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ABSTRACT

Battery-powered embedded devices operate under energy constraints, and devices seek meth-

ods to manage their energy consumption. Adaptive algorithms are an emerging method to

perform this management. Adaptive systems meet device constraints by leveraging data-

dependent behavior to optimize the tradeoff between system quality (i.e., error) and energy.

This data-dependent behavior comes from using the collected measurements to determine

when to conserve resources. We demonstrate this design through a new adaptive system that

performs recurrent neural network inference on embedded devices under energy constraints.

This thesis argues that our analysis of embedded systems must go beyond this two-

dimensional tradeoff space and explicitly consider data privacy as a third dimension because

data-dependent behavior can leak crucial information about the captured measurements.

We display this problem by presenting two new side-channel attacks and defenses. The first

attack uses the communication volume of embedded devices employing adaptive sampling

to learn about the captured data. The second attack exploits the exit decisions of adap-

tive, multi-exit neural networks to expose the model’s results. In both settings, we develop

defenses that eliminate information leakage and incur negligible overhead while achieving

higher system quality (i.e., error) than non-adaptive algorithms. These properties make our

security measures suitable under the resource constraints of embedded devices.

These privacy issues extend beyond embedded systems and into the broader class of

Internet-of-Things devices. We demonstrate this phenomenon by developing a new attack

against Smart Televisions (TVs). Users enter information into Smart TVs through on-screen

virtual keyboards, and popular Smart TV platforms, such as Apple’s tvOS and Samsung’s

Tizen, make sounds as users type. We find that an attacker can use this audio as a side-

channel to extract sensitive keystrokes (e.g., credit card details and common passwords) from

Smart TVs. Samsung has acknowledged this vulnerability, and this attack highlights how

modern Internet-connected devices can leak sensitive information in unintended ways.

xii



CHAPTER 1

INTRODUCTION

Battery-powered embedded sensors are common components in applications for areas such

as agriculture [Vasisht et al., 2017], healthcare [Sotirakis et al., 2023], and smart homes [Ho

et al., 2016]. Sensor devices collect measurements from their environment, process these

values, and communicate results to a server. For reliable performance, devices must meet

energy constraints [Gobieski et al., 2019, Juang et al., 2002], and sensors seek ways to reduce

their energy consumption. Further, sensors often capture sensitive data such as personal

health information [Hiremath et al., 2014, Sotirakis et al., 2023]. Devices must therefore

ensure data privacy.

Adaptive behavior is an emerging method to manage the energy consumption of embed-

ded sensing devices [Dennis et al., 2019, Laskaridis et al., 2020, Teerapittayanon et al., 2017].

Adaptive algorithms control the energy spent collecting, processing, and communicating each

measurement. Reducing energy consumption, however, comes at a tradeoff in system quality.

Adaptive systems use runtime feedback to optimize this tradeoff between system cost (e.g.,

energy) and answer quality (e.g., error) [Farrell and Hoffmann, 2016, Hoffmann, 2014, Wan

et al., 2020b]. Namely, these systems determine how much energy to spend on a single input

using the input’s “difficulty.” The method to measure input difficulty is a design property of

the particular adaptive system. With this data-dependent method, adaptive algorithms can

conserve energy with minimal impact on the system’s answer quality.

We highlight the benefits of adaptive behavior on low-power devices through a novel

inference system called Budget RNNs (Chapter 2). Budget RNNs perform recurrent neural

network (RNN) inference under long-term energy budgets only known at runtime [Kannan

and Hoffmann, 2021]. This inference system uses a new RNN architecture that hierarchically

processes subsequences of measurements. The Budget RNN model produces a prediction

for each subsequence, allowing the system to save energy by terminating inference early.
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This early stopping results in collecting and processing only a subset of inputs. Budget

RNNs determine the subsequence granularity using adaptive behavior. The model produces

halting signals based on the current inputs; these signals encode the inputs’ difficulty. The

system then sets budget-specific thresholds on these halting signals to determine when to stop

inference. The inference system adapts to new budgets and dynamic conditions by altering

the thresholds with a runtime controller. Across multiple budgets and tasks, Budget RNNs

achieve a mean accuracy of 1.5 points higher than prior state-of-the-art RNNs [Campos et al.,

2017, Dennis et al., 2018, Neil et al., 2016] that support subsampling.

This thesis argues that the two-dimensional tradeoff space considered by existing adap-

tive systems is insufficient. Instead, adaptive systems must explicitly consider data privacy

as a third tradeoff axis. This consideration is necessary because adaptive systems make data-

dependent decisions, and these decisions are observable through side-channels (e.g., wireless

communication patterns). Thus, an attacker observing the adaptive system’s decisions can

learn about the underlying measurements. Indeed, Budget RNNs are an example of this phe-

nomenon, as they determine the subsequence granularity based on already-collected inputs.

The Budget RNN system’s energy consumption, therefore, provides information about the

collected measurements. This phenomenon prevents privacy-conscious sensing applications,

such as those in healthcare [Sotirakis et al., 2023], from gaining the benefits of adaptive

behavior. It is difficult to develop defenses for these side-channel attacks for two reasons:

1. The defense must not significantly increase the application’s execution cost on low-

power sensing devices, as these devices do not have excess resources.

2. The security solution must deliver better answer quality (i.e., error) than non-adaptive

baselines, which do not suffer from this information leakage. Otherwise, the sensing

device would rather use non-adaptive techniques.

We display how adaptive systems can suffer from privacy issues on embedded sensing

devices by creating two new side-channel attacks and defenses. The first system employs
2



general-purpose adaptive sampling [Chatterjea and Havinga, 2008, Silva et al., 2017] to

reduce the energy consumption of collecting and transmitting raw values (Chapter 3). As is

standard on low-power devices [Juang et al., 2002], the device sends batches of measurements

at regular intervals. We discover that an attacker who observes the adaptive sampling policy’s

collection rate can expose the system’s sensed events [Kannan and Hoffmann, 2022]. This

collection rate gets leaked through the size of transmitted batches. This privacy issue occurs

across multiple tasks and adaptive sampling policies, highlighting how the problem stems

from the data-dependent design of adaptive techniques. We close this side-channel through

a new defense called Adaptive Group Encoding (AGE). AGE works as a post-processing

step to any periodic adaptive sampling policy. The defense uses quantization to encode all

collected batches as fixed-sized messages, hiding the true collection rate from the attacker.

Unlike message padding [Dyer et al., 2012], AGE incurs no communication overhead by

setting the fixed message length to that of the underlying adaptive sampling policy’s average

batch size. With this design, AGE achieves 11% lower error than non-adaptive policies while

eliminating information leakage and incurring negligible energy overhead. These properties

allow AGE to provide a practical security solution on embedded sensing devices.

The second system performs distributed inference using Multi-exit Neural Networks

(MeNNs) [Teerapittayanon et al., 2017, Laskaridis et al., 2020] (Chapter 4). These infer-

ence models use multiple exit points and partitioning to reduce inference costs in sensing

systems. Existing MeNNs adaptively determine when to exit early using a single threshold

on data-dependent prediction confidence values [Teerapittayanon et al., 2016, Kaya et al.,

2019]. Thus, prior methods make exit decisions in a data-dependent manner. We discover

that an attacker can observe when the system exits early through the communication pat-

terns of distributed MeNNs [Kannan et al., 2023]. The attacker can then use these exit

decisions to expose the model’s predictions at over 1.85× the rate of random guessing. In

some cases, this side-channel can leak over 80% of the MeNN’s predictions. We solve this
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problem by proposing two new defenses. The first defense, Per-Class Exiting (PCE), replaces

the single threshold of prior techniques with multiple confidence thresholds. These thresh-

olds balance exit rates across predicted classes, limiting information leakage. PCE displays

better privacy with inference accuracy that is close to previous methods. However, we prove

that PCE has no privacy guarantees, and we achieve these guarantees through a second

solution, Confidence-Guided Randomness (CGR). CGR augments PCE with randomization

to obfuscate temporal patterns in early exit decisions. By leveraging prediction confidence

and randomness, CGR has consistently better inference accuracy and statistically equivalent

privacy compared to a baseline which exits early uniformly at random. Both PCE and CGR

show negligible energy overhead, making these methods suitable for sensing devices.

These discovered side-channels extend beyond embedded systems and into the more gen-

eral class of Internet-of-Things (IoT) devices. We demonstrate this phenomenon by devel-

oping a novel attack against modern Smart Televisions (TVs) (Chapter 5). Smart TVs are

internet-connected TVs that support video streaming applications and web browsers. Users

enter information into Smart TVs through on-screen virtual keyboards. These keyboards

allow users to navigate between keys with directional commands from a remote controller.

Given the extensive functionality of Smart TVs, users type sensitive information (e.g., pass-

words) into these devices, making keystroke privacy necessary. We create and demonstrate a

new side-channel attack [Kannan et al., 2024] that exposes keystrokes from the audio of two

popular Smart TVs: Apple [Apple, 2023] and Samsung [Samsung, 2023]. This side-channel

attack exploits how Smart TVs make different sounds when selecting a key, moving the cur-

sor, and deleting a character. These properties allow an attacker to extract the number of

cursor movements between selections from the TV’s audio. Our attack uses this extracted

information to identify the likeliest typed strings. Against realistic users, the attack finds up

to 33.33% of credit card details and 60.19% of common passwords within 100 guesses. Sam-

sung has acknowledged this vulnerability and placed our work in the Samsung Bug Bounty
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Hall of Fame for Smart TVs, Audio, and Displays1.

This thesis builds on prior attacks that extract private information from traditional com-

puting systems [Brumley and Boneh, 2005, Duong and Rizzo, 2012, Kocher et al., 2020,

Lipp et al., 2020, Song et al., 2001] by describing how both embedded and IoT devices can

leak information in unintended ways. These vulnerabilities show how system designers must

carefully consider the privacy implications of every feature interacting with sensitive data.

1. https://samsungtvbounty.com/hallOfFame
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CHAPTER 2

BUDGET RNNS

2.1 Introduction

Battery-powered sensors face the challenge of a finite lifetime. When the battery is ex-

hausted, devices need maintenance to continue operation, and this can be costly or im-

practical for sensors located in hard-to-reach places [Martinez et al., 2004, Naylor and Kie,

2004, Tyler et al., 2013, Zhang et al., 2004]. Thus, these systems are often augmented with

recharging capabilities; e.g., wirelessly [Yang and Wang, 2015] or through energy harvesting

[Bagree et al., 2010, Jang et al., 2010, Tyler et al., 2013, Zhang et al., 2004]. This gen-

eral technique induces energy budgets: until recharged, sensors must perform using only

previously-stored energy. As recharging systems exhibit variance in both generated power

and energy availability, the induced budgets are unknown at design time [Sommer et al.,

2018].

To meet varying energy budgets, sensors must alter their runtime energy consumption.

Sensor energy consumption typically goes into three tasks: collecting, processing, and com-

municating data. By collecting data less often—i.e., sampling the data—devices reduce

the energy consumed by both sensing hardware and subsequent processing [Jain and Chang,

2004, Willett et al., 2004, Zhou and De Roure, 2007]. Reducing the data collection rate, how-

ever, comes at a cost in error. By collecting fewer values, the sensor creates a less-complete

view of the target environment. With this tradeoff, a logical goal of budgeted computation

is to minimize the error (or maximize accuracy) while altering energy consumption to meet

the energy constraint.

Understanding how data collection affects error requires understanding sensor compu-

tations. Sensors often perform local inference for improved reactivity, privacy, and energy-

efficiency [Kumar et al., 2017, Shi and Dustdar, 2016]. Furthermore, this processing is
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increasingly focused on deep neural networks (DNNs) [Dennis et al., 2018, Gobieski et al.,

2019, Teerapittayanon et al., 2017] due to their high accuracy for image [Krizhevsky et al.,

2012] and audio [Graves et al., 2013, Koutnik et al., 2014] tasks. As many sensing tasks

operate on data streams, recurrent neural networks (RNNs) [Hochreiter and Schmidhuber,

1997, Werbos, 1990] are common DNN models for in-sensor inference [Dennis et al., 2018,

2019, Kusupati et al., 2019].

RNNs operate on data sequences of arbitrary length, making them well-suited to sampling

techniques, and thus, operating under energy budgets. The challenge involves determining

how to minimize the RNN’s inference error under an energy constraint. This challenge leads

to the concrete problem of selecting the sampling technique that both minimizes the RNN

error and conserves enough energy to meet the budget. As we assume the exact energy

constraint is not known at design time, the system must have sufficient flexibility to provide

high accuracy across a range of energy budgets.

There exist prior RNN solutions—specifically, Skip RNNs [Campos et al., 2017] and

Phased RNNs [Neil et al., 2016]—that appear to fit into the framework of budgeted com-

putation. While they differ in specifics, these approaches jointly train both an RNN and

a sampling strategy. The joint training means that each RNN operates at a single energy

consumption level. To meet an energy budget that is only known at runtime, the inference

system must use many RNNs, each trained for a different budget. The need to produce

many separate networks with different sampling strategies leads to a high training cost. Fur-

thermore, deploying many neural networks will exhaust the memory capacity of low-power

devices. An additional downside is the inefficient use of energy budgets. To meet the budget

B ∼ [Bmin, Bmax], the system may have to select an RNN with energy consumption b that

is strictly less than the budget. Thus, the system will have a surplus of B − b > 0 joules.

The goal of this thesis is to produce budgeted inference designs that are low overhead (in

training time and memory footprint) yet use the entire energy budget to maximize accuracy,
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rather than waste it as would be done with prior work.

Therefore, we propose a new type of RNN called the Budget RNN. Budget RNNs are

designed from the ground up for accurate inference under energy budgets only known at

runtime. The model has a leveled architecture in which each level processes a subsequence of

inputs. Budget RNNs conserve energy by allowing execution to halt after each subsequence.

This design enables a single Budget RNN to dynamically alter its energy consumption. As

Budget RNNs support non-contiguous subsequences, these features come without compro-

mising sampling flexibility. Budget RNNs use trainable halting signals to provide information

about when to stop inference. We design a runtime controller that uses these halting signals

to optimize the model accuracy while meeting an energy budget. The controller generalizes

to new budgets and adapts the system to changes in the runtime environment. Furthermore,

the combination of early-stopping and dynamic sampling can be realized in a relatively small

number of Budget RNNs, leading to reduced training time and low memory overhead.

We evaluate the proposed system in both a simulated environment and a hardware im-

plementation. We show that, across seven datasets, the Budget RNN system achieves a

mean accuracy that is 1.5 points higher than that of Skip RNNs [Campos et al., 2017] and

3 points higher than that of standard RNNs. Alternatively, Budget RNNs can be used to

reduce energy needs (and the associated battery and charging capacity). Specifically, for the

same accuracy of baseline approaches, Budget RNNs require 20% smaller energy budgets.

With respect to Skip RNNs, these benefits come at no cost in training time.

In summary, this thesis makes the following contributions1:

• We establish a framework for maximizing inference accuracy under energy budgets.

We use this framework to formalize a goal for inference systems that adapt to unseen

budgets at runtime.

• We present a novel RNN architecture, called the Budget RNN, for performing inference

1. This work appears as a conference paper in RTAS 2021 [Kannan and Hoffmann, 2021]
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under energy budgets that are unknown at design time. Budget RNNs change their

energy consumption by using a leveled architecture to process subsamples of input

sequences. This design achieves better accuracy under energy budgets when compared

to existing RNN solutions.

• We design an optimization procedure to control the subsampling behavior of Bud-

get RNNs. This optimizer accounts for energy constraints and provides results that

generalize to unseen budgets.

• We create a runtime controller for Budget RNNs to ensure the model meets any ob-

served energy constraint. This controller uses a dynamic setpoint that adapts based

on feedback from the Budget RNN. The control policy further adapts the system to

changes in the runtime environment.

2.2 Background

In this section, we motivate the problem of inference under runtime energy budgets using ex-

amples from rechargeable sensors (§2.2.1), provide background information on RNNs (§2.2.2),

establish a formal framework for budgeted inference (§2.2.3), and identify limitations in prior

work (§2.2.4).

2.2.1 Examples of Inference under Energy Budgets

Two examples of target systems are wireless rechargeable sensor networks (WRSNs) [Yang

and Wang, 2015] and devices with energy harvesting units [Zhang et al., 2004]. We describe

these applications below.

WRSNs use a mobile charging unit to wirelessly recharge sensors [Yang and Wang, 2015].

The charging unit uses a protocol, such as on-demand charging, to determine when to visit

devices [He et al., 2014]. In on-demand charging, sensors notify the mobile charging unit
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when they are low on power, and the charging unit uses a policy to determine the exact

recharge time [He et al., 2014, Lin et al., 2018]. This scenario creates an energy budget:

once sensors request a recharge, they have finite remaining energy to use before the charging

unit arrives. Furthermore, the time until a recharge is dependent on both the state of the

network and the visitation policy. Thus, sensors only know the exact energy budget at

runtime.

Energy harvesting systems supplement batteries with renewable energy. For example,

sensors for wildlife tracking [Bagree et al., 2010, Naylor and Kie, 2004, Sommer et al., 2018,

Zhang et al., 2004], bridge monitoring [Jang et al., 2010], and ecosystem observation [Mar-

tinez et al., 2004, Tyler et al., 2013] use solar panels. Energy harvesting has varying per-

formance due to a dependence on the environment; e.g., solar panels generate up to six

times less power in overcast rather than sunny weather [Zhang et al., 2004]. This variance

creates inherent unreliability in sensor lifetime, which is a problem for operators. For exam-

ple, ZebraNet operators want sensors to last for at least 72 hours on battery power alone

[Zhang et al., 2004]. This design requirement leads to energy budgets; given only the energy

stored before losing renewable power, sensors must meet the desired uptime. This goal is

challenging because the residual battery charge before a loss of renewable power is unknown

at design time. Thus, such sensors must handle energy constraints that are not known until

runtime.

2.2.2 Recurrent Neural Networks and Sequential Classification

Sensors collect periodic measurements of their surrounding environment, creating a temporal

data stream [Madden and Franklin, 2002]. As an example, consider human activity recog-

nition [Kwapisz et al., 2011]. In this task, sensors measure acceleration values at regular

intervals. The corresponding inference model uses a sequence of measurements to predict

the activity.
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Recurrent Neural Networks (RNNs) are a popular model for inference on sequences.

RNNs’ key feature is their maintenance of an internal memory state [Hochreiter and Schmid-

huber, 1997, Pineda, 1987, Werbos, 1990]. At each step, this memory state represents a

summary of the inputs observed thus far. RNNs update the memory state using a trainable

transition function called the RNN cell.

We formally describe RNNs by considering an ordered sequenceX = {x0,x1, . . . ,xT−1}.

Each vector xt ∈ Rn represents the input measurement at step t ∈ [T ]2; e.g., for human

activity recognition, each xt holds 3D acceleration values. At step t ∈ [T ], the RNN updates

the memory state st ∈ Rd using the transition function (cell) Sϑ : Rn × Rd → Rd,

st = Sϑ(xt, st−1) ∀t ∈ [T ] (2.1)

There exist many RNN cells, from single-layer networks [Pineda, 1987] to more complex

designs for learning long-term relationships [Cho et al., 2014, Collins et al., 2016, Hochreiter

and Schmidhuber, 1997, Koutnik et al., 2014, Kusupati et al., 2019].

RNNs create predictions using a trainable readout function gψ, which often takes the form

of a multi-layer perceptron [Rumelhart et al., 1994]. The readout layer uses a summary of

the input sequence to make the prediction. There are many ways to create this summary; in

the simplest case, the readout function uses the final memory state sT−1, and the prediction

is ŷ = gψ(sT−1). Figure 2.1 shows an example of an RNN.

2.2.3 Inference under an Energy Budget

We now formalize the goal of designing an RNN-based inference system that achieves low

error under runtime energy constraints. Let F = {fθ1 , fθ2 , . . . , fθp} be a family of (se-

quential) inference models. We assume each model incurs a different average energy cost

2. We use the notation [N ] = {0, 1, . . . , N − 1}
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Figure 2.1: An RNN on a sequence with three elements. Sϑ represents the RNN cell and
gψ is the readout layer.

to process a single sequence. Let X = {X(0),X(1), . . . ,X(M−1)} be a set of M non-

overlapping sequences. Each sequence X(m) = [x
(m)
1 ,x

(m)
2 , . . .x

(m)
T ] contains T elements

where consecutive measurements are sampled ∆t seconds apart.

We define an energy constraint as a tuple (B,M) capturing the goal of performing in-

ference on M sequences with energy at most B. We assume that M is a finite integer

in [Mmin,Mmax] and B ∼ U([Bmin, Bmax]). The ranges describe the set of feasible con-

straints. Given these constraints, we want a policy π which selects a model in F at each

step m ∈ [M ]. The selected model, denoted by fπm = π(F ,X(m), B,M), performs inference

on the mth sequence X(m). The dependence of π on B and M arises because the system

must adapt to any feasible constraint.

We want to construct a policy π and a family of inference models F to (1) minimize the

expected error over all possible budgets and (2) meet all energy constraints. Thus we have

the following optimization problem (where ym is the true label for the mth sequence):

π,F =argmin
π̃,F̃EM,B

 1

M

M−1∑
m=0

Error(f π̃m(X(m)), ym)

 (2.2)

s.t.
M−1∑
m=0

Energy(f π̃m,X(m)) ≤ B ∀M,B (2.3)

It is infeasible to solve this problem exactly. Even if we could, we do not know the specific

energy budgets at design time.
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2.2.4 Adaptive Sampling in Recurrent Neural Networks

A family F for budgeted inference must contain inference models with varying energy costs.

Thus, to build a family F with RNNs, we need a method to control the energy consump-

tion of RNNs during inference. In sensor environments, RNNs can adjust their energy

consumption by varying the number of inputs. For example, rather than using a full se-

quence [x0, . . . ,xT−1] to form a prediction, an RNN can save energy by instead using the

subsequence [xα0 , . . . ,xαr−1 ] where r < n. Skipping inputs saves energy by reducing the

frequency of both processing and collection. These savings are significant when compared to

the energy required to communicate predictions to a centralized server. Between the tasks

of collection, processing, and communication, data processing has the lowest energy cost.

For example, both the TI MSP430 FR5994 [Instruments, 2021] and the Atmel SAM L21

[Microchip, 2020] draw under 200µA per MHz. In contrast, sensing hardware can consume

an order of magnitude more power, and the cost of sensing can even exceed that of radio

modules [Alippi et al., 2009b]. As transmission only occurs once per sequence, the relative

cost and frequency of collection allow subsampling to yield significant energy savings [Alippi

et al., 2009b]. We can thus create a budgeted inference system with a family of models F

composed of RNNs that subsample input sequences.

Two state-of-the-art RNN architectures support subsampling: Skip RNNs [Campos et al.,

2017] and Phased RNNs [Neil et al., 2016]. Skip RNNs use a trainable binary gate to skip

sequence elements. This gate is jointly trained with the RNN parameters, and it gives the

model fine-grained control over the sampling strategy. Phased RNNs use a periodic phase

gate to control when the RNN makes updates to its memory state. By unifying the phase

gate across all state dimensions, Phased RNNs can use this gate to skip inputs. Thus, both

Skip and Phased RNNs can create a family of inference functions (F) by sub-sampling the

sequence with varying granularity.

Both approaches train their sampling strategy at the same time they train their RNN
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parameters. This joint training reduces the flexibility to adapt to runtime energy availability

and is a bad match for the constraints of low-power sensing systems. In particular, a Skip or

Phased RNN cannot change its sampling strategy after training. This property means that

an instance of either RNN operates at only one energy consumption level. To meet energy

budgets that are unknown at design time, a system based on either model would need

many trained neural networks. This strategy requires a longer training time, and memory

restrictions cap the number of deployed models. Furthermore, a reasonable selection policy

(π) is to always choose the best RNN that meets the energy constraint. As there are a small,

discrete number of models (due to memory constraints on embedded devices), this policy

inefficiently uses the available energy; for a constraint (B,M), the best model may use only

b < B joules to classify M sequences. Our goal is to design a practical approach that uses

the remaining B − b joules to produce more accurate inference results.

2.3 Budget RNN Model Architecture

Budget RNNs are a family of RNN architectures designed to (1) deliver high accuracy under

energy constraints and (2) generalize to budgets that are unknown until runtime. There

exists a tension between these two guiding principles. On one hand, RNN accuracy depends

on the sequence subsampling algorithm. As discussed for Skip and Phased RNNs, however,

creating a more flexible subsampling algorithm through joint training limits the ability to

generalize to new budgets.

Budget RNNs address this tension using four features. First, Budget RNNs have a leveled

architecture where each level processes a distinct subsequence (§2.3.1). The Budget RNN

produces a prediction after each subsequence. Second, the model avoids recomputation by

merging RNN memory states across subsequences (§2.3.2). The leveled architecture allows a

single Budget RNN to operate at many energy levels. In particular, controlling the number

of executed subsequences determines the number of input elements the Budget RNN uses.
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Figure 2.2: A Budget RNN with sequence length T = 6, L = 2 levels and stride length
K = 1.

This control is possible due to the third feature of Budget RNNs: halting signals (§2.3.3).

For each subsequence, Budget RNNs produce a signal which indicates whether the model

should halt its execution. By setting thresholds on these signals, an inference policy (π)

can dynamically alter the Budget RNN’s sampling granularity. These signals decouple the

subsampling strategy from the Budget RNN parameters. We discuss this control strategy in

Section 2.4. Finally, Budget RNNs are trained with a novel loss function that balances the

predictions and halting signals across all subsequences (§2.3.4). Figures 2.2 and 2.3 show

two Budget RNN architectures.

2.3.1 Leveled Architecture

Each Budget RNN level applies a shared RNN to a distinct subsequence. Budget RNNs

sequentially process these subsequences, producing a prediction from each. These predictions

allow Budget RNNs to exit early during inference. Further, the Budget RNN can skip inputs

as the data from unprocessed subsequences does not need to be collected. Thus, Budget

RNNs can save on both computation and data collection.

We describe this process formally by considering the subsequenceX(α) = {xα0 , . . . ,xαr−1}
15



where r is less than the original sequence length T . Similar to standard RNN update (Equa-

tion 2.1), Budget RNNs use the state transition model Sϑ and readout layer gψ to perform

on the subsequence X(α):

sαt = Sϑ(xαt , sαt−1) ∀t ∈ [r] (2.4)

ŷ(α) = gψ(sαr−1) (2.5)

The transition model Sϑ can be any RNN cell [Cho et al., 2014, Collins et al., 2016, Hochreiter

and Schmidhuber, 1997]. Both Sϑ and gψ are shared across all subsequences, a key feature

for reducing memory overhead.

Budget RNNs apply this recurrent process to each subsequence. Subsequence formation

is based on two parameters:

• Number of Subsequences (L): Each subsequence results in a prediction, so this param-

eter also represents the number of predictions. We also refer to L as the number of

levels—the subsequences form levels in the model.

• Stride Length (K): This parameter determines the gap between elements in each sub-

sequence. For example, in a sequence of length T = 6, the subsequences for a stride

length of K = 2 are {x0,x2,x4} and {x1,x3,x5}. In general, the ℓth subsequence has

the following form:

X(ℓ) =


{x(ℓT/L)+n | n ∈ [TL ]} if K = 1

{xℓ+nK | n ∈ [ TK ]} if K > 1

(2.6)

When K > 1, we set L = K to avoid the having a single element in multiple subse-

quences.

Both L and K constitute hyperparameters for Budget RNNs, and we assume both parameters
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divide the sequence length T . The stride length has a noticeable impact on model accuracy,

and we discuss how to set this parameter in §2.4.4.

2.3.2 Merging Memory States Across Subsequences

To maximize accuracy and avoid energy-wasteful redundant computation, Budget RNNs

leverage already-processed sequence elements. When executing on level ℓ, the Budget RNN

merges the new inputs to improve the prediction from level ℓ − 1. A key property of this

merging is the avoidance of backward dependencies. During inference, a sensor supplies

the Budget RNN with measurements collected over time. Further, Budget RNNs conserve

energy by skipping subsequences. From these two properties, backward dependencies would

require the system to either execute the current step using future data or collect and store

elements that may be ignored. The former is impossible, and the latter is energy-inefficient.

When K = 1, the Budget RNN looks like a standard RNN with L early-exit points

[Dennis et al., 2018]. The model combines information between subsequences using the

RNN cell: the final memory state of the ℓ − 1th level becomes the initial memory state of

the ℓth level. Figure 2.2 shows an example of this design.

When K > 1, the merging is more complex due to the interleaving of subsequences.

For example, when T = 4 and K = 2, the Budget RNN uses subsequences {x0,x2} and

{x1,x3}. In this case, the final element of the first subsequence, x2, occurs after elements

in the second subsequence. Thus, using s2 as the initial state of the second subsequence

creates a backward dependency. Budget RNNs solve this problem by aligning and merging

the memory states from each level. Equations (2.7) and (2.8) below show how the merging

layer M interacts with the standard RNN cell in (2.9). The variables W (M),U (M) and
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Figure 2.3: A Budget RNN with sequence length T = 6, L = 2 levels and stride length
K = 2.

b(M) are trainable parameters, σ is the sigmoid function, and ⊙ is the element-wise product.

zt = σ(W (M)st−K +U (M)st−1 + b
(M)) (2.7)

s̃t−1 = zt ⊙ st−K + (1− zt)⊙ st−1 (2.8)

st = Sϑ(xt, s̃t−1) (2.9)

To clarify this design, let step t belong to subsequence ℓ. This merging layer makes st depen-

dent on all inputs collected thus far. The state st−K precedes step t in the ℓth subsequence

and represents a summary of the current subsequence up to step t. The state st−1 belongs

to subsequence ℓ− 1 and represents a summary of the already-collected elements in previous

subsequences. Using a combination of st−1 and st−K makes st dependent on all elements

collected up to step t. Figure 2.3 depicts this design.

Within this leveled architecture, the error should always improve as the model observes

more data. In practice, however, this desired behavior does not always hold. We hypothesize

that this issue stems from two factors: (1) weight sharing across levels and (2) a loss function

based on an unweighted average of the per-level loss (§2.3.4). To mitigate this problem, we
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use an additional output pooling layer to combine the predictions across subsequences. The

pooling operation allows Budget RNNs to use predictions from previous levels if doing so

lowers the error. As shown in the equations below, this layer uses a trainable weighted

average to aggregate predictions. The variable s(ℓ) is the final memory state for level ℓ,

wpool,upool and bpool are trainable, and gψ is the readout function.

rk = w⊤pools
(ℓ) + u⊤pools

(k) + bpool ∀k ≤ ℓ (2.10)

βk = Normalize(r0, . . . , rℓ)k ∀k ≤ ℓ (2.11)

ŷ(ℓ) =
ℓ∑

k=0

βkgψ(s
(k)) (2.12)

In our implementation, we use a SparseMax normalization [Martins and Astudillo, 2016]

instead of a softmax normalization due to better numerical stability when implemented in

fixed-point arithmetic on MCUs.

2.3.3 Halting Signals

Budget RNN’s use early-exit points to alter their energy consumption. For example, to

conserve energy, a Budget RNN can stop at an intermediate level ℓ; the sensor then does not

need to capture inputs belonging to subsequences ℓ′ > ℓ. To maximize accuracy, the inference

policy (π) should control the number of executed levels in a data-dependent manner [Campos

et al., 2017]. That is, the system should use inputs to determine when to exit inference.

Budget RNNs support the ability to make data-dependent decisions using trainable halting

signals [Graves, 2016, Rußwurm et al., 2019, Schmidhuber, 2012]. At each level ℓ ∈ [L],

these signals indicate the probability the current level’s prediction is correct. The policy π

controls the halting behavior using thresholds on these signals (§2.4).

We describe these halting signals by considering two cases. First, when K = 1, the

model creates halting signals using the final memory state of each level. Second, when
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K > 1, the Budget RNN creates halting signals from the first element of each subsequence.

This discrepancy is a result of the interleaving of elements across subsequences. For example,

during inference, the system must decide whether to collect x1 after processing x0. When

K > 1, x0 and x1 belong to different subsequences. Consider if the Budget RNN created

the halting output after completing level ℓ = 0. The system would need to collect elements

(such as x1) that may be ignored if the system decides to halt at ℓ = 0. Such extraneous

data collection wastes energy. To efficiently collect inputs, the system must use x0 to decide

whether it should halt at level ℓ = 0. Therefore, when K > 1, the Budget RNN must use

the first memory state of the ℓth subsequence to construct the halting signal for level ℓ.

Budget RNNs use a shared, trainable layer to create the halting signals. The equations

below show the halting function hφ applied to level ℓ. The term sδ(ℓ) is the final state of level

ℓ when K = 1 and the first state of level ℓ when K > 1. The variablesWhalt,1,whalt,2, bhalt,1

and bhalt,2 are trainable, and ϕ is the nonlinear activation function.

hℓ = ϕ(Whalt,1sδ(ℓ) + bhalt,1) (2.13)

q̂ℓ = σ(w⊤halt,2hℓ + bhalt,2) (2.14)

Budget RNNs train the halting signal q̂ℓ to predict whether the model is correct at level

ℓ. For classification tasks, the label is qℓ = 1[y = argmax ŷ(ℓ)] where 1[·] is an indicator

function. For regression tasks, the label is qℓ = 1
[
∥y − ŷ(ℓ)∥22 < ϵ

]
for a threshold ϵ > 0.

In either case, the label is a non-differentiable function of the Budget RNN parameters. We

address this problem by treating the label as a constant. This treatment is advantageous

because it prevents the Budget RNN from crafting predictions to match the halting signals.

In particular, this feature avoids behavior where the Budget RNN predicts a sequence wrong

on purpose to match a halting signal close to zero. Such behavior leads to a poor model.

As a note, there exist neural network systems that implement early-exiting using thresh-

olds on the predicted probabilities [Dennis et al., 2018, Teerapittayanon et al., 2016]. Such
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a technique does not work for Budget RNNs as predictions are not always available when

halting information is required. For this reason, we favor explicit halting signals.

2.3.4 Loss Function

All neural networks are trained to minimize a loss function. This function typically measures

the difference between the predicted output and the true result. The novel architecture of

Budget RNNs requires a new loss function to balance the optimization of both predictions

and halting signals.

At each level ℓ ∈ [L], Budget RNNs produce two outputs: the prediction y(ℓ) and the

halting signal q̂ℓ. We use a loss function to train the model using the outputs from all levels.

The loss function below expresses this goal. The function L̃ is the per-output loss (e.g.

cross-entropy, mean-squared error).

L({ŷ(ℓ)}, {q̂ℓ}, y, {qℓ}) =
L−1∑
ℓ=0

(
L̃(ŷ(ℓ), y) + γL̃(q̂ℓ, qℓ)

)
(2.15)

The variable γ determines the relative emphasis on the halting loss. We slowly increase

γ over the first few epochs until it reaches γ0. In our experiments, we set γ0 = 0.01. This

slow increase improves training because the predictions frequently change in the first few

epochs.

2.4 Control Policy and Subsampling Algorithm

The Budget RNN output levels compose a family of functions F for budgeted inference.

The inference system needs a selection policy π that minimizes error and adapts to unseen

constraints. The Budget RNN policy meets these goals by dynamically selecting the output

level in a budget-specific manner. This choice determines the number of collected inputs and
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Algorithm 1 Adaptive Inference Algorithm for Budget RNNs
1: procedure AdaptiveInference(fθ, z, L,K, T )
2: ℓmax ← L
3: (Sϑ,M, gψ, hφ)← fθ
4: for t ∈ [T ] do
5: ℓ← LevelOf(t,K,L)
6: if ℓ > ℓmax then
7: continue
8: xt ← CollectInput()
9: s̃t−1 ←M(st−1, st−K) ▷ (Eq 2.8)

10: st ← Sϑ(xt, s̃t−1) ▷ (Eq 2.9)
11: q̂ℓ ← hφ(st) ▷ (Eq 2.14)
12: if isHaltState(t,K,L) and q̂ℓ ≥ zℓ then
13: ℓmax ← ℓ

14: if IsLast(t,K,L) and ℓ = ℓmax then
15: return Prediction(st, gψ) ▷ (Eq 2.12)
16: return Prediction(sT−1, gψ) ▷ (Eq 2.12)

the performed computation, ensuring efficient use of the available energy.

The Budget RNN policy achieves this dynamic behavior through four features. First,

it performs adaptive inference (§2.4.1) by setting thresholds on the Budget RNN’s halting

signals. Second, an optimizer (§2.4.2) tunes these thresholds over multiple potential con-

straints. The policy uses an interpolation method to generalize the thresholds to unseen

budgets. Third, a feedback control system mitigates generalization errors while adapting

to unforeseen changes in the runtime environment (§2.4.3). Finally, the policy improves

accuracy by combining distinct Budget RNNs with different stride lengths (§2.4.4).

2.4.1 Adaptive Inference Algorithm

The Budget RNN inference policy π uses the halting signals to control the number of con-

sumed inputs. In this manner, the policy π uses information from the model to determine the

early-exiting behavior. Thus, the policy adapts the energy consumption based on the input

sequence. These data-dependent decisions allow the system to conserve energy on sequences

where the RNN needs fewer inputs to achieve a low error. The policy spends this saved
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Algorithm 2 Optimization Algorithm for Halting Thresholds
1: procedure FitThresholds(D, fθ, L, (B,M))
2: z ∼ U([0, 1]L)
3: while not converged do
4: k ∼ {0, . . . , L− 2} Uniformly at Random
5: zk ← argminzk∈[0,1]AdjError(fθ,D, z, B,M)

6: return z

energy to reconcile “harder" sequences.

The policy π implements early-exiting using a budget-specific threshold vector z(B,M)

where (B,M) is the energy constraint. When the halting probability q̂ℓ at level ℓ is greater

than the threshold z(B,M)
ℓ , the inference terminates at level ℓ. Otherwise, it continues to

the next level. Algorithm 1 describes this adaptive inference routine. We emphasize an

integral feature of this design: when inference halts at level ℓ, the system does not collect

measurements associated with levels ℓ′ > ℓ. Thus, when stopping at lower levels, the Budget

RNN exhibits significant energy savings by not engaging the sensing hardware to collect

unused measurements.

2.4.2 Optimizing Halting Thresholds

The policy π controls energy consumption using budget-specific thresholds on the Budget

RNN halting signals. We create these thresholds using an additional training step. This

process uses a coordinate descent technique [Wu et al., 2008] to fit thresholds for a given

constraint. Overall, the optimizer creates thresholds to both minimize error and meet the

budget.

Consider a Budget RNN fθ and an energy constraint (B,M). The optimization problem

below formalizes the goal of the threshold optimizer. The term D = {X(i), y(i)}M−1i=0 is

the training dataset, and the “Error" function uses predictions from the adaptive inference

routine in Algorithm 1. This problem is similar to that of the original problem statement
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for budgeted inference (Equation 2.3).

z∗ = argminz∈[0,1]L
M−1∑
i=0

Error(fθ, z,X
(i), y(i)) (2.16)

s.t.

M−1∑
i=0

Energy(fθ, z,X
(i)) ≤ B (2.17)

This optimization problem is difficult to solve for three reasons. First, the runtime energy

consumption is often unknown at design time. We thus approximate the energy consumption

using profiled values from sensing hardware. Second, the optimization problem may have

a discontinuous objective function. For example, in classification tasks, the error function

is the negative inference accuracy. To address this challenge, we use a coordinate descent

solver. At each step, the optimizer selects a random threshold index and approximately

finds its optimal value in [0, 1]. Finally, the optimizer must adhere to the energy constraint.

We implement this behavior by forming an adjusted error function that penalizes budget

violations. The equations below show an adjusted error function for classification accuracy.

This function scales the accuracy using the number of sequences that fit under the budget.

The variable b̂ is the average consumed energy per sequence, and the “Acc" function uses

predictions from the adaptive inference routine in Algorithm 1.

â(fθ,D, z, B,M) = −Acc(fθ, z,D) ·
min(M,B/b̂)

M
(2.18)

Algorithm 2 describes the optimizer. Below we discuss a few implementation details regard-

ing the halting thresholds.

• Initialization Strategy : We initialize the threshold for level ℓ using U([q̃ℓ, 1]) where q̃ℓ

is the median halting signal. We further set thresholds to zero for levels that violate

the budget on a per-step basis; i.e., levels for which the required energy exceeds B/M .

This strategy creates thresholds that approximately meet the budget, avoiding cases
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where the optimizer makes suboptimal decisions just to meet the constraint early in

training.

• Coordinate Descent Step: The key step during each iteration involves finding the opti-

mal threshold. We find this value approximately by sweeping over a quantized subset

of [0, 1]. In our implementation, we search over {0, 1} ∪ {2n−k | n ∈ [k]} for k = 256.

As a note, the use of fixed-point arithmetic on MCUs requires quantizing the threshold

values before deployment. Thus, quantizing the thresholds during training adds no

additional downstream error.

• Convergence Detection: We detect convergence by assessing how thresholds general-

ize to unseen validation data. Following standard practice, the optimizer terminates

after Q iterations of non-improved validation error [Caruana et al., 2001]. This early-

stopping mitigates the risk of overfitting. We set Q = 25 in our experiments.

• Population-based Training : To mitigate sensitivity to initialization, we use a population-

based approach [Jaderberg et al., 2017] to fit many threshold vectors in parallel. Every

R iterations, underperforming thresholds are set to the best vector. These copied

thresholds are randomly perturbed to explore promising regions of the solution space.

We use R = 10 in our experiments.

• Generalizing to Unseen Budgets : The inference policy must adapt to unseen energy

budgets. The policy performs this adaptation by creating new thresholds at runtime.

For an unseen budget, the policy finds the two nearest known budgets that bound

this new constraint. The policy creates new thresholds by linearly interpolating the

thresholds of the bounding budgets. In general, the relationship between thresholds

and energy consumption may be nonlinear. We nevertheless find linear interpolation to

be a low-overhead heuristic that empirically performs well. To mitigate interpolation

errors, we use a runtime controller adjust the selected thresholds (§2.4.3).
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Algorithm 3 Budget RNN Controller Policy
1: procedure ControlPolicy(fθ, (B,M), L,K, T )
2: Y ← [ ]
3: B0 ← B
4: for m ∈ [M ] do
5: z ← InterpolateThresholds(Bm,M)
6: ŷm ← AdaptiveInference(fθ, z) ▷ (Alg 1)
7: bobs ← ObserveEnergy()
8: (bl, bu)← GetSetpoint(B,M,m) ▷ (Eq 2.21)
9: e← PIDControlError(bobs, (bl, bu))

10: Bm+1 ← B + e ▷ e > 0 means bobs is low
11: Y ← Y ∪ [ŷm]

12: return Y

2.4.3 Runtime Controller

The inference policy for Budget RNNs uses budget-specific halting thresholds to minimize

error. Alone, the threshold training process has two qualities that hurt the system’s ability

to generalize. First, the optimizer approximates energy consumption using profiled values.

The thresholds may yield a suboptimal error if the runtime and profiled environments differ.

Second, the threshold interpolation method only approximately meets unseen budgets. The

inference policy remedies these issues using a PID controller [Rivera et al., 1986]. For each

sequence, the controller compares the observed energy consumption with the expected energy

based on training. The policy uses the control error to adjust the halting thresholds by

changing the target budget used during interpolation. For example, if energy consumption

is lower than expected, the controller will use thresholds based on a larger budget. The

controller thus maps the runtime environment into the space constructed during training.

Algorithm 3 describes this process. In our implementation, we update the budget every

W = 20 sequences.

The main challenge associated with this controller involves creating the setpoint. This

process is nontrivial because the adaptive inference algorithm may not evenly spread the

available energy across all M sequences. To account for system variation, the controller
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uses a dynamic setpoint based on a confidence bound. This bound is based on the expected

energy consumption and the corresponding estimator variance.

We derive this setpoint by considering bk to be the average energy consumed when the

Budget RNN predicts the label k ∈ [C]. For each label, the energy consumption may vary

due to the adaptive inference routine (Algorithm 1). We thus assume that bk is a normally

distributed random variable. Consider when the system has processed m < M inputs. We

define rk to be the total number of sequences with label k and r
(m)
k to be the number of

sequences in class k that occur in the first m steps. Let X0:m and Xm:M be random variables

representing the energy consumption in the first m and final M −m steps respectively. The

controller creates a setpoint based on E[X0:m]. Given the total energy budget B, we want to

have B = E[X0:m] +E[Xm:M ]. This relationship expresses the goal that the system should

use the entire budget. Evaluating E[Xm:M ] yields the following expression for E[X0:m].

E[X0:m] = B −
C−1∑
k=0

(rk − r
(m)
k )E[bk] (2.19)

We estimate the values for rk, r
(m)
k , and E[bk] using both the training set and the profiled

energy values. We update these distributions with values obtained at runtime. Note that we

do not have access to the true data labels at runtime. In this setting, the system uses the

predicted labels as an approximation. Overall, this design creates an estimator Ê[X0:m] for

the desired expectation.

A setpoint based on this expected value alone does not capture the variance associated

with Budget RNN execution. We instead use a confidence bound [Auer, 2002] which accounts

for the estimator variance. Under the assumption that rk is deterministic and the bk variables

are independent, we obtain the following equation for the variance of X0:m. In practice, we

again use an estimator of Var[X0:m] based on estimates of rk, r
(m)
k and Var[bk] from the
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Figure 2.4: The accuracy for two distinct Budget RNNs on the task of classifying Whale
sounds [Cox et al., 2006].

training set.

Var[X0:m] =
C−1∑
k=0

(rk − r
(m)
k )2Var[bk] (2.20)

From the Fisher information for Gaussian random variables, the variance of the estimator

Ê[X0:m] converges to 1
mVar[X0:m] [Fisher et al., 1920, Ly et al., 2017]. With these estima-

tions, we construct the following setpoint range for the PID controller.

Setpoint(m) =

(
Ê[X0:m]−

√
1

m
V̂ar[X0:m] , Ê[X0:m] +

√
1

m
V̂ar[X0:m]

)
(2.21)

When the observed energy is within this confidence bound, the controller error is zero.

Otherwise, the PID control error is the difference to the nearest side of the bound.

We highlight one important aspect of this design: the controller does not need the budget

at design time. At runtime, the controller uses Equations (2.19), (2.20), and (2.21) to dy-

namically construct a setpoint for an observed budget (B,M). The system uses this setpoint

to adapt the Budget RNN halting thresholds and meet the energy constraint (Algorithm 3).
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2.4.4 Budget RNN Selection

The presented inference policy uses thresholds to control a single Budget RNN. On many

datasets, we observe that one Budget RNN is not enough to deliver high accuracy across all

budgets. This trend occurs due to the impact of the stride length parameter (K). Impor-

tantly, when comparing Budget RNNs with the stride length K1 and K2, the model with

K1 may be better for some budgets and worse for others. Figure 2.4 shows such an example.

To achieve the best performance across all budgets, the policy should leverage both models.

We use this insight to build the family F with many distinct Budget RNNs. For a

given budget, the policy π first selects the Budget RNN based on validation accuracy. The

policy proceeds to use the runtime controller and corresponding thresholds for the chosen

Budget RNN. We observe that providing the policy with a few models yields better inference

accuracy. Further, this dynamic selection reduces the need to search over stride lengths to

find the single best model.

Using many distinct RNNs has the downside of increasing the system’s memory footprint.

In our experiments, we use only two Budget RNNs to achieve high accuracy over a spectrum

of budgets. This modest number meets any reasonable memory constraints imposed by

low-power devices.

2.5 Evaluation

We evaluate the Budget RNN’s ability to support accurate inference under energy budgets

on embedded sensing systems. We compare to both standard RNNs and current state-of-the-

art RNNs that support sub-sampling (Skip RNNs [Campos et al., 2017] and Phased RNNs

[Neil et al., 2016]). We compare these systems across many datasets and energy budgets in

a simulated environment3. We supplement these results with an evaluation on an embedded

3. All code is available at https://github.com/tejaskannan/budget-rnn
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device. This evaluation shows the following:

1. Under the same budgets, the Budget RNN system achieves higher accuracy than that

of baseline systems. Across all datasets, the Budget RNN system has a mean accuracy

of 1.5 points greater than Skip RNNs, 2.7 points greater than Phased RNNs, and 3

points greater than standard RNNs (§2.5.2). Further, Budget RNNs can operate with

20% smaller energy budgets and still achieve accuracy comparable to the baselines

(§2.5.3).

2. The control policy allows the Budget RNN system to adapt to new runtime environ-

ments. This adaptive behavior enables Budget RNNs to achieve greater improvements

in such settings (§2.5.4).

3. The adaptive decisions made by the Budget RNN policy are key to the system’s per-

formance. Removing the adaptive policy or making randomized decisions results in

lower accuracy (§2.5.5).

4. Budget RNNs have lower training costs when compared to both Skip and Phased RNNs.

These baseline systems take over 2.3× longer to train on average (§2.5.6). Budget

RNNs display cheaper training while delivering higher accuracy across all budgets.

5. The higher accuracy of Budget RNNs translates to an embedded system. Across two

budgets, Budget RNNs maintain their improvement over Skip RNNs in a realistic

hardware environment (§2.5.7).

2.5.1 Experimental Setup

Baseline Systems

We use three RNN variations to create baseline systems: standard RNNs, Phased RNNs

[Neil et al., 2016], and Skip RNNs [Campos et al., 2017]. The first baseline uses early-exiting
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Table 2.1: Evaluation dataset characteristics.

Dataset Seq Len Classes # Train # Val # Test

EMG [Lobov et al., 2018] 50 7 10,330 2,887 4,975
FordA [Bagnall et al., 2012] 20 2 3,060 541 1,320
Pavement [Souza, 2018] 30 3 33,336 5,815 39,939
Pedestrian [Melbourne, 2020a,b] 20 10 2,024 364 4,878
Pen Digits [Alimoglu and Alpaydin, 1996] 8 10 6,033 1,461 3,498
UCI HAR [Anguita et al., 2012] 50 12 18,229 6,800 10,197
Whale [Cox et al., 2006] 30 2 9,351 1,583 1,962

in standard RNNs [Dennis et al., 2018]. This model creates a prediction from each memory

state, and we interpret these outputs as models in Frnn. We train the RNN to minimize

the average loss across all predictions. The second baseline uses Phased RNNs [Neil et al.,

2016]. Each model in Fphased uses a phase gate with a different open rate. The final baseline

uses Skip RNNs [Campos et al., 2017]. We train each Skip RNN in Fskip to meet a different

target number of elements. This target is enforced through an L2 loss term. For both the

Phased and the Skip RNN systems, we create systems with 10 distinct models4. Using 10

models provides these baselines with a good tradeoff between energy and accuracy while

maintaining a reasonable memory footprint.

For each baseline, we use a fixed selection policy πfixed. This policy selects the best model

whose estimated energy meets a given budget. The policy estimates energy consumption

using both profiled energy values and the average number of processed inputs. For all

models that meet the budget, πfixed selects the model with the best validation accuracy.

Datasets and Neural Network Training

We evaluate system performance on the seven datasets in Table 2.1. Each dataset constitutes

a sensor-like classification task. For all RNNs, we use single-layer UGRNN cells [Collins et al.,

2016] with a 20 dimensional state. This design limits the memory footprint of each model.

4. We use 8 models on the Pen Digits dataset due to shorter sequences.
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All models use a readout layer with 32 hidden units and a Leaky ReLU [Maas et al., 2013]

activation. We fit the RNNs using stochastic gradient descent [Rumelhart et al., 1985] with

an Adam optimizer [Kingma and Ba, 2014] and a learning rate of 10−4. We use the same

batch size for all models. We train the RNNs in Tensorflow [Abadi et al., 2016a] for at most

250 epochs with early stopping after 25 epochs.

Simulated Environment

We conduct the majority of this evaluation in a simulated environment that bases energy

consumption on profiled values from a TI MSP430 FR5994 MCU [Instruments, 2021]. We

measure the energy required to capture and process inputs using the EnergyTrace tool [In-

struments, 2020]. We experiment with two energy profiles. The first uses a DHT-11 tem-

perature sensor, and the second simulates collection through an HM-10 Bluetooth module.

When sampled at 0.5Hz, the 3.3V MCU with the DHT-11 consumes about 5.6mJ per input;

the HM-10 system uses about 29.6mJ per input. These values represent varying points on

the spectrum of sensor energy consumption. The simulator also incorporates the energy

required for data processing. This feature accounts for the higher computational cost of

Budget RNNs (§2.5.8). For simplicity, we assume that both Phased and Skip RNNs incur

the same processing cost as standard RNNs. This assumption is conservative as Phased and

Skip RNNs perform additional computation.

Hardware Environment

We supplement the simulated environment with an experiment on the actual TI MSP430

FR5994 MCU [Instruments, 2021]. We use an HM-10 BLE module to transmit inputs to the

device. We power the MCU using a supercapacitor and vary the budget by setting the total

capacitance. The Budget RNN controller obtains energy feedback by measuring the voltage

across the capacitor. We quantize the neural network weights to 16-bit fixed-point values
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Table 2.2: Geometric mean accuracy across all budgets. RNN refers to the standard RNN.

Dataset Bluetooth Energy Profile Temperature Energy Profile

RNN Phased Skip Budget RNN Phased Skip Budget

EMG 0.713 0.716 0.713 0.724 0.702 0.704 0.712 0.721
Ford A 0.881 0.859 0.876 0.886 0.867 0.845 0.860 0.868
Pavement 0.715 0.669 0.670 0.716 0.697 0.642 0.658 0.695
Pedestrian 0.607 0.702 0.714 0.720 0.543 0.665 0.649 0.674
Pen Digits 0.832 0.831 0.869 0.881 0.838 0.842 0.871 0.879
UCI HAR 0.862 0.828 0.859 0.865 0.848 0.820 0.856 0.856
Whale 0.864 0.869 0.871 0.879 0.849 0.859 0.865 0.871

All 0.776 0.778 0.791 0.806 0.753 0.761 0.773 0.788

and execute the RNNs using the on-board digital signal processing accelerator.

Budget RNN Parameters

In all experiments, we use a Budget RNN system with two distinct models. These models

have stride lengths of 1 and 10 respectively5. The policy selects the Budget RNN at runtime

as described in §2.4.4. We fit halting thresholds for 11 budgets on the Bluetooth profile and

12 budgets in the temperature setting. The Budget RNN system automatically generalizes

to unseen budgets.

2.5.2 Inference Accuracy

For each dataset, we evaluate the inference accuracy on a set of energy budgets in the

simulated environment. We set M to the size of each testing set and use energy values B to

standardize the ratios B/M across datasets. We use 22 and 26 budgets on the Bluetooth and

the temperature profiles respectively. We compare the systems by computing the geometric

mean accuracy across all budgets.

On average, the Budget RNN achieves the best accuracy across all datasets and budgets.

5. We use stride lengths of 1 and 4 on the Pen Digits task due to shorter sequences.
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Figure 2.5: System accuracy on the Pen Digits dataset using the Bluetooth energy profile.

Table 2.2 shows these results for both energy profiles. When compared to the standard

RNN, Budget RNNs display a mean accuracy gain of over 3 points. Further, Budget RNNs

outperform Skip RNNs (1.5 points) and Phased RNNs (2.7 points). These results hold for

both energy profiles. The table further shows how no single baseline delivers high accuracy

across all datasets. In contrast, the Budget RNN system displays consistency—it almost

matches or outperforms the best baseline system on all datasets. In a budget-by-budget

comparison, the Budget RNN also shows distinct improvements. Using the Bluetooth energy

profile, Budget RNNs have higher accuracy than standard RNNs on 77.3% (119 / 154) of

budgets. The same comparison against Phased and Skip RNNs shows higher accuracy on

82.5% (127 / 154) and 83.1% (128 / 154) of budgets respectively. A similar trend holds on

the temperature profile.

To better understand the observed accuracy differences, we compare the per-budget ac-

curacy on the Pen Digits task. Figure 2.5 displays the obtained accuracy values. We observe

how the Budget RNN provides distinct benefits under tight budgets. These gains become

smaller as the budget increases. In particular, for large budgets, the Budget RNN shows

slightly worse accuracy than the standard and Phased RNNs. Given no assumptions about

34



EMG Ford A Pavement Pedestrian Pen Digits UCI HAR Whale All
Dataset

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
M

ea
n 

N
or

m
al

iz
ed

 E
ne

rg
y 

B
ud

ge
t

1.34

1.08

1.00

1.59

1.04
1.08

1.42

1.21

1.35
1.31

1.55

1.06

1.14

2.06

1.30
1.37

1.67

1.20

1.59

0.90

1.09

1.19
1.24 1.25

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Mean Normalized Budget Required for Accuracy Equal to the Budget RNN
RNN
Phased RNN
Skip RNN
Budget RNN

Figure 2.6: Geometric mean of normalized budget to obtain accuracy equal to the Budget
RNN. Values above one indicate better performance by the Budget RNN.

the budget, however, Budget RNNs display the best overall result.

Better budget utilization appears to be a reason for the Budget RNN’s improved accu-

racy. On average, Budget RNNs use 99.2% of the budget, while RNNs (94.7%), Phased

RNNs (78.1%), and Skip RNNs (80.4%) display inefficiencies. The Phased and Skip RNNs

have lower utilization because the models sometimes show lower accuracy when given more

inputs. This utilization pattern occurs on both the Bluetooth and temperature profiles,

demonstrating how the advantages of Budget RNNs hold for multiple sensors.
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Table 2.3: Geometric mean accuracy across all datasets and budgets in settings with a
nonzero energy bias.

Bias Bluetooth Energy Profile Temperature Energy Profile

RNN Phased Skip Budget RNN Phased Skip Budget

+20% 0.664 0.724 0.731 0.762 0.603 0.674 0.670 0.702
+10% 0.729 0.764 0.778 0.786 0.681 0.733 0.738 0.750
-10% 0.776 0.778 0.791 0.813 0.753 0.764 0.774 0.797
-20% 0.776 0.778 0.791 0.818 0.753 0.765 0.774 0.802

All 0.735 0.761 0.772 0.794 0.695 0.733 0.738 0.762

2.5.3 Energy Comparison

To place the higher accuracy of Budget RNNs into the context of energy, we estimate the

budget needed by Budget RNNs to obtain accuracy equivalent to the baseline systems. For

each baseline on budget RNN B, we find the smallest budget B′ such that the Budget RNN

displays the same accuracy on B′ as that of the baseline on B. We use the ratio B/B′ to

compare the budgets needed to obtain the same accuracy. Figure 2.6 shows this comparison

on the Bluetooth energy profile. On average, the Budget RNN system can use over 20%

smaller budgets and still deliver comparable accuracy to the baseline systems. This value

describes how the accuracy improvement (Table 2.2) manifests itself in terms of energy.

2.5.4 Accuracy on Unseen Energy Profiles

The Budget RNN system constructs halting thresholds using profiled energy values, and

the runtime controller decouples the system from the profiled environment. We evaluate this

decoupling by measuring how the system performs in a setting with biased noise. Specifically,

in this setting, we model the energy consumption to collect and process r samples as e(r) =

ωr + ϵ where ωr is the profiled energy value and ϵ ∼ N (µ, σ2). The bias µ ̸= 0 is unknown

to the systems, and each policy starts under the assumption of an unbiased environment.

Positive biases mean that, at each step, the system consumes more energy than expected.
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Table 2.4: Geometric mean accuracy of Budget RNN variants. The adaptive results corre-
spond to the full Budget RNN system.

Dataset Bluetooth Energy Profile Temperature Energy Profile

Fixed Random Adaptive Fixed Random Adaptive

EMG 0.722 0.718 0.724 0.720 0.718 0.721
Ford A 0.874 0.856 0.886 0.857 0.844 0.868
Pavement 0.706 0.689 0.716 0.684 0.673 0.695
Pedestrian 0.692 0.624 0.720 0.642 0.596 0.674
Pen Digits 0.843 0.827 0.881 0.843 0.836 0.879
UCI HAR 0.860 0.841 0.865 0.853 0.841 0.856
Whale 0.875 0.852 0.879 0.867 0.849 0.871

All 0.792 0.767 0.806 0.774 0.757 0.788

Negative biases work in the opposite fashion.

We evaluate the systems over four biases that represent about ±10% and ±20% of the

profiled energy consumption. Table 2.3 shows the geometric mean accuracy across all budgets

and datasets. In this setting, Budget RNNs show even higher accuracy relative to the

baselines. Across all biases, Budget RNNs show a mean accuracy that is almost 6 points

higher than standard RNNs. This improvement is roughly double what we observe in the

unbiased setting. The same comparison against Phased RNNs (2.9 points) and Skip RNNs

(2.2 points) also yields a larger improvement for Budget RNNs in the biased environment.

These benefits are a direct result of adaptivity. The baseline systems use a fixed policy

that does not account for differences in the runtime environment. In contrast, the Budget

RNN uses an adaptive controller that automatically handles these differences using runtime

feedback.

2.5.5 Evaluation of Budget RNN System Design

The Budget RNN system uses a novel RNN with a runtime controller. We evaluate how

these components contribute to the overall accuracy by considering two variants. The first,
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Table 2.5: Wall-to-wall time and training iterations required to fit the neural networks on
each dataset. The Phased and Skip RNN results account for training ten distinct RNNs.
The Budget RNN values include the halting threshold optimization.

Dataset Wall-to-Wall Time (minutes) Iterations (thousands)

RNN Phased Skip Budget RNN Phased Skip Budget

EMG 40.3 557.1 464.9 176.9 81.4 803.6 724.8 288.9
FordA 9.4 90.7 92.5 35.5 45.6 293.4 320.9 137.7
Pavement 114.6 553.9 297.4 357.1 260.5 1139.9 664.8 552.6
Pedestrian 13.3 136.5 89.5 52.3 63.3 461.2 311.4 176.5
Pen Digits 24.0 233.1 109.6 92.0 188.8 1355.2 699.1 445.3
UCI HAR 124.0 1143.3 1039.0 346.1 251.7 1591.9 1559.8 512.1
Whale 40.0 393.0 500.1 119.1 112.1 734.0 988.3 272.2

called the fixed system, uses a fixed model selection policy (§2.5.1) in place of the adaptive

controller. The second variant uses a randomized selection policy. This policy creates weights

based on how often the Budget RNN should stop at each level to fully utilize the budget.

At runtime, the policy uses the weights to randomly select the number of levels. In this

experiment, we call the full system the “adaptive" Budget RNN.

We evaluate these variants across the same datasets and budgets used in §2.5.2. Table 2.4

shows the geometric mean accuracy for each dataset. The adaptive system outperforms the

fixed and random variants on all datasets by a mean of 1.4 points and 3.1 points, respectively.

These results yield two takeaways. First, data-dependent decisions are an integral part of the

adaptive system’s performance. The randomized variant’s lower accuracy shows how fully

utilizing the energy budget is insufficient; selecting when to conserve and when to exploit is

key to obtaining accurate results. Second, the fixed variant alone displays an improvement

over the standard RNN (compare "Fixed" in Table 2.4 to "RNN" in Table 2.2). This

improvement shows the benefits of performing inference on non-contiguous subsequences.

Adaptive behavior further exploits this feature to increase accuracy.
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Table 2.6: Skip and Budget RNN results on the embedded device using the Pen Digits
dataset.

Energy Budget Skip RNN Budget RNN

5.6J 0.722 (±0.040) 0.833 (±0.038)
7.2J 0.895 (±0.038) 0.915 (±0.022)

2.5.6 Training Time

One downside to the Phased and Skip RNN systems is their reliance on many distinct RNNs.

We evaluate how this reliance impacts the training time of each system. We measure the

training cost in two ways. The first is the wall-to-wall time required to train all models for

each system. We obtain these times on a 24 core Intel Xeon Silver 4116 CPU. The second

metric is the number of training iterations. This value is the number of gradient descent steps

during training. The Budget RNN values also include the halting threshold optimization.

As a conservative estimate, we count each threshold optimization step as equivalent to 10

gradient descent steps.

We measure the training cost on all seven datasets. Table 2.5 displays the results. Com-

pared to Skip RNNs, the Budget RNN system takes roughly 2.3× less time and fewer iter-

ations to train. A comparison with the Phased RNN systems yields even greater savings.

While reducing the number of models per system would lower this cost, such savings lead

to lower accuracy. Only the standard RNN achieves a lower training cost than the Budget

RNN. This property follows from the need to train only one neural network. As previously

shown, the extra training cost of Budget RNNs leads to better accuracy values, and we

believe this extra training cost is worth the accuracy benefits. We note that the Skip RNN

system trains faster than the Budget RNN system on the pavement dataset. This result

occurs due to early stopping during neural network training and a larger training set used

to fit the halting thresholds. On this dataset, the benefits of the lower training time of Skip

RNNs are offset by the system’s lower accuracy (Table 2.2).
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2.5.7 Performance in the Hardware Environment

We supplement the results from the profiled environment with an evaluation in the embedded

setting described in §2.5.1. We compare the accuracy of the Budget RNNs and Skip RNNs

over two energy budgets on the Pen Digits dataset. We select Skip RNNs because they form

the best-performing baseline on this task. As the device fetches inputs over a Bluetooth link,

we use a Budget RNN system optimized on the Bluetooth energy profile. Each experiment

uses the inference system to classify M = 50 sequences. We compare the resulting accuracy

across four independent trials.

As shown in Table 2.6, the Budget RNN displays better accuracy than the Skip RNNs.

In the simulated environment, the Budget RNN system achieves an accuracy of 79.1% and

90.3% on the full dataset for the two respective budgets. On these same budgets, the Skip

RNN system obtains an accuracy of 75.6% and 89.4%. Thus, in the embedded environment,

the gap between Budget RNNs and Skip RNNs is slightly larger than what is observed in

simulation. This discrepancy is likely a result of the limited sample size used in the hardware

evaluation. Despite this difference, the results from the hardware device confirm the relative

accuracy trends we observe in the simulated environment.

2.5.8 Overhead Analysis

Budget RNNs are designed for embedded applications where sensing composes a significant

portion of energy consumption. In these settings, the computational overhead of Budget

RNNs is not prohibitive. To understand this point further, we use a TI MSP430 FR5994

MCU [Instruments, 2021] and the EnergyTrace Tool [Instruments, 2020] to profile the energy

consumption of collecting and processing a single measurement. We compare the energy

consumption of standard and Budget RNNs in Table 2.7. To handle a single element, Budget

RNNs consume 0.5% (Bluetooth) and 2.7% (temperature) more energy than standard RNNs.

This overhead is small enough to overcome and still deliver high accuracy; under the same
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Table 2.7: Energy (mJ) required to handle a single sensor measurement. The standard and
Budget RNN costs include the energy required for processing.

Sensor Alone +RNN +Budget RNN

Bluetooth 29.63 29.97 30.13
Temperature 5.65 5.99 6.15

constraints, Budget RNNs show better accuracy than the baseline RNNs (§2.5.2). Budget

RNNs use more computation to determine a much better sampling strategy. The relatively

high cost of sensing makes this additional computation worthwhile.

The computational overhead of Budget RNNs comes from two areas. First, Budget

RNNs use additional merging, halting, and pooling layers to control execution and combine

intermediate states. Second, the Budget RNN system uses a runtime controller to adapt

to energy constraints. On average, profiling shows that standard RNNs consume 0.342mJ

to process a single element. Budget RNNs use an average of 0.503mJ. A majority of this

overhead comes from the added neural network layers. The runtime controller accounts for

less than 3.5% of the CPU cycles associated with Budget RNN execution. As the controller

performs all operations in RAM, we expect it to consume a smaller fraction of the overall

energy.

2.6 Related Work

2.6.1 Adapting Neural Network Inference

Many systems apply adaptation to improve neural network inference. Systems such as

Shallow-Deep Networks [Kaya et al., 2019], BranchyNet [Teerapittayanon et al., 2016],

ALERT [Wan et al., 2020b,a], and Idk Cascades [Wang et al., 2017] use early-exit points to

control inference costs. Numerous systems use variable computation [Cheng et al., 2018, Lee

and Nirjon, 2020, Yao et al., 2020] and per-layer adaptivity [Bateni and Liu, 2018, Bateni
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et al., 2018] to execute neural networks under explicit constraints. Neural network systems

for multi-tenant inference also use adaptive behavior to improve efficiency [Baek et al., 2020,

Bateni and Liu, 2020, Casini et al., 2020, Fang et al., 2018]. Other work adapts system

accuracy to save energy and latency [Farrell and Hoffmann, 2016, Hoffmann, 2014, 2015].

Other RNN designs adapt model execution. Adaptive Computation Time [Graves et al.,

2013], Variable Computation Time [Jernite et al., 2016], and Clockwork RNNs [Koutnik

et al., 2014] alter the amount of computation at each RNN timestep. Dilated RNNs [Chang

et al., 2017], Shallow RNNs [Dennis et al., 2019], and Sliced RNNs [Yu and Liu, 2018] provide

increased parallelism.

Budget RNNs are most similar to prior DNN systems that use variable computation.

Budget RNNs vary inference energy costs by changing both computation and data collection.

In contrast with the above prior work that only reduces computation, Budget RNNs lower

energy costs in sensor environments where acquiring data is expensive.

2.6.2 Adaptive Sampling in RNNs

Multiple RNNs leverage adaptive sampling. Phased LSTMs use a periodic gate to perform

state updates [Neil et al., 2016]. LSTM-Jump uses a policy gradient to train an RNN to

skip inputs [Yu et al., 2017]. Skip RNNs skip inputs using a binary gate [Campos et al.,

2017]. These models jointly optimize sampling behavior and RNN parameters. Unlike these

designs, Budget RNNs are multi-capacity models that can change their target sampling level

at runtime.

EMI-RNNs classify time-series inputs where the true signal makes up a small part of

the sequence [Dennis et al., 2018]. This model performs early classification using thresholds

on output probabilities. This design resembles a Budget RNN with a stride length of 1.

These models, however, differ in their early-stopping criterion. Furthermore, EMI-RNNs use

sliding windows during inference, so they still pay data acquisition costs.
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2.6.3 Adaptive Sampling in Sensor Networks

Adaptive sampling is a common approach to conserve energy in sensor networks. Multiple

systems use statistical models to control the sampling rate of individual sensors [Alippi

et al., 2009a, 2007, Chatterjea and Havinga, 2008, Jain and Chang, 2004, Law et al., 2009,

Zhou and De Roure, 2007]. BBQ [Deshpande et al., 2004], ASAP [Gedik et al., 2007],

and Backcasting [Willett et al., 2004] selectively activate a subset of nodes based on sensor

correlations. Similar to these systems, Budget RNNs also use adaptive sampling to reduce

energy while maximizing sensor performance. Unlike this prior work, our system focuses on

meeting explicit energy budgets when executing RNNs.

2.6.4 Early Time Series Classification

Systems for early time series classification perform inference on subsequences. ECTS uses a

nearest neighbor algorithm on sequence prefixes and halts classification when the prediction

becomes reliable [Xing et al., 2012]. Mori et al. use stopping rules to balance accuracy

and earliness [Mori et al., 2017]. Similar to Budget RNNs, these systems control inference

costs by processing subsequences. Budget RNNs, however, perform inference under energy

budgets and do not optimize for earliness.

Rußwurm et al. perform early classification on RNNs by randomly sampling trainable

halting probabilities [Rußwurm et al., 2019]. Budget RNNs also use halting signals to control

model execution. Unlike this previous work, Budget RNNs use optimized halting thresholds

to meet energy budgets without random behavior.

2.7 Conclusion

This thesis develops a novel RNN architecture—the Budget RNN—for in-sensor inference

under energy budgets. The Budget RNN uses a leveled design in which each level processes
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an input subsequence. By controlling the number of executed levels, the Budget RNN

can alter its energy consumption. This control is made possible through trainable halting

signals. We design a runtime controller that uses these signals to perform inference under

an energy constraint by dynamically adjusting the model’s subsampling behavior. This

design maintains sampling flexibility while also decoupling the sampling strategy from the

RNN parameters. This loose-coupling allows the system to generalize to unseen budgets

better than existing RNN solutions [Campos et al., 2017, Neil et al., 2016], achieving a

mean accuracy that is 3 points higher than that of standard RNNs [Dennis et al., 2018].

This improvement allows Budget RNNs to obtain an accuracy that is equivalent to existing

RNNs even when operating under 20% smaller budgets.
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CHAPTER 3

PROTECTING ADAPTIVE SAMPLING FROM INFORMATION

LEAKAGE ON LOW-POWER SENSORS

3.1 Introduction

Battery-powered low-power sensors often lack access to continuous power [Denby and Lucia,

2020, Vasisht et al., 2017, Zhang et al., 2004]. This property makes energy is a critical

resource for sensing devices, and operators desire sensors with long lifetimes [Zhang et al.,

2004]. Subsampling is one strategy to elongate sensor lifetime [Law et al., 2009]. Rather

than capturing and communicating all measurements, individual nodes collect and transmit

a subset of values; a statistical model is used to infer the skipped elements [Chatterjea and

Havinga, 2008, Deshpande et al., 2004, Gedik et al., 2007]. This design uses the insight that

both sensing and communication incur a high energy cost [Alippi et al., 2009b, Denby and

Lucia, 2020, Gedik et al., 2007, Gobieski et al., 2019].

Subsampling trades energy for error. When sensors collect fewer elements, the server

must infer more values. Adaptive sampling is one strategy that navigates this tradeoff in

a near-optimal manner. For a given energy constraint, these algorithms sample frequently

in unpredictable environments and compensate by collecting fewer values in predictable

settings. For example, consider a smartwatch that performs activity detection with an ac-

celerometer. When the wearer is sitting, the acceleration measurements remain constant;

when a person is running, the values change rapidly [Das et al., 2016]. Thus, the policy sam-

ples infrequently during sitting events and spends the excess energy during less-predictable

running events. The ability to allocate energy based on the observed data allows adaptive

algorithms to exhibit low error while meeting energy constraints, making it an attractive

option for low-power devices [Gedik et al., 2007, Willett et al., 2004].

As embedded sensing grows in popularity, maintaining data privacy is increasingly im-
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portant [Antonakakis et al., 2017, Cherupalli et al., 2017, Trappe et al., 2015]. From this

perspective, adaptive sampling faces a significant challenge [Stajano and Anderson, 1999].

By design, adaptive policies display different collection rates in different environments, thus

linking their collection pattern to the captured data. This property introduces a possible

side-channel: if sensors expose their collection rates within their (encrypted) communica-

tion patterns, they may leak information about the captured values. Indeed, previous work

shows how attackers can link communication patterns to sensor values for specific IoT devices

[Apthorpe et al., 2019, Bezawada et al., 2018, Das et al., 2016, Srinivasan et al., 2008].

Existing work [Apthorpe et al., 2019, Srinivasan et al., 2008] that exploits the communi-

cation patterns of adaptive behavior targets IoT devices that vary their transmission times.

For example, the FATS attack [Srinivasan et al., 2008] uses the time between messages to

uncover activities in a smart home. One suggested defense is to employ periodic transmis-

sions [Srinivasan et al., 2008] which eliminate the variance in message times. This defense

increases device latency by delaying transmissions and sending values in batches. This la-

tency is manageable as low-power sensors already employ batching to conserve energy [Sung

and Han, 2017, Zhang et al., 2004]; batched communication minimizes the time that radio

modules spend in active mode [Mathur et al., 2009].

In this work, we demonstrate how periodic transmissions do not protect general-purpose

adaptive sampling policies. By "general-purpose," we refer to policies at use widely-applicable

statistical models (e.g. linear comparisons [Chatterjea and Havinga, 2008, Silva et al., 2017])

instead of narrow, task-specific knowledge. As adaptive policies vary their collection rates,

they create batched messages with a size proportional to the number of collected values.

This property holds even when sensors use encryption. Across multiple tasks, we show how

three general-purpose adaptive techniques [Campos et al., 2017, Chatterjea and Havinga,

2008, Silva et al., 2017] exhibit a distinct relationship between message sizes and sensed

events. Thus, message sizes yield an exploitable side-channel for adaptive policies. In the
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worse case, an attacker can infer over 94% of events using encrypted message sizes. This

worst-case leakage occurs on tasks involving sensitive data. For example, an attacker can use

message sizes to infer the occurrence of an epileptic seizure [Villar et al., 2016] with 100%

accuracy (§3.5.4). This issue prevents sensors that require data privacy from realizing the

benefits of adaptive sampling.

A solution to close this side-channel is to send fixed-length messages, breaking the link

between message size and collection rate. The conventional way to enforce this consistency

is to pad messages to the largest possible batch size [Cai et al., 2014b, Dyer et al., 2012].

Padding hides the true data length by adding meaningless bits and increasing the communi-

cation volume. This strategy is impractical for low-power sensors due to the high energy cost

of communication [Gedik et al., 2007, Gobieski et al., 2019]. Sensors require a defense with

a negligible energy cost: if the strategy increases the energy consumption, it counteracts the

benefits of adaptive sampling.

To address this problem, we propose a framework called Adaptive Group Encoding (AGE)

that protects adaptive sampling under the constraints of low-power sensors. Unlike traffic

padding, AGE produces fixed-length messages smaller than the standard adaptive policy’s

average message size. AGE is a general defense that works with multiple adaptive policies,

sensing tasks, and encryption algorithms. A key challenge to achieving this generality is

that AGE cannot make strong assumptions about the policy’s behavior or the sensor’s data

values. AGE ensures same-sized messages using a general lossy technique based on fixed-

point quantization. The procedure minimizes its encoding error by supplementing standard

quantization with three transformations. AGE first prunes measurements to handle cases

where the policy exhibits extreme over-sampling. Second, AGE adapts to data ranges with

low space overhead by applying run-length encoding (RLE) to data exponents. This step

groups values with the same exponent. AGE handles cases where RLE delivers poor com-

pression by merging similar exponent groups. Finally, AGE sets the bit width for each group
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and quantizes measurements to this width. The algorithm selects these widths to ensure the

result meets the target length. This group-based strategy allows AGE to functionally mimic

fractional bit widths, leading to better utilization of the available message space.

Across nine sensing tasks and three adaptive policies, AGE incurs roughly 1% higher error

than standard adaptive sampling. This additional error is manageable, as adaptive sampling

with AGE obtains over 11% lower error than uniform sampling. AGE’s low error does not

compromise security. AGE protects adaptive policies from all information leakage through

message sizes, and communicating with AGE prevents an attacker from doing any better than

predicting the most frequent event. Further, AGE’s low-overhead design outperforms prior

solutions based on message padding. Under equivalent energy constraints, AGE obtains lower

error than padding on over 94% of budgets. This result stems from budget violations caused

by the overhead of padding. Finally, AGE consistently performs better than quantization

alone, achieving lower error on over 98% of constraints. In summary, AGE successfully

enables adaptive policies to obtain low error without suffering from information leakage or

energy budget violations.

We make the following contributions in this work1.

1. We demonstrate how general-purpose adaptive sampling policies leak information through

their collection patterns on multiple distinct tasks. This leakage occurs even though

these policies do not use task-specific designs.

2. We present a practical attack against adaptive sampling algorithms for sensors that

use energy-efficient batched communication. In the worst case, this attack can use

message lengths to infer over 94% of sensed events.

3. We introduce a novel framework called Adaptive Group Encoding (AGE). This system

uses lossy encoding to protect any adaptive sampling algorithm from leaking informa-

1. This work appears as a conference paper in ASPLOS 2022 [Kannan and Hoffmann, 2022].
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tion through batched message sizes on low-power devices. AGE closes this side-channel

with negligible energy overhead2.

3.2 Background

This work protects adaptive sampling algorithms on low-power devices from leaking infor-

mation through their communication patterns. This section provides background on both

low-power sensors (§3.2.1) and adaptive sampling methods (§3.2.2).

3.2.1 Low-Power Sensors and System Model

We consider a standard sensing model composed of battery-powered sensors and a centralized

server [Gobieski et al., 2019, Vasisht et al., 2017]. Sensor nodes consist of a microcontroller

unit (MCU) equipped with sensing hardware. Each device captures measurements and trans-

mits the readings to the server over an encrypted wireless link. We consider sensors that

communicate at regular intervals. This design matches a common approach in low-power

sensing: batched communication. Batching data into a single communication event saves

energy by both maximizing the time spent in sleep mode and amortizing the radio start-up

costs over multiple measurements [Mathur et al., 2009, Sung and Han, 2017]. Periodic com-

munication increases the latency for offloading readings, but this overhead is offset by the

over 4× lower energy when batching [Mathur et al., 2006]. Indeed, systems such as Farm-

Beats [Vasisht et al., 2017] and ZebraNet [Zhang et al., 2004] employ sensors with periodic,

batched communication. Furthermore, this latency becomes less important when detecting

events from sequences of measurements. In this framework, the server requires all sequential

elements to perform inference; thus, transmitting batches does not hinder the event detec-

tion pipeline. As a concrete example, consider the task of activity recognition with wearable

devices [Anguita et al., 2012]. Each battery-powered wearable captures accelerometer and

2. All code is available at https://github.com/tejaskannan/adaptive-group-encoding.
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gyroscope measurements over time. The sensor transmits measurements to a server, which

uses sequences of readings to detect activities such as running or walking.

The finite lifetime of battery-powered sensors complicates the process of recording and

communicating measurements. This limited power makes energy conservation a priority,

as frequent maintenance is costly and undesirable. Finite-capacity energy sources lead to

long-term energy budgets where sensors must use their residual battery capacity to meet an

operator-defined uptime. For example, ZebraNet sensors are designed to last for at least 72

hours on battery power alone [Zhang et al., 2004].

Sensors consume energy through three tasks: collection, processing, and communication.

Of these tasks, collection and communication consume a majority of energy [Alippi et al.,

2009b, Deshpande et al., 2004, Gedik et al., 2007]. For example, a commodity HM-10

Bluetooth Low Energy (BLE) radio consumes about 25mJ to connect and send a 40-byte

message. In contrast, a TI MSP430 FR5994 MCU requires roughly 0.4mW per clock MHz

[Instruments, 2021]; this figure is an order of magnitude less than wireless communication.

The high energy cost of radio modules means that embedded applications strive to limit their

use of wireless communication. On low-power devices, it is prohibitive to design systems that

increase the amount of communication.

3.2.2 Subsampling and Adaptive Behavior

Subsampling allows sensors to manage their energy consumption [Alippi et al., 2009a, 2007,

Chatterjea and Havinga, 2008, Silva et al., 2017] by collecting and sending a subset of

values. The server receives this subset and interpolates the full sequence [Law et al., 2009].

A sampling policy’s energy is proportional to its collection rate. Thus, sampling comes with

a tradeoff in error; when sensors capture fewer values, the server must infer more.

Adaptive sampling navigates this tradeoff in a near-optimal manner. These procedures

use observed data to determine when to collect the next element. Adaptive policies will
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capture more measurements on sequences with high variance and fewer samples during low-

variance periods [Law et al., 2009]. For example, Figure 3.1 shows sampling two sequences of

25 acceleration values with a budget corresponding to a 70% average collection rate [Villar

et al., 2016]. A random sampler will capture 17 samples per sequence. This rigid strategy

is suboptimal, and an adaptive policy [Chatterjea and Havinga, 2008] can better allocate

the budget. Across both sequences, the adaptive policy achieves over 2.9× lower error by

under-sampling sequence one and over-sampling sequence two. This lower error occurs even

though the adaptive sampler captures two fewer values than the random policy.

Under energy constraints, this data-dependent behavior allows adaptive policies to achieve

lower error than static sampling. The benefits, however, come at a cost in privacy. For the

adaptive policy, collecting either 10 or 22 elements (from the top or bottom of Figure 3.1)

leaks whether the event is walking or running, respectively. Thus, an attacker who observes

the collection count can infer the sensed event. The random policy does not suffer from

this problem because its rate is fixed and independent of the underlying data. From this

discussion, we highlight two important aspects of the system model.

1. Long-term energy budgets allow for variance in the sampling policy. The sampler can

change its energy per sequence as long as the final energy meets the budget.

2. Sensors use a single message to send a batch of collected measurements. The size of

each message is proportional to the number of measurements collected by the policy.

3.3 Privacy Threats and Adaptive Sampling

This section describes the considered threat model (§3.3.1). We then show how adaptive

policies leak information within this model (§3.3.2) and present examples of concrete systems

(§3.3.3).
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Figure 3.1: An example of subsampling two accelerometer signals on the task of human
activity recognition.

3.3.1 Threat Model

Sensing applications often involve private information. For example, wearable medical sen-

sors [Appelboom et al., 2014, Sorber et al., 2012] must collect measurements without exposing

a patient’s diagnosis. Thus, sensors must communicate without leaking information about

the captured values. Within the presented system model, we want sampling policies that

minimize error and meet energy constraints, all without leaking information.

We consider a passive attacker that observes the wireless link between sensor and server

using a network sniffing device. The sensor and server encrypt messages, and the attacker

cannot learn anything from the ciphertext content. The adversary can instead leverage

communication metadata such as message sizes and transmission times. Further, based on

prior work, we assume the attacker can identify the sensor for each intercepted message

[Apthorpe et al., 2019, Pang et al., 2007, Rasmussen and Capkun, 2007, Siby et al., 2017,

Srinivasan et al., 2008]. We highlight that the adversary does not require physical device

access. The attacker only needs to intercept the wireless communication between sensor

and server. Due to the broadcast nature of wireless communication, this feature allows the

adversary to operate anywhere within the range of the sensor’s radio.
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The adversary uses this metadata to infer sensed events. As sensors communicate at

regular intervals, message times provide no useful information [Srinivasan et al., 2008]. We

instead consider attackers who infer events using message sizes (Figure 3.2). Using Kerck-

hoffs’ Principle, we assume the attacker knows the set of possible events and can link multiple

messages to the same (unknown) event. This assumption is realistic as the physical systems

being sensed exhibit gradual changes (relative to computing speeds). Further, the attacker

knows the sampling policy, as well as any employed defenses. Finally, the attacker has an

offline dataset to fit a model that predicts events using batched message lengths.

We highlight two details of this threat model. First, we assume sensors do not use lossless

compression as such techniques are known to leak information through message lengths

(§3.7). Second, we focus on settings where each batched message corresponds to exactly one

event. This setup is ideal for an attacker, as they can attribute any length variance to a

single event. Our defense (§3.4) extends to settings where batches contain multiple events.

This threat model presents a realistic attack vector against sensors in hard-to-access

places. For example, consider sensors on satellites orbiting the earth [Denby and Lucia, 2020].

This setting deters two types of attacks. First, due to cost, an adversary cannot easily deploy

devices to obtain equivalent measurements. Second, remote sensors make it difficult for an

adversary to exploit side-channels that require physical device access [Messerges et al., 2002,

Sehatbakhsh et al., 2019, Selvaraj et al., 2018]. Instead, the passive observation of message

sizes represents a low-cost attack because the adversary can launch the attack remotely.

It is thus critical to prevent adaptive sampling from leaking sensor information through

its communication patterns. We emphasize that these other attack vectors against sensor

networks still exist, and it remains necessary to secure both sensors and adaptive sampling

from such techniques.
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Figure 3.2: Diagram of the sensor system and threat model.

Table 3.1: Average (standard deviation) message size of adaptive policies [Chatterjea and
Havinga, 2008, Silva et al., 2017, Campos et al., 2017] when conditioned on the event.

Event Linear Deviation Skip RNN

Seizure 870.12 (±241.83) 859.00 (±286.50) 941.76 (±233.13)
Walking 564.27 (±67.50) 489.51 (±42.14) 784.97 (±165.11)
Running 1127.46 (±65.85) 1200.92 (±55.97) 877.41 (±223.44)
Sawing 1021.80 (±87.78) 1080.20 (±98.85) 1235.20 (±89.86)

3.3.2 Privacy and Adaptive Sampling

Using this threat model, we observe how adaptive sampling leaks information on low-power

sensors. We execute three adaptive policies (§3.5.1) on the task of detecting epileptic seizures

from a set of activities [Villar et al., 2016]. Each policy shows a distinct message size

distribution for each event, and these differences are recognizable (Table 3.1). For example,

if a sensor is using the Deviation policy [Silva et al., 2017], an attacker who observes a 450-

byte message can infer the subject is walking. This issue occurs for all events and policies;

for each policy, the pairwise differences between the conditional distributions are statistically

significant under a Welch’s t-test (α = 0.01). The scope of this problem indicates the issue

is not with the specifics of a single policy. Instead, general-purpose adaptive sampling is

designed to use context-dependent behavior, and this feature leads to an exploitable side-

channel.
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3.3.3 Example Systems

The considered system and threat models provide a general attack against adaptive sampling

on low-power sensors. We discuss two systems that fit into these models.

Nanosatellites present a cost-effective solution for remote sensing [Frick and Nieder-

strasser, 2018, Poghosyan and Golkar, 2017, Puig-Suari et al., 2001, Toorian et al., 2008].

These satellites revolve around the earth, capture measurements, and transmit values to

ground base stations. This communication is periodic because it occurs when the satellite

is within range of a base station. These satellites operate using battery or intermittent

power, making energy management a priority. Further, the recent Orbital Edge Computing

[Denby and Lucia, 2020] proposal highlights the benefits of employing adaptive behavior

by only transmitting relevant measurements. This design makes the batched payload size

proportional to the number of "interesting" values. An adversary can passively monitor the

long-range downlink and use the payload size to possibly uncover information about the

sensed values. We emphasize that it is difficult and costly to launch an attack on satellites

that uses physical device contact.

ZebraNet is a sensing system for wildlife monitoring [Zhang et al., 2004]. These sensors

collect GPS and acceleration measurements from wild Zebras [Zhang and Martonosi, 2008].

With this information, researchers can track movements and infer activities [Naylor et al.,

2009]. ZebraNet sensors transmit measurements every two hours to other nodes within a few

kilometers. As sensors are attached to Zebras, device maintenance is costly, making energy

management a key priority. Wildlife monitoring requires data privacy when tracking an

endangered species. Although Zebras do not fit this category, systems such as TigerCENSE

perform such monitoring [Bagree et al., 2010]. When tracking endangered wildlife, it is criti-

cal to protect the location of animals from poachers. The sensors should not leak information

that can localize the animal to specific areas. In this setting, adversaries will not launch an

attack that requires physical device access. If the attacker could access the device, they
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Figure 3.3: AGE works in between sampling and encryption, and it requires no changes to
either step.

would also have access to the target animal. An adversary can instead launch an attack by

intercepting wireless communication near a centralized base station.

3.4 Adaptive Group Encoding

Adaptive Group Encoding (AGE) is a novel framework to protect adaptive sampling policies

from leaking information through the size of batched messages. AGE creates fixed-length

messages for all collected batches, breaking the relationship between message size and collec-

tion rate. The framework operates as a drop-in step between sampling policy and encryption

module, allowing AGE to work with any adaptive sampler, sensing task, and encryption algo-

rithm (Figure 3.3). Achieving this generality prevents AGE from making strong assumptions

about the sampling policy and the measurement values. AGE only requires that sensors

capture numerical data. Within this setting, AGE must use lossy encoding; there is no

lossless algorithm that can guarantee fixed-length messages [Mahoney, 2012]. Fortunately,

this design aligns with existing sampling techniques; sampling is already lossy because it

drops entire measurements. AGE aims to minimize the additional error required to prevent

information leakage.

Central to AGE is fixed-point quantization, a cheap technique that can encode measure-

ments into same-sized messages by properly setting the bit width for each value. Quantiza-

tion alone, however, faces three issues that lead to high error. First, the sampler may capture
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Figure 3.4: Overview of the data flow through AGE.

more values than available bits, forcing this encoder to drop all elements to meet the target

size. Second, quantization uses a static number of non-fractional bits, causing unnecessary

errors by not adapting to data ranges. Finally, quantization must round the selected width

down to the nearest integer, resulting in excessive message padding.

AGE addresses these shortcomings by applying three transformations (Figure 3.4). First,

AGE introduces a pruning step that removes measurements from batches with too many

values (§3.4.2). Second, AGE adapts to the observed values by supporting dynamic ranges

(§3.4.3). The framework applies run-length encoding (RLE) to compress value exponents.

This RLE step groups adjacent values with the same exponent. AGE assigns bit widths for

each exponent-aware group and quantizes the enclosed values accordingly (§3.4.4). Working

with these smaller sets allows AGE to better utilize the available message bytes.

AGE protects adaptive sampling executing on MCUs under energy constraints. We create

AGE to have a small energy cost, and AGE offsets any computational overhead by reducing

the amount of wireless communication (§3.4.5).
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Table 3.2: A selection of relevant notation.

Term Description

T The maximum number of elements per batch.
xt The measurement at step t.
d The number of features in each measurement.
B The energy budget in joules.
k The number of elements captured by the sampling policy.
MB The target message size for the budget B.
ρB The average collection rate to meet the budget B.
αt The original index of the tth collected sample.
w0 The original number of bits per feature.
n0 The original number of non-fractional bits per feature.

3.4.1 Notation

We introduce the relevant notation before describing the AGE framework. As MCUs work

in fixed-point arithmetic, we consider measurements xt ∈ Rd encoded as fixed-point values.

Dach value has w0 bits, n0 of which are non-fractional places. The term n0 logically corre-

sponds to the value’s exponent, as the binary point is in the (w0− n0)
th place. We consider

a general adaptive sampler operating under an energy budget of B joules; the policy meets

this constraint using an average collection rate ρB . AGE knows B and, by extension, ρB .

The sensor has a sampling period of ∆t seconds and sends measurement batches every ∆T

seconds (§3.2.1). The sensor sends at most T = ∆T/∆t measurements in every batch. We

denote the target message size by MB ; this term is the number of bytes required to encode

⌊ρB · T · d⌋ values. The target size MB is proportional to the budget B through the collec-

tion rate ρB . For brevity, MB does not include the fixed amount of metadata required for

communication. In practice, AGE handles this overhead by reducing the space available for

data. Finally, k is the number of captured measurements in a single batch, and αt is the

index of the tth collected element. Table 3.2 summarizes this notation.
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3.4.2 Measurement Pruning

AGE ensures fixed-length messages for any periodic adaptive sampling policy. Hence, AGE

cannot make strong assumptions about the policy’s collection patterns. Even under tight

energy constraints, the base policy may capture all k = T elements, yet AGE must still

create a message with MB bytes.

Fixed-point quantization alone leads to poor results for scenarios requiring a high com-

pression ratio. For example, consider when MB = 35, k = 50 and d = 6. In this setting,

dedicating one bit per value yields a message with 38 bytes, eclipsing the target MB = 35.

For quantization to meet the target, it must drop all values.

AGE achieves better error during extreme over-sampling by taking a more moderate

approach. AGE instead removes just enough measurements to ensure that all values get at

least wmin bits. AGE performs this pruning by first computing the distance scores between

consecutive measurements.

Dist(xαt) = ∥xαt − xαt+1∥1 +
1

8
· |αt − αt+1| (3.1)

AGE removes the ℓ (see below) measurements xαt which have the smallest Dist. This

metric estimates the error caused by dropping xαt . By including the time difference, AGE

avoids creating long stretches with no collected values. Long gaps often lead to high error

because the system cannot detect signal changes in the interim [Law et al., 2009]. The factor

of 1
8 enables scaling using cheap bit shifting.

AGE sets ℓ as the largest positive integer such that ⌈18 · wmin · (k − ℓ) · d⌉ ≤ MB . If no

such ℓ > 0 exists, AGE skips the pruning step. This setting ensures that all remaining values

get represented with at least wmin bits. In our experiments, we set wmin = 5; a smaller

minimum leads to higher error during quantization (§3.4.4). We note that incrementally

updating the Dist scores yields an algorithm with lower error, but we find the overhead is
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not worth the benefits.

3.4.3 Exponent-Aware Group Formation

When the adaptive policy over-samples, AGE must compress values into a message with

MB bytes. AGE performs this compression using quantization (§3.4.4). By itself, fixed-

point quantization uses a static number of non-fractional places to limit the error for large

values; this strategy causes unnecessary errors by not adapting to data ranges. For example,

let w0 = 7 and n0 = 5, and consider quantizing to 3 bits. A static quantizer encodes 1.5 as

0 because the 0 and 4 are the two closest representable values in the 3-bit format. To avoid

such errors, it is critical to enable dynamic ranges.

The challenge is that the optimal number of non-fractional bits is value-dependent. In the

example above, 1.5 requires n = 2 non-fractional places in the 3-bit format while 0.25 needs

n = 1. Providing each value with its own exponent takes considerable space, where these

exponents store the number of non-fractional bits. AGE manages this tension by noting

that adjacent sensor values often fall in similar ranges [Saidani et al., 2020]. Thus, AGE

can compress exponents with run-length encoding (RLE). This process creates measurement

groups consisting of adjacent values with the same exponent.

RLE alone provides no guarantees on its compression ratio. In the worst case, the encoded

exponents can exceed MB bytes. Thus, AGE must cap the maximum space for the exponents

using a merging step. This process scores adjacent groups g1 and g2 with non-fractional

places n1 and n2 as defined below.

Score(g1, g2) = Count(g1) + Count(g2) + 2 · |n1 − n2| (3.2)

AGE greedily merges groups with the lowest initial scores to produce at most G sets (see

below). Upon merging, the new group uses max(n1, n2) non-fractional places to minimize
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the error of large values. The factor of two balances the impact of exponent values and group

counts, and we implement this scaling using cheap bit shifts. AGE skips this merging step

when the initial number of groups is less than G. We note that an algorithm that updates

scores after each merge yields a better approximation. The benefits of this approach, however,

are not worth the overhead on an MCU.

The maximum number of groups G controls the tradeoff between exponent fidelity and

space overhead. AGE sets this parameter by first finding the number of bytes m required if

each value were encoded using the full w0 bits. AGE dedicates the remaining MB−m bytes to

exponents. That is, AGE sets G to the greatest number of groups whose metadata fits within

MB −m bytes. We enforce that G = max(G,G0) to limit the exponent approximation error

when k > ρBT . By expanding the number of groups when possible, AGE reduces space

wasted on padding when the policy under-samples. We use G0 = 6 in our experiments,

though we find that AGE’s performance is not sensitive across G0 = 4, 6, 8.

3.4.4 Data Quantization

AGE leverages the exponent-aware groups to quantize values and control the message length.

In particular, AGE sets the bit width of the values in each group such that the encoded result

is at most MB bytes. This group-based strategy addresses a limitation of standard fixed-

point quantization. The standard encoder will use the width w =
⌊
8·MB
k·d

⌋
to ensure a result

of at most MB bytes. This system must round the width down, leading to wasted space.

For example, let MB = 220, k = 50 and d = 6. These settings yield a width of w = 5,

corresponding to 188 data bytes. This result means that over 14% of the message gets

wasted padding up to MB = 220 bytes.

AGE uses its exponent-aware groups (§3.4.3) to improve this utilization. The framework

gives each group a bit width to use when quantizing its enclosed values. AGE sets these

widths using a round-robin process to optimize the number of bytes used under the message
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size MB . This strategy works better than a uniform assignment because the groups enable

adjustments in smaller multiples. For instance, using 5 groups of 10 measurements in the

previous example, AGE will assign 5 bits to one group and 6 bits to the remaining four. This

assignment creates a message with 218 data bytes; only 1% of the message gets wasted on

padding. The per-group assignments allow AGE to functionally mimic fractional bit widths.

AGE’s per-group quantization requires encoding the widths into the message. This over-

head is manageable because the widths are small and only need a few bits each—e.g., four

bits when w0 = 16. Further, the maximum number of groups G places a cap on the total

number of widths. We note that AGE accounts for the space required to store exponents,

group sizes, and bit widths when selecting the quantization parameters.

In summary, AGE quantizes values in the ith group as fixed-point integers with wi bits,

ni of which are non-fractional places (§3.4.3). AGE packs the quantized values, as well as

the group metadata, into an output buffer. This design allows AGE to optimize its use of

the available MB bytes and preserve the benefits of dynamic ranges.

3.4.5 Discussion

AGE uses a multi-step process to minimize its encoding error. This algorithm is more ex-

pensive than a standard procedure which directly packs values into an output buffer (§3.5.8).

We address this overhead by saving energy on wireless communication. AGE produces

messages with MB bytes, and the framework can counteract any encoding overhead by

reducing this target size. Intuitively, AGE spends a bit more energy on computation and

saves significant energy on communication. In practice, we reduce the target length by about

30 bytes and include an additional 20-byte reduction for every 500-byte multiple in MB .

This conservative estimate allows AGE to display negligible energy overhead in deployment

(§3.5.7).

We emphasize the generality of the presented system. In particular, AGE works for
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both block and stream ciphers. For block ciphers, AGE uses the target size MB rounded

to the nearest block. In the case of a stream cipher, AGE uses the size MB as given. The

only knowledge AGE requires of the encryption algorithm is the size of associated metadata

(e.g. nonces). These quantities allow AGE to determine the number of bytes available for

measurements.

As a final point, AGE ensures that the sent message has MB bytes absent any external

faults. This guarantee is similar to those provided by systems with hard real-time constraints

[Stankovic, 1988]. For example, if the network drops a packet, an attacker may observe a

message of size M̃ < MB . AGE assumes that such faults occur independently of the sensed

events. Thus, an attacker cannot use intermittent failures as a source of information leakage.

3.5 Evaluation

AGE protects low-power adaptive policies from leaking information through message sizes.

We evaluate AGE by measuring its error, information leakage, and energy consumption.

This evaluation demonstrates the following.

1. Under strict energy budgets, adaptive policies with AGE achieve lower error than

non-adaptive sampling and defenses using message padding (§3.5.2).

2. General adaptive sampling policies leak information through messages sizes. By stan-

dardizing message lengths, AGE protects multiple adaptive policies from this leakage

both in theory (§3.5.3) and in practice (§3.5.4).

3. AGE’s generality allows it to protect a variety of adaptive policies, including strategies

based on trainable models such as neural networks (§3.5.5).

4. AGE uses multiple transformations to minimize its error. With this design, AGE

obtains a lower error than variants using quantization and pruning alone (§3.5.6).
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5. On a resource-constrained MCU, AGE retains the low error of adaptive sampling and

eliminates all information leakage through message sizes (§3.5.7). These benefits come

with negligible energy overhead (§3.5.8).

3.5.1 Setup

We evaluate AGE both in simulation and on a low-power MCU. We use nine sensor datasets

(Table 3.3) that include both floating-point and integer measurements. Each sequence con-

stitutes a batch, and the batches range from 98 to 3, 138 bytes. We highlight two datasets

for their relation to the examples in §3.3.3. The Activity [Anguita et al., 2012] task uses

accelerometer values to classify human activities; these measurements are similar to those

of ZebraNet [Zhang et al., 2004], albeit on humans instead of wildlife. The Tiselac [Ienco

et al., 2017] dataset uses satellite image features to infer land cover types; this task relates

to nanosatellites.

We execute each policy under energy constraints. Upon budget violation, the policy uses

random values for the remaining sequences. The server receives a subsequence and infers

missing elements using linear interpolation. We measure the mean absolute error (MAE)

of this reconstruction. We use eight budgets per dataset corresponding to the energy of a

Uniform sampler capturing 30%, 40%, . . . , 100% of elements. The simulator tracks energy

using traces from a TI MSP430 FR5994 [Instruments, 2021]. We conservatively multiply

AGE’s energy cost by 4×. The simulator results use a ChaCha20 stream cipher (IETF RFC

7539). For brevity, we omit the block cipher results. AGE provides equivalent protection

with block ciphers, and we find AGE has a better relative error in this setting due to the

extra bytes available from block padding the target size.

The hardware environment consists of a TI MSP430 FR5994 MCU [Instruments, 2021]

with an HM-10 BLE module. The MCU performs sensing by reading measurements from

FRAM, and the system processes one sequence every six seconds. We measure the energy
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Table 3.3: Properties of the evaluation datasets.

Dataset # Seq Seq Len # Feat Labels Bits (Frac) Range

Activity [Anguita et al., 2012] 11,119 50 6 12 16 (13) 10.6
Characters [Williams et al., 2006] 1,436 100 3 20 16 (13) 7.8
EOG [Fang and Shinozaki, 2018] 362 1,250 1 12 20 (8) 2640.4
Epilepsy [Villar et al., 2016] 138 206 3 4 16 (13) 7.2
MNIST [LeCun et al., 1998] 10,000 784 1 10 9 (0) 255
Password [Bagnall, 2021] 308 1,092 1 5 16 (11) 18.8
Pavement [Souza, 2018] 8,864 120 1 3 16 (10) 68.4
Strawberry [Holland et al., 1998] 370 235 1 2 16 (13) 5.9
Tiselac [Ienco et al., 2017] 17,973 23 10 9 16 (0) 3379

consumption of each policy using the EnergyTrace™ tool [Instruments, 2020]. We use an

AES-128 block cipher [Dworkin et al., 2001] because the MCU has an AES accelerator.

For each adaptive policy, we compare AGE to two alternative approaches. The first is the

standard adaptive policy with no post-processing step. The second baseline uses a message

padding algorithm analogous to BuFLO [Dyer et al., 2012]. We use the minimum padding

amount by assuming the defense knows the largest batch within the evaluation data.

We experiment with one non-adaptive policy (Uniform) and three adaptive sampling

algorithms (Linear, Deviation, and Skip RNN). We also try a Random sampling baseline,

but we omit these results because Uniform policy displays better error. We evaluate AGE

on all adaptive policies.

Uniform The Uniform sampling algorithm collects k elements from each sequence where k

is the maximum amount adhering to the budget B. This policy collects indices t = r⌈T/k⌉

for i ∈ {0, 1, . . . , k − 1}. When k does not divide T , we include additional random indices

to ensure the policy collects k elements.

Linear The Linear adaptive policy [Chatterjea and Havinga, 2008] alters its collection rate

based on the differences in consecutive measurements. When the absolute difference exceeds

a threshold, the policy collects the next element. Otherwise, it increases its collection period

by one. We use an offline training step to set a threshold for each budget.

Deviation The Deviation adaptive policy [Silva et al., 2017] uses a weighted moving average
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Table 3.4: Arithmetic mean reconstruction error (MAE) across all budgets. The asterisk
denotes the lowest error overall, and the boldface marks the lowest error for policies without
information leakage. The final row is the median percent error higher than Uniform sampling
(lower is better).

Dataset Unif. Linear Deviation
Std Padded AGE Std Padded AGE

Activity 0.0146 0.0090* 0.0565 0.0095 0.0099 0.0622 0.0104
Characters 0.0046 0.0046 0.0404 0.0046 0.0045* 0.0443 0.0046
EOG 0.1343 0.1251* 31.7824 0.1259 0.1301 37.7492 0.1321
Epilepsy 0.1090 0.0992* 0.2076 0.0997 0.0998 0.2295 0.1005
MNIST 5.0770 4.9231 6.5239 4.9397 4.6694* 7.1768 4.6958
Password 0.0073 0.0024* 0.1002 0.0024 0.0026 0.1063 0.0026
Pavement 0.7594 0.6477 0.7233 0.6886 0.6301* 0.7228 0.6786
Strawberry 0.0059 0.0049 0.0320 0.0050 0.0048* 0.0415 0.0049
Tiselac 2.7539 2.6547* 9.5832 2.6770 2.7762 9.5012 2.7934

Overall (%) 0.00 -15.84* 135.43 -13.41 -15.18 137.74 -11.34

to track the measurement variance. When the average variance exceeds the threshold, the

policy doubles its collection rate. Otherwise, the policy halves its rate. We set the per-budget

thresholds using an offline process.

Skip RNN The adaptive Skip RNN algorithm [Campos et al., 2017] uses offline data to

train a recurrent neural network (RNN) which learns to sample. As Skip RNNs consume

more energy than the other policies, we do not use this sampler under energy budgets. We

instead use Skip RNNs to display the generality of AGE and its applicability to near-future

adaptive sampling. This application shows how AGE can protect adaptive neural networks

that support subsampling [Kannan and Hoffmann, 2021, Neil et al., 2016].

3.5.2 Reconstruction Error

Sampling policies aim to minimize error and meet energy constraints. Thus, AGE cannot

have a high error cost. We evaluate this cost by measuring the adaptive policies’ error with

AGE (Table 3.4). These results have three main takeaways.

First, AGE retains adaptive policies’ dominance over non-adaptive sampling. On all
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Figure 3.5: MAE for each budget on the Activity dataset.

tasks, the best adaptive policy with AGE has a lower error than Uniform sampling, and

AGE shows roughly 13.4% (Linear) and 11.3% (Deviation) lower error overall. Further,

AGE has better error than Uniform sampling on 73.6% (Linear) and 70.8% (Deviation) of

constraints, and AGE makes adaptive sampling worse than the Uniform policy on only one

additional budget. On some tasks, policies with AGE dominate Uniform sampling (Figure

3.5).

Second, unlike message padding, AGE meets the energy constraints of low-power devices.

The Padded defense has a high error on all tasks due to budget violations caused by extra

communication. In contrast, AGE never exceeds the budget because it decreases the amount

of wireless communication to limit its energy overhead (§3.4.5). This design allows AGE to

achieve equal or better error than Padded policies on 94.4% of budgets. Amongst the policies

which leak no information (§3.5.3), AGE provides the best overall error.

Third, for adaptive policies, AGE does incur a cost in error. In particular, adaptive

sampling with AGE displays a median of about 0.92% higher error than their standard

counterparts. We expect this additional error based on the lossy approach employed by

AGE; however, we believe this very small error is a small price for eliminating information

leakage.

AGE requires the highest compression ratio when the underlying policy captures the
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most elements. This phenomenon generally occurs on sequences with high variation. To

ensure that AGE’s error is not prohibitive in these situations, we supplement the MAE

values with a weighted error metric based on sequence deviation. Specifically, we weigh the

MAE from each sequence by the standard deviation of its measurement values. Table 3.5

shows the weighted error values averaged across all budgets. AGE continues to consistently

outperform Uniform sampling. AGE achieves a lower weighted error on every dataset, leading

to a 15% lower median error than the Uniform policy. This aggregate result eclipses the

unweighted value (Table 3.4) due to the better performance of adaptive sampling on high-

deviation sequences. Furthermore, on all datasets but one, AGE is the best-performing

policy that protects against information leakage. On the Pavement task, the Padded variant

achieves a lower error than AGE. This result occurs because the sequences after the budget

violation exhibit low deviation. Thus, the sequences that require random guessing get less

weight, leading to a lower aggregate error value. This result is a product of the arbitrary

dataset ordering and is not a fundamental benefit of the Padding strategy. The far superior

performance of AGE on the other eight datasets shows the benefits of the proposed approach.

In general, the low weighted error shows how AGE outperforms baseline approaches when

focusing on scenarios that require the highest compression from the lossy encoding routine.

3.5.3 Information Leakage: Theoretical

AGE protects adaptive sampling from leaking information through message lengths. We

demonstrate this ability from an information-theoretic perspective (§3.5.4 explores practical

implications). For each budget, we estimate the normalized mutual information (NMI)

between the event L and the message size M (see below) [Kvålseth, 2017]. This metric

represents the reduction in uncertainty about the event after observing the message size

[Chatzikokolakis et al., 2010]. The terms Î(L,M), Ĥ(L), and Ĥ(M) are the maximum
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Table 3.5: Arithmetic mean weighted reconstruction error across all budgets. The asterisk
marks the lowest overall error, and the boldface shows the lowest error amongst policies with
no leakage.

Dataset Unif. Linear Deviation
Std Padded AGE Std Padded AGE

Activity 0.0274 0.0134* 0.0652 0.0144 0.0147 0.0756 0.0159
Characters 0.0049 0.0047 0.0343 0.0048 0.0046* 0.0376 0.0047
EOG 0.1382 0.1205* 40.4317 0.1274 0.1243 46.3721 0.1392
Epilepsy 0.1394 0.1067 0.1993 0.1073 0.1027* 0.2299 0.1039
MNIST 5.1211 5.0021 6.5698 5.0206 4.7047* 7.1624 4.7344
Password 0.0073 0.0024* 0.1002 0.0024 0.0026 0.1063 0.0026
Pavement 0.8919 0.6835 0.7185 0.7451 0.6261* 0.6693 0.7019
Strawberry 0.0059 0.0049 0.0320 0.0050 0.0048* 0.0415 0.0049
Tiselac 4.6389 4.5302* 12.1781 4.5784 4.8623 12.2598 4.9076

Overall (%) 0.00 -16.95 162.52 -15.25 -18.64* 175.91 -16.95

likelihood estimators for the mutual information and (Shannon) entropy.

NMI(L,M) =
2 · Î(L,M)

Ĥ(L) + Ĥ(M)
(3.3)

A policy with no leakage should have zero mutual information, implying that the message

size is independent of the event.

The Uniform policy has zero NMI because the policy captures the same number of el-

ements for all events. In contrast, both standard adaptive policies display nonzero NMI

across all tasks (Table 3.6), indicating that the size of messages from adaptive policies leaks

information about event labels. We estimate the significance of this leakage using an ap-

proximate permutation test [Good, 2013]. This test randomly shuffles the message lengths

and recomputes the NMI. With this design, the null hypothesis is that random variation

in the lengths leads to the nonzero NMI instead of any true dependence between sizes and

events. We use 15,000 permutations for each test, creating a worst-case 95% confidence in-

terval of p̂± 1.96 · 1
2
√
15000

where p̂ is the estimated p-value [Ojala and Garriga, 2010]. With

this methodology, we find that the adaptive policies have an entire 95% p-value confidence
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Table 3.6: Median / maximum empirical normalized mutual information between message
size and event label. Padded and AGE have the same median and maximum values.

Dataset Linear Deviation
Std Padded AGE Std Padded AGE

Activity 0.34 / 0.35 0.00 0.00 0.33 / 0.40 0.00 0.00
Characters 0.24 / 0.25 0.00 0.00 0.24 / 0.26 0.00 0.00
EOG 0.20 / 0.30 0.00 0.00 0.19 / 0.31 0.00 0.00
Epilepsy 0.41 / 0.44 0.00 0.00 0.39 / 0.47 0.00 0.00
MNIST 0.13 / 0.13 0.00 0.00 0.14 / 0.27 0.00 0.00
Password 0.07 / 0.10 0.00 0.00 0.09 / 0.12 0.00 0.00
Pavement 0.13 / 0.13 0.00 0.00 0.13 / 0.15 0.00 0.00
Strawberry 0.05 / 0.09 0.00 0.00 0.06 / 0.09 0.00 0.00
Tiselac 0.07 / 0.12 0.00 0.00 0.11 / 0.20 0.00 0.00

interval less than 0.01 on 83.3% (Linear) and 81.9% (Deviation) of evaluated budgets. This

result shows that, with a high likelihood, the observed NMI occurs due to a link between

message lengths and event labels. Thus, the observed NMI corresponds to a meaningful

amount of leakage. We emphasize that this leakage occurs for both policies and across all

tasks, showing the scope of the privacy issue.

AGE successfully eliminates the information leakage of adaptive sampling. As a result

of same-sized messages, adaptive policies with AGE show zero NMI between message length

and event label. Thus, AGE ensures that the message size is independent of the event. This

result holds despite the base adaptive policy using data-dependent collection rates. Further,

this protection applies to both adaptive policies across all tasks, supporting the generality

of this defense. We note that Padding provides equivalent security, but it does so at a much

higher energy cost (§3.5.7).

3.5.4 Information Leakage: Practical

The NMI results provide a strong indication that AGE protects standard adaptive policies

from leaking information through message lengths. We supplement this theoretical analysis

by presenting a practical attack. We consider an adversary who uses message lengths of
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Figure 3.6: Median attacker accuracy across all energy budgets. The error bars denote the
first and third quartiles, and the points show the maximum accuracy.
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Figure 3.7: Confusion matrices for the attack model under a single budget. The Linear
policy yields 100% accuracy on detecting seizures. AGE forces all predictions into one event.

ten random sequences of the same event (§3.3.1). The input features include the average,

median, standard deviation, and IQR of the message sizes. We use an ensemble of 50 decision

trees fit with AdaBoost [Freund et al., 1999, Schapire, 2013] and measure the test accuracy

using stratified five-fold cross-validation. The training and testing sets contain 8,000 and

2,000 samples, respectively. Policies with no leakage should have a test accuracy equivalent

to the most frequent event. As this attack uses one methodology, the presented approach is

a lower bound for what an adversary may uncover.

With this attack, the adversary can infer events from standard adaptive policies (Figure

3.6). The adaptive policies have an overall median attack accuracy that is 1.58× higher than

the most frequent event. In the worst case, the policies allow the attacker to infer over 94%

of the event labels on the Epilepsy, Pavement, and Strawberry datasets. This result occurs

for both the Linear and the Deviation policies, confirming the privacy problem associated
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Table 3.7: Average MAE, maximum NMI, and maximum attack accuracy when sampling
using Skip RNNs.

Dataset MAE NMI Attack (%)
Skip RNN AGE Skip RNN AGE Skip RNN AGE

Activity 0.0081 0.0087 0.40 0.00 59.26 16.87
Characters 0.0043 0.0044 0.34 0.00 26.60 6.59
EOG 0.1434 0.1439 0.39 0.00 35.15 8.33
Epilepsy 0.0892 0.0896 0.31 0.00 92.80 25.95
MNIST 0.9192 1.0207 0.13 0.00 44.70 11.35
Password 0.0073 0.0073 0.08 0.00 43.82 22.60
Pavement 0.5845 0.6091 0.20 0.00 96.45 46.05
Strawberry 0.0040 0.0040 0.09 0.00 97.70 64.85
Tiselac 2.0832 2.2810 0.16 0.00 54.73 22.26

with general-purpose adaptive sampling. We emphasize that this worse-case leakage occurs

for sensitive events. For example, the attack model against the Linear policy can obtain

100% precision and recall on classifying the occurrence of an epileptic seizure (Figure 3.7a).

AGE fixes this issue for both adaptive policies. Due to fixed-length messages, both

policies with AGE display an attack accuracy equivalent to the most frequent label, the

best that is practically achievable. We highlight this behavior on the previous scenario

for adaptive sampling (Figure 3.7). AGE’s same-sized messages force all predictions into a

single event, thereby fully protecting adaptive sampling even in worst-case situations (Figure

3.7b). Overall, AGE eliminates the information leakage problem from adaptive policies,

meets energy requirements, and retains a low error (Table 3.4).

3.5.5 Evaluation on Skip RNNs

AGE works as a post-processing step to adaptive sampling, making AGE compatible with

any policy. We display this generality by applying AGE to Skip RNNs [Campos et al., 2017].

We evaluate these models when collecting 30%, 40%, . . . , 100% of elements.

As shown in Table 3.7, AGE incurs roughly 1.60% greater error than standard Skip

RNNs. The Skip RNN policy, however, leaks information on each task. With a permutation
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Table 3.8: Median percent error greater than AGE across all budgets and tasks. Higher
values indicate higher error.

Variant Linear Deviation

Single 2.664% 2.870%
Unshifted 2.068% 2.548%
Pruned 58.882% 57.278%
AGE 0.000% 0.000%

test, the observed nonzero NMI values are significant on over 72.2% of rates. Furthermore,

this leakage translates into a practical attack with a worst-case accuracy of over 95%. This

result further supports that general-purpose adaptive sampling algorithms leak information

on multiple tasks. AGE successfully closes this side-channel. Skip RNNs with AGE show

zero NMI between message size and event, and the attack accuracy gets reduced to the most

frequent label. The successful application of AGE to a diverse set of policies shows the

framework’s generality and small performance overhead.

3.5.6 Variants of Adaptive Group Encoding

AGE performs encoding by compressing exponents and quantizing values. We evaluate these

transformations using three variants. The Single variant uses fixed-point quantization with a

single bit-width. The Unshifted variant uses six even-sized groups but fixes the exponent for

all values. The Pruned variant removes measurements to control the message size (§3.4.2).

All three variants create fixed-length messages, so we focus this comparison on sampling

error. Across all tasks, AGE displays lower error than these baselines (Table 3.8). Further,

AGE shows an equal or better error than all variants on over 98% of budgets. These results

show how all AGE’s features are necessary to achieve low error.

We highlight an important aspect of these results: quantization alone does not retain

adaptive sampling’s dominance over Uniform sampling. The Single and Unshifted policies

incur high errors on the Tiselac task, showing MAEs of 6.245 (Single) and 8.998 (Unshifted)

with the Linear policy. This error exceeds that of Uniform sampling by over 2.2× (Table
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Table 3.9: Average energy per sequence (mJ) over 75 sequences when on a TI MSP430 MCU
under three energy budgets.

Policy Activity Tiselac
2.837J 3.285J 3.634J 2.606J 2.929J 3.288J

Uniform 37.83 43.81 48.46 34.75 39.05 43.85

Linear 37.22 42.86 48.18 34.84 38.93 43.75
Padded 45.35 48.21 48.22 37.38 43.87 43.67
AGE 36.37 42.62 47.09 34.46 37.59 43.63

Deviation 37.30 42.68 48.17 35.01 39.18 43.75
Padded 48.36 48.11 48.60 37.28 43.50 43.70
AGE 36.31 42.01 47.00 34.52 37.90 43.61

Table 3.10: MAE over 75 sequences on a TI MSP430 MCU under three energy budgets.

Policy Activity Tiselac
2.837J 3.285J 3.634J 2.606J 2.929J 3.288J

Uniform 0.0280 0.0103 0.0000 3.4848 1.5383 0.0000

Linear 0.0203 0.0016 0.0000 4.0615 0.9974 0.0000
Padded 0.0720 0.0306 0.0000 15.0244 19.2171 0.0000
AGE 0.0223 0.0023 0.0001 4.0615 1.0005 0.0000

Deviation 0.0231 0.0019 0.0001 4.0046 1.1654 0.0000
Padded 0.0916 0.0309 0.0001 14.9644 17.3346 0.0000
AGE 0.0254 0.0027 0.0002 4.0052 1.1709 0.0000

3.4). In contrast, AGE outperforms Uniform sampling on this task. Unlike encoding using

fixed-point quantization alone, AGE allows adaptive policies to dominate Uniform sampling.

3.5.7 Performance on a Microcontroller

In simulation, AGE incurs minimal error, ensures fixed-length messages, and satisfies energy

constraints. We validate these results on a TI MSP430 FR5994 [Instruments, 2021] with an

HM-10 BLE radio. We run each policy over 75 sequences on the Activity and Tiselac tasks.

We set three budgets using Uniform policy’s energy when collecting 40%, 70%, and 100% of

elements. We enforce budget violations when the energy per sequence is significantly higher

than Uniform sampling. We assess significance using a one-sided Welch’s t-test (α = 0.05).
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Across all budgets, AGE shows a lower average energy per sequence than both Uniform

sampling and standard adaptive policies (Table 3.9). These results confirm the negligible

energy overhead associated with AGE. This performance contrasts with the Padded policies;

AGE requires a median of 9.70% (Linear) and 10.04% (Deviation) less energy per sequence

than Padding. This minimal overhead comes at little cost in error (Table 3.10). On the

MCU, AGE shows the same error under these three constraints as we observe in simulation.

AGE shows a far higher error than Uniform sampling on only one budget (Tiselac at 2.606J),

and this result comes from higher error by the base adaptive policies. The Padded variants

show high errors due to budget violations.

Standard adaptive sampling continues to show batch size variance. On the Activity

task, adaptive sampling has a median of 0.088 (Linear) and 0.101 (Deviation) NMI between

message size and event label. AGE instead shows zero NMI by always sending fixed-length

messages. These results show how AGE successfully protects adaptive policies and meets

the constraints of low-power sensors.

3.5.8 Overhead Analysis

AGE’s multi-step encoding leads to computational overhead. We analyze how this com-

putation translates to energy on a TI MSP430 FR5994 MCU [Instruments, 2021]. When

encoding a full sequence from the Activity dataset, AGE consumes roughly 0.154mJ. This

figure compares to the 0.016mJ needed for a standard process that writes values directly into

an output buffer. To offset this cost, AGE reduces the amount of communication by roughly

30 bytes per batch (§3.4.5). For an HM-10 BLE radio, this reduction saves about 0.9mJ,

far eclipsing the energy required for encoding. AGE further protects against any worse-case

scaling by reducing the communication by an additional 20 bytes every 250 measurement

values. With this design, AGE trades some computational overhead for greatly reduced

communication, leading to negligible total energy overhead in practice (§3.5.7)
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3.6 Related Work

Security in IoT and Cyber-Physical Systems

Attacks such as the Mirai botnet [Antonakakis et al., 2017] highlight the importance of low-

power device security [Stajano and Anderson, 1999, Trappe et al., 2015]. Previous systems

examine the security of smart homes [Acar et al., 2018, Mohajeri Moghaddam et al., 2019]

and smart cities [Giuliari et al., 2021, Leu et al., 2018]. Additional work fingerprints wireless

devices [Bezawada et al., 2018, Bratus et al., 2008, Formby et al., 2016, Gao et al., 2010,

Pang et al., 2007, Rasmussen and Capkun, 2007, Siby et al., 2017]. AGE builds on this work

by protecting against attackers who can fingerprint sensors.

Multiple attacks extract information through device side-channels such as electromagnetic

waves [Kocher et al., 2011, Messerges et al., 2002, Sehatbakhsh et al., 2019, Selvaraj et al.,

2018] and cache timing [Takarabt et al., 2019]. AGE also addresses a side-channel of low-

power devices, but our work focuses on message lengths. The MoLe attack uses a smartwatch

accelerometer to infer typed words [Wang et al., 2015]. This attack highlights the need for

systems such as AGE which protect sensor measurements. RCAD protects sensor networks

from leaking measurement times [Kamat et al., 2007]. AGE also addresses data leakage on

low-power sensors, but it instead focuses on message sizes rather than times.

Both FATS and STP show how attackers can use transmission times and device fin-

gerprints to infer activities in smart homes [Apthorpe et al., 2019, Srinivasan et al., 2008].

Along with AGE, these systems study communication side-channels. These approaches, how-

ever, target smart home devices that vary their transmission times. AGE instead protects

low-power sensors that batch communication at regular intervals. Further, STP increases

network traffic; this strategy is too costly for low-power devices. Finally, Das et al. use

the communication volume from specific fitness trackers to infer activities [Das et al., 2016].

Our work builds on this study by displaying how general-purpose adaptive policies leak in-
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formation on multiple tasks. Further, we propose a novel framework to protect sensors in

an energy-efficient manner.

Website Fingerprinting

Website fingerprinting involves extracting information from encrypted network traffic [Cai

et al., 2014a,b, 2012, Lu et al., 2010]. Previous work shows how packet sizes leak information

about visited webpages [Bhat et al., 2019, Herrmann et al., 2009, Liberatore and Levine, 2006,

Panchenko et al., 2016]. Dyer et al. show how coarse features are sufficient for fingerprinting

[Dyer et al., 2012]. Wright et al. shape traffic to standardize website patterns [Wright et al.,

2009]. CRIME [Duong and Rizzo, 2012] and BREACH [Gluck et al., 2013] use compressed

sizes as a side-channel against TLS. Similar to these systems, we focus on a network traffic

side-channel. Our work, however, concerns sensors with energy constraints; any bandwidth

overhead leads to an untenable energy cost. We develop a defense that uses the numerical

properties of sensor measurements to standardize communication with a negligible energy

overhead.

Low-Power Compression

Data compression is a common method to reduce the communication energy on low-power

sensing devices. Mamaghanian et al. develop a compression algorithm to extend the lifetime

of wearable body sensors [Mamaghanian et al., 2011]. Azar et al. apply lossy compression to

IoT sensors and recover values using neural networks [Azar et al., 2019]. Other approaches

use delta encoding [Saidani et al., 2020], Chebyshev polynomials [Ukil et al., 2015] and

Huffman coding [Marcelloni and Vecchio, 2008]. Similar to these systems, AGE can use

lossy encoding to compress sensor messages. In contrast, our system creates fixed-length

messages to avoid information leakage. Unlike standard compression, AGE will expand

messages on purpose to meet the target size.
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Adaptive Sampling on Low-Power Devices

Adaptive sampling is a popular method for reducing energy consumption with minimal loss

in error. Existing systems use adaptive procedures based on linear or autoregressive features

[Alippi et al., 2009a, 2007, Chatterjea and Havinga, 2008, Law et al., 2009, Lou et al.,

2020, Silva et al., 2017]. Further systems adapt the data collection pattern using Gaussian

Processes [Tan et al., 2018], Reinforcement Learning [Dias et al., 2016, Murad et al., 2020],

and Neural Networks [Campos et al., 2017]. We show how three different adaptive policies

leak information on multiple tasks. AGE protects these systems with minimal overhead.

3.7 Discussion and Conclusion

Adaptive Group Encoding (AGE) enforces data privacy by creating fixed-length messages

using a lossy technique. We discuss the limitations of the proposed framework, as well as

how AGE compares to alternative defenses.

Batch Sizes

AGE offsets its slight computational overhead by reducing communication (§3.4.5). This

strategy struggles when the target size is small. For example, if MB is 40 bytes, lowering the

target by 30 bytes means AGE loses 75% of the message. When batches are small, padding

provides a better defense as its overhead becomes minimal. In our evaluation, AGE uses at

least 98 bytes, and we consider AGE superior to padding when the batches have at least 100

bytes.

AGE and Energy Savings

AGE creates fixed-length messages that meet a target size MB . This target size does not

need to be derived from an energy constraint. Instead, AGE can work with any feasible
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target message size, and we use this property in the AGE framework to offset the encoding

procedure’s computational overhead (§3.4.5). Thus, similar to standard compression tech-

niques, AGE supports the ability to save energy through reduced wireless communication.

This feature allows AGE to display energy savings beyond those of the underlying adaptive

sampling policy.

Lossless Compression

AGE’s creation of fixed-length messages makes it incompatible with lossless compression;

applying compression after AGE will alter the final message size. Compression, however, is

known to leak information about plaintext content [Duong and Rizzo, 2012, Gluck et al.,

2013, Kelsey, 2002]. Thus, even sensors using compression with non-adaptive sampling will

suffer from data privacy issues. We leave solutions to compression’s information leakage for

future work.

Alternative Defenses

We discuss two suboptimal alternative defenses. First, on-device inference [Gobieski et al.,

2019] eliminates the communication side-channel by never transmitting raw values. How-

ever, it is difficult to understand and debug inference results without raw data; sending

measurements provides flexibility during analysis. Additionally, real-world systems [Vasisht

et al., 2017] process data at centralized servers. These applications should not suffer from

data leakage.

A second alternative is to create same-sized messages by buffering excess values. This

approach, however, increases the reporting latency, and this overhead worsens when the pol-

icy over-samples on consecutive batches. Further, this strategy needs enough memory—a

limited resource on low-power sensors—to buffer excess values. Over-sampling for many

consecutive batches would force the system to drop samples, producing a high error similar
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to the Pruned variant in §3.5.6.

AGE is an efficient approach to protect adaptive sampling from leaking information through

batched communication. The framework emphasizes having a low overhead in terms of both

error and energy. Along with AGE’s modular design, these properties make the framework

compatible with existing sensor applications. We believe AGE represents a valuable step in

bringing low-overhead security measures to resource-constrained sensing devices.

80



CHAPTER 4

PREDICTION PRIVACY IN DISTRIBUTED MULTI-EXIT

NEURAL NETWORKS: VULNERABILITIES AND SOLUTIONS

4.1 Introduction

Battery-powered sensor devices must meet energy [Gobieski et al., 2019, Juang et al., 2002]

and latency [Kang et al., 2017, Yıldırım et al., 2018] constraints to achieve reliable perfor-

mance. Thus, sensors seek ways to improve their efficiency, and a common technique for

doing so is to push data processing onto the sensor device [Denby and Lucia, 2020]. This

method is beneficial because local processing allows the device to transmit smaller aggregate

results [Gobieski et al., 2019].

Modern sensor processing uses deep neural networks (DNNs) due to their high-quality

results [Gobieski et al., 2019, Lin et al., 2020]. However, DNNs have high resource costs, mak-

ing them challenging to deploy on low-power devices [Lin et al., 2020, Yao et al., 2017]. Prior

systems address this challenge by partitioning DNNs between sensor and server [Banitalebi-

Dehkordi et al., 2021, Kang et al., 2017, Li et al., 2019]. The sensor device holds a subset of

the DNN, and the system performs inference as follows:

1. Process measurements on the sensor with the DNN subset.

2. Transmit the intermediate DNN activations to the server.

3. Complete inference with the remaining DNN layers.

In this process, the sensor always transmits the intermediate state (Step 2), and this step

requires expensive wireless communication [Gobieski et al., 2019, Kang et al., 2017]. Sensing

systems address this problem by augmenting DNNs with early exits (Figure 4.1). These

inference models, called Multi-exit Neural Networks (MeNNs), contain early exit points
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Figure 4.1: A distributed Multi-exit Neural Network (MeNN) [Teerapittayanon et al., 2016]
with two total exits.

which create predictions using a subset of the entire DNN [Teerapittayanon et al., 2016].

Distributed MeNNs [Laskaridis et al., 2020, Teerapittayanon et al., 2017] form an initial

prediction on the sensor, alleviating the need to communicate with the server.

MeNNs face a key decision when reaching an exit point: whether to terminate inference.

This exit decision, which represents where the MeNN stops inference, comes with a tradeoff.

Exiting earlier leads to lower inference costs by skipping subsequent layers. Early exits,

however, generally reduce accuracy [Teerapittayanon et al., 2016, Wan et al., 2020a]. Data-

dependent adaptive behavior is an emerging method to balance this tradeoff [Hu et al.,

2020, Huang et al., 2017, Kaya et al., 2019, Scardapane et al., 2020, Teerapittayanon et al.,

2016, Wan et al., 2020a, Wang et al., 2017, Zhou et al., 2020]. These methods determine

when to terminate inference by comparing the neural network’s prediction confidence (e.g.,

the maximum classification probability) to a single threshold [Wang et al., 2017]. Inference

terminates when the confidence exceeds the threshold. This strategy is data-dependent

because the prediction confidence is a function of the given input. These data-dependent

methods yield high accuracy under cost constraints because not all inputs are equally difficult

to classify [Kaya et al., 2019, Wang et al., 2017].

In this work, we study MeNN early exiting from a new perspective: privacy. We demon-

strate how previous data-dependent exit policies [Teerapittayanon et al., 2016, Wang et al.,

2017] show asymmetric behavior on different predicted classes. That is, the MeNN exits

early for some classes more frequently than others. This behavior occurs because MeNNs
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produce different distributions of prediction confidence for different classes (§4.2.3). Stan-

dard data-dependent methods, however, apply a single threshold to all prediction confidence

values. This single threshold thus causes different average exit behavior across predictions.

This asymmetry means an adversary can learn about a distributed MeNN’s predictions

by observing its exit decisions, creating a privacy issue in sensing systems for two reasons:

1. Sensors leak when the distributed MeNN exits early through side-channels derived from

encrypted communication patterns (§4.3.2, §4.6.8).

2. Sensors collect values with temporal correlations [Deshpande et al., 2004, Gedik et al.,

2007], so an adversary who extracts when the MeNN exits early observes consecutive

elements with similar predictions.

With these properties, we discover that an adversary can use communication side-channels

to observe a distributed MeNN’s pattern of exit decisions. The adversary can then use this

pattern to infer the model’s most frequent prediction over short timescales. For example,

on the task of activity recognition [Kwapisz et al., 2011], we show that this side-channel

allows a white box attacker (§4.3.2) to uncover 52.00% of the MeNN’s predictions (§4.6.8).

This leakage extends to ten tasks; on average, we demonstrate how data-dependent policies

enable a white box attacker to infer MeNN predictions 1.85× more frequently than random

guessing (§4.6.2). Further, we build a black box attacker (§4.3.2) which can still infer MeNN

predictions at 1.56× the rate of random guessing (§4.6.7). Thus, privacy-conscious sensor

systems [Hiremath et al., 2014, Winkler et al., 2008, Sotirakis et al., 2023, Vasisht et al.,

2017] cannot gain the benefits of MeNNs.

There are two common approaches to closing side-channels based on asymmetric behavior.

The first method standardizes resource use [Brumley and Boneh, 2005, Dyer et al., 2012,

Kocher et al., 1999]. For MeNNs, this principle forces all inputs to exit at the same point.

This design negates the benefits of MeNNs, resulting in either suboptimal accuracy (§4.6.4)

or prohibitive overhead (§4.6.9). The second approach randomizes behavior [Apthorpe et al.,
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2019, Kocher et al., 1999]. This method leads to an MeNN policy that exits early uniformly

at random. Unfortunately, random exiting imposes a high accuracy cost (§4.6.4). We instead

want exit policies with the following properties:

(P1) Achieve perfect privacy by having no observable relation between exit decisions and

MeNN predictions.

(P2) Exhibit minimal energy overhead compared to previous data-dependent methods.

(P3) Display greater inference accuracy than Random exiting.

(P4) Do not require retraining or redesign of existing MeNNs.

This last property is important because neural network training is expensive. Solutions

requiring new architectures or retraining are not compatible with existing MeNNs.

We develop two new exit policies to meet (P1)–(P4). Our first approach, Per-Class Exit-

ing (PCE), augments prior data-dependent methods by using different confidence thresholds

for each class (§4.4). PCE tunes these thresholds to exhibit symmetric exit rates for better

privacy (§4.6.2). The policy retains high inference accuracy because it still makes decisions

using prediction confidence (§4.6.4).

Despite improved empirical privacy, we prove that PCE has no privacy guarantees (P1).

To achieve these guarantees, we augment PCE with randomization through a new policy

called Confidence-Guided Randomness (CGR) (§4.5). CGR randomly selects an exit using

probabilities biased toward PCE’s confidence-based decisions. Further, CGR optimizes the

MeNN’s accuracy while maintaining privacy by adapting the bias magnitude using trends in

the MeNN’s predictions. By using both prediction confidence and randomization, CGR has

higher accuracy than exiting early uniformly at random (§4.6.4) with statistically equivalent

privacy (§4.6.2). CGR also incurs negligible overhead (§4.6.9) and works with already-trained

MeNNs, allowing the policy to successfully satisfy (P1)–(P4).
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To the best of our knowledge, this is the first work to study the prediction privacy of

data-dependent early exiting for MeNNs. Overall, we make the following contributions1:

1. We show that previous data-dependent MeNN exit policies leak information about

model predictions. For two-exit distributed MeNNs, an adversary can infer the model’s

predictions under both white box and black box assumptions.

2. We create a policy called Per-Class Exiting (PCE) that uses different thresholds for

inputs of each class. This method reduces the leakage of prior data-dependent policies

and preserves accuracy to within 0.4 percentage points.

3. We construct a policy, Confidence-Guided Randomness (CGR), which integrates ran-

domization into PCE. CGR has theoretical privacy benefits. Compared to exiting

uniformly at random, CGR displays statistically equivalent privacy with higher accu-

racy on over 90% of target exit rates.

Our work demonstrates the privacy implications of performing data-dependent distributed

MeNN inference on sensing systems. With our proposed methods, privacy-conscious appli-

cations can safely achieve the performance benefits of MeNNs.

4.2 Background and Motivation

This section provides background on multi-exit neural networks (§4.2.1) before discussing

policies for early exiting (§4.2.2). We then provide an example of information leakage (§4.2.3)

and state the goal of privacy-preserving exit policies (§4.2.4).

1. The code is available at https://github.com/tejaskannan/privacy-dnn-early-exit. This work
appears as a conference paper at CCS 2023 [Kannan et al., 2023].
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4.2.1 Multi-Exit Neural Networks (MeNNs)

Deep neural networks (DNNs) are statistical inference models with layers of linear and

nonlinear transformations [LeCun et al., 2015]. Under supervised learning, DNNs fθ fit

their parameters θ by minimizing a loss function (e.g., cross-entropy) on a labelled dataset

D = {(x(t), y(t))}N−1t=0 [Rumelhart et al., 1986]2. We consider DNNs on classification tasks

where ŷ = fθ(x) ∈ RL has the predicted probabilities for each class in [L] = {0, 1, . . . , L−1}.

The predicted class is ŷ = argmaxℓ∈[L]ŷℓ.

Standard DNNs process inputs x with all parameters θ. However, this design is unnec-

essary to achieve high accuracy, as not all inputs are equally difficult to classify [Kaya et al.,

2019, Wang et al., 2017]. DNNs can preserve accuracy with reduced execution costs using

early exits; each exit is an intermediate classifier that creates a prediction with a subset of

model parameters [Teerapittayanon et al., 2016, Wan et al., 2020a, Wang et al., 2017]. We

describe this approach, called a Multi-exit Neural Network (MeNN), as a collection of K

classifiers f (K)
θ = [f

(0)
θ0

, f
(1)
θ1

, . . . , f
(K−1)
θK−1

] where f
(k)
θk

is a DNN that takes an input or output

of f (k−1)θk−1
, z(k−1), and creates the predicted probabilities ŷ(k) ∈ RL. At time t, the output

of f (k)θk is ŷ(k,t).

We consider MeNNs distributed across devices in a sensing system [Laskaridis et al., 2020,

Teerapittayanon et al., 2017]. The sensor device contains the initial layers of the MeNN, and

the server contains the remaining portion of the model (Figure 4.1). When crossing between

devices, the system must transmit the required state (e.g., z(0) in Figure 4.1) to continue

inference.

4.2.2 Early Exit Policies

MeNNs must determine the exit point at which to terminate inference. This decision comes

with a tradeoff [Teerapittayanon et al., 2016, Wan et al., 2020a]. Later exits apply more

2. We denote vectors in boldface and scalars in plain text.
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Algorithm 4 MeNN inference routine

procedure MeNNInference(x, f (K)
θ , π)

z(−1) ← x
for k ∈ [K − 1] do
ŷ(k), z(k) ← f

(k)
θk

(z(k−1))

if π(ŷ(k), k) = 0 then
return ŷ(k)

ŷ(K−1), z(K−1) ← f
(K−1)
θk

(z(K−2))

return ŷ(K−1)

parameters and achieve higher accuracy. This benefit comes with higher execution costs, as

the system must compute more layers and communicate between devices.

Prior MeNNs manage this tradeoff in a data-dependent manner using prediction con-

fidence [Berestizshevsky and Even, 2019, Teerapittayanon et al., 2016, Wang et al., 2017].

Common confidence functions h : RL → R include the maximum value [Wang et al., 2017]

and entropy [Teerapittayanon et al., 2016] in the predicted distribution. When inference

reaches the kth exit, the system compares the confidence h(ŷ(k)) to a threshold τ (k). If

h(ŷ(k)) ≥ τ (k), the model is "confident enough” and stops inference; otherwise, the system

continues to the next exit. The thresholds τ (k) control how the MeNN balances the tradeoff

between accuracy and execution cost. Larger thresholds yield more accurate results, and

smaller thresholds result in low-cost inference. We emphasize that these existing methods

make data-dependent decisions because the confidence is a deterministic function of the kth

prediction, ŷ(k). Thus, the MeNN’s exit decisions contain information about the model’s

predictions, where the exit decision for time t, kt ∈ [K], is the exit at which the MeNN stops

inference.

We represent early exit methods using a policy π : RL × N → {0, 1}, which takes the

prediction ŷ(k) ∈ RL and the exit k ∈ [K]. The function outputs 0 to terminate inference

and 1 to continue. Algorithm 4 shows this procedure. The equation below is a general data-

dependent policy for the confidence h where [·]1 is 1 when the condition holds and 0 otherwise.

Concrete policies use a specific implementation for h such as hMaxProb(ŷ) = maxi∈[L] ŷi
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[Wang et al., 2017].

πDataDep(ŷ
(k), k) = [h(ŷ(k)) < τ (k)]1 (4.1)

4.2.3 Example of Information Leakage

Data-dependent MeNN exit policies create a relationship between their predictions and exit

decisions. We find that this relation allows an adversary to learn about the MeNN’s predic-

tions by observing its exit pattern. This ability is useful when the attacker cannot view the

model’s classification directly due to a lack of physical device access and encrypted wireless

communication (§4.3).

We demonstrate this property on a speech detection task [Warden, 2018]. We use a

BranchyNet [Teerapittayanon et al., 2016] MeNN with two total exits and a data-dependent

policy (Equation 4.1) with hMaxProb [Wang et al., 2017]. When predicting the word "on,"

the MeNN exits early 61.61% of the time; when predicting "off," the early exit rate is

33.44%. Thus, early exiting means the MeNN is more likely to have predicted "on" than

"off." An adversary observing these exit decisions can infer the presence of either word from

this difference, indicating that data-dependent policies expose valuable information about

the MeNN’s predictions.

This asymmetric behavior stems from the prediction confidence having different distri-

butions for different classes. In this example, the average confidence is 0.8328 for "on" and

0.7623 for "off." The policy, however, uses the same threshold for all inputs (Equation 4.1).

Thus, instances of "on" are more likely to exit early through confidence scores above the

single threshold, causing asymmetric behavior. This insight leads to a key novelty of our

work: the use of multiple thresholds to account for distribution differences (§4.4, §4.5).

As we show, this privacy problem occurs on multiple tasks, MeNNs, and confidence

functions (§4.6.2). The breadth of this leakage means the issue goes beyond a specific
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dataset, model architecture, or prior data-dependent policy. Further, we emphasize that

MeNNs are not trained to exhibit this asymmetric behavior. Nevertheless, we empirically

observe this phenomenon on every considered task.

4.2.4 Goals of Private Exit Policies

We design MeNN exit policies π : RL × N → {0, 1} to meet four criteria on ordered input

streams D̃ = [x(t)]T−1t=0 of length T . First, π should not leak information about the MeNN’s

predictions; there should be no observable relationship between the policy’s decisions and

the MeNN’s classifications (P1). This quality should hold for all possible ordered streams D̃,

as system designers cannot anticipate the exact stream at design time. This consideration

encompasses datasets with temporal correlations and shifting input distributions.

Second, the policy must adhere to given exit rates {ρk}K−1k=0 where
∑K−1

k=0 ρk = 1. Under

π, the MeNN should stop at exit k on ρk · T of inputs in D̃. This criterion is necessary to

meet the resource limits of low-power devices (P2).

A purely randomized policy meets these two criteria by stopping at exit k with probability

ρk. However, this method reduces the MeNN’s inference accuracy (§4.6.4). Thus, the third

goal is to build policies with better inference accuracy than random exiting (P3).

Finally, solutions must not require retraining or redesigning the MeNN (P4). This prop-

erty is necessary because DNN training is expensive, and security solutions should work

for existing MeNNs. Policies under the definition π operate only on the MeNN’s predic-

tions. Thus, these policies satisfy this property, as π is not tightly coupled with the MeNN

parameters. Indeed, Algorithm 4 shows how π can change without altering the MeNN.

We emphasize that a priori, it is not guaranteed that there exist MeNN exit policies that

meet all four properties. A key contribution of this work is demonstrating that such policies

exist.
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4.3 Threat Model

We first state the target system and the adversary’s goal (§4.3.1). We then discuss the at-

tacker’s capabilities (§4.3.2) and present examples of distributed MeNNs requiring prediction

privacy (§4.3.3).

4.3.1 Target System and Attack Goal

We consider a sensing system composed of edge devices and a centralized server [Mainwaring

et al., 2002]. Each device periodically captures measurements and processes these values

using a distributed MeNN [Laskaridis et al., 2020, Teerapittayanon et al., 2017], encrypting

all communication. We call this MeNN the target model.

The adversary is a passive observer who uses the target MeNN’s exit decisions to expose

its predictions. Specifically, the attacker sees blocks of B > 0 exit decisions and uses an

attack model gϕ : [K]B → [L] to infer the MeNN’s most frequent prediction in this block.

Section 4.3.2 discusses how the attacker observes these exit decisions. The attacker uses a

training phase to find the parameters ϕ below where v(t) is the exit decision and ŷ(kt,t) is

the MeNN’s prediction at time t. MostFreq(·) returns the most common argument value.

ŷ(t) = MostFreq(ŷ(kt,t), ŷ(kt+1,t+1), .., ŷ(kt+B−1,t+B−1)) (4.2)

ϕ = argmaxϕ̃

⌊ T
B
⌋−1∑

q=0

[gϕ̃(v
(qB), v(qB+1), .., v(qB+B−1)) = ŷ(qB)]1 (4.3)

We assume the stream D̃ contains temporal correlations. Such correlations occur in

sensor settings [Deshpande et al., 2004, Gedik et al., 2007]. On correlated streams, each

block contains related inputs with similar labels. Correlated streams present a greater privacy

challenge. Intuitively, correlated inputs cause MeNNs to make similar predictions and related

exit decisions under data-dependent policies, allowing the adversary to view blocks of nearby
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Figure 4.2: The threat model against distributed MeNNs. An exit decision of 0 means
stopping on the sensor.

decisions under one class. Streams with independent inputs prevent this temporal linkage.

More precisely, an exit decision from one input gives the adversary one of K options to

recover a prediction ℓ ∈ [L]. For uncorrelated inputs, the attacker must view each decision

in isolation; when K < L, this recovery is underdetermined. For correlated inputs, the

attacker can link adjacent decisions under approximately the same prediction. With this

ability, the attacker can use one of KB > K possible inputs to extract this block’s most

frequent prediction ℓ ∈ [L]. Thus, the attacker can use more features on correlated streams.

We emphasize that the adversary targets the MeNN’s predictions instead of the true labels,

as ground truth is unavailable at runtime. An adversary who infers the MeNN’s results

learns what the target system knows.

4.3.2 Adversary Capabilities

We assume the adversary targets a sensing system known to use a distributed MeNN. The

attacker has no physical device access but can sniff the communication between the sensor

and the server [Apthorpe et al., 2019, Dyer et al., 2012]. These assumptions are realistic

for wearable sensors [Hiremath et al., 2014, Kwapisz et al., 2011] and devices in remote

locations [Denby and Lucia, 2020, Juang et al., 2002, Winkler et al., 2008]. The adversary
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cannot directly read the MeNN’s predictions due to encrypted communication. Further,

without physical access, the attacker cannot deploy their own sensor to derive equivalent

insights. As we design exit policies, we follow Kerckhoffs’s Principle [Shannon, 1949] and

allow the adversary to know the policy’s details. We assume the attacker knows the sampling

period and the target task’s label space.

The adversary exposes the MeNN’s predictions by inferring the model’s exit decisions

using communication side-channels. Below, we describe two examples of how distributed

MeNNs leak the decision to exit early through communication patterns. This general pattern

holds for all distributed MeNNs we are aware of.

DDNNs Deep distributed neural networks (DDNNs) implement distributed MeNNs across

a hierarchy of devices [Teerapittayanon et al., 2017]. The system conserves resources by only

transmitting information when continuing inference to the next device. An adversary can

learn the exit decision using the presence or absence of wireless traffic.

SPINN SPINN performs distributed MeNN inference under latency constraints [Laskaridis

et al., 2020]. When the MeNN partition point occurs after the first early exit, SPINN only

communicates when not exiting early. This behavior creates the same side-channel as that

of DDNNs. SPINN also supports partitions before the first exit. This setting still leaks

information because SPINN requires the sensor to always compute a local prediction by con-

tinuing until the first early exit. If this exit signals termination, the sensor sends a second

message to the server to stop computation. The attacker can infer an early exit using the

presence of this second message.

In both cases, the passive adversary can use communication patterns to discover early exit

behavior (Figure 4.2). This side-channel exists even when data is encrypted, as encryption

does not obfuscate communication volume. This adversary only knows whether the system
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Figure 4.3: An example of the black box attacker.

exits on the sensor or server. Thus, we focus on MeNNs with K = 2 exits where the sensor

holds the initial exit. Our methods extend to MeNNs with K > 2 (§4.6.10).

The adversary uses the attack model gϕ to infer the target MeNN’s predictions from

the extracted exit decisions. We consider two sets of assumptions for how the attacker

fits the parameters ϕ (Equation 4.3) from examples of blocks of exit decisions and MeNN

predictions. In both cases, the attacker applies gϕ at runtime to the target MeNN executing

on an unseen testing dataset.

1. White Box: The white box adversary has access to an offline version of the target

MeNN and training dataset. The attacker uses exit patterns and predictions from this

MeNN on the target task to fit the attack model gϕ.

2. Black Box: The black box adversary cannot access the target MeNN or training

dataset. Instead, this adversary trains a substitute MeNN h
(K)
ψ on a related task and

fits gϕ using exit decisions and predictions from h
(K)
ψ (Figure 4.3).
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We use the black box adversary to confirm that the white box assumptions are not too

strong.

4.3.3 Example Settings

This section describes two examples [Banitalebi-Dehkordi et al., 2021, Zeng et al., 2019] of

distributed DNNs in applications requiring prediction privacy.

Sensitive facilities use DNNs to perform license plate recognition for authorized access

[Banitalebi-Dehkordi et al., 2021]. Huawei’s AutoSplit [Banitalebi-Dehkordi et al., 2021]

framework applies distributed DNNs in this context. Prediction privacy is necessary, as

the DNN’s predictions indicate which license plates have access. The attacker could use

leaked predictions to create fake credentials which pass the authorization check. Further,

the server may be hosted off-premise (e.g., in the cloud). Thus, when the adversary cannot

access the physical location without credentials, they can still sniff the communication to the

remote server. This property means the system cannot leak information about authorization

decisions through communication patterns.

Manufacturing plants apply DNNs to detect defective parts, and Boomerang [Zeng et al.,

2019] leverages distributed DNNs for this application. Prediction privacy is essential for

two reasons. First, the defect rate indicates the manufacturer’s efficiency. This information

is valuable to competitors. Second, an adversary launching a supply-chain attack can use

exposed DNN predictions to know whether their attack is successful. In both cases, an

adversary may be unable to physically access all the validation points without alerting the

building’s security. Instead, the attacker can more easily observe the communication patterns

to a single server, especially if the server is remote. Further, when validating a supply chain

attack, the adversary wants to know if their inserted defect passes the target’s inspection.

Thus, rather than finding the true defect rate, it is more valuable to learn what the target

system knows.
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4.4 Per-Class Exiting (PCE)

Data-dependent MeNN policies using a single threshold can leak information through their

exit decisions (§4.2.3). Our first solution, Per-Class Exiting (PCE), replaces the single con-

fidence threshold with separate thresholds for each class (§4.4.1). With this design, PCE

stops a fraction ρk of inputs for every class at exit k, thus preserving resource usage and

improving privacy compared to prior work. Unfortunately, PCE has no theoretical privacy

guarantees, and we construct adversarial orderings with high prediction leakage (§4.4.2).

4.4.1 Policy Design

We formally describe PCE using an MeNN f
(K)
θ with target exit rates ρk ∈ [0, 1] ∀k ∈ [K].

Consider the prediction confidence function h : RL → R (§4.2.2). Focusing on the kth exit,

PCE uses thresholds τ (k)ℓ for each class ℓ ∈ [L] that satisfy the probability below. The terms

Ŷ (k) ∈ RL and Y are random variables for the kth exit’s prediction and the true label,

respectively.

P (h(Ŷ (k)) ≥ τ
(k)
ℓ , h(Ŷ (r)) < τ

(r)
ℓ ∀r ∈ [k] | Y = ℓ) = ρk (4.4)

Equation 4.4 states that for each label, inputs should stop at exit k with rate ρk. In

practice, we fit the thresholds using the empirical confidence distributions on the task’s

validation set. PCE performs inference using Algorithm 4 with πPCE below where ŷ
(k)
i the

predicted probability for class i ∈ [L] at exit k. We omit the time t ∈ [T ], as the policy is

stateless.

ℓ(k) = arg max
i∈[L]

ŷ
(k)
i (4.5)

πPCE(ŷ
(k), k) = [h(ŷ(k)) < τ

(k)
ℓ(k)

]1 (4.6)
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This design augments previous data-dependent exit policies (Equation 4.1) with different

thresholds τ
(k)
ℓ for each class. We emphasize that the policy selects thresholds using the

MeNN’s prediction at each exit. To protect the overall classification, PCE should instead

choose thresholds using the final result i.e., use τ
(k)
ℓ where ℓ = argmaxi∈[L] ŷi and ŷ is the

MeNN’s final predicted probabilities. At an early exit, however, we do not know the final

prediction ŷ when not terminating inference. PCE thus uses the current exit’s prediction

ŷ(k) as an approximation.

4.4.2 Adversarial Data Orderings

PCE uses a data-dependent approach that fits thresholds such that the overall exit rates for

each label are ρk. This behavior means that PCE delivers good privacy on uncorrelated input

orders without introducing randomization, as such streams only require long-term balancing

(§4.6.5). However, this long-term balancing makes no guarantees about eliminating short-

term patterns.

This insight suggests there exist input orders causing high leakage. We formalize this

idea in Proposition 4.4.1 below. The proof describes how to build the adversarial ordering D̃

and attack model gϕ (§4.3.1). As confirmation, we follow the proof and build an adversarial

ordering with inputs from Fashion MNIST [Xiao et al., 2017]. We attack a two-exit MeNN

with PCE (ρ0 = 0.9). As expected, the adversary infers 100% of the MeNN’s predictions.

Thus, despite lower empirical leakage than prior methods (§4.6.2), PCE delivers no privacy

guarantees on correlated inputs. Instead, PCE better protects MeNNs processing unrelated

inputs over time. We emphasize that Proposition 4.4.1 applies to any deterministic policy,

not just PCE. We omit the exit index k ∈ [K] from π below because we consider a two-exit

MeNN, which only applies π at exit k = 0 (Algorithm 4).

Proposition 4.4.1. Let π : RL → {0, 1} be a deterministic policy on a two-exit MeNN

f
(2)
θ for a rational exit rate ρ0 = m

M ∈ (0, 1). Let D be the set of possible samples (x, y),
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Dx = {x : ∃ℓ ∈ [L], (x, ℓ) ∈ D} be the inputs, and Dℓ = {x : (x, ℓ) ∈ D} be the inputs with

label ℓ. Assume ∀k ∈ {0, 1}, π−1(k) ∩Dℓ ̸= ∅ where π−1(k) = {x ∈ Dx : π(f
(0)
θ0

(x)) = k}.

Then, there exists an ordered dataset D̃ = [(x(t), y(t)) ∈ D]T−1t=0 for T = n ·LM, n > 1 with

the following.

1. The policy π exhibits an early exit rate of ρ0 on D̃.

2. There exists a function gϕ : {0, 1}LM → [L] such that

gϕ(π(ŷ
(t)), . . . , π(ŷ(t+LM−1))) = MostFreq(y(t), . . . , y(t+LM−1))

where t = j · LM for any j ∈ [n].

3. Not all non-overlapping blocks of LM exit decisions (in property 2) have the same most

frequent label.

Proof. We design an ordered dataset with T = n · LM elements in blocks of LM . Consider

the jth block for j ∈ [n]. We will fill this block with inputs of label ℓ ≡ j (mod L). Let

x
(0)
ℓ ∈ π−1(0) ∩ Dℓ and x(1)ℓ ∈ π−1(1) ∩ Dℓ be arbitrary. In this block, for 0 ≤ t < L,

we set xt to x(0)ℓ when t = ℓ and x(1)ℓ otherwise. On the remaining LM − L inputs,

we arbitrarily select Lm − 1 positions for early exiting, setting these elements to x(0)ℓ and

the remaining to x(1)ℓ . Note that there are Lm − 1 available slots because M − 1 ≥ m so

LM−L ≥ Lm > Lm−1. This construction satisfies the desired properties. First, each block

contains exactly Lm early exits, yielding an early exit rate of (nLm)/(nLM) = m/M = ρ0.

Second, let gϕ : {0, 1}LM → [K] output the position of the first early exit. By construction,

the jth block (with inputs of label ℓ) has only one early exit in the first L positions. This exit

occurs in position ℓ, so the function gϕ correctly maps to the most frequent label. Finally,

there are n > 1 blocks. As the jth block has inputs of label ℓ ≡ j (mod L), D̃ will have at

least two blocks with different most frequent labels.
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4.5 Confidence-Guided Randomness (CGR)

PCE uses a modified data-dependent method to balance the long-term exit rates across

classes. This method, however, does not address temporal correlations. In fact, Proposition

4.4.1 indicates that temporal dependencies can compromise any deterministic policy. Thus,

we must obfuscate temporal patterns through randomization. Unfortunately, exiting early

uniformly at random achieves poor inference accuracy (§4.6.4).

We instead present a new policy, Confidence-Guided Randomness (CGR), that is an in-

terpolation between PCE and uniformly randomized exiting, merging the benefits of both

approaches. When detecting uncorrelated inputs, CGR behaves like PCE to achieve higher

accuracy. On segments with high correlations, CGR applies greater randomization to main-

tain privacy.

CGR has three features. First, the policy evaluates PCE and uses its decision to create

a confidence-biased exit probability which determines the exiting behavior (§4.5.1). Second,

CGR adapts the bias magnitude on highly-correlated streams (§4.5.2). Finally, CGR enforces

exit quotas over short windows to limit an adversary’s ability to discover data-dependent

information (§4.5.3). By employing randomness, CGR achieves theoretical benefits over

PCE (§4.5.4).

4.5.1 Confidence-Biased Randomization

CGR uses PCE as an internal data-dependent method (Figure 4.4). When reaching the

kth exit, CGR builds an exit probability that is biased toward πPCE(ŷ
(k,t), k) at step t ∈

[T ]. CGR samples this biased probability to make a random exit decision. Thus, CGR

leverages prediction confidence through PCE, enabling higher inference accuracy than pure

randomization.

We formalize this design by considering the kth exit of an MeNN f
(K)
θ with exit rate

ρk ∈ [0, 1]. CGR uses a bias α(k,t) ∈ [0, 1) (discussed in §4.5.2) at step t to make randomized
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ŷ(k,t) PCE (πPCE)

Exit with prob
α(k,t) + ρk(1− α(k,t))

Exit with prob
ρk(1− α(k,t))

If πPCE(ŷ
(k,t), k) = 0

If πPCE(ŷ
(k,t), k) = 1

Figure 4.4: CGR’s decision process at the kth exit point.

decisions with the following probabilities. The rates for πCGR(ŷ
(k,t), k) = 1 are one minus

those below. We omit the exit indices for brevity.

P (πCGR(ŷ
(k,t)) = 0|πPCE(ŷ

(k,t)) = 0) = α(k,t) + ρk(1− α(k,t)) (4.7a)

P (πCGR(ŷ
(k,t)) = 0|πPCE(ŷ

(k,t)) = 1) = ρk(1− α(k,t)) (4.7b)

These equations show how the exit probabilities are biased in the direction of PCE. For

example, when πPCE(ŷ
(k,t), k) = 0, CGR exits with rate α(k,t) + ρk(1 − α(k,t)) = ρk +

α(k,t)(1− ρk) ≥ ρk where the inequality holds because 0 ≤ ρk, α
(k,t) ≤ 1. Thus, CGR aligns

with the PCE’s decision and exits more frequently than the target rate ρk. Note that these

probabilities maintain an overall exit rate of ρk when P (πPCE(Ŷ
(k,t), k) = 0) = ρk. This

condition holds when the test distribution matches that of the training set.

4.5.2 Adapting the Probability Bias Magnitude

The probability biases control a tradeoff between accuracy and privacy. If α(k,t) ≈ 1, CGR

skews toward PCE, yielding high inference accuracy with possible leakage (§4.4, §4.6.12).

If α(k,t) = 0, CGR is fully randomized. CGR balances this tradeoff using the insight that

PCE provides good privacy on uncorrelated input streams. Thus, CGR exploits periods of

low correlation by leveraging PCE to achieve high accuracy. On highly correlated segments,

CGR applies more randomness to ensure privacy. To protect the MeNN’s predictions (§4.2.4),

CGR measures correlations using the model’s results.
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CGR implements this design by adaptively setting the bias α(k,t) with the parameters

γ < 1 < β. The policy has a maximum bias of α ∈ [0, 1). CGR sets α(k,t) at step t ≥ 1 as

follows where α(k,0) = α.

α(k,t) =


min(β · α(k,t−1), α) if ŷ(k,t) ̸= ŷ(k,t−1)

γ · α(k,t−1) if ŷ(k,t) = ŷ(k,t−1)
(4.8)

The parameters β and γ control how the bias changes in response to the MeNN’s predictions.

For example, when β >> 1 and γ ≈ 1, CGR will quickly increase and slowly decrease the

bias. This behavior causes CGR to have a higher average bias, thereby aligning more with

PCE than pure randomization (§4.6.12). Based on our experiments, β = 2.0 and γ = 0.9

provide favorable results, and these settings are robust across multiple datasets and data

orders. Overall, CGR uses this procedure to adapt the bias to offset temporal trends in the

MeNN’s predictions. We emphasize that CGR still makes randomized decisions even when

using a high bias α(k,t) < 1.

4.5.3 Short-Term Exit Quotas

CGR may leak predictions if the attacker infers the policy’s biased probabilities, as these

probabilities encode PCE’s decisions (Equation 4.7). CGR protects against this leakage by

enforcing exit quotas over short windows. The quotas ensure the MeNN stops a set number

of times at each exit point, balancing the exit counts and reducing the adversary’s analysis

to smaller sample sizes. For each window, the attacker can only extract the bias direction

before an exit quota becomes saturated; afterward, the policy never stops at this exit and

uses no information from PCE. Exposing small samples benefits privacy because it limits

the adversary’s ability to derive meaningful statistical significance on biased exit rates.

CGR implements exit quotas using a window W ∈ N. The policy enforces that ωk =

⌊ρk ·W ⌋+ ηk inputs stop at exit k where ηk ∈ {0, 1} are random such that
∑K−1

k=0 ωk = W .
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The system no longer exits at output k upon meeting its quota. After each window, the

policy resets the quotas and randomly selects a new W ∼ [Wmin,Wmax] where the bounds

are parameters. This randomization limits the adversary’s ability to locate each window.

Randomizing the window size, however, does not fully prevent the attacker from discov-

ering when CGR uses biased probabilities. For example, the adversary can use a run of exits

at a single output to infer a window’s end. The theoretical privacy of this attack is not well-

established. However, we believe this attack does not present a problem for three reasons.

First, the adversary’s recovery of each window is only approximate due to randomization.

Second, CGR already protects against periods of high potential leakage by adapting its bias

parameter (§4.5.2). Finally, CGR’s empirical information leakage is statistically equivalent

to random exiting (§4.6.2, §4.6.5).

4.5.4 Theoretical Benefits

This section demonstrates CGR’s theoretical benefits. The main result is Proposition 4.5.1

which establishes a bound on the probability ratio of finite exit patterns from inputs of

different classes. This result improves upon PCE, which can leak an unbounded amount

of information over finite time horizons (Proposition 4.4.1). A key property of CGR is

that its bounds apply to any data stream, including those with temporal correlations and

distributional shifts.

Proposition 4.5.1 further provides a guideline on how to set α from a security perspective,

as α determines the difference between the upper and lower probability bounds. However,

CGR will not be tight with the established bounds because the policy uses biases α(k,t) <

α (§4.6.5) due to similar predictions over time (§4.5.2). Smaller biases create narrower

probability bounds, allowing CGR to provide better empirical privacy than the proposition

guarantees.

Before presenting the proposition, we introduce relevant notation. Let πr be the CGR
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policy without exit quotas and δ, ϵ : R → R be functions such that δ(α) = (1 − α − ρ0(1 −

α))/ρ0 and ϵ(α) = (1− ρ0(1− α))/ρ0 where ρ0 is the exit rate for K = 2. We define these

functions for notational convenience.

Proposition 4.5.1. Consider a two-exit MeNN with a target early exit rate ρ0. Suppose

we observe a sequence of T exit decisions π
(t)
r := πr(ŷ

(0,t), 0) = vt for vt ∈ {0, 1} and

t ∈ [T ]. Let these T inputs belong to the same class and n =
∑T−1

t=0 vt. Then, πr displays

the following bounds for any labels ℓ0, ℓ1 ∈ [L].

(
δ(α)

ϵ(α)

)n(1− ρ0ϵ(α)

1− ρ0δ(α)

)T−n

≤ P (π
(t)
r = vt∀t|Y = ℓ0)

P (π
(t)
r = vt∀t|Y = ℓ1)(

ϵ(α)

δ(α)

)n(1− ρ0δ(α)

1− ρ0ϵ(α)

)T−n

≥ P (π
(t)
r = vt∀t|Y = ℓ0)

P (π
(t)
r = vt∀t|Y = ℓ1)

Proof. The construction of the CGR policy yields the following bounds, resulting from the

alignment (or lack thereof) of PCE with the decisions vt under the largest possible bias α.

ρ0δ(α) ≤ P (π
(t)
r = 1) ≤ ρ0ϵ(α)

1− ρ0ϵ(α) ≤ P (π
(t)
r = 0) ≤ 1− ρ0δ(α)

The maximum probability of observing the sequence {vt}T−1t=0 occurs when PCE aligns with

each vt. The minimal probability happens when PCE goes against all observed decisions.

This logic holds any ℓ ∈ [L], creating the following.

(ρ0δ(α))
n(1− ρ0ϵ(α))

T−n ≤ P (π(t)
r = vt∀t|Y = ℓ)

(ρ0ϵ(α))
n(1− ρ0δ(α))

T−n ≥ P (π(t)
r = vt∀t|Y = ℓ)

From these inequalities, we obtain the desired result.

One consequence of Proposition 4.5.1 results from the bounds having the form (q0)
n(s0)

T−n
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and (q1)
n(s1)

T−n where q0, s0 < 1 < q1, s1. As T →∞, the bounds go to zero and infinity,

respectively. Thus, the biased probabilities can cause unbounded exit rate differences over

an infinite horizon. CGR prevents worst-case scenarios by avoiding highly biased rates over

long windows, confirming the benefits of the adaptive bias procedure and use of exit quotas.

4.6 Evaluation

We evaluate the information leakage and inference accuracy of distributed MeNNs using pre-

vious data-dependent policies and our proposed methods. In summary, we find the following:

1. Standard data-dependent policies leak information about MeNN predictions through

their exit patterns. This leakage occurs from practical (§4.6.2) and theoretical (§4.6.3)

perspectives. PCE uses multiple thresholds to reduce this leakage, and CGR obtains

near-perfect privacy.

2. PCE and CGR use prediction confidence to display higher inference accuracy than a

fully randomized policy (§4.6.4).

3. PCE has higher leakage on input streams with stronger correlations (§4.6.5). CGR

adapts itself to protect against these trends, showing near-random leakage under tem-

poral correlations and distribution shifts (§4.6.6).

4. Single-threshold data-dependent policies still leak valuable information to a black box

attacker who has no access to the MeNN and training dataset (§4.6.7).

5. On a realistic distributed MeNN setup, prior data-dependent policies leak predictions

to an attacker with access to encrypted communication patterns (§4.6.8). Our methods

provide protection in this end-to-end setting.

6. PCE and CGR show negligible overhead on a low-power microcontroller (MCU) (§4.6.9).

Thus, our policies improve privacy while retaining the efficiency of MeNNs.
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Table 4.1: Dataset properties.

Dataset # Train # Val # Test # Classes

Activity [Anguita et al., 2012] 36,790 13,629 20,441 6
Cifar10 [Krizhevsky et al., 2009] 39,796 10,204 10,000 10
Cifar100 [Krizhevsky et al., 2009] 39,796 10,204 10,000 100
EMNIST [Cohen et al., 2017] 87,800 25,000 18,800 47
Fash. MNIST [Xiao et al., 2017] 47,798 12,202 10,000 10
Food Quality [Holland et al., 1998] 2,945 196 198 2
GTSRB [Stallkamp et al., 2011] 38,580 10,799 9,120 43
MNIST [LeCun et al., 1998] 47,798 12,202 10,000 10
Speech Cmds [Warden, 2018] 28,532 3,457 4,482 11
WISDM [Kwapisz et al., 2011] 32,005 5,858 21,769 3

7. Prior data-dependent policies leak more information on MeNNs with more exits (§4.6.10).

In contrast, CGR protects MeNNs independent of the number of exit points.

4.6.1 Experimental Setup

Datasets and Neural Network Parameters

We evaluate MeNNs on ten standard tasks (Table 4.1) covering many input types and label

spaces. We use BranchyNet [Teerapittayanon et al., 2016] MeNNs, focusing on models with

two total exits. On Cifar [Krizhevsky et al., 2009], we use VGG models [Simonyan and

Zisserman, 2014] with early exiting after the first pooling layer. We use pre-trained versions

of each VGG model; we attach early exits and fine-tune these output layers [Kaya et al.,

2019]. We apply dense models on Activity [Anguita et al., 2012], Food Quality [Holland

et al., 1998], and WISDM [Kwapisz et al., 2011] and convolutional networks on the remainder.

These MeNNs have four hidden layers, with early exiting after the first. We execute at most

ten training epochs using Adam (step size of 10−3) [Kingma and Ba, 2014], a batch size of

16, and a dropout [Srivastava et al., 2014] rate of 0.3.

For two-exit MeNNs, we run policies on 21 exit rates ρ0 = 0.0, 0.05, . . . , 1.0. We use a

tighter range for MeNNs with more exits (§4.6.10). The datasets are unordered, and we use
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two methods to create the temporal correlations present in sensor settings.

1. Same-Label builds blocks of size B by selecting (1− ε) ·B random elements of a single

label and ε · B inputs from arbitrary classes. We set B = 10 and ε = 0.2. Section

4.6.11 considers alternate settings.

2. Nearest-Neighbor constructs B-sized blocks by choosing a random anchor element and

using the anchor’s B − 1 nearest neighbors [Bernhardsson, 2023] in order.

We focus on Same-Label orders, as Nearest-Neighbor produces weak correlations on inputs

such as colored images.

Exit Policies

We use following baseline exit policies.

1. Random selects the MeNN exit uniformly at random using the rates ρk. This policy

has perfect privacy because it makes data-independent decisions.

2. Entropy is a data-dependent method (Equation 4.1) with confidence hEntropy(ŷ) =

(−
∑L−1

i=0 ŷi log(ŷi))
−1 [Teerapittayanon et al., 2016].

3. MaxProb is a data-dependent policy (Equation 4.1) with confidence hMaxProb(ŷ) =

maxi∈[L] ŷi [Wang et al., 2017].

We apply PCE and CGR to both confidence functions. We use CGR with a maximum

bias of α = 0.5, adaptation factors of β = 2.0 and γ = 0.9, and a window range of [5, 20]

(§4.5). We set these parameters using a grid search (§4.6.12) and fix them for all datasets.

We fit confidence thresholds τ for an exit rate ρ by setting τ to the (1− ρ)th quantile of

the MeNN’s confidence values on the task’s validation set. We execute both Random and

CGR over five trials as these policies have stochastic behavior.
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Adversary Design

We design the attack model gϕ using an AdaBoost ensemble with 100 decision trees. The

attack model uses non-overlapping blocks of B adjacent exit decisions to infer the MeNN’s

most frequent prediction in this block. This block size matches that of the dataset order. We

create two variants with different input features. The first uses each exit point’s frequency,

and the second uses the exact exit pattern. We use the frequencies against Same-Label

orders and the patterns on Nearest-Neighbor streams (§4.6.1). The exact pattern leads to

overfitting on Same-Label orders. We train gϕ with two different assumptions (§4.3.2).

1. White box attackers use patterns from the target MeNN’s on the original task’s

validation set.

2. Black box adversaries use patterns from a substitute MeNN on a related task’s vali-

dation set.

We always evaluate gϕ on the target MeNN processing the test fold.

Aggregate Metrics

We evaluate policies on many sets of target exit rates. For inference accuracy, we compute

the average result across all targets. For privacy metrics, we compute show the worst-case

result by calculating the maximum over the targets, as policies should not leak information

for any target exit rates (P1). This methodology aligns with prior work in measuring security

from a worst-case perspective [Carlini et al., 2022]. We aggregate trials by taking the average

trial result for each target exit rate.

Hardware Setup

We conduct experiments in simulation and on a low-power microcontroller (MCU). The

simulator runs MeNNs in Tensorflow [Abadi et al., 2016a] and records the predictions and
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exit decisions (§4.6.2-§4.6.7, §4.6.10). The adversary observes the exact exit decisions.

We perform an end-to-end side-channel attack on a two-exit distributed MeNN [Teer-

apittayanon et al., 2017] with the initial exit on a TI MSP430 FR5994 MCU [Instruments,

2021] and the remaining model on a server (§4.6.8). The MCU processes inputs every second

and uses Bluetooth Low Energy (BLE) to transmit the intermediate state when not exit-

ing early. This setup follows DDNNs [Teerapittayanon et al., 2017] and SPINN [Laskaridis

et al., 2020] on a two-device system. The sensor applies AES-128 encryption [Daemen and

Rijmen, 1999]. We capture the encrypted packets using Wireshark [Orebaugh et al., 2006]

and provide this log to the attacker. We drop 5% of packets to simulate a lossy link. The

attacker only observes traffic when the system does not exit early. The adversary finds the

number of early exits between transmissions as follows, where R is the sampling period and

dn is the time of the nth message.

num_early_exits(n) = max(⌊(dn − dn−1)/R⌋ − 1, 0) (4.9)

We emphasize that the side-channel attack applies to variants of this system; e.g., if the sensor

sends predictions when exiting early, the attacker can infer early exits using differences in

message sizes.

4.6.2 White Box Attack

We first measure the practical privacy of MeNN exit policies under white box assumptions

(§4.6.3 discusses theoretical leakage). We use the white box methodology in §4.6.1 to infer

predictions from two-exit MeNNs with Same-Label orders (B = 10, ε = 0.2).

Figure 4.5 shows the maximum attack accuracy across all target exit rates. The attack

accuracy is the accuracy of the attack model gϕ; this metric measures the fraction of the

adversary’s predictions that match the MeNN’s most common classification in each temporal
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Figure 4.5: Maximum attack accuracy across 21 exit rates (lower is better).

block. These results display how standard data-dependent policies consistently leak informa-

tion about MeNN predictions. Across all tasks, these policies show mean worst-case attack

accuracy that is 1.87× (Entropy) and 1.85× (Max Prob) higher than Random. On the Food

Quality task, the attacker infers up to 100% of the MeNN’s most frequent predictions in

each block. Further, both methods display worse privacy than Random on all tasks. Thus,

this leakage does not result from a single dataset or confidence function; instead, it comes

from the data-dependent approach of previous methods.

Both PCE and CGR display better privacy. PCE yields 1.16× (Entropy) and 1.12× (Max

Prob) higher worst-case attack accuracy than Random. These values are lower than that

of prior data-dependent policies (Figure 4.5), showing the benefit of multiple thresholds.

CGR performs even better, displaying 1.02× higher worst-case attack accuracy averaged

across all tasks. We further compare these policies to Random using Welch’s t-test. The

null hypothesis is the attack accuracy normalized to the most frequent MeNN prediction

is no different than that of Random. With this methodology, Random and CGR have an

insignificant difference at the 0.05 level with p-values of 0.21 (CGR Entropy) and 0.09 (CGR

Max Prob). Thus, CGR obtains near-random privacy independent of the confidence function.
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Entropy, Max Prob, and PCE show significant differences.

Entropy and Max Prob show low attack accuracy on Cifar100, as this dataset has a

large label space (Table 4.1). However, we observe leakage through the attacker’s average

rank (AR) of the correct class [Asonov and Agrawal, 2004]. On Cifar100, Entropy and Max

Prob have a worst-case AR of 33.60 and 35.77, respectively. These values are far lower

than Random (48.20); thus, attackers still learn valuable information on tasks with many

labels. Across all datasets, CGR has an AR of 0.99× Random, further demonstrating its

near-random privacy.

4.6.3 Theoretical Information Leakage

We supplement the practical attack with an analysis agnostic of the attack model. We

quantify privacy using the empirical normalized mutual information (NMI) [Kvålseth, 2017]

between the MeNN’s exit decisions and predictions. A high NMI means observing the exit

decisions reduces the adversary’s uncertainty about the model’s predictions. A policy with

no leakage should exhibit an NMI close to Random. We use the definition NMI(X, Y ) =

(2 · I(X, Y ))/(H(X) +H(Y )) where I(·) is the mutual information and H(·) is the Shannon

entropy. We measure the NMI by comparing individual exit decisions (X) and MeNN predic-

tions (Y ). This metric does not depend on temporal correlations. We reduce the empirical

NMI’s bias with Miller-Madow correction [Paninski, 2003]. We use the same setup as §4.6.2.

Table 4.2 shows the maximum NMI, confirming the trends in §4.6.2. Standard data-

dependent policies show high NMI with values up to 0.1725 points higher than Random on

average. Further, both policies eclipse Random on all tasks, indicating that this leakage is

consistent and independent of the confidence function.

PCE improves privacy, showing an NMI of up to 0.0203 points higher than Random; this

rate is over 8.4× lower than previous data-dependent methods (Table 4.2). On average, CGR

has a maximum NMI of only 0.0009 points above Random. This figure is over 191× lower
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Table 4.2: Maximum empirical normalized mutual information (NMI) (all values ×10−2)
between exit decisions and MeNN predictions across 21 target rates (lower is better). The
final row shows the average (std dev) difference compared to Random.

Dataset Rand Entropy Max Prob
Stnd PCE CGR Stnd PCE CGR

Activity 0.25 33.99 2.33 0.35 34.22 2.11 0.40
Cifar10 0.25 5.43 0.66 0.31 5.24 0.76 0.29
Cifar100 0.45 4.79 1.21 0.50 4.10 1.25 0.52
EMNIST 0.07 7.19 0.31 0.09 7.29 0.30 0.09
Fash. MNIST 0.04 19.84 0.28 0.04 19.83 0.25 0.04
Food Quality 0.24 49.62 3.73 0.11 49.62 5.73 0.33
GTSRB 1.26 8.92 5.26 1.59 9.23 4.45 1.46
MNIST 0.06 6.30 0.85 0.05 6.29 2.44 0.15
Speech Cmds 0.33 16.15 3.17 0.50 16.29 3.22 0.48
WISDM 0.42 23.61 3.32 0.58 18.77 3.14 0.55

Avg Diff v Rand 0.00 (0.00) 17.25 (14.06) 1.78 (1.38) 0.08 (0.12) 16.75 (14.01) 2.03 (1.58) 0.09 (0.06)

than prior data-dependent policies. These results provide additional evidence that CGR has

near-perfect privacy.

4.6.4 Inference Accuracy

The second tradeoff dimension we investigate is inference accuracy, as accuracy represents

the MeNN’s answer quality. We use two-exit MeNNs under the setup in §4.6.2.

Table 4.3 shows the average MeNN accuracy across all exit rates, and Figure 4.6 displays

the results on the Activity task. We have three takeaways. First, Random has a high

accuracy penalty; existing policies achieve an average accuracy of 2.03 (Entropy) and 2.30

(Max Prob) points above Random. Second, PCE retains high MeNN accuracy, showing

values within 0.5 points of its standard data-dependent variant on seven of ten datasets.

Random achieves this mark only twice. Finally, CGR consistently outperforms Random on

all tasks with an overall average accuracy of 0.51 (Entropy) and 0.57 (Max Prob) points

higher. For ρ0 ∈ (0, 1), CGR eclipses Random on 90% (171 / 190) of target rates under both

confidence functions.

We note two additional results. First, an alternate method to eliminate leakage is to

use a fixed policy that always exits at the same point. This baseline must use the early
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Table 4.3: Average (std dev) inference accuracy across 21 target exit rates for each policy and
task (higher is better). The standard deviation shows the variation in the average accuracy
across five independent trials.

Dataset Rand Entropy Max Prob
Stnd PCE CGR Stnd PCE CGR

Activity 87.22 (0.02) 89.24 88.46 87.57 (0.01) 89.69 88.85 87.70 (0.02)
Cifar10 80.35 (0.04) 85.18 84.83 81.69 (0.03) 85.50 85.17 81.78 (0.01)
Cifar100 61.68 (0.05) 64.47 64.43 62.40 (0.04) 64.81 64.79 62.52 (0.02)
EMNIST 85.92 (0.02) 87.28 87.35 86.37 (0.01) 87.31 87.37 86.39 (0.01)
Fash. MNIST 90.37 (0.03) 91.59 91.38 90.69 (0.03) 91.66 91.46 90.72 (0.01)
Food Quality 97.01 (0.02) 97.34 97.34 97.09 (0.01) 97.34 97.34 97.09 (0.01)
GTSRB 80.45 (0.04) 84.85 83.21 81.21 (0.04) 85.37 83.74 81.39 (0.05)
MNIST 98.64 (0.01) 99.19 99.19 98.83 (0.01) 99.19 99.19 98.83 (0.01)
Speech Cmds 85.94 (0.04) 88.58 87.76 86.43 (0.02) 88.78 87.92 86.40 (0.01)
WISDM 86.31 (0.02) 86.48 87.81 86.68 (0.01) 87.24 87.93 86.77 (0.02)

Avg Diff v Rand 0.00 (0.00) 2.03 (1.55) 1.79 (1.18) 0.51 (0.34) 2.30 (1.63) 1.99 (1.31) 0.57 (0.38)
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Figure 4.6: Inference accuracy (%) on the Activity dataset. Error bars show the standard
deviation over five trials.

exit to meet resource limits (§4.6.9), resulting in low accuracy. From Figure 4.6, the early

exit has an accuracy of about 83%; all other policies reach an average accuracy above 87%

(Table 4.3). Thus, PCE and CGR show better accuracy under resource limits than a fixed

policy. Second, Entropy and Max Prob perform poorly on WISDM. This result comes from

suboptimal exit decisions due to MeNN overconfidence. PCE corrects this problem by setting

higher thresholds for the overconfident classes, highlighting an alternative benefit of using

multiple thresholds.

111



4.6.5 Alternate Dataset Orders

Nearest Neighbor

We further evaluate privacy using the white box adversary (§4.3.2) on Nearest-Neighbor

orders (§4.6.1) with B = 10 (Figure 4.7). CGR maintains its near-random privacy, showing

0.99× higher attack accuracy than Random on average. Using the methodology of §4.6.2,

CGR’s attack accuracy is not significantly greater than Random. In contrast, PCE shows

higher leakage on Nearest-Neighbor orders, displaying an average worst-case attack accuracy

that is 1.24× (Entropy) and 1.28× (Max Prob) higher than Random. These values exceed

the 1.12× (Entropy) and 1.18× (Max Prob) marks from the Same-Label order on these

four tasks. This greater leakage comes from the Nearest-Neighbor order’s high correlations.

Nevertheless, PCE still displays better privacy than single-threshold techniques.

CGR continues to show improved inference accuracy (Table 4.4), eclipsing Random on

80% (61 / 76) of target exit rates under the Max Prob metric. These results are similar

with the Entropy function. However, the gap between CGR and Random is smaller than

on Same-Label streams (Table 4.3). This difference results from CGR’s adaptive bias. The

Nearest-Neighbor order contains stronger correlations, often having blocks with over 90% of

elements in the same class. In turn, CGR acts more randomly. For example, on the Activity

task with ρ0 = 0.5, CGR has an average bias of 0.1507 on Nearest-Neighbor and 0.4446 on

Same-Label. CGR properly responds to greater correlations by reducing its bias magnitude.

Uncorrelated

We further evaluate the attack on data streams with randomly-ordered inputs. In this

setting, the adversary uses each exit decision to infer the MeNN’s individual predictions.

Table 4.5 compares the average inference accuracy and maximum attack accuracy on the

Activity task for Uncorrelated and Nearest-Neighbor streams. The latter order exhibits the
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Table 4.4: Average (std dev) inference accuracy across 21 exit rates for Nearest-Neighbor
blocks (higher is better).

Dataset Rand MaxProb
Stnd PCE CGR

Activity 87.46 (0.02) 89.99 89.17 87.51 (0.01)
EMNIST 87.10 (0.01) 88.04 88.10 87.38 (0.02)
Fash. MNIST 91.11 (0.03) 92.36 92.09 91.34 (0.01)
MNIST 99.44 (0.01) 99.67 99.68 99.48 (0.01)

Avg Diff v Rand 0.00 (0.00) 1.06 (0.57) 0.95 (0.48) 0.17 (0.09)
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Figure 4.7: Maximum attack accuracy on Nearest-Neighbor dataset orders (lower is better).

strongest temporal relations. The adversary still learns information about MeNN’s results in

uncorrelated settings, though the attack efficacy is lower. We hypothesize this result occurs

because the adversary has less context on uncorrelated orders (§4.3.1). This comparison

further shows the benefits of PCE in isolation. On uncorrelated streams, PCE displays an

attack accuracy within 3 points of Random. This figure is over 2× smaller than PCE’s gap

to Random on the Nearest-Neighbor order. Thus, for uncorrelated streams, PCE delivers

an inference accuracy of 1.7 points above Random for a small cost in privacy. We note that

PCE does not achieve an attack accuracy equivalent to either Random or CGR because PCE

uses static thresholds fit on a training set, and the testing set contains empirical differences.
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Table 4.5: Mean inference accuracy (Infr. Acc.) and maximum attack accuracy (Att. Acc.)
on the Activity task for Uncorrelated and Nearest-Neighbor orders.

Policy Uncorrelated Nearest-Neighbor
Infr. Acc. Att. Acc. Infr. Acc. Att. Acc.

Random 86.86 18.12 87.46 19.86
Max Prob 89.44 36.59 89.99 41.63
PCE Max Prob 88.57 21.14 89.17 26.47
CGR Max Prob 87.36 18.88 87.51 18.35

4.6.6 Distribution Shifts

Sensing systems often face distribution shifts where the data observed at runtime differs from

that used during training [Koh et al., 2021]. We evaluate the privacy impact of distribution

shifts by constructing an alternate testing set for MNIST [LeCun et al., 1998] using the first

10,000 digits from the Extended MNIST dataset [Cohen et al., 2017]. This alternate dataset

has a higher mean (µ = 0.172) and standard deviation (σ = 0.331) pixel value than that of

MNIST (µ = 0.131, σ = 0.308) due to differences in image preprocessing. We use the same

MeNN trained on MNIST as in §4.6.2 and evaluate the MeNN on this alternate testing set.

Table 4.6 shows the white box attack accuracy with the Same-Label order. Under dis-

tributional shifts, PCE has privacy similar to standard data-dependent exiting. This phe-

nomenon occurs because the shifted distribution changes the MeNN’s prediction confidence,

breaking the balancing effect of PCE’s multiple thresholds. For example, when ρ = 0.75,

PCE exits early on 96.88% of the digit 1 and 55.08% of the digit 7 in the shifted test set;

on standard MNIST, these exit rates are 73.03% and 72.49%, respectively. Thus, under

shifted distributions, PCE shows the same asymmetric exit behavior seen in previous data-

dependent methods. In contrast, CGR protects against this issue by leveraging randomness.

With the Entropy metric, CGR displays a worst-case attack accuracy less than that of Ran-

dom. Along with this privacy benefit, CGR shows higher mean inference accuracy on the

shifted test set. CGR has an average accuracy of 88.33% (Entropy) and 88.30% (Max Prob),

compared to 87.07% for Random. Note that the shifted distribution causes lower MeNN in-
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Table 4.6: Worst-case attack accuracy for exit policies on an MeNN trained on MNIST and
tested on either a shifted distribution (EMNIST Digits) or the same distribution (MNIST).

Policy EMNIST Digits MNIST

Random 13.60 12.50
Entropy 21.80 27.40
Max Prob 20.10 27.40
PCE Entropy 19.30 13.30
PCE Max Prob 21.10 16.90
CGR Entropy 13.50 13.80
CGR Max Prob 14.20 12.50

ference accuracy overall (Table 4.3). This finding aligns with prior work on neural networks

facing distributional shifts [Koh et al., 2021].

4.6.7 Black Box Attack

We confirm the white box assumptions are not too strong by considering a weakened attacker

with black box access (§4.3.2). This adversary cannot access the target MeNN and only

knows the number of MeNN exits K and the target task’s label space (e.g., the digits 0-9

for MNIST). The adversary uses this knowledge to select a related dataset with the same

label space. The attacker trains a substitute MeNN h
(K)
ψ on this related dataset (Figure

4.3). We assume the attacker uses a reasonable MeNN architecture for their selected dataset

(e.g., ResNet [He et al., 2016] on Cifar-10). The adversary trains their MeNN by optimizing

the average individual classification loss of each exit point [Teerapittayanon et al., 2016].

Finally, following black box adversarial DNN attacks [Papernot et al., 2017], the attacker

fits an attack model gϕ on patterns from the substitute h
(K)
ψ and applies gϕ to the target

MeNN f
(K)
θ on the original dataset. We use the following attack settings.

1. Cifar10 Blurred : The attacker has a version of Cifar10 [Krizhevsky et al., 2009] cor-

rupted with a Gaussian blur (r = 0.5). This version has different training and valida-

tion splits than the original. The attacker generalizes to the standard Cifar10 task.
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2. Pen Digits : The adversary attacks an MNIST [LeCun et al., 1998] convolutional MeNN

with a dense substitute model trained to classify digits from sequences of (x, y) pen

coordinates [Alimoglu and Alpaydin, 1996].

3. Spoken Digits : The attacker targets an MNIST [LeCun et al., 1998] MeNN with a

substitute trained on spoken digit audio [Jackson, 2022].

4. Speech Noisy : The adversary uses the Speech [Warden, 2018] dataset perturbed with

white noise (SNR = 50). The training and validation splits differ from those of the

original. The attacker targets an MeNN on the standard Speech task.

5. WISDM Sim: The adversary uses the WISDM task’s simulated version to target an

MeNN trained on real-world data [Kwapisz et al., 2011], emulating an attacker collect-

ing its own dataset.

Compared to the target MeNN, we use substitutes with different architectures and hyper-

parameters (e.g., batch sizes). For example, the attacker’s substitute MeNN for Pen Digits

uses five fully connected layers with sizes (8, 12, 48, 48, 48), early exiting after the second,

and Leaky ReLU activations. The target MeNN processes the MNIST dataset using four

convolutional layers with (16, 32, 64, 32) filters, early exiting after the first, and ReLU acti-

vations. On Cifar-10, the attacker uses ResNet-18 [He et al., 2016] with early exiting after

the second block. The target system uses a VGG architecture. These settings thus consider

different neural networks which both achieve good accuracy on their given tasks. We fit each

substitute three times.

Table 4.7 shows the maximum attack accuracy. The weakened adversary still achieves

the best results against existing data-dependent policies; MeNNs using Max Prob show a

mean worst-case attack accuracy of 1.56× Random. Although this efficacy is lower than

white box settings (§4.6.2), the black box attacker still learns valuable information despite

having no offline access to the target MeNN. CGR continues to show a worst-case attack
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Figure 4.8: Early exit rates per prediction under the Max Prob policy for the target MeNN
trained on MNIST [LeCun et al., 1998] and the substitute trained on spoken digits [Jackson,
2022].

accuracy close to Random.

This attack works because the substitute h
(K)
ψ and target f

(K)
θ MeNNs often contain

similar exit behavior, even though the target MeNN is unknown to the adversary. Figure 4.8

shows this phenomenon. Predictions for zero and seven have similar exit rates across the two

MeNNs despite training the target on images and the substitute on audio. However, these

rates are not always consistent. When predicting six, the target exits early more frequently,

showing why the black box accuracy does not reach that of white box settings.

4.6.8 White Box Attack on Low-Power MCUs

We launch an end-to-end side-channel attack against distributed MeNNs [Teerapittayanon

et al., 2017] executing on a low-power MCU (§4.6.1). We execute each policy for 500 inputs

on the Activity [Kwapisz et al., 2011] task with the Same-Label order (B = 10), creating 50

temporal windows for the attacker.

Figure 4.9 shows inference and attack accuracy. In all cases, the attacker discovers the

correct exit decisions from the packet trace. Using the white box attack model gϕ, the

Max Prob policy exhibits the highest attack accuracy, while CGR reduces this leakage to
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Table 4.7: Worst-case attack accuracy (%) averaged (std dev) across trained MeNNs. In
each group, the top row is the white box setting. The remaining rows use the black box
method.

Train Task Rand MaxProb
Stnd CGR

Cifar10 13.20 23.30 12.80
Cifar10 Blurred 11.93 (0.52) 19.17 (1.51) 12.30 (0.37)

MNIST 12.30 27.40 12.50
Pen Digits 12.83 (0.45) 17.80 (0.72) 12.77 (0.12)
Spoken Digit 12.57 (0.21) 20.17 (1.41) 12.80 (0.16)

Speech Cmds 12.05 28.79 12.28
Speech Cmds Noisy 12.87 (0.42) 24.78 (4.90) 12.80 (0.28)

WISDM 45.96 74.08 46.14
WISDM Sim 45.82 (0.00) 59.30 (2.19) 45.88 (0.09)
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Figure 4.9: Inference accuracy and attack accuracy against distributed MeNNs executing on
a low-power MCU.

Random. Further, CGR outperforms Random in inference accuracy on the MCU. These

results match those from simulation (§4.6.2), showing how the discovered privacy issue and

proposed defenses apply to real hardware.

4.6.9 Energy Consumption

MeNNs reduce the average cost of inference [Teerapittayanon et al., 2016]. We show how

CGR and PCE preserve this benefit by measuring their energy on a TI MSP430 [Instruments,

2021, 2020]. We run the distributed MeNN from §4.6.8 over 40 trials, recording the average
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Table 4.8: Average (std dev) energy consumption (mJ) on a TI MSP430 MCU [Instruments,
2021].

Policy Exit Early Continue

Fixed 0.047 (0.017) 30.813 (5.234)
Random 0.049 (0.018) 31.144 (6.262)
Max Prob 0.059 (0.020) 32.799 (6.114)
PCE Max Prob 0.057 (0.019) 31.249 (6.243)
CGR Max Prob 0.061 (0.020) 32.320 (6.646)

energy to wake the CPU, execute the first exit point, evaluate the policy, and encrypt the

result. When continuing inference, we include the energy to transmit the 128-byte state over

BLE. The Fixed policy always uses the same exit.

Table 4.8 shows the average energy for each configuration. We highlight two aspects of

these results. First, using the full model incurs over two orders of magnitude of overhead.

This phenomenon comes from the high energy cost of communication, as early exiting allows

the system to keep the BLE module off. This discrepancy shows the prohibitive cost of a

Fixed policy that always uses the entire MeNN. Second, PCE and CGR incur some compu-

tation overhead compared to Random when exiting early. However, this cost is negligible

compared to BLE when using the full MeNN, and for exit rates ρ0 < 1, this BLE cost dom-

inates the energy consumption. Further, under Welch’s t-test, we observe an insignificant

energy difference between Random and either PCE or CGR when continuing inference, with

p-values of 0.94 (PCE) and 0.39 (CGR). Note that Max Prob has the highest average energy

for the full MeNN. This result occurs due to the variance in communication energy; Max

Prob also shows an insignificant difference compared to Random when using the full model.

Thus, both PCE and CGR incur minimal overhead, allowing them to preserve the efficiency

of MeNNs.

119



Activity Cifar10 EMNIST Speech Cmds
Dataset

0

10

20

30

40

50

A
tta

ck
er

 A
cc

ur
ac

y 
(%

)

Attack Accuracy for Varying Numbers of Exits
Random, 2 Exits
Random, 3 Exits
Random, 4 Exits
Max Prob, 2 Exits
Max Prob, 3 Exits
Max Prob, 4 Exits
PCE Max Prob, 2 Exits
PCE Max Prob, 3 Exits
PCE Max Prob, 4 Exits
CGR Max Prob, 2 Exits
CGR Max Prob, 3 Exits
CGR Max Prob, 4 Exits

Figure 4.10: Maximum attack accuracy for MeNNs with two, three, and four exits (lower is
better).

4.6.10 Beyond Two Exits

Prior sections display the leakage present in two-exit MeNNs. However, MeNNs can have

more than two exits [Teerapittayanon et al., 2016, Wan et al., 2020a]. We thus measure how

the number of MeNN exit points impacts its privacy in simulation under Same-Label orders

(B = 10). We emphasize that this analysis does not yield a practical attack under our threat

model; the adversary can only observe a binary decision of whether the system exits on the

sensor or server (§4.3.2). Instead, we include this analysis to demonstrate (1) the potential

for information leakage and (2) the performance of our methods on MeNNs with K > 2.

Figure 4.10 displays the maximum white box attack accuracy for MeNNs with K = 2, 3,

and 4. Max Prob has higher leakage on MeNNs with more exits, showing an average worst-

case attack accuracy of 2.20× (two exits), 2.53× (three exits), and 2.79× (four exits) Ran-

dom. Both PCE and CGR have lower prediction leakage compared to this single-threshold

policy. In particular, CGR displays near-random privacy with an average worst-case attack

accuracy of 1.01× (two), 1.01× (three), and 0.98× (four) Random. These values have no

trend with the number of exits. Furthermore, CGR still shows higher inference accuracy

than Random. On the Activity task, CGR has an average accuracy of 88.72 (three exits)

and 88.16 (four exits). These values eclipse Random: 88.15 (three) and 87.56 (four). Overall,

120



previous data-dependent methods exhibit greater leakage on MeNNs with more exits, and

both PCE and CGR provide protection in all contexts.

4.6.11 Data Order Parameters

The provided experiments under the Same-Label order use a single block size (B = 10) and

noise rate (ε = 0.2). We expand this analysis by varying these parameters for B ∈ {10, 20, 30}

and ε ∈ {0.1, 0.2, 0.3}. Figure 4.11 shows the inference accuracy and white box attack

accuracy on the Activity task. We display the difference between each policy’s result and

that of Random. CGR consistently has an inference accuracy of about 0.45 points above

Random for all configurations. Further, CGR displays a maximum attack accuracy of only

0.51 points higher than Random on average across all settings. This figure is over 60×

lower than that of Max Prob. In the worst case, CGR has an attack accuracy of 1.76

points above Random, occurring when B = 10 and ε = 0.1. However, CGR does not have

consistently lower privacy at this noise rate; for B = 20 and ε = 0.1, CGR has a worst-case

attack accuracy of 0.48 points lower than Random. In total, these results align with the

previous experiments under a single Same-Label configuration (§4.6.2, 4.6.4). We note that

the adversary achieves better results against Max Prob for larger block sizes and lower noise

rates, as such characteristics yield stronger temporal correlations.

4.6.12 CGR Parameters

The experiments in §4.6 use the CGR policy with a maximum bias α = 0.5, increase factor

β = 2.0, and decrease factor γ = 0.9. In this section, we evaluate the impact of these

parameters on the policy’s inference and attack accuracy. We perform a grid search over

α = {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, β ∈ {1.5, 2.0, 2.5}, and γ ∈ {0.5, 0.7, 0.9, 0.99}. For each

setting, we compute the mean inference accuracy and maximum white box attack accuracy

across all exit rates ρ for the CGR policy with the Max Prob confidence metric. These

121



0.1 0.2 0.3
Data Order Noise Rate (ε)

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

n 
In

fe
re

nc
e 

A
cc

ur
ac

y 
R

el
at

iv
e 

to
 R

an
do

m Inference Accuracy on Activity

0.1 0.2 0.3
Data Order Noise Rate (ε)

0

5

10

15

20

25

30

35

40

M
ax

 A
tta

ck
 A

cc
ur

ac
y 

R
el

at
iv

e 
to

 R
an

do
m

Attack Accuracy on Activity

Max Prob (B=10)
Max Prob (B=20)
Max Prob (B=30)
PCE Max Prob (B=10)
PCE Max Prob (B=20)
PCE Max Prob (B=30)
CGR Max Prob (B=10)
CGR Max Prob (B=20)
CGR Max Prob (B=30)
Random (B=10)
Random (B=20)
Random (B=30)

Figure 4.11: Average inference accuracy (left) and maximum attack accuracy (right) on the
Activity dataset for window sizes (B) and noise rates (ε) under the Same-Label order.

experiments use the Activity dataset [Kwapisz et al., 2011] under Same-Label data order

with B = 10 and ε = 0.2. We execute each configuration over three trials and take the

average result for each exit rate. We present the results for each parameter by considering

the maximum, average, and minimum values aggregated across all settings for the other two

parameters. Figures 4.12, 4.13, and 4.14 display the results from the perspectives of the

maximum bias (α), increase factor (β), and decrease factor (γ), respectively.

On average, larger maximum bias α values lead to higher inference and attack accuracy.

This trend aligns with CGR’s design (§4.5); larger biases allow CGR to align more with

PCE, delivering better inference performance with worse privacy. Note that even with a

large bias (e.g., α = 0.9), CGR can still display lower inference and attack accuracy when

the decrease factor γ is small (e.g., γ = 0.5).

Both the increase (β) and decrease factors (γ) show positive correlations with the policy’s

inference and attack accuracy. When CGR has a small decrease factor γ, the policy is quick

to decrease the bias. This phenomenon leads to smaller bias terms on average, causing

more randomness, lower inference accuracy, and better privacy. The opposite occurs when

γ nears one. In particular, when γ ≈ 1 and β >> 1 (e.g., γ = 0.99, β = 2.5), CGR shows

high inference accuracy (88.14) and attack accuracy (19.73) for a fixed α = 0.9. This result
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Figure 4.12: Mean inference accuracy (left) and worst-case attack accuracy (right) for
different maximum bias (α) values aggregated across β ∈ {1.5, 2.0, 2.5} and γ =
{0.5, 0.7, 0.9, 0.99}.

matches the theory of CGR’s adaptive bias algorithm (§4.5.2), as these settings result in

quickly increasing and slowly decreasing the bias term.

In general, we find that α = 0.5, β = 2.0 and γ = 0.9 deliver near-random attack privacy

with favorable inference accuracy. As demonstrated, these settings are robust across multiple

different tasks and confidence metrics (§4.6).

4.7 Related Work

Multi-Exit Neural Networks (MeNNs) Prior work introduces early exits into neural

networks [Berestizshevsky and Even, 2019, Huang et al., 2017, Kaya et al., 2019, Lee and

Shin, 2018, Teerapittayanon et al., 2016, Veit and Belongie, 2018, Wan et al., 2020a, Wang

et al., 2017]. To select an exit point, existing systems use data-dependent exit policies with a

single threshold on prediction confidence [Berestizshevsky and Even, 2019, Teerapittayanon

et al., 2016, Wang et al., 2017]. Other methods use bandit algorithms [Ju et al., 2021],

runtime feedback [Wan et al., 2020b], or decision agreement [Zhou et al., 2020]. We focus

on policies using maximum probability and entropy confidence, as they are cheap and well-
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Figure 4.13: Mean inference accuracy (left) and worst-case attack accuracy (right) for differ-
ent increase factors (β) aggregated across α ∈ {0.4, 0.5, . . . , 0.9} and γ = {0.5, 0.7, 0.9, 0.99}.
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Figure 4.14: Mean inference accuracy (left) and worst-case attack accuracy (right) for dif-
ferent decrease factors (γ) aggregated across α ∈ {0.4, 0.5, . . . , 0.9} and β = {1.5, 2.0, 2.5}.

suited for low-power sensors. We show how these policies leak information and propose new

methods to address this problem.

Distributed Neural Network Inference Existing frameworks partition DNNs across

multiple systems to reduce resource costs on edge devices [Banitalebi-Dehkordi et al., 2021,

Kang et al., 2017, Li et al., 2019, Zeng et al., 2019]. Both DDNNs [Teerapittayanon et al.,

2017] and SPINN [Laskaridis et al., 2020] introduce early exit behavior to improve distributed

inference, creating distributed MeNNs. We develop a side-channel attack against the com-
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munication patterns of these distributed MeNNs. We defend against this attack through

new early exit policies.

Attacks on Neural Networks Common attacks against DNNs force misbehavior through

adversarial noise [Biggio et al., 2013, Carlini and Wagner, 2017, Goodfellow et al., 2015,

Guesmi et al., 2021, Ilyas et al., 2019, Lecuyer et al., 2019, Madry et al., 2017, Papernot

et al., 2017, Shumailov et al., 2021b, Szegedy et al., 2013]. Other work induces adversarial

behavior using training set poisoning [Gu et al., 2017], attacker-specified triggers [Pan et al.,

2022], or batch orderings [Shumailov et al., 2021a]. Popular countermeasures against these

attacks include defensive distillation [Papernot et al., 2016] and adversarial training [Good-

fellow et al., 2015, Vaishnavi et al., 2022]. Further, existing proposals observe that MeNNs

reduce the impact of adversarial examples [Hu et al., 2020, Kaya et al., 2019]. Previous at-

tacks target MeNNs by crafting adversarial examples to maximize the execution cost [Haque

et al., 2020, Hong et al., 2020] and using exit decisions to improve membership inference

queries [Li et al., 2022]. Similar to our work, these attacks exploit early-exit behavior in

neural networks. However, we evaluate how distributed MeNNs leak predictions through

communication patterns.

Neural Networks and Privacy Previous systems address the privacy of DNNs through

homomorphic encryption [Gilad-Bachrach et al., 2016, Liu et al., 2017] and secure two-

party computation [Mohassel and Zhang, 2017]. Other methods protect DNNs using trusted

execution environments [Hashemi et al., 2021, Mo et al., 2020] and differential privacy [Abadi

et al., 2016b, Truex et al., 2019, Stevens et al., 2022, Wei et al., 2020]. Our work also examines

DNN privacy, but we create a new attack that uses exit patterns to infer MeNN predictions.

Prior work leverages power [Wei et al., 2018], electromagnetic [Batina et al., 2019, Yu et al.,

2020], and timing/memory [Hua et al., 2018] side-channels to find DNN architectures and

parameters. We instead use the communication patterns of distributed MeNNs as a side-
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channel to uncover model predictions. We further create efficient solutions for this new

privacy concern.

Side-Channel Attacks Many side-channel attacks exploit variable behavior under differ-

ent inputs or operating conditions [Chen et al., 2010, Das et al., 2016, Mehta et al., 2022].

Previous work uses timing [Brumley and Boneh, 2005] and power discrepancies [Kocher et al.,

1999, Messerges and Dabbish, 1999] to extract encryption keys. We also study side-channels

against varying behavior, but our work focuses on MeNNs, which is new. Previous work

closes side-channels through fixed resource usage or randomized behavior. BuFLO [Dyer

et al., 2012] and its extensions [Cai et al., 2014a, Juarez et al., 2016, Nithyanand et al.,

2014] standardize traffic patterns to prevent website fingerprinting. Other systems obfuscate

compromising communication patterns in sensor networks [Apthorpe et al., 2019, Kamat

et al., 2007, Kannan and Hoffmann, 2022]. Our work uses a new randomization technique

to retain the accuracy and resource benefits of MeNNs.

4.8 Conclusion

This work creates a side-channel attack that exploits the communication patterns of dis-

tributed Multi-exit Neural Networks (MeNNs) with data-dependent early exiting. This side-

channel allows an adversary to discover the MeNN’s predictions with over 1.85× the accu-

racy of random guessing. We address this attack through two new exit policies: Per-Class

Exiting (PCE) and Confidence-Guided Randomness (CGR). PCE uses multiple confidence

thresholds to reduce information leakage with inference accuracy close to prior methods.

CGR augments PCE with randomization to achieve theoretical privacy guarantees and de-

liver consistently better inference accuracy than exiting early uniformly at random. This

attack highlights how modern inference systems must consider the privacy implications of

data-dependent behavior.
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CHAPTER 5

ACOUSTIC KEYSTROKE LEAKAGE ON SMART

TELEVISIONS

5.1 Introduction

Side-channels exist in devices beyond embedded systems. This chapter applies insights from

embedded devices to the broader class of Internet-of-Things (IoT) systems. In particular,

we show how IoT devices on the market today unintentionally leak information by creating

a novel attack against Internet-connected televisions (TVs).

Internet-connected TVs have experienced massive growth over the last decade. These

devices, called "Smart TVs", are expected to reach over 266 million units sold globally

by 2025 [Markets, 2020]. Unlike their traditional counterparts, Smart TVs allow users to

browse the Web, access video streaming applications (e.g., Hulu), and purchase products.

This increased functionality brings about new security risks [Aafer et al., 2021, Michéle and

Karpow, 2014, Mohajeri Moghaddam et al., 2019, Huang et al., 2023, Majors et al., 2023,

Zhang et al., 2022].

Users typically enter information into Smart TVs through on-screen virtual keyboards.

Common platforms, such as AppleTVs [Apple, 2023] and Samsung Smart TVs [Samsung,

2023], allow users to navigate these keyboards with a hardware remote controller containing

a direction pad (Figure 5.1). Users type by issuing directional commands to sequentially

move a cursor between desired keys. Given the wide-ranging capabilities of Smart TVs,

users enter sensitive information, such as passwords and credit card details, with these virtual

keyboards [Huang et al., 2023]. Thus, Smart TVs must ensure the privacy of user keystrokes.

On popular Smart TV platforms, such as Samsung’s Tizen [Samsung, 2023], the default

keyboard makes sounds as users type.

This work presents a new side-channel attack against Smart TV keyboards that uses the
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TV’s audio to discover typed strings. In this attack, audio forms a side-channel because

the TV does not intend to convey the user’s exact keystrokes through its acoustic feedback.

Developing this attack requires answering four key questions:

(Q1) How can the attack identify sounds made by the Smart TV that contain valuable

information about keystrokes?

(Q2) How can the attack use these sounds to discover when a user is typing and how they

navigate the virtual keyboard?

(Q3) How can the attack use the extracted movement information to recover user-typed

strings?

(Q4) How can the attack overcome real-world challenges, such as discovering the type of

entered information (e.g., passwords, credit cards, etc.) and accounting for user typing

behavior?

Our attack addresses the first question (Q1) by exploiting how different Smart TV plat-

forms make distinct sounds. Further, platforms use a small number of sounds, and each

sound is consistent because it comes from the platform itself. These properties allow the

attack to identify important sounds by pre-recording sounds from common Smart TVs and

using Fourier analysis to match these references against the sounds observed at runtime. This

method augments standard signal processing techniques to handle distinct features of Smart

TVs, such as the conflation of adjacent sounds due to rapid movements on the keyboard.

We answer the second question (Q2) by drawing on the insight that multiple popular

Smart TVs make different sounds for the following actions: (1) moving the keyboard cursor,

(2) selecting a key, and (3) deleting a character. Furthermore, compared to other actions on

the TV, the key selection sound is unique to the keyboard. Thus, an adversary with auditory

access can learn three critical pieces of information about user keystrokes.

• When a user is typing, due to sounds unique to the keyboard.
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Figure 5.1: Remote controllers for AppleTVs (left) and Samsung Smart TVs (right) anno-
tated with the direction pad.

• The length of the entered string, by tracking the number of selections and deletions.

• The number of cursor movements between selections.

The TV’s audio, however, does not reveal the direction of user movements on the virtual

keyboard (Q3). This lack of directionality means that many possible strings may correspond

to the audio for a given sequence of keyboard movements. We address this challenge by

using a prior dictionary to measure the probability of typing each possible string. This

design allows the attack to construct a ranked list of the likeliest results across all possible

movement directions. We further leverage user typing patterns and string-length properties

to infer the class of entered information, such as passwords or credit cards (Q4). This feature

allows the attack to customize the prior without making additional assumptions.

Smart TV keyboards do not require users to take the shortest path between keys, so the

extracted movement counts only provide an upper bound on the distance between selections

(Q4). Accounting for suboptimal paths that users may traverse increases the search space

and complicates keystroke recovery. We tackle this problem by exploiting user behavior

through keystroke timing: we observe that users tend to pause when correcting suboptimal

paths. By identifying such pauses, the attack only accounts for suboptimal paths when
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needed.

We evaluate this attack against two popular Smart TV brands: Apple [Apple, 2023]

and Samsung [Samsung, 2023]. These brands account for about 15.4% of the global Smart

TV market, with Samsung being the most popular platform [Wire, 2021]. Importantly,

the audio profiles of both TVs exactly match the properties enabling our attack. When

assuming optimal typing behavior in an emulated environment, our attack recovers 99.95%

of credit card numbers (CCNs), 97.65% of full credit card details (CCN, security code, ZIP

code, and expiration date), and up to 99.10% of common passwords [Miessler, 2021] within

100 guesses. We extend these results to a realistic setting through a user study1. For ten

subjects typing into real applications on a Samsung TV, the attack recovers 53.33% of CCNs,

33.33% of full credit card details, and up to 60.19% of common passwords [Miessler, 2021]

within 100 guesses. We further investigate this attack against users typing passwords on an

AppleTV. On this platform, the attack has a top-100 password recovery accuracy of 31.00%;

this lower result occurs because users take more suboptimal paths on this device. These top-

100 recovery rates mean our attack can verify the extracted information against rate-limited

online services [Lu et al., 2018].

Prior work has studied side-channels on user keystrokes from two angles with similar

elements. First, multiple attacks use the audio from mechanical keyboards to infer keystrokes

[Asonov and Agrawal, 2004, Berger et al., 2006, Compagno et al., 2017, Zhu et al., 2014].

These attacks, however, do not work on Smart TVs due to the differences in keyboard types.

Mechanical keyboards allow users to jump between keys instantaneously. In contrast, Smart

TVs require users to scroll across the virtual keyboard through directional commands. This

difference in dynamics necessitates a new method for string recovery. Second, HomeSpy

sniffs unencrypted infrared (IR) signals between Smart TVs and their remote controllers,

enabling keystroke recovery [Huang et al., 2023]. Recent Smart TVs, however, have remotes

1. Our university’s institutional review board (IRB) approved this study.

130



that do not use IR [Majors et al., 2023, Zhang et al., 2022], and the HomeSpy attack does not

succeed on such devices. Our acoustic attack is agnostic to the TV remote’s communication

medium.

We disclosed this issue to Apple and Samsung. Apple responded, "while we do not see any

security implications, we have forwarded your report to the appropriate team to investigate

as a potential enhancement request to take action." The reply provides no further details.

We followed up on the enhancement request to confirm our suggestion to mute the TV when

typing sensitive information. We have not heard back. Samsung acknowledged the presented

security problem and paid a bounty for finding this vulnerability. They further confirmed

they have "multiple teams discussing the issue" to implement a long-term fix.

Overall, we make the following contribution2:

1. We identify a new side-channel attack against Smart TVs that uses audio to learn

about user keystrokes.

2. We build an attack framework that uses acoustic information to identify instances of

keyboard activity and extract cursor move counts between keyboard selections.

3. We create a recovery module that infers user-typed strings from the information ex-

tracted from Smart TV audio.

4. We identify and exploit common human typing behaviors on Smart TVs to improve

the attack in practice.

This work identifies a novel side-channel on Smart TVs that leaks sensitive user informa-

tion. This result displays another example of how Internet-connected, everyday devices must

pay more attention to security [Acar et al., 2018, Fernandes et al., 2016, He et al., 2021, Ho

et al., 2016].

2. The code for this work is available at https://github.com/tejaskannan/smart-tv-keyboard-lea
kage. This work appears as a conference paper in NDSS 2024 [Kannan et al., 2024]
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Figure 5.2: The default AppleTV keyboard for passwords. The background shows the key’s
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the key; selecting Done makes no sound.
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Figure 5.3: The default keyboard on the Samsung Smart TV. The background denotes the
key’s sound when pressed.

5.2 Background

This section provides background on Smart TVs and virtual keyboards (§5.2.1) before de-

scribing the notation we use in the rest of the paper (§5.2.2). We then discuss details of credit

card transactions (§5.2.3) and present an example of acoustic keystroke leakage (§5.2.4).

5.2.1 Smart TVs and Virtual Keyboards

Smart TVs are Internet-connected televisions that support web browsers and third-party ap-

plications. Users control Smart TVs with wireless remotes that communicate over Bluetooth

or infrared [Majors et al., 2023]. For common platforms [Apple, 2023, Samsung, 2023], these

remote controllers contain direction pads that allow users to navigate the TV (Figure 5.1).

Users enter information into Smart TVs using an on-screen virtual keyboard. These

keyboards handle sensitive information, such as passwords and credit cards, as users log into
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accounts and purchase products (e.g., subscriptions). The keyboard layout depends on the

Smart TV operating system (OS) and, if applicable, the current application. We focus on

the default keyboards from two Smart TVs: AppleTVs (tvOS) [Apple, 2023] and Samsung

Smart TVs (Tizen OS) [Samsung, 2023]. AppleTVs use an alphabetical design (Figure 5.2),

and Samsung TVs use a QWERTY layout (Figure 5.3). On these platforms, users type by

moving a cursor to the desired characters with the remote’s directional pad. For instance,

to reach j from q, users can press the "right" button six times and "down" once. Users

may rapidly scroll through system-dependent actions. AppleTV remotes have a directional

touchpad, allowing rapid traversal by swiping. On Samsung TVs, users can quickly scroll by

holding down a direction button. Finally, Samsung TVs support horizontal wraparound; for

example, moving left from CAPS places the cursor on CLEAR. There is no vertical wraparound.

AppleTV supports no wraparound of any kind.

Virtual keyboards have multiple views, each containing a different character set. Users

can switch views by selecting a "view-change" key, e.g., ABC in Figure 5.2 or #@! in Figure

5.3.

We observe a crucial property of both TVs:

(P1) Upon opening the keyboard, the cursor always starts on the same key in the same view.

For AppleTVs, the starting view is the lowercase letters (Figure 5.2) with the cursor

on a. On Samsung Smart TVs, the cursor starts on q within the lowercase QWERTY

keyboard (Figure 5.3).

Acoustic Properties

A critical property of popular Smart TVs is that their default keyboards make sounds during

user interaction. In particular, both AppleTVs and Samsung Smart TVs have audio profiles

with the following properties:
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(P2) The sound of moving the cursor, called KeyMovement, differs from that of selecting a

key, called KeySelect.

(P3) The BACK and CLEAR keys make different sounds than that of other keys. We call this

sound Delete.

(P4) The KeySelect sound is unique to the keyboard. When making selections outside the

keyboard (e.g., choosing a video to play), the TV makes a different sound, which we

call SystemSelect. The keyboard can make the SystemSelect sound on special keys

(Figure 5.3).

Unlike the acoustic emanations from mechanical keyboards [Asonov and Agrawal, 2004, Zhu

et al., 2014], these sounds originate from the TV OS. Thus, the sounds are consistent and

user-independent. Further, each platform has its own version of each sound; the KeySelect

sound on the AppleTV is not the same as KeySelect on the Samsung Smart TV.

Both TVs have inaudible shortcuts by pressing buttons on the remote. On AppleTVs,

users can change the keyboard view. The Samsung TV allows users to capitalize characters.

These actions move the cursor deterministically; e.g., if the cursor is on d, it moves to D after

the capitalization shortcut.

Dynamic Keyboards

Samsung keyboards sometimes provide inline suggestions by populating neighboring loca-

tions with new characters (Figure 5.4). This design aims to reduce the user’s movement

on the keyboard. Moving twice in the same direction clears the suggestions. The key-

board always starts with no suggested keys. These suggestions only occur when users enter

"predictable" information such as web searches. There are no suggestions when entering

passwords. For passwords, the only dynamic behavior occurs when the keyboard suggests

Done after the user reaches eight characters. AppleTV keyboards have no dynamic behavior.
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5.2.2 Notation

Our attack uses move count sequences to recover strings typed on a Smart TV virtual

keyboard. A move count sequence is an ordered list S = [M (n) = (k(n), s(n), t(n))]Nn=1

where M (n) is the the nth move. Each move has three items. The first, k(n), is the number

of cursor movements to navigate from the (n− 1)th key to the nth key. Second, s(n) ∈ Q =

{KeySelect, SystemSelect, Delete} is the sound made upon selecting the nth key where

Q denotes the set of end sounds. Finally, t(n) ∈ Rk(n) holds the times of the individual

movements.3 We infer user behavior from t(n) (§5.4.3). We denote strings as w where wℓ

is the ℓth character and wℓ:r is the substring from position ℓ to r inclusive. We define a

keyboard instance as a contiguous episode starting with opening the keyboard and ending

with the string’s submission (e.g., by clicking Done). A move count sequence S can have

zero or more keyboard instances. As an example, consider typing the string test on the

Samsung Smart TV keyboard (Figure 5.3). With timing information omitted, one possible

move count sequence S for this string is below. The last move comes from navigating to

Done.

3. We denote vectors in boldface and scalars in plain text.
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S = [(k(0) = 4, s(0) = KeySelect), (k(1) = 2, s(1) = KeySelect),

(k(2) = 2, s(2) = KeySelect), (k(3) = 4, s(3) = KeySelect),

(k(4) = 9, s(4) = SystemSelect)]

There are an infinite number move count sequences for a single string because users can

traverse suboptimal paths between keys. Similarly, one move count sequence can correspond

to many strings.

We use S as an intermediate representation for the TV’s audio. Our attack works by

converting audio into a move count sequence S and then finding strings that match S in the

keyboard layout.

5.2.3 Credit Card Details

Users type credit card details into Smart TVs when purchasing products (e.g., movies or

subscriptions). For example, users must enter their payment information into the Hulu

application when creating a new account on Samsung Smart TVs. These purchases are

"card-not-present" transactions. Users must provide sufficient payment details to validate

the transaction with a card payment network. These details often include the credit card

number (CCN), expiration date, security code (CVV), and billing address. The CVV is a

3- or 4-digit sequence of pseudo-random numbers. Popular Smart TV applications, such

as Hulu, validate the billing address through a 5-digit ZIP code. Therefore, the 5-tuple

of (CCN, expire month, expire year, CVV, ZIP) is sufficient to purchase products, making

this information financially valuable to an attacker. We call this 5-tuple the full credit card

details. We focus on payments in the United States, though the formats of other countries

are conceptually similar.

CCNs are generally 15- or 16-digit strings where the first digit identifies the card issuer.
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We focus on three popular issuers: American Express (AMEX), Visa, and Mastercard. Apart

from the last digit, the remaining numbers identify the issuing institution and user account.

The final digit ensures the entire CCN satisfies a checksum under Luhn’s algorithm. This

checksum is essential to our attack’s performance when recovering CCNs (§5.5.2, §5.6.2).

To verify stolen credit card information, an attacker must execute a transaction against a

card payment service. If the service accepts the transaction, the attacker has valid payment

details. Upon rejection, we assume the attacker only knows that at least one field is incorrect.

Further, we assume all five fields must be correct for a valid transaction. This assumption

is conservative, as some services may only validate a subset of fields [Scaife et al., 2018].

5.2.4 Example of Acoustic Keystroke Leakage

We provide an example of acoustic keystroke leakage by typing the string test on the

Samsung TV (Figure 5.3) and recording the audio. Figure 5.5 shows the audio produced by

the TV (§5.6.1 describes the experimental setup). With prior knowledge of the TV’s sounds,

we identify the user’s keyboard actions from the raw audio (P2). This identification yields

the move count sequence S from §5.2.2. Visually, this example highlights the distinctive

nature of Smart TV sounds.

To recover the typed string, an attacker can combine the keyboard layout (Figure 5.3)

with S. Assuming the user takes shortest paths, the first character is w0 ∈ {t, 4, f, c, ˆ, !}

because the cursor starts on q (P1). Then, the attacker considers keys at a distance of

k(1) = 2 from each possible w0. Iteratively continuing this process yields possible strings

such as ft6f, test, tukt, and so forth. The attack can identify the most likely result using

a prior dictionary over all possible strings. For instance, the attacker can correctly recover

test under an English prior. This general method allows an attacker to recover keystrokes

from a Smart TV’s audio.
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Figure 5.5: Example audio from the Samsung TV when typing the string test.

5.3 Threat Model

We consider an attacker with passive audio access to a Smart TV running Samsung’s Tizen

OS [Samsung, 2023] or AppleTV’s tvOS [Apple, 2023]. We assume there is only one TV in

the target location. An attacker can gain this access to the TV in one of two ways:

1. The adversary can hijack an adjacent device containing a microphone. Such devices are

prevalent due to the growth of smart speakers (e.g., Amazon Echo) [Insights, 2022]. It is

reasonable to assume that these devices have vulnerabilities exposing their microphone

feed; prior attacks have both turned such speakers into wiretaps [Barnes, 2017, Kunze,

2022] and compromised other smart devices [Acar et al., 2018, Antonakakis et al.,

2017, Fernandes et al., 2016, Ho et al., 2016, Sami et al., 2020]. Depending on the

vulnerability, an adversary can exploit these nearby devices remotely, launching our

attack even without physical access to the target TV. These assumptions correspond

to the threat model of previous keystroke attacks on Smart TVs [Huang et al., 2023].

2. The attacker can place a malicious microphone near the target TV. This method

requires stronger capabilities, as this adversary generally needs physical access to place

the microphone. We consider this threat despite this stronger assumption because it
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remains reasonable for venues with transient populations, such as hotel rooms, vacation

homes, and other short-term rental facilities. This vector may be possible without

physical access if the TV is audible in an adjacent space (e.g., through the wall of an

apartment) or if the attacker leverages long-range (e.g., laser) microphones [Muscatell,

1984, Sami et al., 2020].

We emphasize what the adversary does not assume. The attacker makes no assumptions

about the type of information (e.g., passwords, credit card details, etc.) or even that the

user is typing at all. The attacker must determine when the user is typing and the class of

entered information. When the user is typing, the attacker does not assume the user takes

an optimal path between keys. Further, the adversary has no other knowledge about the

user. This assumption is conservative; for example, knowing personal information improves

password guessing [Wang et al., 2016]. Finally, the attacker must validate inferred keystrokes

against online services (e.g., by directly entering a password guess into an online site). The

adversary cannot access leaked information on which to validate results offline. This setting

mirrors online password guessing and is more challenging due to rate limits and service

lockouts [Wang et al., 2016].

We compare this threat to four related attacks: video-based attacks, attacks on voice

inputs, attacks on infrared remotes, and attacks on virtual remotes.

Video Similar to shoulder surfing [Wiedenbeck et al., 2006], an adversary with video access

to the Smart TV’s screen can read keystrokes. Gaining reliable video access, however, is

harder than capturing only audio because the attacker needs an unobstructed view of the

TV. Therefore, video access is sensitive to the malicious device’s location. The audio threat

is stealthier because it can operate anywhere near the TV within audible range, allowing the

recording device to occupy less conspicuous places. Finally, the audio attack is not sensitive

to small changes in the location of the TV or microphone.
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Voice Inputs Some Smart TVs support voice inputs. This method replaces virtual key-

boards by allowing users to speak their desired string into the remote controller. Voice inputs

leak information through acoustic signals, as attackers with audio access to the target TV

can use speech recognition [Graves et al., 2013] to discover the entered string. Smart TVs,

however, do not support voice inputs for all information types. For example, Samsung Smart

TVs block voice inputs for password fields; instead, the TV forces users to enter passwords

with the virtual keyboard. Thus, an attacker who only targets voice inputs cannot steal all

forms of highly sensitive information. Our attack targets the virtual keyboard’s audio and

can discover private information such as passwords.

Infrared Remotes HomeSpy steals user keystrokes by sniffing infrared (IR) signals be-

tween Smart TVs and remote controllers [Huang et al., 2023]. However, this attack only

works for IR remotes. Newer remotes communicate over Bluetooth [Majors et al., 2023,

Zhang et al., 2022], and HomeSpy does not succeed on Bluetooth remotes. In contrast, the

audio attack is agnostic to the remote control communication protocol.

Virtual Remotes SPOOK exploits vulnerabilities when pairing virtual remotes to steal

Smart TV keystrokes [Majors et al., 2023]. Enforcing human attestation during the pairing

process stops this attack. This patch, however, does not thwart the considered audio threat.

5.4 Acoustic Attack Framework

This section describes our acoustic attack against Smart TV keyboards. The attack consists

of two core modules (Figure 5.6). The first component (§5.4.1) uses the Smart TV’s audio

to identify the platform (§5.4.1) and extract move count sequences (§5.4.1). The module

then isolates instances of a user typing (§5.4.1). The second module uses each isolated move

count sequence to recover the typed string (§5.4.2). This module first infers the type of

entered information (e.g., passwords, credit card details, etc.) (§5.4.2). From this inference,
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Figure 5.6: The keystroke acoustic attack framework.

the attack customizes a prior dictionary over possible strings (§5.4.2). We combine this prior

with the keyboard layout to guess the likely typed strings (§5.4.2). This section concludes

by discussing improvements based on timing patterns (§5.4.3).

The attack acts on fixed-length audio recordings. This property is necessary to identify

the platform (§5.4.1) and information (§5.4.2) types. The attacker can obtain such record-

ings by splitting the microphone feed during prolonged silence (e.g., at night). The attack

automatically identifies and isolates the instances of users typing within the larger recording.

This property implies the adversary cannot launch the attack in real-time. However, this

limitation is manageable as it enables the attacker to make minimal assumptions. Further,

the value of sensitive information, such as passwords and credit cards, does not significantly

diminish over these delays.

5.4.1 Audio Extraction

TV Type Selection

The first step in the attack pipeline uses acoustic properties to identify the Smart TV plat-

form. Different Smart TVs use unique audio profiles, so the TV’s sounds fingerprint the

system. On the AppleTV and Samsung Smart TV, the KeySelect sounds uniquely identify
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keyboard usage (P4). Thus, for a given recording, we match instances of the KeySelect

sound for each platform (§5.4.1 describes this matching). We classify the TV type as the

platform with the most matching KeySelect sounds over the recording’s duration. When no

matches exist, the platform type is unknown, and we abort the attack. Such cases indicate

background noise, an unsupported TV, or no keyboard use.

Extracting Move Count Sequences

Smart TVs make distinctive sounds (P2), (P3), leading to keyboard interactions with audio

such as that of Figure 5.5. This section describes a procedure to separate and classify the

TV’s relevant sounds (Q1). This process extracts a move count sequence, S, from raw

audio (Q2).

From Figure 5.5, the Smart TV’s sounds appear as regions with high amplitude. Thus,

the module finds each amplitude peak and identifies the surrounding region as a candidate

sound. This process follows prior acoustic attacks against mechanical keyboards [Berger

et al., 2006].

The module must then classify each candidate sound as one of KeySelect, SystemSelect,

KeyMovement, Delete, or Unknown. We use a nearest-neighbor classifier due to the consis-

tency of Smart TV sounds over time. We pre-collect recordings for each sound on the target

Smart TV platforms. We call these recordings the reference sounds. At runtime, the frame-

work creates the spectrogram of the candidate and reference sounds using a Fourier transform

length of 1,024, a segment length of 256, and 32 points overlapping between segments. We

then compute the L1 distance between the candidate and reference spectrograms. We select

the proper reference sounds using the inferred TV type (§5.4.1). The module classifies the

candidate based on the lowest distance. If the best distance exceeds a threshold, the sound

is Unknown and therefore unrelated to the TV. We empirically determine these thresholds

for each reference sound to filter out false positives on a set of training examples.
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Three challenges arise with this nearest-neighbor approach.

(a) Dimension Mismatch: The candidate and reference spectrograms may have a different

number of timesteps. This dimensionality mismatch prevents computing the L1 dis-

tance directly. We solve this issue by instead sliding the smaller spectrogram over the

larger one. We return the minimum sliding window distance.

(b) Background Noise: The L1 distance is sensitive to background noise. We mitigate

this problem by limiting the comparison to the frequency bands which contain each

reference sound. Further, we min-max normalize each spectrogram and mask out

normalized values below a threshold τ . We empirically set τ = 0.7 based on our

training examples. This masking avoids comparing low-amplitude noise in the target

frequency bands.

(c) Rapid Scrolling: Users can quickly scroll across keys (§5.2.1). This action generally

creates unique sounds for each movement. These movements, however, occur in rapid

succession and get clipped as a single candidate. We deduplicate these movements

by finding the spectrogram peaks [Wang, 2006] and counting the number of peaks at

frequencies tuned for the KeyMovement sound. We use the number of peaks to identify

the number of individual movements.

After classifying each sound, the framework builds the move count sequence S. The nth

move M (n) completes with s(n), the nth instance of an end sound (§5.2.2). Upon observing

s(n), we count the number of cursor movements between the s(n−1) and s(n); this count is

k(n). Finally, we set the times t(n) using the amplitude peak times for each detected cursor

movement in M (n). These extracted moves M (n) form the move count sequence for the full

recording.

This method produces accurate results. For users typing credit card details (§5.6.1), the

module identifies the correct number of movements on 98.95% of instances and misses only a
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single selection. This algorithmic approach shows an adversary can automate the extraction

and launch the attack at scale. We emphasize that our contribution is not in developing new

signal processing techniques. Indeed, there exist other methods for audio extraction [Berger

et al., 2006, Wang, 2006], and such techniques may exhibit more advantageous properties

(e.g., resistance to background noise). Through our procedure, we instead show that it is

possible to identify Smart TV sounds algorithmically. We find that an attacker can then

leverage this information to recover keystrokes (§5.6). Note that our framework supports

any accurate audio identification procedure; changing the audio extraction method does not

alter the essence of the attack.

Splitting Keyboard Instances

The move count sequence S (§5.4.1) encodes the user’s behavior over an entire recording.

Each recording can have zero or more keyboard uses. The attack must isolate each keyboard

instance (§5.2.2) to recover the individual user-typed strings. This phase produces disjoint

sequences S1, . . . , Sℓ such that
⋃ℓ
r=1 Sr ⊆ S where each Sr holds a single keyboard instance.

We perform this splitting using both acoustic and timing information. The details depend

on the platform, as discussed below.

Apple The AppleTV keyboard has no dynamic behavior (§5.2.1) and requires users to

select Done upon completion (Figure 5.2). Done is the only key to make the SystemSelect

sound. We can thus split S using moves with an ending sound of SystemSelect. We only

retain splits Sr with at least one move ending in a KeySelect; otherwise, the user did not

interact with the keyboard (P4).

Samsung This platform is more complicated for two reasons. First, Done is not the only

key to make the SystemSelect sound (Figure 5.3). Second, the keyboard can dynamically

suggest Done (§5.2.1), and this suggestion makes the KeySelect sound. Therefore, split-

144



ting the move count sequence using SystemSelect sounds is incorrect. Instead, we use

timing information based on the insight that applications incur noticeable latency upon

submitting a string (e.g., executing a search query). We identify these delays as outliers

in the times between adjacent moves. In particular, the cutoff of avg(move_diffs) + 1.5 ·

stddev(move_diffs) creates the proper splits in almost all cases (§5.6.3) where move_diffs

is the array below for all n ∈ {1, 2, . . . , len(S)− 1}.

move_diffs[n] = t
(n+1)
1 − t

(n)

k(n)
(5.1)

This method can make mistakes. For example, the attacker will incorrectly split keyboard

instances if a user takes a long pause. However, such failure cases rarely occur in practice

(§5.6.3). We omit splits without any moves ending in KeySelect.

Credit cards are an exception to this time-based approach. Credit card information is

entirely numeric, so Done is the only required key that makes the SystemSelect sound (Fig-

ure 5.3). Further, when selecting numbers, the keyboard never dynamically suggests Done.

Thus, we can split credit card sequences using the SystemSelect sound. The challenge,

however, is the attack has no prior knowledge that a user is entering credit card details.

We address this problem by combining both methods. We first split S using SystemSelect

sounds and identify any credit card entries (§5.4.2 explains this identification). We then

remove the credit card sequences and re-split the remainder using timing. This combined

approach addresses the dynamic behavior of Samsung Smart TV virtual keyboards.

5.4.2 String Recovery

Inferring Entry Types

Users enter various classes of information into Smart TVs; we focus on three types: pass-

words, credit cards, and English words. The first two classes are highly sensitive, and the
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last class encapsulates inputs such as web searches. These information types have unique

details, and the attack should customize the string recovery to each class to optimize perfor-

mance (§5.4.2). The attack infers the information type to make these customizations without

introducing additional assumptions.

We detect credit card information on the Samsung TV by counting the string lengths

(P3) of consecutive keyboard instances. Forms accepting credit card details collect five

pieces of information with distinctive lengths (§5.2.3). We use these lengths to fingerprint

credit card details and look for consecutive instances matching the sizes of each field. We

assume the CCN comes first, and the year follows the month; otherwise, this matching is

order-insensitive. For a given match, we identify each field by its length and position.

If a keyboard instance is not in a credit card field, we must distinguish whether it is a

password or an English word. To make this distinction, we leverage how the Samsung TV

employs dynamic suggestions when expecting English words (§5.2.1). These suggestions are

not present for passwords, allowing the attack to identify the information type from this

discrepancy. We use a Random Forest classifier [Breiman, 2001] to determine the presence

of dynamic keyboard behavior for each instance Sr. The Random Forest provided better

results than other considered models, such as gradient-boosted decision trees. The input

features are a histogram of movement counts in Sr, which are valuable because suggestions

reduce the average distance between selections. We train this model on generated move

count sequences for passwords and English words on the Samsung keyboard (Figure 5.3).

We mimic suggestions by manually recording the TV’s suggestions after the first selection;

after, we use the likeliest characters from an English dictionary [Semenov, 2022]. We bias

this classifier toward passwords due to their greater value for an attacker. We classify Sr

as an English word if the model’s prediction probability exceeds 0.6. We set this cutoff

empirically to reach over 99% recall on passwords in our validation set.

We limit our analysis of AppleTVs to passwords. AppleTVs have no browser, so the
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only English inputs are video titles or application-specific searches. These searches are far

less valuable than passwords. Further, there is no location to enter credit card details, as

all payments occur through the user’s Apple account. Thus, on AppleTV, the framework

assumes all keyboard inputs are passwords.

Choosing the Prior String Dictionary

Smart TV audio does not provide the direction of keyboard movements. Thus, a move

count sequence corresponds to many possible strings, and the attack must distinguish these

possibilities. We make these determinations using a prior dictionary over possible strings.

The prior depends on the information type. For example, credit card numbers (CCNs) are

numeric, while passwords have larger character sets. The attack customizes the prior using

the inferred information type (§5.4.2).

We design priors for each string type. The CCN prior enforces the prefixes of AMEX,

Visa, and Mastercard (§5.2.3); the remaining digits appear uniformly at random. The secu-

rity code (CVV) prior consists of digits occurring at random. For efficiency reasons, we do

not materialize the full CCN and CVV priors. The expiration month and year priors enforce

valid dates up to 2035. We construct the ZIP prior using the 33,120 United States ZIP codes

from 2019 and weigh ZIPs by population. We follow previous work by building an N-gram

model [Ma et al., 2014] for passwords from leaked datasets [Miessler, 2021]. The English

prior uses word prefixes from the Wikipedia corpus [Semenov, 2022]. We weigh prefixes by

frequency and only keep words with at least 100 appearances. This prior has 95,892 words.

These string priors represent options that work well in practice (§5.6). We emphasize that

an adversary can change these priors without fundamentally altering the attack framework.
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Keyboard Graph Search

The attack recovers strings from move count sequences Sr by performing a variant of Dijk-

stra’s algorithm on the Smart TV’s keyboard graph (Q3). This keyboard layout is known

from the inferred TV type (§5.4.1). Within Dijkstra’s algorithm, we use search states of the

form below.

z = (key, str, move_num, keyboard_view) (5.2)

When expanding the state z, we use the move M (n) (§5.2.2) from Sr where n = z.move_num.

We then find the set of neighbors V by retrieving the keys in the current keyboard view at a

distance k(n) from z.key which make the sound s(n). We consider neighbors at the distance

k(n) both with and without wraparound, as users often ignore this feature. We create the

candidate string for each neighbor v ∈ V by appending v to z.str and accounting for the

key’s action. This process is often concatenation, though special keys (e.g., BACK) have

different behavior. We compute the edge weight for this neighbor using the string prior

(§5.4.2).

weight = − log(
Count(candidate_str, Prior)

Count(z.str, Prior)
) (5.3)

We give special keys (e.g., CAPS) a weight of zero and ignore neighboring keys with zero

count. We use Dijkstra’s algorithm with these weights to find the maximal path. With this

method, the score for each string w is logically equivalent to the following probability under

the prior.

p(w) = p(w1) ·
len(w)∏
ℓ=2

p(wℓ|w1:(ℓ−1)) (5.4)
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We construct guesses upon exhausting the available moves in Sr, i.e., when z.move_num =

len(Sr). Before producing a guess, we validate the string based on the information type.

This validation is crucial for credit cards, as each CCN must pass a checksum (§5.2.3). We

continue searching until producing a ranked list of L guesses. The search always starts from

the keyboard’s fixed start key (P1).

This graph search forms the backbone of the string recovery process. However, to achieve

a useful attack, the procedure must also overcome the following four challenges: (1) subop-

timal paths, (2) errors in audio extraction, (3) multiple keyboard views, and (4) dynamic

suggestions. We discuss each of these challenges below.

Suboptimal Paths As presented, the search assumes that users take an optimal (i.e.,

shortest) path between keys. This assumption manifests by finding neighboring keys at a

distance k(n). Users, however, may not take optimal paths (Figure 5.7), and considering only

optimal paths can cause the recovery to miss the true string (Q4). We handle suboptimal

movements by expanding the search at move M (n) to find keys within a distance range of

I = [k(n) − d(n), k(n) + d(n)] (§5.4.3 describes how to set d(n)). We discount suboptimal

paths using the factor γ|d−k
(n)| where d ∈ I is the considered number of movements. We

multiply this discount factor with the string probability before applying the logarithm in

Equation 5.3. This procedure allows the search to consider suboptimal movements without

penalizing optimal paths.

Audio Extraction Errors The audio extraction can make mistakes, and these errors

generally occur when conflating adjacent movements (§5.4.1). We handle these errors as

suboptimal paths by setting the tolerance d(n) to be at least the number of rapid scrolls

(§5.4.3). With this tolerance, the search can still consider the correct neighbor even when

miscounting the number of movements.
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Keyboard Views Virtual keyboards have multiple views, and users can inaudibly change

views with the remote controller (§5.2.1). Such changes are not present in Sr. We han-

dle these view changes using an exhaustive search. When adding a state to the search

queue, we also add all states reachable through an inaudible view change. For example,

the Samsung TV allows users to capitalize keys with the remote. When adding the state

(d, ‘str‘||d, move_num, lower), we also push (D, ‘str‘||D, move_num, upper) onto the search

queue where || is concatenation. This method works because the cursor moves deterministi-

cally across view changes (§5.2.1).

Dynamic Suggestions The Samsung TV contains a final complication: dynamic sug-

gestions (§5.2.1). The suggestions are unknown beforehand, making them a quantity the

attacker must predict. We perform this prediction using the most common characters in the

English dictionary that follow the current state’s string. The keyboard suggests up to four

characters (Figure 5.4). Since our predictor does not exactly match the Smart TV, we use

the top six guessed characters. We add these keys to the neighbor set V when the number

of movements is at most four, as the suggestions are adjacent to the cursor (Figure 5.4).

Finally, with dynamic suggestions, we always use a tolerance d(n) ≥ 1 because users make

an additional movement to clear the suggested keys (§5.2.1).

5.4.3 User Timing Patterns

Through a user study (§5.6), we observe that people exhibit consistent timing patterns when

typing on Smart TVs. This section highlights two beneficial aspects of keystroke timing. The

attack first leverages timing to detect suboptimal paths (§5.4.3). Second, keystroke timing

can provide information on movement directions (§5.4.3).
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Figure 5.7: Optimal and suboptimal paths between w and t.

Suboptimal Paths

Virtual keyboards do not enforce that users take an optimal path between keys (Figure 5.7).

As described, the string recovery module supports suboptimal paths by expanding the set

of considered neighbors using the tolerance terms d(n) (§5.4.2). The attack must determine

how to set each d(n).

One possible method is to set d(n) to a fixed D > 0 for every move M (n). However, this

approach leads to low recovery performance when the information type has no strong prior.

For example, CCNs and CVVs place near-uniform priors over all digits (§5.4.2). Under this

strategy, the procedure scores strings equally if they use the same number of suboptimal

paths. This equality occurs independent of when the suboptimal moves happen due to the

uniform prior. Therefore, the order of guesses depends on the arbitrary tie-breaking scheme

between equal priorities on the search queue.

We create a better method based on typing behavior. Through a user study (§5.6.1), we

find that people tend to pause when correcting a suboptimal path. This indicator, however,

is noisy, and we address this noise using an iterative solution. For each M (n), we compute

u(n), the largest time difference between adjacent movements for all n ∈ {1, 2, . . . , len(S)}

u(n) = max
q∈{2,...,k(n)}

(t
(n)
q − t

(n)
q−1) (5.5)

We sort the moves in decreasing order of their maximal delays u(n). We use this ordering to

consider increasingly more moves with suboptimal paths. This process works as follows. We

begin the search (§5.4.2) with d(n) = 0 ∀n. If this search ends with fewer than L guesses,
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we expand it by selecting the move index n′ = argmaxn u
(n). We set d(n

′) = D and the

remaining d(n) to 0. We re-execute the search with these parameters. If this process again

produces fewer than L results, we expand the candidate suboptimal paths by selecting the top

two highest-delay moves. We continue this expansion until reaching L results. An individual

search may produce less than L results because (1) strings can have a zero count in the prior,

and (2) results may not pass the information type’s validity check (e.g., CCN checksums).

Note that we continue to account for rapid scrolls and dynamic suggestions (§5.4.2) on

the remaining d(n) at each step. Overall, this timing-based design better identifies where

suboptimal paths occur (§5.6.5).

Direction Inference

Users can rapidly scroll across keys using the TV’s remote (§5.2.1). Each scroll constitutes

movements in a single direction; to change direction, users pause to switch buttons on the

remote. Further, neither AppleTV nor Samsung keyboards support vertical wraparound.

Therefore, if the user rapidly scrolls across at least four keys, the user moves horizontally with

high probability. This cutoff follows from the number of keyboard rows (Figures 5.2, 5.3).

Inferring horizontal directions allows the attack to reduce the search space. For example, if

we detect four horizontal movements from q on the keyboard in Figure 5.3, then the neighbor

set is Vdir = {t, ˆ}. Without directions, the neighbor set is V = {t, 4, f, c, ˆ, !}.

The attack infers these directions by identifying rapid scrolls through movement timing.

Consider the nth move with times t(n) (§5.2.2). We compute the time differences between

adjacent movements, α(n), and create the cutoff c(n) = median(α(n)). We assign directions

by observing windows of four adjacent movements. If all time differences in a window are

at most c(n), these movements are considered part of a rapid scroll and given a direction

of "horizontal." The remaining movements are in "any" direction. We ignore the inferred

directions for suboptimal paths because we do not know where the suboptimal movement
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occurs. We find that direction inference never harms the recovery (§5.6.5).

5.5 Attack Results in Emulation

We first assess the efficacy of the string recovery module (§5.4.2) under ideal conditions.

This recovery is nontrivial because a single move count sequence can refer to many strings

(§5.2.2, §5.4.2). This section first describes the emulation setup (§5.5.1) before presenting

the results for recovering credit cards (§5.5.2) and passwords (§5.5.3). We conclude this

section by evaluating the impact of the keyboard layout on the attack’s ability to recover

strings (§5.5.4).

5.5.1 Setup

The emulation environment evaluates string recovery (§5.4.2). We algorithmically generate

move count sequences using the Smart TV’s keyboard graph. This sequence uses optimal

paths apart from randomly choosing when to use available wraparound. We focus on two

types of private information: credit cards and passwords.

Credit Card Recovery

We use credit card details with five fields: credit card number (CCN), expiration date

(mm/yy), security code (CVV), and ZIP code (§5.2.3). When entering these details into

existing applications, the Samsung Smart TV provides users with the full QWERTY key-

board (Figure 5.3). We randomly generate semantically valid fake Visa, Mastercard, and

AMEX CCNs. We select random expiration months and choose arbitrary years between

2023 and 2033. We generate CVVs as three (Visa and Mastercard) or four (AMEX) digit

random numbers. Finally, we randomly select valid ZIP codes weighted by population. We

create 6,000 entries, with 2,000 for each provider.

153



The search outputs a list of guesses for each field. The adversary, however, can only

validate the full details by getting every field correct (§5.2.3). We compute the rank for the

full details by first exhaustively searching over the top 10 CCNs, three CVVs, three ZIPs, two

months, and two years in this order. If we find no complete match, we iteratively expand the

search using the following cutoffs: (CCN: 30, CVV: 5, ZIP: 5, Month: 2, Year: 2),

(CCN: 100, CVV: 12, ZIP: 12, Month: 3, Year: 3). We select this order of fields

based on our uncertainty in the corresponding information. For example, CCNs are the

most uncertain as they are long, nearly-random numeric strings.

We compute the attack’s results up to 250 CCN guesses and 5,000 guesses for the full

details. These cutoffs yield a top-K accuracy which is the rate at which the correct result

is in the first K guesses. In this notation, K denotes the guess cutoff i.e., the number

of guesses allowed by the adversary. We display K ∈ {1, 5, 10, 50, 100, 250} for CCNs and

K ∈ {1, 10, 100, 1000, 2500, 5000} for the full details. In practice, attackers validate the

results against rate-limited online services (§5.3). From prior work on password guessing, an

attacker can make at least 100 guesses against a single service with a sufficient delay between

trials [Lu et al., 2018]. Unlike passwords, payment details are global, and an attacker can

circumvent the limits of an individual site by simultaneously testing against different services.

Thus, we focus on the top-1000 accuracy for the full details.

Password Recovery

We evaluate the recovery of passwords from the 2014 PhpBB password leak [Miessler, 2021].

To make this set realistic, we follow NIST guidelines [Grassi et al., 2017] and only include

passwords with at least eight characters. We purposefully select diverse strings by enforcing

that 25% of the passwords have at least one special character, number, uppercase letter, or

lowercase letter. We match the credit card benchmark by selecting 6,000 passwords. We

experiment with two different 5-gram language models [Ma et al., 2014] using: (1) the same
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Figure 5.8: Accuracy on CCNs (left) and full credit card details (right) in emulation on the
Samsung Smart TV.

PhpBB set and (2) the RockYou password leak [Miessler, 2021].

We measure the performance for the guess cutoffs K ∈ {1, 5, 10, 50, 100, 250} and focus on

the top-100 accuracy. This latter cutoff makes our attack applicable to online settings [Wang

et al., 2016]; from prior work, attackers can make at least 100 password guesses against a

majority of popular websites [Lu et al., 2018].

5.5.2 Credit Card Recovery

We attack credit card details on the Samsung TV. Figure 5.8 shows the Top-K accuracy on

the CCN and the full details. The CCN alone can be valuable for attackers, especially when

vendors do not validate all payment information [Scaife et al., 2018]. The attack discovers

both CCNs and full payment details. For CCNs, the attacker reaches an 80.95% top-10 and

99.95% top-100 accuracy. On the full details, the attacker finds 63.93% (top-10) and 99.95%

(top-1000) of the full payment information. This top-1000 accuracy means the attack can

use optimal move count sequences to find and validate 99.95% of payment details against

rate-limited services (§5.5.1).

We highlight two aspects of these results. First, the attack succeeds on all three providers.

On the full details, the top-10 accuracy is 61.55% (Visa), 57.00% (Mastercard), and 73.25%

(AMEX). The AMEX results are better because the CCN has only 15 digits. The top-1000
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accuracy is above 99.90% for all providers. Second, on average, only 16.26% of the potential

CCN guesses satisfy the checksum (§5.2.3). This result highlights the importance of the

checksum; without this validation, the CCN ranks would be roughly 6× larger.

5.5.3 Password Recovery

We further recover passwords on both platforms. Figure 5.9 shows the results. The base-

line accuracy is the expected result of randomly guessing from the set of 184,388 PhpBB

passwords. We discuss four takeaways.

First, with the PhpBB prior, the attacker reaches at least 84.67% top-1 and 99.03% top-

10 accuracy on both TVs. These results vastly exceed random guessing, confirming the value

of optimal move count sequences. With these results, the adversary can reliably verify the

discovered passwords in rate-limited contexts [Lu et al., 2018].

Second, the string prior plays a significant role in the attack’s efficacy. Under the Rock-

You prior, the top-10 accuracy drops to 47.73% (AppleTV) and 27.25% (Samsung). These

results occur due to less string overlap between the PhpBB and RockYou lists. Neverthe-

less, knowing the move count sequence allows the attack to consistently outperform random

guessing by over 330× even when the target password may not be in the string prior.
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Table 5.1: Emulated top-K password accuracy under the PhpBB prior for different keyboard
layouts.

Layout Guess Cutoff (Top-K)
K = 1 K = 5 K = 10

ABC 85.40% 99.55% 99.93%
AppleTV 88.97% 99.85% 100.00%
Samsung 84.67% 98.48% 99.03%

Random Guess 5.4× 10−4% 2.7× 10−3% 5.4× 10−3%

Third, the attack performs better on the AppleTV for two reasons. First, the AppleTV

keyboard (Figure 5.2) limits the number of movement directions compared to the Samsung

keyboard (Figure 5.3). Thus, the attack has fewer neighbors to consider for each move.

Second, on Samsung instances, we must infer whether the keyboard uses dynamic sugges-

tions (§5.4.2). This inference has a 99.23% recall on passwords. The misclassified cases

lead to incorrect guesses, as the attack wrongly uses the English prior on a keyboard with

suggestions. Nevertheless, the attack still displays high accuracy on Samsung systems. Sec-

tion 5.5.4 contains further experiments measuring the keyboard layout’s impact on string

recovery.

Finally, the attack finds passwords with diverse character sets. On the AppleTV under

the PhpBB prior, the top-1 accuracy is 92.33% (special), 92.80% (numeric), and 76.64% (up-

percase). For the Samsung Smart TV, these figures are 88.60% (special), 89.93% (numbers),

and 73.68% (uppercase). The uppercase accuracy is lower due to inaudible case changes

(§5.2.1); the lowercase version of the password has the same move count sequence and often

a higher score.

In total, the attack reliably discovers user keystrokes when given optimal move count

sequences.

157



a b c d e f g

h i j k l m n

o p q r s t u

v w x y z - ’

BACK

123@!

SPACE DONE

Sounds = Key Select = System Select = Delete

Figure 5.10: The ABC keyboard layout. The background denotes the key’s sound when
pressed.

5.5.4 Impact of the Keyboard Layout

We extend our evaluation by considering the efficacy of string recovery on different keyboard

layouts. In addition to the default keyboards on AppleTV (Figure 5.2) and Samsung (Figure

5.3) devices, we study a third keyboard shown in Figure 5.10. This design resembles that

of the YouTube application on Samsung Smart TVs. This keyboard does not have dynamic

suggestions. We emphasize that the YouTube application mutes the keyboard and is not

susceptible to the presented attack. Nevertheless, we include this layout to evaluate whether

any popular keyboard designs form an effective defense in isolation. In all cases, we assume

the keyboard layout remains fixed and is known to the attacker (§5.3).

Table 5.1 shows the top-K accuracy (K ∈ {1, 5, 10}) against common passwords under

the PhpBB prior. We perform this evaluation in emulation and use the same password list

as in §5.5.3. We observe that the keyboard layout has only a small impact on the attack’s

accuracy. For all three keyboard designs, the attack yields a top-1 accuracy above 84%;

this figure is orders of magnitude higher than random guessing. We note that the AppleTV

layout shows the highest recovery accuracy. We hypothesize this trend stems from the linear

keyboard design in which users only move in three directions to navigate between characters

(Figure 5.2); e.g., when the cursor is on a, the user can only move "left", "right," or "down."
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In contrast, the other two layouts allow movements in four directions; this design means the

attacker’s search must consider larger neighbor sets. Nonetheless, the attacker still exhibits

high recovery rates when targeting these two keyboards. These results suggest that the

layout of a fixed keyboard does not constitute an effective defense against this attack.

5.6 Attack Results on Users

We evaluate the full attack on human users typing credit card details (§5.6.2), passwords

(§5.6.3), and web searches (§5.6.4) into Smart TVs. Finally, we quantify the benefits of

keystroke timing (§5.6.5).

5.6.1 Setup

We conduct a user study with ten subjects. Our university’s institutional review board

(IRB) approved this study, and subjects were compensated $25 for an hour. The users were

aged 22 through 29 (mean 24.3), with six identifying as male, three as female, and one as

non-binary. All subjects had previously used a Smart TV; three owned a Samsung, and one

owned an AppleTV. In the study, each subject types three sets of credit card details, ten

passwords, and ten web searches. Users type credit card details into the Hulu application

on the Samsung TV as a part of the account creation flow. Subjects enter passwords on the

Samsung TV as if connecting to a WiFi network. Users type passwords into the AppleTV

as if logging into their Apple account. Subjects type web searches using the Samsung TV’s

browser. To not bias behavior, we only told subjects we were studying how people type on

Smart TVs.

We construct lists of passwords and credit cards using the same method as in emulation

(§5.5.1). Half of the passwords contain at least one special character. We select web searches

by sampling words with at least five characters from news headlines [Kulkarni, 2020]. We

assign the same lists to subjects A/F, B/G, C/H, D/I, and E/J, enabling a comparison of how
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different users type the same strings. We use the same passwords on both platforms. Users

did not enter personal information; we provided the strings to type. For each information

type, users iteratively interacted with the relevant workflow, entering new strings each time.

We recorded each experiment in its entirety. The attacker has no prior knowledge of the

number of entered strings and must identify the individual keyboard instances. We measure

the attack’s performance using the same guess cutoffs as in §5.5.1.

We use an A1625 AppleTV with tvOS v16.3.2 [Apple, 2023] and a model UN55MU6300

Samsung Smart TV running Tizen software version T-KTMAKUC-1310.1 [Samsung, 2023].

These TVs have different remote controllers (Figure 5.1). The recording device was a com-

modity Fifine K699B microphone placed about 5.5 feet from the TV. We set the TV volume

to 100. Users did not speak during the experiment. There was some background noise from

servers running in the same room, but it did not interfere with the users’ ability to hear the

television audio.

We use a discount factor of γ = 0.5 on the AppleTV and γ = 10−2 on the Samsung Smart

TV. This discrepancy exists because users take more suboptimal paths on the AppleTV

(§5.6.3). We further account for this difference in suboptimal paths by setting the suboptimal

tolerance to D = 6 on the AppleTV and D = 4 on the Samsung platform. Beyond these

tolerances, the discount factors become so small that they effectively eliminate exploration.

5.6.2 Credit Card Recovery

The subjects enter 30 total credit card details on the Samsung Smart TV into the signup

flow for Hulu, a popular video streaming application. This application uses the system’s

provided keyboard (Figure 5.3). Each user completes the signup flow three times, and the

attacker identifies the credit card details within this larger interaction.

The attack successfully identifies that the user enters credit card details in 29 of the 30

total interactions. The one failure occurs because the subject returns and edits a previous
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Figure 5.11: Accuracy for credit card numbers (left) and full credit card details (right) on
the Samsung Smart TV.

field, breaking the length-based matching (§5.4.2). After identifying the presence of credit

cards, the attacker extracts the entered values (§5.4.2). Figure 5.11 shows the accuracy on

CCNs and full payment details. The attack reaches a top-100 accuracy of 53.33% (16 / 30)

on CCNs and a top-1000 accuracy of 43.33% (13 / 30) on the full details. These values mean

the attacker can confirm payment details against rate-limited services 43.33% of the time

(§5.5.1). This leakage is significant due to the value of credit card details; the discovered

information is sufficient to make online payments on behalf of the target.

These results highlight how the attack works across users and providers. The attack

successfully finds at least one CCN in the top 15 guesses for every user. We further recover

three pairs of the same details typed by different users. Nevertheless, human behavior

impacts the recovery, as we always observe different results across distinct users typing the

same CCN. Finally, the attack is successful on the three considered credit card providers,

finding 6 / 12 AMEX, 3 / 6 Mastercard, and 4 / 12 Visa details within 1,000 guesses.

Compared to emulation (§5.5.2), the attack performs worse against human users. This

trend occurs because users take suboptimal paths. When typing CCNs, users take the opti-

mal path between keys only 89.35% of the time. The framework considers these suboptimal

paths with a discounted score (§5.4.2), causing guesses that use suboptimal paths to have a

lower rank. Despite this phenomenon, the attack still successfully discovers payment infor-

mation typed by human users.
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Figure 5.12: Password recovery accuracy for human users. The data labels show the Top-K
accuracy for K ∈ {1, 10, 100, 250}.

5.6.3 Password Recovery

Users enter passwords from the PhpBB leak [Miessler, 2021] into both TVs. Figure 5.12

displays the attack’s results. With the PhpBB prior, the attack reaches a 33.00% (AppleTV)

and 60.19% (Samsung) top-100 accuracy. These results far exceed random guessing from the

set of 184,388 PhpBB passwords. Thus, both platforms leak user-typed passwords through

audio. The choice of prior is significant; the top-100 accuracy on Samsung drops by over

3.4× when the attacker instead uses the RockYou prior. Nevertheless, under the RockYou

prior, the attack still finds passwords over 100× more often than random guessing on the

Samsung TV. Thus, the TV’s audio provides significant information to discover passwords

in practical settings.

The attack performs worse on the AppleTV because users take more suboptimal paths on

this system. On AppleTV, users traverse the optimal path between keys only about 45.35%

of the time; this rate is 85.94% on the Samsung TV. We hypothesize that this discrepancy

occurs due to the sensitivity of the AppleTV remote’s navigation touchpad (Figure 5.1).

These suboptimal path rates also explain the dropoff between these results and those in

emulation (§5.5.3).

The attack handles the challenges of distinct users and diverse passwords. On the Sam-
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sung TV, the attack finds at least two passwords in the top 10 guesses for every user with

the PhpBB prior. Further, when considering unique passwords, the attack has a top-100

accuracy of 42% (21 / 50) for both typing users. Thus, the attack is successful across users

even after controlling for the typed string. We also observe the ability to recover passwords

with various characters, achieving top-100 accuracies of 59.62% (special), 63.79% (numeric),

and 43.75% (uppercase) with the PhpBB prior on the Samsung TV. These top-100 figures

are 9.62 % (special), 18.97% (numeric), and 12.50% (uppercase) with the RockYou prior.

The attack splits Samsung keyboard instances using timing (§5.4.1). This method cor-

rectly identifies 98 / 100 passwords, where the two failures result from long pauses while

typing. Further, we infer when a subject types a password (§5.4.2), and this classifier has an

accuracy of 99.02% on this set. The only misclassification occurs on the password naarf666

due to the suffix with repeated characters. This typing pattern matches that of dynamic

keyboards, which produce better suggestions toward the string’s end. These failures, how-

ever, represent a vast minority of cases, showing how the attack correctly handles instance

splitting and keyboard classification.

This performance matches similar keystroke side-channel attacks in other contexts. For

example, the MoLe attack uses smartwatch accelerometers to infer keystrokes on mechanical

keyboards [Wang et al., 2015]. MoLe involves similar dynamics to Smart TVs, as it recovers

strings from keyboard movements. For English words from a known set, the MoLe attack

achieves 50% accuracy within 24 guesses. Our attack has a top-5 accuracy of up to 51.46%

on the Samsung TV. Note that our setting is more challenging, as the PhpBB set is over

35× larger than the English dictionary used in this prior work.

Overall, these results provide strong evidence that ten users are sufficient to demonstrate

this vulnerability. Under normality assumptions, the 95% confidence interval for the attack’s

top-100 accuracy on the Samsung TV is 61.48 ± 1.97 · 26.84/
√
10 = (44.76%, 78.21%) with
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Figure 5.13: Accuracy for human users typing web searches on the Samsung Smart TV with
dynamic suggestions.

the PhpBB prior.4 For the RockYou prior, the confidence interval is (8.49%, 26.99%). The

lower bounds of these intervals exceed random guessing by at least 150×. Thus, a larger

study would likely not alter the main conclusion: Smart TV audio provides a useful signal

for discovering user keystrokes.

5.6.4 Web Search Recovery

We apply the attack against web searches on the Samsung Smart TV. This scenario is unique

because the attack must overcome dynamic keyboard suggestions (Figure 5.4).

Figure 5.13 displays the attack’s accuracy. The attack finds 15% of words within 100

guesses. This result is lower than that of passwords (§5.6.3) for two reasons. First, the at-

tacker must predict the suggested key values (§5.4.2). Second, the attack infers that the user

is typing an English word (§5.4.2), and this classifier is only 42.71% accurate in identifying

keyboards with dynamic suggestions. This low accuracy results from the classifier’s designed

bias toward passwords, as passwords are more sensitive. Thus, on 57.29% of the entries, the

attack cannot recover the target string because it uses a keyboard without suggestions. If

4. This mean across users does not exactly match Figure 5.12 because the attack sometimes detects more
than ten password entries for a subject.
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paths.

we force the pipeline to use keyboards with suggestions, the attack reaches 12.00% (top-10)

and 27.00% (top-100) accuracy. These rates nearly double what we observe when inferring

the keyboard type. Overall, the attack still vastly outperforms random guessing from the

set of 95,892 English words, showing how an attacker can learn about user keystrokes on

dynamic keyboards from the TV’s audio.

5.6.5 Impact of Keystroke Timing

The attack leverages two keystroke timing properties to infer user behavior (§5.4.3). This

section evaluates the impact of these features.

The string recovery module infers the presence of suboptimal paths using timing (§5.4.3).

We evaluate this feature by comparing the recovery of user-typed credit cards with and

without timing-based identification. The baseline considers suboptimal paths at every move.

As shown in Figure 5.14, keystroke timing improves the attack. The baseline reaches a

40.00% top-100 accuracy on CCNs and a 36.67% top-1000 accuracy on the full details.

Under these cutoffs, the timing-based feature shows recovery rates of 53.33% (CCNs) and

43.33% (full details). This improved performance displays the benefits of using timing to

identify suboptimal paths.

The attack infers movement directions during rapid scrolls (§5.4.3). We evaluate this
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feature by executing password recovery with and without direction inference. We focus on

the Samsung TV, as this keyboard supports navigation in all four directions (Figure 5.3).

For both priors, direction inference never hurts recovery rates. However, the benefits are

modest. With the RockYou prior, only 3 of the 19 recovered passwords have a strictly better

rank with direction inference. Nevertheless, we include this feature due these benefits.

We emphasize that the attack uses the same timing metrics for all ten users. The attack’s

success across different individuals highlights the generality of these features.

5.7 Discussion

Improvements The results from extracting passwords (§5.6.3) underscore the language

prior’s significance. Thus, improving the language model is a promising method to improve

this attack. Previous work shows that neural networks can learn effective language models

over passwords [Melicher et al., 2016]. We did not pursue these methods due to their compu-

tational demands. However, it may be possible to adapt the technique of [Carlini et al., 2019]

to make this neural network method more efficient, and we aim to explore this approach in

the future.

We assume the attacker does not know personal information about the target user (§5.3).

If we relax this assumption, an adversary with user-specific knowledge can improve our audio

attack using a customized string prior. Furthermore, with access to personal information,

the adversary may already know valuable details such as ZIP codes. These insights suggest

that combining user-specific knowledge and Smart TV audio will result in a more effective

attack.

Limitations The presented attack only works against AppleTVs and Samsung Smart TVs.

The attack does not directly apply to platforms that do not exhibit the acoustic properties

in (P2) - (P4). For example, Roku devices do not make a distinct sound when deleting a
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character (P3), do not have sounds unique to the keyboard (P4), and mute the keyboard

when rapidly scrolling. However, the incompatibility of our attack with these platforms does

not guarantee the security of these other systems. Our work only shows these audio properties

are sufficient for keystroke leakage; it does not prove these properties are necessary. In fact,

prior work indicates that these properties are not all required. For instance, previous attacks

infer when a user is typing on a Smart TV through movement timing [Huang et al., 2023],

removing the need for (P4). We emphasize that our attack’s success against Samsung Smart

TVs constitutes a significant threat, as Samsung is the single most popular TV platform

[Wire, 2021]. Extending this attack to other Smart TVs is a promising source of future

work.

Our attack does not apply to every keyboard on the considered platforms. Some applica-

tions customize their keyboards and mute the audio, eliminating the acoustic side-channel.

However, we show that the default system keyboards are insecure. Thus, applications that

use the system defaults, such as the Samsung TV’s browser, are vulnerable. Further, both

TVs have areas (e.g., connecting to WiFi) where users enter sensitive information into the

default keyboard.

Finally, some applications allow users to enter credentials over the Internet through an

external device. This option bypasses our attack by avoiding the TV’s keyboard. However,

applications (e.g., Hulu) may not enforce that users take this option, and the alternative

involves typing sensitive information (e.g., payment details) into an insecure Smart TV

keyboard. Further, there are cases where users must type sensitive information into a virtual

keyboard. For example, on the Samsung TV used in our evaluation (§5.6.1), users must

type their WiFi password with the TV’s default keyboard. There is no option to enter the

credentials through an external device. Thus, Smart TVs contain numerous practical settings

vulnerable to our acoustic keystroke attack.
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Defenses A complete defense is to mute the Smart TV’s audio when typing, especially

for sensitive fields. However, this defense can harm the user experience. We describe three

possible alternatives.

First, prior work randomizes the layout of virtual keyboards in a structured manner to

eliminate knowledge of the keyboard design [Pak et al., 2016]. This approach limits the

negative impact on user experience by only adding gaps and swapping rows. While our

attack can model this randomization under the framework of suboptimal paths, we can no

longer use timing to detect such paths (§5.4.3). We estimate the impact of this defense

by randomly adding movements to generated move count sequences for credit card security

codes (CVVs). The top-100 recovery rate falls to 30.32% in emulation, compared to the

100% rate achieved under current conditions. These figures suggest this defense reduces, but

does not eliminate leakage.

Second, our attack relies on Smart TV keyboards initializing the cursor to the same key

(P1). Thus, a possible defense involves randomizing the start position. This defense, how-

ever, has severe limitations because some fields (e.g., CCNs) require users to finish on Done.

We can use this property to search strings in reverse starting with Done. In emulation, we

recover CCNs with a top-100 accuracy of 99.88% even when randomizing the start position.

Finally, Smart TVs could use the same sound for all keyboard actions. This design

thwarts our attack, as it breaks (P2) - (P4). Security, however, is not guaranteed. For

example, it may be possible to discern keyboard movements and selections using timing,

even if both make the same sound. Further study is required to prove the security properties

of this technique.
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5.8 Related Work

5.8.1 Keystroke Side-Channel Attacks

Prior work uses side-channels such as electromagnetic emanations [Jin et al., 2021, Vuagnoux

and Pasini, 2009], reflections [Backes et al., 2009], smartphone accelerometers [Marquardt

et al., 2011, Owusu et al., 2012], timing [Song et al., 2001], and performance counters [Yang

et al., 2022] to infer keystrokes on personal computers and mobile devices.

Three types of prior attacks deserve closer comparison to our work. First, previous

methods infer keystrokes using acoustics from mechanical keyboards [Asonov and Agrawal,

2004, Berger et al., 2006, Compagno et al., 2017, Zhu et al., 2014, Zhuang et al., 2009].

Our attack also uses audio, but we target Smart TVs. This setting differs from prior work

because Smart TVs make a small number of distinct sounds and use virtual keyboards with

a dedicated cursor. Thus, our attack must estimate the cursor’s position, and errors in this

tracking cascade to the remainder of the string. Mechanical keyboards have no cursor, and

errors in identifying a single keystroke do not propagate. These differences require new string

recovery methods.

Second, existing work discovers keystrokes on mechanical keyboards using smartwatch

accelerometers [Liu et al., 2015, Meteriz Yỳldỳran et al., 2022, Maiti et al., 2016, Wang et al.,

2015]. Similar to Smart TVs, these attacks track the user’s keyboard position, and tracking

errors will cascade. Unlike our work, these attacks use a different side-channel and can only

measure the movement of one hand. This limited information leads to lower efficacy than

observed in our work (§5.6.3).

Third, and finally, HomeSpy steals user keystrokes by sniffing unencrypted infrared signals

between Smart TVs and their remotes [Huang et al., 2023]. However, many Smart TVs

support remotes that communicate over Bluetooth [Majors et al., 2023, Zhang et al., 2022],

and HomeSpy cannot view such signals. Our attack works with any communication medium
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employed by the remote controller.

5.8.2 Security of Smart Devices

Previous work highlights the need for increased security on smart devices [He et al., 2021, Jin

et al., 2022, Ozmen et al., 2022], compromising smart lights [Ronen and Shamir, 2016], device

software platforms [Fernandes et al., 2016, Jia et al., 2021], smart locks [Ho et al., 2016],

and smart speakers [Barnes, 2017, Kunze, 2022, Zhang et al., 2017]. Acar et al. [Acar et al.,

2018] use DNS rebinding to remotely access devices. Other work uses the communication

patterns of smart devices to infer user behavior [Apthorpe et al., 2019, Srinivasan et al.,

2008]. Unlike these systems, our attack targets Smart TVs.

Previous studies analyze the security of Smart TVs, finding that platforms contain pri-

vacy violations [Mohajeri Moghaddam et al., 2019]. SPOOK gains root access to Smart TVs

through a weakness when pairing virtual remotes [Majors et al., 2023]. EvilScreen compro-

mises Smart TVs using issues supporting multiple communication protocols [Zhang et al.,

2022]. Other work exploits software vulnerabilities to control Smart TVs [Aafer et al., 2021,

Michéle and Karpow, 2014]. Enev et al. [Enev et al., 2011] use energy consumption to infer

the TV’s content. Unlike this prior work, our attack leverages the audio from Smart TVs to

discover user keystrokes.

5.8.3 Attacks on Passwords and Payment Details

Prior work guesses passwords in offline settings with language models [Narayanan and

Shmatikov, 2005, Ma et al., 2014, Melicher et al., 2016, Weir et al., 2009] and text trans-

formations [Liu et al., 2019]. Our attack also applies language models to measure password

likelihood. However, we use these models to complement Smart TV audio. Wang et al.

[Wang et al., 2016] use personal information to guess passwords under rate limits. This work

improves our attack, as personalizing the language prior would increase string recovery from

170



Smart TV audio.

Existing attacks compromise credit cards through skimming [Roland and Langer, 2013,

Scaife et al., 2018] and relay attacks [Kfir and Wool, 2005, Roland et al., 2013]. Bond et al.

[Bond et al., 2014] attack ATMs by exploiting weak random number generation. Our work

also targets credit card details, although our attack steals this information from card-not-

present transactions on Smart TVs. Further, our attack complements previous vulnerabilities

on physical cards. For example, the credit card’s magnetic stripe does not contain the printed

CVV [Scaife et al., 2018]. Our attack steals the CVV from Smart TV forms. Thus, adver-

saries launching attacks on physical cards can gain valuable information by also exploiting

Smart TV virtual keyboards.

5.9 Conclusion

Smart TVs allow users to enter information through on-screen virtual keyboards. Users in-

teract with these keyboards by sequentially scrolling across keys via directional commands on

a remote controller. Popular Smart TVs, such as Apple’s tvOS [Apple, 2023] and Samsung’s

Tizen [Samsung, 2023], make sounds as users type. This work develops and demonstrates a

new side-channel attack against Smart TVs that uses these sounds to expose user keystrokes.

Our attack is based on how the AppleTV and the Samsung TV produce different sounds

when the user (1) moves between keys, (2) selects a key, and (3) deletes a character. Using

these sounds as input signals, an attacker can extract the number of movements between

keyboard selections. Our attack combines this extracted information with a prior over possi-

ble strings to identify likely keystrokes. Under ideal conditions in an emulated environment,

the attack recovers 99.95% of credit card details within 1,000 guesses and up to 99.10% of

common passwords within 100 guesses. On ten realistic users, the attack achieves a top-1000

accuracy of 43.33% on credit card details and a top-100 accuracy of up to 60.19% on common

passwords when typing on a popular Samsung Smart TV. This attack was acknowledged by
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Samsung, and it demonstrates how Smart TVs must consider the privacy implications of all

features interacting with sensitive user data.
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CHAPTER 6

CONCLUSION

Adaptive systems use data-dependent behavior to optimize the tradeoff between system error

and energy consumption on low-power sensor devices. This family of techniques succeeds

because it determines its behavior based on the observed inputs. We demonstrate this

phenomenon through a novel recurrent neural network (RNN) inference system for sensor

devices [Kannan and Hoffmann, 2021]. This system, called Budget RNNs, uses runtime

feedback to control the energy required to perform inference on batches of measurements.

The use of adaptive behavior allows Budget RNNs to achieve better accuracy under dynamic

energy constraints than existing RNN techniques.

This thesis argues how adaptive systems for low-power sensors must go beyond the two-

dimensional tradeoff space between system quality (i.e., error) and cost (e.g., energy). In

particular, adaptive algorithms must explicitly consider privacy as a third tradeoff dimension.

This paradigm shift is required because adaptive algorithms tie their behavior to the collected

measurements. Thus, observing the adaptive system’s behavior provides information about

the underlying data, and an adversary can make such observations through side-channels

such as wireless communication patterns. This leakage allows passive adversaries to launch

side-channel attacks against adaptive applications on sensor devices.

We demonstrate this problem with adaptive systems by developing two new side-channel

attacks and defenses. First, we show how general adaptive sampling algorithms leak in-

formation about sensed events through the device’s communication patterns [Kannan and

Hoffmann, 2022]. We close this side-channel with a new framework called Adaptive Group

Encoding (AGE). AGE ensures privacy by standardizing communication patterns using lossy

encoding. Second, we demonstrate how distributed Multi-exit Neural Networks (MeNNs)

with adaptive early exit methods leak information about the model’s predictions through

wireless communication patterns [Kannan et al., 2023]. This side-channel attack succeeds
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because prior techniques determine when to exit by applying a single threshold to data-

dependent prediction confidence values. We eliminate this leakage by employing multiple

confidence thresholds and integrating randomness into the exit decision process. In both

settings, our defenses exhibit negligible overhead and maintain privacy, all with better sys-

tem quality (i.e., error) than non-adaptive baselines. With these defenses in place, sensor

systems can realize the benefits of adaptive behavior without the data privacy downsides.

We extend this security analysis beyond embedded systems by considering the more gen-

eral class of Internet-of-Things (IoT) devices. We demonstrate how modern IoT systems

contain side-channels that leak critical user information by developing an acoustic keystroke

attack against Smart Televisions (TVs). Smart TVs allow users to enter information through

on-screen virtual keyboards. Users type by navigating a cursor via directional commands

from the TV’s remote controller. Smart TVs make consistent sounds for each keyboard ac-

tion, and these sounds differ for distinct actions, such as selecting a key, moving between

keys, and deleting a character. Using this asymmetry, we develop an attack that uses the

TV’s audio to extract these keyboard actions. The attack then uses this extracted informa-

tion to identify the likeliest strings typed by the user. Against realistic users typing on a

Samsung TV, our attack finds 33.33% of credit card details and up to 60.19% of common

passwords within 100 guesses. Samsung acknowledged this vulnerability and recognized the

work in their Bug Bounty Hall of Fame for Smart TVs, Audio, and Displays.

We conclude by presenting two avenues for future work.

6.1 Data Compression in Distributed Neural Networks

Distributed deep neural networks (DDNNs) reduce inference costs within edge computing

systems (Chapter 4). Existing DDNN systems lower their communication overhead by apply-

ing lossless data compression to the transmitted intermediate states [Laskaridis et al., 2020].

This compression is effective because the intermediate states are sparse due to the ReLU ac-
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tivation function. Lossless compression, however, is data-dependent, and some states will be

more compressible than others. Even after encryption, this length discrepancy is noticeable

to an attacker intercepting the wireless communication between the sensor device and server.

Based on prior work studying the sparsity of intermediate states [Shumailov et al., 2021b],

we hypothesize that the sizes of these compressed messages contain information about the

DDNN’s predictions. Thus, future work can explore the privacy implications of leveraging

data compression within DDNN systems. This type of leakage would represent an additional

example of how data-dependent behavior unintentionally exposes sensitive information on

resource-constrained devices.

6.2 Audio and Infrared Signals for Smart TVs

Smart TVs support remote controllers that communicate over Infrared (IR) waves. These

IR remotes require no setup and transmit signals in plaintext. As displayed by the HomeSpy

attack [Huang et al., 2023], attackers can use reflections to sniff IR signals from various places

in the target location. With this ability, attackers can extract keystrokes by observing the

user’s exact commands to the TV. As presently constructed, however, this attack is unreli-

able because the adversary can (1) miss transmitted commands and (2) receive commands

that the TV misses. We can address these two challenges by combining IR sniffing with

audio information. Smart TVs make sounds for user actions on the keyboard (Chapter 5).

Thus, by listening to the TV, the attacker can detect when they either miss an IR signal

or receive an extra command because the TV will audibly register the user’s action. Unlike

audio information alone, IR signals carry user directions. Thus, combining both sources of

information can create a more potent attack than either individual approach. We further

note that the our current acoustic-only attack applies to two Smart TV types: Apple and

Samsung. By supplementing audio information with IR sniffing, it may be possible for an

attacker to extract keystrokes from other TV platforms (e.g., Roku) as well.
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