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ABSTRACT

Everything that the brain sees must first be encoded by the retina, which maintains a

reliable representation of the visual world in many different, complex natural scenes while also

adapting to stimulus changes. Decomposing the population code into independent and cell-

cell interactions reveals how broad scene structure is encoded in the adapted retinal output.

By recording from the same retina while presenting many different natural movies, we see

that the population structure, characterized by strong interactions, is consistent across both

natural and synthetic stimuli. We show that these interaction contribute to encoding scene

identity, and demonstrate that leveraging this underlying interaction network improves scene

decoding. This population structure likely arises in part from shared bipolar cell input as well

as from gap junctions between retinal ganglion cells and amacrine cells. Separately, we use a

task-agnostic deep architecture, and encoder-decoder, to model the retinal encoding process

and characterize its representation of ‘time in the natural scene’ in a compressed latent space.

In this end-to-end training, an encoder learns a compressed latent representation from the

retinal ganglion cell population, while a decoder samples from this latent space to to generate

the appropriate future scene frame. By comparing latent representation of retinal activity

from three natural movies, we find that the retina has a generalizable encoding for time in

natural scenes, and that this encoding can be used to decode future frames with up to 17ms

resolution. Lastly, we explore methods to efficiently scale small population models up to a

large population using an aggregate approach.

x



CHAPTER 1

INTRODUCTION

Sensory perception is the foundation with which any organism interacts with its environ-

ment. From a plant sensing sunlight and shifting its leaves, to a mouse sensing a looming

shadow and darting to avoid a swooping owl, to a baseball player tracking the motion of

the ball to make contact with his bat, sensory perception allows organisms to encode vari-

ous environmental cues and transmit that information to the rest of the brain in order to

make decisions. In the visual system, sensory perception begins at the retina. Here, light

sensation begins at the photoreceptor layer in the back of the eye and eventually transmits

output downstream via the retinal ganglion cells (RGCs).

While the retina is mostly a feedforward network, the transformation of incoming light

signals to outputs from retinal ganglion cells is anything but straightforward. The retina

is not simply a camera that takes in a copy of the visual scene and sends it to cortex

for processing. Instead, the retina performs a number of complex, nonlinear computations

critical for perception. Retinal networks are flexible enough to encode a wide variety of

complex stimulus features, such as object motion (Lettvin et al. 1959; Ölveczky, Baccus, and

Meister 2003), motion reversals (Schwartz, Taylor, et al. 2007; Shah et al. 2020; E. Y. Chen

et al. 2014), and omitted/occluded stimuli (Schwartz, Harris, et al. 2007; Ding et al. 2021).

These early computations support efficient downstream readout by throwing away redundant

information and preserving features that facilitate perception.

Early studies of retinal processing focused on the dynamics of single-cell responses to the

presentation of different kinds of visual stimuli. Simple stimuli are shown to the retina, fre-

quently in an in vitro preparation, while obtaining electrophysiological/patch-clamp record-

ings from single, well-isolated cells in order to characterize their spiking/voltage responses as

a function of stimulus manipulations. These studies made critical steps facilitating our under-

standing of early visual perception, including the discovery of the center-surround receptive

field (Rodieck and Stone 1965), the classification of many different RGC types (Hochstein
1



and Shapley 1976), and single cell adaptation to differing stimulus statistics such as con-

trast (Shapley and Victor 1978). While similar experiments have continued to advance our

knowledge of retinal processing, they do not tell the full story of early visual perception.

One limitation of such experiments is the use of simple, easily-paramaterizable stimuli.

These stimuli yield to the experimenter a tremendous amount of control for probing what

drive single cells’ responses, as changing the statistics and structure of the stimulus, and

therefore the response of the cell in question, is straightforward. Organisms in the wild,

however, do not encounter this kind of simple stimulus in their daily lives. These organisms

are evolved to encode natural scenes with varying statistical structure that are characteristic

of the spectrum of environments they encounter within their ecological niche. As such,

natural scenes have been shown to drive a richer and more reliable code in the brain (Rikhye

and Sur 2015; Froudarakis et al. 2014; Hasson, Malach, and Heeger 2010). While these scenes

provide a more behaviorally relevant context with which to study visual perception, their use

in experiments targeted to understanding the visual code comes with a significant cost. The

natural environment has many complex spatio-temporal features that make neural encoding

in the wild difficult to quantify and assess. Natural scenes vary in luminance over many

orders of magnitude (Rodieck 1998) and variance (Ruderman and Bialek 1994) (Schwartz

and Simoncelli 2001), and have complicated temporal and spatial structure (Dong and Atick

1995; Hateren and Ruderman 1998). Thus, probing visual perception with natural scenes

comes with a tradeoff: the retinal responses will be more behaviorally-relevant, but at the

(potentially steep) cost of losing the fine-tuned experimental control that synthetic stimuli

offer.

Single-cell experiments yield in-depth characterizations of individual cells and cell types

at the cost of ignoring how each cell in a population interacts. While single cells individually

encode stimulus features, it is the response of the retinal population that drives perception.

Many fundamental retinal encoding principles require a suite of at least a few retinal cells

in consort, including object motion tracking (Lettvin et al. 1959; Ölveczky, Baccus, and

2



Meister 2003), motion anticipation (Berry et al. 1999), and latency coding (Gollisch and

Meister 2008). For these reasons, it is crucial to study retinal encoding both at the single

cell and population level.

Significant theoretical work has recently been devoted to studying population level re-

sponses (Kastner, Baccus, and Sharpee 2015; Maheswaranathan et al. 2018; Botella-Soler

et al. 2018a; Molano-Mazon et al. 2018; Stringer et al. 2019). These works, along with ever

improving experimental advances in recording from large number of populations (Marre et

al. 2012; Berényi et al. 2014; Lopez et al. 2016; Steinmetz et al. 2021), create an opportunity

to move to more complex, dynamic stimuli and analyze the population code in terms of the

readout goals of the downstream networks. However, studying increasingly large popula-

tion sizes requires careful consideration of new limitations. For any given population size N ,

there are 2N possible states the population can take. This exponential increase in population

states means in any given experiment some number of important encoding states may be

undersampled or not present at all. The answer to this problem is not simply recording for

a longer time. Recording times are limited by the amount of time retinal tissue can be kept

alive and healthy in vitro, which lasts about four hours. Further, even if large scale advances

in recording times solved a sampling problem, the fact remains this fully expressive code

is potentially unreadable by downstream brain areas. These problems can be ameliorated

by looking not just at the retinal population states, but focusing on the underlying statis-

tics that govern those states. Understanding this latent population structure could provide

valuable insights on population level coding principles.

This thesis explores population level retinal encoding and decoding in natural scenes

primarily through the lens of these latent underlying principles that drive the population

code. In Chapter 2, we use the responses of a salamander retina to repeated natural stimuli

to infer a minimal model of the population response structure of its output retinal ganglion

cells. Because of the diversity of subjects and locations, the chosen natural scenes are all

ecologically relevant to the salamander and exhibit exhibit significantly different statistics.

3



Thus, playing a variety of scenes in a single experimental session allows for investigation into

changes in the population structure across scenes.

We model the population response using maximum entropy models, which have a history

of success using O(N2) parameters to capture the structure in the data, even higher-order

features not explicitly constrained by the model (Schneidman et al. 2006; Pillow and Si-

moncelli 2006; Granot-Atedgi et al. 2013; Ganmor, Segev, and Schneidman 2011; Tkačik

et al. 2014; Roudi, Nirenberg, and Latham 2009; Jaynes 1957; Tkačik et al. 2010). Often in

neuroscience, maximum entropy models are constrained by the average firing rate of each cell

and the correlation of each pair of cells, ⟨σi⟩ and ⟨σiσj⟩. We implement a time-dependent

variation of these models that is constrained by the time-varying firing rates of each unit in

the population averaged across stimulus repetitions, along with pairwise correlations between

cells. Using this model, we find a conserved population structure across natural scenes. We

demonstrate that this conserved structure carries population level information about large

scale scene statistics. Lastly, we uncover the aspects of the retinal network that carry this

conserved structure.

In Chapter 3, we continue to explore the effects of the scene-invariant aspects of the

population structure on scene decoding. We explore a graph based decoding paradigm that

uses only the conserved population structure found in Chapter 2 and single cell PSTHs to

obtain embeddings that capture scene identity. We obtain these embeddings using a graph

neural network that learns to embed activity vectors via an unsupervised, contrastive learning

approach, and takes advantage of pairwise noise correlations between units. This is a proxy

for functional connectivity/interactions within the population. We show that the PSTHs and

conserved population structure together are sufficient to obtain single-trial embeddings of

activity during the presentation of natural scenes that are separable scene-by-scene. Further,

the learned embedding space can support zero-shot incorporation of a novel natural scene not

encountered during training. This provides evidence that leveraging a consistent, population-

level structure, underpinned by consistent pairwise correlations between cells, may be critical

4



for scene decoding by downstream circuits, especially in a system where single cells are free

to adapt to incoming stimuli.

Chapter 4 focuses again on compressing high dimensional retinal population activity into

an interpretable latent space with the aim of decoding natural scenes. Here we designed

a variational auto-encoder capable of accurately reconstructing future image frames from a

low-dimensional bottleneck representation of input population retinal ganglion cell responses

to natural scenes. By virtue of supporting high-fidelity reconstruction of future frames,

the learned latent space of this network necessarily contains information relevant to scene

decoding. We find that the learned compressed representation of the population responses

contains features relating to both static and dynamic features of the natural scenes. This

learned representation is generalizable to new stimuli ‘for free’, by virtue of being optimized

for an ethologically-relevant/useful objective. Further, these static and dynamic features are

synergistic with respect to encoding.

Chapter 5 departs from the direct study of population level retinal coding to demonstrate

a promising method for building large N maximum entropy models. Developing approaches

to build this kind of model constitute a critical area of need for neuroscience as it enters

the age of high-recording throughput. However, as the population size N increases, max-

imum entropy models consistently underestimate the true entropy and correlations of the

data (Macke, Murray, and Latham 2013; Granot-Atedgi et al. 2013). In this chapter, we

focus on the strong stability of cell-cell couplings across multiple fits of the same coupling.

This stability holds up to some scaling factor even when fitting increasingly large models.

Since large N maximum entropy models have O(N2) parameters, large N models become

increasingly difficult to fit well. It may be beneficial to instead fit a large number of smaller

N models and use an aggregate approach to build a large N model from a collection of

smaller models. We demonstrate, using the retinal ganglion cell dataset, that an aggregate

approach to large N maximum entropy modeling yields similar results to fitting the larger

model outright. We discuss where this strategy breaks down, and future plans to improve

5



this aggregate approach by testing on synthetic data.
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CHAPTER 2

STIMULUS INVARIANT ASPECTS OF THE RETINAL CODE DRIVE

DISCRIMINABILITY OF NATURAL SCENES

2.1 Abstract

Everything that the brain sees must first be encoded by the retina, which maintains a

reliable representation of the visual world in many different, complex natural scenes while

also adapting to stimulus changes. Decomposing the population code into independent and

cell-cell interactions reveals how broad scene structure is encoded in the adapted retinal

output. By recording from the same retina while presenting many different natural movies,

we see that the population structure, characterized by strong interactions, is consistent across

both natural and synthetic stimuli. We show that these interactions contribute to encoding

scene identity. We also demonstrate that this structure likely arises in part from shared

bipolar cell input as well as from gap junctions between retinal ganglion cells and amacrine

cells.

2.2 Introduction

While single cells individually encode specific stimulus features (Horace B Barlow 1953; Hubel

and Wiesel 1959; Hartline 1940), it is their aggregate response that drives our perception

(Warland, Reinagel, and Meister 1997; Bialek et al. 1989; Gollisch and Meister 2010; Baccus

et al. 2008). For this reason, it is important to understand not only how individual cells

respond to stimuli, but also how cells influence each other within a population (Brivanlou,

Warland, and Meister 1998; Shlens, Rieke, and Chichilnisky 2008; Pillow et al. 2008; Ramirez

and Bialek 2021). Significant theoretical work has been devoted to understanding population

responses (Kastner, Baccus, and Sharpee 2015; Maheswaranathan et al. 2018; Botella-Soler

et al. 2018a; Molano-Mazon et al. 2018; Stringer et al. 2019), in tandem with experimental
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innovations in recording from a large number of cells simultaneously (Marre et al. 2012;

Berényi et al. 2014; Lopez et al. 2016; Steinmetz et al. 2021). This creates an opportunity

to move to more complex, dynamic stimuli and analyze the population code in terms of the

readout goals of the downstream networks.

The natural environment has many complex spatio-temporal features that make neural

encoding in the wild difficult to quantify and assess. Natural scenes vary in luminance

over many orders of magnitude (Rodieck 1998) and variance (Ruderman and Bialek 1994)

(Schwartz and Simoncelli 2001), and have complicated temporal and spatial structure (Dong

and Atick 1995; Hateren and Ruderman 1998). Visual systems adapt to these changes

on many scales in time and space. Neural systems show near-perfect adaptation to these

changes (Fairhall et al. 2001), so a question remains about how brains recover scene-specific

information once in an adapted state. These complexities and open questions have led many

studies to investigate animal behavior in natural settings (Joseph J Atick and A Norman

Redlich 1992a; Nemenman et al. 2008; Jovancevic-Misic and Hayhoe 2009; Zimmermann

et al. 2018). In this work, we quantify the structure of the neural code at the input end,

and how it might support downstream readout that ultimately drives behavior in complex

environments.

While natural scenes contain a multitude of higher order statistics, not all features are

equally important. Even at the earliest stages of visual processing, the retina performs

nonlinear computations to encode essential aspects of the visual scene. Retinal networks are

flexible enough to encode a wide variety of complex stimulus features, such as object motion

(Lettvin et al. 1959; Ölveczky, Baccus, and Meister 2003), motion reversals (Schwartz, Taylor,

et al. 2007; Shah et al. 2020; E. Y. Chen et al. 2014), and omitted stimuli (Schwartz, Harris,

et al. 2007). These early computations support efficient downstream readout by throwing

away redundant information and preserving features that facilitate perception.

We use the responses of a salamander retina to natural stimuli to infer a minimal model

of the population response structure of its output retinal ganglion cells. This structure is

8



conserved across scenes, and it has functional consequences; it helps the population carry

information about large-scale scene statistics. Finally, we show that this functional role

requires only a sparse set of connections, and that these sparse couplings appear to arise

from both shared input (bipolar and amacrine cells) and direct connections (gap junctions).

2.3 Results

Probing multiple naturalistic, dynamic inputs to the retina

We make dense extracellular recordings from retinal ganglion cells (RGCs) in the lar-

val tiger salamander (Fig. 2.1a) while presenting the retina with 20-second clips from five

different movies (see Methods for details). Salamanders undergo metamorphosis, exposing

them to both underwater and terrestrial environments while their retinal structure remains

largely the same (Wong-Riley 1974; Burkhardt, Fahey, and Sikora 2006). Further, while

salamanders are traditionally ambush predators, they still navigate through their environ-

ment, generating self-motion. The movies chosen represent a sampling of the wide variety

of scenes that occur in the organism’s ecological niche (Fig. 2.1b).

Because of the diversity of subjects and locations, the movies exhibit significantly different

temporal and spatial correlation (Fig. 2.1d). Further, luminance correlations alone fail to

capture behaviorally relevant features like motion, which arise from higher order structure.

For example, object tracking in natural scenes reveal different shapes and timescales of

the velocity autocorrelations for different scenes (Salibury and Palmer, n.d.). As animals

navigate through different environments, they rapidly adapt to these changes in stimulus

statistics (Fairhall et al. 2001; Kim and Rieke 2003; Rieke 2001). Thus, playing a variety of

scenes in a single experimental session allows for investigation into changes in the population

structure across scenes.

Pairwise couplings are consistent across movies

To fully describe a dynamic population code, we must enumerate 2N possible states at

each time point in the response. Even for modest N , a fully expressive code is both exper-
9
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Figure 2.1: Measuring retinal ganglion cell responses to natural scenes.
(a) Voltage responses were recorded from the retinal ganglion cell layer of
a salamander retina stimulated by natural movies. (b) Example frames
from each of five natural scenes, which show, respectively, trees blowing
in the wind; flowing water; ferns and grasses in a breeze; fish swimming;
and woodland underbrush as viewed by a moving camera. The bottom
image shows the aggregation of the receptive fields of the recorded popu-
lation of neurons. (c) In order to probe the statistics of responses, natural
scenes were repeated a minimum of 80 times in pseudorandom order. A
checkerboard stimulus lasting 25 minutes was shown before and after the
natural scenes. (d) The five natural movies used have different statistics,
including (shown here) different spatial autocorrelation functions. (e) To
model responses to each of the movies, time-dependent maximum entropy
models are fit to each of the five natural scenes.
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imentally inaccessible and potentially unreadable by downstream networks. To summarize

the population code, we use maximum entropy modeling, which has a history of success

using O(N2) parameters to capture the structure in the data, even higher-order features not

explicitly constrained by the model (Schneidman et al. 2006; Pillow and Simoncelli 2006;

Granot-Atedgi et al. 2013; Ganmor, Segev, and Schneidman 2011; Tkačik et al. 2014; Roudi,

Nirenberg, and Latham 2009; Jaynes 1957; Tkačik et al. 2010).

In applications of maximum entropy techniques in neuroscience, these models are con-

strained by the average firing rate of each cell and the correlation of each pair of cells

(Schneidman et al. 2006), ⟨σi⟩ and ⟨σiσj⟩. We use a time-dependent maximum entropy

model (Ferrari et al. 2018) that is also constrained by the time-varying firing rates averaged

across repeated stimuli (see Methods for details). Our model takes the form

P (σ⃗t) = 1
Z

e
−

∑N
i ht

iσ
t
i−

∑N
i<j Jijσt

iσ
t
j , (2.1)

and our constraints are on ⟨σt
i⟩k, which captures each cell’s individual response to the stimu-

lus at time t averaged over trials, k, as well as ⟨σt
iσ

t
j⟩t,k, the correlations between cells. These

two constraints map to two sets of parameters, the time-dependent fields ht
i and the static

couplings Jij , respectively. Interactions between the time-dependent fields ht
i absorb any

stimulus-dependent correlations, leaving the couplings Jij to capture the noise correlations.

Given that our model accurately predicts population activity (Fig. 2.2a), and that the fields

are explicitly constrained by stimulus-induced single-cell statistics, we consider the matrices

Jij to carry the essence of the intrinsic, non-independent population structure.

In all movies, the cells significantly increase their firing rates in the first 200 ms (Fig.

2.2b) following the switch to a new stimulus. This is followed by a rapid decay back to a

baseline firing rate. This is likely due to a strong population response to abrupt changes

in luminance within their receptive fields (Fig. 2.2b inset) (Jarsky et al. 2011; Demb 2008;

Nakatani and Yau 1988). Despite this substantial adaptation to each movie, we find con-

11



Figure 2.2: Retinal ganglion cell population maintains consistent cou-
plings across a variety of natural stimuli (a) Probability of population
states, as measured from data and compared to the model. Gray shad-
ing indicates expected sampling noise in the estimates of probability from
data. (b) Average population firing rate as a function of time for the first
two seconds of each natural movie. In the first 200ms (grey bar), the
population firing rate peaks. This may be due to a change in luminance
within the aggregate population receptive field between stimuli (subplot).
(c) Couplings for an example 20 cell group from two of the movies, Tree
and Grasses. The structure of the coupling matrices are consistent across
scenes. (d) Couplings across all five natural scenes and the checkerboard
white noise stimulus. In all cases, couplings are consistent across stimuli.
Even for the checkerboard, where another modeling procedure (DCA) had
to be used, similar couplings are found. (e) Couplings are quantitatively
similar across movies (R2 = 0.74), and for any choice of group of cells;
here, we show the values of the couplings Jij for all pairs of movies, for
ten different groups of cells.
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sistent Jij matrices across movies, indicating that the noise correlations are conserved (Fig.

2.2c,d). Previous work has similarly found consistent couplings across visual inputs (Fer-

rari et al. 2018; Sorochynskyi et al. 2021; Simmons et al. 2013), but this is the first time

this has been demonstrated across a range of naturalistic stimuli. These are entirely inde-

pendently trained models, which separately learned the same couplings despite significantly

varying scene statistics and population responses (Fig. 2.1). This strongly implies that this

structure arises from the retina itself, rather than being inherited from the stimulus.

These consistent couplings are not unique to the particular 20-cell group analyzed in Fig.

2.2c and d. For a selection of randomly chosen groups, we plot the coupling Jα
ij between

cells i and j in movie α against the couplings J
β
ij . We observe a strong correlation between

the cell-cell interactions across movies (Fig. 2.2e). These couplings could arise in response

to the shared long-timescale and length-scale correlations in natural scenes (Dong and Atick

1995), or they could be an anatomical property of the retina. In order to investigate this,

we need to compare the conserved couplings we observed in response to the natural movies

to those found in response to an entirely different, non-naturalistic stimulus.

Finally, we investigate the population structure in response to a white-noise checkerboard

stimulus. Due to a lack of repeats, we used a different method, Direct Coupling Analysis

(DCA) (Weigt et al. 2009), to infer these couplings (see Methods for details). Despite the

many differences between this model and those above (stimulus, model details), we extract

the same strong couplings as those found in response to the natural scenes. This strengthens

the argument that the observed couplings are indicative of real biological interactions, not

correlations inherited from the input.

Couplings allow for better decoding of scene identity

What could these static, sparse couplings be used for downstream of the retina? While

single cells adapt to switches between scenes after about one second and then fluctuate in

response to ongoing dynamics within a scene, the population structure remains constant.

Surprisingly, this scene-invariant, static backbone of interactions supports faster and more
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Figure 2.3: The conserved coupling structure aids in decoding scene
identity. (a) Probability of a given scene, given a particular spike train.
The coupling population structure gives dramatically faster scene decod-
ing than an independent model. Additionally, both the chimera model,
which swaps Jij matrices, and the sparse backbone model, which preserves
only 10% of couplings, carry nearly as much scene information as the full
model. Inset: probability of scene given spikes for a single trial of gener-
ated samples. (b) The distribution of Jijs across many 20-cell models; we
find that this distribution is heavy tailed. (c) Probabilities of population
states, for our full model, a model with all Jijs set to zero, and a model
with sparsified Jijs. The backbone model captures the predictions of the
full model, while the independent model fails spectacularly.
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reliable readout of scene identity after this adaptation has occurred.

Interactions between cells in the retinal population have been observed in many other

input contexts, and shape individual cell stimulus encoding (Tkačik et al. 2010). The sparse

pairwise structure that we observe may combine with individual cell fluctuations to change

the overall encoding map between scenes. This interaction may support decoding scene

identity. The movies contain a suite of higher order features that make each one readily

discriminable to the human eye, but may also impact the local, correlated retinal population

code in a decodable way.

To quantitatively test whether the couplings affect discrimination between scenes, we take

advantage of the fact that each of our movies comes from a significantly different environment.

This means that the information about scene statistics can be approximated by information

about scene identity. We quantify the ability of an ideal observer to correctly identify a scene

based solely on access to retinal output, given by the posterior P (scene identity|spikes), as

a function of number of samples of the retinal response. This decoding task is similar to

the real problem solved by downstream brain areas when an organism moves between scenes

as it navigates its natural environment, and must trigger different behaviors and priors in

different niches.

The quantity P (scene identity|spikes) describes how likely any particular scene is given

a particular series of spikes. We measure this quantity by generating independent sam-

ples from our time-averaged models for each movie, P (σ⃗) = 1
T

∑T
t P (σ⃗t|t), and calculating

P (scene identity|spikes) as a function of the number of generated samples using Bayes’ law,

P (scene identity|spikes) =
P (spikes|scene identity)P (scene identity)

P (spikes) .

The terms on the right hand side of this equation can all be generated from our model.

Because each sample has a defined length of 1/60 s, we can then convert the number of
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samples to a number of seconds of sampling.

By performing this analysis, we find that samples generated from just a 20-cell group carry

enough information to correctly identify a scene within a few seconds (Fig. 2.3a). By contrast,

spikes generated from a conditionally independent model, which is fit while constraining all

Jij to zero, take nearly twice as long to achieve the same scene discriminability. This

is surprising, as it was not a priori obvious that couplings would contribute to decoding

(Averbeck, Latham, and Pouget 2006).

While the population structure remains scene invariant, there are subtle changes in Jij

values across movies which might influence the neural code. Conversely, subtle changes in

coupling strength might have minimal functional effect so long as the overall population

structure remains consistent. To test whether small changes in coupling strength between

movies affect scene discriminbability, we implement ‘chimera’ models. A chimera model for

movie α uses the fields from that movie, h
t,α
i , but replaces the couplings with those learned

from a different movie, J
β
ij . This generates models that maintain the scene invariant coupling

structure observed across movies while allowing individual coupling strengths to fluctuate.

We find that spike trains generated from these models lead to similarly fast decoding as from

the full model. This implies that fluctuations in the coupling values between scenes have

little functional impact on scene readout. Instead, the scene-invariant population structure

alone drives the improvement in scene discriminability.

We can then investigate whether the entire interacting population structure is important

for decoding, or whether the Jij interactions can be sparsified without sacrificing discrim-

inability of scenes. The coupling distribution is heavy-tailed, with a sparse set of strong

couplings (Fig. 2.3b) alongside many weak interactions. Previous work has conflicting re-

ports on the relevance of weak couplings, where some show that weak couplings combine to

have a large effect on population activity (Schneidman et al. 2006) while others suggest that

ignoring weak interactions has minimal effect on population responses (Ganmor, Segev, and

Schneidman 2011). To investigate the role of strong couplings, we sparsify the Jij matrix,
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leaving only the top 10% of couplings to shape population activity and re-train our model.

We fit these ‘backbone models’ while constraining the weaker 90% of couplings from the full

model to be zero. The backbone model is nearly as fast at identifying scenes as the full

model, suggesting large-scale scene information is specifically preserved through the sparse,

strong couplings rather than the combination of many weak couplings.

Additionally, upon comparing state probabilities, we find that the backbone model makes

predictions that are very close to those of the full model, while the independent model

fails significantly (Fig. 2.3c). These results suggest that the conserved population structure

is dominated by a backbone of sparse strong couplings, and that these couplings play a

functional role in preserving scene-level information.

Couplings arise from both gap junctions and shared bipolar cell input

We have found consistent population structure that is dominated by sparse couplings.

This structure is hard-wired into the retina code and could arise from many different circuit

properties. Pairwise retinal couplings could be correlated with shared upstream input from

a bipolar cell (Fig. 2.4a, left) , direct gap junctions between retinal ganglion cells (Fig. 2.4a

top), or gap junctions between RGCs and a third neuron such as an amacrine cell (Fig. 2.4a

right).

Nonlinear summation of bipolar cell (BC) inputs has been shown to be an integral com-

ponent of retinal computation (E. Y. Chen et al. 2013; Goldin et al. 2022; Gollisch 2013;

Schwartz and Rieke 2011; Fairhall et al. 2006). The convergence of BCs onto RGCs is mod-

eled using nonlinear summation in so-called cascade models. These models explain a wide

array of complex retinal computations (e.g., motion onset (E. Y. Chen et al. 2013), omitted

stimulus response (Schwartz, Harris, et al. 2007) , background vs object motion (Ölveczky,

Baccus, and Meister 2003), reversal response (Schwartz, Taylor, et al. 2007; Shah et al. 2020;

E. Y. Chen et al. 2014)). As a complement to that, BCs have diverging projections onto

multiple RGCs on the retina (Asari and Meister 2012). While bipolar cells sample a smaller

portion of the visual scene than RGCs, gap junctions networks between RGCs can expand
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Figure 2.4: Strong couplings result from both shared inputs and gap
junctions. (a) Three potential pairwise coupling sources. Left, shared
input from an upstream bipolar cell. Middle, a direct gap junction between
two retinal ganglion cells. Right, gap junction connections to a shared
third neuron an amacrine cell. (b) ST-ICA modeled spatial subunits for
three cells, two of whom share a subunit. (c) Time filters for the same
cells shown in b. (d) The average noise covariance for highly coupled cells.
Highly coupled cells that share a subunit have a broader noise covariance
in time than coupled cells without a shared subunit. (e) A comparison
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shared upstream input. (f) Distribution of coupling strengths, both for
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the bipolar projective field out as far as ∼1mm (Asari and Meister 2014) This BC diver-

gence could play a role in shaping the population code in the retina and needs to be further

explored with naturalistic, dynamic inputs.

In order to detect putative bipolar cell inputs onto the RGCs in our dataset, we use spike

triggered independent component analysis (ST-ICA) (Saleem, Krapp, and Schultz 2008) on

the white noise checkerboard stimulus. ST-ICA models each RGC as the output of a temporal

filter and spatial subunits. In a similar method, these subunits have been experimentally

shown to map to bipolar cell inputs (J. K. Liu et al. 2017). We show an example of the

spatial subunits and temporal filters for three fast-OFF RGCs in Fig. 2.4b and Fig. 2.4c,

two pairs of which (blue, pink; green, pink) demonstrate strong couplings. One coupling

pair (blue,pink) exhibits a highly overlapped spatial subunit that we classify as a shared

upstream input (see Methods). In Fig. 2.4c, temporal filters for two cells (blue, green) show

near identical characteristics. This may arise from a gap junction connecting them and might

explain their strong coupling (Ferrari et al. 2018).

Across the population, many RGCs share spatial subunits. These subunits closely align

with the observed coupling matrix from the stimulus dependent maximum entropy models

(Fig. 2.4d), demonstrating that strong couplings may arise in part from shared upstream

input. However, not all cells with strong couplings share upstream input, and the presence

of a shared subunit alone does not guarantee the existence of a strong coupling. Thus, strong

couplings might arise from multiple sources within the retinal cell population.

Previous work has suggested that gap junctions may underpin couplings between RGCs

(Brivanlou, Warland, and Meister 1998; Ferrari et al. 2018). Here, we find evidence of gap

junctions by inspecting the cross-covariance of responses after subtracting the trial-average

(at zero lag this is the usual noise correlation). Pairwise noise correlations due to gap junc-

tions can generally be split into two classes, direct RGC-RGC couplings and shared gap

junctions with a third upstream neuron. The symmetric, medium width correlation we ob-

serve between some highly coupled cells without a shared subunit (Fig. 2.4d, red) likely arises
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from this second class, as direct RGC-RGC gap junctions lead to transient noise correlations

at a sub-millsecond timescale (Brivanlou, Warland, and Meister 1998). Furthermore, the

broader noise correlations between RGCs with shared subunits demonstrates a timescale

longer than can be explained from gap junctions alone and may indicate a coupling arising

from shared upstream input (Fig. 2.4a, blue).

Shared input between RGCs, whatever the source, greatly increase the likelihood of a

a strong coupling compared to RGC pairs without shared input (Fig. 2.4e). Of course,

shared input does not guarantee a strong coupling between RGCs, but the long tail of strong

coupling for pairs with shared input suggest that these mechanisms underpin our sparse

network of strong interactions. We find that shared bipolar input and gap junctions work in

consort to generate a sparse set of intrinsic correlations between RGCs.

2.4 Discussion

This work demonstrates that couplings between cells in a neural population are an impor-

tant component of downstream readout of scene identity. While some studies show that

independent models of the retinal code retain upwards of 90% of the response structure

(Nirenberg et al. 2001), this is typically agnostic to the downstream readout goals of the

organism. Without a defined goal, it is impossible to determine whether aspects of the re-

sponse structure lost by an independent encoding scheme relay information meaningful to

the organism. It is possible that an independent readout preserves the majority of informa-

tion available in the retinal population while failing to effectively convey critical features of

the visual scene. Natural scenes probe a behaviorally relevant context to assess the impact

of noise correlations on neural coding. These movies, like other natural inputs, drive a richer

and more reliable code in the brain (Rikhye and Sur 2015; Froudarakis et al. 2014; Hasson,

Malach, and Heeger 2010). Comparing across movies reveals what the more subtle features

in the neural code might be used for.

Our finding that sparse interactions sufficiently capture the functional impact of noise
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correlations on neural encoding elaborates on previous work that argued for a dense network

of weak couplings in the retinal code (Schneidman et al. 2006; Tkačik et al. 2014). In these

early models, both the fields and interactions between cells were static. The fluctuating

fields we included (following the time-dependent maximum entropy model work (Ferrari et

al. 2018)) absorb much of that structure, and capture the independent component of stimulus-

driven changes in the neural population response. The remaining sparse couplings are the

key factor for efficient scene identification. A sparse backbone may be easier to implement

and read out downstream. On the flip side, sparse codes might hamstring error correction

(Puchalla et al. 2005; Ganmor, Segev, and Schneidman 2015), so future work should explore

how these costs and benefits trade-off for behaviorally relevant inputs and tasks.

We find that the noise correlations have a large effect on scene decoding, which may

arise from small effects aggregated over time. It is not clear from the analysis performed

here what precisely gives rise to the beneficial impacts of noise correlations on decoding.

One possible answer is that the noise correlations may reflect changes in scene correlation

structure. This may help recover scene specific information that is otherwise lost to single-

cell-level adaptation.

Unraveling how this sparse but strong structure in the code is mechanistically supported

is an important next step in this work. In some ways, the circuit structure in the eye differs

from that found in the cortex. The retina is not a recurrent neural network; RGCs do not have

direct synaptic coupling, and the photoreceptor-to-RGC circuit is largely feed-forward. To

create a population code with sparse interactions, the retina needs to be wired around these

structural constraints. These sparse interactions seem to be the result of common bipolar

inputs and gap junction coupling between RGCs. What we have observed is sparse, strong,

functionally important, exclusively non-synaptic RGC-RGC couplings. Both gap junctions

and common bipolar inputs lead to stronger coupling between cells, but our analysis is not

sensitive enough to tease apart whether these two types of coupling sources are mutually

exclusive. Exclusivity would be an efficient way to implement a sparse backbone of specific
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cell-cell interactions. Future work to disentangle the circuit mechanisms giving rise to the

sparse backbone might ultimately inform studies in cortex where gap junction coupling is

also present (Friend and Gilula 1972; Peinado, Yuste, and Katz 1993; Y. Li et al. 2012).

2.5 Methods

Neural data

Voltage traces from the RGC layer of a larval tiger salamander retina were recorded

following the methods outlined in (Marre et al. 2012). In brief, retina from a larval tiger

salamander was isolated in darkness and pressed against a 252 channel multielectrode ar-

ray. Recordings were taken during stimulus presentation and spike sorted using a mostly

automated spike sorting algorithm. This technique captured a highly overlapping neural

population of 93 cells that fully tiled a region of visual space. Spikes were binned at 60Hz

for all analyses presented.

The binned data for both the checkerboard and movie stimuli can be found here: [LINK].

Stimuli during recording

A 30Hz white noise checkerboard stimulus was played for 30 minutes prior to and after

the natural scene stimuli.

Five different natural scenes lasting 20s were played in a pseudorandom order, and each

were shown a minimum of 80 times. Specifically, they were shown (in order, for the tree,

water, grasses, fish, and self motion movies) 83, 80, 84, 91, and 85 times. All natural scenes

except for the tree stimulus were displayed at 60Hz. The tree stimulus was shown at 30 Hz

and is repeated twice during each 20s epoch.

These movies were collected [insert info on sources], and are distributed alongside the

data.

Maximum entropy modeling

We followed the data-driven algorithm introduced in (Ferrari 2016) for our maximum

entropy modeling. This data-driven algorithm is a quasi-Newton method that allows for
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inference of model parameters X, in our case time dependent fields ht
i and couplings Jij ,

without needing to compute the inverse model susceptibility matrix χ−1[X] at each time

point during the learning dynamics.

As in (Ferrari et al. 2018) we learn a maximum entropy model with time-varying fields.

Specifically, we learn a model of form

P (σt
1...σt

N ) ∝ exp

−
N∑
i

ht
iσ

t
i −

N∑
i<j

Jijσt
iσ

t
j

 . (2.2)

The time dependent fields ht
i capture the time-varying firing rate of cells σi in response to

the stimulus. This means that stimulus dependent correlations between cells are absorbed

into the fields, leaving the couplings Jij to encapsulate the noise correlations between cells.

For several 20 cell groups, we validated model fits by comparing couplings in the first

half and second half of each stimulus and ensuring couplings remained stable. To do this,

we separately trained models on each half of the data.

All fits were done on groups of 20 cells, which were all subsets of the full population of

93 cells. These subsets were chosen at random

We additionally use sparse models to generate 2.3. For the independent model, we fit to

the same fitting target, but constrained all couplings to be zero. For the backbone model,

we first fit a full model with all couplings and fields. Then, we re-fit, constraining all but

the top 10% of couplings from the first fitting to be zero.

DCA models

When we were looking for a model that would give us access to the couplings in the white

noise stimulus, we were faced with the lack of stimulus repeats. The stimulus-dependant

maximum entropy model fundamentally relies on measurements of noise correlations, and as

such does not work without stimulus repeats. However, we also wished for a method that

would allow us to infer couplings that are only representative of the noise correlations, not

couplings that included both shared stimulus inputs and noise correlations. In general, this
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is not possible, and standard maximum entropy model are not up to the task.

Here, however, we took advantage of a feature of this data: many of our cells have highly

overlapping receptive fields. This means that two cells with similar RFs can be correlated

two ways: because of a noise correlation, or because of shared stimulus drive. In particular,

if several cells are driven in the same way by the stimulus, they will all have correlations

with each other, and therefore many methods would infer ‘loops’ of couplings.

However, in the protein community, DCA (Direct Coupling Analysis) was developed as a

maximum-entropy technique with an emphasis on ignoring indirect couplings (i.e., breaking

loops), and a prior asking for a sparse coupling matrix. This means that in our case with

several cells all driven in the same way by the stimulus, many of those correlations will be

dropped in favor of a sparser explanation for population activity, and in particular one should

expect the remaining couplings to be the strongest correlations - those where there is both

a biological coupling between the cells and a shared receptive field. This means that we do

not expect quantitative agreement between this method and stimulus-dependant maximum

entropy, but that we can hope to find the same backbone of strong couplings.

We do not expect this method to be perfect or to be generally applicable. Here, however,

the fact that we obtained highly similar couplings to those found from stimulus dependant

maximum entropy (a task at which stimulus independent maximum entropy models fail

entirely) is proof in and of itself that this method was reasonably successful in our context.

In order to fit the DCA mdoel, we followed methods discussed in (Weigt et al. 2009). We

chose a gauge where neural silence/activity are described by {0,1} to more easily relate the

DCA network to couplings fit from the time dependent models.

Decoding scene identity

For the scene identity decoding introduced in Fig 2.3, we used a Bayesian approach to

measure P (movie|spikes),

P (movie|spikes) = P (spikes|movie)P (movie)
P (spikes) . (2.3)
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We generate sample spike trains from the learned probability distributions for each of the

five movies to test these probabilities. As our models of spike probabilities are equilibrium

models, with no relationships between consecutive states, we do this by sampling from the

distribution P (σ⃗) = 1
T

∑T
t P (σ⃗t|t) independently for each state in our simulated spike train.

For each sampled spike train, we can calculate P (spikes|movieα), where α indexes movies,

simply by plugging into the probability distributions that define our models. We set a

uniform prior, P (movie) = 1/5. Finally, P (spikes) = ∑
α P (movieα)P (spikes|movieα).

For each combination of movie and model choice, we generate 1000 spike trains. In Fig

2.3a, we show the median performance for each model at decoding, and the quartiles for the

full and independent models.

Spike Triggered ICA

To compute the Spike Triggered ICA (ST-ICA) we follow methods developed in (Saleem,

Krapp, and Schultz 2008).

We first compute the spike triggered average for each cell in a natural cubic spline basis.

This is a common method to reduce the number of parameters needed for the model and

ensure that the resulting receptive fields are smooth in space and time. We choose the

number of splines such that the log-likelihood on held out white noise data is maximized.

To further reduce the number of parameters, we assume our receptive field is rank 1, it

can be separated into a spatial filter and a temporal filter. Following these assumptions we

use SVD to find this rank 1 approximation. This provably minimizes reconstruction error

under the Frobenius norm. We then crop the spatial dimensions for each cell to the regions

containing the receptive fields and convolve the stimulus with the temporal filters, which

leaves only spatial degrees of freedom.

For each cell, we then have a matrix of size N spikes by M features, where each feature is

a spatial pixel convolved with time filter. We use Preconditioned ICA (Ablin, Cardoso, and

Gramfort 2018), an algorithm for ICA that uses preconditioned L-BFGS, a low memory quasi

newton optimization algorithm, for optimization to estimate 20 independent components.
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Resulting components were considered proper subunit candidates based on the presence of

significant spatial autocorrelations, following methods in (J. K. Liu et al. 2017).

With a list of candidate subunits for each cell we then computed the activation of that

subunit by projecting the time convolved stimulus onto each filter identified by ST-ICA. Two

units were considered the same following methods developed in (Jia et al. 2021).
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CHAPTER 3

RETINAL GANGLION CELL POPULATION STRUCTURE ALLOWS

ACCURATE DECODING OF NATURAL SCENES

3.1 Introduction

Sensory perception depends not only on the successful encoding of complex, varying stimuli,

but also on a reliable, consistent method with which to read out that encoding downstream.

The necessity for reliable readout puts significant strain on any encoding scheme. The

encoding scheme must be flexible enough to extract information from a large variety of scenes

while maintaining some fixed components that can be relied upon for readout. This problem

becomes increasingly difficult in natural environments, where visual stimuli vary in luminance

over many orders of magnitude (Rodieck 1998) and variance (Ruderman and Bialek 1994)

(Schwartz and Simoncelli 2001), and have complicated temporal and spatial structure (Dong

and Atick 1995; Hateren and Ruderman 1998). Retinal ganglion cells maintain their ability

to encode these differing natural scenes at the individual level by adapting their response

profiles to match the statistics of the environment (Fairhall et al. 2001). This flexibility at

the single cell level, however, means that downstream readout becomes more difficult.

While single cells encode stimulus features, it is their population response that drives

perception. For that reason, any static features in the population structure may be useful

for decoding downstream. Previous work has shown that sparse, strong cell-cell interactions

between neurons remain consistent across both natural and synthetic stimuli (Hoshal et

al. 2023). These interactions, the noise correlations, have been shown to shape individual

cell encoding (Tkačik et al. 2010) and therefore might be a valuable feature to leverage for

downstream readout at the population level. Knowing how a network of cells must interact

with each other, regardless of incoming stimuli, might make a downstream decoder robust

to the large scale adaptation at the single-cell level.

How can stable pairwise interactions be leveraged to facilitate robust readout? Together,
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individual cell responses to stimuli and the pairwise correlations between them imply a

graph structure that might be well suited for graph-based decoding. To exemplify this,

we imagine the RGC population as a graph G = {V, E} with nodes V as the individual

neurons and edges E the known cell-cell interactions between them. The individual nodes

v ∈ V represent each individual RGC’s response to stimuli, while the edges e ∈ E between

them contain information about the fixed population level structure. Such graphs are the

foundation for graph neural networks (GNNs), a type of neural network that takes graphs as

inputs and learns an embedding space that represents both local graph structure and node

features (Kipf and Welling 2016). GNNs have been employed for successful classification

in a variety of contexts, from differentiating protein families (Zhang and Kabuka 2018) to

determining loyalties within a social network (Zhuang and Ma 2018). These graph-based

decoding strategies might extend to natural scene recognition using features of the retinal

response as graph inputs.

To test this notion, we train a GNN on population retinal ganglion cell responses to mul-

tiple repeats of three different natural scenes and show that this GNN learns representations

that support accurate classification of scene identity, even using single trial data. We further

show that removing cell-cell interactions limits the cross-scene separation of representations

learned by a multilayer perceptron, demonstrating the importance of these interactions for

supporting the decoding of scene information on single trials. Finally, we show that the

learned embedding space for this model is robust enough to support classification of single-

trial data from a fourth movie not encountered during training.

3.2 Data and GNN architecture

Data

Voltage traces from the RGC layer of a larval tiger salamander retina were recorded

following the methods outlined in (Marre et al. 2012). In brief, retina from a larval tiger

salamander was isolated in darkness and pressed against a 252 channel multielectrode array.
28



0  40 80 120 160 200

time (s)

10
20
30
40

ce
ll

0

0.2

0.4

0.6

0.8

ra
te

 (s
pk

/s
)

GNN
Subgraph


AugmentationsFeatures

Input Graph

m
in

(L
(z

i,z
j)

Embedding 


G
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Multiple repeats (minimum 80) from five different natural movies are displayed in a pseudo-

random order. Recordings were taken during stimulus presentation and spike sorted using

a mostly automated spike sorting algorithm. This technique captured a highly overlapping

neural population of 93 cells that fully tiled a region of visual space. Spikes were binned at

60Hz for all analyses presented.

GNN architecture

We modify a graph convolutional network from You et al. 2020, hereby called GraphCL.

GraphCL is a 4-layer graph neural network designed to train using contrastive learning

on input graphs. Contrastive learning in graphs is inspired by the same technique in image

processing for convolutional networks (T. Chen et al. 2020). In principle, contrastive learning

uses positive (alike) and negative (unalike) pairs of images to learn to build representations

that encode the contrast between any pair of samples. This framework has been successful

for unsupervised image classification. We modify GraphCL to have dim = 80 hidden units

and output layers.

Training GraphCL

We form our input data by generating augmented subgraphs generated from neural re-

sponses to three different natural scenes. Each graph Gmovie = {V, E} takes as node features

the PSTH for each neuron and as edge features the top 10% of noise correlations between

all pairs of neurons. This creates a sparse graph with each node using as features a de-

scription of a the corresponding neuron’s average activity over time for each stimulus. The

edges remain fixed for all three graphs. Importantly, the graph inputs are unlabeled. The

goal of GraphCL is this context is to generate an embedding with three emergent clusters,

representing the input graphs from three different natural scenes.

Training GraphCL required the generation of two groups of subgraphs from each of

these three graphs. First, we generated a group of subgraphs as part of a data augmentation

procedure (a common technique for successfully training deep neural networks to build robust

representations across deformations and transformations of their input spaces). Second, from
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these subsampled graphs G we generate pairs of subgraphs to use for contrastive learning,

Ḡi and Ḡj . All subgraphs are generated with a dropout criterion of 0.2.

GraphCL learns this embedding via contrastive learning. For each augmented input

graph G, GraphCL samples two distinct but related subgraphs of G, Ḡi and Ḡj , and feeds

them independently into the graph neural network based encoder to generate graph embed-

dings h
Ḡi and h

Ḡj . These embeddings undergo a nonlinear transformation that maps them

each to a latent space Z, where zi and zj are compared via contrastive loss. GraphCL learns

by maximizing the agreement between the representations of these contrastive pairs. See

Figure 3.1 for details.

3.3 Results

Learning representations using population structure captures natural scene identity from

activity on single trials

While repetition-averaged PSTHs are known to support scene classification by themselves,

classifying natural scenes from activity on single trials poses significant additional challenges.

In particular, neural responses even to the same stimulus are stochastic and thus different

trial-by-trial, and the probabalistic nature of neuronal firing means bit-flip errors are common

over the course of a stimulus presentation. Although the PSTH gives a good estimate of the

expected neural response over time, which is robust to trial-to-trial variability, the brain is

constantly tasked with decoding in this extremely challenging single-trial regime.

To test whether taking advantage of cell-cell interactions can improve single-trial decod-

ing, we fit and validate our GCN on input graphs that have information on the trial-averaged

population response during stimulus presentation, via PSTHs, and the connectivity between

neurons, based on the noise correlations. This gives the GCN a prior on the neural activity

for each scene and allows it to use functional interactions to learn an embedding space. In

testing, however, we feed in graphs with single trial data as feature vectors, instead of the

PSTHs, and see where in the learned embedding space the GCN places that graph.
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Figure 3.2: GCN embedding space shows clustering of single trial activity
for natural scenes. A TSNE of the embedding space for the train graph
convolutional network. The embedding space for validation graphs are
shown in black. The single trial activity for each movie, shown in colors,
populate the embedding space near one of the three clusters from the
validated graphs from training on PSTHs.

We visualize the embedding space using t-distributed stochastic neighbor embedding

(TSNE) on the last layer of the GCN (Fig 3.2). Embeddings from the validation set of graphs

are shown in black. There is clear, emergent clustering of the three different movies, even

though the learning process is unsupervised with respect to movie identity. This exemplifies

GCN’s ability to learn to discriminate the varying statistical structure of the neural response

to each natural scene. The colored dots represent the test data for single trial activity of

natural scenes. The clear separability of single trial data into three distinct classes shows the

graph structure and PSTHs are sufficient for discriminating between diferent natural scenes

at the level of neural activity on single trials.

To test whether the population PSTH alone is sufficient for single trial scene identification,
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Figure 3.3: MLP fails to classify single-trial activity a) A TSNE of the
final activation layer of the MLP trained and validated on labeled popu-
lation PSTH activity. The validated data, in black, forms three distinct
clusters that are decodable with 100% accuracy in validation. The single
trial data,in color, lies far from the validation clusters and is not easily
separable. b) A magnification of the boxed single trial data shown in a.
The fish movie cannot be separated from the tree and grasses movies. c)
The confusion matrix on the single-trial test data for the MLP.
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we perform a similar analysis using a trained multilayer perceptron (MLP). An MLP is at

minimum a three layer, fully connected feedfoward network known for its ability to classify

data that is not linearly separable. We designed the MLP to have an equal number of layers

and output dimensionality as our GCN implementation to control for any difference in cross-

scene separability of representations due to parameter count. The MLP takes as input the

neural population PSTHs, along with scene labels, but does not have access to the pairwise

correlations between neurons. We perform a TSNE on the activations of the MLP’s last

hidden layer prior to classification (Fig 3.3a), observing that the MLP can easily separate the

validation data into three distinct classes and obtains 100% classification accuracy. However,

the MLP struggles to classify the single trial activity (Fig 3.3b). In particular the “fish”

movie is indistinguishable from the “grasses” movie and the “tree” movie, as shown by

the classifier’s confusion matrix (Fig 3.3c). The failure of the MLP to classify single trial

data based on PSTHs alone indicates that an independent readout mechanism may not be

sufficient for single trial scene classification.

Separable zero-shot embedding of single-trial neural activity responding to a novel natural-

scene stimulus

During the training of the GCN, we allowed the GCN to use PSTHs during three dif-

ferent natural scenes, which facilitated the learning of an embedding space that separates

between each scene, even at the level of single trials. In principle, this setup relies on having

a known prior (the PSTH) to perform decoding, i.e. the GCN might not be able to sensibly

embed a novel stimulus. This is an ethologically unrealistic decoding scenario: when animals

enter visually-novel settings, their visual system must still furnish them with information

appropriate for coordinating action, even when the context is new. To probe whether in-

corporating neural population interaction structure can help to support stimulus decoding

in this kind of setup, we evaluated our fit GCN on single trial neural responses recorded

during the presentation of a held-out stimulus. If population interactions can support the

discrimination of different scenes at the level of single trials, then the resulting embeddings
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should cluster together, reflecting the mutual similarity of the activity state on all trials

where this held-out scene was presented. Further, this cluster should segregate from the

embedding clusters corresponding with the activity during the three movies used to fit the

GCN. For this task, we chose to feed in an optic flow movie, which has wildly different statis-

tical structure from the three previously included scenes (this is due to the camera moving

in the optic flow movie, creating radial motion that is not present in the other movies with

a fixed perspective). This ensures that the novel stimulus should be clustered away from the

other movies, while also asking whether the learned embedding space is robust to a novel

set of stimulus statistics that it likely did not encounter during training. In Fig 3.4, we

again show a TSNE for the validation graph set, as well as the single-trial activity from the

natural scenes. The optic flow movie trials cluster tightly together, showing that the learned

embedding space is able to generalize to completely novel single trial data. Further, this

cluster of optic flow trials is completely separable from the other three stimulus classes. This

demonstrates that a graph based decoding scheme using only PSTHs and known consistent

population structure is sufficient for generating representation spaces in which even novel

scenes are distinguishable.

3.4 Discussion

In this chapter, we demonstrate that activity of retinal populations during the presentation of

natural scenes can support the learning of embeddings (using an unsupervised, connectivity-

informed technique) that are strongly mutually separable, even at the level of single trials.

Even though single-cell responses can rapidly adapt to novel stimuli, the presence of consis-

tent noise correlations is sufficient to separate between neural responses across a variety of

different natural scenes. Questions remain as to whether these noise correlations are neces-

sary for single-trial scene decoding. The failure of an MLP to do single-trial classification

based on trial-averaged population neural activity does not imply cell-cell interactions are

required, just that PSTHs alone are not sufficient. Some other feature of single cell response
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Figure 3.4: Zero-shot classification of single-trial activity for a novel
natural scene. A TSNE of the embedding space from the GCN, as in 3.2,
now included single trial activity for the optic flow stiumlus. The GCN
was not trained on data from the optic flow stimulus, but still clusters the
single trial together and separates it from the other natural scenes.
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that we did not feed into our networks might rescue the MLP single trial decoding.

While our GCN uses only a sparse graph of known noise correlations for single-trial

stimulus embedding, other edge structures may be better suited to this task. For example,

we also tested a k-complete unweighted graph that had even better task performance. The

aim of this paper is not to find the best graph based decoding mechanism for single trial

readout. Instead, we ask whether a known feature of the RGC population structure is

sufficient for such readout. As such, we decided to minimally transform our data, feeding

in neural responses and edge information exactly as one might expect a downstream neural

decoder to receive them.

Our GCN performs near-perfect single trial scene classification using a fairly high di-

mensional (dim = 80) embedding space. That the brain might support high-dimensional

embedding spaces is certainly plausible, given the extremely high ambient dimensionality

of even a single brain region in a small organism’s brain (where dambient = N neurons; for

most brains/brain regions, 80 << N). Even so, there are substantial theoretical and empiri-

cal reasons to expect much lower-dimensional embeddings. Theoretically, high-dimensional

embeddings generally pose problems for encoding generalizability, which would be a prob-

lematic shortcoming for the retina (the bottleneck for all visual representations in the brain).

Practically, correlated variability constrains the maximum possible intrinsic dimensionality

that an embeddiing could realize (not all directions in the N−dimensional neural state space

can be explored independently). In the context of the retina in particular, previous work has

shown exactly this kind of result: retinal responses are compressible to a low-dimensional

encoding space (e.g., 10 dimensions, as in (Wang et al. 2022)). Further work should explore

whether embeddings learned via GCN that support separable representations at the level of

single trials can happen in this kind of low-dimensional space which may be easier to read

out.

Future work should expand on the results presented here in several key directions. First,

choosing an appropriate null model for this setting is both important and technically difficult.
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An ideal control, fully accounting for any possible difference in embedding model approach,

parameter count, etc., would use the same GCN structure for learning the embedding space,

but under different perturbations of the edge structure that governs message passing. How-

ever, our implementation of the GraphCL algorithm precluded the use of a no-edge model

(learning the embedding space requires contrastive learning on augmented subgraphs, which

cannot exist wiithout any edges), and is too flexible for an ‘all-edges-equal’ model to be a

relevant comparison. In principle a node-dropping augmentation rather than a subgraph

augmentation could ameliorate these shortcomings in this setting. Second, UMAP might be

a more appropriate dimensionality reduction technique to visualize the embedding space as

compared to t-SNE, as it better preserves the local and global structure of the embedding

space.
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CHAPTER 4

LEARNING LOW-DIMENSIONAL GENERALIZABLE NATURAL

FEATURES FROM RETINA USING A U-NET

The following work was done along with Siwei Wang, who is the primary author on this paper.

The work is presented here in its entirety for the sake of providing meaningful context to

the reader. My contributions to this work include observing the benefits of simultaneously

encoding static and dynamic feature representations in the retina.

4.1 Abstract

Much of sensory neuroscience focuses on presenting stimuli that are chosen by the experi-

menter because they are parametric and easy to sample and are thought to be behaviorally

relevant to the organism. However, it is not generally known what these relevant features

are in complex, natural scenes. This work focuses on using the retinal encoding of natural

movies to determine the presumably behaviorally-relevant features that the brain represents.

It is prohibitive to parameterize a natural movie and its respective retinal encoding fully.

We use time within a natural movie as a proxy for the whole suite of features evolving across

the scene. We then use a task-agnostic deep architecture, an encoder-decoder, to model the

retinal encoding process and characterize its representation of “time in the natural scene”

in a compressed latent space. In our end-to-end training, an encoder learns a compressed

latent representation from a large population of salamander retinal ganglion cells responding

to natural movies, while a decoder samples from this compressed latent space to generate

the appropriate future movie frame. By comparing latent representations of retinal activ-

ity from three movies, we find that the retina has a generalizable encoding for time in the

natural scene: the precise, low-dimensional representation of time learned from one movie

can be used to represent time in a different movie, with up to 17 ms resolution. We then

show that static textures and velocity features of a natural movie are synergistic. The retina
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simultaneously encodes both to establish a generalizable, low-dimensional representation of

time in the natural scene.

4.2 Introduction

The flexibility and computational power of convolutional neural networks (CNNs) has helped

sensory neuroscience model the neural code for natural stimuli with rich feature repertoires.

It has been shown that CNNs carryout encoding computations similar to those observed

in the retina (McIntosh et al. 2016; Tanaka et al. 2019). A CNN also makes the inverse

problem of decoding complex stimuli from the retinal response (Botella-Soler et al. 2018b)

more tractable. Understanding decoding has its own significant merit because neural systems

downstream of the retina can only ‘see’ the world through the retinal code. For any visual

information to be used to guide behavior, it must first be decoded from retinal responses.

Historically, the decoding problem for natural stimuli has been challenging because both the

retinal response and the stimuli are high-dimensional. Although deep neural networks can

capture the high dimensionality of neural inputs and responses (LeCun, Bengio, and Hinton

2015), they do so by projecting the neural code into another high-dimensional parameter

space that is also hard to interpret. While these tools tell us that we can decode, our ability

to understand the features of neural activity relevant for that decoding is limited. In this

work, we propose a novel artificial neural architecture that can decode complex natural scenes

from retinal responses with high fidelity while providing a low-dimensional latent space that

is interpretable. Using this architecture, we obtain unique insights into what features are

important for reading out the retina’s population code, and why encoding these features

might enable an animal to navigate a complex, dynamic natural environment.

We anchor our results on a unique dataset from the salamander retina. Nearly one

hundred output ganglion cells were recorded simultaneously while several different natural

movies were projected onto the photoreceptor layer. The relatively long (20 s) movie clips

were played many times, in a pseudo-random order. During the lifespan of a salamander, it
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goes through a transition from being aquatic to terrestrial. The sampled movies attempt to

span these different motion environments. A movie of small fish in an aquarium with live

plants was set up to match what a larval tiger salamander might see underwater while it

hunts for food. A movie of leaves blowing in the wind resembles the scene a salamander may

live in after it undergoes metamorphosis. Does a salamander retina re-use how it encodes

features during the aquatic larval phase to represent features in a terrestrial scene? This

motivates us to investigate whether the encoding of natural features from one particular

movie is generalizable to a novel movie.

Natural movies contain complex spatio-temporal features on multiple scales. This makes

enumerating all possible stimulus states in natural movies intractable. It is more feasible

to investigate how the retina encodes time in the natural scene, as has been done in other

studies (Xia et al. 2021). The salamander retina elicits precisely timed spikes (Berry, War-

land, and Meister 1997). The idea that the retina may encode how features change over

time to discriminate between frames has been explored before (Schwab et al.). It has an

intricate connection to stimulus-dependent representational drift in sensory systems (Marks

and Goard 2021). Previous work (Xia et al. 2021) reported that a low dimensional com-

pressed representation of activity from a mouse V1 population can be used to discriminate

frames that are 1s apart. Furthermore, the authors showed that if such an encoding of time

in the natural scenes exists, it is likely to be low-dimensional (Xia et al. 2021). We train our

deep neural network (an encoder-decoder in machine learning parlance) (Fig 4.1 and Section

4.3) for decoding. It reconstructs movie frames from retinal responses. This is different

from previous works (McIntosh et al. 2016; Tanaka et al. 2019) that use CNNs as “in-silico

retinas” to understand how specific stimuli drive the retina. During training, the encoder

part of the deep neural network learns a continuous, compressed latent representation of the

retinal responses from which the decoder part samples to reconstruct target movie frames.

We enforce structural constraints (Hinton and Zemel 1993; Bengio, Courville, and Vincent

2013; Bowman et al. 2015; Kumar and Poole 2020; Kingma and Welling 2013) to obtain
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meaningful, continuous latent space. We find that using this compressed representation, we

can decode time in the natural scene up to single-frame resolution (17ms) (Fig 4.1). This

learned, compressed representation allows for precise decoding in a novel set of natural scenes.

We show that the retina is responding to spatio-temporal features that change over time,

rather than having a clock. We divided these features into static (texture) and dynamic (op-

tic flow–a vector field describing the motion between subsequent frames (Horn and Schunck

1981)) motifs. This allows us to construct two distributions which reflect how static features

and dynamic features cluster to discriminate between frames. We find that these features are

synergistic with respect to the encoding. By simultaneously encoding static and dynamic

features, the retina establishes a generalizable, low-dimensional representation of time in

natural scenes.

4.3 Data and encoder-decoder architecture

Data

Our dataset contains retinal recordings of 93 cells responding to repeated, 20 second

presentations of three natural movies at 60 frames per second. There are 85-90 presentations

of each movie interleaved in pseudo-random order. Spikes are binned at 17ms, to align with

the movie frame duration. We compute each neuron’s firing rate as a function of time within

each movie, (the peri-stimulus time histogram, or PSTH) by averaging spikes across trials

in these bins 1.

Encoder-decoder architecture

We use a U-net (Ronneberger, Fischer, and Brox 2015) as the backbone architecture.

The U-net supplements an encoder of contracting layers with a nearly symmetric decoder

of expansive layers (hence the U-shape, see Supplementary Information) (Fang et al. 2021;

Howard et al. 2018). It is successful in domain-conversion problems, i.e., text-to-speech (R.

1. You can find our Pytorch implementation at https://github.com/sepalmer/VU-net
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Li et al. 2021). We modify its skip connections to supply the decoder noisy features from

the encoder. Because the intermediate features from the feedforward encoder have different

resolutions at their convolutional layers, these skip connections enable the decoder to form a

multi-scale and multi-level feature representation of the input. Our particular network has an

encoder with the same architecture as ResNet18. We also initialize it with the ResNet18 (He

et al. 2016) weights pre-trained by ImageNet (Krizhevsky, Sutskever, and Hinton 2012). Our

decoder mirrors the feedforward architecture of the encoder (see Supplementary Information).

In addition, we turn these skip connections into variational sampling layers and use them as

compressed representations of the input retinal activity. The set of activation values in this

latent space in response to the neural activity (input) from a given stimulus movie is referred

to as Zmovie, where ‘movie’ is either ‘fish’, ‘water’, or ‘leaf’). We constrain all variational

sampling layers to have the same dimensionality, to simplify the training.

Knowing that the decoder reconstructs the movie frame from features across multiple

spatial and temporal scales, we use the perceptual loss (Johnson, Alahi, and Fei-Fei 2016) as

the objective function for the encoder-decoder. This loss function compares a reconstructed

frame with its target frame with respect to learned features from a pretrained VGG, as

opposed to their raw pixels. Throughout the paper, we use features from the pretrained

VGG19 to represent movie frames.

4.4 Results

Retinal activity has a low intrinsic dimension

Fig 4.1A shows how we train an encoder-decoder for a specific movie (in this example

the fish movie). The input is the retinal PSTHs from the 45 most reliably spiking cells in the

population (see Supplementary Information). We take trial-averaged firing rates, and ignore

‘noise’ correlations between cells, to make an initial pass at this high-dimensional problem.

Considering that many of the observed retinal computations happen on a timescale below

400ms (Baccus and Meister 2002), we restrict ourselves to 500 ms long snippets of the PSTHs.
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Figure 4.1: Retinal activity has low intrinsic dimension A) Encoder-
decoder network trained to predict a movie frame 100ms in the future
from a 500ms window of retinal activity in the past (the aggregated recep-
tive field of the retina population is shown in the heat map from the left).
The network learns a low dimensional variational representation, where µ
and σ characterize the posterior distribution p(x|z). The samples drawn
from this latent space are referred to as Z in subsequent sections. All skip
connections are trained to obtain a separate latent space for Z. Using a
highly expressive encoder (Lin and Jegelka 2018), i.e., ResNet18, we em-
pirically observe that the latent space learned for all skip connections are
similar. B) We train the network on one movie (fish, for example), then
the encoder weights are frozen. We obtain the Z’s for retinal activity re-
sponding to different movies by passing test samples from all three movies
through the trained encoder. C) The intrinsic dimensionality of the reti-
nal activity (dashed line) and the latent dimensions for latent space with
varying dim Z. Note that intrinsic dimension measures the complexity
of the retinal activity. We use it as a lower bound to constrain dim Z
and add additional latent dimensions to improve reconstruction of target
movie frames. We stop at dim Z = 10 because we observe highly accurate
reconstruction with dim Z = 10 empirically.
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To encourage the model to learn temporal structure within the movie, we ask the decoder to

reconstruct a movie frame 100ms in the future, after the end of the 500ms snippet of neural

response. We choose this particular ∆t based on the timescale of predictive information

in retinal populations (Palmer et al. 2015). We train one predictive encoder-decoder for

a specific movie using 40,000 training samples (see Supplementary Information for details)

with a 90%/10% training/validation split. The reconstruction is from an additional held-out

test set of 10,000 samples (100 frames, 100 PSTH patterns in each frame, see Supplementary

Information). We also train a static encoder-decoder that learns to reconstruct a frame

centered within the 500ms window of neural activity (using 250ms before and after the

target frame as the input, similar to (Botella-Soler et al. 2018b)). The predictive encoder-

decoder achieves a reconstruction performance similar to the static one. We focus on the

predictive encoder-decoder in our subsequent analysis because it may capture both static

and temporal structures of a natural movie by design.

The latent space is a compressed representation, Z, of the mean firing rate patterns from

the retinal population. We estimate the intrinsic dimension (Pope et al. 2021; MacKay and

Ghahramani) of the retinal activity and use it to guide the selection of the dimensionality

of the latent space. This intrinsic dimension is the number of variables needed to describe a

data distribution (Levina and Bickel 2004). It is also a complexity measure of data because

it determines the number of samples needed to characterize a data manifold (Narayanan

and Niyogi 2009; Narayanan and Mitter 2010). We find that our estimate of the intrinsic

dimensionality for all retinal activity in response to the three movies yields the same result

as the estimate of the intrinsic dimensionality from the activity for each movie separately,

i.e., including retinal activity from a different movie does not add complexity to the latent

space representation of the retinal response. This suggests that features in natural movies

may be encoded by the retina in a generalizable way across movies. We use the intrinsic

dimension of the retinal activity as a lower bound to determine latent dimension, i.e., dim Z

in the encoder-decoder. We then add additional latent dimensions to help encode factors
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that may result from combinations of different intrinsic dimensions. We observe that the

increase in the estimated intrinsic dimension of the latent space decreases after dim Z > 4.

Meanwhile, we empirically observe good reconstruction performance (the pixel MSE is about

0.02 averaged over 100 test frames of size 64X64 with pixel intensity ∈ [0, 255]) when we use

latent dimension equal to 10 to reconstruct the held-out movie segments (see Supplementary

Information). Thus, for further analyses, we use dim Z = 10 unless otherwise stated. To

address questions about whether features learned from retinal activity responding to one

movie are generalizable to another novel movie, we generate “mismatched” Z’s. These

“mismatched” Z’s are compressed representations of the retinal responses to Zwater and

Zleaf movies by passing those inputs through the encoder trained for the Zfish movie (Fig

1B). The results presented below are similar regardless of which movie (water, leaf, fish) we

train on and which other two movies are used to generate mismatched Z’s.

The retina encodes complex, but interpretable spatio-temporal features in natural movies

The goal in this section is to qualitatively assess latent space stimulus features to show

that the encoder-decoder contains features that are plausibly encoded by the retina. We

visualize highly activated features from decoding layers of multiple spatial scales (threshold

by top 1% activation intensity, see Supplementary Information for more visualization). We

find both features that resemble background motion and features that resemble object motion

(Fig 2) in a specific decoding layer. In particular, the object motion feature closely traces

the movement of the fish in the target movie segment. The average activation of this feature

along the x-axis shows that this feature may be responsible to decode both position and

velocity of the fish movement in the target movie frames (top row). Because removing the

latent activations silences both background and motion features, we also determined that this

specific variational sampling layer generates these disentangled features. This observation

agrees with previous experiments that the retina can encode features that evolve across time

and space (Kühn and Gollisch 2016). This motivates us to investigate whether we can decode

the “time in the natural movie”, i.e., discriminate between different frames from this specific
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Figure 4.2: Features from a decoder layer separately decode background
and object motion. 1st row (from top to bottom): target movie frames
that are 100ms apart; 2nd row: an example feature inside the trained
decoder and its activation for decoding frames in the top row. 3rd row:
the spatial, temporal activation. 4th row: X-T receptive field (aggregated
x-axis activation over time).

decoding layer.

Low dimensional, generalizable representation of time in multiple movies

In this section, we investigate whether we can discriminate frames in natural movies and

thus decode time in natural scenes. We can also ask whether the feature space of the retinal

population used for one movie can be used for the other two natural movies in our three-

movie dataset. If this is the case, it would suggest that there is a general representation of

spatio-temporal features in retinal activity that supports this decoding of time.

Inspired by previous work that the visual cortex may contain a low-dimensional repre-

sentation of complex stimulus features evolving over time (Xia et al. 2021), we decode time

in the natural scene with the particular latent space that corresponds to the decoding layer

shown in Fig 4.2. We obtain the compressed representation of retinal activity on the held-
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out test frames for the fish movie, i.e., Zfish, as well as test frames for two other novel

movies (e.g., leaf and water). This use of an encoder-decoder to generate a compressed rep-

resentation of a data distribution has been investigated in detail in representation learning

(Hinton and Zemel 1993). For each Zfish,leaf,water separately, we linearly decode the 1D

frame label of held-out test frames from the corresponding Z. Fig 3A shows all decoding

performance as a function of the number of dimensions allowed in Z (we trained a series

of encoder-decoders with different dim Z). Because all encoder-decoder models are trained

with the fish movie, the decoding for the fish movie outperforms the other two. However,

we observe that dim Z = 5 is sufficient for the encoder-decoder to build a latent space Z

which can decode >80% frames in all three movies. This is also the dimensionality needed

for decoding in the natural scene reported in mouse visual cortex (Xia et al. 2021). Since

these frames are 17ms apart, this decoding performance shows that salamander retina es-

tablishes a low dimensional representation of “time in the natural scene” with fine temporal

resolution.

The high decoding performance from the mismatched Z’s suggests that retinal activity

may establish a general encoding for “time in the natural scene”. How is this possible?

The retina is presumably encoding general space-time features that are predictive of the

future space-time features in natural scenes. These could be complex, but they seem to

generalize across movies. We use information theory to directly evaluate the information

that all three Zs contain that is relevant for decoding time. We first calculate the mutual

information between latent representations of retinal activity responding to different movies

(here,Zfish is the learned compressed retinal responses to the fish movie, so we show the

mutual information of fish vs. leaf I(Zfish; Zleaf ) and fish vs. water, I(Zfish; Zwater),

respectively). We also observed that I(Zfish; Zleaf , time) = I(Zfish; Zleaf ), i.e., including

time does not add additional mutual information. This tells us the latent representation

obtained from retinal activity for one movie encodes the generalizable “time in natural

scenes” for a different movie, up to the full entropy of time itself. To show this, we use the
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chain rule of mutual information and subtract mutual information that is independent of

time, i.e., I(Zfish; Zleaf |time) = I(Zfish; Zleaf , time) − I(Zleaf ; time) = I(Zfish; Zleaf ) −

I(Zleaf ; time), in Fig 4.3B. The cyan bar shows the MI between Zfish and mismatched Z

that is about time, I(Zfish; Zleaf ) − I(Zfish; Zleaf |time). It nearly saturates H(time). We

also observe that the mutual information between different movies is mostly about time. The

difference between the pink and cyan bar is very small. This estimate confirms that the retina

has a generalizable, precise representation of time in natural scenes that can discriminate

consecutive frames that are only 17ms apart. Table 4.1 confirms that latent representations

obtained from retinal responses to any one movie can be used to decode time for all three

movies.

In the supplementary information, we also included simple visualizations and decoders

to demonstrate that decoding “time in the natural scene” is challenging. First, “time in

the natural scene” cannot be observed as a simple visual trend using the mean PSTH, pair-

wise frame-to-frame distance, or the 2D latent space trace. Second, we also included linear

decoders trained on instantaneous PSTH’s, raw PSTH’s, shuffled PSTH’s and three other

dimensionality reductions (Isomap, 10D-PCA and 50D-PCA). We found that shuffled PSTH

shows inferior performance compared to the one trained on raw PSTH’s. This suggests that

decoding time does not come from trivial gross changes in spiking statistics. We also ob-

served that linear decoders fall short of the 10-D latent representation learned by the U-net

in terms of generalizable performance, even when using the 50D-PCA. To learn a low dimen-

sional feature space that can be applied to all three natural movies, our variational U-net

carries out significant nonlinear transformation.

Synergistic features for encoding “time in the natural scene”

Fig 4.3 shows that the retina has a low-dimensional, generalizable representation for time

in the natural scene. We next ask what features the retina uses for this low-dimensional,

generalizable representation.

Although there are retinal circuits that encode object motion, most decoding work only
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Figure 4.3: A generalizable representation of time in natural scenesA)
Decoding performance of latent representations on test movie segments
for all three movies. The encoder-decoder is trained in fish movie. The
latent representations are obtained from retinal activity of all three movies
(fish, leaf, water). B) Mutual information between movies vs. mutual
information with respect to time. H(time) = 6.6 bits for the test movie
clip of 100 frames long. Because we use the encoder-decoder trained with
fish movie here, we show I(Zfish; Zleaf ) and I(Zfish; Zwater). (See the
supplementary information)

Water(5d) Water(10d) Leaf(5d) Leaf(10d)
Fish 78.2% 96.9% 72.2% 98.0%
Leaf 79.5% 97.8% 84.4% 99.1%

Water 84.0% 97.4% 71.7% 97.9%

Table 4.1: Latent representations trained on any one movie can decode
time in all three movies. Here we show dim Z = 5 and dim Z = 10,
respectively.
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Figure 4.4: Decoding performance and example decoding errors. A)
The scatter plot of decoding performance with a Zfish of dim Z = 4. Cor-
rectly decoded samples appear along the diagonal line of true vs. pred (de-
code), incorrectly decoded samples show up in off-diagonal regions. With
dim Z > 4, the decoding performance increases to ∼ 95% (shown in Fig
4.3). B) Two examples of decoding errors (within the boxes shown in
A). The two frames in the red box contain similar optic flow (dynamic)
whereas the two frames in the orange box contain similar static textures.

uses natural images as their input stimuli (Brackbill et al. 2020). Our stimulus set allows

us to explore how natural texture and motion might interact. In Fig 4.4, we show two

example decoding errors (Fig 4.4B), one where the predicted and true frame have similar

static features and one other where the predicted and true frames with similar optic flow

(dynamic features). This indicates that our observed latent representation of “time in the

natural scene” can be confused when either the static or dynamic structure between frames

is similar. These examples are not sufficient to exclude the possibility that static textures

may also be used to discriminate between different dynamic frames. To investigate this,

we perform two parallel hierarchical clusterings: one on the frames themselves (static) and

one on the optic flow frames (dynamic) of the test movie segment. If textures govern the

discrimination between frames in both dynamic and static settings, then these clusterings

should produce similar clusters. Before clustering, we convert all static frames and their

corresponding optic flow frames to features that are the activation from the last ReLu layer

51



in a pre-traind VGG19 network (Kummerer et al. 2017). These activations are believed to

mimic features used in human perception of generic natural stimuli (Johnson, Alahi, and

Fei-Fei 2016). We observe that hierarchical clusterings on dynamic versus static motifs of

all three movies yield different results (see Supplementary Information for details).

The difference between clusters of frames based on static versus dynamic features en-

ables us to construct three distributions of “time in the natural scene” (Fig 4.5A). One

uses the clustering based on the static features Ystatic, another using the dynamic features

Ydynamic, and a third combining both sets of features Yjoint. By construction, we would

like the joint distribution Yjoint to have an entropy as close as possible to the full entropy of

time H(time) = log 2(100)=6.6 bits. This construction narrows down our search of coding

schemes to how the retina combines dynamic and static structures within natural movies to

encode the “time in the natural scene”.

Previous work showed that the retina performs efficient coding (Joseph J. Atick and

A. Norman Redlich 1992b; H. B. Barlow 1961). Efficient coding predicts that redundancy

should be minimized among different features of interest. Therefore, while we would like the

joint distribution H(Yjoint) to contain most of the entropy of time, we also want to minimize

the mutual information between the two components Ystatic and Ydynamic (minimize their

redundancy). We varied the threshold on the clustering hierarchies to coarse grain the

distributions Ystatic and Ydynamic, and also to create the joint distribution Yjoint. Because

we do not know a priori their relative contributions, we coarse-grain both clusterings with

thresholds such that the coarse grained entropy of the two components are comparable, i.e.,

E(Ystatic) ∼ E(Ydynamic). In Fig 4A, we show the coarse-grained joint distribution we use

for subsequent analysis. It contains a small amount of redundancy, i.e., I(Ydynamic, Ystatic) =

0.8 bits, while Yjoint includes most of the entropy for time (H(Yjoint) = 5.05 bits = 76%

of H(time) = 6.6 bits). These two components are dominated by either static or dynamic

features, respectively. In Supplementary Information, we discuss in detail how we find these

distributions. A different threshold may either introduce a significantly higher redundancy
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or sacrifice too much information from H(time).

Using these distributions, now we can ask how the neural population encodes time

through encoding the both the static and dynamic features of the natural scene. The la-

tent activation of retinal inputs are compressed representations, so we frame this encoding

problem using the information bottleneck method (Bialek and Tishby 1999). The informa-

tion bottleneck method identifies whether a compressed representation T retains as much

information as possible about the relevant variable Y while compressing away irrelevant

components of the input X. In this context, the information bottleneck shows how much

information a compressed representation needs, in order to encode a specific amount of

information about the features of interest, Y .

The information bottleneck method minimizes the following objective function:

Lp(t|X),β = I(X; T ) − βI(Y ; T ) (4.1)

To make a meaningful measurement of I(X; T ) and I(Y ; T ), we first ensure that we have

a meaningful latent representation Z. The challenge is to prevent the so-called “posterior

collapse” (Bowman et al. 2015). This is a phenomenon previously reported in encoder-

decoders with highly expressive architectures (like the ResNet18 network that we use here)

(Lin and Jegelka 2018). These expressive architectures are capable of decoding complex

features, e.g., our movie frames, without using Z. This results in the latent code Z only

containing noise, i.e. I(X; Z) = 0. Here, we use a simple heuristic to circumvent this scenario.

As discussed in (Razavi et al. 2019; Kumar and Poole 2020; Locatello et al. 2019), we can

obtain a meaningful Z by making the posterior to have a small but nonzero noise. To be

specific, we have σ2 > 0 for p(X|Z). This is also dubbed a ’committed rate’ for the encoder.

In our case, we choose log σ2 = −1.0 to further ensure numerical stability of the mutual

information estimator that we use (Kolchinsky, Tracey, and Wolpert 2017).

The mutual information estimator also requires the prior of p(Z) to have a factor-
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ized marginal (each marginal is an independent Gaussian), N (0, I) (they are independent

Gaussians). This is a typical constraint introduced in the original variational autoencoder

(Kingma and Welling 2013). Combining this constraint on p(Z) and the above constraint on

p(X|Z), we can approximate I(X; Z) with the following estimator,

I(X; Z) = H(Z) − H(Z|X)

≤ − 1
P

∑
i

log 1
P

∑
j

exp(−1
2

||zi − zj ||22
σ2 ) − D

2
(1 + log σ2 + log 2π)

(4.2)

P is the number of test samples (P = 10000 in our case) and zi, zj are the latent activations

for the ith or jth sample.

Because P (Y ) has a uniform distribution (100 retinal inputs per frame and there are 100

held-out frames), we can use the following estimator for I(Y ; Z) (we also validated this esti-

mation with a widely used non-parametric estimator (Kraskov, Stögbauer, and Grassberger

2004), the difference is less than 0.1 in all our calculations):

I(Y ; Z) = H(Z) − H(Z|Y )

≤ − 1
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∑
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
(4.3)

Note that pl is the number of test samples for the lth frame. pl = 100 in all of the test

distributions.

Using p(Z) with a factorized Gaussian marginal brings an additional benefit: it is

the sufficient and necessary condition for the latent space to exhibit orthogonal symme-

try (V.Skitovitch 1953; Darmois 1953; Lukacs and King 1954). This Darmois-Skitovitch

characterization was first introduced to identify unique factors for independent component

analysis (Hyvärinen and Pajunen 1999; Peters, Janzing, and Schölkopf 2017). Recent work
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also showed that this factorized marginal Z is necessary to capture “ground truth factors

of variation” (Bengio, Courville, and Vincent 2013) in the latent representation Z (Higgins

et al. 2017; Kumar and Poole 2020).

In Fig 4.5B, we show the information plots for time, dynamic features, static features and

the joint ({Ydynamic, Ystatic}) features. X is the retinal activity. Y are features of interest,

which are time, Ydynamic, Ystatic and Yjoint, shown in different colors. Z are the latent

activations of a series of encoder-decoders with different dim Z. Because the encoding of time

reaches its full entropy of H(time) (specifically, we observe this saturation at dim Z > 5),

this shows that the compressed representations Z from the encoder-decoder are near-optimal.

In the information bottleneck technique, the best any representation can do is to encode the

full entropy of the relevant variable Y , i.e., here H(Y ) = H(time). This is similar to the

near-optimality shown in previous work in the variational information bottleneck (Alemi

et al. 2016; Kolchinsky, Tracey, and Wolpert 2017). In addition, we use many Z’s spanning

a range of dimensions to construct these information curves. We observe that all of these

compressed representations encode comparable amounts of information about both dynamic

and static features. This suggests that the dynamic features are as prominent as the static

features in the retinal population’s internal representation of complex natural scenes.

We highlight the benefit of simultaneous encoding of dynamic and static features in Fig

4.5C. By comparing the information about Yjoint = {Ystatic, Ydynamic} and the sum of the

information about these two components, we observe that there is synergy = I(Yjoint; Z) −

(I(Ystatic; Z) + I(Ydynamic); Z). By construction, the presence of synergistic information

corresponds to latent representations with lower dimensions. This suggests why the retina

can compress its encoding of both static and dynamic features. When it encodes both

features simultaneously, the synergy between these features helps the retina to represent the

full entropy of time itself in fewer latent dimensions.
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Figure 4.5: Synergistic features for encoding time in natural scenes A:
Joint distribution of static and dynamic features. This joint distribution
includes 76% of the entropy of time. Note that the mutual information
between coarse-grained static and dynamic distributions is about 0.8 bits.
Given that the entropy of static/dynamic features is around 2.8-2.9 bits,
the amount of mutual information between them is relatively small. B:
the information plane for fish data. Dark blue: the information curve
for encoding time; Light blue: the information curve for encoding the
joint distribution combining static and dynamic features; Red/Green: in-
formation curves for separated static (red) and dynamic (green) features.
See Supplementary Information for information curves of the other two
movies C: Blue: the information curve for encoding the joint distribu-
tion, the same as B; Black: the sum of information curves from Dy-
namic(Red)+Static(Green). There is a synergistic region between the
information curve for the joint and the sum.
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4.5 Discussion

This work uses a U-net-based deep learning architecture to reverse engineer a retinal en-

coding process for complex natural movies. Using the PSTHs of a large salamander retinal

population, we identify stereotypical features that are generalizable across multiple natural

movies. We find that the retina uses a transferable, low dimensional representation to en-

code a rich set of natural space-time features. The encoding obtained from one movie can

be used to decode “time in the natural scene” for a different movie, despite differences in

their particular spatio-temporal structures. We also discover that the retina encodes time

through synergistic coding of both dynamic and static features.

Here, we only observed synergy within the feature space (using mean firing rates of retinal

activity, we assume all cells are independent). We also decoded time in its simplest form by

asking how well we discriminate between different frames. In future work, we would like to

extend our analysis to temporal structure with proper predictive constraints, i.e., predicting

a future at a longer ∆t should be more challenging than predicting a smaller ∆t (Tishby,

Pereira, and Bialek 2000; Palmer et al. 2015). We are also aware that the synergy here is

different from what can be observed between cells in the neural data. The synergy in the

neural code may combine synergy in the feature space with synergy in the population code,

itself (Schneidman, Bialek, and Berry 2003; Latham and Nirenberg 2005).

Our work is most similar to (R. Liu et al. 2021; Zhou and Wei 2020) when compared

to other methods that also identify a latent representation between brain activity and ex-

ternal stimuli. They used a multilayer perceptron (MLP), a highly expressive feedforward

encoder. MLP is fully-connected, so that its learned latent representation corresponds to a

single global scale. Our U-net architecture, in contrast to the MLP, employs a ResNet as the

encoder. The ResNet encoder attains the same performance as the MLP, but by cascading

Resblocks from coarse-to-fine scales. This makes it possible for the U-net architecture to

simultaneously learn compressed latent representation at various scales. Although we did

not specifically explore this feature, it might be relevant for future research on understand-
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ing brain dynamics in flexible natural environments. For example, there is a hierarchy of

timescales both in natural scenes and output natural behaviors, ranging from hundreds of

milliseconds to minutes (whisking to walking to making action plans (Recanatesi et al. 2022;

Stern, Istrate, and Mazzucato 2021)). With additional constraints (Khemakhem et al. 2019),

These variational sampling layers may learn hierarchically distinct latent representations for

each timescale individually and comprehend how they might be coupled to create compli-

cated behavioral outputs. Outside of neuroscience, This U-net is compatible to learn latent

representations between other temporal sequences (e.g., text) and complex spatio-temporal

signals (speech or video). Text-to-speech and video summarization are two possible ap-

plications. Combining latent representation at multiple scales may also reveal semantic

relationships between complex features in general object recognition, e.g., how does a model

combine local features (nose, eye) with global shape (e.g., body size) to discriminate between

cats and dogs.

Our work shows that the retina leverages feature representations that are common across

natural movies. This knowledge transfer differs from what is referred to as “transfer learning”

in computer vision and machine learning. In computer vision, transfer learning refers to train-

ing a model with a much more complicated dataset (e.g., ImageNet with 1000 classes) and

performing inference on a novel, but much smaller dataset (e.g., CIFAR10/100 or CelebA).

Transfer learning presupposes that models trained on complex datasets contain sufficient

variation to allow the learned features to be reused on new datasets. For the retina, evolu-

tionary timescales underlie the “training from a complex dataset” stage. The retina is shaped

in such a way that behaviorally significant components of all natural inputs in an organism’s

ecological niche are selectively encoded. This enables our training on one movie/retinal re-

sponse dataset to reveal features transferable to another movie of a similar complexity or

scale. Future studies may enable us to determine if such a generalizable feature representa-

tion is innate (sculpted only by evolution) or whether visual experience within a lifetime may

refine it. This would depend on our ability to track changes in visual processing beyond the
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retina (e.g., cortex) over the course of an animal’s life (similar to fine-tuning in the transfer

learning domain).
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CHAPTER 5

LARGE N SCALING OF TIME-DEPENDENT MAXIMUM ENTROPY

MODELS

5.1 Introduction

Neuroscience has experienced a profound revolution of measurement: new tools (2-photon

imaging, high-density electrode arrays, etc.) have raised the throughput of neural recordings

by several orders of magnitude, opening up neural population activity states as a fruitful

object of scientific inquiry. This revolution has been accompanied by increasing interest in

theoretical tools for understanding neural codes at the level of these large populations (Kast-

ner, Baccus, and Sharpee 2015; Maheswaranathan et al. 2018; Botella-Soler et al. 2018a;

Molano-Mazon et al. 2018; Stringer et al. 2019; Marre et al. 2012; Yuste 2015; Berényi et

al. 2014; Lopez et al. 2016; Steinmetz et al. 2021). However, the promise of large populations

comes with several unique kinds of peril. For any given population size N , the instantaneous

activity vector can assume any of 2N possible binary states; for large N , experiments con-

ducted in finite time are overwhelmingly likely to undersample states that occur infrequently.

On top of these sampling issues, whether all parts of these population states are or could be

read out by downstream circuits remains unknown. To address these problems, efforts to de-

velop efficient, effective, and principled models of the statistics underlying high-dimensional

population activity state distributions have received substantial attention.

One approach to analyzing large populations is the use of maximum entropy models,

which successfully use O(N2) parameters to capture population structure in neural data,

even higher-order features not explicitly constrained by the model (Schneidman et al. 2006;

Pillow and Simoncelli 2006; Granot-Atedgi et al. 2013; Ganmor, Segev, and Schneidman

2011; Tkačik et al. 2014; Roudi, Nirenberg, and Latham 2009; Jaynes 1957; Tkačik et

al. 2010). Understanding the parameters that underlie these models can therefore yield

valuable insights on the dynamics of governing large neural populations. However, fitting
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maximum entropy models on large datasets has some limitations. With increasing population

size, maximum entropy models tend to underestimate the true entropy of a given dataset

(Macke, Murray, and Latham 2013). This underestimate grows for datasets with strong

correlations. Further, for even an N = 100 sized maximum entropy model correlations in

the data can be underestimated (Granot-Atedgi et al. 2013). This belies an opportunity to

find an alternative approach to fitting large N populations using maximum entropy models.

For any sufficiently large network it is infeasible to read out the entire population ac-

tivity for any successful decoding mechanism. Given a large N , the high dimensionality of

the population limits the viability of population state-based decoding. Such a readout is

susceptible to the noise inherent in any neural population. Further, neurons in any given

population lack all-to-all connections between them. In reality, there may be ”subnetworks”

of highly connected neurons that exist within neural populations. Readouts based on these

subnetworks and the interactions between them are lower dimensional, and would comprise

a more plausible readout than one from the full population state. For these reasons, models

that might emphasize or successfully identify subnetwork activity within a full population

may be valuable for analysis of large populations.

Inspired by the success of aggregation in machine learning (Breiman 2001; Haussler,

Kearns, and Schapire 1994; Monteith et al. 2011) – building a large collection of small mod-

els, each of which subsamples a region of the feature space, and combining them to bolster

prediction power – here we investigated the effectiveness of aggregating small subnetwork

maximum entropy models for approximating a full large-N model of population activity

distributions. After a general introduction to the time-dependent maximum entropy ap-

proach and to the retinal ganglion cell dataset whose distribution we model, we describe our

novel aggregation procedure, experiments comparing aggregate-model fits to fits of the full

large-N model, and speculate on approaches for further improving the predictive power and

interpretability of our approximation.
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5.2 Time dependent maximum entropy modeling

Maximum entropy modeling has a history of success using O(N2) parameters to capture

the structure in neural data, even higher-order features not explicitly constrained by the

model (Schneidman et al. 2006; Pillow and Simoncelli 2006; Granot-Atedgi et al. 2013;

Ganmor, Segev, and Schneidman 2011; Tkačik et al. 2014; Roudi, Nirenberg, and Latham

2009; Jaynes 1957; Tkačik et al. 2010). We use a time-dependent maximum entropy model

that is constrained by the time-varying firing rates averaged across repeated stimuli and the

pairwise correlations between cells. Our model takes the form

P (σ⃗t) = 1
Z

e
−

∑N
i ht

iσ
t
i−

∑N
i<j Jijσt

iσ
t
j , (5.1)

with constraints on ⟨σt
i⟩k, which captures each cell’s individual response to the stimulus at

time t averaged over trials, k, and ⟨σt
iσ

t
j⟩t,k, the correlations between cells. These two con-

straints map to two sets of parameters, the time-dependent fields ht
i and the static couplings

Jij , respectively.

5.3 Data

Voltage traces from the RGC layer of a larval tiger salamander retina were recorded following

the methods outlined in (Marre et al. 2012). In brief, retina from a larval tiger salamander

was isolated in darkness and pressed against a 252 channel multielectrode array. Multiple

repeats (minimum 80) from five different natural movies are displayed in a pseudorandom

order. Recordings were taken during stimulus presentation and spike sorted using a mostly

automated spike sorting algorithm. This technique captured a highly overlapping neural

population of 93 cells that fully tiled a region of visual space. Spikes were binned at 60Hz

for all analyses presented. The following work uses only one of the five movies for analysis.
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Figure 5.1: Stability of couplings across multiple fits. a) The average
coupling weight and its standard deviation over all couplings in the dataset.
b) The coefficient of variation for couplings against many views. The
coefficient of variation explodes as the couplings approach 0, but variability
is low particularly for strong, sparse couplings.

5.4 Aggregate approach

We build our large N models by first noticing an interesting property of time depending

maximum entropy models. In retina, a learned coupling Jij in a time dependent maximum

entropy model largely remains stable regardless of the other neurons fit within any given

group. For example, if a time dependent maximum entropy is fit on group A with participat-

ing cells {a, b, ..., k} , the learned coupling Jij will be very similar to the learned couplings

Jij fit on group B with participants {i, j, l, m, n, ...t}. This stability might arise from the fact

that learned time dependent maximum entropy couplings appear to arise from anatomical

properties of the retina (Hoshal et al. 2023). This stability is not present in the standard

Ising model (see Schneidman et al. 2006) that has been commonly used to interrogate this

kind of neural data. The stability of couplings is demonstrated in Figure 5.1. In particular,

the coefficient of variation decreases for the sparse, strong couplings.
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We leverage this coupling property to build to large N by aggregating together a large

number of smaller N models. We find that N = 20 cell groups consistently fit well with very

low runtimes, making them a strong candidate for the small N fitting. We fit m = 1000

small N groups by randomly choosing N = 20 cells from the N = 93 cells in the dataset.

Each N = 20 cell group yields N ∗ (N − 1)/2 = 190 couplings, so fitting k = 1000 models

means each of the 93 ∗ 92/2 = 4278 couplings have been fit an average of 44 times. We then

take each coupling as the average coupling value over all Jij fits and use these couplings to

build an aggregate model. A similar approach is taken for fitting the fields ht
i.

We also generate a sparse version of the aggregate model. The necessity of this sparse

model arises from previous results in Chapter 2 showing the sparse couplings to be behav-

iorally relevant for stimulus discrimination in salamander retina. A sparse aggregate model

then only contains the strong couplings that have a strong effect on the behavior of the

time-dependent maximum entropy model. To build the sparse aggregate model, we take the

same m = 1000 fits for the aggregate model, but keep only the top 10% of couplings in each

N = 20 cell group. All other couplings are set to zero. We then aggregate the model in the

same way as described above. In the process of taking ij⟩ for this sparse model, many zero

values can be folded into a coupling that is “strong” in one group but outside of the top 10%

of couplings in another. This dampens couplings that appear strong in any local N = 20

subgroup but on average are not the among the strongest couplings for the global N = 93

data.

5.5 Results

Comparing the aggregate approach to a full model

We evaluate the aggregate time dependent maximum entropy modeling approach by

comparing it to a model fit on the entire N = 93 cell dataset. While similar couplings

between models might indicate success of the aggregate approach, it is not a requirement.

In particular, large N maximum entropy models fit on data with strong correlations have
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Figure 5.2: Comparison between full fit and aggregate models Large
models are fit either directly (‘full model’) or by aggregating N = 20
cell groups (‘aggregate model’). a) Coupling strengths in the full and
aggregate models. The aggregate model has slightly higher mean and
heavier tail than the full model. b) Word probability plots for both models
plotted against data. Both models capture the observed word distribution,
but the aggregate model performs slightly better in the low data regime.

been shown to underestimate the empirical entropy of the dataset (Macke, Murray, and

Latham 2013). Further, stimulus dependent maximum entropy models, a close cousin of time

dependent maximum entropy models, have been shown to slightly underestimate pairwise

correlations for an N = 100 model (Granot-Atedgi et al. 2013). While this underestimate is

small, it might have an effect on how well large N models predict population activity.

In Figure 5.2a, we compare the couplings fit from the aggregate model and the full fit

of the population. There are two significant differences between the coupling distributions.

Firstly, the aggregate model has an overall higher mean than the full model. As couplings Jij

in time dependent models capture the noise correlations between cells, this difference might

come from small N models estimating a stronger noise correlation than larger N models. The

larger mean arises from systemically higher coupling values in the small N models compared

to fitting the model outright. Secondly, the aggregate model has a significantly heavier tail of

coupling strengths compared to the full model. This is of particular interest as these sparse,

strong couplings has been shown to improve discriminability between different natural scenes
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(Hoshal et al. 2023). That means that the primary differences in coupling strength between

these models arises from a behaviorally relevant set of couplings.

We then compare how well both the aggregate and full model capture the population

responses present in the data. This is done by generating word-word probability plots, where

each “word” in the data represents one of the 2N possible states the neural population can

take. We find that both the full and aggregate model well approximate the population

responses in the data. Interestingly, as words in the data become less frequent (moving

towards the bottom left corner of Figure 5.2b), the aggregate model performs slightly better

than the full model, staying closer to the unity line until we approach the realm of data

unreliability. This is where there are too few samples from the data to get a reliable estimate

of the word probability. In Figure 5.2b, 10−5 represents only a single appearance of the

word in the data.

A sparse aggregate model shows promise in capturing higher order interactions

In Figure 5.3, we evaluate the ability of the full and aggregate models to capture higher

order interactions in the data. While time-dependent maximum entropy models are not

constrained to capture higher order interactions, they have been shown to capture structure

of neural data not explicitly constrained by the models (Schneidman et al. 2006; Pillow and

Simoncelli 2006; Granot-Atedgi et al. 2013; Ganmor, Segev, and Schneidman 2011; Tkačik

et al. 2014; Roudi, Nirenberg, and Latham 2009; Jaynes 1957; Tkačik et al. 2010). One

such representation of higher-order statistics are triplet interactions, or how well our models

capture how three cells interact with each other compared to the data 5.3. Interestingly,

the full and aggregate model diverge in their descriptions of triplets, where the full model

underestimates triplet interactions and the aggregate model largely overestimates them. The

overestimate of triplets in the aggregate model might arise from the systemically high esti-

mate of couplings in the small N models compared to the full model. If this is the case, a

sparse aggregate model, which dampens some medium strength couplings in the aggregate

model while not affecting the strongest couplings, might better predict triplet interactions.
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Figure 5.3: Higher order interactions in time dependent maximum en-
tropy models. a) Triplet interactions for the full, aggregate, and spare
aggregate models compared to the data. The full and aggregate models
under- and overestimate the true triplet interactions, respectively. The
sparse aggregate model lowers the overestimate of triplet interactions rel-
ative to the aggregate model. b) Magnetization for the full, aggregate,
and sparse aggregate models. Models approximate the data well for lower
spiking words. c) Magnetization up to k = 10 spikes.
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Indeed, the sparse model still overestimates triplet interactions, but largely improves upon

the estimate from the aggregate model.

Another estimate of higher order interactions is the magnetization, which measures the

amount of spins that point in the same direction. In neuroscience, this translates to mea-

suring the probability of having k-spike words in the data and comparing across different

models. As neural data is inherently sparse, we expect magnetization to be most relevant in

a smaller k-spike regime. Up to k = 10 spikes, both the full and aggregate models predict the

probability of k-spike words in the data well, with the full model slightly underestimating

and the aggregate model slightly overestimating P (k) in the data. Like in the word-word

probability plots in Figure 5.2b, these estimates begin to fail in the low data regime. Even so,

the sparse aggregate model performs better in this low data regime relative to the aggregate

model, indicating a its potential for fitting large N models.

5.6 Future directions

The current results in building the aggregate model indicate a promising baseline for future

work. Many open questions surrounding the aggregate model revolve around the systemic

high estimate of couplings Jij relative to a fully fit large N model. As shown in Figure 5.4,

the difference between the full model and aggregate couplings may be accounted for by some

linear scaling factor. One way to determine that factor would be via the use of a synthetic

dataset. Such a dataset would have ground truth coupling values with which to evaluate

the full and aggregate models. Of particular interest would be determining whether the full

model underestimates ground truth couplings or whether the aggregate model overestimates

them. In either case, discovering a true scaling factor between the aggregate model and

full model couplings provides a viable post-fitting correction term. Determining this scaling

factor would also help in evaluating whether a correction for the aggregate model is even

necessary.

The success of the sparse aggregate model in estimating triplet interactions relative to the
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Figure 5.4: Coupling comparison between full and aggregate models.
The comparison between full and aggregate coupling fits between mod-
els indicates a systemically higher estimate of couplings in the aggregate
model. The appears to be a linear scaling factor between the full and
aggregate model coupling estimates.
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aggregate model provides another interesting avenue for further work. There are many viable

sparsening schemes other than the one presented here, including sparsening the aggregate

model after aggregating all small N models instead of doing so for each individual model fit.

This would yield a true lower-parameter model, with the total number of couplings included

being determined by the strictness of the sparsening criterion. Currently, sparsening is

empirically set to be 10% of all couplings, but the use of a synthetic dataset, along with

fitting many models with varying population size N , might yield a more theoretically based

sparsening criterion.

The aggregate model as presented works well in retina, which is largely a feed forward

network. It remains to be seen whether this approach can be taken for large N modeling in

cortex, where there are large amounts of recurrence. One can imagine that this recurrence

destabiliizes the discovered Jij couplings for small N groups, as the coupling value may shift

depending on whether or not the smaller N group contains all the cells participating in some

recurrence loop. For example, if cells A, B, and C participate in a recurrance loop, estimating

couplings by fitting the coupling JAB in a group with all of A, B and C versus just A and

B might yield different values. Testing the success of an aggregate method in cortex would

provide clarity on whether this approach is robust to recurrent population structures.

5.7 Discussion

This work explores a novel aggregate approach to large N maximum entropy models. This

leverages an interesting property of time-dependent maximum entropy models in retina: the

fit couplings tend to remain very stable, even if they are fit multiple times within different

subgroups of the population. This stability allows the aggregation of numerous models into

a larger N model. We demonstrate that this model captures population activity roughly as

well as the normal fitting procedure.

In general, maximum entropy models have had success fitting higher order interactions

not explicitly constrained by the model (Schneidman et al. 2006; Pillow and Simoncelli 2006;
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Granot-Atedgi et al. 2013; Ganmor, Segev, and Schneidman 2011; Tkačik et al. 2014; Roudi,

Nirenberg, and Latham 2009; Jaynes 1957; Tkačik et al. 2010). At the population state

level, this is true for both the aggregate and full fit models. Even so, some higher-order

interactions, like triplets, are not well described. A sparse aggregate model shows promise

in capturing these higher order interactions by emphasizing only the strongest couplings in

the model. Future work should explore other sparsening schemes that might capture these

higher order interactions.

Of particular interest is the potential for a linear scaling difference for couplings between

the large N and small N models. The use of synthetic data with ground truth couplings may

help uncover whether this scaling exists, and in which direction any correction to couplings

needs to be made. A first order check might be the total coupling strength ||J || per number

of spins included in the model. If this value remains consistent across different population

sizes, it might explain how individual coupling values differ when fit in large N versus small

N groups.
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CHAPTER 6

CONCLUSION

In this thesis, we explore population based retinal coding strategies in natural scenes. We

demonstrate the presence of a stimulus invariant population structure that remains static for

both natural and synthetic stimuli. We show that leveraging this structure improves scene

discriminability over an independent coding scheme. Further, this fixed structure depends

largely on a few, sparse cell-cell interactions, which might be easier for downstream brain

areas to read out. We explore readout mechanisms that can leverage this sparse population

by implementing graph based neural networks. These networks are able to cluster different

natural scenes in an unsupervised manner, and are able to discriminate even single trial

neural activity from different natural scenes. They also learn an encoding space that can

accommodate and separate single-trial neural responses from a natural scene not included

during training. This kind of zero-shot encoding of novel stimuli is potentially ethologically

relevant for behavior, as organisms will encounter novel environments through their lives

that they must accurately perceive. We then explore what features of natural scenes the

retina encodes by building an encoder-decoder tasked with reconstructing a future frame of

a natural scene based on the population neural responses to that stimulus. By compressing

the neural response into a low dimensional space and decoding a biologically relevant feature,

we encourage the encoder-decoder to efficiently compress the relevant features encoded by the

neural activity. We find that the retina learns a low-dimensional, generalizable representation

of natural scenes. The retina responds to spatio-temporal features in natural scenes in order

to do scene readout. These features can be split into static and dynamic motifs, which are

synergistic with respect to the encoding. Lastly, we explore an aggregate approach to large

N models of neural populations. We show that an aggregate model recapitulates population

level neural activity, and that sparsening an aggregate model has promise for matching higher

order interactions present in the data.

Chapter 2 demonstrates that couplings between cells in a neural population are an impor-
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tant component of downstream readout of scene identity. It is possible that an independent

readout preserves the majority of information available in the retinal population while failing

to effectively convey critical features of the visual scene. Natural scenes probe a behaviorally

relevant context to assess the impact of noise correlations on neural coding. These movies,

like other natural inputs, drive a richer and more reliable code in the brain (Rikhye and

Sur 2015; Froudarakis et al. 2014; Hasson, Malach, and Heeger 2010). Comparing across

movies reveals what the more subtle features in the neural code might be used for. We

find that sparse interactions sufficiently capture the functional impact of noise correlations.

These sparse couplings are the key factor for efficient scene identification. A sparse backbone

may be easier to implement and read out downstream. On the flip side, sparse codes might

hamstring error correction (Puchalla et al. 2005; Ganmor, Segev, and Schneidman 2015), so

future work should explore how these costs and benefits trade-off for behaviorally relevant

inputs and tasks.

Noise correlations have a large effect on scene decoding, which may arise from small

effects aggregated over time. It is not clear from the analysis performed here what precisely

gives rise to the beneficial impacts of noise correlations on decoding. One possible answer is

that the noise correlations may reflect changes in scene correlation structure. This may help

recover scene specific information that is otherwise lost to single-cell-level adaptation.

Unraveling how this sparse but strong structure in the code is mechanistically supported

is an important next step in this work. In some ways, the circuit structure in the eye differs

from that found in the cortex. The retina is not a recurrent neural network; RGCs do not have

direct synaptic coupling, and the photoreceptor-to-RGC circuit is largely feed-forward. To

create a population code with sparse interactions, the retina needs to be wired around these

structural constraints. These sparse interactions seem to be the result of common bipolar

inputs and gap junction coupling between RGCs. What we have observed is sparse, strong,

functionally important, exclusively non-synaptic RGC-RGC couplings. Both gap junctions

and common bipolar inputs lead to stronger coupling between cells, but our analysis is not
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sensitive enough to tease apart whether these two types of coupling sources are mutually

exclusive. Exclusivity would be an efficient way to implement a sparse backbone of specific

cell-cell interactions. Future work to disentangle the circuit mechanisms giving rise to the

sparse backbone might ultimately inform studies in cortex where gap junction coupling is

also present (Friend and Gilula 1972; Peinado, Yuste, and Katz 1993; Y. Li et al. 2012).

In Chapter 3, we demonstrate that activity of retinal populations during the presentation

of natural scenes, informed by functional connections between the cells, can support the

emergent learning of an embedding space that distinguishes between different scenes, and is

robust to noise on single trials. This is facilitated by noise correlations between cells that are

consistent across wildly different scenes, and which are thought to reflect a static underlying

connectivity structure. Although our model could use these cell-cell interactions to support

the unsupervised learning of this embedding space, future work will be required to validate

the necessity of these interactions for single-trial scene decoding.

The graph-based representation learning scheme we used relied on a relatively high-

dimensional (dim = 80) embedding space for separating between activity vectors corre-

sponding with each scene. However, an embedding space of this dimensionality may not the

basis for the retina’s encoding of natural scenes. Although the possible dimensionality of

retinal encodings could scale linearly with the number of RGCs N , in reality this scaling is

limited by the pairwise correlations between cells, and higher-dimensional encoding schemes

are known to present problems for robust, generalizable readout that lower-dimensional

schemes ameliorate. Retinal responses in particular are known to be compressible to a low-

dimensional encoding space (e.g., 10 dimensions, as in (Wang et al. 2022)). Resolving how

graph-informed representations separate between scenes on the basis of single-trial activity

vectors even when using lower-dimensional representations constitutes an important exten-

sion for additional investigation.

Future work should expand on the results presented here in several key directions. First,

choosing an appropriate null model for this setting is both important and technically difficult.
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An ideal control, fully accounting for any possible difference in embedding model approach,

parameter count, etc., would use the same GCN structure for learning the embedding space,

but under different perturbations of the edge structure that governs message passing. How-

ever, our implementation of the GraphCL algorithm precluded the use of a no-edge model

(learning the embedding space requires contrastive learning on augmented subgraphs, which

cannot exist wiithout any edges), and is too flexible for an ‘all-edges-equal’ model to be a

relevant comparison. In principle a node-dropping augmentation rather than a subgraph

augmentation could ameliorate these shortcomings in our setting.

Chapter 4 uses a U-net-based deep learning architecture to reverse engineer a retinal

encoding process for complex natural movies. Using the PSTHs of a large salamander retinal

population, we identify stereotypical features that are generalizable across multiple natural

movies. We find that the retina uses a transferable, low dimensional representation to

encode a rich set of natural space-time features. The encoding obtained from one movie can

be used to decode “time in the natural scene” for a different movie, despite differences in

their particular spatio-temporal structures. We also discover that the retina encodes time

through synergistic coding of both dynamic and static features.

Here, we only observed synergy within the feature space (using mean firing rates of retinal

activity, we assume all cells are independent). We also decoded time in its simplest form by

asking how well we discriminate between different frames. In future work, we would like to

extend our analysis to temporal structure with proper predictive constraints, i.e., predicting

a future at a longer ∆t should be more challenging than predicting a smaller ∆t (Tishby,

Pereira, and Bialek 2000; Palmer et al. 2015). We are also aware that the synergy here is

different from what can be observed between cells in the neural data. The synergy in the

neural code may combine synergy in the feature space with synergy in the population code,

itself (Schneidman, Bialek, and Berry 2003; Latham and Nirenberg 2005).

Our work is most similar to (R. Liu et al. 2021; Zhou and Wei 2020) when compared

to other methods that also identify a latent representation between brain activity and ex-
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ternal stimuli. They used a multilayer perceptron (MLP), a highly expressive feedforward

encoder. MLP is fully-connected, so that its learned latent representation corresponds to a

single global scale. Our U-net architecture, in contrast to the MLP, employs a ResNet as the

encoder. The ResNet encoder attains the same performance as the MLP, but by cascading

Resblocks from coarse-to-fine scales. This makes it possible for the U-net architecture to

simultaneously learn compressed latent representation at various scales. Although we did

not specifically explore this feature, it might be relevant for future research on understand-

ing brain dynamics in flexible natural environments. For example, there is a hierarchy of

timescales both in natural scenes and output natural behaviors, ranging from hundreds of

milliseconds to minutes (whisking to walking to making action plans (Recanatesi et al. 2022;

Stern, Istrate, and Mazzucato 2021)). With additional constraints (Khemakhem et al. 2019),

These variational sampling layers may learn hierarchically distinct latent representations for

each timescale individually and comprehend how they might be coupled to create compli-

cated behavioral outputs. Outside of neuroscience, This U-net is compatible to learn latent

representations between other temporal sequences (e.g., text) and complex spatio-temporal

signals (speech or video). Text-to-speech and video summarization are two possible ap-

plications. Combining latent representation at multiple scales may also reveal semantic

relationships between complex features in general object recognition, e.g., how does a model

combine local features (nose, eye) with global shape (e.g., body size) to discriminate between

cats and dogs.

Our work shows that the retina leverages feature representations that are common across

natural movies. This knowledge transfer differs from what is referred to as “transfer learning”

in computer vision and machine learning. In computer vision, transfer learning refers to train-

ing a model with a much more complicated dataset (e.g., ImageNet with 1000 classes) and

performing inference on a novel, but much smaller dataset (e.g., CIFAR10/100 or CelebA).

Transfer learning presupposes that models trained on complex datasets contain sufficient

variation to allow the learned features to be reused on new datasets. For the retina, evolu-
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tionary timescales underlie the “training from a complex dataset” stage. The retina is shaped

in such a way that behaviorally significant components of all natural inputs in an organism’s

ecological niche are selectively encoded. This enables our training on one movie/retinal re-

sponse dataset to reveal features transferable to another movie of a similar complexity or

scale. Future studies may enable us to determine if such a generalizable feature representa-

tion is innate (sculpted only by evolution) or whether visual experience within a lifetime may

refine it. This would depend on our ability to track changes in visual processing beyond the

retina (e.g., cortex) over the course of an animal’s life (similar to fine-tuning in the transfer

learning domain).

Chapter 5 investigates aggregation-based strategies for extending maximum entropy mod-

els to the large-N regime. The approach we introduce takes advantage of the tendency of

cell-cell couplings to be consistent, likely reflective of anatomical connections that are con-

sistent across time/stimulus presentations. This consistency manifests even when viewing

subsets of the whole simultaneously recorded population, suggesting that it may be amenable

to use in a repeatedly-subsample-then-aggregate model combination scheme. We used this

idea to build many small N models into one large N model, while eschewing the direct

fit of the large N model itself entirely. We further improve this process by developing a

sparse-aggregate extension model. This leverages the asymmetrical distribution of coupling

prominence/importance discovered in Chapter 2 as the rationale for focusing on a sparse sub-

network. This sparsening step improves on the tendency of aggregate models to mis-estimate

some high-order interactions between cells.

Of particular interest is the potential for a linear scaling difference for couplings between

the large N and small N models. The use of synthetic data with ground truth couplings may

help uncover whether this scaling exists, and in which direction any correction to couplings

needs to be made. A first order check might be the total coupling strength ||J || per number

of spins included in the model. If this value remains consistent across different population

sizes, it might explain how individual coupling values differ when fit in large N versus small
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N groups.

The projects that together comprise this thesis coalesce around several high-level themes

of retinal coding. First, they underline the importance of population structure, on top of

any independent coding scheme adopted by the population, for information coding. These

benefits can arise through any of several avenues – covariation between pairs of cells, higher-

order relationships, etc. – but in general promise a richer code for downstream circuits

elsewhere in the brain to mine for the elaboration of higher-order representations. Second,

the results discussed here highlight the importance of static structure for readout. This

theme is especially important in the retina, where strong input adaptation is a feature rather

than a bug, even in response to different stimuli with highly varying underlying statistics.

Third, in the presence of bandwidth bottlenecks like the retina, information encoding should

be as parsimonious as possible. Not everything about a stimulus can be encoded, and an

effective initial processor should elide any information that downstream circuits will not

need to support survival-relevant behaviors. Fourth, the retina’s encoding generalizes across

stimulus contexts. This is a desirable feature for a sensory bottleneck to have. Given that

all visual information that the brain can make use of is processed through the retina, the

retina must be robust to whatever level of change in stimulus statistics the visual world

might manifest in order for the organism to perform any visually-informed behavior. Even

if an organism’s visual processing circuits beyond the retina were highly sophisticated, if

the retinal encoding were too context-specific, the organism would face a profound adaptive

disadvantage, failing to make sense of the environment outside the center of its niche.

These projects have together serve to contextualize the retinal population coding of natu-

ral scenes. This constitutes a specific instance of the central problem of systems/computational

neuroscience – to understand how populations of cells make use of their available bandwidth

to signal information to their downstream partners. Core to building this understanding is

a careful consideration of (a) what information those downstream partners need access to

(what must be decoded?), which must reference the behavioral goals and ecological niche
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that the animal occupies; and (b) given what the code must convey, how the code should be

formatted.
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