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ABSTRACT

In 1974, Gugenheim and May showed that the cohomology ExtA(R,R) of a connected aug-

mented algebra over a field R is generated by elements with s = 1 under matric Massey

products. In particular, this applies to the E2 page of the HFp-based Adams spectral se-

quence. By studying a novel sequence of deformations of a presentably symmetric monoidal

stable ∞-category C, we show that for a variety of spectral sequences coming from filtered

spectra, the set of elements on the E2 page surviving to the Ek page is generated under

matric Massey products by elements with degree s < k.
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CHAPTER 1

INTRODUCTION

Essentially all modern computations of the stable homotopy groups of spheres are based on

some version of the Adams Spectral Sequence. Isaksen, Wang, and Xu [27] have recently used

both classical and motivic forms of the spectral sequence to compute these homotopy groups

through the 90-stem (up to a handful of specified uncertainties.) Similarly, Hill, Hopkins,

and Ravenel’s resolution [25] of the Kervaire Invariant problem depends fundamentally on

seminal work of Browder [6] reducing this fundamentally geometric question to a calculation

in the s = 2 line of the Adams spectral sequence.

While algorithms to compute the additive structure of the E2 page [7] and even the E3

page [39; 13] of the Adams Spectral Sequence are tractable on modern computers, higher

differentials still pose a serious computational challenge. This difficulty is typified by a

recent paper of Wang and Xu [46], which devotes nearly eighty pages to computing a single

d3 differential.

Differentials are typically computed using a grab bag of ad hoc tools, including com-

parisons to other spectral sequences (particularly synthetic and C-motivic Adams Spectral

Sequences) and tricks invoking multiplicative structure. As a particularly simple example of

the latter, an early paper of John Wang [47] resolves the Hopf Invariant One problem using

little more than the multiplicative structure of the Adams Spectral Sequence and the fact

that h0h3i is nonzero. More recent papers often make sophisticated use of Massey products

and their relationship with Toda brackets in the homotopy groups of spheres.

To avoid discussing signs in the introduction, we work over a field of characteristic two.

Given elements a, b, and c of a differential graded algebra with ab = bc = 0 in homology,

the Massey product ⟨a, b, c⟩ is the set of all homology classes ae + fc with d(e) = bc and

d(f) = ab. Moss [38, Theorem 1] shows that if in addition adk(b) = bdk(c) = 0, we have a
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“Leibniz rule”

dk⟨a, b, c⟩ ⊆ ⟨dk(a), b, c⟩+ ⟨a, dk(b), c⟩+ ⟨a, b, dk(c)⟩

May’s article [36] extends this idea to define matric Massey products, which produce

cohomology classes from more complicated sets of relations than ab = bc = 0, and showed

that these higher products satisfy their own versions of the Leibniz rule. More generally,

Kochman [31, Theorem 8.2] showed that matric Massey products on one page can be used

to compute differentials on future pages, although this requires strong vanishing conditions

that rarely hold in practice.

There are several limitations to this approach. The most significant, which we will not

discuss further, comes from indeterminacies: the set

⟨dk(a), b, c⟩+ ⟨a, dk(b), c⟩+ ⟨a, b, dk(c)⟩

may be much larger than dk⟨a, b, c⟩, in which case the Leibniz rule will not uniquely determine

the differential. In this case one must either consider different Massey products or use another

technique to find the value of the differential.

This paper addresses a more structural concern: to apply a Leibniz rule, we need to

show that a given element can be written as a matric Massey product of “smaller" pieces. If

we consider ordinary products, this is not guaranteed even when s > 1: for example, when

p = 2, the element c0 with s = 8, t = 11 is indecomposable.

Gugenheim and May [22] show that this problem goes away if we consider matric Massey

products, at least for the E2 page of the classical (HFp-based) Adams spectral sequence: this

page is completely generated by the s = 1 line under matric Massey products. For example,

while c0 is irreducible by ordinary products, Bruner [8, Figure 2.3] shows that we have

c0 = ⟨h0, h22, h1⟩
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However, very few of the elements with s = 1 survive to the actual homotopy groups of

spheres: when p = 2, only h0, h1, h2, and h3 survive (detecting the elements 2, η, ν, and σ

respectively), while for odd primes only classes detecting p and α survive. So it is perhaps

surprising that Cohen [15] has shown that the p-complete homotopy groups of spheres are

generated by elements detected by s = 1 under matric Toda brackets. To the best of the

author’s knowledge, no further results along these lines are known.

This leaves a suggestive gap in the literature. The first well-defined page of the Adams

spectral sequence is generated (in the above sense) by its s = 1 line, and so is the homotopy

ring it converges to. Moreover, some Massey products survive to Toda Brackets in this

homotopy ring [38, Theorem 2], although the presence of “crossing differentials” complicates

this relationship. So while it is challenging to directly access the Ek page of the spectral

sequence for 2 < k < ∞, it is not unreasonable to expect that these “intermediate" pages

should also be be generated by elements with small grading.

The most obvious generalization would be to ask that the Ek page also be generated by

the s = 1 line under matric Massey products. This is not the case: while h24 is a permanent

cycle, degree considerations show that it is not a matric Massey product on the Ek page for

k ≥ 4. Indeed, there are simply not enough differentials on the Ek page for k ≥ 2 to expect

matric Massey products to generate much of these pages.

Instead, in this thesis, we look at the E2,k page of the classical Adams spectral sequence,

by which we mean the subset of the E2 page that survives to Ek. We show that this is

generated by elements of degree s < k for all 2 ≤ k < ∞. To this end, we adapt one of

the most spectacular advances in stable homotopy theory over the past decade: Gheorghe,

Isaksen, Wang, and Xu’s “cofiber of tau” philosophy. This philosophy stems from their

observation that the stable motivic ∞-category MotC can be seen as a deformation whose

generic fiber is the∞-category of spectra and whose special fiber contains information about

the E2 page of the Adams Spectral Sequence.
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More concretely, there is an element τ called the “Tate twist” in the (motivic, p-completed)

stable stem π0,−1(S) such that:

1. The ∞-category ModCτ (MotC) of modules over the cofiber of τ (“the special fiber

τ = 0") is equivalent to the stable ∞-category of BP∗ BP comodules concentrated in

even degree. [19, Theorem 1.1]

2. Given a(n ordinary p-complete) spectrum X, the motivic homotopy groups of X ⊗Cτ

recover the E2 page of the BP-homology based Adams Spectral Sequence for X. If

X is a commutative ring spectrum, this equivalence preserves higher multiplicative

structure (e.g. Massey products). [41, Lemma 4.56]

3. The ∞-category MotC[τ
−1] (“the generic fiber τ = 1") is equivalent to the ordinary

∞-category of spectra. [19, Remark 1.15],[17].

Recent work by Isaksen, Wang, and Xu [27] exploits this deformation structure to relate the

Adams spectral sequence to the algebraic Novikov spectral sequence, which is much more

computable.

For our purposes, property (2) is the most relevant: the entire higher multiplicative

structure of the E2 page of the Adams Spectral Sequence for X is contained in the homotopy

groups of X ⊗ Cτ , which we can reason about using ordinary tools of stable homotopy

theory. We will create a similar deformation to access the Ek page of a more general spectral

sequence, which will let us study matric Massey products on this page without having to

keep track of all the information stored in the previous pages.

The cofiber of tau is also a key input into Pstragowski’s theory of synthetic spectra

[41], which produces a similar deformation with BP replaced by a more general Adams-

type homology theory E. Despite their novelty, synthetic spectra already have a variety

of applications: they have been used by Burklund, Hahn, and Senger to compute Toda

brackets in the stable homotopy category [11], by Patchkoria and Pstragowski to show that
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the homotopy category E(n)-local spectra is equivalent to an algebraic category for large

primes [40], and by Burklund to resolve an extension in the 54-stem of the homotopy groups

of spheres [10].

In this thesis, we construct a deformation whose special fiber corresponds with the Ek

page of the more general filtration spectral sequence, and show that this deformation carries

enough multiplicative structure to support Gugenheim and May’s proof nearly word-for-

word.

More concretely, for each positive integer k and any sufficiently structured stable ∞-

category C, we consider the ∞-category Fil(C) = Fun(Z, C), where we consider Z to be a

partially ordered set with one map i→ j whenever i ≥ j.

This has a bigraded suspension functor Σs,q with Σs,qX(n) = ΣqX(n− s) and a natural

map

τ : Σ−1,0X → X

induced by the maps X(n+ 1)→ X(n) defining X.

We construct a localization of Fil(C) we call Dk(C) such that:

Theorem. Under reasonable conditions on C, the following are true.

1. The cofiber of τ : S−1,0 → S0,0 in Dk(C) is equivalent to the cofiber of τk+1 :

S−k−1,0 → S0,0 in Fil(C). To avoid confusion, we refer to this object (which comes

with a natural commutative ring structure) as Cτk+1.

2. The ∞-category of modules over Cτk+1 (“the special fiber τ = 0") is symmetric

monoidally equivalent to the derived category of graded elements of C♡, where the

grading takes values in Z× {0, 1, . . . , k}.

3. For any X in Fil(C), the (bigraded) homotopy groups of X⊗Cτk+1 in Dk(C) recover the

Ek+1 page of the filtration spectral sequence associated to X. If X is a ring object, this

equivalence preserves higher multiplicative information (e.g. matric Massey products).
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4. The localization Dk(C)[τ−1] (“the generic fiber τ = 1") is equivalent to C.

With this deformation in hand, we will adapt Gugenheim and May’s proof to conclude:

Theorem. Let Es,tr be a multiplicative spectral sequence over a field R concentrated in degrees

s ≥ 0, and suppose the E1 page can be chosen to be freely generated by elements in degree

s = 1. Let Es,t2,r denote the set of elements in E
s,t
2 which survive to the Er page. Then:

• The E2 page is generated under matric Massey products by elements in degree s = 1.

• E
∗,∗
2,r is generated under matric Massey products by elements in degree 0 < s < r.

The first part is a generalization of the main result of [22, Chapter 5], while the second

is wholly new. The result holds in our motivating example of the Adams Spectral Sequence,

but also more generally. In fact, we prove that this theorem holds as long as the first page is

Koszul : that is, generated by elements of degree s = 1, with relations in degree s = 2, with

relations between relations in degree s = 3, and so on.

Along the way, we show that our deformation lets us immediately generalize Moss’s

convergence theorem. This theorem, originally stated and proved for the Adams Spectral

Sequence, relates two kinds of higher multiplicative structure: Massey products, which are

defined in any differential graded algebra, and Toda brackets, which are defined in on the

homotopy groups of ring spectra. We state and prove a generalization of this result to

matric Massey products in arbitrary multiplicative filtration spectral sequences in Section

5.3, which subsumes all previously published versions we are aware of. The proof relies on

lifting Massey products in the Ek page to Toda brackets in Dk(C), following Burklund’s

proof for the Adams Spectral Sequence using synthetic spectra[9].

To construct these localizations, we will use Mazel-Gee’s language of model ∞-categories

[37]. As in the classical theory of model categories, Mazel-Gee considers an ∞-category

M with collections of 1-morphisms called cofibrations, fibrations, and weak equivalences

6



satisfying certain lifting axioms, and shows that this structure can be used to construct the

localization ofM with respect to the chosen weak equivalences.

Theorem. There is a cofibrantly generated model structure on the ∞-category Fil(C) such

that:

1. The weak equivalences are maps that become isomorphisms on levelwise homotopy

groups after multiplying by τk.

2. Every object is fibrant, and a necessary condition for an object to be cofibrant is that the

E1 through Ek−1 pages of its filtration spectral sequence are identical and degreewise

projective.

In particular, weak equivalences induce isomorphisms on the Ek page of the objects’

filtration spectral sequences, although the converse is not true. We will define Dk(C) to be

the homotopy ∞-category of this model structure.

1.1 Roadmap

This thesis is organized into five chapters.

In Chapter 2, we review the definition and basic properties of the ∞-category Fil(C) of

filtered objects of a presentably symmetric monoidal stable ∞-category C. The material in

this section is not new, but provides language and background for the rest of the thesis.

In Chapter 3, we build cofibrantly generated model structures on Fil(C), which we call

“the k-projective model structure” for each nonnegative integer k. These model structures

are closely related to the map τ : in particular, the weak equivalences are the maps which are

isomorphisms on homotopy groups after multiplying by τk, and the generating cofibrations

and acyclic cofibrations are built from spheres and the cofiber of τk. We start by reviewing

Mazel-Gee’s theory of model ∞-categories in Section 3.1. In Section 3.2, we fix for each k

sets Ik and Jk of morphism in Fil(C) and prove that they generate a model structure. In
7



Section 3.3 we promote these to symmetric monoidal model structures, and in Section 3.4

we show how to compute hom-spaces in the homotopy∞-category Dk(C) of the k-projective

model structure. In Section 3.5.1 we check that these localizations are compactly generated

and stable, a technical condition we will need in later chapters.

In Chapter 4, we review the construction of the spectral sequence of a filtered object X,

with multiplicative structure if X is a ring object. The main results of this section are well-

known, but we need to relate them to the various objects in Dk(C) for the next two sections,

and the easiest way to do that is to prove them from scratch. Central are Theorems 4.1.4

and 4.1.2, which show that the Ek page (including its multiplicative structure) is captured

by tensoring X with the cofiber of τk+1. As examples, we show how to construct the Adams

Spectral Sequence in our framework in Section 4.2, and similarly construct various Ext and

Tor spectral sequences in Section 4.3.

Chapter 5 is the devoted to understanding the multiplicative structure of the various

localizations Dk(C) we’ve produced. In Section 5.1, we build a t-structure on Dk(C) and use

it to show that we can view Dk(C) as a deformation whose generic fiber is C and whose special

fiber is an algebraic category capturing the Ek page of the filtration spectral sequence. In

Section 5.2 we use Ariotta’s work on coherent chain complexes to define an ∞-categorical

variant of matric Massey products, which we use in Section 5.3 to prove a stronger version

of Moss’s Convergence Theorem than has previously appeared in the literature.

Finally, in Chapter 6, we reinterpret Gugenheim and May’s result on using matric Massey

products to generate the cohomology of algebras as a statement about Koszulity conditions.

The first two sections provide information and som classical background. In Section 6.3

we generalize their proof to show that any augmented differential graded algebra whose

underlying algebra is Koszul (for example, freely generated by elements in degree s = 1) is

generated by elements in degree n = −1 under matric Massey products. In Section 6.4 we

generalize further from differential graded algebras to multiplicative spectral sequences over

8



a field whose E1 page can be chosen to be Koszul, and prove that the set of elements of the

E2 page that survive to the Ek page is generated in degrees 1 ≤ s ≤ k − 1 under matric

Massey products.

In two appendices we provide proofs of short lemmas and propositions we use in the main

text, but whose proofs are not particularly enlightening.

1.2 Notation and Conventions

Throughout this paper, we use the language of stable ∞-categories freely. We follow the

usual convention of phrasing ∞-categorical statements model-independently whenever pos-

sible, although for concreteness we implicitly use the theory of quasi-categories invented

by Boardman and Vogt [5] and further developed by Joyal [28; 29] and Lurie [33; 35]. A

“commutative diagram” in an ∞ category will always mean “commutative up to coherent

homotopy”, and we will freely say “the object X” or call X unique as long as it is uniquely

determined up to a contractible set of choices.

By “ring” (resp. “commutative ring”) we mean an object of a given stable symmetric

monoidal ∞-category equipped with an A∞ (resp. E∞) multiplication. Given a specified

map f : X → Y , we use the notations Cf or Y/X interchangeably to refer to the cofiber of

f . We will use “limit” and “colimit” in the ∞-categorical sense, saving the words “homotopy

limit” and “homotopy colimit” to refer to (co)limits in the localizations we build.
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CHAPTER 2

FILTERED OBJECTS IN STABLE ∞-CATEGORIES

2.1 The ∞-category Fil(C).

Throughout this thesis, we fix a presentably symmetric monoidal stable ∞-category C. In

this chapter, we review the definition and basic properties of the∞-category Fil(C) of filtered

objects of C. The material in this chapter is mostly well-known, and is provided primarily

to review language and concepts we will need for the remainder of the thesis.

Definition 2.1.1. Given a cocomplete stable ∞-category C, a filtered C-object is an object

of the functor ∞-category

Fun(Z, C)

where Z is an ordinary category with one arrow i → j whenever i > j. We denote the

∞-category of filtered C-objects by Fil(C). One immediately sees that Fil(C) is stable, and

limits and colimits are computed point-wise.

For a filtered C-object X, we will use the notation Xn to mean X(n). We can think of

Fil(C) as an extension of C, as follows:

Proposition 2.1.2. The functor

(−)0 : Fil(C)→ C

sending X to X0 has a fully faithful left adjoint ι : C → Fil(C).

Intuitively, ι is the functor taking X to the filtered object

· · · → 0→ 0→ X → X → · · · ,

10



with copies of X in each non-positive degree connected by identity morphisms.

Our presentability assumption allows us to promote the symmetric monoidal structure

on C to one on Fil(C):

Theorem 2.1.3. The symmetric monoidal structure on C induces one on Fil(C) via Day

Convolution. This symmetric monoidal structure has the following properties:

• Let S0 denote the unit for the tensor product in C. Then, the unit for the tensor product

in Fil(C) is ιS0.

• The tensor product on Fil(C) preserves colimits in each variable.

• The functor ι is symmetric monoidal.

• Fil(C) contains an internal function functor F (−,−) such that F (A,−) is right adjoint

to the functor A⊗−.

Proof. See [21] and its extension in Section 2.2.6 of [35]. The particular case of filtered

spectra is described in [20].

Definition 2.1.4. The bigraded suspension Σn,tX is the functor sending X• to ΣtX•−n.

Note that Σ0,1 is the “actual” suspension functor coming from the stable ∞-category

structure on Fil(C). Later in this paper we will define model structures on Fil(C) whose

localizations have Σ−n,1 as their corresponding suspension functors for various choices of n.

Filtrations come with a natural degree-shifting map, which will play the same role in our

localizations that τ does in motivic or synthetic spectra. We keep the same name:

Definition 2.1.5. For any X ∈ Fil(C), there is a map τ : Σ−1,0X → X induced by the

maps Xn → Xn−1.

We also require a notion of “spheres” in C, which will be indexed by some abelian group

A containing a distinguished copy of Z as a direct summand. We therefore assume there
11



exists a symmetric monoidal functor S(−) from A (viewed as a discrete symmetric monoidal

category) to C such that:

• S(n) = ΣnS(0).

• The set St, as t ranges across all of A, is a set of compact generators for C.

We then obtain “suspension” functors Σt for any t ∈ A, which are necessarily equivalences

with inverses Σ−t.

Definition 2.1.6. Let Sn,t denote Σn,0ιSt. Using Definition 2.1.5, we obtain a map

S−k,0 τk−→ S0,0

We denote by Cτk the cofiber of this map. More generally, for any X we have a map

Σ−k,0X τk−→ X.

We denote the cofiber of this map by X ⊗ Cτk.

Warning 2.1.7. We use the notation Cτ to denote the cofiber of τ in Fil(C). In the model

structures we construct on Fil(C), τ will not be a cofibration and so Cτ will no longer be its

cofiber after localization. Confusingly, in Corollary 3.4.4 we will see that the cofiber of τ in

the k-projective model structure is actually Cτk+1.

To maintain clarity, for a map f : X → Y we will always use the notation Cf or Y/X to

mean the corresponding cofiber in the ∞-category Fil(C). If we want to take the cofiber in

some localization of Fil(C), we will say so explicitly in words.

Finally, we note the following:

12



Theorem 2.1.8. Suppose C satisfies the conditions of Theorem 2.1.3. For each k, Cτk is a

commutative ring in Fil(C). The unit map comes from the cofiber sequence

S−k,0 → S0,0 → Cτk.

Proof. This is a generalization of Theorem 3.2.5 of [34], and the proof proceeds along similar

lines.

Let [−k, 0] denote the set of integers between −k and 0 (inclusive) and denote by

Fil[−k,0](C) the functor ∞-category Fun([−k, 0], C) and by Fil≤0 the functor ∞-category

Fun(Z≤0, C). We have a functor

ι∗ : Fil≤0(C)→ Fil[−k,0](C)

by restricting the domain, which has a fully faithful right adjoint

ι! : Fil[−k,0](C)→ Fil≥0(C)

such that

ι∗(X0 → · · · → X−k) = X0 → · · · → X−k → 0→ 0→ 0→ · · ·

The usual Day Convolution formula implies that the symmetric monoidal structure Fil≤0(C)

inherits from Fil(C) is compatible (in the sense of Definition 2.2.1.6 of [35]) with the local-

ization coming from the adjunction (ι∗, ι∗), so we obtain a symmetric monoidal structure on

Fil[−k,0](C) with unit ι∗(S0,0).

In particular, this implies that ι∗ι∗(S0,0) is a commutative ring, whose unit is the unit

map

S0,0 → ι∗ι∗(S0,0),
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which simple inspection identifies with the cofiber map S0,0 → Cτk.

Corollary 2.1.9. Under the conditions of the previous theorem, we have a chain of commu-

tative ring maps

S0,0 → · · · → Cτ3 → Cτ2 → Cτ.

Proof. Apply the same argument to the adjunctions coming from the chain of inclusions

[0, 0] ⊆ [−1, 0] ⊆ [−2, 0] ⊆ · · · ⊆ Z≤0

14



CHAPTER 3

MODEL STRUCTURES ON ∞-CATEGORIES OF FILTRATIONS

In the previous chapter, we fixed a choice of “spheres” St in C. From this, we obtain several

notions of homotopy groups of an object of Fil(C):

Definition 3.0.1. For any t ∈ A, the t-th topological homotopy group1 of a (filtered) object

X is the abelian group

π
top
t (X) = [St, colimX•].

The level-wise homotopy groups of X are given by

π0n,t(X) = [Sn,t, X]Fil(C) = [St, Xn]C .

Notice that π0∗∗ comes with a natural τ action, so we define k-sustained homotopy groups of

X to be

πkn,t(X) = τkπ0n,t(X) := im

(
πt(Xn)

τk−→ πt(Xn−k)
)

Equivalently,

πkn,t(X) = coker(πt+1(Xn−k/Xn)→ πt(Xn))

In this chapter, we will use these invariants to build model ∞-category structures on

Fil(C).

3.1 Review of model ∞-categories

This section is a review of Mazel-Gee’s theory of model ∞-categories, which we use exten-

sively throughout the rest of this thesis. As is often the case in ∞-category theory, many

1. Throughout this thesis, we use t for total degree and n for filtration degree.
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of the results will not be surprising to readers who are comfortable with ordinary model

(1-)categories. The proofs, however, are much harder, and we will not reproduce them here.

A key goal of model (∞-)category theory is to provide information about localizations of

(∞-)categories at a collection of arrows:

Definition 3.1.1. LetM be an ∞-category, and W be a sub-∞-category. The localization

M[W−1], if it exists, is the unique ∞-category such that for any ∞-category C,

Fun(M[W−1], C) = FunW(M, C),

where the right hand side is the full sub-∞-category of all functors M → C taking arrows

in W to isomorphisms in C.

In general, set-theoretic problems can prevent the construction of localizations. Quillen

introduced model structures as a way of both demonstrating the existence of localizations

and facilitating computation with them. Mazel-Gee’s definition in the ∞-categorical case

closely mirrors Quillen’s.

Definition 3.1.2 ([37], Definition 1.1.1.). A model ∞-category consists of an ∞-category

M with three wide subcategories W , C,F such that:

1. M is finitely bicomplete.

2. W satisfies the two-out-of-three property.

3. W , C, and F are closed under retracts.

4. There exists a lift in any commutative square

x //

i
��

z

p
��

y //

>>

w
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in which i is in C, p is in F , and either i or p is in W .

5. Every arrow inM factors as an arrow in W ∩ C followed by an arrow in F , and as an

arrow in C followed by an arrow in W ∩F .

The arrows in W , C, and F are called weak equivalences, cofibrations, and fibrations,

respectively. Objects whose maps from the initial object are cofibrations are called cofibrant.

Dually, objects whose maps to the terminal object are fibrations are called fibrant. Objects

that are both cofibrant and fibrant are called bifibrant.

As in the classical case, we construct localizations by restricting to bifibrant objects

and introducing a homotopy relation. Classically, homotopy is an equivalence relation con-

structed by building a cylinder object through which the map X
∐
X → X factors. The

∞-categorical homotopy construction is a bit subtler, since the higher homotopies require

us to also consider all the maps

X
∐

X
∐
· · ·

∐
X → X

simultaneously. Mazel-Gee packages all this information into a cosimplicial object of M

satisfying a few conditions:

Definition 3.1.3. [37, Definition 6.1.1] Let X be an object of a model ∞-category M. A

cylinder object for X is a cosimplicial object cyl•(X) of M equipped with an equivalence

X → cyl0(X) such that:

1. The codegeneracy maps cyln(X)
σi−→ cyln−1(X) are all weak equivalences.

2. The latching maps Ln cyl•(X)→ cyln(X) are all cofibrations.

The homotopy relation is now elegantly realized as a geometric realization:
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Theorem 3.1.4. [37, Theorem 6.1.9] Let X be a cofibrant object in a model ∞-categoryM,

and let Y be a fibrant object. For any cylinder object cyl•(X) of X, there is an equivalence

|HomM(cyl•(X), Y )| → HomM [W−1](X, Y ),

where the left hand side is the geometric realization of the corresponding simplicial space.

In general, it can be difficult to prove that the axioms of a model ∞-category hold.

One class of model structures that are easier to construct are known as cofibrantly-generated

model ∞-categories.

Definition 3.1.5. A model ∞-categoryM is cofibrantly generated if there exist sets I and

J of homotopy classes of maps such that:

• Every map in I is in C

• Every map in J is in C ∩W .

• The sources of maps in I are small (in Quillen’s sense) relative to maps in I.

• The sources of maps in J are small (in Quillen’s sense) relative to maps in J .

• F ∩W is the collection of maps with the right lifting property with respect to I.

• F is the collection of maps with the right lifting property with respect to J .

Cofibrantly-generated model categories come with the following recognition theorem:

Theorem 3.1.6. LetM be an ∞-category with all colimits and finite limits, and let W be a

subcategory of M which is closed under retracts and satisfies the two-out-of-three property.

Suppose I and J are sets of homotopy classes of maps such that

• The source of maps in I (resp. J) are small relative to maps in I (resp. J .)
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• J -cof ⊆ I -cof ∩W

• I -inj ⊆ J -inj∩W

• either I -cof ∩W ⊆ J -cof or J -inj∩W ⊆ I -inj .

Then the sets I and J define a cofibrantly generated model structure on M whose weak

equivalences are W .

In many applications, the underlying∞-category ofM has a monoidal structure that we

would like to import to the localizationM[W−1]. This will follow from essentially the same

conditions as the classical case.

Definition 3.1.7. [37, Definition 5.5.1] A (symmetric) monoidal structure on a model ∞-

category ofM consists of a (symmetric) monoidal structure onM such that:

1. For any pair of cofibrations f : X → Y and f ′ : X ′ → Y ′, the induced morphism

(X ⊗ Y ′)
∐

X⊗X ′
(Y ⊗X ′)→ Y ⊗ Y ′

is a cofibration, and is a weak equivalence if either f or f ′ is.

2. There exists a cofibrant replacement CS of the (symmetric) monoidal unit S such that

for any object X the induced maps

CS ⊗X → X

and

X ⊗ CS → X

are weak equivalences.

As usual, we have:
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Theorem 3.1.8. [37, Propositions 5.5.4 and 5.5.6] A (symmetric) monoidal structure onM

gives rise to a canonical (symmetric) monoidal structure on M[W−1]. For any two objects

x and y of M, their tensor product in M[W−1] can be identified with their tensor product

in M as long both are cofibrant.

Finally, model structures are classically used to define derived functors and in particular

homotopy limits and colimits.

Definition 3.1.9. Let C be a small ∞-category and M be any model ∞-category. The

projective model structure on Fun(C,M), if it exists, is the model structure whose weak

equivalences Wproj and fibrations Fproj are determined objectwise.

Definition 3.1.10. Let C be a small ∞-category and M be any model ∞-category. The

injective model structure on Fun(C,M), if it exists, is the model structure whose weak

equivalences and cofibrations are determined objectwise.

Lemma 3.1.11. The projective model structure exists if M is cocomplete, cofibrantly gen-

erated, and the sources of its generating sets I and J are compact. The injective model

structure exists if M is cofibrantly generated and presentable.

Proof. See Remark 5.1.10 of [37], the references therein, and the corresponding footnote.

Definition 3.1.12. Suppose C is a small∞-category,M admits C-shaped colimits, and the

projective model structure exists on Fun(C,M). The adjunction

colim : Fun(C,M) ⇄M : const

descends to an adjunction

Fun(C,M)[W−1proj ] ⇄M[W−1],
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whose left adjoint we call the homotopy colimit functor. Similarly, if C is small, M ad-

mits C-shaped limits, and the injective model structure exists on Fun(C,M), we obtain an

adjunction

const :M⇄ Fun(C,M) : lim

descending to an adjunction

M[W−1] ⇄ Fun(C,M)[W−1inj ]

whose right adjoint we call the homotopy limit functor.

Warning 3.1.13. The terminology here is a bit confusing, since colimits in ∞-categories are

often called homotopy colimits. We will use the word “colimit” to refer to colimits in C

or Fil(C), and reserve “homotopy colimit” for this construction which (we will see shortly)

generally compute colimits in a localization of the ambient ∞-category.

Here we note an important difference between the 1-categorical theory and the ∞-

categorical theory. The homotopy category of a model category very rarely admits interesting

limits or colimits. Instead, in many cases homotopy (co)limits and compute the (co)limits in

the ∞-category produced by localizing in the ∞-categorical sense at the weak equivalences,

which is almost always distinct from the homotopy category.

In the theory of model ∞-categories, there is no such distinction: under minor assump-

tions, homotopy (co)limits inM compute (co)limits inM[W−1].

Theorem 3.1.14. Suppose C is small,M admits C-shaped colimits, and the projective model

structure exists for M. Then, the homotopy colimit of a diagram C → M is equivalent to

the colimit of the induced diagram C →M[W−1].

Theorem 3.1.15. Suppose C is a small (ordinary) category,M admits C-shaped limits, and

the injective model structure exists for M. Then, the homotopy limit of a diagram C → M

is equivalent to the limit of the induced diagram C →M[W−1].
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Proof. We prove the result for homotopy colimits. The existence of the projective model

structure implies that M is hereditary in the sense of [14, Definition 7.9.4] with respect to

the standard universe, so [14, Theorem 7.9.8] implies that we can identify Fun(C,M)[W−1proj ]

with Fun(C,M[W−1]). Under this identification, the right adjoint in the homotopy colimit

adjunction is the constant functor, whose left adjoint is the C-shaped colimit functor in

M[W−1]. The proof for homotopy limits is essentially identical.

3.2 The k-projective model structure

In this section, we show that there is a model structure whose weak equivalences are the

πk∗∗-isomorphisms, which form a class Wk.

Definition 3.2.1. Fix a non-negative integer k. A map f : X → Y of filtered C-objects is

k-exact if the induced map

πk∗∗(X)→ πk∗∗(Y )

is an isomorphism. We denote the class of k-exact maps by W k.

In this section we construct a cofibrantly-generated model structure on Ch(C), analogous

to the usual model structure on chain complexes. To do so, we define a set of generating

cofibrations and generating acyclic cofibrations:

Definition 3.2.2. Let Ik be the set of inclusions Sn,t → Σn,tCτk. Similarly, let Jk be the

set of inclusions 0→ Σn,tCτk.

Proposition 3.2.3. We can characterize Ik -inj and Jk -inj as follows:

1. The Jk injections are the maps which are πt-surjections on each Xn+k/Xn for all t.

2. The Ik injections are maps with are πt-surjections on each Xn+k/Xn and such that

πt+1(Xn+k/Xn)→ πt+1(Yn+k/Yn)×πt(Yn) πtXn is a surjection for each n and t.
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Proof. Immediate from Proposition 2.1.2.

To produce a cofibrantly generated model structure, we need to show that Ik injections

are the same as k-exact Jk injections. The majority of this is contained in the next two

lemmas:

Lemma 3.2.4. Every Ik-injection is also k-exact.

Proof. Fix an Ik-injection f : X → Y. By Proposition 3.2.3, the map

πt+1(Xn−k/Xn)→ πt+1(Yn−k/Yn)×πt(Yn) πtXn

is surjective for each n and t, so the map

coker(πt+1(Xn−k/Xn)→ πt(Xn))→ coker(πt+1(Yn−k/Yn)→ πt(Yn))

must be injective.

Now, the pushout square

Sn+k,t−1 //

��

0

��
Σn+k,t−1Cτk // Sn,t,

shows that the map 0 → Sn,t is in I -cell and therefore must have the left lifting property

with respect to f . This implies that the map πt(Xn)→ πt(Yn) is surjective, so the map

coker(πt+1(Xn−k/Xn)→ πt(Xn))→ coker(πt+1(Yn−k/Yn)→ πt(Yn))

must be as well.

Lemma 3.2.5. Every k-exact Jk-injection is an Ik-injection.
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Proof. Let f : X → Y be a k-exact Jk-injection. By the characterization in Proposition

3.2.3, we need to check that the map

πt+1(Xn−k/Xn)→ πt+1(Yn−k/Yn)×πt(Yn) πt(Xn)

is surjective for each n and t. Let F denote the fiber of f , and consider the diagram

πt+1(Fn−k/Fn)
δ∗ //

i∗
��

πt(Fn)

i∗
��

πt+1(Xn−k/Xn)
δ∗ //

g∗
��

πt(Xn)

n∗
��

πt+1(Yn−k/Yn)
δ∗ // πt(Yn)

By Lemma 7.0.2, we know that F is k-acyclic, so the top arrow is surjective. Now, suppose

we have x in πt(Xn) and y in πt+1(Yn−k/Yn) such that δ∗(y) = f∗(x). Since f is a Jk

injection, we can pick z in πt+1(Xn−k/Xn) such that f∗(z) = y.

Then we have f∗(δ∗(z)−x) = 0, so there exists s in πt(Fn) with i∗(s) = δ∗(z)−x. Since

F is k-acyclic, there exists t in πt+1(Fn−k/Fn) with δ∗(t) = s. Since f∗(i∗(t)) = 0 and

δ∗i∗(t) = δ∗(z)− x, it follows that z + i∗(t) is our desired preimage of both x and y.

Proposition 3.2.6. There is a cofibrantly-generated model ∞-category structure on Fil(C)

whose weak equivalences, generating cofibrations, and generating acyclic cofibrations are given

by W k, Ik, and Jk respectively.

Proof. We check the conditions of [37, Theorem 1.3.11] . Fil(C) inherits cocompleteness and

finite completeness from C, while W k is closed under retracts and has the two-out-of-three

property because

X 7→ πkn,t(X)

is a functor. Jk automatically permits the small object argument, while Ik permits it by
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our compactness assumption on the collection of spheres. We therefore only need to check

that:

1. J -cof ⊆ I -cof .

2. J -cof ⊆ W.

3. I -inj ⊆ J -inj

4. I -inj ⊆ W

5. (J -inj∩W ) ⊆ I -inj

(1) and (3) are immediate, because the generators of Jk are all Ik-cell complexes. (4) and

(5) are the statements of Lemmas 3.2.4 and 3.2.5, respectively.

For (2), it suffices to check that J -cell ⊆ W , since J -cof is the collection of retracts of

maps in J -cell and W is closed under retracts. But maps in J -cell take the form X → X⊕P ,

where P is a coproduct of copies of Σn,tCτk for various s and q, so the result follows because

Σn,tCτk is k-exact.

Definition 3.2.7. Let Dk(C) denote the localization of Fil(C) at W k using this model

structure.

Lemma 7.0.1 implies we have containments

W 1 ⊆ W 2 ⊆ W 3 ⊆ · · · ,

so we obtain successive localization functors

Fil(C)→ D1(C)→ D2(C)→ · · · .
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Unfortunately, the functors between the various Dks do not come from Quillen adjunctions

(the cofibration inclusions point the wrong way), so our theory has little to say about them.

To gain some intuition, we will say a little more about the cofibrant objects of Dk(C).

Theorem 3.2.8. Suppose f : X → Y is a cofibration in the k-projective model structure on

Fil(C). Then,

• The induced map Xn/Xn+1 → Yn/Yn+1 is the inclusion of a direct summand, where

the other direct summand Pn is a retract of coproducts of Sts for all n.

• The map Pn → ΣYn+1 lifts to ΣYn+k for all n.

If Xn = Yn = 0 for n > 0, the converse holds.

Proof. Note that both properties are preserved by retracts, compositions, and pushouts, so

it suffices to observe that that they hold for all generating cofibrations.

We now prove the partial converse by exhibiting f : X → Y as a transfinite composition

X = X(1) → X(0) → X(−1) → · · ·

so that each map is a cofibration, the colimit of the X(i) is Y , and X(i) agrees with Y on

Z≥i. Starting with ℓ = 0, we assume that Pℓ is a retract of coproducts of Sts, and the map

Cℓ → ΣXℓ+1 lifts to ΣXℓ+k.

Construct the pushout

Σℓ+k,−1ιPℓ //

��

Σℓ+k,−1ιPℓ ⊗ Cτk

��

X(ℓ+1) // X(ℓ)

Since Cℓ is a retract of coproduct of Sts, the top map is a coproduct of retracts of generating

cofibrations and therefore the map Xℓ+1 → Xℓ is a cofibration. Moreover, the commutative
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square

Σℓ+k,−1ιPℓ //

��

Σℓ+k,−1ιPℓ ⊗ Cτk

��
X(ℓ+1) // Y

implies that we have compatible maps to Y . Since both X and Y are bounded above, we can

use Theorem 4.7 of [1] and consider the corresponding “coherent chain complexes" supported

in nonpositive degrees.

Note that the map

Σℓ+k,−1ιCℓ → Σℓ+k,−1ιCℓ ⊗ Cτk

is an isomorphism outside of degree −ℓ, so as a chain complex Xℓ is supported in degrees

between 0 and −ℓ. Moreover, the induced map X(ℓ) → X in degree ℓ is just the identity on

Cℓ! In particular, X(ℓ) agrees with X on chain degree ≤ −ℓ, and therefore the same is true

in filtration ≥ ℓ, as desired.

3.3 The k-projective model structure is closed symmetric

monoidal

In this section, we show that our model structures extend to symmetric monoidal model

structures to build a compatible symmetric monoidal structure on the various Dk(C)s.

We begin this section by proving a lemma about Cτk and its modules that will come in

handy later.

Lemma 3.3.1. For any Cτk-module M , there is a (non-canonical) equivalence

M ⊗ Cτk ≃M ⊕ Σ−k,1M.

Proof. The cofiber sequence

S−k,0 τk−→ S0,0 → Cτk
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gives a cofiber sequence

Σ−k,0M τk−→M →M ⊗ Cτk.

Since M is a Cτk-module, we must have τk = 0 on M , so the cofiber sequence splits and we

obtain a (non-canonical) identification

M ⊗ Cτk ≃M ⊕ Σ−k,1M.

With Lemma 3.3.1 in hand, the proof that the model structures we’ve constructed are

closed symmetric monoidal is relatively straightforward.

Theorem 3.3.2. The k-projective model structure is closed symmetric monoidal

Proof. Since S0,0 is cofibrant, we only need to check the pushout-product axiom. By the

argument of [26, Corollary 4.2.5], it suffices to check this on generating cofibrations and

generating acyclic cofibrations.

Further, since the generating cofibrations are all shifts of S0,0 → Cτk and the acyclic

generating cofibrations are all shifts of 0 → Cτk, it suffices to consider the following two

cases.

First, suppose f and f ′ are both the map S0,0 → Cτk. The pushout-product map takes

the form

ψ : Cτk
∐
S0,0

Cτk → Cτk ⊗ Cτk.

Using Lemma 3.3.1, note that this map fits into a pushout diagram

Sk,1 //

��

Cτk
∐
S0,0

Cτk

ψ
��

Σk,1Cτk // Cτk ⊗ Cτk

28



where the left vertical arrow is a cofibration, so ψ is too.

Next, suppose f is as before, but f ′ is the map 0→ Cτk. We then have a map

φ : Cτk → Cτk ⊗ Cτk

which again using Lemma 3.3.1 fits into a pushout square

0 //

��

Cτk

φ
��

Σk,1Cτk // Cτk ⊗ Cτk

by which we immediately see that φ is a cofibration, and acyclic because both its source and

target are weak equivalent to 0.

This produces a canonical symmetric monoidal structure on Dk(C), and we have the

following.

Corollary 3.3.3. The localization functor Fil(C)→ Dk(C) is lax symmetric monoidal.

3.4 Mapping spaces in the derived ∞-category

In this section, we apply Theorem 3.1.4 to compute mapping spaces in Dk(C).

Lemma 3.4.1. Let Cτk denote the Amitsur complex of Cτk

Cτk ⇒ Cτk ⊗ Cτk ⇛ Cτk ⊗ Cτk ⊗ Cτk ⇛ · · ·

The unit map gives a canonical map ι : S0,0 → Cτk, viewing the source as a constant

cosimplicial object. If we define

∆ = Σk,0Cι,
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then ∆ is a cylinder object for S0,0 in the k-projective model structure in the sense of Defi-

nition 3.1.3.

Proof. Using the equivalence in Lemma 3.3.1, we obtain an equivalence

(Cτk)⊗n+1 =
n⊕
i=0

(
Σ−ik,iCτk

)⊕(ni)

on which the codegeneracy maps all act as the identity on the unshifted copy of Cτk. In

particular, we obtain a (non-canonical) equivalence

∆n = S0,0 ⊕
n⊕
i=1

(
Σ−(i−1)k,iCτk

)⊕(ni)

on which the codegeneracy maps all act as the identity on S0,0. Since all the other summands

are acyclic, the codegeneracy maps must be weak equivalences.

Similarly, we obtain an equivalence between latching object Ln∆ and the direct sum

Ln∆ = S0,0 ⊕
n−1⊕
i=1

(
Σ−(i−1)k,iCτk

)⊕(ni)
so that we have a pushout square

0 //

��

Ln∆

��
Σ−(n−1)k,nCτk // ∆n.

implying that Ln∆→ ∆ is a cofibration.

We immediately obtain several corollaries:

Corollary 3.4.2. Let X be any cofibrant object in the k-projective model structure. A

cylinder object for X is given by X ⊗∆.
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Proof. The proof of the previous lemma is preserved under X ⊗−. The only thing to check

is that X ⊗ Cτk is weakly contractible, which follows because the map

τk : Xn/Xn+k → Xn−k/Xn

factors through Xn/Xn and is therefore zero.

Corollary 3.4.3. Let f : X → Y be a map of cofibrant filtered C-objects. The cofiber Ck(f)

of f in Dk(C) is given by the pushout

X
f //

��

Y

��
X ⊗ Cτk // Ck(f)

Proof. This follows from the fact that X ⊗ Cτk is weak equivalent to 0, all the objects are

cofibrant, and the map X → X ⊗ Cτk is a cofibration.

Corollary 3.4.4. The cofiber Ck(τ) of τ : S−1,0 → S0,0 satisfies

Ck(τ) = Cτk+1

Proof. This follows from the pushout diagram

S−1,0 //

��

S0,0

��

Σ−1,0Cτk // Cτk+1.

Corollary 3.4.5. We have a natural isomorphism

[Sn,t, X]Dk(C) = πkn,t(X).
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Proof. Apply Corollary 6.1.11 of [37] to the resolution ∆→ S0,0.

3.5 The k-derived category is compactly generated by spheres

Theorem 3.5.1. The ∞-category Dk(C) is stable. Moreover, if C is compactly generated by

the spheres St, then Dk(C) is compactly generated by the spheres Sn,t.

Proof. Note that Dk(C) inherits cocompleteness from C. By Corollary 3.4.3, the suspension

functor in Dk(C) is given by Σ−k,1, which is an equivalence, so stability follows from [35,

Proposition 1.4.2.27].

By [35, Remark 1.4.4.3], compact generation of stable ∞-categories is detected on the

underlying triangulated categories. In particular, it suffices to check the following two facts:

1. If [Sn,t, X]Dk(C) = 0 for all s and q, then X is a zero object of Dk(C).

2. For any set {Xi} of objects of Dk(C), the natural map

∐
i

[Sn,t, Xi]Dk(C) → [Sn,t,
∐
i

Xi]Dk(C)

is an isomorphism of abelian groups.

The first is immediate, since the given condition implies that the map X → 0 is a weak

equivalence. The second follows from the compact generation of C, which implies that we

have

∐
i

[Sn,t, Xi]Fil(C) =
∐
i

[St, (Xi)n]C

= [St,
∐
i

(Xi)n]C

= [Sn,t,
∐
i

Xi]Fil(C).
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This is an equivalence of Z[τ ] modules, by which we get the corresponding statement for

Dk(C).
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CHAPTER 4

THE SPECTRAL SEQUENCE OF A FILTERED C-OBJECT

Filtered objects in stable ∞-categories are one of the most common sources of spectral

sequences in homotopy theory. Given a filtered spectrum X, one constructs a spectral

sequence starting with the homotopy groups of the “associated graded” spectrum X ⊗ Cτ.

Under reasonable conditions, this spectral sequence converges to the colimit of the tower.

Special cases of this spectral sequence include the Serre Spectral Sequence, Adams-Novikov

Spectral Sequence, Grothendieck Spectral Sequence, and Slice Spectral Sequence.

In this chapter, we reconstruct the standard filtration spectral sequence associated to

an object of Fil(C). While this construction is well-known, the purpose of this chapter is

to relate the spectral sequence to the various derived categories Dk(C) we’ve constructed

earlier in this paper. This is an essential ingredient in the two chapters, which will allow us

to relate the special fiber of the deformation we construct to the Ek page of the filtration

spectral sequence.

4.1 Construction of the spectral sequence

The following is well-known:

Theorem 4.1.1. Let X be a filtered object of a stable ∞-category C. There is a spectral

sequence En,tr (X) with

E1
n,t(X) = π0n,t(X ⊗ Cτ)

which converges conditionally to π
top
t (X) as long as limX = 0. The dk differential takes

elements in degree (n, t) to elements in degree (n+ k, t− 1).

In this section we relate this spectral sequence to the various derived∞-categories we’ve

defined. Along the way, we will reprove this theorem as well as the following stronger (but

still well-known) version:
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Theorem 4.1.2. Let X be a ring in Fil(C). Then, the above spectral sequence has a multi-

plicative structure converging conditionally to the multiplicative structure on πtop(X).

The existence part of the proof of Theorem 4.1.1 is contained in the following two proposi-

tions. The first constructs the spectral sequence, and the second relates it to the∞-categories

we constructed in the previous section.

Proposition 4.1.3. There is an extended (cohomological) Cartan-Eilenberg system with:

• H∗(i, j) = π−∗+1(Xi/Xj).

• For i ≤ i′, j ≤ j′, we have η : H∗(i, j)→ H∗(i′, j′) induced by the diagram

Xi′
//

��

Xi

��
Xj′

// Xj

• For i ≤ j ≤ k we have δ : H∗(i, j)→ H∗+1(j, k) induced by the fiber sequence

Xj/Xk → Xi/Xk → Xi/Xj .

Here we set X∞ = limX, X−∞ = colimX, and assume ∗ is A-graded.

Proof. By Lemma 1.2.2.4 in [35], we can construct what Lurie calls a “gap" diagram X̄ :

J → Fil(C), where J is the partially ordered set of pairs (m,n) with m,n ∈ Z ∪ {−∞,∞}

with m ≤ n. The partial ordering is given by (m,n) ≤ (m′, n′) whenever m ≤ m′ and

n ≤ n′, and the diagram satisfies:

1. X̄(m,n) = Xm/Xn.
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2. For m ≤ m′ and n ≤ n′ the square

X̄(m′, n′) //

��

X̄(m′, n)

��
X̄(m,n′) // X̄(m,n)

is a pushout square.

The functoriality and naturality axioms for a Cartan-Eilenberg system can be read directly

off this diagram, while the long exact sequence comes from the fiber sequence

Xj/Xk → Xi/Xk → Xi/Xj .

Proposition 4.1.4. Suppose X∞ = 0. Then, the (r + 1)st derived exact couple of this

Cartan-Eilenberg system takes the form

⊕
t,s π

r
ntX

τ //
⊕

t,s π
r
ntX

uu⊕
n π

r
nt(X ⊗ Cτr+1)

ii

The exact couple is induced by the cofiber sequence (in Dk) of Corollary 3.4.4

Σ−1,0X τ−→ X → X ⊗ Cτr+1.
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Proof. When r = 1, we have the exact couple

⊕
t,sH

t(s,∞) //
⊕

t,sH
t(s,∞)

vv⊕
t,sH

t(s, s+ 1)

hh

Equivalently, this is the exact couple

⊕
t,n πtXn

τ //
⊕

t,n πtXn

vv⊕
t,n πt(Xn/Xn+1)

hh

The Er+1 term coming from a Cartan-Eilenberg system is always given by

Er+1 =
⊕
n

im(H∗(n, n+ r + 1)→ H∗(n− r, n+ 1)

which is equivalent to

Er+1 =
⊕
n

im(πt(Xn/Xn+r+1)
τr−→ πt(Xn−r/Xn+1))

So

Er+1 =
⊕
n

τrπt(Xn/Xn+r+1) =
⊕

πrn,t(X ⊗ Cτr+1).

In particular, we note that the k-exact maps “see” the Ek+1 page of the spectral sequence.

Corollary 4.1.5. A k-exact map f : X → Y induces an isomorphism f : Ek+1
∗∗ (X) →

Ek+1
∗∗ (Y )
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Proof. Apply the five lemma to the unrolled exact couple

πk∗∗(X) τ //

��

πk∗∗(X) //

��

πk∗∗(X ⊗ Cτk+1) //

��

πk∗∗(X) τ //

��

πk∗∗(X)

��

πk∗∗(Y ) τ // πk∗∗(Y ) // πk∗∗(Y ⊗ Cτk+1) // πk∗∗(Y ) τ // πk∗∗(Y )

The only part of Theorem 4.1.1 remaining is (conditional) convergence. But this is

automatic, because we have a short exact sequence

0→ lim1(π∗(Xn)→ π∗(limXn)→ limπ∗(Xn)→ 0,

so if the middle term is zero the other two must be as well.

Most of the proof of Theorem 4.1.2 is contained in the following lemma.

Lemma 4.1.6. There is a natural pairing of spectral sequences

µ : E
n,t
r (X)⊗ En

′,t′
r (Y )→ E

n+n′,t+t′
r (X ⊗ Y )

inducing a pairing on the E∞ pages.

Proof. By work of Douady in [16] (with English expositions in e.g. [23; 24]) it suffices to

provide a pairing on the corresponding Cartan-Eilenberg system satisfying axioms we will

refer to as (SPP I) and (SPP II). Rather than stating these in general, we will state and

prove the relevant claims in the context of this spectral sequence.

To construct a pairing, we require maps

µr : π
0
n,t (X ⊗ Cτr)⊗ π0u,ℓ (Y ⊗ Cτ

r)→ π0n+u,t+ℓ (X ⊗ Y ⊗ Cτ
r)
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which we define on elements f ⊗ g via the composition

µr(f ⊗ g) : Sn+u,q+ℓ
f⊗g−−−→ X ⊗ Cτr ⊗ Y ⊗ Cτr T−→ X ⊗ Y ⊗ Cτr ⊗ Cτr → X ⊗ Y ⊗ Cτr.

Since µr(f ⊗ g) is bilinear in f and g, this is well-defined. We now have to check Douady’s

axioms.

(SPP I): For each s′ ≤ s and u′ ≤ u, we must have a commutative square

π0n,t (X ⊗ Cτr)⊗ π0u,ℓ (Y ⊗ Cτ
r)

µr //

η⊗η
��

π0n+u,t+ℓ (X ⊗ Y ⊗ Cτ
r)

η
��

π0n′,t (X ⊗ Cτ
r)⊗ π0u′,ℓ (Y ⊗ Cτ

r)
µr // π0n′+u′,t+ℓ (X ⊗ Y ⊗ Cτ

r) .

This follows from applying the general fact that µr is functorial in X and Y to the maps

X
τn−s′
−−−−→ Σn−s

′,0X and Y τu−u′
−−−−→ Σu−u

′,0Y.

(SPP II): In the following diagram, the diagonal composition must be the sum of the

two outside composites:
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This follows from the corresponding diagram Fil(C) satisfying the same property

Cτr ⊗ Cτr η⊗δ //

δ⊗η

��

µr

''

Cτ ⊗ Σ−r,1Cτ

µ1

��

Cτr

δ

''

Σ−r,1Cτ ⊗ Cτ µ1 // Σ−r,1Cτ,

which is constructed as in the proof of Lemma 7.0.3.

4.2 Example: the Adams spectral sequence

In this section we express the Adams Spectral Sequence as the spectral sequence associated

to a certain multiplicative filtration, which we will use to relate our results on matric Massey

products to a spectral sequence of interest. Write Fp for the Eilenberg-Maclane spectrum

HFp. Fix a spectrum X and an Fp Adams resolution X• given by

X = X0

��

X1
oo

��

X2
oo

��

· · ·oo

K0 K1 K2 · · ·

Let γX be the filtered spectrum

· · · → X → X → 0→ 0→ · · ·

with copies of X in every positive degree connected by identity morphisms, and set

QX = Σ−1,0(γX/X•)
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so in coordinates we have

QX = · · · → X0/X3 → X0/X2 → X0/X1 → · · · .

with X0/X1 in degree 0. The canonical map

γX → QX

dualizes to a map

F (QX,Fp)
α−→ ιF (X,Fp),

Proposition 4.2.1. The map α exhibits F (QX,Fp) as a cofibrant replacement for ιF (X,Fp)

in the 1-projective model structure on Ch(End(Fp)Mod) with “spheres” Sn = Σn End(Fp).

Proof. We first check that α is an acyclic fibration. Consider the commutative square

F (ΩX0/Xn,Fp) //

��

F (X0/Xn+1,Fp)

��
F (Xn,Fp) // F (X0,Fp).

Applying π−t to this square gives

Ht(X0/Xn) //

��

Ht(X0/Xn+1)

��
Ht(X0) // Ht(X0).

Since X• is an Adams resolution, we know that Ht(Xn)→ Ht(Xn+1) is always zero. In

particular, this implies that we have a natural splitting

Ht(X0/Xn) = Hq(X0)⊕Ht−1(Xn),
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so our square is just

Ht(X0)⊕Ht−1(Xs) //

��

Ht(X0)⊕Ht−1(Xn+1)

��
Hn(X0) // Hn(X0).

In particular, this square maps the image of the top map isomorphically onto the image of

the bottom map, so α is a weak equivalence. Moreover, the vertical maps are surjective, so

α is a fibration.

Therefore we only need to check that F (QX,Fp) is cofibrant. Since its filtration is

bounded above, it suffices to check that (QX,Fp)s/(QX,Fp)s+1 is always a direct sum of

copies of End(Fp). But this follows because Xs/Xs+1 is always a direct sum of copies of

Fp.

We have proven:

Corollary 4.2.2. Let CR(X) denote any cofibrant replacement in the 1-projective model

structure on filtered right R-modules, whose “spheres” are Sn = ΣnR. Then, for any X, the

spectral sequence associated to

F (CEnd(Fp)(F (X,Fp)),Fp)

is the (additive) Adams Spectral Sequence for X.

Since we are interested in multiplicative structure, we make a stronger claim in the case

X = S0:

Theorem 4.2.3. Keep the setting of the previous corollary. The spectral sequence associated

to

F
Fil(ModEnd(Fp))(CEnd(Fp)(Fp),CEnd(Fp)(Fp))
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is the Adams spectral sequence for the sphere, including its multiplicative structure.

The proof of this is contained in the following two lemmas.

Lemma 4.2.4. The map CEnd(Fp)(Fp)→ Fp induces an map of spectral sequences

Ek∗∗
(
F
Fil(ModEnd(Fp))

(
CEnd(Fp)(Fp),CEnd(Fp)(Fp)

))
→ Ek∗∗

(
F
(
CEnd(Fp)(Fp),Fp

))

which is an isomorphism starting at the E2 page.

Proof. This follows immediately because the cofibrant replacement map is 1-exact on the

underlying filtered spectra, so the map

F
Fil(ModEnd(Fp))

(
CEnd(Fp)(Fp),CEnd(Fp)(Fp)

)
→ F

(
CEnd(Fp)(F (X,Fp),Fp

)

is also 1-exact, and therefore an isomorphism on spectral sequences starting at the E2-page

by Corollary 4.1.5.

Lemma 4.2.5. The multiplicative structure on

F
Fil(ModEnd(Fp))

(
CEnd(Fp)(Fp),CEnd(Fp)(Fp)

)

induces the usual multiplication on the E2 page ExtA(Fp,Fp).

Proof. By unwinding definitions, we see that this is the usual composition multiplication

on Hom∗A(QFp, QFp) for the cofibrant replacement QFp coming from CEnd(Fp)(Fp). That

this agrees with the Yoneda product is classical: see e.g. the discussion after Lemma 1 of

[43].
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4.3 Example: Ext and Tor spectral sequences

In this brief section we record, with little commentary, two special cases of this spectral

sequence that we will use throughout the rest of the paper.

Theorem 4.3.1. Let X and Y be modules over some ring R in C, and suppose we have

filtrations X•, Y•, and R• on each of the three. Then, there are spectral sequences

E1
nt = π0∗∗ ((X ⊗ Cτ)⊗R⊗Cτ (Y ⊗ Cτ))

Proof. The given filtrations place a filtration on the bar construction B(X,R, Y ). To identify

the E1 page, note that we have

Cτ ⊗ |B(X,R, Y )| = |Cτ ⊗B(X,R, Y )|

= |B(Cτ,Cτ, Cτ)⊗B(X,R, Y )|

= |B(X ⊗ Cτ,R⊗ Cτ, Y ⊗ Cτ)|

= (X ⊗ Cτ)⊗R⊗Cτ (Y ⊗ Cτ)

Theorem 4.3.2 (Elmendorf-Kriz-Mandell-May [18]). Let X and Y be modules over some

ring R in C. There are spectral sequences

E2
r∗ = Torrπ∗R(π∗(X), π∗(Y ))⇒ πr+∗(X ⊗R Y ).

and

E2
r∗ = Extrπ∗R(π∗(X), π∗(Y ))⇒ πr+∗(FR(X, Y ).

The first converges absolutely, while the second converges conditionally.
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Proof. Let Q be the cofibrant replacement functor in D1(RMod). These are just the spectral

sequences associated to QX ⊗ Y and Hom(QX, Y ), respectively.
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CHAPTER 5

MULTIPLICATIVE STRUCTURE

In this chapter we relate the symmetric monoidal structures on C, on Dk(C), and on an

algebraic ∞-category relating to the Ek+1 page of the filtration spectral sequence.

More specifically, we show that under mild conditions Dk(C) can be viewed as a deforma-

tion whose generic fiber is C and whose special fiber is the derived ∞-category D(Grk(C♡)),

where Grk(C♡) is the (abelian) category of graded objects of C♡ with grading in A ⊗

{0, · · · , k − 1}. The functor Dk(C) τ−1

−−→ C is just the colimit map for any representing

filtration, while the functor Dk(C)→ D
(
Grk(C

♡)
)

takes X to Ek+1
∗∗ (X).

The idea of “a deformation of a stable ∞-category" has been formalized in several in-

equivalent ways. Throughout this paper, we use the term loosely to refer to ∞-categories

satisfying analogues of conditions 1 through 4, above, which appears to match how Gheo-

rghe et al. and Pstragowski use the term. However, we caution that Barkan [3] has defined

a deformation to be a Fil(Sp)-module in the ∞-category of presentable ∞-categories with

colimit-preserving maps, while Burklund, Hahn, and Senger [12] place additional restriction

on the deformation’s generators. We warn the reader that we do not believe our constructions

satisfy these more stringent definitions.1

In the rest of the chapter we argue that the symmetric monoidal structure on each

of these functors provides a recipe for transferring higher multiplicative information in the

filtration spectral sequence to higher multiplicative information in the spectrum the filtration

converges to. As a case in point, we prove a generalization of Moss’s convergence theorem,

showing that the deformation we’ve constructed lets us apply an argument of Burklund to

a much wider range of spectral sequences.

1. While our ∞-category Dk(C) is a Fil(Sp)-module in the ∞-category of all ∞-categories, some of the
maps involved do not preserve colimits, a difference that is necessary for our deformation to directly recover
the Ek page of a spectral sequence for k > 2.
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5.1 The k-derived category’s deformation structure

Recall from the introduction that the phrase “deformation of stable ∞-categories” is used

inconsistently in the literature. Noting that we have already established that Dk(C) is

compactly generated by shifts of spheres, we observe in this section that we have a diagram

of symmetric monoidal left adjoints

Dk(C)
τ=0

ww

τ−1

  
ModCτk+1(Dk(C)) C

in which we can identify the special fiber ModCτk+1(Dk(C)) with an algebraic ∞-category

and the map we’ve labelled “τ = 0" takes an object X to the Ek+1 page of its corresponding

spectral sequence.

This diagram exists for purely formal reasons; the hard part of this is the identification

of the fibers. To this end, we construct a t-structure on Dk(C). and use it to understand

ModCτk+1(Dk). In particular, we show that there is an equivalence between the subcategories

of connective objects which then extends to the equivalence of interest.

5.1.1 The filtration t-structure

In this section, we place a t-structure on Dk(C) that will help us to analyze the deformation

and identify its heart.

We grade our t-structures cohomologically, so that C≤0 denotes the connective part of C.

Definition 5.1.1. For k ≥ 0, the filtration t-structure on Dk(C) is defined by:

• Dk(C)≤0 is the full subcategory of objects X such that πknt(X) vanishes for n > 0.

• Dk(C)≥0 consists of objects X that πknt(X) vanishes for n < 0.
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To see that this is a t-structure, we will need to apply ideas of Keller and Vossieck [30],

expanded upon by Tarrio et al. [44], who find technical conditions guaranteeing that a sub-

category of a triangulated category is the connective part of a t-structure (for example, if the

inclusion functor has a right adjoint.) We will use the following∞-categorical reformulation

of their ideas, due to Lurie:

Lemma 5.1.2. Let C be a presentable stable ∞-category. If C′ is a full subcategory of C

which is presentable, closed under small colimits, and closed under extensions, then there

exists a t-structure on C such that C′ = C≤0.

Proof. This is Proposition 1.4.4.11 of [35].

We proceed in two steps. First, in Lemma 5.1.3, we check conditions guaranteeing that

there is a symmetric monoidal t-structure on Dk(C) with the desired connective piece. Sec-

ond, in Theorem 5.1.4, we check that Dk(C)≤0 matches the description we gave and identify

the t-structure’s heart.

Lemma 5.1.3. Let P denote the sub-∞-category Dk(C)≤0. P has the following properties:

1. P is closed under extensions and small colimits.

2. P is presentable.

3. P is closed under the symmetric monoidal product on Dk(C).

Proof. (1) Since Dk(C) is compactly generated by spheres, the natural equivalence

πknt(X) ≃ [Sn,t, X]Dk(C)

implies that for any collection {Xi}i∈I of objects, the natural map

∐
i∈I

πk∗∗(Xi)→ πk∗∗

∐
i∈I

Xi
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is an isomorphism, so P is closed under arbitrary coproducts. Now, suppose X → Y → Z

is a cofiber sequence in Dk(C). We obtain a long exact sequence

· · · → πkntCτ
k+1 ⊗X → πkntCτ

k+1 ⊗ Y → πkntCτ
k+1 ⊗ Z → πkn+k,t−1Cτ

k+1 ⊗X → · · · ,

by which we immediately see that if X and Z are in P , then Y must be as well. Similarly,

note that if n > 0 we must also have n + k > 0, so in particular if X and Y are in P then

Z must be as well. Since P is closed under cofibers and arbitrary coproducts, it must be

closed under all colimits.

(2) P is compactly generated by the set of spheres Sn,t with n ≤ 0, and is therefore

presentable.

(3) follows from the (trigraded) spectral sequence of 4.3 with

E2 = Torr
πkntS

0,0(π
k
nt(X), πknt(Y ))

converging to

πkn−kr,t+r(X ⊗ Y ).

With this lemma in hand we obtain a t structure, and we can immediately identify its

heart.

Theorem 5.1.4. The filtration t-structure is a symmetric monoidal t-structure, and its heart

is the abelian category Grk

(
C♡

)
of graded objects of C♡, where the grading takes values in

A× {0, · · · , k − 1}.

Proof. By Lemmas 5.1.2 and 5.1.3, there is a t-structure on Dk(C) such that Dk(C)≤0 = P .

Further, Lemma 5.1.3 shows that this t-structure is compatible with the symmetric monoidal

structure on Dk(C), so it remains to identify the coconnective objects and the heart.
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First, note that Dk(C)≥1 is precisely the set of all Y such that [X, Y ]Dk(C) = 0 for all X

in Dk(C)≤0. In particular, setting X = Sn,t, we must have

πkn,t(Y ) = 0

whenever s ≤ 0.

Conversely, suppose πkn,t(Y ) = 0 for all n ≤ 0, and suppose X is in Dk≥0(C). We have a

spectral sequence with

E2
∗∗∗ = Extπk∗∗S0,0

(
πk∗∗(X), πk∗∗(Y )

)
converging conditionally to

[X, Y ]
∗,∗
Dk(C).

Since πk∗∗X is concentrated in nonnegative n-degree and πk∗∗Y is concentrated in negative

n-degree, it follows that

Extr
πk∗∗S0,0

(
πk∗∗(X), πk∗∗(Y )

)
is concentrated in degrees n < 0 and r ≥ 0. The grading in the convergence takes the form

(r, n, t) 7→ (−kr + n, t+ r),

so

[X, Y ]
∗,∗
Dk(C).

is concentrated in negative n-degree, and in particular

[X, Y ]
0,0
Dk(C) = 0,

as desired.
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We next identify the heart. There is an obvious map

Dk(C)♡ → Grk

(
C♡

)

taking X to πknt(X) for 0 ≤ n < k. Using shifts of objects in C♡ it is easy to see that this

map is essentially surjective. To see that it is fully faithful, we use the spectral sequence

from Section 4.3

Extr
πk∗∗S0,0

(
πk∗∗(X), πk∗∗(Y )

)
converging conditionally to

[X, Y ]
∗,∗
Dk(C).

The grading takes the form

(r, n, t) 7→ (−kr + n, t+ r)

If X and Y are both in Dk(C)♡, the spectral sequence collapses for degree reasons and we

have

[X, Y ] = Homπk∗∗S0,0

(
πk∗∗(X), πk∗∗(Y )

)
,

as desired.

As an immediate consequence we have:

Corollary 5.1.5. The homotopy group π0(X) coming from the filtration t-structure can be

identified with the direct sum of the πknt(X) for 0 ≤ n ≤ k.

5.1.2 Identifying the fibers of the deformation

In this subsection, we identify the special and generic fibers of this deformation. We will see

that the hard work came in building the t-structure: the structure of the special fiber will

be a direct consequence. First, we quickly identify the generic fiber.
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Theorem 5.1.6. There is a natural symmetric monoidal equivalence between Dk(C)[τ−1] to

C.

Proof. Since localizations commute with one another, we can write

Dk(C)[τ−1] = Fil(C)[τ−1][W−1k ].

But Fil(C)[τ−1] just recovers C, and maps in Wk become equivalences in this localization.

Monoidality follows by the same argument after restricting Fil(C) to cofibrant objects.

Now we identify the special fiber. To this end, we recall the following definitions from

[42].

Definition 5.1.7. A commutative algebra A in Dk(C)≤0 is called shift if the map τk :

Σ−k,0X → X inducing an isomorphism

πk∗∗(A) = πk[0,k−1],∗(A)[τ
k]

An A-module M is called periodic if πk∗∗(M) = πk
[0,k−1],∗(M)[τk].

Throughout this section we consider the shift algebra A = S0,0, noting that any object

in Dk(C)≤0 comes equipped with an essentially unique A-module structure. We require two

very brief lemmas:

Lemma 5.1.8. The ∞-category Dk(C)≤0 is compactly generated by Sn,t with n < 0.

Proof. This is immediate because Sn,t generate Dk(C)≤0 and the filtration t-structure is

presentable.

Corollary 5.1.9. The ∞-category Dk(C)≤0 is generated under colimits by periodic objects

Proof. In the previous lemma it is enough to take Sn,t for −k < n < 0, since the others are

generated by successive suspensions. These spheres are periodic.
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Now at last we can identify the special fiber.

Theorem 5.1.10. Suppose C♡ has enough projectives. There is a symmetric monoidal

equivalence

ModCτk+1

(
Dk(C)≤0

)
→ D(Gr C♡)≤0

that takes X ⊗ Cτk+1 to the Ek page of the spectral sequence associated to X.

Proof. The underlying equivalence follows from Theorem 3.11 of [42], noting that (S0,0)≥0 =

Cτk+1 and applying Corollary 5.1.9.

To show that this can be promoted to a(n essentially unique) symmetric monoidal equiv-

alence, it suffices to show that there is an essentially unique symmetric monoidal structure

on D(Gr C♡)≤0 such that (1) the canonical symmetric monoidal structure on Gr C♡ and

(2) . By Lemma 2.60 of [41], D(Gr C♡)≤0 is equivalent to the ∞-categorical of spherical

presheaves (of spaces) on the ∞-category of projectives in Gr C♡. The result then follows

from Corollary 2.29 in the same paper.

Corollary 5.1.11. Suppose C♡ has enough projectives. There is a symmetric monoidal

equivalence

ModCτk+1

(
Dk(C)

)
→ D(Grk C♡)

Proof. Take the∞-category of spectrum objects on each side of the equivalence in Theorem

5.1.10.

5.2 An ∞-categorical characterization of matric Massey products

5.2.1 Review of chain complexes in stable ∞-categories

Filtered objects are sometimes casually referred to as “the stable ∞-categorical version of

chain complexes"2. This correspondence was made explicit by Ariotta [1]. In this brief

2. Source: the author has referred to them this way in the past.
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section we define chain complexes in stable ∞-categories and state Ariotta’s theorem, since

this language will be more natural when we discuss matric Massey products in the next

section.

Definition 5.2.1. Let Ch denote the category with objects [i] and ∗i for nonnegative integers

i and with a unique arrow ∗i → [j], [i]→ ∗j , [i]→ [j], and ∗i → ∗j for i > j.

· · · // ∗4 //

  

∗3 //

  

∗2 //

  

∗1 //

  

∗0

· · · // [4] //

>>

[3] //

>>

[2] //

>>

[1] //

>>

[0]

A (connective) chain complex in C is a functor Ch→ C taking ∗i to the zero object in C

for all i. The ∞-category Ch(C) is the full sub-∞ category of Fun(Ch, C) whose objects are

chain complexes.

If we replaced C with an (ordinary) abelian category, this would recover the usual def-

inition of chain complexes. In the ∞-category setting, the definition builds in coherent

homotopies witnessing the vanishing of certain Toda brackets.

There is a natural ∞-categorical analogue of a chain complex’s cycle groups Zn(X):

Definition 5.2.2. For 0 ≤ i < j ≤ ∞, let Ch
j
i denote the full subcategory of Ch with

objects [k] and ∗k for i ≤ k ≤ j. Given a functor X : Ch
j
i → C, we let Zji (X) denote

the limit of X. Similarly, let Cji (X) denote the corresponding colimit. We will mildly abuse

notation and write Zji (X) to denote Zji (X|Chji
) if X is defined on a larger category (typically

Ch).

Proposition 5.2.3. There are fiber sequences Zji (X) → Xj → Z
j−1
i (X) and cofiber se-

quences Cji+1(X)→ Xi → C
j
i (X)

Proof. The first is a special case of Proposition 4.4.2.2 of [33], with L the full subcategory

excluding [j] and K ′ the full subcategory excluding ∗j . The second is dual.
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In the case j = i+ 1, we see that Zji (X) is the fiber of the map Xj → Xi, while Cji (X)

is its cofiber, so that we have Cji (X) = ΣZ
j
i (X). In Appendix 8, we prove the following

proposition generalizing this fact:

Proposition 5.2.4. Iterated fibers agree with iterated cofibers after a shift. More explicitly,

for any X : Ch
j
i → C we have a natural equivalence

C
j
i (X) = Σj−iZji (X).

Theorem 5.2.5 (Ariotta). Suppose C is closed under sequential limits. Then, there is an

equivalence between the ∞-category of chain complexes and the ∞-category of filtered objects

X with X∞ = 0. In our notation, this equivalence takes a chain complex

· · · → Y2 → Y1 → Y0 → Y−1 → · · ·

to the filtered object

· · · → Σ−1Z−1−∞(Y )→ Z0
−∞(Y )→ ΣZ1

−∞(Y )→ · · ·

Proof. This is Theorem 4.7 of [1].

5.2.2 Chain complexes in the derived ∞-category

In this section we apply the theory of the previous section to the specific case of the derived

∞-category of a(n ordinary) commutative ring R. We will see that the higher homotopies in

the definition of a chain complex correspond to maps satisfying similar properties to May’s

notion of matric Massey products. This will allow us to define matric Massey products using

purely∞-categorical data, which will help us in the next sections to pass higher multiplicative

information along symmetric monoidal ∞-categorical functors.
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The idea that something like this ought to be true appears to be folklore, but we were

unable to find a source that either explicitly states or proves the relevant facts. Through-

out this section, let R be a commutative ring. Throughout, we make the following sign

conventions:

Convention 5.2.6. The shifted chain complex X[i] has differential (−1)idX .

Convention 5.2.7. The mapping cone of f : X → Y has the same elements as X[1] ⊕ Y

and differential −dX + dY + f.

Our main result provides an explicit construction of chain complexes in D(R).

Proposition 5.2.8. Let Xn
fn−→ · · · f2−→ X1

f1−→ X0 be a series of maps of cofibrant chain

complexes of R-modules. Any extension of this diagram to a chain complex in D(R) comes

from a series of maps (not necessarily chain maps) fij : Xj → Xi[j−i−1] for 0 ≤ i < j ≤ n

such that:

• fi−1,i = fi.

• For any cycle x, dfi,k(x) =
∑k−1
j=i+1(−1)

j+1fi,jfj,k(x)

Given this information, the object Zn0 (X) is represented by a chain complex

(Zn0 (X))k = (X0)k+n + (X1)k+n−1 + · · ·+ (Xn)k

with differential

d(x0, x1, · · · , xn) = (−1)n
 n∑
j=0

(−1)jf0j(xj),
n∑
j=1

(−1)jf1j(xj), · · · , (−1)ndxn


where we set fjj(x) = dx to simplify the notation.
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Proof. We proceed by induction. The case n = 0 is automatic. Now, an extension of a chain

complex of length n to one of length n+ 1 corresponds to a (homotopy class of) map(s)

Xn+1 → Zn0 (X)

such that the induced map Xn+1 → Xn is fn. Using the formula for Zn0 (X), a map f :

Xn+1 → Zn0 (X) splits into maps fi,n+1 : Xn+1 → Xi[n − i]. For f to be a chain map, we

require df = fd. In particular, we must have

f(dx) =
∑

df(x)

= (−1)n
 n∑
j=0

(−1)jf0jfj,n+1(x),
n∑
j=1

(−1)jf1jfj,n+1(x), · · · , (−1)ndfn,n+1(x)


Since x is a cycle, we have dx = 0, so we must indeed have

dfi,n+1(x) =
n∑

j=i+1

(−1)j+1fi,jfj,n+1(x).

Now, Zn+1
0 (X) can be computed as the homotopy fiber of f . This has components

(
Zn+1
0 (X)

)
k
= (Zn0 (X))k+1 ⊕ (Xn+1)k

= (X0)k+n + (X1)k+n−1 + · · ·+ (Xn)k
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and differential

d(x0, · · · , xn+1) = dXn+1(xn+1)− dZ
n
0 (X)(x0, · · · , xn) + f(xn+1)

=
(
0, 0, · · · , 0, dxn+1

)
− (−1)n

 n∑
j=0

(−1)jf0j(xj),
n∑
j=1

(−1)jf1j(xj), · · · ,
n∑
j=n

(−1)jfn,j(xj), 0


+
(
f0,n+1(xn+1), f1,n+1(xn+1), · · · , fn,n+1(xn+1), 0

)
= (−1)n+1

n+1∑
j=0

(−1)jf0j(xj),
n+1∑
j=1

(−1)jf1j(xj), · · · , (−1)n+1dxn+1



To relate this to May’s notion of matric Massey products, we require an additional sign

convention.

Convention 5.2.9 (May, [36]). For an element x, we set x̄ = (−1)1+deg(x)x. For a matrix

X, let X̄ be the matrix formed by applying this operation to each of its elements.

We start by recalling the definition of a matric Massey product from [36]. Suppose we

have an augmented differential graded algebra U , a left U -module N , and a right U -module

N , and let (V1, · · · , Vℓ+1) be a series of multipliable matrices such that the elements of Vi

are cycles in M if i = 1, cycles in N if i = ℓ+ 1, and cycles in U otherwise. We inductively

define matrices Ai,j and for 0 ≤ i < j ≤ ℓ+ 1, except for (i, j) = (0, ℓ+ 1), by setting

Ai−1,i = Vi

and

dAi,j = Ãi,j

58



where

Ãi,j =

j−1∑
k=i+1

Āi,kAk,j .

Notice that Ai,j is not uniquely defined: there can be multiple choices (and often zero choices)

for Ai,j at each step.

Definition 5.2.10. [May, [36]] The matric Massey product ⟨V0, · · · , Vℓ+1⟩ is the set of all

possible Ã0,ℓ+1 coming from different choices for Ai,j in the above process.

We can relate this to the construction of Proposition 5.2.8 by a two-step process.

Let V1, · · ·Vℓ+1 be multipliable matrices as above. Consider the system

⊕
d1i∈D1

U [d1i ]
V2−→

⊕
d2i∈D2

U [d2i ]
V3−→ · · · Vℓ−→

⊕
dℓi∈Dℓ

U [dℓi ],

where the Dks are collections of degrees (possibly with repetition) induced from the Vis.

Applying Proposition 5.2.8, and noting that a U -module map between shifted copies of U is

fully determined by the image of 1, we see extensions of this sequence to a chain complex X

in U -modules are equivalent to choices Ai,j as above for 1 ≤ i < j ≤ ℓ.

Moreover, a lift of the map

R
V1−→M ⊗U

⊕
d1i∈D1

U [d1i ]

to a map

R
V ′
1−→M ⊗U Zℓ−10 X

is the same information as choices A0,j with 0 < j < ℓ, and a lift of the map

⊕
dℓi

U [dℓi ]
Vℓ+1−−−→ N [dℓ+1]
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(where dℓ+1 is the degree of V1 · · ·Vℓ+1) to a map

Cℓ−10 (X)
V ′
ℓ+1−−−→ N [dℓ+1]

is the same information as choices Ai,ℓ+1 with i > 0. Finally, note that ˜A0,ℓ+1 is the image

of 1 under the composite

R[ℓ− 1]
V ′
1[ℓ−1]//M ⊗U Zℓ−10 (X)[ℓ− 1]

∼=
��

Zℓ−10 (M ⊗U X)[ℓ− 1]

∼=
��

Cℓ−10 (M ⊗U X)
V ′
ℓ+1 // N [dℓ+1].

We can repackage this as a definition.

Definition 5.2.11. For any C satisfying the conditions of Section 2, suppose we have a

ring U in C, a right U -module M , and a left U -module N . Given a multipliable series of

matrices V1, · · · , Vℓ+1 such that the elements of V1 lie in in π∗(M), the elements of Vℓ+1 lie

in π∗(N), and the elements of the other matrices lie in π∗(U), we define a (possibly empty)

set of elements we call the smash Toda bracket and denote

⟨V1, · · · , Vℓ+1⟩ ⊆ π∗(M ⊗U N)

as follows. First, consider each way of extending the series of maps

⊕
d1i∈D1

Σd
1
iU

V2−→
⊕
d2i∈D2

Σd
2
iU

V3−→ · · · Vℓ−→
⊕
dℓi∈Dℓ

Σd
ℓ
iU
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to a chain complex T(V ), and each lift of the maps

S0
V1−→

⊕
d1i∈D1

M

and ⊕
dℓi∈Dℓ

Σd
ℓ
iU

Vℓ+1−−−→ Σd
ℓ+1

N

to maps

S0
V ′
1−→ Zℓ−10 (M ⊗U T(V ))

and

Cℓ−10 (T(V ))
V ′
ℓ+1−−−→ Σd

ℓ+1
N.

(If any of these are not possible, the bracket is by definition empty.) The smash Toda bracket

then consists of compositions

Sℓ−1
Σℓ−1V ′

1 // Σℓ−1Zℓ−10 (M ⊗U T(V ))

∼=

��

Cℓ−10 (M ⊗U T(V ))
M⊗UV

′
ℓ+1 // Σd

ℓ+1M ⊗U N

The discussion leading up to this section has shown:

Theorem 5.2.12. Let R be an ordinary ring, and let U be a differential graded R-algebra

whose underlying differential graded module is cofibrant in the projective model structure.

Then, matric Massey products and smash Toda brackets in D(R) coincide.

61



5.3 Moss’s convergence theorem

As a simple demonstration of the power of this kind of deformation, we recall Burklund’s

proof of Moss’s convergence theorem [9, Section 4.2] for the Adams Spectral Sequence. Moss’s

convergence theorem relates two kinds of higher multiplicative structure: Massey products,

which are defined in any differential graded algebra, and Toda brackets, which are defined in

on the homotopy groups of ring spectra. More specifically, Moss showed that under certain

conditions a Massey product in the Ek page of the Adams Spectral Sequence can detect a

corresponding Toda bracket in the homotopy groups of its target:

Theorem (Moss). For spectra X, Y , Z, and W , let En,tk (X, Y ) denote the Ek page of

the mod p Adams spectral sequence computing [X, Y ∧p ]. Suppose we have permanent cycles

a ∈ En,tk (X, Y ), b ∈ En
′,t′

k (Y, Z), and c ∈ En
′′,t′′

k (Z,W ) such that ab = 0 and bc = 0. Suppose

a, b, and c detect maps of spectra ω, ω′, and ω′′ of degree i, i′, and i′′ respectively such that

ωω′ = ω′ω′′ = 0.

Moreover, suppose the spectral sequences Ek(X,Z) and Ek(Y,W ) satisfy the following

crossing differential hypotheses:

• For 0 ≤ n ≤ s+ s′ − k, every element of En,i+i
′+n+1

n+s′−n+1
(X,Z) is a permanent cycle.

• For 0 ≤ n ≤ s′ + s′′ − k, every element of En,i
′+i′′+n+1

n′+s′′−n+1
(Y,W ) is a permanent cycle.

Then, the Massey product ⟨a, b, c⟩ contains a permanent cycle that detects an element of the

Toda bracket ⟨ω, ω′, ω′′⟩.

Further work has generalized this observation to a wider class of higher multiplicative

operations and spectral sequences. Lawrence’s PhD Thesis [32] showed that Moss’s theorem

holds for all matric Massey products. May’s seminal paper [36] on matric Massey products

proves a similar statement for the spectral sequence associated to a filtered differential graded

algebra. More recently, Belmont and Kong [4] have proven the statement for triple Massey
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products in filtration spectral sequences in arbitrary symmetric monoidal stable topological

model categories.

Burklund shows that, at least for the E2 page of the Adams Spectral Sequence, Moss’s

theorem is an immediate consequence of the deformation structure on synthetic spectra. The

proof consists of three quick observations:

1. Let ν denote the fully faithful functor from spectra to synthetic spectra. A class α in

the Adams E2 page for a spectrum X is a permanent cycle detecting a homotopy class

a if and only there is an element α̃ ∈ π∗∗(νX) specializing to α in π∗∗(X ⊗Cτ) and a

in τ−1X.

2. If ab = 0 in the Adams E2 page, then ãb̃ is τk-torsion for some k.

3. The crossing differential hypothesis implies that any τk torsion element in the same

degree as ãb̃ mapping to zero in the Adams E2 page must be equal to zero.

These three observations imply that, given a, b, c in the Adams E2 page with ab = bc = 0,

we can construct lifts ã, b̃, and c̃ with ãb̃ = b̃c̃ = 0. Because the maps from synthetic spectra

to its special and generic fiber are exact and symmetric monoidal, the Toda Bracket ⟨ã, b̃, c̃⟩

specializes to both the Massey product ⟨a, b, c⟩ and the Toda bracket ⟨ω, ω′, ω′′⟩. A similar

proof applies to more complex Massey products.

In this section, we construct a deformation of a sufficiently well-behaved symmetric

monoidal stable∞-category C whose special fiber corresponds with the Ek page of the more

general filtration spectral sequence. As an example application, we then show that Burk-

lund’s argument can be carried out in this setting, providing a more intuitive and general

proof of Belmont and Kong’s result.

To do this, we first prove a couple of lemmas relating homotopical information in Dk(C)

to corresponding statements about the spectral sequence.
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Lemma 5.3.1. Let α be an element of Eknt(X). Then, α survives to the Ej page if and only

if α is in the image of the natural map

πknt(X ⊗ Cτ j+1)→ πknt(X ⊗ Cτk+1).

Similarly, α survives to the E∞ page if and only if it is in the image of the natural map

πknt(X)→ πknt(X ⊗ Cτk+1).

Proof. We have a natural commutative square

πt(Xn/Xn+j+1) //

��

πt(Xn−k/Xn+j−k+1)

��
πt(Xn/Xn+k+1) // πt(Xn−k/Xn+1).

The image of the bottom map is Eknt(X), while the image of the top map is πknt(X⊗Cτ j+1).

The claim follows because Ejnt(X) is the image of the composition of the top map with the

map

πt(Xn−k/Xn+j−k+1)→ πt(Xn−j/Xn+1).

The proof of the second part is similar.

Notice that our statement of the crossing differential hypothesis is slightly different from

Moss’s, since we have graded things differently and do not assume our filtrations are bounded

on either side.

Definition 5.3.2. Fix n and t. We say that the crossing differential hypothesis holds on the

Ek page in degrees n, t if, for any ℓ > 0, all elements of

Ek+ℓ+1
n−k−ℓ,t+1(X)
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are permanent cycles.

We follow Burklund by rephrasing Moss’s Proposition 6.3 as a statement about τ -power

torsion:

Lemma 5.3.3. Suppose the crossing differential hypothesis holds on the Ek page in degree

n, t. Then, the kernel of the map

πk−1nt (X)→ πk−1nt (X ⊗ Cτk) = Eknt(X)

is τ j-torsion free for all j > 0.

Proof. Suppose otherwise. Choose x in πk−1nt (X) mapping to zero in Eknt(X), and choose

the smallest j such that τ jx = 0. Using the exact couple in Proposition 4.1.4, we must have

x = τy for some y in πk−1n+1,t(X). Notice that to prove x = 0 it suffices to show that τ jy = 0,

since this will imply that τ j−1x = 0 and contradict the assumption that j was minimal.

Since τ j+1y = 0, we can use the cofiber sequence (in Dk−1(C))

Σ−j−1,0X τ j+1

−−−→ X → X ⊗ Cτ j+k

to find a preimage z of y in πk−1n−j−k,t+1(X⊗Cτ
j+k). By the crossing differential hypothesis,

z is a permanent cycle and therefore the image of an element of πk−1n−j−k,t+1(X), and so maps

to zero in πk−1n−j+1,tX.

But the commutative diagram

X ⊗ Cτ j+k //

��

Σ−j−k+1,1X

τ j
��

X ⊗ Cτk // Σ−k+1,1X

shows that the image of z in πk−1n−j+1,tX is equal to τ jy, which must therefore be zero.
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Finally, we are in a position to state Moss’s convergence theorem.

Theorem 5.3.4. Let M,U, and N be filtered objects of C with convergent spectral sequences

such that U is a ring, M is a right U-module, and N is a left U-module. Let ⟨V0, · · · , Vn⟩ be

a multipliable system of matrices of permanent cycles the Ek pages of the relevant spectral

sequences, detecting matrices of elements ⟨Ṽ0, · · · Ṽn⟩ in the homotopy groups of the colimits

of M , U , and N . Moreover, suppose that the spectral sequences for M , U , and N satisfy the

crossing differential hypothesis in the degrees of any product of elements from any number of

adjacent matrices.

Then, if the matric Massey product ⟨V0, · · · , Vn⟩ is not empty, then it contains a perma-

nent cycle detecting an element of the smash Toda bracket ⟨Ṽ0, · · · Ṽn⟩

Proof. By Lemma 5.3.1, the matrices V1, · · · , Vn−1 lift from πk−1∗∗ (U ⊗ Cτk) to matrices

V̂1, · · · , V̂n−1 in πk−1∗∗ (U) with the property that τ−1V̂i = Ṽi. Similarly, V0 and Vn lift to

πk−1∗∗ (M) and πk−1∗∗ (N). The crossing differentials hypothesis then implies we can lift the

entire chain complex T(V ) of Definition 5.2.11 from πk−1∗∗ (U ⊗ Cτk) to πk−1∗∗ (U). Since the

“tensor with Cτk” endofunctor of Dk−1 is exact, it preserves the functors Cn−10 and Zn−10 ,

which can be written as iterated (co)fibers. Therefore the entire diagram

Sℓ−1 ⊗ Cτk
Σℓ−1V ′

1 // Σℓ−1Zℓ−10 (M ⊗U T(V ))

∼=

��

Cℓ−10 (M ⊗U T(V ))
M⊗UV

′
ℓ+1 // Σd

ℓ+1M ⊗U N

lifts from ModCτk(D
k−1(C)) to Dk−1(C), so we obtain an element αV of ⟨V̂1, · · · , V̂n⟩ which

maps to an element α
V̂

of ⟨V1, · · · , Vn⟩. The statement then follows because the map

τ−1 : Dk−1(C)→ C
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is pointed and symmetric monoidal, and hence preserves smash Toda brackets, so we have

τ−1⟨V̂1, · · · , V̂n⟩ ⊆ ⟨Ṽ1, · · · , Ṽn⟩.

But τ−1α
V̂

is the set of elements detected by αV , completing the proof.
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CHAPTER 6

GENERATION BY MATRIC MASSEY PRODUCTS

6.1 Introduction

Recall that Gugenheim and May [22] proved that for any field R and augmented connected

graded algebra A, the cohomology ExtA(R,R) of A is generated by elements in degree s = 1

under matric Massey products.

Much of Gugenheim and May’s proof is formal, but there is a single step (Proposi-

tion 5.16) which relies on the explicit structure of the bar construction used to calculate

ExtA(R,R). This piece of the argument does not generalize to other DGAs, but we find

that it can be replaced with an argument that works for differential graded algebra whose

underlying algebra is Koszul : that is, generated by elements in degree s = 1, with relations

generated by elements in degree s = 2, with relations between relations generated in degree

s = 3, and so on. In particular, this is true is the algebra is freely generated in degree s = 1,

as in the cobar construction computing ExtA(R,R).

The main result of the chapter is the following:

Theorem 6.1.1. Let Es,tr be a multiplicative spectral sequence over a field R concentrated

in degrees s ≥ 0, and suppose the E1 page can be chosen to be Koszul. Let Es,t2,r denote the

set of elements in E
s,t
2 which survive to the Er page. Then:

• The E2 page is generated under matric Massey products by elements in degree s = 1.

• E
∗,∗
2,r is generated under matric Massey products by elements in degree 0 < s < r.

The first part is a generalization of the main result of [22, Chapter 5], while the second

is wholly new. The result holds in our motivating example of the Adams Spectral Sequence,

but also more generally.
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We prove the first bullet point in Section 6.3, and the second in Section 6.4. Before that,

in Section 6.2, we record a handful of classical algebraic facts that we will need in what

follows.

6.2 A classical identification of an augmented algebra’s

indecomposables

This brief section contains classical algebraic facts and definition we will reference in the

following two sections. First, we formalize our notion of a Koszul algebra.

Definition 6.2.1. Let R be a field, and let U be a negatively-graded augmented graded

R-algebra. We say U is Koszul if TornU (R,R) is concentrated in degree −n.

Following Wall’s work [45], note that this places strong conditions on the generators of

U . By writing down a minimal U -resolution of R, one observes that U must be generated by

elements in degree n = −1, with relations in degree n = −2, with relations between relations

in degree n = −3, and so on.

Koszulity turns out to be the right condition to generalize Gugenheim and May’s argu-

ment. For our applications, the most important example is:

Example 6.2.2. Let U be a free algebra generated by elements in degree n = −1. Then U is

Koszul.

Classically, we can identify indecomposables in U with a subspace of TorU1 (R,R). The

next two sections will use Gugenheim and May’s insight that if U carries a differential

structure this identification can be taken further, to relate elements indecomposable by matric

Massey products in U with a subspace of a derived version of TorU1 (R,R). Here we record

the classical statement and proof to motivate our proofs in the next two sections. To start,

we define a map traditionally called the suspension.
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Definition 6.2.3. Let R be a ring and U be an augmented R-algebra with augmentation

ideal IU. We define the suspension map

σ : IU → TorU1 (R,R)

as follows. Choose a free U -resolution X• of R with X0 = U.

For u ∈ IU , let x denote the image of u under the inclusion IU → X0. Since x = 0 in

H0(X•), there exists y in X1 with dy = x. Notice that y ⊗ 1 is a cycle in X• ⊗ R, and so

corresponds to an element of TorU1 (R,R), which we call σ(u).

To see that this did not depend on the choice of y, suppose that we instead chose y′ with

dy′ = x. Then d(y − y′) = 0, so there exists z in X2 with dz = (y − y′). In particular,

d(z ⊗ 1) = (y ⊗ 1 − y′ ⊗ 1) in X• ⊗ R, so σ(u) is indeed well-defined in TorU1 (R,R). With

further work it is possible to show that σ did not depend on the choice of resolution, but

this is not relevant to the rest of this paper, so we omit it.

Notice that σ, as defined, is actually a map of U -modules, where we view the right hand

side as the direct sum of a bunch of copies of R with U -action induced by the augmentation

map. In particular, we see that σ(u) = 0 whenever u is the product of two elements of IU.

The converse is true as well. To see this, we require the following (immediate) observation.

Observation 6.2.4. Let IU be the augmentation ideal of U , defined by the short exact

sequence

0→ IU → U → R→ 0.

An element of IU is decomposable if and only if it lands in the image of the natural map

IU ⊗U IU → IU.

This observation allows us to identify the kernel of σ as the decomposables in IU , which
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will imply the desired bijection between the image of σ and the indecomposables.

Proposition 6.2.5. The kernel of σ consists of precisely the decomposable elements of IU .

Proof. Let π denote the natural map IU = U ⊗U IU → R⊗U IU. The long exact sequence

0→ IU → U → R→ 0

induces an exact sequence

IU ⊗U IU → U ⊗U IU
π−→ R⊗U IU → 0.

so the kernel of π is the image of IU ⊗U IU in U ⊗U IU, which by Observation 6.2.4 consists

of the decomposable elements of IU .

Now, consider the diagram

TorU1 (R,U)
// TorU1 (R,R)

// R⊗U IU

IU

σ

OO
π

77

which commutes by the definitions of π and τ. The top row is exact and TorU1 (R,U) is 0, so

kerσ must be equal to kerπ.

6.3 Koszul conditions and generation in Gugenheim-May

Gugenheim and May study matric Massey products in ExtA(R,R), which is the cohomology

of the cobar construction of an augmented connected algebra A. In this section, we show

that their argument generalizes to relate more general differential-graded algebras to their

cohomology rings.
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Warning 6.3.1. The (n, t) gradings we have introduced are inherently homological. Gugen-

heim and May use cohomological grading (s, t), where s = −n. We will find n-grading more

convenient for our proofs, but state our final result with s-grading to facilitate comparison

and application to the Adams spectral sequence.

Our goal is to prove the following theorem, which is equivalent to the first bullet point of

Theorem 6.1.1. The proof will closely follow Chapter 5 of Gugenheim and May’s book [22],

which proves the case where U is the cobar construction of an augmented connected algebra

A.

Theorem 6.3.2. Let U be a differential graded algebra whose underlying algebra is Koszul.

The homology H(U) is generated under matric Massey products by elements of degree n =

−1.

Our proof strategy is as follows. First, we will define a “derived” Koszul condition for

differential graded algebras, which we will show implies that the homology is generated

under matric Massey products by elements of degree n = −1. Then, we will show that any

differential graded algebra whose underlying algebra is Koszul (in the classical sense) is also

Koszul in the derived sense. To start, we define:

Definition 6.3.3. Let R be a field, and let U be an augmented differential graded R-algebra.

We say U is Koszul if R⊗L
U R has homology concentrated in degree n = 0.

Here R ⊗L
U R is the derived tensor product, which Gugenheim and May notate as

Tor∗U (R,R). We state the two parts of our proof as separate theorems.

Theorem 6.3.4. Let U be a Koszul differential graded R-algebra. Then HU is generated by

elements of degree −1 under matric Massey products.

Theorem 6.3.5. Let U be a differential graded R-algebra. If the underlying graded R-algebra

of U is Koszul, then U is as well.
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The proof of Theorem 6.3.4 is essentially contained in Section 5 of [22], although they

do not state it in this generality. We sketch it here to emphasize that the proof works for

any Koszul differential graded R-algebra, rather than just the cobar construction, and to

foreshadow the proofs in the next section. We start by generalizing the suspension map

from definition 6.2.3 to include the presence of differentials.

Definition 6.3.6 (Definition 3.7 of [22]). Let R be a ring and U be an augmented differ-

ential graded R-algebra with augmentation ideal IU. Denote by Ek∗∗(R,U,R) the algebraic

Eilenberg-Moore spectral sequence computing the homology of R⊗L
U R. The suspension map

σ : H(IU)→ E∞1∗(R,U,R)

is the top horizontal composition

H(IU) σ //

σ
��

E∞1∗(R,U,R)

TorHU1∗ (R,R) E2
1∗(R,U,R)

OO

where the σ appearing on the left hand arrow is the classical map of Definition 6.2.3.

Gugenheim and May then prove a generalization of Proposition 6.2.5:

Theorem 6.3.7 (Corollary 5.13 of [22]). The kernel of the map σ consists of the elements

of U which are decomposable by matric Massey products.

Sketch of proof. As a derived counterpart of Observation 6.2.4, Gugenheim and May show

that the image of the map

H
(
IU ⊗L

U IU
)
→ H (IU)

out of the derived tensor product is the set of decomposable in H(IU) under matric Massey

73



products. The fiber sequence

IU → U → R

induces a fiber sequence

IU ⊗L
U IU → IU ⊗L

U U
π−→ IU ⊗L

U R,

which then leads to an exact sequence

H
(
IU ⊗L

U IU
)
→ H (IU)

π−→ H
(
R⊗L

U IU
)
.

In particular, the kernel of the map π must be the set of indecomposables. Following the

proof of the previous section, one sees that kerπ = kerσ.

The proof of Theorem 6.3.4 is then immediate. The Koszul condition implies that

E∞1,n(R,U,R) is concentrated in degree −1, so elements in any other degree must land in the

kernel of σ and hence be decomposable.

In the remainder of this section, we prove Theorem 6.3.5. The argument is a variant of the

proof of Proposition 5.16 in [22] designed to avoid explicit features of the cobar construction.

To start, we place a filtration on an arbitrary chain complex X.

Definition 6.3.8. Let X be a chain complex. The inverse filtration on X is the natural

filtration with

Fn(X)i =


Xi for i ≤ −n

0 for i > −n.
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We call this the “inverse” filtration to contrast it with the canonical filtration

Fn(X)can
i =


Xi for i > n

ker(di) for i = n

0 for < n.

which runs in the opposite direction. While the canonical filtration leads to a spectral

sequence based on the homology of the DGA (traditionally called the algebraic Eilenberg-

Moore spectral sequence), the inverse filtration leads to a spectral sequence based on the

DGA’s underlying algebra.

Proof of Theorem 6.3.5. Consider the inverse filtration on U , and note that the associated

graded complex of F•(U) is equivalent to the underlying algebra V (U) of U with zero differ-

ential. Applying 4.3.1 to with filtration on U and the trivial filtration SιR on R, we obtain

a spectral sequence

E1
∗∗ = Tor

V (U)
∗ (R,R)⇒ H(R⊗L

U R).

Since V (U) is Koszul, the E1 page is concentrated in degrees (n,−n), so H(R ⊗L
U R) must

be concentrated in degree zero.

6.4 Koszul conditions and generation in Fil(C).

In this section we prove the second bullet point of Theorem 6.1.1. In particular, we prove:

Theorem 6.4.1. Let Es,tr be a multiplicative spectral sequence over a field R, and suppose

the E1 page can be chosen to be freely generated by elements in degree s = 1 in addition to

a unital copy of R in degree s = t = 0. Let Es,t2,r denote the set of elements in E
s,t
2 which

survive to the Er page. Then:

• E
∗,∗
2,r is generated under matric Massey products by elements in degree 0 < s < r.
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Our strategy is similar to that of the previous section. First, applying Lemma 7.0.4 if

necessary, we may assume our spectral spectral sequence comes from a ring object in Fil(C)

for some stable∞-category C. Next, we define another “derived” variant of the Koszul condi-

tion, which is essentially the definition of the previous section constructed within the special

fiber of the D1 deformation. We show that this condition implies the desired generation

condition on E
s,t
2,r, and then we show that a Koszul E1 page makes the spectral sequence

Koszul in this derived sense.

Throughout this section, we use the notation ⊗L to emphasize that our tensor products

are taken in D1(C) rather than in Fil(C), and we use n-grading, directing the reader who

prefers s-grading to Warning 6.3.1. Our Koszul condition is as follows.

Definition 6.4.2. Let R be a(n ordinary) field viewed as an object of C, and let U be an

augmented R-algebra in D1(C). We say U is Koszul if π1nt(R⊗L
U R⊗

L Cτ2) is concentrated

in degree 0.

The goal of this section is to prove two theorems:

Theorem 6.4.3. Let U be a Koszul R-algebra which is cofibrant in the 1-projective model

structure on Fil(C). Then for each r, π1nt(U ⊗ Cτr+1) is generated under (matric) smash

Toda brackets by elements with degree 1− r ≥ n ≥ −1.

Theorem 6.4.4. Suppose U is a ring in Fil(C) which is cofibrant in the 1-projective model

structure, and π0∗∗(U ⊗ Cτ) is Koszul. Then U is as well.

These will jointly imply Theorem 6.4.1, because by Lemma 5.3.1, E2,r
n,t (U) is the image

of the map

π1nt(U ⊗ Cτr+1)→ π1nt(U ⊗ Cτ2),

and this map preserves (matric) smash Toda brackets.

We begin with the following lemma.
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Lemma 6.4.5. We have an identification

R⊗L
U R⊗

L Cτk+1 → (R⊗L Cτk+1)⊗L
U⊗LCτk+1 (R⊗L Cτk+1).

Proof. This is the same argument as the proof of Lemma 4.3.1.

We now continue as before by defining a suspension map.

Definition 6.4.6. Let U be an augmented R-module in D1(C) with augmentation ideal IU ,

and let E∗(U) denote the spectral sequence from Theorem 4.3.2 with

E2
rnt(U) = Tor

π1∗∗
(
U⊗LCτk+1

)
r

(
π1∗∗(R⊗L Cτk+1), π1∗∗(R⊗L Cτk+1)

)

converging to

π1n−r,t+r
(
R⊗L

U R⊗
L Cτk+1

)
.

We define

σ : π1∗∗(IU ⊗L Cτk+1)→ E∞1∗∗(U)

as the top horizontal composition

π1∗∗(IU ⊗L Cτk+1) σ //

σ
��

E∞1∗∗(U)

Tor
π1∗∗(IU⊗LCτk+1)
1 (π1∗∗(R⊗L Cτk+1), π1∗∗(R⊗L Cτk+1)) E2

1∗∗(U)

OO

where the σ labelling the left hand arrow is the classical suspension map from Definition

6.2.3.

As before, the first step to relating σ with decomposables is to identify indecomposables

with a subspace of the homotopy groups of a tensor product. In this setting, we have the

following version of Observation 6.2.4.
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Observation 6.4.7. Let U be a (not-necessarily commutative) R-algebra in D1(C) with an

augmentation giving rise to a split fiber sequence

IU → U → R,

and fix a right U-module M . Every element in the image of

π1∗∗(M ⊗L
U IU)→ π1∗∗(M ⊗L

U U)

is decomposable by nontrivial smash Toda brackets (by which we mean smash Toda brackets

such that the last factor comes from π1∗∗(IU), not just π1∗∗(U).)

Proof. Fix a cofibrant replacement X• of IU , taken in the 1-projective model structure

on Fil(ModU ). Combining the results of section 3 with Theorem 5.2.5, we can view this

resolution as a chain complex Ch(X)•. Note that we can build such a replacement from any

free π1∗∗(U) resolution of π1∗∗(IU), so in particular we can assume the elements of X• ⊗ Cτ

are coproducts of sums of shifts of U , not merely of retracts of U .

Now, choose α ∈ π1∗∗(M ⊗L
U IU). Since colimX• = IU and spheres are compact by

Theorem 3.5.1, there must be some n > 0 such that α lifts to some α̂ in π1n′t
(
M ⊗L X−n

)
.

But by Theorem 5.2.5, we can identify X−n with ΣnZn0 (Ch(X)•), which by Proposition 5.2.4

is equivalent to Cn0 (Ch(X)•)). Since Ch(X•) is a complex of direct sums of shifts of U , the

maps Ch(X)k → Ch(X)k−1 are matrix maps with elements in π1∗∗(U). Call these matrices

V2, · · · , Vn. Then, we can express α as a composition

Sn
′,t // Σℓ−1Zℓ−10 (M ⊗L

U X|Chn0 )

∼=
��

Cℓ−10 (M ⊗L
U X|Chn0 )

//M ⊗U IU
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and therefore (using Definition 5.2.11) as an element of a nontrivial smash Toda bracket.

Composing this with the map M ⊗U IU →M ⊗U U exhibits the image of α as a nontrivial

smash Toda bracket, as desired.

With this observation, the counterpart of Proposition 6.2.5 is very similar to the classical

case.

Proposition 6.4.8. The kernel of σ consists of elements decomposable in terms of matric

Toda brackets.

Proof. Let π denote the composition

π1∗∗(IU ⊗L Cτk+1)

π

++

π1∗∗(IU ⊗L Cτk+1 ⊗L
U⊗LCτk+1 U ⊗L Cτk+1)

��

π1∗∗(IU ⊗L Cτk+1 ⊗L
U⊗LCτk+1 R⊗L Cτk+1)

induced by the augmentation map.

The kernel of π is the image of

π1∗∗(IU ⊗L Cτk+1 ⊗L
U⊗LCτk+1 IU ⊗L Cτk+1)

in π1∗∗(IU ⊗LCτk+1), which by Observation 6.4.7 is the collection of nontrivial matric Toda

brackets. Now, note that E∞0nt = R[τ ]/τk+1 is a direct summand of π1∗∗(R⊗L
U R⊗ Cτ

k+1),

so we may extend σ to a map

E∞1nt(U)
// π1n−1,t+1(R⊗

L Cτk+1 ⊗L
U⊗LCτk+1 R⊗L Cτk+1)

π1nt(IU ⊗L Cτk+1)

σ

OO
σ′

33

Now, since π1∗∗(R ⊗L Cτk+1) = R[τ ]/τk is a direct summand of π1∗∗(R ⊗L
U R), we obtain a
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diagram whose rightmost column is exact.

0

��

π1nt(R⊗L
U U ⊗ Cτ

k+1)

��

π1n+1,t−1(IU ⊗
L Cτk+1) σ //

π

++

π1n+1,t−1(R⊗
L
U R⊗

L Cτk+1)

��

π1n+1,t−1(R⊗
L
U IU ⊗

L Cτk+1)

Comparing the definitions of π and σ shows that the diagram commutes. Moreover, 0

is the only element in both the image of σ and the image of R[τ ]/τk, so it follows that

kerσ = ker π.

To complete the proof, we need to constrain π1(R⊗L
U R⊗

L Cτk+1).

Lemma 6.4.9. Suppose π1∗∗(X ⊗L Cτ2) is concentrated in degree n = 0. Then π1∗∗(X ⊗L

Cτk+1) is concentrated in degrees between 0 and 1− k.

Proof. Filter Cτk+1 as

Σ−k,0Cτ → Σ1−k,0Cτ2 → · · · → Cτk.

Using Corollary 3.4.3 and Lemma 3.3.1, we can compute the cofiber in D1(C) of the map

Σ−k+j−1,0Cτ j → Σ−k+j,0Cτ j+1

to be Σ−k+j,0Cτ2 ⊕ Σ−k−1,1Cτ , which is weak equivalent to Σ−k+j,0Cτ2.

Applying Theorem 4.3.1 to this filtration, we obtain a spectral sequence converging to
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π1∗∗(X ⊗L Cτk+1) with

E2
rnt = π1nt(X ⊗L

k⊕
r=1

Σ−k+r,0Cτ2),

which is concentrated in degrees 1− k ≤ n ≤ 0.

The proof of Theorem 6.4.3 is then immediate. Proposition 6.4.8 implies that any element

of π1∗∗(IU ⊗L Cτk+1 outside the kernel of sigma is a nontrivial smash Toda bracket. But

Lemma 6.4.9 and the Koszul condition imply that the kernel is trivial outside of degrees

1− k ≤ n ≤ 0, completing the proof.

Now, we prove Theorem 6.4.4.

Definition 6.4.10. Let U be an object of Fil(C). The inverse filtration on U is the natural

object F•(U) in Fil(Fil(C)) with

(Fn(U))i =


Ui for i > n

Un for i ≤ n.

Note that if U is cofibrant, the map Fn(U)→ Fn−1(U) is a cofibration, so this is also a

filtration of U in D1(C).

Moreover, in this case we can use Corollary 3.4.3 to compute the homotopy cofiber of the

map Fn+1(U)→ Fn(U) in the 1-projective model structure. The cofiber takes the form

· · · → Xn+2/Xn+3
0−→ Xn+1/Xn+2

0−→ Xn/Xn+1
id−→ Xn/Xn+1

id−→ Xn/Xn+1 → · · ·

which is weak equivalent to

· · · → 0→ 0→ Xn/Xn+1
id−→ Xn/Xn+1

id−→ Xn/Xn+1 → · · ·
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which is precisely the cofiber of this map computed in Fil(C). This observation will help us

in the following proof:

Proof of Theorem 6.4.4. We want to understand π1∗∗(R ⊗L
U R ⊗ Cτ2). As before, this is

equivalent to

(R⊗ Cτ2)⊗L
U⊗Cτ2 (R⊗ Cτ

2).

Placing the inverse filtration on U , we find that the associated graded complex Gn(U) takes

the form

Gn(U) =
(
Fn(U)⊗ Cτ2

)
/
(
Fn+1(U)⊗ Cτ2

)
= (Fn(U)/Fn+1(U))⊗ Cτ2

= Σr,0Cτ2 ⊗ Ur/Ur+1.

By Theorem 4.3.1, there is a spectral sequence with

E1
n′nt = π0n′nt

(
R⊗ Cτ2 ⊗L

Gn(U) R⊗ Cτ
2
)
.

Here the right hand side is being computed in Fil(D1(C)), with the index n′ coming from

the Fil-filtration and n coming from the D1-filtration. The sequence converges to π1n,t(R⊗L
U

R⊗ Cτ2).

To compute the E1 page, we apply the spectral sequence of Theorem 4.3.2, which takes

the form

E2
rn′nt = Torr

π0∗∗(U)
(R,R)

and converges to

π0n′+r,n+r,t−r

(
R⊗ Cτ2 ⊗L

Gn(U) R⊗ Cτ
2
)
.

Looking closely at the filtrationGn(U), we note that both n and n′ are equal to the internal n-
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grading on the homotopy groups/rings on the right hand side. By our Koszulity assumption,

this E2 page is concentrated in degrees r = −n. In particular, we conclude that π1∗∗(R ⊗L
U

R⊗ Cτ2) and so U is Koszul.
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CHAPTER 7

ADDITIONAL LEMMAS

In this appendix we gather a handful of lemmas used at various points in the text.

Lemma 7.0.1. Let An → · · · → A0 and Bn → · · · → B0 be sequences of maps (not chain

complexes) of sets and suppose:

1. f maps the image of An in A1 isomorphically onto the image of Bn in B1.

2. f maps the image of An−1 in A0 isomorphically onto the image of Bn−1 in B0.

Then, f maps the image of An in A0 isomorphically onto the image of Bn in B0.

Proof. Call the map from the image of An in A0 to the image of Bn in B0 f∗. The image

of An in A0 is a subset of the image of An−1 in A0 (and the same for B), so f∗ is injective.

Similarly, the image of An in A0 is a quotient of the image of An in A1, so f∗ is surjective.

Lemma 7.0.2. Suppose f : X → Y is k-exact and a Jk injection. Then, the fiber F of f is

k-acyclic.

Proof. Consider the following diagram, noting that the vertical triples are fiber sequences.

Fn−k/Fn
δ //

i
��

ΣFn

i
��

ΩXn−2k/Xn−k
δ //

f
��

Xn−k

f
��

ℓ // Xn−k/Xn
δ //

f
��

ΣXn

f
��

ΩYn−2k/Yn−k
δ // Yn−k

ℓ // Yn−k/Yn
δ // ΣYn

Pick an arbitrary a in πt(ΣFn). To show that τka = 0, we need to show that a lifts to

πt(Fn−k/Fn). Since f∗(i∗(a)) = 0 and f is exact, there exists b in πt(Xn−k/Xn) with

δ∗b = i∗(a).
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Now, f∗(b) might be nonzero. But δ∗f∗(b) = f∗(δ∗b) = 0, so there exists c in πt(Yn−k)

such that ℓ∗(c) = f∗(b). Now, since f is exact, there exist y in πt(ΩYn−2k/Yn−k) and s in

πt(ΩXn−2k/Xn−k) such that f∗(s) = c + d∗y. Since f is a Jk injection, there exists x in

πt(ΩXn−2k/Xn−k) with f∗(x) = y, so in particular f∗(s− d∗x) = c.

Then, f∗(ℓ∗(s− d∗x)) = ℓ∗(c) = f∗(b). But by definition, d ◦ ℓ = 0, so d∗ℓ∗(s− d∗x) = 0.

So if we set t = b+ ℓ(dx− c), we have:

• f∗(t) = 0

• d∗(t) = i∗(a)

This guarantees t lifts to u in πt(Fn−k/Fn) with d∗u = a, as desired!

Lemma 7.0.3. The cofiber map δ defined by the cofiber sequence

Σ−k,0Cτk → Cτ2k → Cτk
δ−→ Σ−k,1Cτk

is a derivation, in the sense that we have a commutative square

Cτk ⊗ Cτk µ //

1⊗δ+δ⊗1
��

Cτk

δ
��

Cτk ⊗ Σ−k,1Cτk ⊕ Σ−k,1Cτk ⊗ Cτk // Σ−k,1Cτk

where the bottom horizontal map is the sum of two copies of µ.

This lemma is essentially a standard step in proving that the spectral sequence associ-

ated to a ring in Fil(C) is multiplicative: we prove the corresponding statement about the

representing objects Cτk rather than the spectral sequence itself. Our proof closely follows

appendix A.3 of [2].
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Proof. We have a commutative square

S−k,0 ⊗ S−k,0 //

��

S0,0 ⊗ S−k,0

��

S−k,0 ⊗ S0,0 // S0,0 ⊗ S0,0

with an evident isomorphism to the commutative square

S−2k,0 //

��

S−k,0

��

S−k,0 // S0,0

Let PO denote the pushout

S−k,0 ⊗ S−k,0 //

��

S0,0 ⊗ S−k,0

��
S−k,0 ⊗ S0,0 // PO.

By standard results on total cofibers, we obtain a cofiber sequence

PO → S0,0 ⊗ S0,0 → Cτk ⊗ Cτk.

Now, the commutative square

PO //

��

S0,0 ⊗ S0,0

��

S−k,0 // S0,0
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extends to a map of cofiber sequences

PO //

��

S0,0 ⊗ S0,0

��

// Cτk ⊗ Cτk

��

// Σ0,1PO

��

S−k,0 // S0,0 // Cτk // S−k,1

and a simple inspection shows that the given map is the multiplication map.

From here, the commutative square

S−k,0 ⊗ S−k,0 //

��

PO

��

S−2k,0 // S−k,0

extends to a map of cofiber sequences

S−k,0 ⊗ S−k,0 //

��

PO //

��

S−k,0 ⊗ Cτk ⊕ Cτk ⊗ S−k,0

��

S−2k,0 // S−k,0 // Σ−k,0Cτk

Pasting the rightmost square of the first cofiber sequence to the rightmost square of the

second cofiber sequence gives a commutative diagram

Cτk ⊗ Cτk //

��

Cτk

��

Σ0,1PO //

��

ΣS−k

��

S−k,1 ⊗ Cτk ⊕ Cτk ⊗ S−k,1 //

,,

Σ−k,1Cτk

Σ−k,1Cτk ⊗ Cτk ⊕ Cτk ⊗ Σ−k,1Cτk

Σ−k,1(µ⊕µ)
33

where the bottom triangle comes from the unit axiom of a ring.

87



By inspection, the left vertical composition is δ ⊗ 1⊕ 1⊗ δ, and the right vertical com-

position is δ, giving us the desired square.

Lemma 7.0.4. Any bigraded multiplicative spectral sequence over a field starting whose unit

is a permanent cycle is isomorphic, starting at the E1 page, to the spectral sequence associated

to a filtered DGA.

Proof. We can decompose the E1 page into a vector space S∞ of permanent cycles, a sequence

of vector spaces Si of sources of nonzero differentials on the Ei page, and a sequence of vector

spaces Ti of targets of nonzero differentials on the Ei page. Note that we have a canonical

isomorphism Si → Ti.

Now, let X be the filtered differential graded R-module

X = S∞ ⊕ D1 ⊗Fp S1 ⊕ D2 ⊗Fp S2 ⊕ · · ·

where S∞ has filtration zero and

Di = · · · → 0→ R→ R→ 0→ · · ·

where the first R has filtration 0 and the second lives in filtration i.

The spectral sequence associated to X is by construction (additively) isomorphic the one

we started with. A multiplicative structure on our original spectral sequence places a ring

structure on the E1 page, which is the bigraded module obtained by forgetting the differential

on X. The Leibniz rule says precisely that this multiplication preserves the differential on

X, so we obtain a DGA with the desired spectral sequence.
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CHAPTER 8

PROOF OF PROPOSITION 5.2.4

In this appendix, we provide a proof of Proposition 5.2.4. Throughout, we use Lurie’s

notation Dx/ to denote the overcategory of maps in a category D from an object x. We

will prove the proposition at the end of this appendix by writing down a diagram for which

both C
j
i (X) and Σj−iZji (X) are colimits. In order to do so, we need four lemmas letting

us manipulate poset-shaped diagrams without changing their colimit. The first three are

special cases of the∞-categorical version of Quillen’s theorem A, which states that a functor

i : E → D is cofinal if and only if for every object x ∈ D, the comma∞-category x/i (defined

to be Dx/ ×D E) is a weakly contractible simplicial set.

Lemma 8.0.1. Let D be a partially ordered set, and let E be a subcategory of shape a ←

b→ c. In order that the inclusion i : E → D be final, it suffices to check that:

• Every d ∈ D has a map to either a or c.

• b is the (categorical) product of a and c.

Proof. For arbitrary d ∈ D, the first condition implies that the comma category d/i is a

nonempty subcategory of E , and the second implies that it cannot be {a, c}.

Lemma 8.0.2. Let D be an ordinary category, and d be an object of D equipped with a

morphism f : d→ e such that every morphism out of d factors as a composition g ◦ f. Then,

the inclusion i : D − {d} → D is final.

Proof. Pick an arbitrary x ∈ D. If x ̸= d, then the comma category x/i is just (D− {d})x/.

If x = d, then x/i = (D − {d})e/ by the factorization assumption. In either case, x/i is

weakly contractible.

Lemma 8.0.3. Let D be a partially ordered set with objects a, b, c such that:
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• There are maps a→ c and b→ c.

• There are no maps a→ b or b→ a.

• For any map d→ a, there exists a coproduct b
∐
d in D.

Let E be the partially ordered set extending D to include a map a→ b

Then, the inclusion i : D → E is final. Moreover, any functor D → C sending a and b to

zero objects extends to a functor E → C.

Proof. Consider an arbitrary element d in D.

If d does not map to a, then the simplicial set d/i is equivalent to Dd/, which is of course

contractible.

If d does map to a, then d/i is the (not disjoint) union Dd/ ∪ Db/. The intersection is

Dd
∐
b/, implying the union is weakly contractible.

The rest of the claim follows from the universal properties of zero objects.

The fourth lemma is a special case of [33] 4.2.3.10, and will give conditions under which

we can remove from a diagram objects which are already colimits of certain subdiagrams.

Lemma 8.0.4. Let D be a partially ordered set. For a given object x, let D′/x denote the

sub-∞-category of D consisting of objects with a map to x, excluding x itself.

Given an object d and a functor F from D into an ∞-category C such that F |D/d
exhibits

F (d) as the colimit of F |D′
/d

, it follows that the colimit of F is the same as the colimit of

F |D−{d}.

Proof. This is a special case of HTT 4.2.3.10. Let K be the nerve of D−{d}, and let J = D.

The functor D → sSet/K is defined on objects as follows:

• For x ̸= d, send x to K/x.

• For x = d, send x to D′
/d
.
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Note that Jσ is automatically contractible, because for σ = x1 → · · · → xn, Jσ is isomorphic

to Dxn/, so the hypotheses of HTT 4.2.3.10 are satisfied. The lemma then follows because

the induced diagram q|N(|) is equivalent to F .

Proof of Propositions 5.2.4. Assume without loss of generality that i = 0, and set j equal to

n so we can use i and j to index things throughout the proof. We will construct a diagram

F : D → S whose colimit is Cn0 , and use the previous four lemmas to transform the diagram

without changing the colimit, until we end up with a diagram whose colimit is ΣnZn0 .

Construct a poset-shaped diagram D inductively as follows:

• Start with the subdiagram Xn → Xn−1 → · · · → X0 of X.

• Attach the pullback (and hence pushout) square

Z1
0

//

��

01

��
X1

// X0

,

along the edge X1 → X0, (where we label individual zero objects 0i and 0i to help

keep track of them later.)

• By the universal property, the mapX2 → X1 lifts to Z1
0 , and we can attach the pushout

square

Z2
0

//

��

02

��

X2
// Z1

0

.
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• Continue this pattern until we’ve attached the pushout square

Zn0
//

��

0n

��

Xn // Zn−10

.

• In the same way, we can attach the pushout square

Xn //

��

Xn−1

��
0n // Cnn−1

and factor Xn−1 → Xn−2 through a map Cnn−1 → X1. We continue as before until

we’ve attached the pushout square

Cn1
//

��

X0

��
01 // Cn0

Let D → S be the diagram constructed above, excluding Cn0 . To give some idea what we
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mean, here’s D when n = 3:

03

��

02

��

Z3
0

>>

��

Z2
0

>>

��

Z1
0

//

��

01

��
X3

//

��

>>

X2

>>

//

��

X1

��

// X0

03 // C3
2

>>

��

C3
1

>>

��
02

>>

01

Note that, by Lemma 8.0.1, the subcategory 01 ← Cn1 → X0 is final, so the colimit of this

entire diagram is Cn0 , as we might hope!

Now, for 1 ≤ j ≤ n − 1, note that the pushout square defining Cnj is final in D′
/Cn

j
by

Lemma 8.0.1, so we can remove the Cnj (in ascending order of j) by Lemma 8.0.4. This leaves

us with a diagram B containing no Cnj ’s, and with maps 0i → 0j for i > j and 0i → Xk for

i > k + 1. In the case n = 3, the diagram looks like this:

03

��

02

��

Z3
0

>>

��

Z2
0

>>

��

Z1
0

//

��

01

��
X3

//

��

>>

X2

>>

//

��

X1

��

// X0

03

!!

66

02

==

// 01

Now for 2 ≤ k ≤ n, we will lift the maps 0k → Xk−2 to maps 0k → 0k−1. This can of
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course be done without changing the commutativity of the diagram. To check that the new

diagram has the same colimit as the old, we need to check that, for arbitrary d ∈ B mapping

to 0k, 0k−1 and d have a coproduct in D. We check the three possible cases:

• If d = 0k, then 0k−1
∐
d is Xk−1.

• If d = 0k+1 or d = Xk then 0k−1
∐
d is Zk−10 .

• Otherwise, 0k−1
∐
d = 0k−1

We conclude by Lemma 8.0.3 with (a, b, c) = (0k, 0
k−1, Xk−2) that the modified diagram,

which we will call W , still has the same colimit. In the case n = 3, we have the following

diagram:

03

��

02

��

Z3
0

>>

��

Z2
0

>>

��

Z1
0

//

��

01

��
X3

//

��

>>

X2

>>

//

��

X1

��

// X0

03

!!

CC

02

CC

// 01

Now, we apply Lemmas 8.0.4 and 8.0.1 again to remove X0, at which point X1 only has one

arrow pointing out of it and we can remove it by Lemma 8.0.2. But now Lemmas 8.0.4 and

8.0.1 tell us we can remove Z1
0 , and Lemma 8.0.2 lets us remove X2. We can continue until

we’ve removed all the Xi and all the Zi0 except for Zn0 .

We’re left with a diagram containing only Zn0 , 0i and 0i, with Zn0 initial and maps
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0i → 0j , 0i → 0j , 0i → 0j , and 0i → 0j whenever i > j.

03

��

// 02

��

��
Z3
0

??

��

01

03

  

CC

02

CC

// 01

Applying [33] 4.4.2.2 repeatedly shows that the colimit of this diagram is ΣnZn0 , as desired.
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