17 shows the effectiveness of our two decision delay-reduction

optimizations (§2.5), using the Cassandra testbed (with speedup ratio 20x). We see that (1)

spatial coarsening (bucketization of external delays) reduces the decision delay by four orders
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Figure 2.17: Per-request delay reduction due to spatial and temporal coarsening (§2.5).

of magnitude, and (2) temporal coarsening (caching E2E decisions in a lookup table) reduces

the decision delay by another two orders of magnitude. The resulting per-request response

delay is well below 100µs, less than 0.15% of Cassandra’s response delay. At the same time,

we see that these reductions in decision-making delay only have a marginal impact on QoE.

Note that E2E does not need to make a decision on the arrival of each request, due to these

optimizations. Instead, decisions are made periodically and cached in the local memory of

each Cassandra client; so when a request arrives, its decision can be read directly from the

client’s memory.

Fault tolerance: Finally, we stress test our prototype of E2E by disconnecting the E2E

controller from the Cassandra testbed. Figure 2.18 shows a time-series of the QoE gain of

requests. We disconnect the controller at the 25th second. First, we see that Cassandra’s

replica selection still uses the latest E2E’s decisions cached in the lookup table, so although

the QoE gain drops (as the lookup table becomes stale), it is still better than the default

policy. At the 50th second, a backup controller is automatically elected, and by the 75th

second, the new controller starts to make the same decisions as if the controller was never

disconnected.

2.7.4 In-depth analysis

Operational regime: Figure 2.19 tests E2E’s performance across a wide range of work-

loads, along three dimensions that influence E2E’s performance. We synthetically generate
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Figure 2.18: E2E can tolerate loss of the controller.

requests by drawing external delays and server-side delays from two normal distributions,

respectively, and test them on the trace-driven simulator using the QoE model from Fig-

ure 2.3. Although the server-side and external delays in our traces do not exactly follow

normal distributions, modeling them in this way allows us to test E2E’s performance under

different distribution conditions. For instance, we can test the impact of increasing the mean

of server-side delay on E2E’s performance while keeping the external delay distribution fixed.

We set the default mean and variance of each distribution to match those of the page type

1 requests in our traces, and vary one dimension at a time. We see that at the beginning,

E2E does not yield any QoE gain, since there is no variability in the external and server-side

delays for it to exploit. Then, the QoE gain of E2E starts to grow almost linearly with

the server-side/external delay ratio, external delay variance, and server-side delay variance,

which confirms that E2E is able to utilize the variance in external and server-side delays. To

put this in the perspective of our traces, the workload in our traces is on the “fast-growing”

part of all curves (red spots in Figure 2.19). This means we will see more QoE gain if the

workload moves to the right in any of these dimensions.

Robustness to prediction errors: Figure 2.20 shows the impact that prediction errors, in

the external delays and the number of requests per second (RPS), have on E2E’s performance.

We feed page type 1 requests to the Cassandra testbed (speedup ratio 20x), and inject a

controllable error on the actual value to obtain the estimated value. Figure 2.20(a) shows

that even if the external delay prediction is off by 20% on each request, E2E still retains over
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90% of its QoE gain. Predicting the external delay with 20% (or 100-200ms) error seems

reasonable for most users [131]. Figure 2.20(b) shows that E2E retains 91% of its QoE gain

if the RPS is predicted with 10% error. Empirically, we find that 10% prediction error is

possible when using the RPS history from the last 10 seconds (not shown).

QoE fairness: A natural concern is that E2E may create a less fair QoE distribution. As

an example, we use the QoE distributions of E2E and the default policy from Figure 2.14(a)

and page type 1. We calculate Jain’s Fairness Index of the requests’ QoE values, and find

that E2E’s Jain index (0.68) is lower but still very close to that of the default policy (0.70).

This is because E2E only deprioritizes requests that are insensitive to QoE; these requests

experience only a marginal improvement in QoE when using the default policy.

E2E vs. deadline-driven scheduling: Unlike E2E, some prior work (e.g., [131, 51])

models the impact of total delay on QoE as a hard deadline: QoE drops to zero immediately
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after the total delay exceeds the deadline. We use Timecard [131] as a canonical example

of a deadline-driven scheduling policy, and compare E2E to it. Timecard sets a total delay

deadline and, given the external delay of each request, tries to maximizes the number of

requests served by the deadline. We compare E2E with Timecard under total delay deadlines

of 2.0, 3.4, and 5.9 seconds, using RabbitMQ as the testbed. As Figure 2.21 shows, the QoE

gain of E2E is consistently better than Timecard under different deadline settings. This is

because the deadline-driven scheduler is agnostic to the different QoE sensitivities of requests

that have already exceeded the deadline.

2.8 Related work

We briefly survey the most related work on web QoE, cloud resource allocation, and web

performance measurements.

2.8.1 Web QoE modeling/optimization

QoE has been intensively studied in the context of web services (e.g., [27, 55]), mobile

apps (e.g., [20]), video streaming (e.g., [59, 28]), and measurement tools (e.g., [156]). Prior

work (e.g., [35, 69, 123]) has observed a similar non-linear relationship between page loading

time and QoE. Although E2E uses a specific QoE model (based on our trace analysis), it can

benefit from more precise models of how page loading time affects QoE. Unlike prior QoE op-
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timization techniques that tune client-side knobs [38, 122] or provide server-side resources for

individual sessions (e.g., [138, 137]), E2E intelligently allocates server-side resources shared

across a large number of heterogeneous users.

2.8.2 Web service resource allocation

There is a large literature on cutting the tail/median server-side delays through better web re-

source management, including distributed databases (e.g., [149, 163]), partition-aggregation

workloads (e.g., [92, 101]), and caching (e.g., [33, 34]). Cloud providers optimize WAN la-

tency through better server selection (e.g., [109, 45]) and WAN path selection [166, 140].

E2E is conceptually compatible with many existing resource sharing techniques (e.g., replica

selection and message scheduling). What distinguishes E2E is that it does not seek to min-

imize the median or tail performance; instead, it takes into account the QoE sensitivity of

different users when allocating server-side resources.

2.8.3 End-to-end performance analysis

There have been attempts to measure the contribution of cloud, WAN, and client-side de-

vices to end-to-end delays [130, 50, 48]. Our observations on heterogeneous QoE sensitivity

corroborate some prior work (e.g., [50]) that show that cloud-side delays are not a constant

fraction of end-to-end delays for all users. These studies offer useful insights for improv-

ing web service infrastructure [110, 99, 40] and building real-time resource management

systems [51, 131, 19].

The works most closely related to E2E are Timecard [131] and DQBarge [51], which

share with us the high-level idea of making server-side decisions based on the QoE of end

users [93]. In particular, they estimate the “slack” time between receiving a request and

its end-to-end delay deadline, and utilize this slack to maximize the quality of the response.

Although they allocate different resources to different requests, they optimize individual

requests in isolation, which can cause resource contention when the system is under stress or
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many requests have low slack time. In contrast, E2E optimizes QoE and resource allocation

across requests, by harnessing their inherent heterogeneity. We also empirically show that

when the QoE curve is like Figure 2.3, a deadline-based QoE model can be less effective than

E2E (§2.7.4).

E2E is similar to work (e.g., [103, 104]) that considers requests with soft deadlines:

i.e., QoE decreases gradually to zero after the total delay exceeds a time threshold. These

soft-deadline-driven schedulers set the same threshold for all requests and do not take the

heterogeneity of web requests into account, whereas the resource allocation in E2E considers

different QoE sensitivities.

2.9 Discussion

2.9.1 Incentives of other service providers

One concern about using E2E is that another service provider (e.g., an ISP) may try to

manipulate the external delays of its users to get better service from E2E, by making them

look more urgent. However, we prove in Appendix .1 that it is impossible to improve a group

of users’ QoE without reducing at least some of their external delays. In other words, E2E

creates an incentive for other service providers to reduce their delays, rather than gaming

E2E by deliberately adding delays.

2.9.2 Security threat

In theory, E2E may introduce a new attack, in which a large group of users hurt the QoE

of other users by making themselves look more urgent, thus starving the other users of re-

sources (similar to a Denial-of-Service attack). We can envision several detection/mitigation

techniques for such an attack, such as detecting abnormal changes to the external delay dis-

tribution, or adding randomization to the actual server-side delays. We leave investigation

of these security issues to future work.
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2.9.3 Interaction with existing policies

A web service provider often integrate multiple resource allocation policies. Conceptually,

E2E is compatible with other prioritization schemes; they can be included as input into

E2E’s decision-making policy (e.g., by upweighting the Q(·) values of premium traffic), or

E2E can be applied separately to each priority class (e.g., premium users vs. basic users).

2.9.4 Complex request structures

In a real web framework like Microsoft’s, a high-level web request usually results in calls to

multiple backend services, and the request is not complete until it hears a response from

all the backend services [33]. A straightforward way to handle this request structure is to

apply E2E to each service in isolation. However, this approach is suboptimal, because it

may cause a service to prioritize requests whose server-side delays are determined by other

backend services. For example, in Figure 2.11(a), E2E prioritizes request B over A, since

prioritizing A would cause B to suffer a significant QoE drop. But if B also depends on

another, much slower service, speeding up B will not have a direct impact on the user’s

QoE. In this case, it would have been better to prioritize A, whose QoE could actually have

been improved. We can see that an optimal resource allocation scheme for requests with

complex structure needs to take these backend service dependencies into account. We leave

this problem to future work.

2.9.5 Deployment at scale

E2E must face the following issues when deployed in a large-scale production system.

• Multiple agents: For a web service to scale, it typically uses distributed agents (e.g.,

Cassandra clients or RabbitMQ message brokers), each making resource-allocation

decisions independently. In E2E, although each agent might see a different subset

of web requests, its decisions are based on a global decision lookup table built upon
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the global external delay distribution. In the unlikely event that the requests are

load balanced poorly across the agents, it is possible for the resulting decisions to be

suboptimal: e.g., in the case of RabbitMQ, if one message broker only sees insensitive

requests, those requests will be at the head of its queue (there are no sensitive requests

to place ahead of them). We have not investigated such scenarios in our current

evaluation.

• Real-time external delay estimation: Our current prototype relies on the external delays

provided by our traces, but a real deployment would need to compute the external delay

in real-time for each request. E2E could accomplish this by borrowing ideas from

Timecard [131] and Mystery Machine [50]. Like Timecard, the WAN-induced delay of

a request could be derived from the round-trip time of the TCP handshake packets

and the TCP sliding window size. To estimate the browser rendering time of a request,

E2E could use a model trained on historical traces (Mystery Machine) or on traces and

the system configuration (Timecard). Timecard provides more accurate estimates but

requires user permission to access the system configuration. Mystery Machine does not

need user cooperation but has lower accuracy, especially for first-time users. Since E2E

is not very sensitive to the accuracy of the external delay estimates (Figure 2.20(a)),

Mystery Machine’s method could allow E2E to scale out and support more requests.
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CHAPTER 3

SENSEI: ALIGNING VIDEO STREAMING QUALITY WITH

DYNAMIC USER SENSITIVITY

3.1 Introduction

An inflection point in Internet video traffic is afoot, driven by more ultra-high resolution

videos, more large-screen devices, and ever-lower user patience for low quality [3, 12]. At the

same time, the video streaming industry, after several decades of evolution, recent adaptive

bitrate (ABR) algorithms (e.g., [117, 87, 165]) achieve near-optimal balance between bitrate

and rebuffering events, and recent video codecs (e.g., [147, 114]) improve encoding efficiency

but require an order of magnitude more computing power than their predecessors. The

confluence of these trends means that the Internet may soon be overwhelmed by online

video traffic,1 and new ways are needed to attain fundamentally better tradeoffs between

bandwidth usage and user-perceived QoE (quality of experience).

We argue that a key limiting factor is the conventional wisdom that users care about

quality in the same way throughout a video, so video quality should be optimized using the

same standard everywhere in a video. This means that lower quality—due to rebuffering,

low visual quality, or quality switches—should be avoided identically from the beginning

to the end. We argue that this assumption is not accurate. In sports videos (e.g., the

one in Figure 3.1), a rebuffering event that coincides with scoring tends to inflict a more

negative impact on user experience than rebuffering during normal gameplay. But there are

also sports videos where scoring is not the most quality-sensitive part. Thus, user quality

sensitivity varies with the video content dynamically over time.

Unfortunately, both the literature on ABR algorithms and the literature on QoE modeling

adopt the conventional wisdom. Most ABR algorithms completely ignore the content of

1. This is vividly illustrated by the recent actions taken by YouTube and Netflix (and many others) to
lower video quality in order to save ISPs from collapsing as more people stay at home and binge watch online
videos [14].
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each video chunk: they focus on balancing high bitrates and low rebuffering times, and thus

consider only the size and download speed of the chunks. Traditional ways of modeling QoE

are also agnostic to the substance of videos, although recent QoE models—e.g., PSNR [74],

SSIM [160], VMAF [13], and deep-learning models [65, 98]—try to find frames that users

are more sensitive to by studying the structure of pixels and motions to gauge their saliency.

These heuristics seek to generalize across all videos and thus resort to generic measures (like

pixel-level differences), but it is unclear if any heuristic can capture the diverse and dynamic

influence a video’s content can have on users’ sensitivity to quality.

For example, models like LSTM-QoE [65] assume that users are more sensitive to re-

buffering events in more “dynamic” scenes. In sports videos, however, non-essential content

like ads and quick scans of the players can be highly dynamic, but users may care less about

quality during those moments. In the video in Figure 3.1, LSTM-QoE considers normal

gameplay to be the most dynamic part, but the most quality-sensitive part of the video

according to our user study is the goal. A key insight is that the impact of the substance of

a video on users’ sensitivity to quality cannot be fully explained by pixel-level patterns or

cross-frame motions. Some recent work tries to predict user’s dynamic sensitivity, but they

either need access to users’ viewing history [68] or use off-the-shelf computer-vision saliency

models [67] whose predictions have little correlation with quality sensitivity on videos they

have never seen before (§3.2.3 elaborates on this).

The dynamic nature of quality sensitivity suggests a new avenue for improvement. One

can achieve higher QoE with the same bandwidth by carefully lowering the current quality

in order to save bandwidth and allow higher quality when users become more sensitive.

Similarly, one can attain similar QoE with less bandwidth by judiciously lowering the quality

when quality sensitivity is indeed low. In short, we seek to align higher (lower) quality of

video chunks with higher (lower) quality sensitivity of users.

We present Sensei, a video streaming system that incorporates dynamic quality sensitivity

into its QoE model and video quality adaptation. Sensei addresses two key challenges.
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Challenge 1: How do we profile the unique dynamic quality sensitivity of each video in an

accurate and scalable manner?

Crowdsourcing the true quality sensitivity per video: Instead of proposing another

heuristic, Sensei takes a different approach. We run a separate crowdsourcing experiment for

each video to derive the quality sensitivity of users at different parts of the video. Specifically,

we elicit quality ratings directly from real users (obtaining a “ground truth” of their QoE) for

multiple renderings of the same video, where each rendering includes a quality degradation

in some part of the video. Sensei automates and scales this process out using a public

crowdsourcing platform (Amazon MTurk), which provides a large pool of raters, while using

pruning techniques to reduce the number of rendered videos that need to be rated. We

then use these ratings to estimate a weight for each video chunk that encodes its quality

sensitivity, independent of the quality of other chunks. While crowdsourcing has previously

been used to model QoE, Sensei is to our knowledge the first to scale it to per-video QoE

modeling.

Challenge 2: How do we incorporate dynamic quality sensitivity into a video streaming

system to enable new decisions? Today’s video players are designed to be “greedy”: they

pick a bitrate that maximizes the quality of the next chunk while avoiding rebuffering events.

But in order to utilize dynamic quality sensitivity, a player must “schedule” bitrate choices

over multiple future chunks, each having a potentially different quality sensitivity. This

means that some well-established behaviors of video players, e.g., only rebuffer when the

buffer is empty, may need to be revisited.

Refactoring ABR logic to align with dynamic quality sensitivity: Sensei works

within the popular DASH framework. It integrates the aforementioned per-chunk weights

into existing ABR algorithms to leverage the dynamic quality sensitivity of upcoming video

chunks when making quality adaptation decisions. The per-chunk weights enable new adap-

tation actions that “borrow bandwidth” from low-sensitivity chunks and give them to high-

sensitivity chunks. For example, Sensei may lower the bitrate even when bandwidth is
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sufficient, or initiate a rebuffering event with a non-empty buffer, to afford higher bitrates

when quality sensitivity becomes higher. We apply Sensei to two state-of-the-art ABR al-

gorithms: Fugu [165], a more traditional rule-based algorithm, and Pensieve [117], a deep

reinforcement learning-based algorithm.

Using its scalable crowdsourcing approach, Sensei can predict QoE more accurately than

state-of-the-art QoE models. For example, with a budget of just $31.4/minute video, Sensei

achieves 55% less QoE prediction error than existing models. Compared to state-of-the-art

ABR algorithms, Sensei improves QoE on average by 15.1% or achieves the same QoE with

26.8% less bandwidth across various video genres.

Contributions and roadmap: Our key contributions are:

• A measurement study revealing substantial temporal variability in users’ quality sensitivity

and its potential for improving video streaming QoE and bandwidth usage (§3.2).

• The design and implementation of Sensei, including: 1) a scalable crowdsourcing solution

to profiling the true dynamic quality sensitivity of each video (§3.4,§3.5),2 and 2) a new

ABR algorithm that incorporates dynamic user sensitivity into existing algorithms and

frameworks (§3.6).

3.2 Motivation

We begin by showing that existing approaches to modeling video streaming QoE fail to

accurately capture the true user-perceived QoE (3.2.1). We then present user studies that

reveal a missing piece in today’s QoE modeling: users’ quality sensitivity varies dynamically

throughout a video (§3.2.2), and this dynamic quality sensitivity is hard to capture using

prior heuristics or vision models (§3.2.3). However, by incorporating dynamic quality sensi-

tivity into existing ABR algorithms, we can significantly improve QoE and save bandwidth

(§3.2.4).

2. Our study was IRB-approved (IRB18-1851).
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Figure 3.1: Example of dynamic quality sensitivity. Users are asked to rate the quality (on a
scale of 1 to 5) of different renderings of a source video (Soccer1), where a 1-second rebuffer-
ing event occurs at a different place in each rendering. We observe substantial differences in
the QoE impact (measured by mean opinion score, or MOS) across the renderings.

3.2.1 Prior QoE modeling and their limitations

QoE models are crucial to modern video streaming systems. A QoE model takes a streamed

video as input and returns a predicted QoE as output. When streaming a video, the video

player optimizes QoE by adapting the bitrate of each video chunk to the available bandwidth.

QoE is often measured by the mean opinion score (MOS) assigned by a group of users to

the quality of a video.3

Quality metrics: Today’s QoE models consider two aspects.

• Pixel-based visual quality tries to capture the impact of visual distortion on QoE. These

metrics, such as PSNR and VMAF, are based on pixel/motion-based patterns [74, 160,

159, 143, 13, 98, 132] and recently on visual attention [58, 169, 85].

• Streaming quality incidents during the streaming process can negatively impact user expe-

rience, such as rebuffering, low bitrate, and bitrate switches. Their impact is modeled by

metrics, such as rebuffering ratio, average bitrate, and frequency of bitrate switches during

3. Our methodology extends to other QoE metrics as well.
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a video (e.g., [59, 28]).

Some work also considers contextual factors (e.g., viewer’s emotion, acoustic conditions,

etc.), but these are orthogonal to our focus on the video’s content.

QoE models: Recent QoE models combine both pixel-based visual quality metrics and

quality-incident metrics for more accurate QoE prediction. We consider three such QoE

models: KSQI [60], P.1203 [136], and LSTM-QoE [65], which were proposed within the past

two years and have open-source implementations. KSQI combines VMAF, rebuffering ratio,

and quality switches in a linear regression model. P.1203 combines QP (quantization pa-

rameter) and quality incident metrics in a random-forest model. Most recently, LSTM-QoE

takes STRRED [143] and individual quality incidents as input to a long short-term memory

(LSTM) neural network designed to capture the “memory effect” of human perception of

past quality incidents. (We discuss related work in §3.8.)

User study methodology: We evaluate these QoE models (KSQI, P.1203, LSTM-QoE) on

16 source videos randomly selected from four public datasets [72, 31, 61, 158], covering a wide

range of content genres (sports, scenic, movies, etc.). These videos are streamed using one of

three ABR algorithms: Fugu [165], Pensieve [117], and BBA [87], over 7 throughput traces

randomly selected from real-world cellular networks [135, 135], with bandwidths ranging

from 200Kbps to 6Mbps. §2.7.1 and Appendix .3 provide more details on the videos and

network traces. This creates 336 (16×7×3) rendered videos. To obtain the ground truth

QoE of each rendered video, we elicit QoE ratings from crowdsourced workers on Amazon

MTurk [1]. We obtain at least 30 ratings from different MTurkers and use the MOS over

these ratings as the true QoE of the rendered video §3.4 and §3.5 describe our crowdsourcing

methodology in detail.

QoE prediction accuracy: Given the ground-truth QoE, we evaluate the three QoE

models both with their pre-trained parameters and after customizing (retraining) them on

315 of the rendered videos selected at random. All models are tested on the remaining 21

videos; we scale their output range and the true QoE to [0, 1]. The x-axis of Figure 3.2 shows
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Figure 3.2: Existing QoE models exhibit substantial QoE prediction errors (x-axis), which
cause them to frequently mis-predict the relative QoE ranking between two ABR algorithms
on the same video, i.e., a discordant pair (y-axis).

the mean relative prediction error of each QoE model on the test set; relative prediction error

is defined as |Qpredict−Qtrue|/Qtrue, where Qpredict and Qtrue are the predicted and true QoE of

the video. We see that these errors are nontrivial; even the most accurate QoE model has

over 10.4% error on average.

We also examine whether these models can correctly rank the QoE achieved by two

different ABR algorithms. For each pair of source video and throughput trace, we first

rank every two of the three ABR algorithms using their true QoE and then again using the

predicted QoE. If the rank is different, this pair is called a discordant pair. The y-axis of

Figure 3.2 shows the fraction of discordant pairs among all possible pairs (a common measure

used in rank correlation): over 10.2% of pairs are discordant even for the most accurate QoE

model. This suggests that using QoE predictions to compare different algorithms (e.g.,

[117, 165, 87]) may not be reliable.

3.2.2 Temporal variability of quality sensitivity

Figure 3.2 shows that, unlike prior methods, our QoE model (§3.4) can predict QoE and rank

ABRs significantly more accurately when applied on the same train/test set. We argue that

this gap stems from a common assumption shared by all previous QoE models, which is that

all factors affecting QoE can be captured by a handful of objective metrics. This premise
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ignores the impact of high-level video content (rather than low-level pixels and frames) on

users’ sensitivity to quality at different parts of the video. We now demonstrate how this

quality sensitivity varies as video content changes.

Quantifying dynamic quality sensitivity: Users’ sensitivity to quality at a certain part

of a video is reflected by the QoE drop when a low-quality incident occurs at that part of the

video, i.e., ∆=Qbefore−Qafter, where Qbefore is the MOS of the video without the low-quality

incident and Qafter is the MOS of the video with the low-quality incident. To measure the

true quality sensitivity at different parts of a source video, we create a rendered video series

as follows. Rendered videos in a video series have the same source content and highest quality

(highest bitrate without rebuffering), except that a low-quality incident (a rebuffering event

or a bitrate drop) is deliberately added at different positions, e.g., at the 4th second, 8th

second, and so forth. Then, as before, we use Amazon MTurk to crowdsource the true QoE

of each rendered video, following our crowdsourcing methodology (§3.4,§3.5).

Figure 3.1 shows an example video series created using a 25-second soccer video as the

source video and a one-second rebuffering event as the low-quality incident. We observe

significant differences between the QoE drops caused by the rebuffering event at different

parts of the video. The highest QoE drop (caused by rebuffering at the 15th second) is

2.1× higher than the lowest QoE drop (rebuffering at the 10th second). This shows that

a low-quality incident can have a significantly higher/lower impact on user experience if it

occurs a few seconds earlier or later.

Quality sensitivity is inherent to video content: Our user study also suggests that

the type of low-quality incident does not affect the ranking of QoE drops within a video

series, even though it affects the absolute QoE drops. In other words, quality sensitivity

seems to be inherent to different parts (contents) of the video. Figure 3.6 shows the dynamic

user sensitivity of three low-quality incidents on the same source video: 1-second rebuffering,

4-second rebuffering, and a bitrate drop from 3Mbps to 0.3Mbps for 4 seconds. Although

the absolute values of the QoE drops depend on the particular quality incident, the relative
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Figure 3.6: Impact of different quality incidents at different points in the video in Figure 3.1.
The pattern of variability remains the same across the different quality incidents. Error bars
show standard deviation of the means.

rankings are identical. The strong rank correlation (measured by Spearman’s rank coeffi-

cient) is persistent across all videos in our dataset: 0.95 rank coefficient between the 1-second

and 4-second rebuffering events and 0.94 between the 1-second rebuffering and bitrate drop.

Sources of dynamic quality sensitivity: We speculate that the dynamic quality sen-

sitivity stems from users paying different degrees of attention to different parts of a video.

In our dataset, we identify at least three types of moments when users tend to be more (or

less) attentive to video quality than usual. The first are key moments in the storyline of a

video when tensions have built up; e.g., in BigBuckBunny (animation) when the bullies fall

into a trap set by the bunny, or in Soccer1 when a goal is scored. The second are moments

when users must pay attention to get important information; e.g., showing the scoreboard

in sports videos (Soccer2), or acquiring supplies after killing an enemy (FPS2). The third

are transitional moments with scenic backgrounds, when users tend to be less attentive to

quality; e.g., the universe background in Space.

3.2.3 Modeling quality sensitivity

Can it be captured by QoE models? Traditional QoE models predict the same QoE

for all rendered videos in a video series. Even models that do predict different QoE assume
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Figure 3.8: FPS

Figure 3.9: QoE rating drop when adding a 1-sec rebuffering at different points in the video,
compared to chunk sensitivity levels inferred by saliency models.

that the impact of video content can be captured by pixels and motions; e.g., VMAF [13]

(the visual quality metric used by KSQI) gives lower QoE estimates if a bitrate drop occurs

when the frame pixels are more “complex”. Unfortunately, the impact of content on user

sensitivity discussed above cannot be fully captured by pixel-level patterns. In Figure 3.1,

the true highest QoE drop occurs when the low-quality incident occurs during the goal, but

both VMAF and LSTM-QoE predict that it occurs during normal gameplay.

Can it be captured by vision saliency? User sensitivity is conceptually similar to

temporal saliency in computer vision. Can saliency/highlight detection models capture user

sensitivity to quality? We examine three representative approaches.

• Traditional motion-based models, such as AMVM (average motion-vector magnitude) [112,

18], use the motion vector magnitudes of pixels in a chunk to indicate user sensitivity—i.e.,

users are more sensitive to more dynamic scenes.

• Interestingness score per frame (highlight detection), such as Video2GIF [75] and [67],

train a regression model (using C3D [152] neural network as the spatio-temporal feature

extractor) on videos with human-annotated per-frame interestingness scores.4 The model

4. We notice that some content providers passively monitor the number of viewers at different parts of a
video (e.g., [6]), which is an alternative way of identifying highlights or high-interestingness chunks.
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Figure 3.10: Distribution of sensitivity variability when a low-quality incident (1-second
rebuffering, 4-second rebuffering, or a bitrate drop for 4 seconds) is added at different points
in the same video. The trend is similar even if the low-quality incident and QoE gap are
localized to a 12-second window.

then produces a per-frame interestingness score which might indicate user sensitivity.

• Video summarization models, such as dppLSTM [171] and DSN [178], infer how important

each frame is to the whole story of a video, by extracting vision features [150] and using

an LSTM to model temporal dependencies. The more important a frame is, the higher

user sensitivity might be.

Figure 3.9 shows the average saliency scores (normalized to [0, 1]) returned by these models

at each chunk of two example videos. We see a weak correlation between the QoE drops

caused by a 1-sec rebuffering event at different chunks and the true user sensitivity. Overall,

such correlation is low for all videos in our dataset: less than 0.23 (Pearson’s correlation)

and 0.18 (Spearman’s rank correlation). To see an example, in the soccer video (Figure 3.1),

the part right before the goal is the most quality sensitive. However, the highlight detection

and motion-based models highlight the highly dynamic scenes that pan across the audience,

and the video summarization model picks diverse moments of a video, such as shot/rewind

clips, whereas users pay more attention to when a goal might be scored. Appendix .6 gives

more discussions. As a result, ABR logic based on saliency scores performs poorly (§2.7).
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3.2.4 Potential gains

Dynamic quality sensitivity is prevalent: We repeat the same experiment from Fig-

ure 3.1 on all 16 source videos in our dataset and three low-quality incidents: 1-second

rebuffering, 4-second rebuffering, and a bitrate drop from 3Mbps to 0.3Mbps for 4 seconds.

This creates 48 video series in total. Figure 3.10 plots the sensitivity variability defined

by (∆max−∆min)/∆min for each video series, where ∆max and ∆min are the maximum and

minimum QoE drop of the videos in a series. We see that 21 of the 48 video series have

a sensitivity variability of over 0.99, while some have less than 0.20 variability. A similar

trend holds even if we localize the low-quality incident and sensitivity gap measurement to

12-second windows. The fact that quality sensitivity varies substantially even among very

nearby chunks suggests a new opportunity: we can lower the quality when sensitivity is low

in order to save bandwidth for nearby chunks whose sensitivity is high.

Potential sensitivity-aware improvement: The above suggests that we can improve

ABR algorithms to optimize QoE and save bandwidth by aligning quality adaptation with

dynamic user sensitivity. We demonstrate the potential gains using an idealistic but clean

experiment. We create two simple ABR algorithms whose only difference is the QoE model

they optimize: one algorithm optimizes KSQI, the most accurate QoE model from Figure 3.2

that is unaware of dynamic quality sensitivity, and the other optimizes our eventual QoE

model from §3.4, which is aware of dynamic quality sensitivity. Both algorithms take as in-

put an entire throughput trace and the same 4-second video chunks encoded using the same

bitrate levels. They then determine a bitrate-to-chunk assignment that maximizes their re-

spective QoE model. Note that these ABR algorithms are idealistic because they have access

to the entire throughput trace in advance, and hence know the future throughput variability.

However, this allows us to eliminate the confounding factor of throughput prediction. We

pick one of the throughput traces (results are similar with the other traces) and rescale it to

{20, 40, . . . , 100}% to emulate different average network throughputs.

For each source video, we create the rendered video as if it were streamed by each ABR
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Figure 3.11: Being aware of dynamic quality sensitivity can significantly improve QoE and
save bandwidth.

algorithm (with bitrate switches, rebufferings, etc.). We use Amazon MTurk as before to

assess the true QoE of the rendered video. Figure 3.11 shows the average QoE of the two

ABR algorithms across 16 source videos and different average bandwidths. We see that

being aware of dynamic quality sensitivity could improve QoE by 22-52% while using the

same bandwidth, or save 39-49% bandwidth while achieving the same QoE.

3.3 Overview of Sensei

To unleash this potential, we present Sensei, a video streaming system that unearths and

leverages dynamic quality sensitivity. Here, we overview Sensei (§3.3.1) and then introduce

our crowdsourcing-based approach to per-video QoE modeling and its limitations (§3.3.2).

3.3.1 Sensei’s approach

As shown in Figure 3.12, Sensei has two main components.

Per-video QoE modeling: Before streaming a video, Sensei profiles the quality sensitivity

of its chunks. As we saw in §3.2.2, prior QoE models fail to capture content-induced user

sensitivity to quality. Instead, we advocate for directly asking human viewers to rate the

quality of rendered videos with quality incidents inserted at various chunks. This reveals the

true user sensitivity to quality incidents. Since quality sensitivity is unique to each video,
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Figure 3.12: Overview of Sensei.

this user study must be scaled to many videos. Sensei uses crowdsourcing to automate and

scale the per-video QoE modeling, by addressing two challenges: (1) how many (and which)

rendered videos must be rated to build a sensitivity-aware QoE model (§3.4); and (2) how

to get reliable ratings from crowdsourced workers (§3.5).

Sensitivity-aware ABR: Video players today are designed to maximize bitrate without

rebuffering on every chunk. This is ill-suited to our goal of aligning quality adaptation

with dynamic quality sensitivity: quality should be optimized in proportion to the quality

sensitivity of the content. To achieve this, Sensei refactors the control logic of video players

to enable new adaptation actions that “borrow” resources from low-sensitivity chunks and

give them to high-sensitivity chunks. We discuss the details in §3.6.

Instead of building a separate QoE model for each video, Sensei reuses existing QoE

models but reweights each chunk by its quality sensitivity. This is inspired by our observation

that relative quality sensitivity is inherent to the content, rather than the specific quality

incident (§3.2.2). Thus we assign a weight to each chunk to encode its inherent quality

sensitivity. The abstraction of per-chunk weights has two benefits. First, it allows us to

reuse existing QoE models by simply reweighting the quality of different chunks. Second,

by using the sensitivity weights as input, the same Sensei ABR algorithm can be used to

optimize QoE for any new video.
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3.3.2 Crowdsourcing quality sensitivity per video

Sensei directly elicits quality ratings from human viewers to reveal their quality sensitivity

to various quality incidents. However, these user ratings must be elicited per video and the

sheer scale of this feedback can be prohibitive! To put it into perspective, QoE models are

usually built from user ratings on just a handful of source videos [31, 62], but getting enough

user ratings requires a lab environment (or survey platform) to recruit participants and have

them watch over two orders of magnitude more video content than the source videos. 5 This

does not scale if we repeat the process per video.

To address this, we use crowdsourcing platforms like Amazon MTurk [1] to automate

the user studies and scale them out to more videos. Crowdsourcing reduces the overhead

of participant recruitment, survey dissemination, and result collection (down to about 78

minutes), and provides a large pool of participants. This allows for repeated experiments to

help control for human-related statistical noise. Although the crowdsourcing cost grows with

video length, Sensei offers several techniques to reduce the cost (see §3.4). Thus, the content

providers can decide whether and how to initiate profiling given their budgets. Note that

our reliance on crowdsourcing makes some scenarios, e.g., live video streaming, currently

inapplicable (see §3.9).

3.4 Profiling Quality Sensitivity at Scale

In this section, we show how to build an accurate and cost-efficient QoE model using crowd-

sourcing. We overview our workflow (§3.4.1) and then discuss low-cost methods for chunk-

level reweighting (§3.4.2) and crowdsourcing scheduling (§3.4.3).

5. For instance, in the WaterlooSQOE-III dataset [62], each video is streamed over 13 throughput traces
with 6 ABR algorithms, and each rendered video is then rated by 30 users.
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Figure 3.13: Workflow of profiling dynamic quality sensitivity using a crowdsourcing plat-
form. The arrow back to the scheduler means that crowdsourced ratings may be used to
suggest more rendered videos to iteratively refine the QoE modeling.

3.4.1 QoE modeling workflow

Figure 3.13 shows Sensei’s workflow for QoE modeling. Sensei takes a source video and

a monetary budget as input and returns a QoE model that incorporates dynamic quality

sensitivity (customized for this video) as output.

• Rendered video scheduling (§3.4.3): We first generate a set of rendered videos from the

source video. Each rendered video is created by injecting a carefully selected low-quality

incident at a certain point in the video.

• MTurk campaign (§3.5): The rendered videos are published on the MTurk platform and we

specify how many participants (MTurkers) to recruit for this campaign. When an MTurker

signs up, they start a survey that asks them to watch K rendered videos and, after each

video, rate its QoE.

• QoE modeling (§3.4.2): Finally, we use the MOS of each rendered video as its QoE and use

regression to derive the per-chunk weights, which are then incorporated into an existing

QoE model to derive the QoE model for this video.

3.4.2 Cutting cost via chunk-level reweighting

While crowdsourcing scales QoE profiling elastically, profiling each video can still be pro-

hibitively expensive. Since a QoE model must capture the impact of both quality incidents

and the quality sensitivity of each chunk, a strawman solution would build a QoE model with

57



O(N · P ) parameters, where N is the number of chunks and P is the number of parameters

in a traditional QoE model. This could require a prohibitive number of ratings to build (e.g.,

KSQI has tens of parameters).

Encoding quality sensitivity with per-chunk weights: We leverage the insight that

quality sensitivity at a chunk is inherent to its video content (§3.2.2). Thus, Sensei assigns

a single weight to each chunk irrespective of the quality incident, reducing the number of

model parameters to O(N). Then, Sensei reuses an existing QoE model but reweights the

chunks by their quality sensitivity. If the QoE model is additive, e.g., the overall QoE is the

sum of the QoE estimates of individual chunks qi, or Q =
∑N

i=1 qi, then Sensei can directly

reweight the chunks by their quality sensitivity. Though some QoE models are non-additive

(e.g., LSTM-QoE), many mainstream QoE models including KSQI and others [168, 117]

are. For KSQI, the qi take into account the impact of visual quality, rebuffering, and quality

switches. Sensei reweights the QoE model as follows:

Q =
∑N

i=1
wiqi, (3.1)

where wi is the weight of the ith chunk, reflecting how much more sensitive users are to

quality incidents in this chunk than in other chunks.

Weight inference: Given any V rendered videos, if Qj is the QoE (MOS) of the jth

rendered video and qi,j is the estimated QoE of the ith chunk of the jth rendered video, then

we can write V equations, Qj =
∑N

i=1wiqi,j for j = 1, . . . , V . We can then infer the wi

using a linear regression.

In the remainder of the paper, we assume that KSQI reweighted by Equation 3.1 is the

QoE model of Sensei.
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Figure 3.14: A running example of the crowdsoucring scheduler for a source video with 3
chunks, 2 bitrate levels (high and low), 2 rebuffering event levels (0 and 1 second).

3.4.3 Crowdsourcing scheduler

We now turn our attention to compiling a small set of rendered videos that, after being

rated, will produce enough data to reliably estimate the per-chunk weights.

Two-step scheduling: Given a source video, Sensei’s scheduler uses a two-step process to

decide which rendered videos to publish and how many participants to elicit ratings from.

• First, Sensei creates a set of N rendered videos, each with a single 1-second rebuffering

event at a different chunk (recall N is the number of chunks). It then publishes these

videos and asks M1 participants to rate each video. The total rendered video duration is

O(N ·M1). Once the videos are rated, we infer the per-chunk weights as described above.

• Second, we pick N ′ ≪ N chunks whose inferred weights are α-high or low (e.g., 6 % higher

or lower than the average weight). We then repeat the first step with two differences:

(1) low-quality incidents are added only to these chunks, and (2) the quality incidents

include B bitrates (below the highest bitrate) and F rebuffering events (1,2,. . . seconds).

We publish the rendered videos and ask M2 participants to rate them, for a total video

duration of O(N ′ ·B · F ·M2).

The purpose of the first step is to use a small number of participants (M1) to get a noisy

but indicative estimate of which chunks have quality sensitivity that is very high or low,

so we can focus the second iteration on these chunks using a larger number of participants
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(M2). In general, for an ABR algorithm to improve QoE-bandwidth tradeoffs, it is more

important to identify which chunks have very high/low quality sensitivity than to precisely

estimate the quality sensitivity of every chunk. §3.5 discusses the number of participants;

we evaluate the effect of α,B and F in §3.7.4. These parameters are empirically selected

and held constant throughout our tests.

Figure 3.14 shows an example two-step schedule for a source video. In the first step,

we generate a series of rendered video with the same rebuffering event injected at different

chunks. By examining the ratings of these videos from the MTurkers, we determine that

chunks 2 and 3 have similar sensitivity to the rebuffering event, allowing them to share the

same chunk-level weight. Thus, in the second step, we only need to enumerate the quality

incidents for chunks 1 and 2. In practice, for a 20-second video, we generate 5 rendered

videos in the first step for the N = 4 chunks, of which N ′ = 2 chunks may have high/low

sensitivity, and generate 15 rendered videos in the second step for these chunks.

Quality incidents used in profiling: For the set of B bitrates, we use the bitrate levels

of YouTube videos and pick three of them to cover high, medium and low visual quality;

we found this to be a practical compromise. The set of rebuffering events F are chosen to

match those we plan to proactively add to the video (see §3.6). Testing on a larger set of

quality incidents would yield more data points, but our microbenchmarking results in §3.7.4

show that this only marginally improves model accuracy, while significantly increasing the

cost.

3.5 Reliable QoE Crowdsourcing

Sensei’s QoE model crucially depends on the reliability of MTurkers’ quality ratings. This

section describes our user survey procedure and techniques for increasing reliability. While

Sensei mostly follows known practices [84, 80, 119], we provide some key details that arose

from our experience (described below and in Appendix .4).
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Single-survey procedure: As shown in Figure 4, each survey starts with the instructions

and rejection criteria under which the ratings will be rejected. The MTurker then watches

an example video that includes a quality incident, so they know what their ratings should be

based on. Then the MTurker is asked to watch a sequence of rendered videos (determined by

the scheduler) and, after each video, rate its quality on a scale of 1-5. Finally, the MTurker

does an exit survey.

Quality control per survey: Several measures are taken to prevent and filter out spurious

user ratings. First, we show the test videos in a randomized order to each MTurker. This

eliminates biases due to viewing order and which videos were previously watched. Second,

we add reliability checks: we show a video without any quality incident at a random position

among the test videos, and if an MTurker does not give the highest score to this video, we

discard all of their ratings. We also ask the MTurker what quality incident(s) they just saw

in the last video, and if they report more quality incidents than were included, that rating

is discarded. This may occur if the MTurker’s network connection is poor and new quality

incidents are introduced. Third, we implement an engagement test to verify if the MTurker

watched the video in its entirety, by monitoring the time spent on the video playback page

and discarding the rating if the time is shorter than the video length. We also implement

other filters, such as limiting the number or length of videos per MTurker to prevent fatigue.

Use of Master MTurkers: We follow a common practice (e.g., [113]) and restrict our

tests to Master MTurkers, a class of reliable MTurkers who have participated in over 1000

surveys and whose feedback was accepted for over 99% of their prior surveys. We find that

our rejection rate from Master MTurkers is over 4× lower than normal MTurkers. One

lesson we learned is that Master MTurkers are more willing to participate if the publisher

(us) historically has a low rejection rate because they wish to maintain their rejection rate

below 1%.

Sanity check of our dataset: To check if MTurker ratings are similar to prior lab

studies [157, 80], we select three 12-second videos from a public dataset [62] whose quality
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ratings are collected in a lab environment, and obtain MTurker ratings for these videos. We

find that the MTurker responses are similar to the in-lab study: after normalizing the ratings

to the same range, the MTurkers’ MOS differs by less than 3% from the in-lab study’s MOS

on the same video.

Howmany MTurkers are needed? We did a head-to-head comparison withWaterlooSQOE-

III [62] and found that we need 17% more MTurkers to reduce the variance of QoE ratings

down to the levels of the in-lab study. §3.7.4 shows how the number of MTurkers affects

Sensei’s performance.

Despite the above, we acknowledge that our MTurk survey methodology could be sus-

ceptible to human factors.

3.6 Sensei’s ABR Logic

The key difference between Sensei’s ABR logic and traditional ABR logic is that Sensei

aligns quality adaptation with the temporal variability of quality sensitivity. We first show

how Sensei modifies a traditional ABR framework (§3.6.1), and then show how existing ABR

algorithms can be minimally modified to benefit from Sensei (§3.6.2).

3.6.1 Enabling new adaptation actions

Sensei takes a pragmatic approach by working within the framework of existing players. It

proposes specific changes to their input and output, as highlighted in Figure 3.15.

Input: Besides the current buffer length, next chunk sizes, and history of throughput

measurements, Sensei’s ABR algorithm takes as input the sensitivity weights of the next h

chunks, where h is the lookahead horizon. A larger h allows us to look farther into the future

for opportunities to trade current quality for future quality, or vice versa. In practice, we

are also constrained by the reliability of our bandwidth prediction for future chunks. We

microbenchmark the selection of h in §3.7.5.
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Figure 3.15: ABR framework of Sensei. The differences with traditional ABR framework
are highlighted.

Output: Sensei’s ABR algorithm selects the bitrate for future chunks as well as when the

next rebuffering event should occur.6 In contrast, traditional players only initiate rebuffering

events when the buffer is empty.

QoE model objective: If the ABR algorithm explicitly optimizes an additive QoE model,

Sensei can modify its objective as described in §3.4.2. While Sensei can be applied to most

ABR algorithms (e.g., [117, 165, 168]), some (e.g., BBA) do not have an explicit objective

that Sensei can build on.

In theory, these changes are sufficient to enable at least the following optimizations, which

traditional ABR algorithms are unlikely to explicitly do. (1) Lowering the current bitrate so

that it can raise the bitrate for the next few chunks, if they have higher quality sensitivity

(Figures 3.16(a) and (b)). (2) Raising the current bitrate slightly over the sustainable level

if quality sensitivity is expected to decrease in the next few chunks. (3) Initiating a short

rebuffering event now in order to ensure smoother playback for the next few chunks, if they

have higher quality sensitivity (Figures 3.16(c) and (d)).

3.6.2 Refactoring current ABR algorithms

We apply Sensei to two ABR algorithms: Pensieve [117], based on deep reinforcement learn-

ing, and Fugu [165], a more traditional algorithm based on bandwidth prediction.

6. Sensei currently makes adaptation decisions only for the next chunk, but in principle it could plan
adaptations for multiple chunks in the future.
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Figure 3.16: Illustrative examples of Sensei vs traditional ABR logic: how Sensei improves
quality (a vs. b) or avoids bad quality (c vs. d) for high-sensitivity chunks.

Applying Sensei to Pensieve: Sensei leverages the flexibility of deep neural networks

(DNNs) and augments Pensieve’s input, output and QoE objective—its states, actions, and

reward, in the terminology of reinforcement learning—as described in §3.6.1. It then retrains

the DNN model in the same way as Pensieve; we call this variation Sensei-Pensieve. Sensei-

Pensive makes two minor changes to reduce the action space (which now includes rebuffering).

First, we restrict possible rebuffering times to three levels ({0,1,2} seconds) that can only

happen at chunk boundaries. Second, instead of choosing among combinations of bitrates

and rebuffering, Sensei-Pensieve either selects a bitrate or initiates a rebuffering event at the

next chunk. If it chooses the latter, Sensei-Pensieve will increment the buffer state by the

chosen rebuffering time and rerun the ABR algorithm immediately.

Applying Sensei to Fugu: Let us first explain how Fugu works. At a high level, be-

fore downloading the ith chunk, Fugu considers the throughput prediction for the next h

chunks. For any throughput variation γ (with predicted probability p(γ)) and bitrate selec-

tion B = (bi, . . . , bi+h−1), where bj is the bitrate of the jth chunk, it simulates when each

of the next h chunks will be downloaded and estimates the rebuffering time tj(B, γ) of the
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jth chunk (which could be zero). It then picks the bitrate vector (bi, . . . , bi+h−1) that maxi-

mizes the expected total quality over the next h chunks and possible throughput variations:∑
γ p(γ)

∑i+h−1
j=i q(bj , tj(B, γ)). Here, q(b, t) estimates the quality of a chunk with bitrate b

and rebuffering time t using a simplified model of KSQI.

The Sensei variation of Fugu, which we call Sensei-Fugu, uses Fugu’s throughput pre-

diction and the sensitivity weights wj of the next h chunks. Sensei-Fugu picks the bitrate

vector B = (bi, . . . , bi+h−1) and the rebuffering time vector T = (ti, . . . , ti+h−1), where tj

is the rebuffering time of the jth chunk, that maximizes the expected total quality over the

next h chunks and possible throughput variations:

∑
γ

p(γ)
i+h−1∑
j=i

wjq(bj , tj) (3.2)

Here, the chosen rebuffering times must be feasible, i.e., the buffer length can never be

negative.

In short, Sensei-Pensieve and Sensei-Fugu add an extra action (rebuffering time per

chunk), and their objective function reweights the contribution of each chunk’s quality using

the sensitivity weights provided by our QoE model.

3.6.3 Player implementation and integration

We implement Sensei on DASH.js [4], an open-source player that several commercial players

are based on. We add a new field in the DASH manifest file (under Representation)

to represent per-chunk sensitivity weights and change the parser ManifestLoader to parse

these weights. Unlike other ABR players, Sensei may initiate rebuffering when the buffer

is not empty. We use Media Source Extensions [7] (an API that allows browsers to change

player states) to delay a downloaded chunk in the browser buffer from being loaded into the

player buffer. We also describe the implementation of our crowdsourcing pipeline for MTurk
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surveys in Appendix .5.

3.7 Evaluation

Our evaluation of Sensei shows several key findings:

• Compared to recent proposals, Sensei can improve QoE by 7.7-52.5% without using more

bandwidth or can save 12.1-50.3% bandwidth while achieving the same QoE.

• The performance gains of Sensei come at a cost of $31.4/minute video, which is marginal

compared to the investments made by content providers.

• Sensei can improve QoE prediction accuracy by 11.8-37.1% over state-of-the-art QoE mod-

els.

• Sensei’s ABR algorithm consistently outperforms baseline ABR algorithms even when

bandwidth fluctuates.

3.7.1 Experimental setup

Test videos and throughput traces: Our test videos are selected from four datasets:

LIVE-MOBILE [72], LIVE-NFLX-II [31], and WaterlooSQOE-III [62] are professional-grade

datasets often used to train/compare QoE models in the literature. We complement these

sources with videos from a user-generated dataset, YouTube-UGC [158]. The videos are

randomly selected from four video genres: sports, gaming, nature, and animation. Ap-

pendix §.3 provides more details about the videos. To create an adaptive video stream-

ing setup, we chop videos into 4-second chunks and encode each chunk at 5 bitrate levels:

{300, 750, 1200, 1850, 2850}Kbps. We randomly select 10 throughput traces from two public

datasets, FCC [53] and 3G/HSDPA [135], restricting our selection to those whose average

throughput is between 0.2Mbps and 6Mbps, forcing the ABR algorithms to adapt their

bitrates.

Baselines: We compare Sensei’s ABR algorithm with three baselines: Buffer-based adap-
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Figure 3.21: End-to-end performance of Sensei over traditional and saliency-based ABR
baselines across all videos.

tation (BBA) [87], Fugu [165], and Pensieve [117]. We keep their default settings (e.g., same

DNN architecture and training network traces for Pensieve, etc.). For fairness, we use KSQI

as the QoE model for Pensieve, Fugu, and the Sensei variants. This modification should

improve the quality of Pensieve and Fugu, because the QoE models used in their original

implementations are special cases of KSQI. We use Sensei-Pensieve (i.e., the application of

Sensei to Pensieve) as Sensei, but confirm that the improvements of Sensei-Fugu are similar

(Figure 3.29).

Performance metrics: We use three performance metrics. For a given source and video

and throughput trace, we report the QoE gain of one ABR algorithm (Q1) over another
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(Q2), i.e., (Q1 − Q2)/Q2, where Q1 and Q2 are rated by MTurkers. We calculate Sensei’s

bandwidth saving by scaling down the throughput traces and determining how much

bandwidth each ABR algorithm needs to achieve the same QoE. We normalize all QoE

values to the range [0, 1]. We measure the crowdsourcing cost paid to MTurk to get

enough ratings to profile a 1-minute video. Only Sensei incurs this cost.

3.7.2 End-to-end improvement

QoE gains: Figure 3.17 shows the distributions of QoE gains of Sensei, Pensieve, and Fugu

over BBA, across all combinations of the 16 source videos and 10 network traces. Compared

to BBA, Sensei has at least 14.4% QoE gain for half of the trace-video combinations, whereas

Pensieve’s and Fugu’s median QoE gains are about 5.7%. The tail improvement of Sensei

is greater: Sensei’s QoE gain at the 80th percentile is 4.8%, whereas Pensieve’s and Fugu’s

are 0.2% and 0.7% respectively. The fact that Sensei’s gains over Pensieve (its base ABR

logic) are similar to Pensieve’s gains over BBA suggests the significant potential in making

an existing ABR algorithm aware of dynamic quality sensitivity.

Bandwidth savings: Figure 3.18 shows the average QoE of different ABR algorithms

across the source videos, under one throughput trace scaled down by different ratios (x-

axis). We confirm the results are consistent across different throughput traces. We see that

when setting a target QoE of 0.8, the bandwidth savings of Sensei is about 27% higher

compared to Pensieve and Fugu, and 32% higher compared to BBA.

QoE vs. crowdsourcing cost: Figure 3.19 shows the crowdsourcing cost and resulting

QoE of Sensei relative to Pensieve, both with and without the cost-pruning optimization

(which is evaluated separately in Figure 3.27). Compared to enumerating all combinations

of the quality incidents, we see that costs can be reduced by more than 32× with only a

3.1% degradation in QoE, and Sensei is still 14.7% better on average than its base ABR

logic (Pensieve with KSQI). This cost is equivalent to ∼$31.4 per 1-minute video, which

is a negligible cost for large content providers that may spend on the order of $10 billion
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Figure 3.23: QoE gain grouped by trace

Figure 3.24: QoE gains over BBA for genre and for each throughput trace (ordered by
increasing average throughput)

annually [5] for licensing popular TV shows (or making such shows).

Improvements by video and trace: Figure 3.22 shows the QoE gains for each video

across the network traces. We see significant variability in the QoE gains across videos and

even within the same genre. Figure 3.23 shows the QoE gains for each network trace across

all videos. Overall, Sensei yields more improvement when the average throughput is lower

(towards the left). This shows that Sensei can better maintain high QoE even when the

network is under stress.

Sensei vs. saliency-reweighted ABR: Finally, Figure 3.20 shows the QoE gains of

Sensei when the per-chunk weights are based on crowdsourcing results (our approach) and

when the weights are based on the saliency scores produced by various saliency models (see

§3.2.3). We normalize each model’s saliency scores to sum to the sum of chunk weights

of Sensei. We see that Sensei’s gain significantly reduces if the weights are based on these

saliency models, because as explained in §3.2.3, they fail to capture users’ quality sensitivity.
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Figure 3.25: QoE prediction accuracy of Sensei, Sensei’s variants, and baseline QoE models.

3.7.3 QoE prediction accuracy

We now microbenchmark Sensei’s QoE model introduced in §3.4 using all 640 rendered videos

generated by running Sensei and the baseline ABR algorithms on all combinations of source

videos and network traces. We obtain the “ground truth” QoE of each rendered video using

our MTurk survey procedure (§3.4,§3.5). We calculate Pearson’s linear correlation coefficient

(PLCC) and Spearman’s rank correlation coefficient (PRCC) between the predicted QoE and

actual user-rated QoE. Figure 3.25 compares Sensei with three baselines QoE models (KSQI,

LSTM-QoE, P.1203). The PLCC (and PRCC) of Sensei’s QoE prediction is over 0.85 (and

0.84), whereas the baselines are below 0.76 (and 0.73). We evaluated several variants of KSQI

(the best baseline QoE model) re-weighted by per-chunk saliency scores from the saliency

models in §3.2.3, but their accuracies are even lower.

3.7.4 Cost savings on crowdsourcing

Wemicrobenchmark the effects of different crowdsourcing parameters on Sensei’s QoE model.

Impact of number of raters per video: Figure 3.26(a) shows that while the quality

ratings have substantial variance with less than 5 raters, their mean value (MOS) stabilizes

with more than 15 raters. As a result, having 15 raters per video (as used in Sensei) produces

a similar QoE prediction accuracy (b) and QoE gains (c) as having 30 raters.
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Figure 3.27: QoE model accuracy changes with cost.

Impact of crowdsourcing schedule granularity: Figure 3.27 shows the effect of reduc-

ing MTurk cost by considering (a) fewer bitrate levels (B), (b) fewer rebuffering events (F ),

or (c) higher threshold α used to pick which chunks to investigate in the second step. These

terms are defined in §3.4.3. By reducing B to 3, F to 2, or raising α to 6%, we greatly reduce

the cost while incurring less than 3% drop in accuracy.

3.7.5 Sensei’s ABR logic

Finally, we microbenchmark Sensei’s ABR logic (§3.6). To scale this experiment out, we use

real videos and throughput traces but use the QoE predicted by Sensei (instead of real user

ratings) to evaluate QoE. We have confirmed that this yields the same QoE estimates on

average as real user ratings under the same setting.

Impact of bandwidth variance: Figure 3.28 shows the performance of Sensei under
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Figure 3.28: QoE under increasing bandwidth variance.

increasing throughput variance. We pick one throughput trace and increase its throughput

variance by adding unbiased Gaussian noise. The graph begins at the variance of the original

throughput trace; as variance increases, Sensei’s QoE degrades gracefully, but it still main-

tains a significant gain over its base ABR logic (Pensieve or Fugu). This is because Sensei

only needs to predict how likely low throughput will occur on high quality-sensitivity chunks,

not all future chunks, so if the average throughput until the next such chunk is predictable,

it will work well. We confirm the results are similar on other throughput traces.

Performance breakdown: Figure 3.29 shows that Sensei achieves comparable improve-

ment when either Pensieve or Fugu is the base ABR logic. This suggests that Sensei’s gains

do not depend on the choice of the base ABR logic. Figure 3.30 shows that both aspects

of Sensei’s control logic contributes to its improvements: (1) making ABR logic aware of

dynamic quality sensitivity (1st vs. 2nd bar), and (2) injecting rebuffering judiciously (2nd

vs. 3rd bar). Thus, even if a content provider cannot control rebuffering, it can still benefit

significantly from Sensei’s dynamic quality sensitivity.

Impact of video contents: While the videos in our dataset have varying fractions (from

20% to 60%) of high-sensitivity chunks, Figure 3.31 tests Sensei’s performance under an

even wider range of high-sensitivity chunk fractions (from 0% to 100%). We create source

videos with the specific fractions of high and low quality-sensitivity chunks and randomize

the positions of the chunks. Sensei has marginal improvement when the video is dominated

by either high or low quality-sensitivity chunks. However, Sensei significantly improves QoE
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Figure 3.33: Understanding Sensei’s improvements.

when high quality-sensitivity chunks are 20-40% of a video (most of our videos fall in this

range).

Lookahead horizon: Figure 3.32 tests the impact of lookahead horizon—the number of

future chunks h whose quality-sensitivity weights are revealed to the ABR algorithm. A

longer horizon increases Sensei’s ability to schedule quality events between low and high

quality-sensitivity chunks. Empirically in our dataset, the QoE gains diminish after the

lookahead horizon is greater than 4 chunks.

Systems overhead: We confirm empirically that compared to a video player without

Sensei, the runtime overhead of Sensei is less than 1% in both CPU cycles and RAM usage.
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3.8 Related Work

ABR algorithms: Mainstream ABR algorithms maximize bitrate under dynamic avail-

able bandwidth. Traditional ones are buffer-based (e.g., [94, 107]) or rate-based algorithms

(e.g., [87, 145, 144]). Recent ABR algorithms explicitly optimize a given QoE objective

via control theory [168], ML-based throughput prediction [148, 165], or deep reinforcement

learning [117, 68, 67]. Some ABR algorithms also rely on server-side processing [26, 167, 97].

Key parameters of the ABR logic can be customized to the network conditions or devices [23].

Though E2E reuses existing ABR algorithms, its contribution lies in identifying minimum

changes (e.g., adaptation actions they never would have taken) needed for these algorithms

to fully leverage users’ dynamic quality sensitivity.

Modeling and optimizing user-perceived quality: Visual quality assessment (VQA)

traditionally models user’s perception of encoded video using pixel-level patterns (e.g., [74,

159, 134, 143]) as well as advanced data-driven models, such as SVM [13] and deep learn-

ing models (e.g., [98]). Adaptive quality assessment (AQA), on the other hand, models

streaming-related incidents, including join time, bitrate switches, rebuffering (e.g., [59, 28,

100]). Recent QoE models combine VQA and AQA (e.g., [30, 29, 62, 60, 56, 44, 65]) and

sometimes uses spatial/temporal visual attention (e.g., [126, 124, 164, 67, 73, 61, 67]).

These perception-centric QoE models have inspired a large body of work that maximizes

user-perceived quality with bitrate adaptation [128, 121], adaptive video encoding [177, 142,

26], adaptive bitrate levels [21, 22], dynamic chunk lengths [108], and super resolution [175,

97, 167]. Since the user-perceived quality metrics can vary across chunks, they may also

treat video chunks differently, like E2E does. However, as elaborated in §3.2.3, E2E is

complementary to these efforts: while they propose heuristics to how pixel-/motion-based

visual features affect QoE, E2E customizes itself for each video (in a cost-efficient way) to

capture the impact of the substance of video content on true user sensitivity to video quality.

That said, actions like dynamic bitrate levels, chunk lengths, and super resolution could be
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used in E2E too, though E2E only considers actions directly supported by current DASH

players.

QoE research using crowdsourcing: Prior work (e.g., [84, 46, 129, 119, 81, 162]) pro-

vides methodologies for using commercial crowdsourcing platforms, e.g., Amazon MTurk [1]

and Microworkers [8], to systematically model user perception using objective quality met-

rics [129, 84, 162, 81, 46], investigate QoE impact of different types of low-quality events (e.g.,

[63]), and build crowdsourcing platforms themselves for similar purposes (e.g., [157, 165]).

While E2E follows conventional crowdsourcing methodology (§3.5), E2E faces a unique chal-

lenge of scaling crowdsourcing to per-video QoE modeling. The cost of modeling QoE of

each video separately is prohibitive, and E2E drastically prunes the cost by reusing an ex-

isting QoE model while profiling only a single weight per representative chunk to encode the

content-induced quality sensitivity of each chunk.

3.9 Discussion

Participant selection bias: A concern of any crowdsourced user study is that the results

could be biased because the workers who are willing to participate in the user study might

have different characteristics than the real video viewers. A common approach to address

this bias is to reweight the participant responses based on the demographics of real users

(e.g., [146, 115, 153, 57]). Sensei could apply reweighting to the user study if we have

knowledge of the target viewers’ demographics, or it could directly recruit the user study

participants from the target viewers themselves (e.g., subscribers of the content provider).

Inapplicable scenarios: Sensei does not apply to live video streaming and copyrighted

videos. Live videos have strict delay requirements which our crowdsourcing-based video

profiling cannot meet. Showing copyrighted videos to crowdsource workers poses the risk of

copyright violation, though Sensei could be used on already-released videos. Moreover, the

profiling cost of ∼ $31.4/minute video may still be impractical for videos with only a few
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views. Instead, we envision that Sensei will be used for popular on-demand video by content

providers who seek to improve their QoE-bandwidth tradeoffs. For example, providers such

as Amazon, Netflix and YouTube recently lowered the default bitrate in Europe due to

increased network traffic during the COVID lockdown [11].

76



CHAPTER 4

VIDPLAT: A TOOL FOR FAST CROWDSOURCING OF

QUALITY-OF-EXPERIENCE MEASUREMENTS

4.1 Introduction

Measuring Quality of Experience (QoE) at scale is increasingly important, for both re-

searchers and video and web service providers. At least two reasons contribute to this

trend. First, new optimization methods are proposed every year with the aim of striking

various tradeoffs among objective quality metrics that are potentially conflicting, such as

video bitrate, buffering stalls, and bitrate switches [168, 181, 59] in video, or page load time

and time to interactivity [55, 42] in web. Given the complex relationships between quality

metrics and QoE [43, 60, 79], it is important to know how these optimizations actually affect

QoE. Moreover, recent work increasingly utilizes the heterogeneous sensitivity of QoE to

quality metrics across videos, web pages, and even across different segments in the same

video (e.g., [139, 172, 89, 39]). Thus, QoE measurements can inform service providers to

strategically allocate more compute/network resources or enhance quality at points of higher

QoE sensitivity (e.g., 15.4% higher average QoE in video-on-demand [172] and > 40% better

minimum QoE for various web pages [139, 54]).

Measuring QoE is inherently slow since researchers need to ask human users to provide

subjective QoE ratings about their experience1 after they watch a video rendered at certain

quality or a web page loaded with a certain page load time. Even though some QoE mod-

els exist to predict QoE from objective quality metrics (e.g., VMAF [105] or CNN-based

models [75, 178]), user studies are still preferred, because it is hard to analytically capture

1. As a subjective experience of users, QoE can be influenced by many factors that are not controlled
by (or even visible to) service providers, such as device type, customer background, user intention, etc.
Therefore, QoE researchers will diversify the recruited human raters to obtain the distribution of QoE over
a range of users. There are many existing methods for managing the human raters, e.g., rater recruitment
eligibility and validating raters’ responses (e.g., [43, 157, 81, 80]), and they complement our work.
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all intricate relationships interactions between quality metrics and QoE, and creating these

QoE models also requires user studies in the first place.

Scaling QoE measurements involves two challenges, each of which has been tackled sep-

arately.

• First, how to automate QoE measurements while ensuring the collected measurements do

reflect users’ true QoE? Crowdsourcing is promising—researchers can publish a task on

MTurk [25] or Prolific [127] to invite crowdsourcing raters to watch a series of demos (a

video rendered at a certain video quality or a web being loaded with a certain page load

time) and provide their QoE ratings of the demos. Previous work has focused on collecting

reliable QoE ratings at a fair cost from raters (e.g., [76, 81, 80, 36, 151]), with open-sourced

implementations to democratize these efforts (e.g., [157, 46, 162]).

• Second, how to gather QoE ratings for a potentially huge space of possible quality (e.g.,

buffering ratio, average bitrate, bitrate variation, web page load time), whose impact

on QoE may compound each other and vary across video or web content? Most works

tackle this challenge by pruning demos whose QoE can already be inferred by past QoE

measurements [172, 111, 43]. For instance, in a user study investigating how video bitrate

affects the QoE of a particular video, if human raters are unable to perceive the QoE

difference between bitrates of 1 Mbps and 10 Mbps, then no ratings will be needed for the

bitrates between 1 Mbps and 10 Mbps [60] on this video. Inspired by such observations,

pruning techniques, e.g., based on active learning, can dynamically prune out demos whose

QoE could be reliably inferred based on QoE ratings already collected in the past (e.g., [43,

173, 102, 161]).

While these approaches tackle the challenges separately, unfortunately they are not easy

to be used together. This is because most demos can be pruned only after the QoE ratings of

some other demos have been measured, but today’s automated crowdsourcing tools require

that the researchers must pre-determine the demos in a task and the number of QoE ratings

needed per demo before the task begins. As a result, QoE measurements can be automated
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by crowdsourcing but still very slow (see §4.2 for concrete examples). First, researchers

have to launch a series of tasks, with the QoE measurements collected in one task, deciding

which demos will be pruned from the next task. However, each task is treated independently

by the crowdsourcing platform and can take significant time to recruit and calibrate each

rater. Second, some demos may have less variance in QoE and thus need fewer QoE ratings,

but without knowing this in advance, researchers are required to collect more ratings than

necessary; otherwise, extra tasks need to be conducted to collect the rest ratings.

To fully realize the speed benefit of crowdsourced QoE measurements, we present Vid-

Plat, the first re-usable open-source tool that enables dynamic demo pruning to speed up

crowdsourced QoE measurements. VidPlat serves as a shim layer between researchers and

crowdsourcing platforms, exposing a more flexible interface. Unlike the traditional crowd-

sourcing interface that requires researchers to pre-determine the demos upfront, each rater

is “redirected” to a website which shows them demos one by one2, and VidPlat allows re-

searchers to define the pruning logic and a few initial demos, and upon receiving a new QoE

rating, VidPlat invokes this logic to iteratively determine the subsequent demos based on

the past QoE measurements. At the same time, VidPlat must make sure that the demos are

shown to raters in a randomized fashion (to minimize biases) and avoid asking a rater to rate

too many (similar) demos. To this end, VidPlat puts each demo returned by the pruning

logic to a queue, from which VidPlat decides which demo should be the next for each rater.

In short, with VidPlat, researchers do not need to determine all the demos or the re-

quired number of QoE ratings before the user study task begins; instead, VidPlat lowers the

development burden while still collecting crowdsourced QoE measurements with minimum

redundancy. As a result, it greatly reduces the number of demos and QoE ratings collected,

thereby saving both time and cost.

2. This may seem similar to prior solutions like [157], where raters are redirected to a website written
by the researchers. But these solutions impose a substantial development burden on researchers and also
introduce new challenges, such as how to properly randomize the order of demos seen by each rater (which
is critical as shown in [43, 157]) and how to prevent habituation (fatigue) effect of each rater. As a result,
the potential to speed up QoE measurements by crowdsourcing remains largely unrealized.
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Term Definition
Crowdsourcing platform or
platform

Online human workforce marketplace, e.g., Amazon Me-
chanical Turk [25] and Prolific [127].

Source content The original file of an application with specific content, and
this file is with perfect quality, e.g., a RAW video in video
streaming.

Low-quality event A low-quality event happens within a specific time frame,
and it can lower the application quality, e.g., bitrate drop,
buffering stalls in video streaming, and loading delays of web
objects in web services.

Application demo or demo A source content is rendered with certain low-quality events.
Assignment In an assignment, a rater needs to rate a demo and answer

demo-related questions.
Crowdsourcing task or task A task includes a set of assignments and the payment struc-

ture (e.g., how much will a rater get paid). One or multiple
assignments will be allocated to a rater in a task.

Crowdsourcing tool or tool A shim layer that helps researchers automatically set up
tasks on platforms

Table 4.1: A summary of the terms used in the paper.

VidPlat has already been used in three IRB-approved QoE-related projects: (i) investi-

gating the relationship between webpage load time and QoE [174]; (ii) exploring the correla-

tion between video quality and QoE in on-demand video streaming [172]; and (iii) comparing

the QoE impact of video bitrate and motion-to-photon (MTP) latency in online video gam-

ing [49]. VidPlat’s dynamic demo determination significantly improved the efficiency of our

user studies. For instance, compared to Sensei [172], a prior tool employing a traditional

interface, VidPlat reduced monetary costs by 31.8% – 46.0% and latency by 50.9% – 68.8%

in these use cases, while obtaining QoE models that realize the same QoE improvement as

Sensei. These empirical results demonstrate the tangible benefits of our novel approach.

4.2 Motivation

We begin with the background on why QoE measurements need to be made more efficiently.

Then we explain why the two existing approaches—crowdsourcing and demo pruning—are

not sufficient and use a dataset of crowdsourcing logs to highlight opportunities for a new
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tool.

4.2.1 Background

QoE measurements: Content providers strive to maintain high QoE (quality of experi-

ence), which represents the subjective user satisfaction with the service quality. However,

it is hard to directly ask users to rate their subjective experience in real time. As a conse-

quence, researchers and content providers run offline user studies to assess QoE under various

objective quality metrics, such as video bitrate and buffering stall or web page load time in

web services [111, 59].

In such QoE user studies, the participants are asked to watch an application demo. A

demo is a video clip that shows the application at a certain quality level. In video QoE,

a demo can be a video streamed with a one-second buffering stall deliberately added at a

certain point [60]. In web QoE, a demo can be a video that records a web page loaded with

a certain page load time (e.g., a certain above-the-fold time) [157]. Then, the participants

rate the subjective QoE score in the range from 1 to 5 [91]. With these QoE measurements,

we can calculate the mean QoE scores (mean opinion score or MOS) of different demo videos

and use them to model the relationship between QoE and quality metrics. Using these

QoE models, content providers can online optimize the quality metrics in a way that also

optimizes QoE.

More QoE measurements are needed: Traditionally, researchers and content providers

expect QoE models to capture general relationship between QoE and a few quality metrics.

As a result, QoE measurements are not in very high demand because if enough QoE mea-

surements are collected to model QoE on several representative videos or web pages, the

QoE models will be re-used on other videos or pages. However, many recent efforts have

advocated for more granular, context-specific QoE models that quantify the QoE-quality re-

lationship of individual video (or even video segments) [172] or each website (web page) [55].

They show that the context-specific QoE models are more accurate because users may not
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pay equal attention to different content when watching videos [172] or perceive web objects

in the same order when browsing different websites [39, 55]3. As the research and the indus-

try move from one-size-fits-all QoE models to context-specific QoE models, the frequency

and amount of QoE measurement also increase quickly. For instance, Netflix produces on

average more than 580 minutes worth of new video content every day [90]. If it builds a

separate QoE model for each minute of video, it will ask raters to watch and rate roughly

9, 600 hours of videos in total (or 1,200 raters for 8 hours) [172]. Similarly, web QoE research

also shows a similar increase in the demand for QoE measurements [39, 55].

More importantly, they show that these context-specific QoE models can substantially

improve QoE without using more bandwidth or compute resources. For example, in video

streaming, applying per-video QoE models to adaptive bitrate (ABR) algorithms in video

players can improve 15.1% QoE without using more network bandwidth [172]; in web services,

we can have 28% QoE improvement by allocating computing resources across different web

requests by their QoE models [55, 42, 174].

An additional reason for more QoE measurements is that when a new system optimization

is proposed, its impact on QoE may not be captured by existing QoE models (e.g., [176, 118]).

For instance, customizing video bitrate encoding ladders for each video or even each video

segment has been recently studied, but if the existing QoE measurements only cover bitrate

levels from a fixed ladder, QoE might change significantly within a bitrate ladder, and the

QoE within this ladder cannot be modeled by the existing QoE measurements.

4.2.2 Two existing approaches

As the need for QoE measurements rises, so does the need to reduce the latency and the

cost of QoE measurements. Here, the cost means the total compensation paid to the raters

who provide the QoE ratings, and the latency means the timespan between the recruitment

3. The fact that the QoE-quality relationship differs across web or video content is hardly surprising and is
long known, but it was not until recently that researchers have started to explore the potential improvement
in practice, thanks to the use of crowdsourcing platforms to automate QoE studies.
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of raters and the end of the collection of QoE ratings. Currently, there have been two

approaches to reducing the latency and cost of QoE measurements.

Prior approach #1: Crowdsourcing QoE measurement. While QoE modeling is still

sometimes performed in a lab setting with participants recruited by researchers themselves,

several efforts (e.g., [46, 80, 157, 47]) have shown the potential of automating QoE measure-

ments using platforms like Amazon Mechanical Turk (MTurk) [25] and Prolific [127]. Efforts

along this line of work have been focused on retaining reliable crowd raters [76], validating/-

calibrating QoE ratings [81, 80], mitigating hidden confounders (e.g., order of assignment

completion or different user devices) [36], reducing per-task cost via dynamic pricing [151].

Several open-source crowdsourcing-assisting tools also bundle the aforementioned optimiza-

tions [157, 46, 162, 47]. A more comprehensive survey can be found in [80, 81].

Prior approach #2: Dynamically pruning demos. Crowdsourcing can automate QoE

measurements, but it does not reduce the number of QoE ratings to collect. Fortunately, it

has been observed that, depending on the QoE ratings already collected, many demos would

be redundant and can be pruned to let participants rate fewer demos. For instance, in a

user study investigating how video bitrate affects the QoE of a particular video, if human

raters are unable to perceive the QoE difference between bitrates of 1 Mbps and 10 Mbps,

then no ratings will be needed for the bitrates between 1 Mbps and 10 Mbps [60] on this

video. Inspired by such observations, pruning techniques based on active learning have been

proposed to dynamically prune out demo videos whose QoE can already be reliably inferred

based on collected QoE ratings (e.g., [43, 172]). For instance, in [125], active learning helps

reduce the number of demos to rate for ranking the QoE of the demos in a given dataset.

Before diving into more discussions of the two approaches, we summarize the terms that

will be used in the following sections in Table 4.1.
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Figure 4.3: MOS stand error
across videos if each video is
rated by 20 raters

4.2.3 What’s missing?

With the use of crowdsourcing tools which automate QoE measurements and the pruning

methods which reduce the total number of demos to rate, a natural question is will QoE

measurement be automated and made much faster as promised by these approaches? Unfor-

tunately, the answer is no, for two reasons.

• First, to dynamically prune demos, researchers have to sequentially launch a series of

crowdsourcing tasks, which can cause significant latency, as we will show shortly, and use

the QoE measurements from one task to decide which demo can be pruned in the next

task.

• Second, each demo might have a different variance in its QoE ratings [141], causing the

minimum number of ratings needed for different demos can vary significantly.

In the following, we will expand on each point using empirical evidence. We use a real

example where we want to collect QoE measurements to quantify how QoE changes with the

length of a buffering stall at each chunk of a source video4. Here, we assume the source video

has n chunks and each chunk can have d buffering stall lengths. To measure the latency of

crowdsourcing, we use a dataset [172] that consists of user study logs gathered from raters

enlisted from MTurk. There are 16 source videos with distinct content, each having 4-second

chunks.

The key reason that the promise is not realized is the standard crowdsourcing inter-

4. This is part of the QoE model proposed in [172].
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face, which requires that the researchers must pre-determine which demos will be rated by

each rater and how many QoE ratings are needed per demo before the task begins. Given

this interface, a typical process to crowdsourcing QoE measurements is as follows.

• Rater recruitment: The researcher publishes a task on the crowdsourcing platform (MTurk [25]

or Prolific [127]), which matches the task with raters.

• Training phase: Once a rater agrees to do the task, the rater will be invited to go through

a training phase, during which the rater is explained what to do and the definition of QoE,

and in the meantime, the rater also needs to provide some basic information (e.g., age

group, gender, devices, etc.). This training phase is necessary to calibrate the QoE ratings

of raters, as confirmed in [80, 70].

• QoE rating: After the training phase, a rater will be invited to watch a set of demos and

provide their QoE rating after each demo.

Limitation #1: Pruning demos causes high crowdsourcing overhead. A naive

plan (dubbed Plan-A) is to enumerate each of the d buffering stalls on each of the n chunks.

This will lead to a sheer dn demos in total, all of which require QoE ratings from raters.

Fortunately, the number of demos can be greatly reduced by pruning redundant demos using

two rounds of QoE measurements. In the first round, we ask the raters to rate the demos

where only a buffering stall of a fixed length is inserted at different chunks. Based on these

QoE ratings, we can identify the chunks where the buffering stall does not cause a QoE

drop. In the second round, we only need to enumerate buffering stalls in other chunks

because buffering stalls have little impact on QoE in the pruned chunks. This two-round

plan (dubbed Plan-B) will need two crowdsourcing tasks, but the total number of demos to

rate is significantly reduced.

Figure 4.1 shows the fraction of demos pruned by Plan-B compared to Plan-A on different

source videos. For more than 64% of source videos, at least 94.2% of demos can be pruned.

However, this demos reduction fails to translate to a reduction of latency of the user studies.

Figure 4.2 shows Plan-B only has less than 2.1% – 12.5% latency reduction.
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To understand why, we break down the latency of each QoE crowdsourcing task into

rater recruitment, training phase, and QoE rating, as explained earlier. Among the three

latencies, rater recruitment and training will increase dramatically with more crowdsourcing

tasks and cannot be reduced by pruning demos. In the aforementioned example, the rating

time of each rater was reduced from 105.2 minutes in Plan-A to 8.5 minutes in Plan-B.

However, because Plan-B launches two crowdsourcing tasks, it has twice the latency of rater

recruitment and training than in Plan-A. This significantly increases the latency of Plan-B,

despite the reduced number of demos to rate.

Unfortunately, with the current crowdsourcing interface, researchers will have to launch

multiple sequential tasks if they apply dynamic pruning, inducing high latency. Although

in the dataset of the above example, we only have two sequential tasks, and it is not the

common case since it is a simple QoE model that only considers the impact of buffering stalls

with various lengths. When considering more QoE parameters (i.e., a larger QoE parameter

space), using traditional interfaces usually leads to a few tens of sequential tasks [111, 141,

43]. For example, in active learning, different numbers of demos need to be rated in different

parameter ranges (e.g., low-bitrate range that users cannot distinguish video quality vs.

mid-bitrate range in which QoE changes dramatically) to save cost. However, the numbers

of demos in different ranges are unknown before QoE study begins but are dynamically

determined as QoE ratings are collected. Thus, to minimize the cost, an extreme solution

using traditional interfaces is putting each demo in separate tasks, dramatically increasing

latency.

Limitation #2: Different demos need different numbers of ratings. Unlike label

annotation in machine learning, rating the QoE of a demo is a subjective task without

a definitive ground-truth answer. For a demo, not all raters will provide the same ratings,

although all raters are required to use the same rating scale as instructed in the training phase

(e.g., Absolute Category Rating [91]), because other than video quality, QoE ratings are also

affected by other factors like the video viewing environment (e.g., brightness, device, etc.).
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The raters might have different environments, and some quality issues are hard to perceive

in some environments, so different ratings are provided for the same demo. Figure 4.3 shows

that if we fixed the number of ratings (i.e., 20 ratings) collected for each video, the stand

error of mean opinion score (MOS) is distributed from 0.05 to 0.3, indicating a large variance

across the confidence levels of video MOS.

However, it is hard to determine the number of ratings for each demo without past QoE

measurements. Through the traditional interface, for a demo, if researchers set a small

number of ratings to collect, there is a risk that the confidence level of the MOS cannot meet

our target, leading to significant extra latency for collecting more ratings in a new task. On

the contrary, setting a large number of ratings would cause redundant rating collections,

leading to extra cost.

Potential improvement by consolidating all QoE measurements into one task: We

now show how much cost and latency we can save by overcoming the two limitations by

a trace-driven simulation. We consolidate the necessary events, including recruiting raters,

watching and rating videos in Plan-B by raters, and training raters, into a single task instead

of multiple tasks in the original Plan-B. We align the simulation’s settings with those of the

data log. The recruitment time of each rater is randomly selected from the log, and for each
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video, their ratings should make the standard error of MOS smaller than 0.15. Figures 4.4

and 4.5 show the potential cost and latency improvement when compared to Plan-B (using

multiple crowdsourcing tasks). We can see that the latency can be improved by 52.1% by

consolidating multiple tasks to one task, and the cost can be saved by 57.7% in average

cases.

4.2.4 Summary of Key Observations

The key findings in this section can be summarized as follows:

• Through traditional tools, we must conduct multiple tasks to minimize QoE measurements

for saving cost, but it introduces significant latency.

• If we can consolidate all necessary QoE measurements into one task, we can save 57.7%

cost as well as 52.1% latency compared with using traditional tools in average cases.

4.3 VidPlat

To realize the potential improvement from consolidating all necessary QoE measurements

as shown in §4.2, we designed a crowdsourcing tool that allows for dynamic assignment

allocation during a task. In this section, we first introduce how researchers can utilize our

proposed tool, VidPlat, as presented in §4.3.1. We then discuss the design options of VidPlat

in §4.3.2 and illustrate how to conduct QoE measurements using VidPlat in §4.3.3.

4.3.1 Programming model

VidPlat enables researchers to set up assignments based on past QoE measurements during a

crowdsourcing task to address the two limitations highlighted in §4.2. To achieve this, instead

of providing all the demos at the beginning of the task, VidPlat requires researchers to supply

1) a small set of initial demos and 2) a logic that takes the collected QoE measurements as

input and produces the subsequent demos for the raters as output.
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1 def initialize_assignments(demo_to_emit):

2 # Set up the initial videos that are with 1-sec buffering stall at chunks 0 to N-1

3 for chunk_id in range(0, N):

4 demo_to_emit[generate_demo_with_rebuf(chunk=chunk_id ,rebuf_time =1.0)] = 1

5

6 def update_assignments(demo_map_ratings , demo_to_emit):

7 for (demo , ratings) in demo_map_ratings:

8 if stand_error(ratings)>ϵ):
9 # we still need more ratings for this demo

10 demo_to_emit[demo] = 1

11 elif stand_error(ratings)<ϵ) and mean(ratings)<α and demo.rebuf_time ==1.0:

12 # Need to refine the QoE model by collecting ratings for more buffering stalls stored in
rebuf time need to explore.

13 for t in rebuf_time_need_to_explore:

14 demo_to_emit[generate_demo_with_rebuf(chunk=demo.chunk_id ,rebuf_time=t)]=1

Figure 4.6: An code example of setting up QoE measurements for modeling the relationship
between video QoE and buffering stall.

Code example: We present a code example showcasing the logic provided by a researcher

for the use case mentioned in §4.2, as illustrated in Figure 4.6. The initial demos are defined

within initialize assignments(), and are stored as keys in the key-value store named

demo to emit, where the values represent the number of ratings required for the associated

demos. As the QoE ratings accumulate, VidPlat invokes the assignment-generation logic,

update assignments(), to generate subsequent demos. In this example logic, the researcher

stipulates that the standard error of each demo’s QoE ratings should be below a threshold

ϵ. If a demo’s collected QoE ratings have a standard error exceeding ϵ, more ratings for that

demo are needed; in this example, the researcher requests an additional QoE rating for the

demo each time. Unlike traditional tools which require researchers to execute initialize -

assignments() after the task concludes, we prompt them to run it during the user task itself.

As a result, VidPlat does not notably increase the development burden on researchers, as

discussed further in §.8.

4.3.2 Design choices

VidPlat’s new interface does not need researchers to specify demos to the raters and is

versatile enough to support a wide range of video and web applications. This new interface

introduces two primary challenges:
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• Challenge 1: How can we ensure unbiased QoE measurement? Within VidPlat,

different demos may receive ratings from varying numbers of raters who may operate

under distinct working environments, potentially introducing bias into the QoE ratings.

For example, a worker using a low-resolution device might struggle to discern between high

and low-quality videos [180].

• Challenge 2: How does VidPlat support QoE measurement across various ap-

plications? Unlike conventional tools where demos are directly provided by researchers,

in VidPlat, demos are produced based on the assignment-generation logic. Consequently,

VidPlat must offer a flexible interface that helps researchers in describing the rendered

quality of the demos for rating. A direct approach is to use quality metrics for describing

the demo, but enumerating all such metrics is very challenging.

Unbiased QoE measurement: We employ assignment-level randomization to overcome

bias in QoE measurements: demos are randomly allocated to raters. It requires VidPlat to

handle demo distribution as the logic provided by researchers who lack rater information.

When deciding on a demo’s allocation, VidPlat randomly selects a demo from those generated

by the logic, specifically from demo to emit().

Since VidPlat does not require every demo to be rated by the same set of raters, unlike the

traditional tools, VidPlat does not need to specify the number of raters to recruit. Instead,

VidPlat dynamically recruits raters based on how many ratings we need to collect. For

example, if we have 100 ratings to collect and 50 raters now, VidPlat will keep recruiting

raters for fully parallelizing the QoE rating collection. Such a feature can further reduce the

user study latency.

Moreover, VidPlat must validate the QoE ratings for the demos, which is non-trivial due

to the absence of ground-truth answers in QoE measurements. In VidPlat, we incorporate a

blend of standard practices [157, 80, 81]. Initially, we implement golden standards - control

questions tied to low-quality events in the assignment (e.g., “did you notice a resolution drop

in the video?”). These questions are straightforward for raters who do diligently complete
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Figure 4.7: Workflow of using VidPlat for QoE rating collection

their tasks. Furthermore, VidPlat ensures that raters watch the entire application demo

before offering QoE feedback by tracking the active time on the web tab that displays the

video players. We disregard the QoE ratings from raters who either skip parts of the video

or incorrectly respond to the control questions.

Broad application support: Taking inspiration from Eyeorg [157], VidPlat presents the

demos using videos that demonstrate the perceived quality. Researchers are required to sup-

ply raw videos, meaning videos that present the best quality of the application. Within the

logic, researchers must list a sequence of video quality operations to create the desired demo.

For instance, to add an extra 0.1-second MTP latency to a one-second clip of an online game,

playback rate for that clip could be reduced by 10%. Given these operations, VidPlat can

then generate the demos. Using videos offers two advantages. Firstly, the perceived quality

remains consistent among raters. Secondly, VidPlat is not burdened with accommodating

the myriad quality metrics of various applications, simplifying the development process of

VidPlat.
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Figure 4.8: Comparison of researcher interfaces between prior tools and VidPlat.

4.3.3 Set up and conduct QoE study

VidPlat’s design facilitates automated QoE measurements. As depicted in Figure 4.7, Vid-

Plat initiates a user study task on crowdsourcing platforms to engage raters for evaluating

the demos produced by the assignment-generation logic. VidPlat can persistently allocate

demos to raters as long as there are demos available for rating. After the task ends, VidPlat

returns all the QoE ratings provided by the raters.

Researcher interface: The distinction between the researcher interface in VidPlat and

that in previous tools is illustrated in Figure 4.8. Other than the capacity to produce demos

based on accumulated QoE measurements — as is customary in older tools—researchers are

tasked with informing VidPlat about their rater eligibility criteria, budget, and raw videos

that represent the optimal application quality. Regarding the raw videos, the demos for

rating in the QoE study should be derivable from these raw videos by customizing the raw

videos’ quality. Once the user study is completed, VidPlat returns the QoE ratings of the

demos.

Rater interface: For VidPlat, we have adopted the rater interface from Sensei [172]. As

raters enroll in our task, they undergo training to ensure they provide valid QoE ratings for

the demos. Initially, raters encounter an instruction detailing the task’s objectives, outlining

their responsibilities and expectations. This instruction also tells them the criteria that

might lead to the rejection of their QoE ratings. Subsequently, raters are prompted to watch
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sample demos showcasing various low-quality events, familiarizing them with the nature of

the demos they will rate and instructing them on the rating procedure. Next, raters proceed

to evaluate demos designated by VidPlat, assigning scores ranging from 1 to 5. Following

each QoE rating, raters are expected to answer control questions to validate their ratings.

4.4 Use cases

VidPlat is particularly advantageous for scenarios that require dynamic demo pruning. Such

a dynamic approach enables researchers to efficiently allocate their limited budget across

different quality ranges (i.e., determining how many demos within a particular quality range

need to be rated) and individual demos (i.e., deciding how many ratings a specific demo

requires). In this section, we demonstrate the potential of VidPlat by exploring its applica-

tion in three distinct use cases: building QoE models for on-demand video streaming, online

video gaming, and web services.

4.4.1 On-demand video streaming

With on-demand video streaming, the same video quality may produce varying QoE based

on which chunk of the video is viewed, largely due to the content of individual chunks [172].

For instance, a buffering stall right before a crucial moment in a sports video (like just

before a goal) can be more frustrating for viewers than during a regular play segment. Thus,

to allocate network resources more effectively (e.g., dedicating more resources to pivotal

moments rather than a uniform distribution), we should understand and model the QoE

sensitivity for every video chunk.

A widely recognized QoE model that accounts for this per-chunk sensitivity is:

QoE =
N∑
i=1

wiqi. (4.1)

In the equation above, qi represents the visual quality of the i-th chunk, as explored in prior
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research [60, 105]. Meanwhile, wi denotes the weight or QoE sensitivity of chunk i, which

we aim to model.

Training for per-chunk QoE sensitivity involves understanding the QoE degradation when

certain low-quality events occur in varying chunks. Directly assessing QoE for every possible

combination of such incidents across chunks is not practical due to prohibitive costs. There-

fore, a pruning method suggested in [172] was introduced to simplify this. This method first

pinpoints chunks with similar weightings and then groups them. From each group, a single

chunk is selected. By examining the QoE degradation of various low-quality events on this

representative chunk, a weight is assigned that applies to all chunks within that group.

Nonetheless, the traditional approach divides the QoE study into two distinct, sequential

crowdsourcing tasks: the first task focuses on chunk grouping, while the second task refines

the weight for each chunk group. Specifically, for a video comprising N chunks, the first task

creates N videos, each experiencing a 1-second buffering stall at varying chunks. The QoE

scores for these videos provide a rough estimate of each chunk’s QoE sensitivity, enabling

the grouping of chunks with comparable one-second buffering stall QoE ratings. During the

second task, a random chunk from each group undergoes a combination of B bitrate levels

and F buffering stall levels. QoE ratings for these BF videos then determine the weight.

Though this approach requires fewer videos for assessment, it necessitates these sequential

crowdsourcing tasks to prevent redundant weight refinement.

VidPlat, however, offers the opportunity to combine both tasks. With VidPlat, the

refinement of a chunk’s weight can start as soon as it’s identified as requiring refinement,

without waiting for the subsequent stage. The first step remains consistent for any given

chunk: gather QoE ratings for a video with a 1-second buffering stall at the chunk (akin

to the original first task). Once sufficient ratings are collected (i.e., the standard error falls

below a specified threshold), the average QoE rating is computed. If there are not any other

chunks with comparable scores, refinement can begin immediately for that chunk, using the

BF low-quality events.
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4.4.2 Online video gaming

Online gaming’s dynamic content arises from the interactions between players and game

servers. This distinct characteristic places equal importance on video quality and interac-

tion latency, i.e., motion-to-photon (MTP) latency [24, 64]. Unlike on-demand videos, which

can be downloaded over a longer timeframe, online gaming needs immediate decisions on

changing video bitrate to download, especially during network congestion. Here, the chal-

lenge lies in striking the right balance between video quality and MTP latency to ensure

optimal QoE [24].

Different game scenarios prioritize different aspects. For instance, in MOBA (Multiplayer

Online Battle Arena) games, where players interact in real-time, the QoE emphasis may

shift towards maintaining low latency. On the other hand, for SLGs (Simulated Life Games)

which simulate real-life, high video quality might be more important. This highlights the

need to craft QoE models specific to each game’s scenario. Should network congestions occur,

these models would guide decisions on the amount of redundancy (such as the forward error

protection level [24, 49]) to add to video packets. This is to avoid packet retransmissions

which increase MTP latency.

To establish a QoE model for any game scenario, the QoE ratings of videos spanning

different bitrates (e.g., from (Dmin) to Dmax) and MTP latencies (e.g., ranging from Lmin

to Lmax) needs to be collected. The most straightforward strategy is to sample combinations

of bitrate and MTP latency by fixed intervals ∆D and ∆L, i.e., (Dmin, Lmin), (Dmin +

∆D,Lmin), · · · , (Dmin + ∆D,Lmin + ∆L), · · · . However, this approach comes with its

challenges, especially when deciding on the ideal intervals, ∆D for bitrate and ∆L for MTP

latency. If these intervals are too small, it would require rating an excessive number of videos.

Conversely, larger intervals might not yield enough data for precise QoE models, necessitating

additional crowdsourcing tasks for smaller intervals and thus increasing latency.

A proposed solution is a dynamic method of interval selection based on the ratings

gathered so far. Initiating with larger intervals, the QoE ratings are first collected. If two
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neighboring samples (for instance, two video demos (D,L) and (D,L+∆L)) exhibit a QoE

rating difference surpassing a pre-defined threshold α, the subsequent sampling task refines

this range using smaller steps, ∆D/2 and ∆L/2. If we use traditional tools to realize this

solution, we must conduct multiple tasks to collect QoE ratings, which increases latency.

Because to minimize the sample number, in each task, we only sample the video demos with

the same interval.

In contrast, VidPlat’s capability allows for the simultaneous collection of QoE ratings of

video demos across diverse intervals. When a significant QoE variance is found between two

neighboring samples, VidPlat can immediately initiate the gathering of ratings for interme-

diary video quality levels. By continuously iterating this process, VidPlat can execute the

user study in a single task, thereby reducing latencies introduced by extra tasks.

4.4.3 Web service

Webpage Load Time (PLT) is a crucial determinant of user QoE. It denotes the time span

between initiating a web request and the rendering of user-noticeable web objects on the

browser. Prior research indicates that the user’s perception of PLT is non-linear. For exam-

ple, while there’s negligible perceptual difference if the PLTs are two long, the distinction

between PLTs in certain ranges is quite noticeable [174]. Moreover, the correlation between

PLT and QoE varies, contingent upon the content of the webpage and the sequence in which

web objects load [55, 39]. These nuances necessitate frequent updates to webpage QoE

models.

Constructing such models involves collecting QoE ratings across varying PLTs for specific

web content and object-loading order. Once the ratings are acquired, QoE models are built

correlating PLT values with corresponding QoE ratings. Since QoE typically decreases with

increased PLT, if we have data points for PLTs a and b with QoE ratings of Qa and Qb, the

QoE for an intermediate PLT value can be extrapolated using linear interpolation.

To ensure the accuracy of such extrapolations, it is vital that the QoE difference between
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two neighboring PLTs remains below a predetermined threshold, α. One simplistic approach

to model QoE across a range of PLTs between c and d seconds involves sampling PLTs at fixed

intervals δ (i.e., collecting QoE ratings of PLTs c, c+δ, c+2δ, · · · , d) and then soliciting user

QoE ratings. Traditional tools necessitate deciding on this interval, δ, prior to initiating

the task. However, the challenge arises in selecting an optimal δ. While a large δ might

necessitate additional tasks due to insufficient PLTs, a smaller δ can result in surplus QoE

collection and escalating costs.

VidPlat offers a more flexible approach, allowing developers to adjust δ dynamically dur-

ing the task. Initially, PLTs are sampled using a large interval,η. If the collected QoE ratings

reveal a QoE difference surpassing α between neighboring PLTs, the interval is refined, i.e.,

collecting QoE ratings with a smaller interval in the range between the two neighboring

PLTs. This iterative process continues until the QoE difference for all consecutive PLTs

drops below α. Such a dynamic method, as facilitated by VidPlat, not only ensures accu-

racy but also optimizes task durations, as it accommodates varying intervals within a single

task.

4.5 Discussion

Validating QoE measurements: Within VidPlat, the demos presented next are dictated

by the assignment-generation logic, and this decision is based on the QoE measurements

collected during the task. Although we demonstrate in §4.3.2 that VidPlat can utilize online

techniques, such as posing control questions, to validate the QoE ratings of raters, a potential

concern arises: the inability to feed the logic with QoE ratings that have undergone offline

processing. Offline techniques—like adjusting each individual rater’s average score to a

predetermined value as cited in [43, 80, 106] — aim to neutralize biases in QoE ratings,

ensuring consistent rating scales across raters. In VidPlat, we preemptively train raters to

calibrate their rating scales, following the earlier practices in [70]. This training provides

raters with guidelines on the appropriate rating scale. Our experimental results, as presented
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Figure 4.10: Online gaming
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Figure 4.12: QoE gain vs Cost reduction
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Figure 4.14: Online gaming
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Figure 4.16: QoE gain vs Latency reduction

in §4.6, indicate that the omission of offline techniques does not significantly compromise

the accuracy of QoE measurements.

Overhead of demo generation: Different from conventional tools, VidPlat dynamically

generates demos for raters during the user study, as opposed to doing so in advance. Conse-

quently, the time taken for demo generation must be factored into the overall latency. This

generation time encompasses the video compression duration (essentially, the period required

to generate videos with low-quality events) and the execution time of the demo-generation

logic. However, the time taken for demo generation can be amortized as more raters evaluate

a given demo. If a rater finishes rating a demo and VidPlat already has other generated

demos ready for rating, the rater does not need to wait for new demos to be generated by the

logic. Nonetheless, in extreme scenarios where video generation time becomes the primary

source of latency, VidPlat might struggle to mitigate the overall delay in the user study.
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4.6 Evaluation

We evaluate VidPlat in building QoE models for the three use cases in §4.4. Our key finding

is that VidPlat can save 50.9% — 68.8% latency and 31.8% — 46.0% QoE ratings that need

to be collected (indicating the same amount of monetary cost saving) without degrading

QoE by applying the QoE models trained by VidPlat.

4.6.1 Experimental setup

We evaluate VidPlat by real experiments on Amazon Mechanical Turk followed by trace-

driven simulation in which the traces are collected from our real experiments.

Use case setup: We list the experimental settings of the three use cases in §4.4.

• On-demand video streaming: We build per-video QoE models for the source videos

in the dataset [172], and the dataset has 16 source videos across different genres. By the

per-video QoE models, we use a video streaming system, Pensieve [117], to stream those

videos over different networks whose throughputs are randomly selected from two public

network traces, FCC [52] and 3G/HSDPA [135] as in [172] by the per-video QoE models

and the one-size-fits-all models, KSQI [60].

• Online video gaming: We build QoE models for the videos in the online gaming

dataset [32], and this dataset has 10 games including Multiplayer Online Battle Arena

(MOBA), First-person Shooter (FPS) and Massive Multiplayer Online Role-Playing Game

(MMORPG) game types. We use Nebula [24] to stream the videos frame by frame over the

network traces in [172] by per-video QoE models described in §4.4 and a one-size-fits-all

model in [24].

• Resource allocation on web servers: We train per-page QoE models for three types

of webpages from an open-source dataset from Microsoft [174]. We apply those per-page

QoE models and a one-size-fits-all QoE model, Speed Index [83], to web service backend

systems for allocating computing resources as the settings in [174].
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Crowdsourcing setup: In this evaluation, we conduct user studies on Amazon Mechanical

Turk. The crowdsourcing raters are identified as “Master Turkers”, which means their

historical response acceptance rate is > 99%. We use a fixed payment structure for all the

workers. The rater payment is $10 per hour, which aligns with the lawful minimal wage.

Metrics: We use three metrics. Given a network trace and a source content (video or

web page), the QoE gain is measured by
QoEf−QoEb

QoEb
, where QoEf is the QoE by using fine-

granular QoE models built by Sensei and VidPlat and QoEb is the QoE by using one-size-fits-

all models. The QoE of those application demos is measured by average ratings (i.e., Mean

opinion score, MOS [133]) collected from workers. We also calculate the latency and cost

reductions in building fine-granular QoE models compared with Sensei, i.e., LSensei−LV idP lat
LSensei

and CSensei−CV idP lat
CV idP lat

, where LSensei, LV idP lat, CSensei, CV idP lat represent latency and cost

of training QoE models by Sensei and VidPlat. Latency is measured by the length of the

timespan of the user study. Cost is measured by the number of responses we need to collect

from the workers, since we use a fixed payment structure, it can be regarded as a monetary

cost in our evaluation.

4.6.2 End-to-end evaluation

We evaluate the cost and latency reductions in building QoE models compared with Sensei.

We can see that we can save 31.8% — 46.0% cost and 50.9% — 68.8% latency compared
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with Sensei as shown in Figures 4.12 and 4.16. For the cost reduction, VidPlat and Sensei

show the same number of application demos, so the cost reduction is from the savings in

the number of responses we need to collect for the demos, because VidPlat can immediately

stop QoE rating collections as we have collected enough ratings. For latency, we can see

online gaming and web service have more reductions than on-demand video streaming. It is

because in online gaming and web services, we conduct more sequential tasks than on-demand

video streaming which only has two tasks as in [172]. The cost and latency reductions of

VidPlat are not at a cost of lower QoE improvement. From Figures 4.12 and 4.16, the QoE

models built by Sensei and VidPlat have similar QoE improvement over one-size-fits-all QoE

models. It is because that we have built QoE models with enough accuracy confirmed by

the assignment generator provided by requesters.

4.6.3 In-depth analysis

We use trace-driven simulation to study where VidPlat’s improvement comes from. We sim-

ulate the user study of using crowdsourcing to build QoE models for webpages. The pattern

of signing-up time of workers is from the traces we collected from end-to-end evaluation.

Variance in QoE ratings needed for every application demo: We investigate the

cost and latency improvement of VidPlat over Sensei, when the variance of number of ratings

needed for webpage load events changes. The number of ratings needed for each page load

event is from a uniform distribution in the range [a, b] where we fix a as 10 and change b

from 10 to 50. Figure 4.17 shows the cost reduction increase with the variance of number

of ratings needed for webpage load events. In Sensei, we use each page load event is rated

by b times for avoiding an event presenting in two tasks which increases latency. Thus,

the cost reduction will finally converge to 1 − (a+b)/2
b where (a + b)/2 is the average QoE

ratings needed of page load events in VidPlat under this setting, and b is the average QoE

ratings needed of page load events in Sensei under this setting. Figure 4.18 shows the latency

reduction with the variance. The reduction drops slowly with the variance since VidPlat can
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dynamically recruit more workers to fully parallel QoE rating collections instead of recruiting

a fixed number of raters using traditional tools.

QoE model accuracy: Figure 4.19 shows the latency reduction with 90%-confidence

intervals of QoE of the webpage load events. The latency reduction decreases with larger

confidence interval as a “step” shape. The shape is because that if we want to use Sensei

to achieve a larger confidence level, we might use fewer sequential tasks, which significantly

reduces Sensei’s latency and thus lowers our latency reduction.

4.7 Related Work

We briefly survey the most relevant work in QoE modeling and crowdsourcing user study.

QoE of Internet Applications: Quality of Experience (QoE) reflects the degree of user

satisfaction concerning the perceived application quality. QoE is evaluated in two ways:

subjective and objective. Subjective measurement directly collects user feedback about per-

ceived application quality, typically using subjective assessment scores such as the Mean

Opinion Score (MOS) which averages scores collected from users. To ensure these scores

are valid and repeatable, common practices [81, 80, 36] are proposed. These works include

detailed descriptions of QoE measurement settings [36], testing environments [179], data

processing [106], and more.

Objective measurements build models to predict QoE based on perceived application

quality such as buffering stalls and bitrate in video streaming, or page load time in web

services. Apart from perceived application quality, several other factors significantly influ-

ence user QoE, like application content [172, 55, 42], user context (e.g., user location [82],

end-user environment [71]), and human factors (e.g., user quality preference [89, 173], emo-

tional status [179]). Consequently, users might experience different QoE levels for the same

perceived application quality due to their unique QoE influencing factors.

Prior work leverages these QoE influencing factors to optimize Internet applications.
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Examples include:

• Web services: Metrics such as Above-The-Fold [83] (time spent until objects in the user

viewport are fully loaded) and Eyetrack [96] (monitoring motion of users’ eyeballs to deter-

mine the webpage area) reflect more accurately the subjective page load time. Similarly,

algorithms that consider the order of loading web objects have been proposed [39].

• Video streaming: Early systems [168, 117] use a one-size-fits-all model to optimize QoE.

More recent optimizations consider additional dimensions of QoE influencing factors. For

instance, Sensei [172] customizes the bitrate selection strategy according to the video

content, and other studies [89, 182] account for the heterogeneity of quality preferences

across users to personalize video streaming strategy.

User Study: QoE optimization success highly depends on user studies which directly

measure QoE with real human users. Traditional lab-based studies are costly and time-

consuming, because the user-study participants must physically present in the place for

user study (e.g., a research lab). Therefore, crowdsourcing has gained popularity due to its

flexibility in recruiting participants and task allocation. Nevertheless, crowdsourcing still

incurs ineligible costs and requires significant time. Several techniques have been proposed

to reduce these, including:

• Cost-saving: Active learning [43, 111] is used to minimize the number of data samples re-

quiring human annotations for training machine-learning models. Domain-specific knowl-

edge is also leveraged to prune the samples whose human annotations can be inferred by

the annotations that have already been collected.

• Saving latency: Techniques to reduce crowdsourcing latency focus on user recruitment and

per-task worker latency. Dynamic pricing [151] and maintaining workers’ speed by phasing

out slow workers are some of the strategies used [76]. Furthermore, overlapping human

annotation data processing and human annotation data collection for the applications can

reduce latency [86].
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Compared to lab-based user studies, the inevitable problem is that crowdsourcing may

collect lower-quality responses (e.g., random responses) due to malicious workers who want

to get their payment faster or varying degrees of expertise among workers. Therefore, meth-

ods for collecting high-quality responses have been developed, such as modeling each user’s

response quality [43, 106], implementing a qualification questionnaire [179], or using golden

tasks [157, 172]. Given the methods, crowdsourcing can eliminate workers unable to offer

high-quality responses.

A number of tools are proposed to assist crowdsourcing-based user study by integrating

cost and latency techniques. Quadrant of Euphoria and Eyeorg [46, 47, 157] provides a

web-based platform that automatically recruits crowd workers and assigns tasks. It takes a

set of videos or audio with different quality as input, and then outputs their QoE ranking.

Sensei is a platform that takes videos as input and outputs reliable QoE ratings. Other tools

passively monitor QoEs [41, 120, 173] on platforms like YouTube, including video quality and

user engagement time, and then process the user study data offline. Its passive manner does

not involve extra human efforts except installing those monitors in the beginning, making it

collect a large amount of user data with a low cost.
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CHAPTER 5

CONCLUSION

5.1 Contributions

This thesis contributes by proposing a new user-centric approach to optimizing the QoE of

Internet applications.

The key challenges in user-centric QoE optimizations are 1) high cost of QoE measure-

ments of different application contexts and 2) large system overhead of applying fine-grained

optimizations by leveraging the per-context QoE models.

To solve the above challenges, we have proposed three systems, VidPlat, E2E and Sensei.

VidPlat enables dynamic application demo pruning to complete in a single user study task,

reducing 31.8% – 46.0% monetary cost and 50.9% – 68.8% latency of QoE measurements

for web services, on-demand video streaming and online video gaming. E2E can efficiently

allocate web servers to the web requests with different server-side delay sensitivity, improving

QoE of web services by 28%. Sensei first trains per-video-content QoE models in a cost-

efficient way and then allocates network resources to download video segments by their QoE

sensitivity. Sensei can improve 15.1% QoE without using more network bandwidth, and

maintain the same QoE with 26.8% less bandwidth.

5.2 Future work

Three immediate directions in user-centric QoE optimizations can be explored.

Joint optimization between application and human perception: Every service

provider (e.g., Internet service providers, content providers, etc.) that supports Internet

applications should integrate human perception into its optimization. Though previous

QoE-optimization work can set service-level objectives (SLOs) for each system provider and

application session to maximize QoE, it ignores the fact that a user’s QoE preference might
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change within a session and some service providers might fail to achieve their original SLOs.

My research will explore a logically centralized controller that takes real-time QoE preferences

and system performance as input, and uses them to set and change SLOs for service providers

at any time during a session. The controller should also incur low system overhead so as not

to become a performance bottleneck. Intuitively, these service providers have an incentive

to cooperate with each other since such a controller can help improve user QoE without

additional system resources.

Performance fairness and privacy protection in QoE-driven systems: It is sub-

optimal to serve each user with equal system-level performance due to their heterogeneous

sensitivity to system-level performance. However, this raises a fairness issue because we might

always prioritize some users over others to achieve higher overall QoE across all users, be-

cause some users might have more marginal QoE improvement when given the same amount

of extra system resources than other users. Moreover, to build QoE models, application

providers need user-perception data that might be regarded as private by users and cannot

be shared. Thus, our goals are to 1) disconnect user-perception data from specific users in or-

der to protect their privacy, and 2) maintain QoE fairness across the users of an application.

To achieve these goals, my research will integrate emerging techniques, such as federated

learning and differential privacy, to keep user-perception data locally and train QoE models

while preserving user anonymity, in QoE-driven systems.

Expanding user interfaces for QoE-driven systems: To collect user-perception data,

previous work relied on user studies to directly ask users for their perceived QoE (e.g., user

ratings in exit surveys) of Internet applications and system-level performance (e.g., page

load time and video resolution). However, this is not sufficient, because QoE is also strongly

correlated to users’ physical and environmental status. For example, a user would not be

sensitive to video resolution when walking or jogging, and the user’s status can be detected

through vital signs like heartbeat and respiration. I will conduct systematic research about

what additional data we need to collect from users for QoE optimization.
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.1 Incentive to improve latency

We show that it is impossible to improve a group of users’ QoE without reducing at least

some of their external delays. Formally, this can be expressed by the following theorem.

Theorem 1. For n requests r1, . . . , rn, suppose S and S′ are the server-side delay vector

when the external delay vector is C and C ′, respectively. Then
∑

iQ(c′i+s′i) >
∑

iQ(c′i+si)

only if there is an ri such that c′i < ci.

Proof. Our proof is by contradiction. Suppose that
∑

iQ(c′i + s′i) >
∑

iQ(ci + si) and for

all i, c′i ≥ ci (i.e., no request has a better external delay). Then

∑
i

Q(ci + si) ≥
∑
i

Q(ci + s′i) (S is better than S given C)

≥
∑
i

Q(c′i + s′i) (Q is monotonic)

which contradicts the assumption.

.2 User Study on Web Quality of Experience

We provide more details about our user study, which measures the relationship between page

load time (PLT) and quality of user experience. We conduct this study on participants hired

through Amazon MTurk [1], a crowdsourcing marketplace.

.2.1 Test procedure

Before entering the study, participants have to fill out a questionnaire about their basic

information, such as age group, nationality, gender, time spent online per day, and primary

use of internet. Each participant is asked to rate their experience of the same web page

when it is loaded with different PLTs. Since the actual PLT of a page may be affected by

many factors—e.g., the participants’ browsers, operating systems, and network conditions—
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we show each participant a video recording of the web page being loaded at a certain speed,

rather than letting them load the web page. This ensures that all the participants experience

the same PLTs. The videos of different PLTs are played in a random order. After watching

a video, the participants rate the video with a score ranging from 1 to 5 (with 1 being the

least satisfactory and 5 being the most satisfactory), and this score is regarded as the QoE

for the PLT shown in the video.

.2.2 Video recording

In our study, we need to show videos of certain PLTs. To avoid uncontrollable WAN and

server-side delays, we first download all web page content on a local machine, and then

load the pages on this machine. This reduces the factors affecting PLT to (1) the browser

rendering time on the machine, which is a function of system configuration (e.g., operating

system, computer hardware, browser version, etc.) but remains fixed, and (2) the web data

packet arrival rate. Since the data packets are loaded from the local machine itself, we can

achieve the desired PLT by tuning the per-packet delay using a Chrome developer tool called

NoThrottling. This allows us to load each web page at the desired PLT, and record a video of

the loading process. These are the videos that are downloaded and shown to the participants

during the study.

.2.3 Results

We ran the user study on the three page types in our traces (Table 2.1), as well as four other

web pages: a Google search results page and the homepages of Amazon, CNN News, and

YouTube. For each page, we use 50 MTurk participants. Figure 1 shows the results for the

four web pages. We can see that although the websites have different PLT sensitivities, a

sigmoid-like relationship between QoE and PLT exists for all of them.
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Figure 1: The relationship between page load time and user rating in different websites.

.2.4 Response validation

A common problem in crowdsourcing is the validation of participants’ responses. We filtered

invalid responses in two ways:

• Engagement: Spending too long or too short on a video may indicate that the par-

ticipant is distracted or unengaged. We set time thresholds for identifying such par-

ticipants, and remove any response that takes more than 35 seconds or less than 2

seconds.

• Outliers: We view the average of all responses as the “ground truth”. We drop re-

sponses from participants whose ratings consistently deviate from the ground truth by

3, across all videos.

.3 Sensei’s Dataset

Figure 2 provides screenshots and descriptions of the 16 source videos used in our dataset.

Table 1 summarizes the test videos.

.4 Reliable QoE Crowdsourcing

We provide a few additional details on our crowdsourcing methodology.

Population bias of MTurk: As mentioned in §3.9, the per-chunk quality sensitivity could

be biased by the population distribution of MTurkers. We confirm that about 43.8% (and
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(a) Basket1 : A buzzer beater in a 
basketball game

(c) Basket2 : A free throw 
followed by a one-on-one defense.

(b) Soccer1 : A goal after a 
failed shoot

(d) Soccer2: presenting the 
scoreboard after a goal

(e) Discus: A man throwing a 
discus

(f) Wrestling: Two wrestling players (g) Motor: Motor racing (h) Tank: A tank attacking a 
house

(i) FPS1: A first-person shooting 
game 

(j) FPS2: A player robbing 
supplies

(k) Mountain: Mountain scene (l) Animal:  Warthogs that are 
bathing and grooming

(m) Space: A satellite taking 
pictures for our Earth

(n) Lava: A lava is waking up(o) Girl: A girl falling off the 
cliff

(p) BigBuckBunny: A rabbit dealing 
with three tiny bullies

Figure 2: Summary of source videos in our dataset. They span four genres: sports (a -
g), gaming (h - j), natural (k - m), and animation (n - p). They are compiled randomly
from public QoE datasets: LIVE-MOBILE [72](a,k), LIVE-NFLX-II [31] (b, n), YouTube-
UGC [158] (c - j and l - o); and WaterlooSQOE-III [62] (p).

67.3%) of the received ratings come from MTurkers who participate in our survey only once

(at most twice). This suggests that the pool of MTurkers is large enough to avoid small

population bias, which corroborates our sanity-check results (§3.5) that on average MTurker

quality ratings are strongly correlated with in-lab survey results.

Fast MTurker recruitment: While the MTurk platform cuts the overhead to publish our

survey, if MTurkers sign up slowly, this can slow down the entire process. We take following

steps to speedup the recruitment of MTurkers.

• Competitive compensation: We offer an hourly rate of $10, a competitive compensation on

the MTurk platform — only 4% MTurkers are paid more than $7.25/hour [78], though we

have not explored the impact of raising/lowering this rate. To prevent people from gaming

the system by sitting on a job for too long, we pay each MTurker by the estimated amount
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Name Genre Length Source dataset

(a) Basket1 Sports 3:40 LIVE-MOBILE
(b) Soccer1 Sports 3:20 LIVE-NFLIX-II
(c) Basket2 Sports 3:40 YouTube-UGC
(d) Soccer2 Sports 3:40 YouTube-UGC
(e) Discus Sports 3:40 YouTube-UGC
(f) Wrestling Sports 3:40 YouTube-UGC
(g) Motor Sports 3:40 YouTube-UGC
(h) Tank Gaming 3:40 YouTube-UGC
(i) FPS1 Gaming 3:40 YouTube-UGC
(j) FPS2 Gaming 3:40 YouTube-UGC
(k) Mountain Nature 1:24 LIVE-MOBILE
(l) Animal Nature 3:40 YouTube-UGC
(m) Space Nature 3:40 YouTube-UGC
(o) Girl Animation 3:40 YouTube-UGC
(n) Lava Animation 3:40 LIVE-NFLIX-II
(p) BigBuckBunny Animation 9:56 WaterlooSQOE-III

Table 1: Summary of the test video set.

of time needed to finish a survey (which is proportional to the total length of the videos

per MTurker), rather than by how much time the MTurker actually spends. In practice,

this only weeds out MTurkers who spend too much time on a survey.

• Maintaining good reputation: The MTurkers’ signing-up speed also depends largely on the

reputation of the publisher (i.e., us), because MTurkers tend to sign up if the publisher

historically has a low rejection rate. Thus, it is critical to be clear upfront about our

study’s rejection criteria. In the meantime, to keep our rejection rate low, we try to target

reliable MTurkers by restricting ourselves to Master MTurkers (a common practice for

publishers on MTurk [113]).

.5 Sensei’s Implementation

Automation of MTurk tests: We implement the pipeline shown in Figure 3.13 in Python

(for the logic) and Javascript (for the video server). Given a source video, it first creates the

rendered videos by adding specific low-quality incidents in the source video (via ffmpeg). It
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Figure 3: Chunk weight difference

Example quality incidents Watch videos 1. Please rate last video’s quality
1 2 3 4 5

2. What quality incident did you see? 
None Rebuffering Low resolution

Post survey questions

1. How the quality damage affect 
your experience?

2. Is our guideline clear? Please tell 
us anything you got confused

(a) Instruction page (b) Tutorial page (c) Video player page (d) Rating page (e) Post survey question page

Survey Introduction
1.

….
….

Response rejection criteria
1.

….
….

Figure 4: A diagram of our QoE survey interface. In each survey, an MTurker is asked to
rate K rendered videos; after watching each rendered video, an MTurker is asked to rate its
quality on a scale of 1 (worst) to 5 (best).

then uploads these videos to a video server, from which MTurkers later download the video.

After that, it generates a unique link for this campaign and posts it on the MTurk website

(the only step that requires manual intervention). MTurkers can join the test by clicking

the link, which redirects them to our video server. Once an MTurker has rated all assigned

videos, the server logs the ratings and notifies us. Once enough ratings are received, the

server trains the per-chunk weights as described in §3.4.2.

Single survey procedure: As shown in Figure 4:

• (a) Each survey starts with the instructions and rejection criteria under which ratings of

an MTurker will be rejected. Each MTurker is expected to read the instructions carefully.

• (b) The MTurker then watches an example video that includes a quality incident so that

they know what their ratings should be based on.

• (c, d) After that, the MTurker is asked to watch a sequence of rendered videos (determined

by the scheduler) and, after each video, rate the quality on a scale of 1-5.
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• (d) Finally, the MTurker does an exit survey.

.6 More discussion on saliency models

Saliency models used in §3.2.3: We test four models in total, a traditional motion-based

heuristic (AMVM [112]), a highlight detection model (video2GIF [75]), and a video summa-

rization model (DSN [178], dppLSTM [171]). We used the pretrained models of Video2GIF

(https://github.com/gyglim/video2gif_code), DSN (https://github.com/KaiyangZhou/

pytorch-vsumm-reinforce), and dppLSTM (https://github.com/kezhang-cs/Video-

Summarization-with-LSTM).

Saliency score vs. quality sensitivity: Although a variety of saliency models have

been proposed, we argue that these visual heuristics can be misaligned with video quality

sensitivity. For example, in the soccer video (Figure 3.1), the scene right before the goal is

most quality sensitive, but the highlight detection models and motion-based heuristics we

evaluated believe the scenes showing the audience are the most important (probably because

they show more human movements). Video summarization models pick all diverse moments

of a video, but many of them may not be quality-sensitive. For example, in the same soccer

video, the video summarization models identify every shot, rewind, and celebration clip as

important, but the users pay more attention to shots that might score a goal.

We also acknowledge the potential use of viewership information to detect video high-

lights. While the popularity of a chunk is closely related to highlights (or high interestingness

scenes) in a video, as we found in §3.2.3 and §3.7.3, these incidents may not perfectly align

with users’ sensitivity to video quality. Below are two examples specifically regarding the

potential misalignment between content popularity and quality sensitivity.

• Example 1: A less popular part of a video can still be quality-sensitive. The “animal” video

in our dataset is a part of a video about wildlife in Africa. Although a more “popular”

or “interesting” scenes is one where the lions chase antelopes, we find that users are still
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1 # Application demos and their ratings that have already been collected

2 appdemo_map_ratings: Dict[appdemo , QoE ratings (Set[int])]

3

4 # Application demos that we need to collect their ratings

5 demo_to_emit: Dict[appdemo , view_times (int)]

6

7 # Application demo (quality + content)

8 appdemo: Tuple[raw_video_id , List[quality_events ]]

9

10 # Application quality event

11 quality_event:

12 List[Tuple[quality_change_type , affected_time_range (Tuple[float , float]), \

13 quality_to_change (float)]]

14

15 # Type of quality change

16 quality_change_type:

17 Enum[’FreezeFrame ’, ’ChangeBitrate ’, ’ChangePlaybackRate ’]

18

19 # Raw video identifier . Defined in the project manifest file.

20 raw_video_id: int

Figure 5: Data types used in writing assignment generator in VidPlat

1 demos_to_rate = initialize_assignments ()

2 while demos_to_rate is not empty:

3 demo_map_rating = call_crowd_tool(demos_to_rate)

4 demos_to_rate = update_assignments(demo_map_rating)

Figure 6: Traditional interface

highly quality-sensitive in the scene where warthogs jump into a small pond for bathing.

• Example 2: A quality-sensitive part of a video may be a small fraction of a popular

segment. One of the soccer videos in our dataset is a compilation of highlight moments

from a long game, so all of its content is supposed to be “popular”. However, we still see

that there is heterogeneity in the sensitivity of its chunks.

.7 Type definition in VidPlat

In detail, we define associated types of parameters in the above Python-style pseudocode for

the use of requesters in Figure 5.
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1 initial_demos = initialize_assignments ()

2 call_VidPlat(initial_demos , update_assignments ())

Figure 7: VidPlat’s interface

.8 Why does not VidPlat require extra effort?

While VidPlat does introduce changes to the researcher interface, it does not result in a

significant increase in effort for researchers compared to traditional tools. The rationale

behind this is straightforward: even with conventional tools, researchers are required to

script logic to determine subsequent assignments based on collected QoE ratings.

Figures 6 and 7 illustrate the contrasting interactions between researchers using tradi-

tional tools and those using VidPlat. With conventional tools, researchers must repeatedly

invoke crowdsourcing tools until there are no remaining demos to be rated. This iterative

process inherently leads to a sequence of tasks. On the other hand, with VidPlat, a single call

is enough. More crucially, the logic used for initializing demos and subsequently updating

them based on collected QoE ratings from traditional tools remains relevant. VidPlat can

invoke these logic scripts seamlessly, without prematurely ending a user-study task. This

efficiency significantly streamlines the initial setup phase.
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