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ABSTRACT

A central challenge of contemporary physics is understanding strongly correlated quantum

matter at the microscopic level, with important applications in materials, medicine, and

infrastructure. Particle-level dynamics and correlations are often inaccessible to conventional

condensed matter experiments dealing with real solid-state materials, and simulating these

systems on classical computers rapidly becomes intractable because of the large space of

variables involved. Inspired by Feynman, one way to approach this problem is to recreate

the physics of interest in pristine quantum simulators.

In recent years, microwave photons in superconducting circuits have proven to be a rich

testbed for modeling many-body phenomena. This platform boasts excellent single-particle

and single-site control, site-resolved readout, long quantum state lifetimes compared to the

timescale of dynamics, flexible geometries, and prospects for engineered cooling, opening

up a variety of avenues to showcase new techniques for gaining physical intuition about

manybody physics.

In this thesis, we use superconducting quantum circuits to construct and probe strongly

interacting quantum fluids in a 1D Bose-Hubbard circuit. We deterministically prepare

fluid eigenstates of our system using particle-by-particle assembly and adiabatic control of

lattice site detuning. Site-resolved readout allows us to characterize these multi-particle

fluids and probe particle entanglement and correlations. This state preparation technique

is reversible; combining it with a manybody Ramsey experiment, we prepare cat states of

quantum fluids, and then localize the information about energy differences of these highly

entangled and delocalized states into one qubit for measurement. With this single qubit

measurement, we then extract information about the manybody eigenstates, the associated

excitation spectrum, and thermodynamic observables, a compelling example of how control

and measurement overhead need not scale with system size.
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CHAPTER 1

INTRODUCTION

1.1 Quantum Simulation and Model Building

One of the defining dreams of 21st century physics is to understand and control materials at

the quantum level. Such capabilities would enable huge leaps in active research areas such

as high temperature superconductivity, quantum biology, and molecular chemistry, with

valuable applications in medicine, materials, and infrastructure [1]. However, elucidating

the quantum structure and dynamics of molecules or materials is a very difficult problem.

When probing materials and chemistry in traditional condensed matter experiments, noise,

disorder, and other unwanted processes can obscure the exact causes and mechanisms of

delicate quantum effects; further, important microscopic quantities such as specific quantum

correlation functions are often inaccessible to classical probes [2, 3].

A common method of tackling difficult problems in physics is building a model: making

a smaller or simplified version of the system that still captures the fundamental physics of

interest, but with better control, less noise, and the ability to access quantities that would

otherwise be difficult to measure. Models can either be digital, for example running an

aerodynamics simulation on a computer, or physical, such as building a windtunnel. Unfor-

tunately, digitally simulating quantum systems on classical computers rapidly becomes com-

putationally intractable even for our best supercomputers. The space of relevant variables

in quantum systems grows exponentially in system size; for example, describing N interact-

ing spins such as electrons in a metal requires 2N degrees of freedom, such that simulating

even just 300 particles would require at least 2300 bits. For reference, 2300 is more than the

estimated number of protons in our observable universe. Feynman proposed a solution to

this problem in keynote address in 1982, stating “Nature isn’t classical, dammit, and if you

want to make a simulation of nature, you’d better make it quantum mechanical” [4]. Physi-
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cists have spent the last few decades developing techniques to build such quantum models:

aiming to assemble quantum systems from the ground up, engineer desired Hamiltonians,

and initialize, time-evolve, and measure quantum states [1, 5].

In this chapter, we will discuss approaches to quantum simulation (digital and analog)

and offer a brief survey of current state-of-the-art quantum simulation experimental plat-

forms. We will introduce the Bose-Hubbard model studied in this thesis, a deceptively simple

Hamiltonian that nonetheless supports several quantum phases and provides a clean test-bed

for state preparation and characterization techniques. Finally, we will provide an overview

of this thesis’ chapters.

1.2 Digital Quantum Simulation

One way to approach quantum simulation is to use a quantum device as a digital quantum

computer [6]. In analogy to a classical bit which holds a binary value, either 0 or 1, a

quantum bit (qubit) is any two level system that can be in a superposition of both its |0⟩

and |1⟩ state [7]. A quantum state can be thought of as a vector in complex space, rather than

simply a number. A qubit state is described as |Ψ⟩ = α|0⟩+β|1⟩, where α and β are complex

numbers with |α|2 + |β|2 = 1. A system of multiple qubits can also feature entanglement,

where the state of one qubit cannot be fully described without also taking into account

the state of other qubit/s with which it is entangled. With these properties, it is possible

to carry much more information in an array of quantum bits than in a classical system.

However, at the end of an experiment, measurement collapses the superposition and the final

value measured is classical (with the probability of measuring a specific value after many

experiment repetitions given by the squared amplitude of that state’s complex coefficient).

Despite this measurement constraint, the special quantum properties of superposition and

entanglement allow for new kinds of algorithms that cannot be run on classical computers,

with clever uses of interference to obtain the right answer; examples include Shor’s factoring
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algorithm, Grover’s search algorithm, the boson sampling problem, and variational quantum

eigensolvers (VQE) [7, 8].

In digital quantum simulation, the global Hamiltonian of interest is broken up into local

Hamiltonian terms composed of discrete one- and two-qubit gates, H =
∑

lHl with Hl

the local terms. If all the local Hamiltonians commute, unitary evolution is then given as

|Ψ(t)⟩ = U(t)|Ψ0⟩ = e−it
∑

l Hl |Ψ0⟩ =
∏

l e
−itHl |Ψ0⟩. For many Hamiltonians of interest,

these local Hamiltonians do not commute. Using the Trotter-Suzuki formula [9], one can

bypass this problem by only applying each local unitary for a very short amount of time δt

and then repeating the sequence to approximate continuous evolution,

|Ψ(t)⟩ ≈

(∏
l

e−it/NHl

)N

|Ψ0⟩. (1.1)

In the limit of infinite N , the approximation converges. In this way, a fault-tolerant quantum

computer could be used to investigate any Hamiltonian with great accuracy, operating as

a universal quantum simulator! Currently however, noise limits both the physical scaling

and the number of coherent gates that can be carried out on existing quantum computing

devices. The largest devices with some degree of individual control are in 100s of qubits

range; we are in what has been termed the NISQ (nosy intermediate scale quantum device)

era. Numerous schemes have been proposed to encode quantum logic in redundant degrees

of freedom enabling error detection and correction, with the goal of building logical qubits

whose lifetime exceeds that of their constituent hardware [10, 11]. While there have been a

number of exciting results in the past decade, with the break-even point for a single qubit

reached first reached in 2016 [12], so far error correction has been limited to small numbers

of qubits and often also to limited sets of errors.
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1.3 Analog Quantum Simulation

In the absence of a universal quantum computer, near term physics results can still be

achieved by using well-controlled intermediate scale devices as analog models for materials

physics [13]. The goal is to map the Hamiltonian of a system of interest directly onto the

quantum device over which we have control. For example, the Ising model describes inter-

acting spins; from the point of view of relevant properties such as critical points, dynamics,

and correlations, the results are the same if the spins are electron spins in a metal, Ry-

dberg atoms in optical tweezers, or photons in circuit structures parametrically driven to

recapture spin interactions. Analog quantum simulators are specific in purpose - they can

only simulate the physics for which they have been built. However, unlike digital quantum

simulators, they involve less control overhead and do not require large numbers of perfect

gates. These simulators are especially useful in cases where specific rather than complete

state information, such as two-body ordering, equation of state, or entanglement growth, is

required. In recent years, analog quantum simulation experiments have provided valuable in-

sights into: the interplay of disorder and dynamics in localization [2, 14–16]; Fermi-Hubbard

models [17, 18] and mechanisms of high-temperature superconductivity [3, 19]; topological

matter and the fractional quantum Hall effect [20–25]; time crystals [26, 27]; manybody

scars [28]; measurement-induced phase transitions [29]; and open quantum systems [30–33],

among many other topics.

Despite these many results in creating and probing a variety of manybody states, the

analog quantum systems under control are just in the 100s of particles and/or sites, with

academic circuit systems closer to 10s of sites. The reader may be unimpressed with these

small systems sizes of the NISQ era, especially given that many of the features of smaller

quantum simulation platforms (this work included) are still within the reach of being nu-

merically solvable using classical computers.

One goal even for smaller simulators is to develop tools and mappings for preparing and
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characterizing states of interest. How to implement Hamiltonian terms, prepare specific

states out of an exponentially large Hilbert space, and extract parameters in a robust and

efficient way are all non-trivial questions that smaller devices can tackle at our current level

of hardware. Methods development in quantum simulation is an important creative space,

similar to ideas for error correction or new gates in quantum computing world. Especially

exciting prospects include recent development of programmable quantum simulators across

several platforms, which combine analog platforms with the digital controls of quantum

computers, opening new avenues for manybody preparation and characterization, as well as

expanding the flexibility for one analog device to explore a range of parameter regimes [34–

37].

Further, the arrangements of quantum particles prepared and probed in analog quan-

tum simulators aren’t just models, but quantum materials, albeit synthetic ones! In this

sense, analog quantum simulators are a platform on which to perform condensed matter

experiments on very small sample sizes. In providing a new platform to tinker around with

condensed matter physics with a wealth of possible measurements and controls, synthetic

materials can uncover open questions, or provide more intuitive ways of thinking about

physics previously mostly discussed in theory but never realized in the lab, both in the cases

of measuring particular effect signatures impossible to probe in traditional samples [2, 3, 19,

28], or exploring parameter regimes beyond natural analogs [26, 38–40].

Having motivated quantum simulation generally and in the context of our current tech-

nological capabilities, I will now introduce experimental platforms for quantum simulation,

including the one used in this thesis, superconducting circuits.

1.4 Experimental Platforms

What makes a good quantum simulator?

Somewhat tautologically, we need to be able to operate our device in a regime where

5



quantum effects are important. Generically in any experiment, we want the system to be

dominated by physics of interest rather than noise or loss (noise is low compared to the

relevant energy scales, loss slow compared to timescale of dynamics and interactions). These

requirements are particularly stringent if we want to observe quantum effects, a regime

where physical parameters’ discrete nature is only revealed when strongly isolated from the

environment. Heuristically, to be able to operate in the quantum regime and address discrete

eigenstates, we need states’ linewidth to be narrower than the energy spacing between them.

Further, we need the thermal background in our system to be low compared to qubit energies,

so that we can confidently prepare specific states rather than just thermal states.

We also need the ability to build interesting Hamiltonians, the ability to prepare MB

states and induce dynamics, and the ability to probe what is going on in our simulator. This

is the great difficulty of quantum simulation and computation: we need very precise control

and readout (ie strong coupling) to systems that we are trying to completely decouple from

the outside world to avoid noise and loss and see quantum effects.

In the past decades, several different experimental platforms have risen to the challenge

of designing and controlling quantum systems. Some of the major players include:

• Ultracold atoms in optical lattices [41, 42]: Atoms are trapped by lasers in a

vacuum chamber, cooled with electric and magnetic fields, and loaded into an optical

lattice made of several interfering laser beams forming a fully controllable periodic light

structure. The main quantum degree of freedom used is the lattice sites’ occupancy

(is there an atom a given lattice site or not). High filling fractions of large lattices

(up to 3000 atoms) can be achieved [1]. For emulating condensed matter problems,

atom arrays neatly implement a lattice with identical particles interacting through

spin or particle exchange (much like electrons in a material are identical, and can in-

teract or hop between potentials defined by periodic arrays of atomic nuclei). Both

bosons and fermions can be trapped; atoms can hop between lattice sites, and na-
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tively interact with contact interactions; additional nearest-neighbor spin interactions

can be encoded into the hyperfine Zeeman states. Lattice geometry, dimensionality,

and depth can be controlled by choosing different configurations of interacting laser

beams. Synthetic magnetic fields can be generated from global lattice shaking or

laser-induced tunneling, and spatial light modulators (SLMs) can imprint patterns of

disorder and doping. Quantum gas microscopes can perform site-resolved readout, and

time-of-flight measurements can probe momentum distribution. Current challenges in

the platform include engineering long range interactions, achieving not just local but

site-resolved control and loading, cooling atoms even further (for example cooling all

excitations in a given superfluid), and speeding up experiment cycle times. Many of

the earliest manybody simulations of correlated particles were done in ultracold atom

lattice experiments (one of the first results probed the Mott insulator to superfluid

transition [43]).

• Rydberg atoms in tweezers [44]: Atoms in a vacuum chamber are individually

trapped in optical tweezers, and excited to high valence states (Rydbergs) that have

a blockade radius preventing other nearby atoms from being similarly excited to the

Rydberg state. This is a great platform for investigating spin models: tweezers can be

arranged in arbitrary lattice patterns, and Rydberg excitations can be mapped onto

interacting spins in a magnetic field (both XY and ZZ/Ising models are possible); here

the main quantum degree of freedom/“particle” is the Rydberg excitation. Because of

the deep tweezer trap holding the atom in place, Rydberg atoms’ motional degree of

freedom does not need to be as extensively cooled when aiming to build a lattice. The

Rydberg excitation is also higher energy than room temperature thermal background.

For a while, this platform was limited by low filling fractions. This issue was addressed

by starting with a larger array of tweezers, and then reconfiguring them so that only

the filled ones formed a lattice (current lattice sizes range around 250 sites). Rydberg
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atoms can be individually addressed, and read out with single-site resolution using

quantum gas microscopes. Current challenges in the field include attaining particle

exchange terms; it is challenging to place the tweezers close enough and couple them

strongly enough to see Rydberg atom hopping between tweezers.

• Trapped molecules [45]: Molecules in a vacuum chamber are cooled and trapped in

optical lattices. Molecules have rich internal structures, dipoles that give rise to longer

range interactions, and can also be used to observe chemical reactions in real time/at

the atom-by-atom level! However, because of their rich internal structure molecules

are correspondingly difficult to cool and control, and to achieve good filling fractions

in lattices. This is a platform still under active development, but very promising.

• Trapped ions [34, 46]: Atomic ions in a vacuum chamber are laser cooled and

trapped in linear (Paul trap) or 2D (Penning trap) arrays, with state of the art array

sizes of around 50 ions. The internal energy levels within each ion can be mapped to

effective spins (main quantum degree of freedom used for simulation). Long-range and

tunable spin-spin interactions are generated through collective lattice phonons; ions

truly can implement all-to-all connectivity. Synthetic magnetic fields can be gener-

ated with appropriate laser drives. Ions can be individually controlled and read out

(techniques developed for performing digital quantum computing on the platform).

Current challenges in the field include scaling up while maintaining control given the

very long-range connectivity, and implementing ion tunneling between lattice sites.

• Electron spins in nitrogen vacancy centers[27]: Nitrogen vacancy centers are a

type of point defect in diamond, where a nitrogen atom is substituted for a carbon

atom, leaving an unpaired electron which serves as the quantum degree of freedom

to be controlled (can be mapped to a two-level spin after applying a magnetic field).

Collections of such defects can be globally optically initialized, detected, and manipu-
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lated, and experience long-range magnetic dipolar interactions. The spins are subject

to multiple sources of disorder inherent to a given sample, and are thus a neat test-bed

for studying localization effects. Many nitrogen vacancies can be created in a sample,

and no cooling/trapping overhead is required. Challenges of this platform include lack

of tuning knobs (nitrogen vacancy location, density, frequency, and coupling is deter-

mined by sample fabrication) and lack of individual site control and readout when

many vacancies are closely packed together.

• Photons in engineered waveguides and metamaterials [47]: Chip-based or

beamsplitter arrays can implement non-interacting boson models for photons, with the

quantum degree of freedom used in simulation either photon polarization, path, or

angular momentum. Photons can be manipulated and addressed with simple optical

components, and be shuttled around in free space or waveguides. The challenges of

this platform include generating interactions (some work has been done generating

synthetic interactions through measurement, as well as confining photons to arrays

of nanopillars to generate polaritons with weak interactions), controlled generation of

single photon states, and detection of single photons.

• Superconducting circuits [38, 48]: Circuits are not at first glance an intuitive

choice for a system with good enough quantum control to implement interesting quan-

tum simulation; circuits are large, macroscopic objects with many electrons, loss chan-

nels, and degrees of freedom. This is the magic of superconductivity: at cold enough

temperatures in certain metals, electrons condense into a collective wavefunction that

can be described with just a few degrees of freedom and flows in the metal with no

classical resistance/loss. Therefore, if we fabricate circuits out of the right metal and

cool the circuit to below that metal’s superconducting point, we can treat the col-

lective excitations of these circuits (microwave photons), as fundamentally quantum-

mechanical. In superconducting circuit quantum simulation, these photon excitations
9



act as particles, and the arrangement of circuit elements forms the lattices on which

they move [38]. In vacuum, photons do not interact or have complicated momentum

structures. However, when interacting with matter, photons can inherit properties of

interest. Lattice geometries of circuit element sites enable interesting couplings and

band structure. A circuit element known as the Josephson junction provides a lossless

nonlinearity that allows the photons to interact. Challenges in the platform include

the fact that photons are inherently lossy when coupled to an external environment

for control. Because circuits are fabricated and thus vary some in specific geome-

try/parameters, not all elements are identical; extra control lines are needed to bring

elements on resonance. Because of the extra drive control, circuit systems are still on

the smaller side compared to atoms and ions; the biggest circuit chip with individual

site control is around 400 qubits [49], with most academic groups closer to 10 − 20

qubits. However, circuits also have a number of promising strengths. Lifetimes may be

on the order of 10s-100s of µs for large devices [49, 50], but interactions are on the scale

of 10ns of ns – circuits have a very strong interaction to coherence ratio; it is possible

to observer physics of interest before the system decays (this also means circuits have

very fast data collection times). Circuits also have extremely good single site control:

individual sites can be driven and tuned around in frequency, and individually read

out. The fact that photons are lossy actually opens up possibilities for dissipative

stabilization and other engineered loss physics difficult to achieve in other platforms.

Fabrication enables arbitrary lattice geometry and connectivity.

Though circuits are relatively new to the quantum simulation party, the past decade

has seen a proliferation of exciting circuit results, with groups investigating among other

things exotic band structures for photons [15, 39], artificial magnetic fields [23, 51], strong

interactions in photonic lattices [16, 37], and engineered reservoirs for dissipatitive state

preparation [31, 33]. In this work we concern ourselves with implementing the Bose-Hubbard
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model.

1.5 Hubbard Models

Originally studied in the context of superfluid-insulator transitions in liquid helium [52], the

Hubbard model describes bosonic particles hopping around a lattice with on-site (pseudo-

contact) interactions. The Hamiltonian is given by

HBH/ℏ = J
∑
⟨i,j⟩

a
†
iaj +

U

2

∑
i

ni (ni − 1) +
∑
i

δini,

where J is the tunneling strength, U is the interaction strength, and δ is the variation in

lattice site energy. In a superconducting circuit implementation, lattice sites are transmon

qubits (capacitor combined with a Josephson junction) which act like a nonlinear quantum

harmonic oscillator [53]. Particles are microwave photon excitations of these sites. Particle

hopping terms are created by adding a coupler to connect neighboring transmon qubits.

The interaction term comes from the Josephson junction nonlinearity, or the fact that two

photons in one lattice site are a different energy than one photon in each of two lattice

sites [38, 48].

Depending on ratios of different parameters, the phase of the Hubbard model ground state

can be a Bose glass, a superfluid, a strongly interacting fluid, or a Mott insulator [52]. The

model also offers a clean system to investigate phase transitions, localization, scrambling,

reservoir engineering, and manybody dynamics more generally. We are one of several circuit

groups around the world investigating Hubbard models in circuits! (See for example [16,

37, 39, 54, 55], and many more!)

In our lab, we have used a Bose-Hubbard simulator platform as a jumping-off point to

investigate broadly applicable techniques for state preparation and manybody characteriza-

tion. Our group’s initial implementation of this model in circuits demonstrated dissipative
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stabilization of the Mott insulating phase, see Ref. [31]. In the experiments in this thesis,

we turned to preparing and exploring the properties of strongly interacting photon fluids.

1.6 Thesis Overview

In this work, we will discuss preparing fluids of light in a 1D Bose-Hubbard system, and

using these fluids to explore new methods of state preparation and characterization. The

following topics will be covered in order:

In Chapter 2, we will give a brief overview of the history and physics of strongly interacting

fluids in 1D.

In Chapter 3, we will discuss circuit building blocks of our device in greater depth.

In Chapter 4 we will discuss tuning up and operating a Bose-Hubbard device.

In Chapter 5, we will explore adiabatic preparation of quantum fluids through determin-

istic control of lattice site detuning, as well as probe density profiles, density correlations,

and entanglement of these states.

In Chapter 6, we will build upon our adiabatic preparation technique to generate super-

positions of quantum states, interfere them, and localize the interference fringe into a single

qubit for measurement. We will use this method to investigate thermodynamic quantities of

strongly interacting fluids in 1D.

Finally in Chapter 7 we will conclude and discuss potential future paths for this work.
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CHAPTER 2

BOSE-HUBBARD MODEL AND 1D FLUIDS

In this chapter, we will do an in-depth dive into the Bose-Hubbard model’s properties and

history, with the aim to build intuition and context for this type of physics. Since our system

is one-dimensional (1D), there is a further body of theoretical work relevant to characterizing

the manybody states of our system, which we will discuss as well.

2.1 Bose-Hubbard Hamiltonian In-depth Dive

The Bose-Hubbard model describes bosonic particles hopping around and interacting on a

lattice. The Hamiltonian is given as

HBH/ℏ = J
∑
⟨i,j⟩

a
†
iaj +

U

2

∑
i

ni (ni − 1) +
∑
i

δini. (2.1)

The ai and a
†
i terms are the bosonic annhiliation and creation operators for site i, with

bosonic commutation relations [ai, a
†
j ] = δij . ni is the number operator. The a

†
iaj terms

describe a particle hopping from lattice site i to lattice site j, with tunneling amplitude J ;

here, we restrict ourselves to nearest-neighbor hopping. The sum

J
∑
⟨i,j⟩

a
†
iaj (2.2)

can be thought of as equivalent to kinetic energy. The

U

2
ni (ni − 1) (2.3)

term describes on-site particle interactions: there is an energy penalty of magnitude U to

having more than one particle per site. (For example, with one particle on site i, this
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term adds 1 × (1 − 1) = 0 energy; if there are two particles on site i, this term adds

2 × (2 − 1)U/2 = U energy). If U is negative, the interaction will instead be attractive,

and there will correspondingly be an energy gain to having more than one particle per site.

δi describes the energy differences between lattice sites (disorder). This model is particle-

conserving.

To build some intuition about the different ground states of the model, let’s consider a

few extreme cases in the in the case of repulsive interaction (positive U).

Case 1, only J terms: Here, the Hamiltonian is given by

H/ℏ = J
∑
⟨i,j⟩

a
†
iaj . (2.4)

This reduces to the tight-binding Hamiltonian familiar from solid state class! Eigenstates

consist of particles delocalized across the lattice. With periodic boundary conditions, when

a particle is first added to an empty lattice, the ground state will be the particle in an

equal superposition of every lattice state. Since particles are bosons, the ground state is

all particles occupying the same lowest-momentum state; without interactions, the particles

cannot “see” each other. The ground state wavefunction can be written as

|Ψ⟩ ∝

(∑
i

a
†
i

)N

|0⟩. (2.5)

With open boundary conditions, the wavefunctions is constrained to be zero at the edges,

so instead we get a sinusoidal particle in a box state,

|Ψ⟩ ∝

(∑
i

sin
(
π(xi + 1)

V + 1

)
a
†
i

)N

|0⟩. (2.6)

Since in the ground state all the particles are in the same lowest-momentum eigenstate, the

ground state energy as a function of particle number is just given as E(N) = N × E|Ψk=0⟩.
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In 1D with open boundary conditions for example, E(N) = N × 2Jcos
(

π
L+1

)
. In the limit

of large lattice, the energy δE/δN to add an extra particle goes to zero, or in other words,

the state is compressible. The states of this Hamiltonian are said to be in a superfluid phase.

Case 2, only U terms: Here, the Hamiltonian is given by

H/ℏ =
U

2

∑
i

ni (ni − 1). (2.7)

This Hamiltonian commutes with the lattice number operator ni; in the ground state,

all sites have a well-defined number of particles. At even filling with n particles per site, the

ground state wavefunction is

|Ψ⟩ ∝
∏
i

(
a
†
i

)n
|0⟩. (2.8)

Adding particles to an empty lattice at first costs no energy. When all sites have one particle,

adding an additional particle to the lattice costs energy U (at least one site is going to have to

have two particles on it!). There is a large cost to adding another particle; we say this state

is “gapped” in energy and is thus an insulator, called here “Mott insulator.” To understand

how the energy to add another particle (i.e. the chemical potential) changes at higher and

higher filling more explicitly, consider the following: say I attach my Bose-Hubbard lattice

to an external bath of particles, such that adding a particle to the lattice is favorable in

energy by amount µ. Adding particles up to unit filling (one particle per site) doesn’t cost

any energy, so the lattice will completely fill. To add an extra particle beyond that costs

U . If µ < U , no new particles will enter the lattice. As soon as µ = U , since the energy

gain and energy penalty terms cancel out exactly, it is once again net zero energy to add

particles. The lattice will completely fill up to two particles per site. This is the structure of

a Mott insulator: as the external chemical potential is changed, the phase diagram exhibits

plateaus of constant particle number gapped by energy U.

Case 3, both U and J terms: The ground state phase diagram when both terms

15



J / U

Ground State Pase
SF

Strongly interacting fluid
ρ < 1

Strongly interacting fluid
ρ > 1

Mott insulator
ρ = 1

Mott insulator
ρ = 2

μ 
/ 

U

Figure 2.1: 1D Bose-Hubbard Phase Diagram This figure is adapted from Ref. [56].

are present is presented in Fig. 2.1, where the y-axis is the chemical potential per particle

normalized by U and the x-axis is the J to U ratio. Consider, for example, the case where

J/U = 0.1. Here, there are both strong interactions and hopping terms. The presence of

hopping terms means configurations where particles are smeared out in a superposition across

the lattice are favorable from a kinetic energy standpoint, but because of interactions the

particles can now “see” each other and take an energy penalty if they spread onto the same

site. Particles still delocalize, but can no longer all go into the same state. Adding particles

now requires energy, albeit less than U – the state is still compressible. One can imagine

that pushing in a particle requires existing particles to be confined to a smaller volume (since

they cannot occupy whatever site the new particle is in) – it takes some energy to compress

the existing particles. This regime is the “strongly interacting fluid” regime. As the external

chemical potential is increased, the density of the strongly interacting fluid increases until

it hits unit filling. To add another particle at this point takes energy ≈ U . As chemical

potential is further increased but still below µ, the lattice remains at unit filling (Mott

insulator lobe n = 1) until µ ≈ U , at which point we see another strongly interacting fluid
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region. As J ≈ U , the energy gained by delocalizing starts to out-compete the repulsive

interactions; the energy bands of the strongly interacting fluids start to meld together and

we get a superfluid regardless of U ; the gap closes.

Thus, the Bose-Hubbard models provides a few interesting parameter ranges to explore;

Mott insulators, J ≫ U superfluids, and U ≫ J strongly interacting fluids [52]. There are

also many variations on this basic Bose-Hubbard model, including models with longer range

interactions [37], disorder [15, 16], confining potentials [57], and hopping phases giving rise

to synthetic magnetic fields or synthetic spin degrees of freedom [51, 58].

2.2 Realizations of the Bose-Hubbard Hamiltonian

The Bose-Hubbard model was first studied theoretically in the context of phase transitions for

superfluid helium [52]. In 1998 it was noticed that the model could be implemented in optical

lattices with cold atoms, where the trap depth determines the tunneling rate [59]. Atoms are

loaded by starting the system in a Bose-Einstein condensate and then turning on the optical

lattice lasers. Greiner et al. demonstrated the first realization of such a Bose-Hubbard lattice

in experiment [43]; similar realizations in many other groups soon followed [42]. In these

optical lattices, it is possible to use Feshbach resonances to independently tune the interaction

U and explore the full U/J parameter space; time-of-flight (TOF) measurements to probe

momentum space distributions; optical gas microscopes to readout on-site population and

position-space correlation functions; laser configurations to change geometry and imprint

fixed disorder patterns; and global lattice shaking for synthetic magnetic fields [42].

Bose-Hubbard models can also be realized in superconducting circuits, where sites are

implemented as transmon qubits, particles as microwave photon excitations of the qubits,

tunneling (J) as capacitive coupling between the qubits, and onsite interactions (U) as

transmon anharmonicity (with U negative since the transmon anharmonicity is negative) [53].

The strength of circuits as a platform is extremely good single-site control: not only can sites
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be individually read out as in quantum gas microscopy, but the state of each site can be

individually controlled through microwave drive lines for particle addition/subtraction and

full state tomography, and lattice site energies (qubit frequencies) can be individually &

dynamically tuned using flux bias lines [60, 61]. Each hopping term can be dynamically

tuned using lattice site frequency modulation or through the addition of tunable couplers

between neighbors [62, 63]. Since photons are inherently dissipative, superconducting circuits

are also an excellent platform for studying Bose-Hubbard models in the context of open

quantum systems and dissipative engineering [31, 33, 38]. Because of control overhead to

correct for differences between lattice sites/qubits from the fabrication process, circuit Bose-

Hubbard simulators involve fewer atoms/sites than atom simulators, but they have much

better controls, and are well-equipped to explore complementary techniques to the atom

experiments.

Previous research from our group explored dissipative stabilization of a Mott insulator

in a 1D Bose-Hubbard model predicated on that state’s impcomressibility/the manybody

U gap [31]. In this thesis, we operate in the strongly interacting fluid regime of the phase

diagram of the 1D Bose-Hubbard model, and investigate preparation and characterization

of strongly entangled compressible manybody states.

We’ve introduced the Bose-Hubbard model. In the strongly interacting regime in 1D,

there are a number of analytic expressions one can derive to describe the system that helped

guide our inquires and describe the states we prepared. The following sections discuss these

theories and derivations.

2.3 Tonks Gas and the Jordan-Wigner Tranformation: Mappings

between Bosons and Fermions in 1D

If half the battle of quantum simulation is creating desired Hamiltonians, and the other

half is guiding these simulators to specific desired manybody states of interest out of an
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exponentially large Hilbert space, then the last half of the battle is then finding clever ways

to probe and characterize these states. (I realize I have too many halves – there are a lot

of battles in experimental quantum simulation, research is hard). Before descending into a

dense forest of analytic expressions, let us first take a step back and ask, what properties of

manybody states can we measure to learn about their structure? Here are a few:

• Eigenstate properties: wavefunction of eigenvectors in position space, wavefunction

of eigenvectors in momentum space, correlation functions (e.g. spin ordering, phase

coherence, etc.), entanglement (one body, manybody, how does it grow as a function

of system area or volume)

• Ground state energy as a function of parameters such as particle number, volume,

interaction strength, disorder; thermodynamic quantities corresponding to derivatives

of ground state energy (temperature T = 0) and thermal states (T ̸= 0) as a function

of system parameters (for example P = −dE/dV , µ = dE/dN)

• Dynamics, excitation spectrum/quasiparticle energies, speed of sound, quantum walks,

measures of ergodicity/integrability

• Effect of adding disorder and impurities, for example exploring cases where different

lattice sites have different energies, hoppings, or different species of particles

Since one of quantum simulation’s strengths is providing detailed insight into a system by

building intuition from the ground up, we often start by characterizing ground states which

tell us interesting facts about the target Hamiltonian’s underlying structure, and then after

that start adding in excitations and exploring dynamics in a controlled fashion.

When wondering how a particular model will behave, it is often useful to see what

theorists have to say about it. Interacting bosons do not a priori have easy to derive

expressions for the observables we listed above. However, in 1D bosons with strong repulsive

interactions are well described by the Tonks-Girardeau gas formalism. A Tonks-Girardeau
19



(TG) gas is a set of particles confined to one dimension in a continuum where the interactions

are so strong that the particles can be said to be hardcore, i.e. it is extremely costly to have

two particles on one site. In 1D, this means that particles cannot pass each other, since

to do so they would have to hop over each other with great energy cost. Rather than

collapsing into a simple condensate where the wavefunction is nearly a product of single-

particle states, the TG boson wavefunction exhibits zeros whenever two bosons occupy the

same position in space [64, 65]. Girardeau made the observation in 1960 that this constraint

can be implemented mapping it to the Pauli exclusion principle and related hardcore bosons

to non-interacting spinless fermions. Specifically,the bosonic wavefunction of N particles

ΨB(x1, ...., xN ) can be written as:

ΨB(x1, ...., xN ) = S(x1, ...., xN )ΨF (x1, ...., xN ) (2.9)

where ΨF (x1, ...., xN ) is the wavefunction of a 1D gas of non-interacting spinless fermions

and S(x1, ...., xN ) =
∏N

i>j=1 sign(xi−xj) compensates for the sign change whenever two par-

ticles in ΨF are exchanged, yielding a wavefunction that follows Bose statistics [66, 67]. For

quantities where the sign term does not affect measurement, observables for the bosonic par-

ticles in 1D will be the same as if they were fermions! This holds for a number of interesting

properties that have very convenient closed-form expressions once mapped to non-interacting

fermions, including position-space wavefunction and pair correlation function of eigenstates

of the Hamiltonian, energy spectrum, and thermodynamic quantities. The mapping is not

universal to all observables; for example, the density matrix of a non-interacting fermion gas

is different from that of the strongly interacting boson gas since in this case the sign function

does not cancel out [66].

If the gas in question is on a lattice, a corresponding mapping may be done using the the

Jordan-Wigner transform [68], which maps spin operators onto Fermi operators. First, we
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go from hardcore (strongly interacting) bosons to Pauli spin-1/2 operators for each site i:

σ+j = a
†
i

√
1− ni, σ−j = ai

√
1− ni, σzj = 2ni − 1, (2.10)

Next, relate S = 1/2 spins to fermions by defining operators that implement the desired

exchange statistics {fif
†
j } = δij :

f
†
i =

(
e+iπ

∑i−1
k=1 σ

+
k σ−k

)
· σ+i (2.11)

fi =
(
e−iπ

∑i−1
k=1 σ

+
k σ−k

)
· σ−i (2.12)

f
†
i fi = (σzi + I)/2 (2.13)

Note that the definition of the fermionic operators is non-local with respect to the bosonic

operators (spin operators): the phase of a given raising or lower operator depends on an entire

chain of operators to the left of the site the fermionic operators are defined with respect to

(equivalent to the sign function in the continuum Girardeau mapping). One should not think

of adding a boson in the lattice site basis as equivalent to adding a fermion; they are different

eigenbases that offer complementary ways of viewing the same Hamiltonian, with the same

spectrum, thermodynamics, and because f
†
i fi = a

†
iai the same density functions.

Having worked through the mapping between strongly interacting bosons and non-interacting

fermions in 1D, in the next section we will proceed to detail what theoretical predictions we

can actually make about the observables we care about.

A quick aside for the reader who may be interested in reading the original theoretical

papers on 1D gases, a brief review and set of definitions for common terms:

• Bethe Ansatz (1931): ansatz for finding ground state wavefunctions of manybody

models, applicable to 1D lattice problems [69]. (Fun fact: the original paper remains

untranslated. The ambitious reader is encouraged to learn German.)
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• Jordan-Wigner (1928): mapping from local spin operators to delocalized fermionic

operators. Helpful for analytically solving spin problems such as the Ising model or

XZ model; often used in quantum simulation with qubits, where qubits can naturally

be described as spins and then mapped to fermions. Originally derived for 1D systems

only, has since be extended to arbitrary dimensions [66, 68]. (Another German paper

for the linguistically-inclined.)

• Tonks-Girardeau gas (1960): a Bose gas in the continuum in 1D, with strong δ-function

type interactions, in the limit where the interaction strength U -> infinity. The system

can be mapped onto non-interacting fermions, and then solved analytically. [67]

• Lieb-Liniger model (1963): a model describing a Bose gas in the continuum in 1D,

with δ-function type interactions, where U interaction strength can take any value.

Wavefunctions can be solved for using the Bethe ansatz. [70, 71]

• Tomonaga-Luttinger liquid (proposed 1950, refined 1963, correctly solved 1965): a

model describing the interacting properties of fermions in 1D, either interacting or

not [72].

I also highly recommend Cazalilla’s review of bosons in 1D Ref. [66].

2.4 Derivations for a 1D Gas on a Lattice

In the following, we will calculate the predictions for quantities that we measure in experi-

ment in Chapters 5 and 6.
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2.4.1 Negative U Problem and the Equivalence of Highest and Lowest

Energy State

We want to explore the properties of the ground states of the repulsive Bose-Hubbard model

HBH(t)/ℏ = J
∑

⟨i,j⟩ a
†
iaj+

U
2

∑
i ni (ni − 1)+

∑
i (ωlat + δi(t))ni, so that we can use all the

useful theory described up above. However, the physical Hamiltonian implemented in our

experiment has the sign of U and J flipped (ie, we are realizing the attractive Bose-Hubbard

model); Hphysical = −HBH. Because the two Hamiltonians differ only by a minus sign, the

eigenstates are the same, just with flipped eigenvalues. Since our system is dissipation-less,

the dynamics and observables of the highest excited state of our physical model are the

same as those of the ground state of the repulsive model (with reversed time and negative

values for thermodynamic/energy observables because of the minus sign). Thus, we measure

observables of the highest excited state of our system, which maps onto the ground state

of a repulsive Bose-Hubbard Hamiltonian. For the rest of the thesis, we refer to the state

we measure as the “ground state”; the eigenvectors are the same, and the analytic values we

derive for the ground state quantities match our data up to a minus sign.

2.4.2 Finite-Size and Finite-U effects

The accuracy of the Girardeau’s and Jordan-Wigner’s mapping depends on the relative

strength of the interaction term and the tunneling term; terms that break the mapping

scale as powers of J/U (to first order they appear like fermion interactions) [73]. In our

experiment J/U = 0.04, and all corrections are small compared to the size of the features we

are interested in measuring. For example corrections to energy/chemical potential/pressure

are small, on average 1.2 MHz, the same order of magnitude as deviation from exact numerics

(700− 800 kHz, see SI B.3.2).

The mapping onto fermions ONLY depends on interaction strength, and is not affected

by the size of our lattice. However, if we want to use expressions for continuum physics for
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our lattice model, then we start having to be careful; how quickly continuum expressions

break down depends on the system’s coherence length, and we do in our experiment see finite

size effects, see Sections SB.3 and SA.4.

2.4.3 Wavefunction: 1 Particle

With only one particle, there are no other particles to interact with or experience exchange

statistics with. Thus, it does not particularly matter if the particle is a fermion or a boson,

and the interaction term is irrelevant.

From the tight binding model for a single particle in a 1D lattice with V sites, tunneling

−J , and open boundary conditions, the eigenvector wavefunctions are:

|Ψ(x)⟩ = sin
(
nπ(x+ 1)

V + 1

)
· 1√

V+1
2

, (2.14)

x discrete variable indicating lattice site 0, 1, etc. With V lattice sites, the system has V

single particle eigenvectors: n runs from 1 to V . xi is the lattice site index and runs from 0 to

V −1. These eigenvector wavefunctions can be thought of as particle-in-a-box wavefunctions,

or quasi-momentum states |Ψq⟩ with q = nπ/(V + 1).1

Flipping the sign of J just changes which quasi-momentum state is the ground state.

With J positive the n = V quasi-momentum state is the lowest in energy, with J negative

the n = 1 quasi-momentum state is the lowest in energy.

When measuring in the population basis, the density probability distribution is given by

|Ψ(x)⟩ = sin
(
nπ(x+ 1)

V + 1

)2

· 1
V+1
2

. (2.15)

1. For particles in a box, or on a lattice with open boundary conditions, wavefunctions are constrained to
be zero at the edges of the lattice. Unlike in an infinite system or periodic system, momentum eigenstates eikx
are no longer eigenstates of the Hamiltonian; instead wavefunctions are sinusoids with appropriate boundary
conditions ∝ eikx − ie−ikx; the magnitude of the momentum is well defined, but not its direction, hence
"quasi-momentum" states.
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Figure 2.2: TG Gas Wavefunction Compared to Exact Diagonalization The bar
plots correspond to the densities calculated numerically from exact diagonalization, while
the dashed lines come from the analytic TG gas Bijl-Jastrow [74, 75] wavefunction. with
slightly differences coming from finite U/J .

The probability distribution of the highest and lowest energy states in fact look the same,

as the wavefunctions differ only by a phase on each lattice site.

2.4.4 Wavefunction: Many Particles

Given the assumption of infinite repulsive interactions, we can write a 1D ground state

many-body wave function of the Bijl-Jastrow [74, 75] form ΨB(x) = ϕ(x)φ(x), for x =

(x0, x1, . . . , xN ) the position of each particle, where ϕ describes particles’ independent mo-

tion, and φ the effects of particle interactions. In our system, independent particle motion

is described by

ϕ(x) =
N∏
i=0

sin(π(xi + 1)/(L+ 1)) (2.16)

i.e. all particles are in the same single particle ground state. The two-particle component is

φ(x) =
∏
i<j

| cos(π(xi + 1)/(L+ 1))− cos(π(xj + 1)/(L+ 1))| (2.17)

and implements the TG gas impenetrable boson requirement (not the most intuitive function,

for the derivation see Ref. [76]). Using this trial wavefunction, we calculate density profiles

for different particle numbers in the potential, and find very close agreement between exact

diagonalization of our lattice and the results from the analytic wavefunction (see Fig. 2.2).
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Wavefunctions of excited states for given volume and particle number can be solved

analytically, but it’s a pain [70]; for the purposes of our experiments we just calculated

numerics.

A fun consequence of the strongly interacting limit is that we have particle-hole symme-

try, as evidenced by the highest density wavefunction being equal to 1-the lowest density

wavefunction; the probatility of one particle in seven sites is the same as the probability

density of one hole in seven sites.

2.4.5 Correlation Properties

The TG gas also very closely captures the behavior of density-density correlators in our

system, as shown in Fig. 5.8. Our system exhibits both particle repulsion and fermionization-

induced Friedel oscillations predicted by TG gas model [66].

Note that because we have a a finite system, at larger x separations our results begin

to diverge from the unconstrained TG gas result; because of finite size effects and the hard

open boundary of our system, correlations drop at larger separations (see SI Fig. SA.4).

This effect is captured in our numerics when we exactly diagonalize our system for up to 6

particles.

2.4.6 Energy Spectrum, Chemical Potential, and Pressure of Ground State

In the experiment described in this Chapter 6, we compare ground state energies of various

particle and volume manifolds. This means we measure ground state observables, i.e. chem-

ical potential, pressure, etc. for T = 0 and fixed entropy. The following thermodynamic

calculations can be done assuming constant temperature and entropy. Our data matches

these expressions up to a minus sign, as we measure the highest excited state of our system.

The energy eigenvalues for a single particle in a 1D fermionic lattice with V sites, tun-

26



neling +J , and open boundary conditions is

Ek = 2Jcos

(
πk

V + 1

)
(2.18)

where k are quasi-momenta.

Exercise 2.0: Calculate Ek for a single particle (since there is only one particle, it

doesn’t matter if that particle is a boson or fermion!) in a 1D lattice with V sites,

tunneling +J , and open boundary conditions from the tight binding model. The main

takeaway is that the “V+1” term comes from open boundary conditions.

The ground state energy of N fermions in a lattice, by the Pauli exclusion principle, is

the sum of all single-particle energies from the lowest energy state up, here from k = N to

k = N − V :

EN =
N−V∑
k=N

2Jcos

(
πk

V + 1

)
= −J

[
csc

(
π/2

V + 1

)
sin

(
π(N + 1

2)

V + 1

)
− 1

2

]
. (2.19)

This expression is used to derive thermodynamic quantities below.

To calculate E in the thermodynamic limit, we take ρ constant and send N and V to

infinity:

lim
N,V→∞

EN = lim
N,V→∞

−J

[
csc

(
π/2

V + 1

)
sin

(
π(ρV + 1

2)

V + 1

)
− 1

2

]
=

−2JV sin(πρ)

π
. (2.20)

The chemical potential at constant entropy is defined as µ = ∂E
∂N

∣∣∣∣
S,V

. Plugging in the

expression for E from Eq. 2.19 gives:

µ =
−Jπ

V + 1
csc

(
π/2

V + 1

)
cos

(
π(N + 1

2)

V + 1

)
(2.21)
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.

In the thermodynamic limit, sending N and V to infinity while holding ρ ≡ N
V constant,

lim
N,V→∞

µ = −2Jcos(ρπ). (2.22)

The pressure at constant entropy is defined as P = −∂E
∂V

∣∣∣∣
S,N

. Plugging in the expression

for E from Eq. 2.19 yields:

P =
J π
2

(V + 1)2
csc

( π
2

V + 1

)[
cot

(
π/2

V + 1

)
sin

(
π(N + 1

2)

V + 1

)
− (2N + 1)cos

(
π(N + 1

2)

V + 1

)]
(2.23)

.

In the thermodynamic limit, holding ρ constant while sending N and V to infinity,

lim
N,V→∞

P = 2J

(
sin(πρ)

π
− ρcos(ρπ)

)
. (2.24)

2.4.7 Energy Spectrum of Excited States

For single particles, the energy spectrum of eigenstates other than then ground state is given

by the tight binding model;

En = −2Jcos
(

nπ

V + 1

)
(2.25)

.

The full energy spectrum of states with many particles starts to get more complicated

analytically, especially with finite interactions at the U -band starts to interact with the

normal band. We solve the system numerically in Fig. 2.3.
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Figure 2.3: 1D Bose-Hubbard Spectrum States in dark are excitations of the hardcore
band (ie no more than one particle per site), which extends in energy from −4J to 4J .
Energy levels are grouped by particle sector. States in light grey are doublon excitations
(one site has two particles), centered around U = −24J . The rest of the spectrum is not
shown in this figure.

2.5 Simulations

To verify our experimental results, we simulate properties and dynamics of this system using

the python package Qutip. In our simulations, we use a Hamiltonian of the form:

HBH/ℏ = −
∑
⟨i,j⟩

Jija
†
iaj +

U

2

∑
i

ni (ni − 1) +
∑
i

(δi + ω0)ni.

plugging in experimentally measured values for J , U , and δ. We truncate our Hilbert space

at the |3⟩ state (3 photons) or |2⟩ state (2 photons) of each qubit depending on the intensity

of the simulation, choosing the lower cutoff for time-intense simulations. We operate in

the energy restricted (ENR) subspace of 6 total excitations for our simulations for faster

computation times. We numerically diagonalize the Hamiltonian in order to obtain the

eigenergies and eigenstates to verify many-body state spectrum, thermodynamic quantities,
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profiles, global entanglement, and g(2).

In order to simulate our dynamics and obtain theory for adiabiticity times, we numerically

solve the Schrodinger equation for different eigenstates of the Hamiltonian.
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CHAPTER 3

CIRCUIT QED BACKGROUND

So, how do we actually build the Hamiltonian and controls that we want out of supercon-

ducting circuits?

3.1 Circuit QED Review

For an excellent overview of all of the building blocks we will discuss in this section, see Bren-

dan Saxberg’s thesis “Creating Compressible Many-Body States of Light through Adiabatic

Tuning of Disorder” Chapter 2 [77], where he discusses his considerations when designing

the chip used in this experiment. I will give a shorter review of the main highlights here.

When building a quantum simulator, it is important to consider what components you

have accessible in your particular platform, and how to use them to both a) implement the

Hamiltonian to study and b) enable control over system (to probe states, prepare states,

or programmatically change Hamiltonian properties). In this section, we will review the

components of our Bose-Hubbard simulator step-by-step.

3.2 Creating the Bose-Hubbard Hamiltonian

First, we create a system described by the Bose-Hubbard Hamiltonian: the 1D chain of

qubits highlighted in red in Fig. 3.2. How much flexibility do we have to engineer different

ratios of theses parameters?

Lattice sites and U : Lattice sites are implemented as transmon qubits, and particles as

the microwave photon excitations of these qubits [38]. U is determined by the transmon qubit

anharmonicity. For a transmon qubit, the energy of adding a photon and the anharmonicity
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Figure 3.1: Elements of a Bose-Hubbard Chain The transmon qubits (circuit on the
right) serve as lattice sites for photons (diagram on the left), where interactions come from
the qubit anharmonicity U and the tunneling J arise from the capacitive coupling (green)
between the two sites.

are:

ω01 ≈
√
8EJEC (3.1)

U ≈ −EC (3.2)

where EJ is the Josephson energy and EC is the transmon charging energy. Both are fixed

by fabrication. EC ∝ 1/Cϵ, so the magnitude of U can be adjusted by changing the total

capacitance of the qubit to ground. EJ ∝ 1/R the room temperature resistance of the

junction, which can be adjusted by changing the junction’s area and oxide thickness during

the fabrication process (see Refs [77, 78] for exact derivations). To stay in the transmon

regime and maintain long phase coherence, keep EJ ≫ EC .

Tunneling J: The tunneling term J arises from the capacitive coupling between qubits,

also in our case fixed by fabrication:

Htunnel = −J(ai + a
†
i )(aj + a

†
j) (3.3)
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with the tunneling energy

J ≈
Cg

2
√

CiCj

√
ωiωj (3.4)

with Cg the capacitance between the two qubits and Ci/j the respective capacitance of each

qubit to ground (see Refs [77, 78] for exact derivations).

Combined, this gives us the Hamiltonian:

H = −J
∑
⟨i,j⟩

(ai + a
†
i )(aj + a

†
j) +

U

2

∑
i

ni (ni − 1) +
∑
i

(ωlat + δi)ni (3.5)

Applying the rotating wave approximation, we can throw out terms that don’t conserve

energy

H = −J
∑
⟨i,j⟩

(a
†
jai + a

†
iaj) +

U

2

∑
i

ni (ni − 1) +
∑
i

(ωlat + δi)ni (3.6)

To recover the form of the Bose-Hubbard model often quoted in literature, rotate the

system at the lattice frequency:

HBH = −J
∑
⟨i,j⟩

(a
†
jai + a

†
iaj) +

U

2

∑
i

ni (ni − 1) +
∑
i

δini (3.7)

where δi = ωi − ωlat.

Hurray! We have the Bose-Hubbard Hamiltonian that we wanted. We can design different

chips with different ratios of U/J , but in a given chip the ratio is fixed by the physical

capacitances and junction parameters.

3.3 Designing Controls and Probes

What controls and probes have we designed into this sample?

Frequency Tunable Qubits. In this device, each transmon’s nonlinearity comes not
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Figure 3.2: BH circuit chip Pictured here is our device, with a diagram of each compone-
nent on the left. The qubit chain is highted in red, the frequency tuning (flux) lines are
highlighted in yellow, the readout resonators are highlighted in light blue, the Purcell filters
are highlighted in dark blue, and the communal drive/readout line is highlighted in purple.

from one Josephson junction, but two in a SQUID loop. The Josephson energy can be tuned

or modulated by passing current through this loop [53, 77, 78]:

EJ (Φ) = (EJ1 + EJ2)cos(πΦ/Φ0)
√
1 + d2tan2(πΦ/Φ0) (3.8)

Emax
J = EJ1 + EJ1 (3.9)

Emin
J = |EJ1 − EJ1| (3.10)

ω(Φ) =
√

8EJ (Φ)Ec − Ec (3.11)

where EJ1 and EJ2 are the respective Josephson energies of the two junctions in the SQUID

loop, Φ is the external magnetic flux through the loop, Φ0 is the superconducting flux

quantum, and d = EJ1+EJ2
EJ1−EJ2

. In our device the tuning range is from 3− 6GHz.

Each qubit has its own individual flux tuning line (highlighted in yellow in Fig. 3.2).

This way, we can choose the frequency configuration of our qubit, and can modulate a
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qubit’s frequency.1 Our sample also has a magnet attached to the packaging, allowing us to

additionally globally tune flux across all qubits SI D.2.

Readout and Purcell Resonators. Each qubit has its own individual readout res-

onator, highlighted in light blue in Fig. 3.2. Using dispersive readout, this allows us to read

out the qubit state in the population basis [78] in a non-demolition way.

In a system where a qubit is dispersively coupled to one readout resonator, there exists

a loss channel for qubit excitations leaving the system through the measurement channel

of the resonator referred to as Purcell loss. By adding another element, a Purcell filter,

between the resonator and the 50-Ohm environment we can re-shape this impedance and

increase the limited transmon lifetime we would face from this loss process. To implement

this simply, we add yet another linear resonator between the existing readout resonator and

the environment, highlighted in dark blue in Fig. 3.2. This new filter resonator is designed

with a large linewidth centered at the readout frequency such that photons at the readout

frequency pass to the measurement environment while photons at the qubit frequency are

mostly reflected.

Communal Drive and Readout Bus for Resonators. We have one communal

drive line to probe qubits and resonators, highlighted in purple in Fig. 3.2, that all the

resonator/Purcell pairs are connected to (and that all the qubits are connected to through

the resonator/Purcell filters). There are several consequences of this:

All resonators will see a given tone sent through the feedline; we rely on frequency sep-

aration to selectively drive individual resonators. Since the resonators are narrow linewidth

(∼ 200− 500kHz) and spread comparitively far apart in frequency (∼ 100MHz), with a nar-

rowband drive one can address a given resonator and be far enough detuned from the others

that the drive has no effect on the others. If one wants to probe multiple resonators at once,

one can send in a drive pulse with several frequency components, each corresponding to the

1. Qubit frequency modulation can be used to generate new resonance conditions and/or tune couplings,
see SI B.2.2.
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resonators we want to drive (known as frequency multiplexing, see for example Ref. [79]).

Our wiring is set up to send microwave signals in from one side of the feedline, and to

directionally deliver microwave signals out to our measurement setup to record the state of

the resonators for readout on the other side of the feedline, see SI E for more details.

Communal Drive for Qubits We drive the qubits through the communal feedline as

well; we also rely on frequency separation here (both between qubit and resonators, and qubit

to qubit) to selectively drive individual transitions. If we want to address qubits locally, this

means that we have to first arrange them in a frequency configuration where they CAN be

driven locally, i.e. far enough apart (δ ≫ J) such that eigenstates look like particles localized

on single sites. Since we are relying on frequency separation to not drive unwanted qubits,

we also have to be careful about not driving qubits with pulses that are too short/that have

large frequency spread for fear of hitting other qubits nearby in frequency. This is not an

issue in systems with individual charge lines for each qubit.

Since we are driving each qubit through its resonator/Purcell pair, which each in turn are

spaced out in frequency, we expect the coupling of each qubit to the feedline to be slightly

different (i.e. each qubit will have a different π-pulse time).

Extra Elements Not Used in this work The astute reader will notice that there are

two elements of our chip that I haven’t discussed, two lines leading to the end of the qubit

chain (unhighlighted in Fig. 3.2). One is a drive line coupled just to the edge qubit, the

other is a lossy resonator also coupled just to the edge qubit. These two elements can be

used for experiments in dissipative stabilization (see Ref. [31]), but were not employed in

the experiments described in this work. For experiments in this thesis, the edge qubit was

far detuned from the rest of the qubits and from the lossy resonator, to not introduce extra

decay from the lossy resonator to the main lattice of qubits.

Summary and Outlook See SI C for a full table of measured parameters of the sample

at operating points for the experiments described in this thesis.
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When considering the next iteration of a quantum simulator platform, it is always worth

asking what Hamiltonian terms you want to aim for and why, what controls you want and

why, and for both cases what the particular strengths of your platform/your design are

compared to the rest of what is being done in the field. Examples of circuit elements worth

considering for future samples: tunable couplers between lattice sites enable control of the

tunnelling in amplitude and phase (though also more hardware overhead), going from 1D

to a ladder or a square opens up new kinds of physics, coupling all qubits to a waveguide

generates beyond nearest-neighbor interaction [37], using different types of qubits such as

fluxonia for lattice sites opens up new kinds of Hamiltonians, etc!

In this section we have reviewed sample design; sample fabrication, packaging, and mea-

surement setup are detailed in SI D and E. The next section covers sample calibration.
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CHAPTER 4

CHARACTERIZATION AND OPERATION OF A

BOSE-HUBBARD DEVICE

4.1 Philosophy

This section will provide a step-by-step guide to characterizing and tuning up a Bose-

Hubbard device once it is in a cryostat. The section is aimed at younger graduate students

taking on the current sample or building a new but similar device. Many of the charac-

terization steps we discuss here have also been covered in a more general context in other

references; see Refs. [60, 61, 80, 81] for complimentary discussions.

This is a rather technical section, but I argue that tuning up a sample properly is the

core of quantum experiment. Being able to quickly and accurately control a complicated

device is at a fundamental level what enables accurate generation of desired Hamiltonians,

trustworthy extraction of information about highly entangled states, and the flexibility of

control needed for creative solutions to the problems of manybody state generation.

With that in mind, it is often helpful to begin a series of characterization tests with a

clear idea of what exactly are the parameters you aim to measure and why they matter to

the experiment. Are there certain characteristics that mean the sample will likely not be

able to implement the experimental sequences you have in mind? How do the parameters

measured compare with historic values? How long will you need to average to get clean

signal? Etc.

4.2 Quick Aside: Qubit Configuration During Calibration

With flux-tunable qubits, we can decide where to place the qubit transitions, ω01 etc., in

frequency (hereafter, I just say “qubit” for “qubit ω01 transition”). In general, for qubit
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characterization, we place the qubits so that they are effectively decoupled from each other:

we found best results by placing neighboring capacitively coupled qubits ∼ 400− 500 MHz

apart and next to nearest neighbors ∼ 20− 50 MHz apart. This ensures that:

• δnn ≫ J i.e. nearest neighbor detuning is larger than tunneling, so nearest-neighbor

qubits are not significantly hybridized; eigenstates of our system correspond to particles

localized to individual qubits, i.e. we can effectively treat the qubits as decoupled.

• δnn ̸= U so populating an upper qubit does not shift the frequency of a lower qubit

significantly compared the the bandwidth of our qubit drive (and vice versa), which

can happen if the energy of having a particle in upper and lower qubit is close to the

energy of two particles in the upper qubit (i.e. energy of |11⟩ state is close to the energy

of |20⟩ state). We found having δ ≫ U helpful for suppressing readout crosstalk.

• next two nearest neighbors are also detuned to avoid virtual transitions through inter-

mediate qubits, and to be able to drive qubits individually relatively quickly without

hitting other qubits close in frequency.

• |δ − ωlattice| is within the range of our RF tuning of qubit frequency, so that we can

bring all qubits onto resonance during the course of an experiment. When operating

on the slope of our qubits’ ω vs. tuning flux curve, our range was typically on the

order of 200− 400MHz (see Sec. E.)

• all qubits close enough to readout resonators for high-fidelity readout (in the current

sample, anything above about 4GHz was acceptable).

A typical configuration is shown in Fig.4.1.
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Figure 4.1: Qubit Configurations An example of qubit configurations used when: (left)
qubits are detuned for individual control and readout; and (right) when qubits are on reso-
nance in a lattice configuration.

Exercise 4.0: Calculate the eigenenergy shifts from the bare frequency and plot

single particle eigvenvectors in the population basis with nearest neighbors 500MHz

apart and next to nearest neighbors 30MHz apart. Plot eigenvalues as a function of

neighboring detuning and next-to-nearest neighbor detuning. If you place neighors

close to U apart, check the energy of adding a particle to either qubit a) starting from

vacuum state or b) starting with the neighbor occupied.

4.3 Continuous Wave Measurement

The first set of measurements involve sending one or several continuous tones to the sample,

and measuring the relative magnitude and phase of the signal that returns relative to the

signal we send in. These measurements do not require preparing the qubits or resonators

in any given state; we are just doing spectroscopy. Our device is set up to do “hanger”

style measurements through a common feedline; refer to Ref [82] for the details of measuring

resonators in transmission, reflection, or with a hanger.

Sanity check before starting continuous wave (CW) spectroscopy: Attach the

signal source and signal readout to the fridge (we often use a VNA, or vector network

analyzer), and do a large sweep in frequency at a power low enough to not fry any amplifiers.
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Figure 4.2: Resonator-Purcell Scan The resonator is the narrow feature on the left, the
Purcell filter is the broad feature on the right.

Is the background you see what you expect if you add up all your attenuators and all your

amplifiers? This is a great check to make sure you are attached to the right lines going

to your sample, and that all the amplifiers (which are actice microwave components) are

supplied with power. Here you can also check on circulators (for example, if the circulators

only work from 4 − 8 GHz, there should be a drop off in signal outside of that range) and

filters, see Sec. E for the configuration used in our experiments.

4.3.1 Roll Call: Are Resonators and Qubits Present

Goal: Determine locations of resonators and Purcell filters in frequency by doing continuous

wave single tone spectroscopy, and check if qubits are alive through “punch out” power sweeps

on the resonators.

Step 1: Check if the resonators are visible. We first do a broad frequency sweep to

identify the Purcell-resonator pairs. In the device used here, the Purcell and readout filters

are slightly off resonance from each other due to fabrication defects, and so instead of being

hybridized are separated into distinct high-Q resonator features and broad Purcell features.

If we can see all of the pairs at approximately the expected frequencies, success! Nothing

terrible has happened yet. Since resonator-Purcell pairs are coupled to flux-tunable qubits,
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Figure 4.3: Resonator Frequency Scan

their dressed frequencies will depend on the qubit frequency – the resonator frequencies will

move as the qubits are tuned. Because there is some random amount of flux frozen into

the qubit SQUID loops during the cooldown, at zero external bias the qubits and thus the

resonators will be randomly distributed somewhere within their frequency tuning range. You

can calculate from expected qubit couplings and tuning range what the expected resonator

frequency range should be, and see if what you measure is within that range.

Step 2: Check if the qubits are alive (the nonlinear Josephon junction is functioning)

through resonator power sweeps. When the resonator is probed at low power, we see the

dressed cavity-qubit mode frequency. When probed at higher power, the qubit nonlinearity

is overwhelmed (see Ref. [78] for details) and the cavity snaps to its bare (i.e. uncoupled)

frequency. Therefore, by varying the power of the resonator and seeing if the resonance

frequency changes or not, we can check if there is a functional qubit coupled to the resonator.

Check all the qubits! Power sweeps like this are also helpful to determine where the end of

the low-power range for that resonator lies, as this is often the best place to probe without

heating the qubit. Anywhere where the resonator shape starts to shift can be dangerous.

The resonator shift gives an approximate measurement of the dispersive shift χ = g2/∆,

with g the resonator-qubit coupling, and δ qubit-readout detuning [80]. To watch out for: if

your material has kinetic inductance, at high enough power your resonator will start shifting
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Figure 4.4: Resonator Power Scan At high drive powers, the resonator center frequency
snaps to its bare frequency.

in frequency regardless if its attached to a qubit or not. Consider ahead of time if this might

be an issue in your sample (often happens if metal layer very thin, ≪ 100nm). Also to

watch out for: resonators are indirectly coupled to nearby qubits; even if the main qubit it is

coupled to is dead, it may shift a small amount from the nearby qubits’ nonlinearity. Check

to see if the χ-shift (scale of the punchout) makes sense.

Debugging tip: strange resonator features. If your resonator appears to have multiple

peaks spaced apart by expected χ shift, it may be that your qubit is hot and number-splitting

the resonator [78]; your qubit is in a superposition of a few different states, so your resonator

is in a superposition of a few different resonant frequencies.

4.3.2 Qubit Spectroscopy

Goal: Identify qubits in spectroscopy, get a general estimate of appropriate power and

averaging necessary to see each qubit.

Step 1: Find the qubits! Now that the readout resonators are identified and we have
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confirmed that each is attached to an alive qubit, it is time to try to actually find the qubit

in frequency. To search for the qubits, we perform a two-tone measurement: one continuous

tone is applied at the resonator center frequency, a second tone is swept around the expected

qubit frequency, and we monitor the amplitude or phase of the return signal at the resonator

center frequency. Because the qubit and resonator are coupled, when the qubit gets excited,

the resonator peak frequency will shift, causing the signal at the original frequency to change

in amplitude or phase (see Refs. [60, 61, 78] for an in-depth discussion of dispersive readout).

Because the qubits are flux tunable, they could be anywhere in frequency! For each resonator-

qubit pair, do a large sweep of the qubit tone at varying powers to try to find the qubit peak.

In this sample, it is possible that the qubits might be in some confusing configuration: if two

neighbors happen to be near to each other, they will hybridize and show up as two peaks in

spectroscopy. If a qubit is too close or too far from the readout resonator, it will similarly

be difficult to see. We know the qubits are alive from punch-out measurements. If it is not

possible to find qubits where they are now we can do qubit frequency vs. flux scans and try

again at a better flux point later. Write down necessary drive power and number of averages

needed to get a good signal for the qubits you can see.

Step 2: For the qubits you do find, features to look for: at high probe powers, a

second peak should appear, the ω02/2 transitions (if you drive at half the frequency of ω02,

you will excited a two-photon process where your qubit will oscillate between |0⟩ and |2⟩

without populating the |1⟩ state). The distance between the ω01 and ω02 should be half

the anharmonicity. If a third peak appears further out from the main peak by exactly the

anharmonicity, that could be the ω12; this is a sign the qubit is hot, and already has some

population in the |1⟩ state. If your qubit is split into several peaks separated by χ, this can

mean there are several photons in your resonator that are number-splitting your qubit (i.e.

you are driving the resonator such that there are multiple photons in it, or your resonator

is hot).
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Figure 4.5: Fitting Resonator and Qubit Peaks vs Solenoid Current to a Jaynes-
Cummings model

4.3.3 DC Flux Tuning

Goal: Check that qubits can be tuned in frequency. Fit tuning vs. flux curves for qubits

and resonators. Use global solenoid magnet to bias the qubits as close as possible to desired

static qubit configuration (detuned stagger configuration).

Remeber from Sec. 3.3 that the qubit frequency vs. applied magnetic flux through the

SQUID loop is:

ω(Φ) =
√

8EJ (Φ)Ec − Ec with

EJ (Φ) = (EJ1 + EJ2)× cos(πΦ/Φ0)
√

1 + d2tan2(πΦ/Φ0)

where EJ1 and EJ2 are the respective Josephson energies of the two junctions in the SQUID

loop, Φ is the external magnetic flux through the loop, Φ0 is the superconducting flux

quantum, and d = EJ1+EJ2
EJ1−EJ2

. Roughly, the qubit tuning is sinusoidal in magnetic flux.

Because the qubits and resonators are coupled, if the qubits tune in frequency, we should

be able to see the resonators moving around too. Resonators are easier to see, so let’s start

by tracking them.

Step 1: We have a solenoid attached to our sample package that allows us to simulta-

neously put magnetic flux through all the qubits’ SQUID loops (Sec. E). First, change the

current through the solenoid (and thus the magnetic flux through the qubits’ SQUID loops)
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and measure how the resonators move in frequency. The shape should be periodic. Identify

the current Iϕ needed to tune each resonator by a full period in frequency for each qubit,

which corresponds to putting one magnetic flux quantum through the SQUID loop. Iϕ will

be slightly different for each resonator, as the solenoid field is not spatially uniform across

the on-chip area spanned by the qubits. Also mark the minimum and maximum resonator

frequencies (this flux point corresponds to the qubit max. and min. frequencies, known as

the “sweet spot” since at the max./min. points the first derivative of the frequency with

respect to flux is zero, so to first order the qubits are not sensitive to flux noise and have

high coherence times). To watch out for: the qubit will tune over a much greater range than

the resonator (the resonator only tunes because it is weakly hybridized with a qubit), so as

the magnetic flux is swept the relative qubit-resonator detuning changes – you may have to

adjust power accordingly. If none of the resonators move, either all the qubits have a broken

SQUID loop, or something is wrong with the global magnet. If some of the resonators move

and some do not, the ones that do not move probably have broken SQUID loops.

Step 2: Tune the resonators in frequency with the individual qubit flux lines. Here, we

pass magnetic flux through each qubit’s SQUID loop by applying DC current through each

qubit’s dedicated on-chip line (Sec. 3.3). We use a DC voltage source with a large resistor

in front to source the current(Sec. E). For each flux line, track the resonator as a function of

voltage applied at room temperature, and measure VΦ, the voltage necessary to tune a full

period/apply a magnetic flux quantum through the SQUID loop.

Step 3: Repeat the above two steps, but with two-tone measurements, tracking the

qubit frequency! These measurements take longer, but from the steps done so far you should

already know what current tuning range is reasonable to see a full period, the appropri-

ate power and average number settings for each resonator, and approximately the right

power/averaging settings for each qubit from the initial two-tone characterization. Because

as a qubit moves around it will sometimes hit neighbors in frequency, some flux points will
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have to be thrown out. If you already know the approximate expected tuning range of your

qubits from room temperature characterization of the EJ ’s of the SQUID loop (see Sec. D),

from the resonator sweeps you can usually make a pretty good guess as to where the qubit

will be at a given tuning current, and thus search for the qubit peak over a narrower range

of frequencies (faster experiment!).

Step 4: Fit the resonator and qubit frequency vs. applied current data using analytic

expressions from the Jaynes-Cummmings Hamiltonian + flux tunable qubit energy spectrum;

once we measure and correct for crosstalk between flux tuning lines, these flux vs. frequency

curves will allow us to determine what flux to apply to place the qubits in any desired

frequency configuration. The fitting process enables us to extract estimated resonator-qubit

coupling g, EJ1 and EJ2, VΦ, and ϕ offset flux.

Fit parameters: bare qubit ωmax and ωmin, bare resonator resonance ωres, qubit-resonator

coupling g, qubit anharmonicity Ec, voltage to tune a full period VΦ, flux offset ϕ in units

of voltage ϕV = ϕ× VΦ/Φ0 (because voltage is proportional to current, and current is pro-

portional to magnetic flux though the SQUID loop, we can relate flux to voltage using the

constant VΦ/Φ0).

Fit steps:

• From fit input parameters, calculate Emax
J = (ωmax+Ec)

2/8Ec and d = (ωmin/ωmax)
2.

• Calculate the bare qubit eigenenergies as a function of flux. In our current analysis

code, we diagonalize the transmon Hamiltonian in the charge basis. The reader could

also just solve for the qubit ω01 transition as a function of flux.

• Calculate the dressed ω01(V ) energies for the resonator and qubit – this is what we

are fitting to the data. Our code calculates these dressed frequencies by numerically

diagonalizing the Jaynes-Cummings Hamiltonian:

HJC(V ) = ωra
†
rar + ωq(V )a

†
qaq + g(a

†
r + ar)(a

†
q + aq)
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Figure 4.6: DC Crosstalk Matrix

Interpolate the fit to generate ω(V ) (and ω(Φ) since V = Φ× VΦ/Φ0).

Step 5: Passing constant DC current through the global magnet to set the constant

frequency bias of the qubits does not heat the fridge as current is carried on a superconducting

NbTi wire. Sending constant DC current through the individual flux lines can heat the

fridge (we suspect the bias-tees, which have a large non-superconducting solenoid Sec. E).

To minimize the amount of DC tuning from the flux line needed to hit the desired static

qubit configuration, interpolate the flux vs. frequency curves for the global magnet, and

determine what magnet current you need to get all the qubits as close as possible to the

desired static qubit configuration. Go to that point, and confirm qubit locations.

4.3.4 DC Flux Crosstalk Matrix

Goal: Measure crosstalk matrix between flux lines and qubits, invert it to cancel crosstalk.

In an ideal world, each flux line would only be coupled to its respective qubit. Tragically,

there is often some cross coupling between a flux line and other nearby qubits, where run-
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ning current through a flux line applies magnetic flux through both its intended loop and

neighboring loops. Since we can take mutual inductance relations here to be linear, if we

want to cancel the crosstalk, there should be a linear matrix that tells us what currents we

should apply to each line. We now proceed to measure the matrix!

For a single qubit i, the relation between flux and applied current is Φi = MiiIi, where

Φi is the flux, Mii is the mutual inductance between the current line and the qubit SQUID

loop, and Ii is the current applied. Crosstalk is captured by terms like Φi = MijIj , when

current on the j flux line puts flux into qubit i’s SQUID loop. To enact a particular Φ vector,

i.e. desired quantity of flux in each loop, we invert the matrix to calculate how much current

to apply on each line,
−→
I = M−1−→Φ . While we cannot directly measure the flux ϕ through

a qubit’s SQUID loop, we can measure the qubit’s frequency ω(Φ) as a function of applied

voltage at room temperature (which is proportional to applied current at the sample). In

section 4.3.3, we measured ω(V ). From measuring the period, we know the voltage it takes

to tune a full period, i.e. Φ0/VΦ.

We also cannot directly measure crosstalk elements, but we can measure δωi/δVj by

measuring local frequency response of a qubit to small changes in another qubit’s flux at a

fixed point in frequency ωa. So,

Mij = Φi/Vj =
δΦi

δωi

∣∣∣∣
ωa

δωi
δVj

∣∣∣∣
ωa

=
Φ0

VΦ

δVi
δωi

∣∣∣∣
ωa

δωi
δVj

∣∣∣∣
ωa

(4.1)

We can choose whatever ωa we want for this calculation; when measuring slope, it is

easiest to do it in linear part of the ω(V ) curve, and find a point where there are no other

qubits/avoided crossings nearby.

To then place qubits at a particular frequency vector, we first convert that frequency

vector to a flux vector
−→
ϕ (−→ω ) and then apply the crosstalk matrix

−→
V = M−1−→ϕ .

Calculating DC crosstalk in this way is limited by how well we measure ω(V ) relations

and the matrix. To correct for errors, assume all errors can be mapped to phase offsets to
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the Φ(ω) relations. The correction procedure is as follows:

• Define ωintended as intended frequency, and ωmeasured as measured frequency after

applying the flux tuning functions and DC crosstalk matrix.

• We previously determined ω(Φ), which can be inverted to get Φ(ω). Define ∆Φ =

Φ(ωintended)− Φ(ωmeasured).

• Calculate Φ(ω)corrected = Φ(ω) + ∆Φ, and use this as relation going forward.

• With new Φ(ω)corrected and crosstalk matrix, calculate new
−→
V

We were usually able to place qubits within 10−50 MHz on a first try, and within 100s of

kHz after 1− 2 rounds of correction. A more precise way to correct the matrix and relations

can be accomplished by using machine learning, see for example Ref. [83].

4.3.5 Resonator and Purcell Filter Parameters

Goal: After placing the qubits in the desired static frequency-detuned stagger configuration,

extract Purcell-resonator linewidths.

Take a high resolution scan of each resonator and Purcell filter pair now that we know

qubits are far detuned, and fit to linewdiths, resonator-Purcell coupling & detuning. See

Refs. [79, 84] for fit function details.

4.4 Time-domain Measurement - Technical Points

So far, we have discussed measurements that involve sending and receiving continuous mi-

crowave tones. In this section, we are interested in doing characterization that involves

preparing the qubit in a specific state and observing its properties under time evolution. We

thus want to use discrete time pulses (time domain measurements, vs spectroscopy measure-

ments).
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4.4.1 Pulsed Signal Generation

Let us start with a few quick experimental notes of things to keep in mind when generating

time domain pulses. We want to control the frequencies of our pulses, their amplitude/power,

their phases, and their envelope shapes. We would also like to be able to read out the

amplitude and phase of pulses returning from interacting with our sample.

Ideally, we would just specify our waveform digitally in code as an array of voltage points,

and play that on our signal generation device. AWGs (arbitrary waveform generators) come

close to this: they accept uploaded arrays of voltage values, and can play them back at some

sampling rate, interpolating between digital points; they are digital to analog converters

(DACs). However, all AWGs have some finite sampling rate of points (for example, an AWG

might have a rate of 1 Gigasample per second 1GS/s, a sampling rate of 1 GHz). With a finite

sampling rate, we cannot generate any signals with frequency components greater than, at

minimum, 1/(2×sampling rate); to consistently generate clean signal, 1/(4×sampling rate)

is safer [85].

Exercise 4.1: With a 500MS/s AWG (i.e. an AWG that can output 500 million

samples in one second), what is the highest frequency you can reliably generate? What

happens to the amplitude and frequency of the resulting (interpolated analog) signal

as you go above and below that limit? Sweep signal phase and note effects.

The AWGs used in our experiment have a sampling rate of 1GS/s (see Sec E), too slow

to directly generate tones at the frequencies of our qubits (3 − 6GHz in this experiment)

and resonators (6− 7GHz in this experiment). To get around this issue, we use an IQ mixer

to mix our AWG pulses with a constant high-frequency RF signal source which we call the

“local oscillator”, or LO. Thus, we can can have high-frequency pulses while maintaining

control of the lower-frequency pulse envelope and phase with the AWG. See Refs. [78, 80]

for details on IQ mixing.
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With mixers, there is always some leakage of LO signal through to the mixer output. We

usually place our LO slightly detuned from the qubit transition to avoid weakly driving qubits

even when the AWG is off, and then up-convert with the AWG when we play pulses. We

can also send several frequency components with the AWG simultaneously to drive multiple

qubits at once. The problem with up-converting is that the IQ mixer always generates

sidebands at higher multiples of the upconversion frequency (lower in power than the main

signal, but still present). So, when choosing the frequency of the LO, we aim to choose a

frequency where we can drive all the qubits within the bandwidth of the AWG, and also

choose qubit frequency placements relative to the LO such that sidebands are as far detuned

as possible from all potential transitions.

4.4.2 Downconversion for Readout

To read out the signal returning from the sample, ideally we would be able to convert the

analog waveform to digital for computer processing (using analog to digital converter, ADC,

or digitizer) with infinite sampling rate. Once again, the real world falls short; digitizers

also have finite sampling rates! Fortunately, we can do the inverse of the up-conversion

process; we can use mixers, the return signal, and another RF generator to downconvert the

signal frequency to something the digitizer can sample appropriately. If we use the same

RF generator to downconvert as was used to produce the signal, we call it “homodyne”

detection, using a different RF generator is known as “heterodyne” detection. In homodyne

detection, the signal is mixed down to DC (a higher frequency image is also generated that

can be filtered out), and amplitude and phase get mapped to the mixer I and Q channels as√
I2 +Q2 for magnitude and tan−1(I/Q) for phase. In heterodyne detection, the signal is

mixed down to the difference between the incoming tone and the reference tone.
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4.4.3 Pulse Shaping

To understand the effect of a time-domain pulse envelope, it is often instructive to look

at its Fourier transform, or frequency components. For example, we often want our pulses

to be as fast as possible (resulting in more physics before our particles decay). At first

glance, it is tempting to try to drive with the maximum possible power to quickly excite a

qubit or resonator: make a tall, very short square pulse. Looking in the frequency domain,

however, it becomes apparent that the shorter the pulse, the larger its frequency spread.

Square pulses, while providing the most amount of power over time compared to other shapes

(Gaussian, etc), also have broad frequency components because of their sharp features. Such

a square pulse works well if there are no other transitions nearby. However, for qubits, the

ω12 transition is close enough that driving with a short pulse can cause leakage to the |2⟩

state. One can solve this with specific pulse shaping (like DRAG pulses) if there is just one

transition to avoid. In our case where we have one drive line for all the qubits, we rely on

frequency separation to not drive qubits we do not want to drive. Thus, we use Gaussian

pulse shapes and take care that the frequency bandwidth of our pulses is less than the inter-

qubit spacing. The frequency domain version of a Gaussian pulse is also a Gaussian pulse,

with the sigmas given by: σtσf = 1/(2π).

Sanity check: If possible, always check your generated pulses in an oscilloscope both in

the time and frequency domain! A lot of errors can be caught this way. Similarly, a wise tip

from David Schuster: running the generated pulses directly to the ADC can be very helpful

for looking at shot-by-shot results and catching obtuse timing and triggering errors.

4.4.4 Lattice Configuration Revisited

As mentioned in Sec. 4.2, our static qubit configuration had nearest neighbors staggered

by 400 − 500 MHz. Since our AWG has a 1GS/s sampling rate, we cannot use just one

LO and AWG combo to hit all the qubits (with 1GS/s, we can upconvert or downconvert
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the LO frequency by at most ± 500MHz). Instead, we use two pulse generation setups,

one for the upper branch of qubits and one for the lower. We use the same LO frequency

for each qubit within a branch – the sidebands that the AWG has to generate are defined

by fAWG = fqb − fLO. To choose the ideal LO position, we run an optimizer to see

which sidebands are the safest/would not hit unwanted transitions if they were not properly

suppressed by the IQ mixer.

4.5 Qubit Control and Characterization

4.5.1 Readout Revisited

Goal: Make sure resonator is still visible when using pulsed setup, choose a starting pulse

length.

Though we have already done readout and qubit spectroscopy using the network analyzer,

the first thing to do upon switching to the pulsed measurement setup is to repeat these

experiments! This is a helpful sanity check to make sure all measurement components are

working well now that we have switched setups, and is good for calibrating powers and

averaging time.

The resonator measurement is much the same as when measuring using the network

analyzer – sweep readout tone in frequency and fit the result to a Lorentzian to find the

peak, sweep in power to find the low vs. high power limit using the pulsed setup. If you

know the output power of your pulsed setup, you should be able to predict when then low vs.

high power limit occurs from the network analyzer data. The data from the digitizer will be

in the form of I and Q values (see Refs. [78, 80] for details); take
√
I2 +Q2 for magnitude

and tan−1(I/Q) for phase.

Since our readout pulse is now finite in time, we also have to think about how long to

make the readout pulse. This pulse time is chosen by taking into account several different
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factors. Our goal is to check if the resonator has been shifted by the qubit being in the |e⟩

state or not with high fidelity. Running the pulse for longer gives us more signal to average

over for a particular shot. With a quantum-limited amplifier, averaging time for high fidelity

readout is often in the 100s of ns; with just amplifiers at the 4K fridge stage the amount of

signal averaged for a shot is closer to 1µs. (This is the case in our experiment, and why we

do not worry about arbitrary control over readout waveform shape – the pulse is narrowband

enough that we do not worry about hitting other transitions). Why not just drive the pulse

for an arbitrarily long amount of time to get good single-shot averaging? The problem is the

qubit lifetime: the longer one reads out, the exponentially more likely it is that the qubit

will relax back to the ground state – running the readout pulse for longer only gets you so

far.

After choosing a starting pulse length, see how many averages are needed to get a low-

noise readout peak – this will tell you approximately how much you need to average for all

the rest of the experiments, because all of our qubit measurements are based on resonator

|g⟩− |e⟩ voltage contrast. You can try different readout pulse lengths to see how that affects

the noise in your readout signal, though we will also be doing a more quantitative calibration

later in Sec. 4.6.

4.5.2 Qubit Pulse Probe Spectroscopy

Goal: Make sure qubit is still visible when using pulsed setup. Measure un-Stark-shifted

frequency.

Now time for qubit spectroscopy! The principle is the same as for using the network

analyzer, with a few extra factors to take into consideration given finite-time pulses.

For example: when doing two tone using the network analyzer, the resonator tone and the

qubit tone are both on at the same time. This is not how we want to operate when preparing

specific qubit states: the resonator tone dephases the qubit, and can only be applied at the
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Figure 4.7: Qubit Spectroscopy with Pulsed Measurement Qubit peak center is
marked with dashed line.

end of an experiment for readout. With both drives on at the same time, photons in the

resonator can also number-split the qubit, and the resonator drive can AC Stark shift the

qubit frequency. To that end, in pulsed spectroscopy we apply the qubit pulse first, then the

readout pulse (hence, pulse then probe name of the measurement).

We probe the qubit with a long (narrow in frequency) low-power pulse, and hope to see

a Lorentzian peak to which we can calculate a fit. A peak will show up in I and in Q. At a

given readout power and frequency, you can digitally rotate the quadratures into each other

to get all the signal in one quadrature going forward.

Things that can go wrong, and how to debug:

Seeing several peaks When a qubit is driven on resonance, its state flops between |0⟩

and |1⟩ until it dephases and settles at an average population of 0.5. If it is driven partially

off resonance, it will also flop, at faster frequency and without ever fully reaching the |1⟩

state. So, if you drive for shorter than the dephasing time and scan frequency, you can end

up with some very strange looking spectroscopy! If you see strange features and are confused,
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it can be helpful to do a Rabi chevron experiment, where you scan over both frequency and

pulse length to understand what is going on. This is why we start by driving at low power

and for long times, to attempt to only get one feature. You can also go directly to Rabi

chevron, but these scans take a bit longer since you are doing a 2D sweep.

Seeing several peaks even when driving longer than the dephasing time There

are several possibilities here, a few of which could be:

(1) The resonator is hot/has several photons in it, you are seing your qubit being number-

split by the resonator (the same way the resonator has a different center frequency depending

on the state of the qubit, the qubit’s frequency also depends on the number of photons in

the resonator).

(2) You are coupled to some mystery transition, often termed “TLS” or “two-level system.”

These lossy elements can be dangling bonds, flux vortices, or any number of other lossy

defects. Most often they just kill a qubit’s lifetime at a given point in frequency, but if

the coupling is strong they can also split the qubit peak. If this happens, try tuning that

particular qubit to another point in flux and try again.

(3) The mystery peak might be another qubit. Ideally, you have placed the qubits in a

staggered configuration as specified in Sec. 4.2 so that no neighbors are close to each other,

but maybe you made a mistake! If you see a peak at a frequency that does make sense for

another qubit to be at (∼ 50 MHz away from the qubit you are characterizing), that just

means that the readout resonator of the qubit you are characterizing is also sensitive to that

other qubit’s state (which should not happen but sometimes does, see Sec. 4.6.3).

What determines width of peak When driving the qubit with a finite pulse, several

factors will determine the width of the peak: the qubit’s inherent dephasing time, the fre-

quency components of the drive pulse (a pulse broad in frequency will create a broad peak

response), and drive strength (power-broadening). If your peak is real, it can be interesting

to drive with a very long pulse (i.e. narrowband) with lower and lower powers to see the
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qubit shrink to its natural linewidth as the peak fades into the noise background.

Don’t see anything, even though within ∼ 50MHz of value predicted from

network analyzer Sanity checks:

• Do the raw IQ values make sense given what you would expect from resonator spec-

troscopy (does the background of the qubit scan match the resonator voltage expected

from the unshifted resonator peak?)?

• Overlap the qubit and the readout pulse, in case the issue is that the qubit lifetime is

so bad it is decaying before you can average enough on the readout.

• Check if the frequency spacing you are scanning over is dense enough; if the qubit peak

is 1 MHz and you are only taking points every 2 MHz, you might just be missing the

qubit peak.

If you are feeling ambitious, you can redo the qubit frequency vs. flux fitting and DC

crosstalk matrix using pulsed spectroscopy. It will be more accurate, since there are no

Stark shifts! We usually measure tuning features with the network analyzer first rather than

pulsed measurements since to ensure nice peaks the qubit pulses need to be longer than the

dephasing time, and without knowing exactly the transmon frequency vs. flux curves one

needs to scan over on the order of 100MHz in frequency; the Keysight PXI system we use

does not have the memory to do an appropriately frequency resolved scan of that bandwidth

with long pulses in one run.

4.5.3 Rabi and Pi-Pulse Calibration

Goal: Calibrate qubit π-pulse

Having verified where the qubit is in frequency, we now want to calibrate a π-pulse that

will bring the qubit from |0⟩ to |1⟩. The Rabi pulse sequence is as follows: pulse the qubit on

resonance while varying pulse time or pulse power, and fit the resulting decaying sine wave.
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Figure 4.8: Qubit Rabi π time marked with vertical dashed line

The π-pulse time/power can be extracted from that sine fit! Sweeping in time first is usually

easier to get the expected oscillation (more range to make longer pulses than to vary pulse

power in our experiment setup), but varying pulse power while keeping time fixed ensures

your pulse always has the same bandwidth.

To avoid hitting nearby qubits in frequency, we usually use Gaussian pulses and adjust

power until our π-pulses can be done with σ ∼ 30ns for a pulse with a 4σ cutoff). We usually

take our π/2-pulse to be half the power of our π-pulse (we do not want to take it as half the

time for fear of changing the bandwdith). To more carefully calibrate these pulses, one can

use randomized benchmarking [60].

4.5.4 T1

Goal: Measure qubit lifetime.

The next step on our pulse journey is to measure the qubit lifetime. For each qubit, we

π-pulse it, wait a variable time t, and then perform readout. Then, we fit the corresponding
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Figure 4.9: Qubit T1

exponential decay curve to extract the qubit lifetime T1.

If you see multiple decay rates, maybe you have partially excited the qubit’s higher states

and are seeing them decay too.

We found our qubits’ lifetimes changed both over the course of minutes for some qubits,

and more drastically over the course of days for all qubits. We usually ran a T1 calibration

scan on repeat for 5−10 minutes to measure average and variation. Moving to alternate qubit

configurations sometimes helped get away from especially low lifetime or high fluctuation

spots.

4.5.5 T2 Ramsey

Goal: Measure qubit dephasing time.

Next, we perform a Ramsey measurement to quantify both the qubit’s dephasing time

and to measure its frequency more precisely.

In this pulse sequence, we first perform a π/2-pulse, wait a variable amount of time t,
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Figure 4.10: Qubit Ramsey measurement

and then apply a second π/2-pulse. Since our drive tone is rotating at the qubit frequency,

the drive tracks the qubit’s rotation; without any dephasing, both pulses are performed

with the same phase relative to the qubit phase. If the qubit does have some frequency

jitter/dephasing, it will correspondingly have some frequency jitter with respect to the drive,

and the second pulse will no longer be applied with the right phase; on average, this causes

an exponential decay in the signal. The decay is both from pure dephsaing and from particle

loss, with the exponent given as:
1

T ∗
2
=

1

2T1
+

1

Tϕ
(4.2)

.

Consider that if we detune our drive on purpose (or add a time-dependent phase shift

to the second π/2-pulse), the second pulse will be applied in a rotating phase along the

Bloch sphere, with the corresponding trace oscillating at the difference δ between the qubit

frequency and the drive. This is useful for precise measurements of the qubit frequency:

adding in a virtual drive offset means you can have your oscillations be for example at
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5MHz±δ (with a time trace of 1µs you already have 5 periods) rather than just at δ which

might be in kHz and difficult to measure without waiting very long time ranges t.

Flux-tunable qubit coherence is generally limited by noise coming through the flux line,

which directly jitters the qubit around. To measure the noise in flux quanta, normalize by

the frequency vs. flux slope at your current qubit’s parked location.

4.5.6 Echo

Goal: Measure dephasing noise spectrum.

To learn more about the noise spectrum of the qubit dephasing noise, one can apply

one (or several) refocusing π-pulses before the second π/2-pulse. Consider: if my qubit had

drifted slightly off resonance, it would accumulate some phase difference from the drive in the

first sequence, but after being reflected by a π-pulse would refocus completely. By varying

the number and frequency of refocusing π pulses one can learn about the noise spectrum.

4.5.7 Characterizing Qubit ef Transition

Goal: Calibrate ef transition controls.

Finally, we can repeat all these experiments (resonator optimization, qubit transition

spectroscopy, π and π/2 calibration, T1 and T ∗
2 measurement) with the qubit |1⟩ to |2⟩, or ef

transition! We usually start all these calibrations by first π-pulsing the qubit to get it into

the |1⟩ state, and then proceed as detailed above.

A few things to be wary of: we are trying to cover both a qubits’ ge and ef transition with

the same AWG, but the frequency difference of these two transitions is close to 250MHz, at

the limit of what we can do with our AWG sampling rate, especially if the ge transition is

already detuned from the LO by up to 200MHz to try to hit all qubits in a given branch!

Sometimes we used our two setups, one to do the ge pulse and one to do the ef pulse;

sometimes we set a special AWG point just to characterize ef; do as you will.
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The other thing to be careful of: readout is currently parked at the peak of the resonator

position when qubit is in |0⟩. Depending on the resonator shift, it might be difficult to

distinguish resonator shift from the qubit being in the |1⟩ vs |2⟩ state. One option is to

choose a resonator frequency to instead be centered on the resonator position when it is in

the |1⟩ state.

4.6 Readout Optimization

4.6.1 Binning and Confusion Matrix

Goal: Bin readout shots into 0 or 1, calibrate and apply a confusion matrix to correct for

binning errors.

Speaking of readout, let’s revisit our good friend the resonator!

Up until now, in each experiment shot we have been taking the average downmixed DC

voltage of the return readout pulse, and then taking many shots to average out noise and

obtain good measurement statistics. With this method, we cannot tell exactly what the

distribution of |0⟩ and |1⟩ states are for a given averaged measurement. We can do better!

We can bin each shot as either |0⟩ or |1⟩, and then average over the binned shots instead.

For each shot, we average the readout voltage for 1−5µs, and then based on the averaged

voltage value bin that shot as either the transmon |0⟩, |1⟩, or |2⟩ state. We choose two

different readout frequencies, ωread01 and ωread12. At ωread01 the distinguishability of |0⟩

from |1⟩/|2⟩ is maximized, while the distinguishability of |1⟩/|2⟩ is minimized. Similarly, at

ωread12 the distinguishability of |2⟩ from |0⟩/|1⟩ is maximized, while the distinguishability of

|0⟩/|1⟩ is minimized. With these optimized readout points, we measure a single shot fidelity

for binning |0⟩ and |1⟩ at ωread01 of 85%− 95%.

With 85%− 95% fidelity, binning errors are non-negligible. To correct for this, we use a

confusion matrix measured at the end of each experiment. To measure the confusion matrix,
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we apply a readout pulse (qubit should be in |0⟩) and measure |0⟩ and |1⟩ counts. Then, we

apply a π-pulse (qubit should be in |1⟩) and measure the number of |0⟩ counts and |1⟩ counts.

From these measurements, we can construct a 2× 2 confusion matrix. Inverting this matrix

and applying it to our data corrects for binning errors. It also corrects for both average

rates of population loss and thermal excitations during readout. For simultaneous two-qubit

measurements, we measure and calibrate using a two-qubit (4× 4) confusion matrix.

4.6.2 Readout Histogram

Goal: Calibrate binning procedure, optimize readout fidelity.

To calibrate state binning, we perform a histogram experiment: we do a large number of

shots of preparing the qubit in the |0⟩ and |1⟩ states, and check the corresponding voltage

distributions. From here, we fit two Gaussians (we use a machine learning algorithm to

figure out what the underlying two Gaussians are for the entire distribution). To bin, we

draw a line between the center of the Gaussian distributions corresponding to each state; to

the right of the line the qubit state is binned as 1, to the left it is binned at 0. Singleshot

fidelity (with how much confidence can you determine the qubit state in a single shot) is

calculated by the overlap of the two Gaussians.

Histograms are a fast experiment, and a nice way to optimize readout fidelity: one can

sweep readout power, frequency, and pulse length and measure the corresponding fidelity for

each quit. This is a useful debugging tool: it can track heating (when you prepare g, do you

have some Gaussian component in e in addition to usual Gaussian overlap?) and decay (the

opposite process).

4.6.3 Readout Crosstalk

Goal: Measure and correct crosstalk between readout resonators.

Readout crosstalk occurs when a readout resonator is sensitive to a qubit other than the
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Figure 4.11: Qubit Histogram

one to which it is directly coupled to, causing binning errors depending on the population

of that other qubit. The source of this type of crosstalk in our system is not completely

apparent to us. We measure that the crosstalk is worse the closer the qubits are together in

frequency, but even with the qubits at the large disordered stagger we were unable to find

a frequency configuration without at least some readout crosstalk. At the large disordered

stagger used for experiments, we measure negligible crosstalk between all elements except

for between Q1 and Q3 (see Fig. 4.12). We suspect this crosstalk is caused in part by a chip

package mode coupling the resonators.

When first characterizing crosstalk, it is illustrative to do resonator spectroscopy scans

as a function of which qubits are excited. For example, let us consider the case of two qubits

A and B. We would do spectroscopy on A’s resonator with:

• QA in |g⟩ QB in |g⟩

• QA in |e⟩ QB in |g⟩

• QA in |g⟩ QB in |e⟩

• QA in |e⟩ and QB in |e⟩
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Figure 4.12: Readout Crosstalk Measure of how sensitive readout resonator Rdi is to the
state of qubit Qj , normalized to the shift of resonator Rdi in response to the state of qubit
Qi.

• QB in |e⟩ and QA in |e⟩ (sometimes the order mattered for the observed crosstalk!)

and see how A’s resonator profile changes. This helps distinguish different between different

possible readout issues. If the problem is qubit drive crosstalk, for example, driving qubit

B will shift A’s resonator peak between its normal g and e center frequncies. If qubit B has

some parasitic coupling to resonator A, driving qubit B will shift resonator A between its

|g⟩ center frequency and a new center frequency determined by its χ shift to qubit B. In our

device, we noticed a further asymmetry: sometimes, resonator A would not shift if qubit B

was excited and A was in the ground state, but would shift to a new resonance frequency if

qubit A and B were excited.

After determining the shape of the problem (in our device, we convinced ourselves that

the problem was not qubit drive crosstalk, but some particle-number-dependent parasitic

coupling between non-paired resonators and qubits), we tried to find resonator settings that

minimized this crosstalk. We swept resonator power and the frequency, and measured qubit
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Figure 4.13: Qubit Histogram: Readout Crosstalk At a given readout power and
frequency, measuring Q4’s readout histogram as a function of the state of Q4 and another
qubit (here Q2). See that when Q2 is in e, the resonator voltage shifts (even though Q4 is
still in g).

histograms at each point for different combinations of qubit pulses, searching for the highest

fidelity/lowest crosstalk point.

We found that our crosstalk was significantly worse between neighboring qubits if the

lower qubit was anywhere near the upper qubit’s |f⟩ state.

4.7 Automated Program to Find Ideal Parameter Space

Goal: Check qubit parameters at a multitude of different frequency points to find ideal

configuration.

Once all qubits are characterized at one frequency configuration, we sweep the whole

qubit stagger around in frequency to test for nearby TLS or other low lifetime spots, and

ensure the entire range in which we operate boasts relatively high qubit lifetime. To calibrate

this, we have written automation code that steps through different frequency positions and
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Figure 4.14: Qubit Histogram Crosstalk Sweep Example crosstalk sweep, here given
for Q4. We sweep the readout frequency (x axis) and readout attenuation (i.e. power, on
y-axis). For each column i, we run different combinations of pulse sequences with Q4 and Qi,
plotting the maximum readout crosstalk at that power/frequency point. Percent crosstalk
is calculated as, for example, if Q4 is in g, and Qi is pulsed, and then new average voltage
gets binned as Q4 e 20% of the time, I call that 0.2% crosstalk. The far left plot is readout
fidelity for Q4.

characterizes qubits at each frequency position, leading to plots such as in Fig. 4.15.

The logic sequence of the automation code is as follows: Run resonator spectroscopy, run

pulse-probe spectroscopy to get new qubit frequency, run Rabi to get new qubit π-pulse, run

T1, run T2, run histogram to get a rough measure of readout fidelity. Shift the entire qubit

configuration by ∆ step specified by user using DC flux biasing, and then repeat!

The code sequence has a few error conditions it looks out for, namely looking for random

qubit frequency jumps or DC tuning not lining up with expected value (in which case it

attempts to correct the DC voltage value), bad fits (looks for unphysical parameters and

robustness of fit), consequences of extremely low qubit coherence (sometimes T1 can drop

so low it is impossible to see the qubit in spectroscopy, or properly fit a π-pulse; assuming

such areas are localized in frequency, the code then jumps to the next detuning step and

tries again).

This type of scan was run passively on several long scans in experiments described in

Chapters 5 and 6 to catch and correct for qubit drift in between experiments.
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Figure 4.15: T1 scan vs frequency

4.8 Fast Qubit Frequency Tuning

Now let’s add in flux tuning during an experiment! We do this with AWG voltage cards.

Important note throughout: whenever we make a flux pulse during an experiment, we also

do the opposite of that flux pulse at the end of the experiment after readout, to make sure

that there is net zero flux (to avoid long-term transients such as an inductor or capacitor

being charged up) [86].

4.8.1 RF Flux Crosstalk

Goal: Calculate crosstalk between qubit tuning lines at RF.

We calibrate the RF flux crosstalk the same way as for DC crosstalk, just using pulses

instead of continuous RF and DC tones. We calculate dV/dϕ first, then calculate the voltage

crosstalk matrix dωi/dVj , and use both measurements to place qubits in frequency deter-

ministically.
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Figure 4.16: RF crosstalk matrix

4.8.2 RF Qubit Tuning Pulse Shape Distortion Correction

Goal: Correct for distortion in qubit tuning pulses.

We would like to control the qubit frequencies with great precision using RF flux. How-

ever, the flux signal is distorted by low-pass filtering on the RF line (in our case, AWG

distortion is negligible). We use the same procedure as in [31] to measure the distortion

using qubit spectroscopy and correct for it. An example of a flux step pulse pre- and post-

correction is plotted in Fig. 4.17. For the corrected signal, the qubit frequency ω/2π settles

to within < 0.125% (0.5 MHz for a 400 MHz jump, which is the largest jump in our exper-

iments) in 400 ns. It is possible to do a better correction than this if one can readout and

control the qubit near the sweet spot, see Ref. [87].

4.8.3 Landau-Zener Transitions

Goal: Calculate order of magnitude of unwanted transitions.

Whenever we diabatically jump qubits past each other, there can be unwanted population
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Figure 4.17: Qubit Frequency Response to a Step Function in Flux With and
Without Kernel Correction

transfer from Landau-Zener (LZ) transitions when qubit levels cross each other. In this

experiment, the level crossings of concern are ω01Q with ω01NN , and ω01Q with ω12NN

where NN is the nearest neighbor of qubit Q. We measure the ω01Q with ω12NN transition

from the small disordered stagger to the large disordered stagger to be <5% for all qubits.

Since the jump from degeneracy to the large disordered stagger is bigger and thus the qubits

move past each other faster, we can assume that the LZ transition for that frequency jump

will also <5% for all qubits. We calculate that the ω01Q leftrightarrow ω01NN transition

probability will also be <5% for all qubits.

4.9 Bose-Hubbard Parameters

4.9.1 Tunneling

Goal: Measure Bose-Hubbard tunneling J .

We π-pulse one qubit, and bring both it and its neighbor on resonance at the frequency

which we use for Bose-Hubbard lattice physics. We then wait a variable amount of time, and

snap both qubits back to their detuned configuration (stagger) and measure the frequency

of particle exchange.

As a sanity check, one can also measure the avoided crossing between the two qubits in
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Figure 4.18: Measuring Bose-Hubbard J We measure the swap rate between neighboring
qubits at different detuning to be sure to choose the correct (lowest) swap rate.

spectroscopy.

4.9.2 Anharmonicity

Goal: Measure Bose-Hubbard interaction strength U .

To measure the anharmonicity of a qubit, we first π-pulseit to the |1⟩ state, use an

RF tuning pulse to quickly bring the qubit to the lattice frequency, and then perform ef

qubit spectroscopy (i.e. sweep the qubit drive frequency around the ω12 transition while

monitoring the readout at a frequency that is sensitive to the readout position when the

qubit is in |1⟩ vs |2⟩.

4.9.3 Multi-Qubit Preparation Fidelity in Detuned Configuration

Goal: Ensure high-fidelity state preparation at the detuned stagger configuration.

So far we have talked about single qubit calibrations. However, for our experiment

we want many particles! How well can we add in several particles, and readout particle

correlations?

To test how well we add in particles, π-pulse several different qubit collections, and then

readout them out in the population basis. Were upi able to drive into the correct state?
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Similarly, try to read out two qubits simultaneously – does having another readout drive

on affect ideal readout frequency/power settings of the first readout drive? We found we did

not have to adjust parameters when having two readout pulses on at the same time in the

current device.
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CHAPTER 5

DISORDER-ASSISTED ASSEMBLY OF STRONGLY

CORRELATED FLUIDS OF LIGHT

Guiding many-body systems to desired states is a central challenge of modern quantum

science, with applications from quantum computation [10, 11] to many-body physics [38] and

quantum-enhanced metrology [88]. Approaches to solving this problem include step-by-step

assembly [89, 90], reservoir engineering to irreversibly pump towards a target state [91, 92],

and adiabatic evolution from a known initial state [93, 94]. Here we construct low-entropy

quantum fluids of light in a Bose Hubbard circuit by combining particle-by-particle assembly

and adiabatic preparation. We inject individual photons into a disordered lattice where the

eigenstates are known & localized, then adiabatically remove this disorder, allowing quantum

fluctuations to melt the photons into a fluid. Using our platform [31], we first benchmark

this lattice melting technique by building and characterizing arbitrary single-particle-in-a-

box states, then assemble multi-particle strongly correlated fluids. Inter-site entanglement

measurements performed through single-site tomography indicate that the particles in the

fluid delocalize, while two-body density correlation measurements demonstrate that they also

avoid one another, revealing Friedel oscillations characteristic of a Tonks-Girardeau gas [67,

95]. This work opens new possibilities for preparation of topological and otherwise exotic

phases of synthetic matter [24, 38, 96]. This thesis chapter is adapted from [97].

5.1 Introduction

Synthetic materials, which are composed of interacting ions [46], atoms [41] or photons [22,

38], rather than interacting electrons as in solid state materials, offer a unique window into

the equilibrium and dynamical properties of many-body quantum systems. Near-equilibrium,

minimal realizations of superconductors [98], Mott insulators [43], and topological bands [24,
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25] have elucidated the essential physics of these materials. Lattice-site [99] and time [100]

resolved probes have exposed previously inaccessible quantities like entanglement [101] to

direct observation.

Recently, synthetic matter efforts have begun to explore explicitly out-of-equilibrium

phenomena including time crystallinity [26, 27], many-body localization [2, 15], quantum

scarring [28], and bad-metal transport [102], with prospects to explore phenomena includ-

ing light-induced superconductivity [103] and measurement-induced phase transitions [29].

These experiments are particularly impactful for benchmarking computational tools, as late-

time dynamics of moderately sized quantum systems are already beyond the capabilities of

state-of-the-art numerics [104].

Often neglected is the fact that preparing equilibrium states is itself an intrinsically

non-equilibrium process, because driving a quantum many-body system to a desired target

state requires dynamics. This challenge is typically overlooked in the solid state, where

thermalization of long-lived electrons with broadband thermal reservoirs allows for robust

entropy removal despite fundamentally inefficient thermalization. In synthetic materials,

limited particle lifetimes make it crucial to develop optimized state preparation schemes

that approach the fundamental quantum speed limits.

Efficient preparation of many-body states of ultracold atoms typically involves: (i) Laser

cooling, where scattered light removes entropy from individual atoms; (ii) Evaporative cool-

ing, where collisions dump entropy into consequently-lost atoms, producing a Bose-Einstein

condensate (BEC); and (iii) Adiabatic variation of the Hamiltonian, so that the weakly in-

teracting (BEC) ground state of the initial Hamiltonian evolves into the strongly interacting

ground state of the final Hamiltonian. This approach has been employed to produce, for

example, Mott insulating [43] and magnetically ordered [17, 105] synthetic matter.

Materials composed of microwave photons [38] offer the unique possibility of efficient

thermalization via coupling to arbitrarily-designed low-entropy reservoirs shaped through
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Figure 5.1: Individually addressed many-body states in the Bose-Hubbard circuit.
a,b. To prepare (near) arbitrary eigenstates of the disorder-free Hubbard lattice, we impose
strong (|δi| ≫ |J |) controlled disorder, ensuring that all eigenstates are products of localized
photons on individual sites. 1○ In this disordered configuration it is then straightforward
to excite an arbitrary eigenstate by injecting photons into individual lattice sites. 2○ If the
disorder is slowly removed (|δi| → 0), the adiabatic theorem ensures that the system always
remains in the same instantaneous many-body eigenstate, resulting in a highly entangled
many-body state of the disorder-free lattice. 3○ We characterize this many-body state via
site-resolved occupation and correlation measurements. This figure is adapted from [97].
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resonant filters [106]. This approach has been employed to stabilize Mott states of light [31],

with prospects for Devil’s staircase [107] and Laughlin-like [108] matter. Such reservoir engi-

neering works extremely well to stabilize incompressible matter; preparation of compressible

phases like superfluids [57] and certain quantum spin liquids [109] requires new approaches.

In this work we harness another strength of photonic materials platforms – particle-

resolved control, to explore a new class of state preparation schemes compatible with com-

pressible matter. Our approach marries the addressability of particle-by-particle injection

with the robustness of adiabatic evolution, enabling us to assemble arbitrary-density fluids

of strongly interacting microwave photons in our 1D Bose-Hubbard circuit [31]. We first lo-

calize all eigenstates by imposing disorder much stronger than the tunneling. We then inject

individual particles into localized lattice orbitals, populating a single- or many-body eigen-

state of our choosing. Finally we adiabatically remove the disorder, melting this localized

eigenstate into a strongly correlated fluid via tunneling-induced quantum fluctuations. To

characterize the fidelity of the preparation scheme, we introduce a reversible ramp protocol

that maps diabatic and decay-induced excitations of the fluid onto localized excitations in

the disordered lattice. We then characterize the fluid in two ways: (i) Two-body correlation

measurements, which reveal that the photons avoid one another in the fluid phase, with a

universal structure characteristic of a Tonks gas; and (ii) Inter-site entanglement measure-

ments, via the purity of single-site density matrices, which reveal that the photons delocalize

during the melt and relocalize when disorder is adiabatically re-introduced.

In what follows, we first introduce the Bose-Hubbard circuit platform and its capabilities.

We then describe the disorder-localized preparation scheme and test it by assembling arbi-

trary single-particle quasi-momentum states. We validate adiabaticity of the scheme via the

reversibility of the protocol, directly measuring entropy generation in the disordered lattice.

We then apply the preparation scheme to assemble few-particle states, characterizing them

using new tools which reveal that the particles simultaneously delocalize and anti-bunch,
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Figure 5.2: Bose-Hubbard circuit platform. The physical system, shown in a, consists
of a one-dimensional array of capacitively coupled transmon qubits patterned on a large-
area superconducting microwave circuit. This system behaves as a tight-binding lattice
for photons [31] with site-resolved readout performed via microwave resonators dispersively
coupled to each qubit, and real-time tuning of lattice disorder controlled by inductively
coupled flux bias lines. b. The physics of this 1D circuit is well characterized by the Bose-
Hubbard Hamiltonian describing the dynamics of interacting particles on a lattice. The
transmon qubits (highlighted in blue) realize the lattice sites in which the photonic particles
reside [53], with inter-site tunneling J arising from their capacitive coupling, and the on-site
interaction U stemming from their anharmonicity. The flux bias lines tune the transmon
energies to provide site-resolved control over lattice disorder δi. This figure is adapted
from [97].

hallmarks of a strongly interacting fluid of light.

5.2 The Bose-Hubbard circuit

Our experiments take place in the quantum circuit shown in Fig. 5.2a, whose physics is

captured by a one-dimensional Bose-Hubbard model for photons (illustrated in Fig. 5.2b):

HBH/ℏ = J
∑
⟨i,j⟩

a
†
iaj +

U

2

∑
i

ni (ni − 1) +
∑
i

(ω0 + δi)ni. (5.1)

The operator a
†
i (ai) creates (destroys) a microwave photon on site i, with the number

operator on site i given by ni = a
†
iai. J is the nearest-neighbour tunneling rate, U is the

on-site interaction energy, ω0 + δi is the energy to create the first photon in site i, and ℏ is

the reduced Planck constant.

78



The lattice sites in which the photons reside are realized as transmon qubits [38]. The

anharmonicity of the transmon provides the photon-photon interaction on that site. Capac-

itive coupling between adjacent transmons allows for nearest-neighbor tunneling, and flux

loops permit qubit-by-qubit tuning of the on-site energies. We operate with J/2π = 9 MHz,

U/2π = −230 MHz; note that we have fixed the (otherwise arbitrary) gauge of the Hamilto-

nian with a tunneling term whose sign is opposite convention to compensate for our U < 0

and ensure that the highest energy single-particle states have the lowest quasi-momenta.

Site frequencies are tunable in real time over (ω0+δi)/2π ∈ [4.1, 6.1] GHz (see Methods),

enabling introduction of disorder δi up to 2 GHz, much larger than the tunneling energy.

The photon lifetime in the lattice is T1 > 10µs, so |U | ≫ J ≫ 1/T1 providing ample time for

the photons to collide, organize, and become entangled prior to decaying (see SI C.1). Site-

resolved microscopy is achieved by capacitive coupling of each transmon to an off-resonant

coplanar waveguide resonator, enabling direct readout of each transmon’s occupation number

through the dispersive shift of the resonator (see Sec. 3.2). Because the system operates in the

hard-core limit |U | ≫ J , the many-body states prepared are expected to be lattice-analogs

of a Tonks-Girardeau gas of impenetrable bosons [64, 65].

5.3 Single-Particle Melting

Our protocol for preparing arbitrary eigenstates of a Hubbard lattice is highlighted in

Fig. 5.1a,b. We begin by introducing strong disorder (|δi| ≫ J) in the lattice by controllably

detuning the sites (see Sec 4.8). In this disordered configuration, tunneling is suppressed and

all eigenstates are products of localized photons on individual sites. Such states are easily

prepared by injecting photons into individual sites with calibrated microwave π-pulses. The

lattice sites are then tuned into resonance by reducing the disorder |δi| → 0 slowly enough to

maintain adiabaticity, allowing the system to remain in the same instantaneous eigenstate,

which melts the particles into a correlated fluid. We then characterize the prepared states
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Figure 5.3: Adiabatic assembly of single-particle eigenstates. The simplest demon-
stration of the preparation protocol is the construction of single-photon particle-in-a-box
states. In a, we plot the numerically-computed instantaneous eigenstate energies of a photon
in a lattice, as disorder is reduced to zero over time. We highlight the highest (second-highest)
energy eigenstates in blue (red). In the disordered lattice, the highest (second-highest) en-
ergy eigenstate is a particle localized to the single highest(second-highest) energy site, and as
disorder is decreased this state is adiabatically transformed into the particle-in-a-box state
with lowest (second-lowest) quasi-momentum. We demonstrate this process experimentally
in b by assembling these lowest two quasi-momentum states. The blue (red) plots show the
occupation of each of the lattice sites over time, as the disorder is adiabatically reduced to
zero; here a single photon initially occupying the highest (second-highest) energy site, Q5
(Q3) delocalizes into the corresponding quasi-momentum state q = π/L (q = 2π/L), shown
at the final time in the bottom panels. Error bars reflect the S.E.M. This figure is adapted
from [97].

by site-resolved probes of occupation, coherence, and correlation.

We begin by applying this preparation protocol to construction of single-photon particle-

in-a-box eigenstates. The dependence of these eigenstates upon disorder, and their corre-

sponding energies, are displayed pictorially in Fig. 5.3a. At maximum disorder (Fig. 5.3a,

left) each eigenstate is localized to a single site, while near zero disorder the eigenstates are

delocalized particle-in-a-box states (Fig. 5.3a, right). Adiabatic evolution ensures that the

system remains in the same instantaneous eigenstate, forming a unique connection between

the lattice site the photon occupies in the disordered configuration and the state into which

it delocalizes. In Fig. 5.3b we prepare the highest-energy localized states and measure the
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evolution of their densities as we adiabatically reduce the disorder to zero. The blue (red)

data show the dynamics of a single photon prepared in the highest (second-highest) energy

site, Q5 (Q3), as it delocalizes near degeneracy. The measured density profiles of the fi-

nal states are sinusoidal, with zero and one nodes, respectively, matching the probability

distributions for the q = π/L and q = 2π/L particle-in-a-box/quasi-momentum states.

Because photon loss renders our quantum system inherently open, we must balance the

need for slow evolution (set by the energy gaps) to satisfy adiabaticity with the need to

evolve faster than photon loss. We have developed a protocol to experimentally probe the

adiabaticity of the process and extract the optimum ramp rate, without needing to perform

tomography on a highly entangled state: We ramp the disorder down to zero and then back

up, exactly reversing the downward ramp. We then measure the fraction of the time that

the photon returns to its initial lattice site. Because all eigenstates are localized in the

final, disordered lattice, this is a direct measure of the overlap of the final state with the

initial state |⟨Ψfinal|Ψinit⟩|2. Performing this experiment versus total evolution time 2tramp,

provides a measure of adiabaticity.

This process is depicted in Fig. 5.4a for a single particle, where it is applied to the

preparation of the highest-energy quasi-momentum state as shown in Fig. 5.4b. For very

fast ramps tramp ≪ J−1, the photon remains in its initial site because it lacks the time

to tunnel even to its nearest neighbor. For intermediate ramp speeds tramp ∼ J−1, the

photon has time to delocalize but not to adiabatically follow, and thus undergoes diabatic

transitions to other quasi-momentum states as the disorder is reduced, leading to a decreased

population of the initial site. When the ramp is sufficiently slow tramp ≫ J−1 the photon

is able to delocalize, adiabatically follow the same eigenstate, and relocalize, resulting in

near-unity occupation in the initial site. We employ extensions of this technique to multiple

particles (see Extended Data Fig. SA.1) behind the scenes in order to optimize performance

throughout the remainder of this work. This approach is particularly powerful because it is

81



1 10 100 1000

tramp (ns)

0.0

0.5

1.0

P q
=

/L
=

|⟨
Ψ

fin
al
|Ψ

in
it
⟩|

2

tramp≪ 1/J tramp ~ 1/J tramp≫ 1/J

b

E

...

10010
Disorder δmin/J

Ψinit Ψfinal

Ψq= /L

a

Time

Figure 5.4: Adiabaticity Criterion. To characterize the time required for the adiabatic
sweep, we follow the protocol depicted in a: (i) A photon is prepared in a particular site in
the presence of disorder. (ii) The disorder is ramped down and back up over a variable time
2tramp. (iii) The final occupation of the initially prepared site |⟨Ψfinal|Ψinit⟩|2 is measured.
The result of this protocol for the highest energy state, shown in b (with dashed parameter-
free theory), demonstrates that extremely fast ramps tramp ≪ J−1 do not afford the photon
sufficient time to tunnel and thus the photon remains in its initial site. At intermediate ramp
speeds tramp ∼ J−1 the photon undergoes diabatic transitions to other eigenstates and thus
ends up in other lattice sites, reducing the occupation of its initial site. Only slow ramps
tramp ≫ J−1 allow the photon to adiabatically follow the initial eigenstate, delocalizing and
subsequently relocalizing to its initial site. It is these slowest ramps that we employ for state
preparation. Error bars reflect the S.E.M.; in b they are smaller than markers. This figure
is adapted from [97].
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agnostic to the details of the physical platform and target state.

5.4 Correlated Fluid Melting

When multiple photons simultaneously reside in our Hubbard circuit, interactions strongly

modify the behaviour of the system. At unit average occupancy (n̄ ≡ N/L = 1, where

N is the number of photons and L is the number of sites), the ground state is a Mott

insulator [31] because the photons cannot move without immediately hitting a neighbor, so

transport is fully impeded. Away from unit occupancy the ground state is a fluid: even if

U fully blocks photons passing through one another, they can still delocalize, move, and

exchange momentum with their neighbors.

Strongly interacting fluids are challenging to prepare by reservoir engineering techniques [106],

which rely on irreversible photon injection that halts when adding the next photon costs sub-

stantially more energy than prior photons. The delocalization of the photons in the fluid

makes it compressible: the energy required to inject additional photons changes smoothly

with density, changing abruptly only at the unit-filled Mott state.

Here we prepare a compressible, strongly correlated fluid of light away from unit filling

via a multi-particle variant of our disorder-assisted preparation scheme: we determine the

filling by the number of photons that we coherently inject, and eigenstate by the sites into

which we inject photons. In our L = 7 site lattice we inject up to N = 6 photons in order

to remain below unit filling. Since our interactions are attractive, U < 0, the ‘ground’ state

is actually the highest energy state for a given photon number; beyond this detail, the sign

of U does not impact the physics.

Fig. 5.5a depicts the many-body spectrum for various fluid photon numbers versus dis-

order. The spectrum splits first into bands of fixed photon number separated by ω0, and

then into bands of fixed numbers of overlapping particles separated by the interaction energy

U . Within each of these bands, the states are split by fractions of the tunneling energy J ,
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Figure 5.5: Adiabatic preparation of strongly correlated fluids of light: Energy
Spectra. The ground states of the Hubbard lattice below unit filling are compressible
fluids because motion of the particles is not fully blocked by collisions as it would be in
the unit-filled Mott state. This is reflected in the many-body spectrum in a, where in the
absence of disorder, there are bands of states (dark blue) of width ∼ J in which the photons
do not overlap with one another, rather than a single state, as would be the case for an
incompressible system. These states are spectroscopically isolated by the onsite interaction
U from all other states (light blue). In the incompressible Mott state there is a single gapped
(by U) ground state. In the particular case of three particles in the lattice shown in b, the
highest energy state, which is the fluid ‘ground’ state (because U, J < 0), exhibits the largest
energy gap to all other states, and can thus be prepared most quickly. This figure is adapted
from [97].
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reflecting phonon excitations of the fluid. Fig. 5.5b provides a detailed view of the spectrum

relevant for preparing a three-photon ground state. The preparation trajectory is high-

lighted, beginning in the disordered lattice with photons occupying the three highest-energy

sites, and ending in the ordered lattice with the photons delocalized and entangled.

We perform the disorder-assisted preparation for up to four photons, measuring, in

Fig. 5.6, average density profiles as the lattice is tuned from disordered to disorder-free

configurations (see Extended Data Fig. SA.2 for 5&6 photons). These data demonstrate

that during the melt the photons delocalize from their initial sites into all lattice sites, with

the melted density profiles in good agreement with the disorder-free numerics from exact

diagonalization.

Because we operate at large U/J , the physics is well-captured by the Tonks-Girardeau

model (see Sec. 2.3), whose ground state is of the Bijl-Jastrow form. This wavefunction

is written as the product of single- and two-particle components ΨB(x) = ϕ(x)φ(x), for

x = (x0, x1, . . . , x6) [66]. The single-particle component ϕ(x) =
∏6

i=0 cos(πxi/L) places

each photon in the lowest-energy particle-in-a-box state of the lattice, while the two-particle

component φ(x) =
∏

i<j |xi − xj | keeps the photons apart (whilst minimizing their kinetic

energy) by ramping the wavefunction to zero whenever they overlap.

In the absence of interactions, the ground state density would be independent of particle

number up to an overall scale, reflecting the single-particle eigenstate q = π/L of Fig. 5.3b.

The increasingly large deviations from such a sinusoidal form as density increases indicate

that photon-photon collisions are shaping the fluid density profile. A deeper understanding

of the fluid’s structure requires exploring correlations and entanglement, which is the subject

of the remainder of this investigation.
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Figure 5.7: Microscopy of the strongly correlated fluid: anti-bunching and delo-
calization in conditional probability. The photon liquid is characterized by photons
simultaneously (i) avoiding each-other and (ii) delocalizing. To show that the photons avoid
one another in the fluid we measure the two-body correlator Pi|j at n̄ = 2/7. Pi|j quantifies
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by repulsion of the first photon. Error bars represent the S.E.M. (see SI A.3). This figure is
adapted from [97].
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5.5 Fluid Correlations

In the Tonks regime the photon fluid should exhibit short-range repulsion between the parti-

cles arising from the Hubbard |U | ≫ J . We probe this physics directly through the two-body

correlator Pi|j which quantifies the probability of detecting a photon at site i conditioned

on one being detected at site j. If we consider a two-particle state with a wavefunction

Ψ(x1, x2), the detection of a particle at lattice site x1 = xj collapses the wavefunction to a

product state Ψ(x1, x2) = δ(x1 − xj)Ψ
′(x2), with the conditional probability of the second

photon given by Pi|j = |Ψ′(xi)|2. This measurement is performed on a minimal two-particle

fluid in Fig. 5.7, where the insets show Pi|2 and Pi|3. The strong occupation suppression at

i = j reflects the hard-core constraint that forces the system wavefunction to vanish when

two particles are on top of each other. Furthermore, the suppression near i = j reflects the

photons’ preference to minimize their wavefunction curvature and thus kinetic energy. The

projective measurement of a photon in the lattice has effectively reshaped the two-particle

fluid into a single-particle fluid confined in two boxes, where the pinned (detected) photon

acts as a potential barrier for the second photon.

To probe two-body correlations in fluids of more than two photons, we measure the

system-averaged, normalized two-body correlator given by:

g(2)(x) =
1

n̄2

∑
i

⟨ni ni+x⟩, (5.2)

which quantifies the probability of simultaneously detecting two particles separated by x (in

lattice sites), normalized to the average density n̄. The central intuition, that each photon

has less ‘space’ at higher densities, is captured in Fig. 5.8, where the antibunched region

(g(2)(x) < 1) gets narrower as density increases. Indeed, when the separation is rescaled by

the density, the correlator collapses onto a universal parameter-free Tonks-Girardeau theory,

with each particle occupying a volume 1/n̄, and characteristic Friedel oscillations. These
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n

Figure 5.8: Microscopy of the strongly correlated fluid: anti-bunching and delo-
calization in two-body correlator. Here, we plot the normalized two-body correlator
at various particle numbers (densities), demonstrating that the anti-correlation length de-
creases as the density increases, in agreement with a parameter-free Tonks-Girardeau theory
(see Sec 2.3) and the intuition that photons occupy less space at higher densities. Also
apparent are Friedel oscillations at wavevector kF = πn̄, signalling photon fermionization.
Large-separation correlation data, polluted by edge effects, are omitted (see SI Fig. SA.4).
Error bars represent the S.E.M. (see SI A.3); where absent, they are smaller than the data
points. This figure is adapted from [97].
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correlations, oscillating at the Fermi momentum, kF = πn̄, are a direct signature of the

‘fermionization’ of the photons [67].

5.6 Fluid Delocalization & Entanglement

As the photons melt into a fluid they optimize their energy by delocalizing as much as pos-

sible whilst avoiding one another. The two-body correlator explored in Sec. 5.5 quantifies

this avoidance, and in this section we explore their delocalization. To achieve this we probe

the entanglement of a single site with the remainder of the system by employing a metric

developed for interacting spins [110]: we measure the reduced density matrix of each indi-

vidual lattice site ρi, quantifying how strongly it is entangled with rest of the lattice from

its impurity 1 − Tr(ρ2i ). Our global measure of multipartite entanglement/delocalization is

this impurity averaged over all sites:

Egl = 2− 2

N

N∑
i=1

Tr(ρ2i ). (5.3)

We wish to understand how the global entanglement scales with the number of particles

and lattice disorder, which dictates the degree of delocalization. In Fig. 5.9b the entan-

glement is measured for a three-particle fluid as we vary the disorder along the adiabatic

preparation trajectory. In the limit of strong lattice disorder the entanglement between sites

is very small since the three-particle state is a product of localized photons. As we reduce

the disorder, the entanglement grows, saturating to a maximum value when the sites are de-

generate and the photons become fully delocalized. Residual entanglement in the disordered

lattice arises from dissipative coupling to the environment – decoherence. We exclude the

possibility that decoherence is the source of entanglement in the fluid phase by ramping the

lattice back to its initial disordered configuration. The fact that the measured entanglement

drops definitively proves that the entanglement observed at degeneracy comes from delocal-
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Figure 5.9: Fluid Entanglement. a.We probe delocalization during three-particle fluid
preparation by measuring the average entanglement between each site and the rest of the
system, Egl ≡ 2(1− ⟨pi⟩) (orange) via the purity of the single-site reduced density operator
pi ≡ Tr(ρ2i ). b.In the disordered lattice the state is a product of localized photons so
entanglement is small. In the disorder-free lattice photons delocalize, purity drops and
entanglement increases. We distinguish environmental entanglement (decoherence) from
inter-site entanglement by returning to the initial configuration before measuring (red); this
quantity remains small, proving the system remains un-entangled with the environment. The
inset depicts the measurement time within the ramp for each curve. c. The entanglement
peaks at half-filling where each site’s occupancy provides maximal information about the rest
of the system. Theoretical (dashed) particle-hole symmetry about (n̄ = 1/2) is not reflected
in the data due to increased decay with more particles (increased entanglement after reverse
ramp at high densities, red). Error bars represent the S.E.M. (see SI A.3); where absent,
they are smaller than the data points. This figure is adapted from [97].
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ization, and not dissipation. Similar measurements and conclusions are extracted for all the

other particle sectors (see Extended Data Fig. SA.3).

The dependence of the entanglement at degeneracy on the average density is displayed

together with the expected theoretical calculation in Fig. 5.9b. The discrepancy at larger

filling fractions is due to increased particle loss, as anticipated from the increased entan-

glement after the time-reversed ramp. As highlighted in theory, there is a particle-hole

symmetry in the extracted entanglement measure. This is expected because in the hardcore

limit, particles at filling n̄ tunnel and avoid one another analogously to holes at filling 1− n̄.

Entanglement is maximized at half-filling because that is the situation in which knowledge

of the occupancy of any given site provides the most information about the occupancy of

adjacent sites: at lower (higher) fillings, most sites are empty (occupied), so knowledge of

any given site’s occupancy provides less information.

5.7 Outlook

In this work we have demonstrated a way to harness controlled disorder to individually index

and prepare the eigenstates of a strongly interacting many-body system. In particular, we

have assembled quantum fluids of light in a 1D Bose-Hubbard circuit composed of capac-

itively coupled transmon qubits. Leveraging our site-resolved tuning capabilities, we tune

the qubits out of resonance with one another, individually excite only particular qubits, and

then melt these excitations into a fluid. Site-resolved probes of correlation, entanglement,

and reversibility reveal that this system realizes a Tonks-Girardeau gas [67, 95]. The dissipa-

tive stabilization technique of Ref. [31] will yield lower entropy per particle when manybody

gaps are large but the gaps at the critical point are small; the approach demonstrated here

is preferable when the phase is compressible, so dissipative stabilization will be unable to

stabilize a specific particle number. Leveraging both techniques, the Bose-Hubbard circuit

is now prepared to study most phases of quantum matter. It remains to be seen how our

92



adiabatic preparation approach scales with system size; it seems certain that it will be con-

trolled by the Kibble-Zurek mechanism [111] in the thermodynamic limit, though the precise

disorder employed will likely impact the structure of the excitations generated at the critical

point.

By combining the techniques developed in this work with topological [15, 23] circuit

lattices, it should be possible to prepare topological fluids of light [89]. In conjunction with

auxiliary qubits, these adiabatic preparation techniques will enable direct measurements of

out-of-time-order correlators & information scrambling [112], as well as anyon statistics [113].
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CHAPTER 6

MANYBODY INTERFEROMETRY OF QUANTUM FLUIDS

Characterizing strongly correlated matter is an increasingly central challenge in quantum

science, where structure is often obscured by massive entanglement. From semiconductor

heterostructures [114] and 2D materials [115] to synthetic atomic [42], photonic [22, 38]

and ionic [116] quantum matter, progress in preparation of manybody quantum states is

accelerating, opening the door to new approaches to state characterization. It is becoming

increasingly clear that in the quantum regime, state preparation and characterization should

not be treated separately – entangling the two processes provides a quantum advantage in in-

formation extraction. From Loschmidt echo [117] to measure the effect of a perturbation, to

out-of-time-order-correlators (OTOCs) to characterize scrambling [112, 118, 119] and many-

body localization [14], to impurity interferometry to measure topological invariants [113], and

even quantum Fourier transform-enhanced sensing [120], protocols that blur the distinction

between state preparation and characterization are becoming prevalent. Here we present a

new approach which we term “manybody Ramsey interferometry” that combines adiabatic

state preparation and Ramsey spectroscopy: leveraging our recently-developed one-to-one

mapping between computational-basis states and manybody eigenstates [97], we prepare a

superposition of manybody eigenstates controlled by the state of an ancilla qubit, allow the

superposition to evolve relative phase, and then reverse the preparation protocol to disen-

tangle the ancilla while localizing phase information back into it. Ancilla tomography then

extracts information about the manybody eigenstates, the associated excitation spectrum,

and thermodynamic observables. This work opens new avenues for characterizing manybody

states, paving the way for quantum computers to efficiently probe quantum matter. This

section is adapted from Ref. [121].
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6.1 Introduction

Advances in controllable quantum science platforms have opened the possibility of creating

synthetic quantum materials, in which the physical laws governing the material are built-to-

order in the lab [22, 38, 41, 46]. Such experiments enable time- and space-resolved probes [44,

99, 122] of quantum dynamics inaccessible in solid-state matter, as well as explorations of

extreme parameter regimes [16, 39, 43, 123, 124]. Indeed, as the community has become

increasingly adept at leveraging the flexibility of synthetic matter platforms to realize ar-

bitrary physical laws, we now face the challenge of capitalizing on this same flexibility for

preparing and characterizing quantum manybody states.

In electronic materials, preparing low-entropy equilibrium states relies upon refrigera-

tion: harnessing the coupling of the material to a low-temperature reservoir that can absorb

its entropy. By contrast, synthetic material platforms are known for their coherent, low-

dissipation evolution, and hence their lack of reservoir coupling. State preparation has thus

relied upon the development of new approaches based upon engineered reservoirs [30, 31,

38, 125–127] and adiabatic evolution [43, 105, 128], elucidating, among other things, mi-

croscopic aspects of quantum thermodynamics [129, 130] and the importance of symmetry

breaking [131], respectively.

Even once a manybody state is prepared, characterizing it presents unique challenges.

The intuitively simplest but technically most demanding characterization approach is state

tomography, where n-body correlations are measured in complementary bases, allowing com-

plete reconstruction of the system density matrix [132]. This approach has the advantage

that all information about the state is extracted, and the disadvantage that the required

statistics (and thus measurement time) scale exponentially with system size. If specific rather

than complete information about the state is desired, more carefully crafted protocols have

been shown to relax measurement requirements: Expansion imaging measures single-particle

coherence [133]; noise correlations measure two-body ordering [134]; in-situ density probes
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equation of state [135]; Bragg spectroscopy is sensitive to density- (and spin-) waves [136];

particle-resolved readout accesses higher-order correlations [16, 18, 37, 99, 137]; parity os-

cillations are clear signatures of GHZ states [138]; single-qubit tomography probes global

entanglement [16, 97]; and shadow tomography [139] provides an efficient way to extract

observables from few measurements.

It has nonetheless become apparent that treating state preparation and state charac-

terization as independent does not fully leverage quantum advantage – approaches that

entangle the two tasks via an ancilla can be vastly more performant: Proposals & experi-

ments to quantify scrambling [112, 118, 119] and verify manybody localization [14] rely upon

out-of-time-order correlators (OTOCs) that compare manybody states to which a specific

operator is applied either before or after coherent evolution. This is achieved by entangling

the time at which the operator is applied with the state of an ancilla, and subsequently

performing tomography on the ancilla. Similarly, Loschmidt echoes directly measure the im-

pact of perturbations via state overlap measurements following evolution under two similar

Hamiltonians [117, 140]. Sensitivity & dynamic range enhancements in sensing [120] can

be achieved by sandwiching ancilla-conditioned dynamics between quantum Fourier trans-

forms. Entangling initial states with an ancilla and applying ancilla-conditioned evolution

can further probe anyon braiding phase [21] and system spectrum [15, 54].

In this work we introduce manybody Ramsey interferometry as a direct probe of ther-

modynamic observables: we entangle which manybody state we prepare in a Bose-Hubbard

circuit with the state of an ancilla qubit, allow the superposition to evolve, disentangle

from the ancilla, and perform ancilla tomography to learn about the manybody states. We

rely upon our recently-demonstrated reversible one-to-one mapping of computational states

onto manybody states [97] to achieve the ancilla/manybody state entanglement. Because

we entangle and then disentangle the ancilla from the manybody system, we localize the

sought-after information in a single qubit for efficient, high signal-to-noise readout, rather
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than extracting it from a many-qubit state space [15, 54, 141, 142].

In Section 6.2 we introduce our circuit platform and manybody Ramsey protocol. In

Section 6.3 we demonstrate the protocol and in Section 6.4 we use manybody Ramsey to

probe adiabaticity of state preparation. Finally in Section 6.5 we employ manybody Ramsey

to directly measure thermodynamic observables of a strongly interacting quantum fluid by

studying superpositions of (i) particle number and (ii) system size.

6.2 The Platform

The properties of our synthetic quantum material platform are accurately captured by a 1D

Bose-Hubbard model (see Fig. 6.1b), describing bosonic particles tunneling between lattice

sites at rate J , in the presence of onsite interactions of energy U ,

HBH(t)/ℏ = J
∑
⟨i,j⟩

a
†
iaj +

U

2

∑
i

ni (ni − 1) (6.1)

+
∑
i

(ωlat + δi(t))ni. (6.2)

Our Hubbard lattice is realized in a quantum circuit [31, 38, 48]: sites are implemented

as transmon qubits, particles as microwave photon excitations of the qubits, tunneling (J) as

capacitive coupling between the qubits (Fig. 6.1a,b), and onsite interactions (U) as transmon

anharmonicity. Lattice site energies (qubit frequencies) can be individually & dynamically

tuned using flux bias lines (see Sec 3.2). For this work J/2π = −9 MHz, U/2π = −240 MHz,

and ωlat/2π ≈ 5 GHz. The tuning range of our qubits extends from ωqb/2π ∼ 3 − 6 GHz.

The photon lifetime T1 ≈ 40 µs is much longer than the timescale of the manybody dynamics

(see SI C.2 for details).

We recently demonstrated adiabatic preparation of photonic fluids by leveraging real-time

(≪ tunneling time) control of lattice disorder [97]. This protocol begins with lattice sites
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Figure 6.1: Preparing and Interfering Manybody States. The quantum system probed
in this work consists of a chain of seven capacitively coupled superconducting transmon
qubits [53] (blue in a) connected to site-resolved readout resonators (meandering traces)
and flux control (bottom traces). b, The system is well described by the Bose-Hubbard
model: particles (microwave photons) coherently tunnel between lattice sites (qubits) at a
rate J , with on-site interactions U ≫ J arising from the transmon anharmonicity [31, 38,
48]. Real-time flux tuning provides control of lattice site energies (δi for site i), allowing
the deterministic manipulation of disorder that we leverage to build highly entangled states:
c, Starting in a highly disordered lattice, we initialize the system in the highest energy N -
particle eigenstate by applying π-pulses to the N highest-energy sites (left), and adiabatically
removing disorder to convert these states into eigenstates of the quantum fluid (right) [97].
d, To interfere superpositions of such states, we replace one of the assembly π-pulses with
a π

2 pulse (green), producing a superposition of two (red/blue) eigenstates; adiabatically
removing disorder produces a superposition of two manybody fluid states; coherently evolving
for a time T allows the eigenstates to accumulate a relative phase proportional to their
energy difference; ramping back to the disordered configuration (right) relocalizes the phase
difference into the single qubit that started in a superposition; a final π

2 pulse on this qubit
maps the phase information onto qubit occupancy for measurement. e reinterprets the full
manybody Ramsey sequence as a set of gates on the qubits comprising the lattice, resulting
in an interference fringe vs evolution time T .This figure is adapted from Ref. [121].
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tuned apart in energy by more than the tunneling J . In this configuration, the many-particle

eigenstates are localized into product states over individual sites, such that any eigenstate

may be prepared via site-resolved microwave π-pulses that inject individual photons. By next

adiabatically removing the lattice disorder, we smoothly convert the localized eigenstates of

the disordered system into the corresponding highly entangled eigenstates of the disorder-

free system (Fig. 6.1c). The combination of the one-to-one mapping and the ease of state

preparation in the disordered (staggered) system render it straightforward to prepare any

eigenstate of the ordered system provided sufficient coherence time to ensure adiabaticity in

the disorder-removal ramp.

We now harness this precise eigenstate preparation to explore controlled interference of

many-particle quantum states. Our approach can be understood in analogy to traditional

Ramsey spectroscopy of a single qubit [143] with states |0⟩ and |1⟩: in this simpler case, a

system prepared in |0⟩ is driven into an equal superposition of |0⟩ and |1⟩ with a π
2 pulse,

and after an evolution time T , the phase accrued on between |0⟩ and |1⟩ is read out with a

second, phase-coherent π
2 pulse: the resulting population difference between |0⟩ an |1⟩ states

oscillates (versus evolution time T ) at a frequency set by the energy difference between the

states.

To extend the protocol to measurement of the phase difference between two manybody

states, we take the single-qubit Ramsey sequence above and sandwich the delay time T

between qubit-conditioned assembly and disassembly of the manybody states. We call this

approach ’manybody Ramsey interferometry’ to connect with previous work exploring non-

adiabatic evolution of manybody systems [119, 141, 142]. This procedure maps the phase

accrued between the manybody states entirely onto the single qubit, avoiding any reduction

in contrast due to residual entanglement, at measurement time, with the manybody system.

The enabling ingredient for this protocol is qubit-conditioned manybody state preparation,

which we implement via our disorder-assisted adiabatic assembly techniques [97].
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An example of the full protocol is shown in Figure 6.1d. In the presence of disorder, we

prepare a superposition of the highest energy states of the N = 1 and N = 2 particle mani-

folds |Ψi⟩ = 1√
2
(|0000010⟩+ |0001010⟩)=|000⟩ ⊗ |0⟩+|1⟩√

2
⊗ |010⟩. The key to this protocol is

that in the presence of disorder the superposition of the two highest-energy manybody states

is realized as a superposition of a single control qubit, realized with a π
2 pulse. As we adia-

batically remove the disorder the localized states melt into corresponding eigenstates of the

quantum fluid. During the subsequent hold time T , these states will accrue a relative phase

proportional to their energy difference, (ωi − ωj)T . Finally, to relocalize the information

back into the control qubit we adiabatically re-introduce lattice disorder, producing the final

state: |Ψf ⟩ = 1√
2
(|0000010⟩ + ei(ωi−ωj)T |0001010⟩) = |000⟩ ⊗ |0⟩+e

i(ωi−ωj)T |1⟩√
2

⊗ |010⟩. The

phase accrued between the manybody states has now been written entirely into the control

qubit. We extract that phase information (and thus the manybody energy-difference) with

a final π
2 pulse on the control qubit and a population measurement in the |0⟩,|1⟩ basis. The

complete pulse sequence is illustrated in Fig. 6.1e.

6.3 Demonstration of the Protocol

We benchmark our manybody Ramsey protocol by studying the superposition of 1- and 2-

photon fluid ground states in our Hubbard circuit. In Fig. 6.2a we prepare these states

separately (red and blue boxes) by π-pulsing localized particles into the disordered lattice

& then adiabatically removing the disorder, finding good agreement of the measured in-situ

density profiles with a parameter-free Tonks gas model [64, 65] (see Sec 2.3). When the

second particle is instead injected with a π
2 pulse, we create the desired superposition state,

with a density profile reflecting the average of the two participating eigenstates (green box).

To measure the energy difference between these states we must interfere them. We achieve

this by replacing the in-situ density measurement with a coherent evolution time T , allowing

the states to accrue a relative phase (Fig. 6.2b), followed by adiabatically reintroducing the
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Figure 6.2: Benchmarking the Manybody Ramsey Protocol. a, To explore this pro-
tocol in the lab, we deterministically inject particles into a disordered lattice & remove the
disorder (left), before imaging the resulting density distribution. When we inject precisely
1 photon (upper blue panel), adiabatic disorder removal produces the lowest-momentum
particle-in-a-box state (lower blue panel); injecting two photons (upper red panel) produces
the lowest energy two-body state after disorder is removed (lower red panel). If we de-
terministically inject the first particle with a π pulse but π

2 pulse the second photon, we
should produce the manybody superposition state, and indeed we observe the average of
the two density distributions (green panels). b, To demonstrate that this average density
distribution corresponds to the macroscopic superposition of manybody states, we allow the
superposition state to evolve on the Bloch sphere before adiabatically mapping the many-
body superposition back onto a single qubit, where it can be read out via a second π

2 pulse.
c, The resulting Ramsey fringe (vs hold time T in the manybody superposition state) evolves
with a frequency given by the energy difference between the manybody states minus the fre-
quency of the local oscillator from which the π

2 pulses are derived, exhibiting contrast over
several microseconds limited by the single-qubit T2 (see SI C.2). In d, we demonstrate the
applicability of the approach to larger systems by applying it to superpositions of N = 2, 3
and N = 3, 4 particle fluids; the increased decay reflects the faster dephasing of states with
more particles. Representative error bars (on first data point of each plot) reflect the S.E.M.
This figure is adapted from Ref. [121].
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disorder to re-localize the phase information into a single lattice site (qubit) and finally

applying a π
2 pulse to interfere the states & read out the encoded phase in the occupation

basis. The resulting sinusoidal Ramsey fringe (occupation vs T ) is shown in Fig. 6.2c,

with contrast limited by qubit dephasing (see SI C.2). The fringe frequency of 10 MHz

is translated down (for clarity) from the actual energy difference of 5.317 GHz via a T -

dependent phase offset of the second π
2 pulse (see SI B.1). Similar experiments enable

single-qubit measurement of energy differences of 2/3 & 3/4 particle superposition states

(Fig. 6.2d), with minimal contrast reduction, and only a small drop in coherence time. We

are thus prepared to apply the protocol to exploration of manybody physics.

6.4 Probing the Excitation Spectrum

Our manybody Ramsey protocol relies upon our ability to adiabatically assemble and disas-

semble highly entangled states. If the state assembly is non-adiabatic, we imperfectly prepare

the target states of our quantum fluid; if the disassembly is non-adiabatic then we imper-

fectly map them back to the initial qubits. One might expect that such non-adiabaticity

would simply reduce the contrast of the resulting manybody Ramsey fringe, but the reality

is more subtle: to the extent that the non-adiabaticity is minimal, only a small amount

of population is transferred out of the instantaneous eigenstates during assembly, of which

some fraction is transferred back during disassembly (see Fig. 6.3a). This has the effect of

adding new frequency components to the Ramsey fringe that provide information about the

excitation spectrum of the manybody system.

We investigate this phenomenon in Figure 6.3b-d by varying the length τ of our adiabatic

assembly and disassembly ramps. In Fig. 6.3b, we plot the Fourier transform of the Ramsey

fringe for the slowest (upper) and fastest (lower) ramps: When the ramp is slow compared

with manybody gaps (τ = 1µs≫ J−1), we observe a single frequency component in the

Ramsey spectrum indicating preparation of a superposition of only a single pair of states.
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Figure 6.3: Spectroscopic Signatures of Adiabaticity. The manybody Ramsey protocol
relies critically on the ability to adiabatically map localized states into and out of highly
entangled states (in a ramp time τ). a, Ramping too quickly leads to diabatic excitations
(purple) into other manybody states that do not interfere with the states (red/blue) in
the prepared superposition (green) and thus reduce Ramsey fringe contrast. With some
probability, however, these diabatic excitations are diabatically de-excited back into the
initial state (red) during the backwards ramp; because these excitations evolve at different
frequencies (corresponding to their energies) during the hold time T , they produce Ramsey
fringes at other Fourier frequencies. b, For the slowest ramp (τ = 1 µs) there are no diabatic
excitations, producing a single Fourier feature in the Ramsey interference between N = 0
and N = 1 eigenstates. c For the fastest ramp (τ = 1 ns), the many diabatic excitations are
reflected in additional frequencies in the Ramsey fringe beyond the dominant feature in the
slow ramp. c, As the ramp time τ is varied over three decades, frequency components furthest
from the dominant feature disappear first, with the low-offset-frequency features disappearing
only for the slowest ramps, consistent with excitation rates controlled by the energy gaps
of the fluid. Insets depict the time-domain Ramsey fringes for slow, intermediate, and fast
ramps (top to bottom). d, Repeating these experiments with superpositions of N = 1, 2
and N = 2, 3 particles demonstrates that while the proliferation of manybody states makes
resolving diabatic excitations challenging, the dominant feature nonetheless appears for the
slowest ramps. This figure is adapted from Ref. [121].
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When the ramp is fast (τ = 1ns≪ J−1), we observe numerous frequency components in

the Ramsey spectrum indicating that we have prepared numerous pairs of states that then

interfere. In Fig. 6.3c we plot the Fourier spectrum as we tune the ramp time τ over

three decades, observing the appearance of increasing numbers of peaks as the ramp gets

faster. Repeating this experiment with more particles (Figure 6.3d) reveals fewer total peaks,

despite the larger state space accessible with more particles. This occurs because the number

of accessible states grows so rapidly that for all but the slowest ramps the features overlap

and smear into a continuum.

In practice, achieving the best spectroscopic resolution for the Ramsey signal frequency is

a balancing act between: (i) particle loss/dephasing if the protocol takes too long compared

to the photon T1/T2 (see SI C.2) and (ii) reduction in the spectral weight of the correct

Fourier peak if the adiabatic ramp time τ is too small and the wrong manybody states are

prepared. In order to circumvent decoherence in larger systems, we choose faster ramps that

induce some diabatic excitation without obscuring the correct Fourier feature.

6.5 Extracting Thermodynamic Observables

Having demonstrated the ability to interferometrically extract the energy difference of arbi-

trarily chosen manybody states, we now apply the technique to the measurement of thermo-

dynamic observables of a quantum fluid. To do this we rely upon the fact that thermody-

namic quantities like the chemical potential and the pressure may be understood as the rate

of change of the system energy with density, and thus particle number, a quantity which our

manybody interferometry technique probes directly.

The chemical potential is the energy required to add a particle to the manybody system

at fixed system size V , µ = EN+1,V − EN,V ≈ ∂E
∂N

∣∣∣V : we thus measure µ by performing

manybody Ramsey interferometry between the N and N + 1 particle ground states. In

Fig. 6.4a we demonstrate this measurement for the superposition of N = 1 and N = 2 parti-
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Figure 6.4: Spectroscopic Probes of Thermodynamics. Manybody Ramsey interferom-
etry offers new ways to characterize synthetic quantum matter: a...c, The chemical potential
µ = EN+1,V −EN,V quantifies the energy required to add a particle to a manybody system,
and we measure it by interfering states of different particle number. a is a sample dataset
showing the Ramsey spectrum for the superposition of N = 1, 2 particles as we vary the
total system size V . For each V , the chemical potential µ is assigned to the frequency of
maximal spectral density, which we plot in b for all fillings up to unit filling N = 0...V − 1,
and all system sizes V = 1...7. In c we replot all data vs the density ρ ≡ N/V , finding a
collapse onto a universal sinusoidal form (gray) consistent with a free-fermion model [66].
Error bars, where larger than the data-point, reflect the S.E.M. (see SI B.8). This figure is
adapted from Ref. [121].
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Figure 6.5: Spectroscopic Probes of Thermodynamics. The pressure P = EN,V+1 −
EN,V quantifies the energy required to change the system size, and we measure it by inter-
fering states of different system size. We achieve controlled superpositions of system sizes
using the approach shown in d: the controlling site is U -detuned such that when it is empty,
it is energetically inaccessible, reducing the system size by a single site; when it is filled, it
becomes accessible and accordingly increases the system size. Using this site as the control
in a manybody Ramsey experiment allows us to extract the energy difference between N
particles melted into V + 1 vs V sites (see SI B.2). Performing this protocol for different
volumes V and particle numbers N produces the raw data in e, which we rescale vs density
in f, again finding agreement with a free-fermion theory. Error bars, where larger than the
data-point, reflect the S.E.M. (see SI B.8). This figure is adapted from Ref. [121].

cles as we vary the number of accessible sites V . At each V , the Fourier frequency with the

largest oscillation amplitude corresponds to the chemical potential. In Fig. 6.4b we plot this

chemical potential vs. V , repeating the measurements for particle numbers from an empty

system N = 0 to a filled system N = V −1. In Fig. 6.4c we replot the data versus the density

ρ ≡ N
V , finding collapse onto a universal (intensive) form µ = −2J cos(πρ): adding particles

reduces the volume available to each particle, increasing the uncertainty-induced kinetic en-

ergy required to add it to the system. These data are consistent with a free-fermion model

(see Sec 2.4) [66, 67] modulo small system-size corrections (see Sec 2.4.2, B.3.1). Beyond unit

filling we observe an additional energy cost U per particle reflecting the incompressibility of

the unit-filled Mott-insulating state [66].

The pressure is the force required to maintain the fluid at fixed size, or equivalently the
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energy required to reduce the system size P = EN,V − EN,V+1 ≈ − ∂E
∂V

∣∣∣N . To directly

measure the pressure we thus need to perform manybody interferometry between systems

of different sizes rather than different particle numbers. We achieve this by engineering our

ancilla qubit to control the system size: as shown in Figure 6.5a, the ancilla site is detuned

in energy by U , ensuring that when it is empty particles cannot tunnel onto it (reducing

the system size by 1 site), and when it is occupied particles can tunnel. (Bose-enhanced

tunneling onto the occupied ancilla is compensated by Floquet engineering, see SI B.2).

The measured pressures for all particle numbers and system sizes are shown in Fig. 6.5b.

They are replotted vs density in Fig. 6.5c, demonstrating that higher densities lead to more

uncertainty pressure, again in agreement with a free fermion model anticipated to describe

the 1D hardcore bosons in our experiments(See sec 2.3).

6.6 Conclusion

We have introduced a probe of synthetic quantum matter that accesses new observables

by blurring the boundary between state preparation and measurement. Rather than first

preparing a manybody state and then characterizing it, we instead control what manybody

state we prepare with an ancilla qubit, coherently reverse the preparation procedure to

disentangle the ancilla from the manybody system, and sandwich this process within an

ancilla Ramsey sequence. This manybody Ramsey interferometry protocol enables direct

measurement of energy differences of different eigenstates of the same system, as well as

the same eigenstate of different systems. We employ it to directly extract thermodynamic

properties of a quantum fluid.

Because the manybody Ramsey protocol relies upon reversible adiabatic assembly of

manybody states [97], it requires only a small factor more coherence time than adiabatic

state preparation. In other words, if you can build a state, you can characterize it with

manybody Ramsey interferometry.
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Marrying these techniques with recent advances in topological quantum matter [23] will

enable probes of fractional statistics [113]; applying the techniques to glassy [144, 145] or

time-crystalline [26, 27] phases has the potential to shed light on their structure. We antici-

pate opportunities to apply manybody Ramsey interferometry to cold atoms, particularly in

topological [128] or fermionic sectors [35]. Marrying this tool with a quantum Fourier trans-

form suggests yet more efficient approaches to quantum sensing in manybody systems [120].

More broadly, this work invites the question: what observables become accessible when mul-

tiple ancillas are entangled with, and then disentangled from, a quantum material? We

envision a future where hitherto unimagined observables are probed by entangling quantum

matter with small quantum computers.
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CHAPTER 7

OUTLOOK

Using microwave photons in superconducting circuits, we have built a device whose physics is

described by the 1D Bose-Hubbard model in the hardcore boson limit. In the first experiment

described in this thesis in Chapter 5, we harnessed controlled disorder for state preparation,

enabling the creation of compressible fluid states previously inaccessible with circuit QED

tools. We started with a disordered lattice where all eigenstates were localized, and prepared

desired eigenstates by injecting photons into individual sites. We then adiabatically removed

the disorder, melting the system into the target many-body state. We characterised the

resulting eigenstates’ density profiles, entanglement, and correlation functions, capturing

Friedel oscillations as direct microscopic evidence that the photons had fermionized.

The adiabatic disorder-tuning state preparation technique naturally lends itself to as-

sembling superpositions of strongly interacting fluid states, explored in Chapter 6. In this

experiment, we adiabatically prepared ancilla-controlled superpositions of strongly interact-

ing fluids, evolved them to acquire a phase difference, and relocalized the interference phase

into the ancilla for efficient measurement. Using this approach, we measured the coherence

between pairs of manybody states, varied the adiabatic ramp speed to characterize how

information spreads across the system, and extracted thermodynamic observables such as

chemical potential and pressure. This procedure literally entangles state preparation and

measurement, enabling low density, high signal-to-noise probes of complex manybody sys-

tems. The techniques demonstrated in this experiment apply equally well to other platforms

with single-site control and adiabatic preparation capabilities such as cold atoms and ions.

The overall theme of this thesis has been demonstrating the strength of superconducting

circuits as a platform to explore creative and powerful new methods of state preparation and

characterization. There are a number of exciting future directions the project could take

continuing along these themes! At the time of writing, there is another paper in preparation
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by Andrei Vrajitoarea (postdoc on the project, now faculty at NYU!) using this device to

probe transport and low-energy excitations (phonons) of these strongly interacting fluids,

and combine manybody driving techniques with an ancilla qubit to prepare NOON states.

Another possible direction would be to use sideband cooling to stabilize the lowest energy

fluid states within a given particle manifold, demonstrating the use of reservoir engineering

for a highly entangled manybody state (past work along this idea in Ref. [33]). We could

also couple one frequency-tunable ancilla qubit to a large interconnected graph of fixed

frequency qubits, and use the ancilla to adiabatically load the larger qubit system with

particles as well as spectroscopically interrogate it. This experiment would explore the

limits of extracting global manybody properties with simple single-qubit measurements, and

showcase that control and measurement overhead need not to scale with system size.

It’s an exciting time for quantum simulation! As platforms mature, new prospects abound

for programming interesting Hamiltonians and exploring open questions in manybody physics

from a ground-up microscopic approach. I await the results of the coming years with great

interest, and hope this work helps illustrate the fascinating possibilities offered by exper-

iments in building and measuring synthetic quantum matter. Whether you are a veteran

quantum simulationist, a newcomer, or merely an interested reader, thank you for reading

and retracing with me the adventures of my PhD! May your interactions be strong and your

particles long-lived. Cheers!
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SUPPLEMENT A

SUPPLEMENT FOR CHAPTER 5

A.1 Extended Data
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SI Fig. SA.1: Adiabaticity Curves for All n̄ Fillings. Adiabaticity is given by the
average number of photons that return to the originally excited sites as a function of ramp
length. Here, we measure adiabiaticty curves for the highest energy eigenstate for all n̄
fillings, revealing the minimum ramp length needed to be adiabatic when preparing these
many-body states. As particle number increases, we start to suffer more from loss and no
longer fully recover the initial starting population.
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corresponding to fluid ground states, for filling n̄=1
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SI Fig. SA.3: Entanglement for n̄ Fillings Data: Measure of Entanglement vs Disorder,
for Filling n̄=1

7 through 6
7 . Error bars reflect S.E.M.; here, they are smaller than markers.
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SI Fig. SA.4: g(2)(x) for n̄ Fillings Measure of the two-body correlator g(2)(x) for all lattice
spacings. In the main text, we only displayed results to the left of the black dashed line.
Our results differ from infinite 1D TG theory due to finite size effects. The deviation from
theory due to finite size is greater for larger “x” and lower particle fillings. We chose the
cutoff for what to display in the main text at the “x” for which deviation is still small at all
particle densities.
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A.2 Pulse Sequences and Operating points

This experiment uses two kinds of frequency configurations for the qubits: one where the

qubits are in a disordered stagger, and the other where the qubits are all degenerate. All

our experiments involve tuning the qubits between these frequency configurations either

diabatically or adiabatically depending on what the experiment requires.

In the disordered stagger, three qubits are above the lattice frequency and four qubits are

below. The qubits are staggered in a zig-zag, so that neighbors are detuned by much greater

than J . This configuration is useful for both readout and state preparation. Since eigenstates

consist of localized particles and are well separated in energy, eigenstate preparation simply

consists of applying a sequence of calibrated microwave π-pulses. Similarly in this disordered

configuration, each readout resonator is only sensitive to the population of its individual

qubit, enabling site-resolved readout.

There are two versions of the disordered (detuned) stagger used in this experiment. The

first is the large disordered stagger (given in Table C.1), where neighboring qubits are spaced

by > U apart, and next-to-nearest-neighbors are spaced by > 2J . This stagger configuration

is good for readout, but not for state preparation. At this lattice, we notice minimal readout

crosstalk (values listed in Fig. 4.12). However, since the qubits are staggered with neighbors

spaced by > U (i.e. the |2⟩ state of the upper qubits is above the |1⟩ state of the lower

qubits), the highest energy eigenstate for N > 3 particle prep involves prepping |2⟩ states

of the upper three qubits. This means that when ramping all the qubits to degeneracy,

the ramp needs to be adiabatic both for the upper qubit |2⟩ crossing the lower |1⟩ as well

as adiabatic when all the qubits approach degeneracy. Dealing with extra transitions is

non-ideal, as it increases the ramp time needed to preserve adiabaticity.

In the second, smaller disordered stagger configuration, neighboring qubits are spaced by

≃ U
2 apart, and next-to-nearest-neighbors are spaced by ∼ 1.5J . This stagger configuration

is good for state preparation, but not good for readout. At this lattice, we measure more
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significant readout crosstalk (more than 20% on at least four sites in any given configuration).

However, eigenstates are still very localized, so preparing eigenstates still can be done with

π-pulses. Further, ramping to degeneracy does not involved any |2⟩ state crossings.

For all data in this experiment except for the entanglement vs disorder profiles, states

were prepared in the small disordered stagger and read out in the large disordered stagger.

time

time

(i) jump to 
small stag

(ii) qb prep 
~100ns each

(iii) adb ramp 
~500ns

(iv) jump to 
rd stag

(v) tomo pulse 
~100ns

(vi) 2qb measurement 
3-5us

(vii) flux balance (viii) idle

SI Fig. SA.5: Pulse Sequence All experiments begin with the qubits at the large disordered
stagger. First (i), qubits are jumped to the small disordered stagger using RF flux (blue).
Once the qubit frequencies settle, (ii) qubit preparation pulses are applied (green). Qubits
are (iii) adiabatically ramped to degeneracy, then (iv) jumped back to the large stagger for
single-site-resolved readout. (v) X90 and Y90 tomography gates (purple) are applied if the
experiment involves full qubit tomography. (vi) a long readout pulse (orange) is applied to
the resonator/s of the qubit/s being read out. Finally, (vii) a flux balancing pulse is applied
to stop long timescale inductances from building up. The experiment idles so that the total
experiment time is 500 µs to ensure all the qubits decay and are reset to the |0⟩ state for
the start of the next experiment.

A typical experiment pulse sequence is illustrated in Fig. SA.5. Before the start of an

experiment, qubits are tuned to the large disordered stagger using DC flux bias. All mi-

crowave signals are off and the lattice is empty. During an experiment, qubit frequencies

are controlled using the RF flux lines. At the start of an experiment, qubits are (i) diabat-

ically “jumped” (i.e. rapidly tuned) to the small disordered stagger configuration for state

preparation. After waiting 600ns to ensure the qubit frequencies are stable, (ii) π-pulses
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are sequentially applied to several of the qubits. The qubits are (iii) adiabatically ramped

to lattice degeneracy, adiabatically preparing the state of interest. After the qubits hit de-

generacy/the state is prepared, (iv) the qubits are jumped to the large disordered stagger

frequency configuration to freeze tunneling dynamics and onsite occupancy (or for reversibil-

ity experiments, ramped adiabatically back to the small stagger and then jumped to the large

stagger for readout). After waiting 600 ns for qubits to settle, (v) X90 and Y90 pulses are

applied if doing tomography. Then, (vi) a readout pulse is applied (or two readout pulses are

applied simultaneously if doing correlation measurements). Finally, a flux-balancing pulse is

applied so that the total experiment flux is zero, to avoid charging up any stray long-term

inductances [86]. The experiment is repeated every 500 µs, leaving enough idle time between

pulse sequences to ensure all the qubit excitations decay and are reset to the |0⟩ state for

the start of the next experiment.

We chose an exponential ramp shape for our adiabatic qubit ramp. The timing to pre-

serve adiabaticity for different ramp shapes will obviously differ, but the exponential ramp

simplifies the number of free variables to optimize over and captures the usual process of the

many-body gap decreasing as more lattice sites approach resonance with one-another. For

data in this paper, we found an exponential ramp of the form e−t/τ gave good reversibility

results (see Fig. 5.4) with τ = 2
5 × tramp. All qubit pulses are Gaussians truncated at ±2σ.

When the system is at the small disordered stagger configuration, placing an excitation

in a qubit shifts the frequency of its neighbor by ∼ 1 MHz. This is expected from theory,

and occurs because of the proximity of the upper qubits’ ω12 transition to the lower qubits’

ω01 transition. We take these shifts into consideration by calibrating π-pulse amplitude and

frequency depending on the order of qubit preparation.

For entanglement vs disorder profiles, we used different preparation methods in order

to measure entanglement starting at greater disorders than the small stagger. For N < 4

entanglement vs disorder profiles (see SI SA.3), the qubits are prepped at the large stagger
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and ramped to degeneracy directly from there. For N ≥4 entanglement vs disorder profiles,

qubits are prepped at the large stagger, all filled qubits are then jumped to lattice degeneracy,

and the holes are ramped in. We do not use this method for N > 3 generally because we

cannot jump filled qubits directly to the lattice fast enough to be fully diabatic, so we get a

small but significant number of unwanted transitions (see Sec. 4.8.3).

A.3 Uncertainty Calculations

For each experiment, we measure 2000 shots, bin the shots, apply relevant confusion matrices,

and extract the averaged quantity of interest (MB profile, entanglement, g(2), etc). We then

repeat the experiment 10-11 times, and calculate the mean of the averages and standard

deviation of the averages (i.e. calculate the standard error on the mean, or S.E.M.) for

the values and error bars that we report in this chapter. The experiment repetitions are

performed close in time (typically within a 10-30 min span) so that our error bars are not

affected by slow experimental drift over hours or days.
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SUPPLEMENT B

SUPPLEMENT FOR CHAPTER 6

B.1 Ramsey Interferometry Measurements

A Ramsey interferometry experiment on a single qubit measures that qubit’s ω01 frequency

(relative to the frequency of the tone used to drive the qubit). The experiment sequence is as

follows. First, the qubit is driven into an equal superposition of |0⟩ and |1⟩ with a microwave

π/2 pulse. The two states evolve relative to each other for time T with phase ϕ = ω01T . A

second π/2 pulse is applied, mapping oscillations around the equator of the Bloch sphere to

population oscillations. The qubit population is read out, producing a fringe oscillating at

ω01T minus the frequency of the drive that the qubit is referenced to.

Manybody Ramsey works in a similar fashion. When measuring the energy difference of

states with N vs N−1 particles when the qubits are all on resonance at the lattice frequency,

the energy difference is approximately one lattice photon, 5.2 GHz. However, the qubit drive

to which the energy difference is compared is at the frequency of the ancilla in the staggered

position, on the order of hundreds of MHz detuned from the lattice frequency. The time

resolution of our AWG is 1 ns; the maximum frequency we can physically record without

aliasing is 500MHz; the maximum frequency we can comfortably measure is 250 MHz. In

practice, we use a sampling rate of 3−4 µs, which brings our maximum measurable frequency

even lower. We thus add a time-dependent virtual phase to our second Ramsey π/2 pulse

in order to virtually change the frequency of the qubit drive used as reference, bringing the

measured oscillation frequency below the aliasing limit.

While measuring states with V vs V − 1 sites, at first glance it seems like the energy

differences involved should be within the same particle manifold. However, because of the

way we measure volume superpositions (see SI B.2), the states we compare do differ by a

particle, so we measure Ramsey oscillation as above.
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To achieve appropriate frequency resolution for experiments involving examining Ramsey

Fourier peaks, we record the Ramsey fringe for a minimum of T = 800 ns in steps of 3−4 ns

for a frequency resolution of at maximum 1.25 MHz (Fig. 6.3 2.7 µs, Fig. 6.4/Fig. 6.5 804ns).

We choose our time resolution to balance experiment time (long experiments suffer more from

frequency drift) and retaining the ability to distinguish frequencies we care about without

encountering frequency aliasing.

B.2 Thermodynamic Observable Methods

B.2.1 Chemical Potential

To extract chemical potential, we compare the energy differences of states with N vs N − 1

particles in a given volume V for a range of volumes and particle numbers by extracting the

interference fringe between the relevant states. We compare highest energy eigenstates of

each particle manifold, which map to the ground states of a repulsive-U model (see Sec. 2.4.1).

Depending on the number of particles, volume, and adiabatic ramp time, this measurement

is operated at the edge of the coherence time of our qubits. To extract consistent signal, we

play a few tricks. First, which of the qubits participate in the highest energy eigenstate in the

disordered configuration depends on which qubits we place highest in frequency. Therefore,

we can arbitrarily choose which qubits to use for any given eigenstate (limitations: neighbors

need to start properly detuned so that disordered state is separable). For volumes V less than

7, we can also choose different contiguous sets of qubits as our volume for that experiment. To

find the configuration with best coherence and least noise for a given superposition, we cycle

through qubits, volume sets (where possible), and ramp times, until we hit a combination

that has a peak of prominence 6σ above background noise after applying a digital low-pass

filter cutting off frequency components below 20 MHz with the Ramsey virtual frequency

chosen to fall between 30 MHz and 100 MHz (see SI B.1). We then repeat the experiment
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to acquire error bars on peaks.

In order to have small qubit-readout crosstalk, when reading out we place the qubits

in a stagger with nearest-neighbor detuning ≫ U . For Fig. 6.2 and Fig. 6.3 superpositions

were prepared directly from this point. When preparing superpositions of states for Fig. 6.4

and Fig. 6.5 however, since some states at higher densities involve nearest neighbors, to

avoid unwanted crossings with the U -band, qubits were first populated with photons, then

rapidly jumped from their readout position to a stagger with nearest-neighbor detuning less

than U and qubit position chosen to minimize hybridization. We found we suffered minimally

from Landau-Zener transitions (i.e. unwanted population transfer between nearest-neighbors

during rapid ramps) and were consistently able to choose staggers where eigenstates still

consisted of local qubit states. The adiabatic melt was then performed from this smaller

stagger.

Data is plotted with ωlat subtracted off, such that the theory and data curves are centered

around 0.

B.2.2 Pressure

We apply a similar procedure to measure pressure, with one extra step. As a reminder, to

measure the energy of N particles in V vs V +1 sites in order to extract pressure, we detune

an edge qubit by the anharmonicity, and place that qubit into a superposition of |0⟩ and

|1⟩ to make the qubit |2⟩-state in a superposition of being accessible vs not to the rest of

the lattice. However, when tunneling into the |2⟩-state, the tunneling is Bose-enhanced by

a factor of
√
2. As a sanity check, we measure energy differences in this configuration and

compare to an exact numerical model, where we indeed see the spectrum affected by the

Bose-enhanced tunneling to the edge site (see Fig. SB.1). To suppress this extra tunneling,

we frequency modulate [62] the edge qubit. When frequency modulating, in the rotating

frame, the qubit effectively lives with amplitude given by Jm( ϵ
2νsb

) at the base frequency
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SI Fig. SB.1: Interferometry of volume superpositions without modulating to cor-
rect for Bose-enhancement. We measure EN,V+1 −EN,V for different particle numbers
and volumes without modulating the edge qubit to correct for Bose-enhancement. Our mea-
surements line up well with disorder-free numerics (grey dashed lines), confirming that there
is low frequency disorder between the qubits before adding the extra complexity of the mod-
ulation step. Error bars, where larger than the data-point, reflect the S.E.M.

plus multiples m of the modulation frequency, where J is a Bessel function of the first order,

ϵ is the strength of modulation in qubit frequency, and νsb is the sideband frequency. If one

modulates at the right amplitude, one can engineer a
√
2 suppression of tunneling at the

base frequency.

We choose to modulate at 100 MHz in order to have the higher sidebands be far enough

detuned from the lattice to not affect its physics. Because the flux vs current curve of the

qubits isn’t linear, flux modulating also gives a DC offset term given by δDC =
ϵ2ϕ
4
d2ν01
dϕ2

where ϵϕ is the amplitude of modulation in terms of flux ϕ applied to the qubit and ν01

is the frequency of the qubit |0⟩ to |1⟩ transition. We calibrate the flux drive amplitude

by fitting single qubit Ramsey frequency components to corresponding Bessel functions and

measuring DC offset, see Fig. SB.2.

Applying the modulation from the start of the ramp of the disorder makes adiabatic-

ity quite hard to achieve; the higher sidebands of the modulated qubit can interact with

neighbors during the ramp. We found it easier to instead adiabatically ramp qubits onto
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SI Fig. SB.2: Modulation Calibrations. We frequency modulate Q6, the lattice edge
qubit, at 100 MHz and measure the corresponding Ramsey signal at different modulation
amplitudes. In a, the Fourier transform of the corresponding Q6 Ramsey fringes are plotted
vs modulation drive amplitude, with a 20 MHz virtual offset. The peaks correspond to the
different sidebands, and the peaks’ shift in frequency as a function of amplitude is the DC-
offset caused by the the non-linearity in the qubit flux-frequency curve. Several of the peaks
at higher frequency are frequency folded/aliased because of finite sampling bandwidth. In
b, the first peaks at the first three sidebands are extracted and their amplitude plotted. By
fitting these amplitudes to the expected analytic expressions (Bessel functions), we extract
the modulation amplitude where the signal at the base qubit frequency (blue) is suppressed
by a factor of

√
2, marked by the black vertical line. Using the same fit parameters as for

the Bessel functions, we also fit the DC shift for the range of modulation drives in c. This
fit is used to extract and correct for the DC shift detuning when modulating by tuning the
qubit to compensate.

resonance, and then adiabatically turn on the modulation. In the code loop aiming to find

good parameters, we also varied ramp time for turning on modulation.

Similarly to the data set for chemical potential, to get signal for a given superposition,

we cycle through qubits, volume sets (where possible), and ramp times, until we hit a

combination that has a peak of prominence 6σ above background noise after applying a

digital low-pass filter cutting off frequency components below 20 MHz with a Ramsey virtual

frequency chosen to fall between 30 MHz and 100 MHz (see SI B.1). The exception is for

large volume and particle number: for V = 7 vs V = 6 sites at filling N = 4, 5, 6 there are no

peaks 6σ above background noise. We instead choose peaks 4σ above the background noise
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and apply a 30 MHz low pass filter (higher filter since because of our lower peak cutoff we are

more susceptible to low frequency noise, and because these energy differences are expected

to be higher in frequency).

B.2.3 Derivative

The x-axis point for a measurement comparing y(x+ 1)− y(x) is x+ 0.5. For example, for

E(N + 1, V )− E(N, V ), the density point in the plot is ρ = (N + 0.5)/V .

B.3 Souces of Deviation from Non-Interacting Fermion Analytics

B.3.1 Finite N and V effects

The gray theory curves plotted in Fig 6.4 and Fig 6.5 are theory for thermodynamic limit.

However, our system is finite in size, and so deviates from this limit. Our data is better

captured by finite-size analytics, see Fig SB.3.

B.3.2 Finite U/J Effects in a Finite Size System

Zooming in further reveals that at the next level of correction, our data also deviate from

even the finite-size correction because of the interaction energy U being finite; the mapping

to non-interacting fermions is not perfect, see Fig. SB.4.

B.4 Anharmonicity Disorder

We measured the Mott insulator gap at all lattice volumes, with Q1 as the qubit in a super-

position of |1⟩ and |2⟩. However, because of strong variation in the qubits’ anharmonicities,

lattice configurations beyond V = 2 that include Q2 were effectively restricted to Q0 and

Q1: Q2’s |2⟩ is 26 MHz detuned from its neighbors, causing data at higher particle number
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SI Fig. SB.3: Finite Size N and V Effects in Chemical Potential and Pressure.
Grey dashed lines correspond to free fermion analytics in the thermodynamic limit, dashed
colored lines correspond to free fermion analytics in finite size limit indicated by subplot
title, and circles correspond to data. Error bars, where larger than the data-point, reflect
the S.E.M.
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SI Fig. SB.4: Example of finite U/J effects in chemical potential. In a, we plot the
deviation from the infinite size fermion chemical potential for finite size analytics (dashed
light line), finite size & finite U numerics (dashed dark line), and our data (circles). In both
representative volumes V = 2 and V = 7, it emerges that while there is scatter in the data,
data agrees more closely with finite U & finite size numerics than just the finite size theory.
In b, in the first panel, for each volume, we measure the average deviation between data
and finite size fermion (ie infinite U) analytics (dark grey) and between data and numerics
calculated with our finite experimental value of U (light grey). In the second panel, we plot
the average of the absolute value of the deviation. These panels illustrate that while the
magnitude of the deviation in the data between finite U numerics and infinite U analytics
is similar, the data still agrees more closely with finite U numerics. Error bars, where larger
than the data-point, reflect the S.E.M.
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Qubit 1 2 3 4 5 6 7
Ulattice/2π (MHz) -236 -235 -209 -234 -236 -231 -225

(Ulattice − UQ1)/2π (MHz) -1 0 27 1 -1 4 10

Table B.1: Disorder in Qubit Anharmonicity
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ρ

23.0

26.5
−μ

(ρ
)/J

Chemical Potential μ

2

6
N

SI Fig. SB.5: Chemical Potential Above Mott Insulator Gap. We plot the energy
difference between the lattice being fully filled and the lattice being fully filled with one
particle band of second excited states U below the first band. Because of Bose enhancement,
the effective tunneling in this second band is 2J , reflected in the grey dashed lines from
non-interacting fermion analytics. Because of lattice site disorder, data deviates from free
fermion analytics at higher volumes (i.e. lower densities in plot above since particle number
here is fixed at N = 1). Error bars, where larger than the data-point, reflect the S.E.M.

to deviate from values expected in an uniform-U case.

B.5 Same Particle Manifold Superpositions

We perform a two-qubit gate, preparing the state 1√
2
(|01⟩ + |10⟩) between two qubits, to

create a superposition of these eigenstates at when the qubits are far detuned from each

other, in the stagger configuration. There are several ways to enact a two qubit gate:

the way we choose here is to π-pulse one qubit, bring it in resonance with its neighbor

for half the J tunneling time, and then jump both qubits back to the stagger. We then

proceed with the reversible adiabatic ramp protocol as normal. In Fig. SB.6a we prepare

and measure density profiles for two different single particle states at the stagger and at

the lattice degeneracy point where all the qubits are on resonance, as well as the density
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SI Fig. SB.6: Same Particle Manifold Superpositions. In a, we create and measure
density profiles for two different one-particle states, and their superposition, at the disordered
stagger position and at the lattice position. We then record the Ramsey beating between
the two states by measuring ⟨σXQ4σXQ5⟩ in b. Representative error bars reflect the S.E.M.

profile for their superposition. We extract the Ramsey trace by measuring ⟨σXQ4σXQ5⟩ in

Fig. SB.6b, which is within 3 MHz of the expected value.

B.6 Compressibility

The compressibility reflects how much the pressure changes with volume. In Fig. SB.7

we compare compressibility computed by differentiating pressure data (κ−1
s = −V ∂P

∂V ) to

compressibility computed by differentiating chemical potential data (κ−1
s = V ρ2 ∂µ

∂N |S). The

agreement that we find further validates that the equation of state is intensive (dependent

on particle number and system size only through density).

We calculate the compressibility by taking numeric N and V derivatives of µ and P . The

thermodynamic compressibility at constant entropy and particle number is defined as

κ−1
s = −V

∂P

∂V

∣∣∣∣
S,N

. (SB.1)
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SI Fig. SB.7: Compressibility. We plot the quantum fluid compressibility at different
density points by differentiating pressure data (orange) and chemical potential data (blue).
Error bars, where larger than the data-point, reflect the S.E.M.

However, with this expression, we can only take a numeric derivative of our pressure data

set with respect to volume; it would be be nice to use our chemical potential data set as

well.

In the thermodynamic limit, the Gibbs-Duhem expression holds, which states

0 = −V ∂P + S∂T +N∂µ. (SB.2)

Since we are at T = 0, this implies ∂P = N/V ∂µ = ρ∂µ. Therefore,

κ−1
s = −V

∂P

∂V

∣∣∣∣
S,N

= −N
∂µ

∂V

∣∣∣∣
S,N

= −N
∂

∂V

∣∣∣∣
S,N

∂E

∂N

∣∣∣∣
S,V

. (SB.3)

We flip the order of the derivatives, and once again replace ∂P = N/V ∂µ = ρ∂µ to get

the expression κ−1
s = −V ρ2 ∂

2E
∂N2

∣∣∣∣
S,V

[76].

B.7 Disorder Correction

Ensuring that the qubits in the on-resonance lattice configuration are degenerate in fre-

quency is extremely important when measuring pressure and chemical potential. For several

densities, the energy differences between ground states are on the order of a few MHz; lattice
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disorder can cause significant error in the quantities we are attempting to measure. Using

our RF flux crosstalk matrix correction and measured qubit ω01(ϕ) relations, we are able

to place qubits within 1 − 2 MHz of the desired lattice frequency. To ensure we hit lattice

degeneracy to the required precision, we feed back on the local ω01(ϕ) relations by compar-

ing our manybody profiles to expected theory. To ensure our corrections are robust, we feed

back on a full set of manybody profiles at V = 7: the ground state for N = 1, N = 2, and

N = 3. Using this method, we are able to achieve error on the order of 200−400 kHz, which

is the same order of magnitude as experiment-to-experiment qubit frequency drift.

It is also important that the qubits not only be on resonance with each other, but also

that we know what lattice frequency they are being placed at after the round of corrections

described above. Energy differences between eigenstates of different particle number depend

on what energy the particles are at. To ensure we are normalizing correctly (see Sec 2.4), it

is important that we actually be placing our lattice at the expected frequency. Feeding back

on profiles helps correct for relative detuning between qubits, but does not give us insight

into the absolute lattice frequency. To measure this quantity, we first measure via standard

Ramsey interferometry the frequency of individual qubits brought to the lattice one at a

time using the disorder corrections calculated from feedback back on profiles. Usually there

is some scatter (from an imperfect crosstalk matrix); we take the average of this scatter.

Recent results have shown that using machine learning on flux crosstalk matrices allows for

very low disorder [83], this would be a better solution going forward.

B.8 Error and Uncertainty Calculations

For each experiment in Fig. 6.2, we measure 2000 shots, bin the shots, apply relevant confu-

sion matrices, and extract the averaged quantity of interest (in this case, Ramsey traces). We

then repeat the experiment 10-11 times. Because of the long ramp times and wait times in

the experiment, very small frequency variations experiment-to-experiment cause large phase
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variations in our measurement. We calculate the starting phase in each trace from fits, and

numerically zero the phase. We then calculate the mean of the averages and standard devia-

tion of the resulting traces (i.e. calculate the standard error of the mean, or S.E.M.) for the

values and error bars that we report in this figure. The experiment repetitions are performed

close in time (typically within a 10-30 minute span) so that our error bars are not affected

by slow experimental drifts over hours or days.

For error bars in Fig. 6.4 and Fig. 6.5 come from repeating the procedure described in

SI B.2 3 times and 10-15 times respectively, then taking the mean and standard deviation

of the collections of measured peaks. We then propagate the error to gain the error bars

in Fig. 6.2c, f, and g. The exception is the U -detuned point in c, where we did not have

enough repetitions of the data point. There, the error bar is the variance in a Lorentzian fit

to the measured Ramsey peak.

Note that our error bars in Fig. 6.4 and Fig. 6.5 are smaller than points’ deviation from

exact numerical models of our system (average deviation of 700 kHz for particle number

superpositions and 800 kHz for volume superpositions). This is likely because of residual

frequency disorder (see SI B.7).
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SUPPLEMENT C

DEVICE PARAMETERS

C.1 Device Details Chapter 5

Qubit 1 2 3 4 5 6 7
Ulattice/2π (MHz) -241 -240 -240 -239 -239 -239 -240
Ji,i+1/2π (MHz) 9.0625 9.032 8.842 8.936 9.023 9.040 –

ωdisorder-large/2π − 4000 (MHz) 410 992 466 956 513 1020 489
ωdisorder-small/2π − 4000 (MHz) 742 860 767 875 782 890 797

T1(µs) 14.6 35.5 57.7 28.4 60.3 54.7 40.0
T2∗(µs) 0.85 0.64 1.31 0.77 3.57 0.84 1.4
fidelityge 0.91 0.92 0.93 0.95 0.87 0.92 0.83

ωread/2π (GHz) 6.197 6.323 6.556 6.78 6.871 6.655 6.427
κread/2π (KHz) 359 553 203 235 292 220 894
grd-qb/2π (MHz) 60 63 72 64 78 70 70
χrd-qb/2π (MHz) 0.48 1.23 0.78 1.24 0.90 1.71 0.73
ωpurcell/2π (GHz) 6.256 6.486 6.706 6.936 7.055 6.843 6.604
κpurcell/2π (MHz) 77.5 52.7 92.5 72.4 103.1 56.9 60.8
grd-pf/2π (MHz) 3 3.5 6 6.5 5 6 4.5

Table C.1: System Parameters Chapter 5

C.2 Device Details Chapter 6

Qubit 1 2 3 4 5 6 7
Ulattice/2π (MHz) -236 -235 -209 -234 -236 -231 -225
Ji,i+1/2π (MHz) -9.62 -9.58 -9.63 -9.74 -9.76 -9.63 –

T1(µs) 14.6 35.5 57.7 28.4 60.3 54.7 40.0
T2∗(µs) 0.85 0.64 1.31 0.77 3.57 0.84 1.4

Table C.2: System Parameters Chapter 6
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The optimal lattice frequency varied on a scale of weeks depending on the frequency

distribution of low lifetime defects. For data taken for Fig. 6.2 we used lattice frequency

5.31 GHz, for Fig. 6.3 we used lattice frequency 4.820 GHz, and for Fig. 6.4 and Fig. 6.5 we

used lattice frequency 5.0 GHz. Our qubit T1s and T2s similarly varied over time, with the

average T1 = 40 µs and average T2∗ = 1.3(µs). Our qubit T2 times when all the qubits are

on resonance improve, since because of the avoided crossings the eigenvalue vs flux curves

become flatter (we generate our own sweet spot). We did not quantitatively measure this

effect.

The RF crosstalk measured at 100 MHz for experiments involving modulation in this

work is lower, close to 2 − 3%. The next-to-nearest neighbor expected to be of magnitude

≈ 0.06×J from microwave finite-element simulations. The tunable transmon SQUID consists

of two asymmetric square-shaped junctions with sizes of 130 nm and 230 nm, embedded in

a loop of dimension 20 µm by 8 µm.
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SUPPLEMENT D

FABRICATION

D.1 Fabrication Recipe

The sample is a 10×20 mm sapphire chip with a tantalum base layer and aluminum Josephson

junctions and SQUID loops. Our substrate is a 450 µm thick C-plane sapphire wafer that

has been annealed at 1500° C for 2 hours, solvent cleaned, etched in 80°C Nano-Strip® for

10 min, and then etched again in 140° C sulfuric acid to fully remove all contaminants [146].

The large scale features of the device are defined using optical lithograpy. The base layer

is 200 nm of tantalum deposited at 800° C, then patterned with a direct pattern writer

(Heidelberg MLA 150) and wet etched in HF. Next, the junctions and SQUID loops are

defined with electron beam lithography, using an MMA-PMMA bilayer resist, written on a

Raith EBPG5000 Plus E-Beam Writer. The Al/AlOx/Al junctions are e-beam evaporated

in an angled evaporator (Plassys MEB550). Before Al deposition, Ar ion milling is used on

the exposed Ta to etch away the Ta oxide layer in order to ensure electrical contact between

the Ta and Al layers. The first layer of Al (60 nm, deposited at 0.1 nm/s) is evaporated at

an angle of 30° to normal, followed by static oxidation in O2 for 24 minutes at 50 mBar. The

second layer of Al (150 nm, 0.1 nm/s) is then evaporated at 30° to normal but orthogonal

to the first layer in the substrate plane to form the Manhattan-style junctions.

After fabrication, the EJ of a junction can be estimated by measuring the junction’s

room temperature resistance (you cannot individually measure each junction in a SQUID

loop, so we made test structures with each half of the SQUID loop and measured those).

The quantities are related by:

EJ =
Φ0Ic
2π

(SD.1)

=
Φ0

2π

π∆

2Re
(SD.2)
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where ∆ is the superconducting gap, Φ0 is the magnetic flux quantum, e is the electron

charge, and R is the room temperature resistance of the junction.

D.2 Packaging

The device is then mounted and wirebonded to a multilayer copper PCB. The ground plane

around the device features is also heavily wirebonded to avoid slotline modes and to fully

connect the ground plane across the chip. The device is enclosed in an OFHC copper mount

designed to eliminate spurious microwave modes near our operating frequencies. The copper

enclosure has a solenoid mounted on top for global flux tuning.
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SUPPLEMENT E

MEASUREMENT SETUP

The packaged sample is mounted to the base plate of a BlueFors dilution refrigerator at a

nominal temperature of 8 mK. A solenoid of coiled niobium-titanium (NbTi) wire is fixed

to the packaged sample to provide a global bias field with little heating, useful for getting

close to desired lattice flux bias point without driving to much current through the DC

flux lines. The sample is placed in a heat-sunk can consisting of a thin high-purity copper

shim shield, followed by a high-purity superconducting lead shield, followed by two µ-metal

shields (innermost to outermost) to provide additional shielding from radiation and external

magnetic fields.

The experimental setup is shown in SE.1. All input and flux lines have Eccosorb (CRS-

117) filters at base to protect the sample from IR radiation. A Keysight PNA-X N5242

is used to perform spectroscopy of the readout resonators/Purcell filters and to measure

the flux tuning curves of each qubit. For experiments, a SignalCore SC5511A is used to

generate an LO tone near the qubit frequency. This tone is windowed using a custom-built

microwave switch, then I/Q modulated by a Keysight PXIe AWG (M3202A, multichannel,

1 GS/s) to generate the individual qubit drive pulse. There are two copies of this qubit drive

setup, enabling simultaneous pulses to the qubits staggered both above and below the lattice

frequency, a bandwidth otherwise inaccessible with the 1 GS/s AWG. The readout tones are

also generated with SC5511A SignalCores windowed by microwave switches. There are two

readout LOs, enabling simultaneous two-qubit readout. The qubit drive and readout pulses

are combined outside the fridge and sent to the sample on a common input line. The output

signal coming from the chip passes through three cryogenic isolators (64 dB total isolation)

at base, then travels via a NbTi low-loss superconducting line to the 4K plate where it is

amplified by a Low Noise Factory HEMT amplifier.The output signal coming out of the

fridge passes through additional room temperature amplifiers (Miteq AFS3-00101200-22-
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SI Fig. SE.1: Experiment Setup Schematic drawing of cryogenic and instrumentation
setup.
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10P-4, Minicircuits ZX60-123LN-S+). The signal is then split and demodulated against both

of the readout LO tones using an I/Q mixer, and recorded using a fast digitizer (Keysight

M3102A, 500 MSa/s). DC and RF pulses are combined at a MiniCircuits Bias Tee (ZFBT-

4R2GW) with the capacitor removed before traveling to the chip. Each qubit has its own

combined RF+DC flux line.
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