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ABSTRACT 

Nutrient stress in the tumor microenvironment (TME) requires cancer cells to adopt 

adaptive metabolic programs for survival and proliferation. Therefore, knowledge of 

microenvironmental nutrient levels and how cancer cells cope with such nutrition is critical to 

understand the metabolism underpinning cancer cell biology. Characterizing the metabolic 

adaptations of cancer cells under the nutrient constraints of the TME can lead to the discovery of 

novel targetable tumor liabilities. However, our ability to study such adaptations has been 

precluded by our limited understanding of the metabolic make-up of the TME. 

Tumor interstitial fluid (TIF) is the local perfusate of the TME that carries metabolites, 

electrolytes, and soluble macromolecules to tumor resident cells. Previously, we performed 

quantitative metabolomics of the TIF of murine pancreatic ductal adenocarcinoma (PDAC) tumors 

to comprehensively characterize nutrient availability in the PDAC TME. In this dissertation, we 

develop Tumor Interstitial Fluid Medium (TIFM), a cell culture medium that contains nutrient 

levels representative of the PDAC microenvironment, enabling us to study PDAC metabolism ex 

vivo under physiological nutrient conditions. We show that PDAC cells cultured in TIFM adopt a 

cellular state closer to that of PDAC cells present in tumors compared to standard culture models.  

Further, using the TIFM model, we found arginine biosynthesis is active in PDAC and 

allows PDAC cells to maintain levels of this amino acid despite microenvironmental arginine 

depletion. We also show that myeloid-derived arginase activity is largely responsible for the low 

levels of arginine in PDAC tumors. Altogether, these data indicate that nutrient availability in 

tumors is an important determinant of cancer cell metabolism and behavior, and cell culture models 

that incorporate physiological nutrient availability have improved fidelity to in vivo systems and 

enable the discovery of novel cancer metabolic phenotypes. 
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CHAPTER 1 

INTRODUCTION 

1.1 THE TUMOR MICROENVIRONMENT’S ROLE IN CELL 

STATE AND CANCER DISEASE PROGRESSION 

When revising the hallmarks of cancer in 2011, Hanahan and Weinberg identified (1) 

deregulating metabolism and (2) cancer cells’ interactions within the tumor microenvironment 

(TME) as key features that underpin disease progression in most tumors [1,2]. Subsequent research 

has demonstrated that these are not separate hallmarks of cancer, but instead are deeply 

interconnected, and that the influence of the TME on cellular metabolism is an important 

determinant of tumor growth, survival, and metastatic potential [3–5].  

Altered cellular metabolism is common in cancers [6] and enables many pathological features 

of tumors [4,7]. This has led to substantial interest in determining the metabolic properties of tumor 

cells, both for understanding the basic biochemistry underlying these diseases and identifying 

novel therapeutic targets. Recent work has led to the understanding that tumor metabolic 

phenotypes are driven both by cancer cell-intrinsic factors, such as oncogenic lesions and cellular 

epigenetic identity [8,9] , and by cell-extrinsic factors in the TME [10–13]. While we have a 

relatively extensive understanding of cell-intrinsic regulation of cancer metabolism, we know 

comparatively little about TME regulation of cancer metabolism and the contributions of such 

TME-driven metabolic phenotypes to tumor biology.  

The TME consists of 3 components: tumor resident cells, the extracellular matrix, and the 

interstitial space, which is filled with tumor interstitial fluid (TIF). TIF is the local perfusate of 

tumors and baths all cells in the tumor parenchyma with nutrients, ions, and soluble 
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macromolecules[14]. Thus, TIF acts as the interface between cells in a tumor and the circulation 

(Figure 1.1). Our increasing understanding of the importance of the TME in cancer biology has 

led to the recent development of technologies to interrogate the composition of each TME 

component and how these regulate tumor biology. For example, recent developments in single cell 

analysis techniques have enabled comprehensive analysis of the cellular composition of the 

TME[15]. New bioinformatic methods have also led to discoveries of how cells in the TME 

communicate, providing insight into how the cellular composition of the TME regulates cell state 

and function[16]. New proteomics techniques have been developed to study extracellular matrix 

composition in tumors[17] and how matrix composition influences the biology of cancer and 

stromal cells[18–20]. Similarly, new approaches to determine TIF composition and probe TIF-cell 

interactions have been recently developed to understand how the TIF compartment of the TME 

regulates cancer biology.  

Nutrient availability is a key cell-extrinsic factor that influences cellular metabolism 

[13,21,22]. Many solid tumors have abnormal vasculature that limits tumor perfusion [14,23–25], 

which leads to abnormal nutrient availability in the TME [26–28]. Thus, perturbed nutrient 

availability in the TME has been postulated to be a critical driver of cancer metabolic phenotypes 

[29,30]. A good example of this is pancreatic ductal adenocarcinoma (PDAC). PDAC tumors are 

characterized by abundant fibrotic stroma and abnormal vasculature, with only around 30% of 

blood vessels actively transporting blood[24,31]. This pathology limits nutrient delivery and 

removal of waste products from cells within the tumor. This, in combination with the dynamic 

metabolic interplay discussed above, results in a microenvironment with altered nutrient 

availability, to which the PDAC cells need to adapt. Characterizing how cancer cells adapt to the 

abnormal nutrient availability in the tumor microenvironment represents a good opportunity to 
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identify metabolic liabilities that cells in well-perfused normal tissues do not need to rely on, and 

thus could provide a wider therapeutic window. Indeed, there has been a lot of interest in targeting 

PDAC metabolic adaptations[32]. However, the precise metabolic changes driven by TME-

nutrient cues are largely unknown due to a dearth of information on the nutrient milieu of tumors 

and a lack of experimentally tractable model systems to study cellular metabolism under such 

constraints [33,34]. 

1.2 TIF REGULATION OF CANCER CELL METABOLISM AND 

BIOLOGY 

Techniques to sample interstitial fluid from tissues and tumors have been available for 

decades and have been critical for studying tissue physiology[14,35]. These techniques have been 

used to isolate TIF from cancers to study their composition, including pioneering studies in 1964 

by Gullino and colleagues, who reported the glucose, lactate, sterol, and amino acid concentrations 

in TIF from rodent models of cancer[26]. However, many classical techniques for TIF sampling 

require complex equipment, bespoke materials, and expertise in human or animal 

experimentation[36]. These experimental difficulties have limited access to TIF samples. 

However, Wiig and colleagues recently developed a simple method requiring no specialized 

equipment or materials to isolate TIF from rapidly resected tumors using centrifugal force[37–39] 

(Figure 1.1). Extensive tracer analysis confirmed that fluid isolated by this approach is bone fide 

TIF and not contaminated with intracellular fluid[37–39]. Thus, recent advances in TIF extraction 

techniques have enabled non-specialist research teams to access TIF from animal and human 

cancers. This new TIF isolation method, combined with advances in bioanalytical techniques, has 

significantly improved our knowledge of TIF composition. Below we will discuss studies that have 
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used these novel approaches to isolate TIF and gain new insight into the mechanisms by which the 

TME influences the biology of different tumor resident cells. 

The abnormal vasculature of many solid tumors has led to the longstanding hypothesis that 

the TME is nutrient-starved. Such starvation could alter the metabolism of cancer cells by forcing 

them to rely on compensatory metabolic adaptations to deal with such nutrient stresses[30]. Recent 

TIF analysis supports this hypothesis and has led to the identification of such metabolic adaptations 

to TME nutrient stress. For example, our team performed quantitative metabolite profiling of 

murine pancreatic TIF, allowing us to measure the concentration of ~120 nutrients in the TME of 

pancreatic tumors[40]. We then built a custom cell culture formulation, enabling us to grow 

pancreatic cancer cells with TIF levels of nutrients and ask how their biology is affected as the 

cells adapt to TME nutrient conditions[41]. Using these tools, we found that pancreatic cancer cell 

biology is heavily influenced by TIF nutrient levels, particularly amino acid stress caused by low 

Figure 1.1. Interstitial fluid is the liquid phase of the tumor microenvironment. The tumor 
microenvironment is comprised of cellular, extracellular matrix, and interstitial fluid 
components. The interstitial fluid is the perfusate of solid tumors and directly contacts cells 
residing in the tumor parenchyma carrying metabolites, ions, and soluble macromolecules to 
these cells. Recently, simple and robust techniques have been developed to isolate interstitial 
fluid from resected tumors by centrifugation, providing ready access to the interstitial 
compartment of the TME. Coupled with advances in bioanalytical chemistry enabling high-
throughput molecular characterization of small-volume biofluid samples, these advances in 
tumor interstitial fluid isolation have led to an increasing understanding of the metabolic, 
proteomic, and ionic composition of the tumor microenvironment. 
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arginine levels in TIF. We found that cancer cells utilize compensatory de novo synthesis to cope 

with the starvation of arginine in pancreatic cancer TIF[41]. Lee and colleagues similarly observed 

that arginine is deprived in pancreatic cancer TIF. This led them to identify a novel non-arginine-

requiring polyamine synthesis pathway that pancreatic cancers require to maintain polyamine 

homeostasis despite arginine starvation[42]. Thus, analysis of TIF nutrient levels can provide new 

insight into the metabolic constraints that regulate cancer cell metabolism in the TME. 

In addition to TIF analysis providing insight into the metabolism and biology of cancer cells 

in primary tumors, recent studies have used interstitial fluid analysis of tissues to which tumors 

will metastasize to understand the metabolic adaptations cancer cells use during metastatic 

colonization. For example, analysis of brain interstitial fluid revealed low levels of amino acids, 

including serine, and low levels of lipids in the brain microenvironment[43,44]. Subsequently, 

studies have found that breast cancer cells metastasizing to the brain require compensatory 

metabolic adaptations to cope with these limitations. Breast cancer cells metastasizing to the brain 

increase synthesis of both serine and lipids, which they require to grow in the brain[43,44]. In 

another example of unique tissue microenvironments impacting the metabolism of metastasizing 

cancer cells, low levels of arginine and glutamine, but higher levels of pyruvate and palmitate were 

observed in lung interstitial fluid[45–47]. This unique metabolic composition of the lung 

interstitial fluid also appears to drive shifts in the metabolism of cancer cells as they colonize the 

lung. For example, renal carcinomas metastasizing to the lung were found to upregulate arginine 

synthesis to cope with arginine limitation in the lung, and inhibition of arginine synthesis reduced 

the ability of renal carcinomas to colonize the lung[45]. Breast cancer cells colonizing the lung 

increase their use of pyruvate carboxylation for TCA cycle anaplerosis to compensate for lowered 

glutamine availability[46] and use fatty acid oxidation of the abundant microenvironmental 
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palmitate to colonize the lung[47]. Thus, interstitial fluid analysis of organs to which tumors will 

metastasize can identify how cancer cell metabolism and biology shift to enable metastatic disease 

progression. 

1.3 TIF REGULATION OF ANTI-TUMOR IMMUNITY 

The TME of many cancers is immunosuppressive and potently inhibits effector T cells while 

promoting the functions of suppressive cells[48,49]. TIF analysis has provided insight into how 

the TME regulates immune cells in this way. Several groups have analyzed the metabolite 

composition of melanoma TIF. These findings indicate that key metabolic substrates like glucose 

are depleted in the TME of melanoma[27,50]. This shift in nutrient availability has been shown to 

contribute to altered T cell function in the TME. For example, low glucose levels have been shown 

to impair T cell signaling[27] and metabolism[27,50], which causes T cell dysfunction in the TME. 

However, care must be taken with extending these findings from melanomas to other tumor types, 

as measurements of TIF glucose in different cancer types suggest glucose deprivation may not be 

a universal feature of all TMEs[40,51,52]. Nevertheless, TIF analysis has led to the discovery that 

metabolic substrate limitation is an immunosuppressive regulator of T cell biology in certain tumor 

types. Identifying nutrient limitation as a critical node of tumor immunosuppression could lead to 

new methods to prevent pathological TME reprogramming of the immune system, such as 

treatments enabling tumor infiltrating T cells to utilize nutrient sources such as lipids, which are 

not limited in the TME[50]. 

Nutrient limitation is not the only feature of TIF that regulates immune cell metabolism and 

biology. Metabolomic analysis of melanoma TIF uncovered high levels of lactate[53], many 

classes of lipids[50,54], and nucleotides[28] in the TME. Clinical chemistry analysis of melanoma 

TIF also indicates high potassium levels in the TME[55]. These enriched metabolites and 
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electrolytes are also potent regulators of immune cell function. For example, lactate has been found 

to influence the functions of different T cell classes. Lactate suppresses the proliferation of CD8+ 

T cells[56], but high lactate levels stabilize and promote the suppressive function of Treg cells[53]. 

In another example, T cells exposed to high levels of oxidized lipids in TIF become dysfunctional 

upon taking up these lipids, which causes intracellular lipid peroxidation and triggers T cell 

dysfunction[54]. Lastly, high potassium levels have also been found to suppress T cell metabolism 

by impairing nutrient transport mechanisms in T cells[57], suppressing their functions[55]. Not all 

metabolites increased in TIF suppress immune cell function. For example, uridine diphosphate and 

guanosine diphosphate, two nucleotides elevated in melanoma TIF, were found to increase the 

effector functions of stimulated T cells[28]. Further increasing TIF levels of these nucleotides 

could improve tumor control by the immune system[28]. Thus, TIF analysis has determined that 

substrate limitation is not the only metabolic regulator of immune cell function in the TME. 

Instead, metabolites that accumulate in TIF are also potent regulators of immune cell metabolism 

and function in the TME. 

1.4 THE CONTRIBUTION OF MY WORK 

With advances in our ability to study cell metabolism and the TME, we have come to 

appreciate the key role of cell-extrinsic factors in regulating tumor metabolism [11,12,21]. In 

Chapter 3, to determine how TME nutrients influence cancer cells, we performed a transcriptomic 

analysis of murine PDAC cells growing in TIFM, standard culture, and orthotopic tumors. 

Through this analysis, we found that many transcriptional features of PDAC cells growing in vivo 

are better recapitulated in TIFM culture compared to standard culture models. This suggests that 

altered nutrient availability is a major regulator of the cancer cell state in the TME. Thus, ex vivo 

models incorporating physiological nutrition could improve the fidelity of cell culture models of 
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cancer [58]. A major metabolic signature we found in PDAC cells in TIFM and in vivo was 

activation of the amino acid starvation transcriptional signature, including increased expression of 

the de novo arginine synthesis pathway. In Chapters 4 and 5, we show that the de novo arginine 

synthesis pathway enables PDAC cells in TIFM and in tumors to acquire the arginine needed for 

amino acid homeostasis despite TME arginine starvation, and that PDAC cells are readily 

adaptable to perturbations in arginine homeostasis. Further, in Chapter 6 we show that myeloid-

driven arginase activity is responsible for arginine deprivation in the PDAC TME. Collectively, 

this work identifies TME nutrient availability as a key regulator of the in vivo cancer cell phenotype 

and demonstrates that analysis of cancer cells under physiological nutrient conditions can identify 

bone fide metabolic features of tumors, such as de novo arginine synthesis in PDAC. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Formulation of Tumor Interstitial Fluid Media 

TIFM is composed of 115 nutrients at levels that match the average measurements in the 

IF of murine KrasLSL-G12D/+; Trp53fl/fl Pdx1Cre PDAC tumors [40]. The medium is composed of 10 

pools of metabolites each of which is formulated by compounding dry powders of nutrients at 

appropriate ratios using a knife mill homogenizer. To generate the complete medium, the 10 

metabolite mixture powders are added together and reconstituted in water with 10% dialyzed fetal 

bovine serum (FBS) to provide essential lipids, proteins and growth factors. The electrolytes 

provided in pool 3 are adjusted so that the electrolyte balance will be the same as RPMI-1640 

medium, correcting for the sodium chloride in the FBS and counter ions of the various metabolites 

used to make TIFM. We performed quantitative LC-MS metabolite profiling (see Quantification 

of metabolite levels in cell culture media) to ensure concentrations of nutrients in TIFM are 

reproducibly close to the formulated concentration (Fig. 1B).  

2.2 Quantification of metabolite levels in cell culture media 

For quantification of metabolites in cell culture media, quantitative metabolite profiling of 

fluid samples was performed on tissue culture media samples as previously described [40]. Briefly, 

chemical standard libraries of 149 metabolites in seven pooled libraries were prepared and serially 

diluted in HPLC grade water from in a dilution series from 5mM to 1µM to generate ‘external 

standard pools’, which are used for calibration of isotopically labeled internal standards and to 

quantitate concentrations of metabolites where internal standards were not available. 
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We then extracted metabolites from 5µL of either cell culture media samples or external 

standard pool dilutions using 45µL of a 75:25:0.1 HPLC grade acetonitrile:methanol:formic acid 

extraction mix with the following labelled stable isotope internal standards:  

 

• 13C labeled yeast extract (Cambridge Isotope Laboratory, Andover, MA, ISO1) 

• 2H9 choline (Cambridge Isotope Laboratory,Andover, MA, DLM-549) 

• 13C4 3-hydroxybutyrate (Cambridge Isotope Laboratory, Andover, MA, CLM-3853) 

• 13C615N2 cystine (Cambridge Isotope Laboratory, Andover, MA, CNLM4244) 

• 13C3 lactate (Sigma Aldrich, Darmstadt, Germany, 485926) 

• 13C6 glucose (Cambridge Isotope Laboratory, Andover, MA, CLM-1396) 

• 13C3 serine (Cam-bridge Isotope Laboratory, Andover, MA, CLM-1574) 

• 13C2 glycine (Cambridge Isotope Laboratory, Andover, MA, CLM-1017) 

• 13C5 hypoxanthine (Cambridge Isotope Laboratory, Andover, MA, CLM8042) 

• 13C215N taurine (Cambridge Isotope Laboratory, Andover, MA, CNLM-10253) 

• 13C3 glycerol (Cambridge Isotope Laboratory, Andover, MA, CLM-1510) 

• 2H3 creatinine (Cambridge Isotope Laboratory, Andover, MA, DLM-3653) 

 

Samples in extraction mix were vortexed for 10 min at 4°C and centrifugated at 15,000x 

rpm for 10 min at 4°C to pellet insoluble material. 20µL of the soluble polar metabolite supernatant 

was moved to sample vials for analysis by LC-MS as previously described [40,59]. 

Once LC-MS analysis was performed, XCalibur 2.2 software (Thermo Fisher Scientific) 

was used for metabolite identification. External standard libraries were used to confirm the m/z 

and retention time for each metabolite. For quantitative analysis, when internal standards were 
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available, external standard libraries were used to quantitate concentrations of isotopically labeled 

internal standards in the extraction mix. Once internal standard concentrations were obtained, the 

peak areas of the unlabeled metabolites in the media samples were compared with the peak area 

of the quantified internal standard to determine the metabolite concentration in the media sample. 

For metabolites for which an internal standard was not present in the extraction mix, external 

standard libraries were used to perform analysis of relevant metabolite concentrations. Briefly, the 

peak area of the metabolite was normalized to the peak area of an isotopically labeled internal 

standard with similar elution time, both in media samples and external standard library dilutions. 

Using the external standard library dilutions, we created a standard curve based on the linear 

relationship of the normalized peak area and the concentration of the metabolite, excluding those 

metabolites with an r2< 0.95. This standard curve was then used to interpolate the concentration of 

the metabolite in the media sample. 

2.3 Cell Isolation from tumors 

Murine cancer cell lines were derived from tumor bearing C57Bl6J KrasLSL-G12D/+; 

Trp53fl/fl;Rosa26 tm1(EYFP)Cos; Pdx1Cre mice to allow for fluorescent lineage tracing and isolation of 

cancer cells [60]. To isolate cancer cells from these tumors, the tumors were chopped finely and 

digested with 30mg/mL dipase II (Roche 28405100), 10mg/mL collagenase I (Worthington 

LS004194) and 10mg/mL DNase by constant rotation at 37C for 30 min. Digestion was quenched 

with 0.5M Ethylenediaminetetraacetic acid (EDTA) and cells were passed through a 70µM filter 

and rinsed with PBS before platting in RPMI-1640 (Corning 50–020-PC) or TIFM. YFP+ Cancer 

cells from each tumor were sorted twice on a BD FACSAria II Cell Sorter. 
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2.4 Cell lines and cell culture 

Use of cancer cell lines was approved by the Institutional Biosafety Committee (IBC no. 

1560). All cell lines were tested quarterly for mycoplasma using the MycoAlert Mycoplasma 

Detection Kit (Lonza LT07-318). All cells were cultured in Heracell vios 160i incubators 

(Thermofisher) at 37°C and 5% CO2. Cell lines were routinely maintained in RPMI-1640 or TIFM 

supplemented with 10% diaFBS (Gibco, #26400-044, Lot#2244935P). 

All cell culture was performed in static culture conditions. TIFM contains substantially 

lower levels of nutrients than most standard media formulations. Therefore, to ensure that there 

was not nutrient deprivation in static cultures, the following modifications to standard tissue 

culture practices were made. Cells were cultured in larger volumes of media (8mL/35mm diameter 

well) to prevent depletion of nutrients during the culture. Additionally, media were replaced every 

24 hrs. We routinely measured the concentration of the most rapidly consumed nutrient, glucose, 

using a GlucCell glucometer [61] to ensure that cultures used in experiments did not experience a 

greater than 30% drop in glucose availability, which is within the range of mouse PDAC TIF 

glucose concentration measurements [40]. Lastly, passaging TIFM maintained cells using standard 

trypsin (0.025%)/EDTA solution to detach cells leads to loss of viability upon replating of cells. 

Therefore, cells were detached with a 1:1 mixture of 0.5% trypsin-EDTA (Thermofisher) and 

serum free RPMI-1640 media (Thermofisher). This allowed routine passaging and plating of cells 

with less loss of viability. These modifications were followed for both TIFM and RPMI cultured 

cells. 
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2.5 Determining cellular proliferation rate 

Quantification of cellular proliferation rate was performed by sulforhodamine B (SRB) 

assay as described [62]. Briefly, 10,000-15,000 cells were plated in 12-well plates in triplicates for 

each condition and allowed to attach overnight. After attachment, one set of triplicate wells was 

fixed by adding 10% trichloroacetic acid (TCA) to the media and incubating plates in 4°C to 

provide an ‘initial day’ value. Media was changed on remaining cultures and were allowed to grow 

for the indicated number of days. At the end of the growth period, cells were fixed by adding 10% 

trichloroacetic acid (TCA) to the media and incubating plates in 4°C for at least one hour. All wells 

were washed with deionized water, air-dried at room temperature, and stained with SRB in 1% 

acetic acid for 30 min. After, cells were washed with 1% acetic acid three times and dried at 30°C 

for 15 minutes. SRB dye was solubilized with 10mM Tris pH 10.5 by gentle horizontal shaking 

for 5 min. Absorbance (abs) was measured at 510 nm in a clear 96-well plate using a BioTek 

Cytation 1 Cell Imaging Multi-Mode Reader. After all measurements were normalized to an 

averaged blank measurement (wells without cells but with media), growth rate was calculated 

using the following equation:  

 

Doublings/day = log2(Final Day Abs510/Initial Day Abs510) / number of days elapsed in culture 

period 

 

2.6 Consumption/Release (Co/Re) analysis 

Cellular consumption and metabolite release were measured according to previous 

publications [63–65]. 100,000-150,000 cells were seeded in 2mL of culture medium in six-well 



14 

plates with 3 technical replicates per condition per time point and allowed to attach overnight. The 

following day (day 1), cells were washed twice with 2mL PBS. They were then given 2mL of 

media, either TIFM or RPMI. An unspent media sample was also collected at this time and stored 

at -80 °C. Cell number on day 1 was measured using a Vi-CELL XR Cell Viability Analyzer 

(Beckman Coulter). 24h later (day 2), 1mL of spent media from cells was collected, centrifuged 

and stored at -80 °C. Cell number was counted again. Quantification of metabolite levels in unspent 

(day 1) and day 2 (conditioned media) cell culture media samples was performed as described in 

Quantification of metabolite levels in cell culture media. 

To calculate Co/Re rates of a given metabolite, cell numbers on day 1 and day 2 were used 

to fit an exponential growth function, which integrated yielded the number of (cell·days). Changes 

in nutrient concentration in cultures were then normalized to this integrated growth curve to yield 

metabolite Co/Re per cell per unit of time (pmol/cell/day). Standard error mean was calculated for 

quantified metabolite levels and for the integrated growth curves. These standard error 

measurements were then used to calculate the propagated error of the Co/Re measurements. 

2.7 Experimental set up for consumption of arginine by GC-MS analysis 

Cells were plated as described for consumption/release (Co/Re) analysis as described in 

Consumption/Release (Co/Re) analysis. The following day, cells were changed into either TIFM 

or TIFM without citrulline and ornithine. Both media were supplemented with 20µM extracellular 

arginine. Day 1 and day 2 media samples were collected and cell numbers were measured as in 

Consumption/Release (Co/Re) analysis. 

10µL of each media sample were mixed 10µL of water containing 13C6,15N4 arginine at 

20µM and 600µL cold HPLC grade methanol. The solution was then vortexed for 10 min, and 
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centrifuged at 21,000xg for 10 min. Finally, 450μL of each extract was aliquoted, dried under 

nitrogen gas and stored at -80°C before further analysis. Sample derivatization GC-MS was then 

used to measure the arginine concentration in each media sample as described below in GC-MS 

analysis of arginine.  

 

2.8 RNA extraction, library preparation and transcriptomic analyses 

2.8.1 Isolation of cultured and tumor cancer cell samples 

mPDAC3-TIFM cells were plated at 200,000 (TIFM) to 350,000 (RPMI) cells per 6cm 

plate in triplicate cultures. RNA was extracted from cells 24 hrs later when the cells were 

proliferating exponentially. The cells were trypsinized and isolated by fluorescence activated cell 

sorting (FACS) for RNA extraction. For the in vivo, condition cells were isolated by FACS from 

end stage orthotopic mPDAC3-TIFM tumors, as described in Cell isolation from tumors. 

 

2.8.2 RNA extraction 

Cells from all conditions were sorted by FACS prior to RNA extraction to eliminate the 

FACS sorting process as a confounder between cultured mPDAC3-TIFM cells and those isolated 

from orthotopic tumors. For FACS sorting, cells were stained with DAPI (750 ng/mL) to separate 

dead/dying cells from live cells, and live YFP+/DAPI- cells were sorted with a BD FACSAria II 

Cell Sorter with a 100µm nozzle directly into Qiagen RLT RNA extraction buffer. The ratio of 

RNA extraction buffer to sorted cellular volume was kept at 100µL of sorted sample per 350µL of 

RNA extraction buffer. Total messenger RNA (mRNA) was extracted using the RNeasy Micro 
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Kit (Qiagen #74004) and RNA quality and quantity was assessed using the 2100 Bioanalyzer 

System (Agilent).  

 

2.8.3 Library preparation and sequencing 

Strand-specific RNA-SEQ libraries were prepared using an TruSEQ mRNA RNA-SEQ 

library protocol (Illumina). Library quality and quantity was assessed using the Agilent bio-

analyzer and libraries were sequenced using an Illumina NovaSEQ6000. 

 

2.8.4 Transcriptomic analyses 

Data processing and analysis was done using the R-based Galaxy platform 

(https://usegalaxy.org/) [66]. Quality control was performed prior and after concatenation of the 

raw data with the tools MultiQC and FastQC respectively. All samples passed the quality check 

with most showing ~20% sequence duplication, sequence alignment greater or equal to 80%, 

below and below 50% GC coverage, all of which is acceptable and/or indicative of good quality 

for RNASeq samples [67,68]. Samples were then aligned, and counts were generated using the 

tools HISAT2 (Galaxy Version 2.2.1+galaxy0, NCBI genome build GRCm38/mm10) and 

featureCounts (Galaxy Version 2.0.1+galaxy1), respectively. Differential expression analyses 

were performed with limma (Galaxy Version 3.48.0+galaxy1) [69] and Genome Set Enrichment 

Analysis (GSEA) with fgsea (Galaxy Version 1.8.0+galaxy1) [70] or GSEAPreranked (v6.0.12, 

https://gsea-msigdb.github.io/gseapreranked-gpmodule/v6/index.html) [64,71,72]. t-statistic 

metric for differential expression calculated with limma was used as the ranking metric for all 

GSEA analyses. GSEA plots were generated as previously described [73]. 

https://usegalaxy.org/
https://gsea-msigdb.github.io/gseapreranked-gpmodule/v6/index.html
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2.9 Immunoblot analysis 

For immunoblotting analysis, cells growing in log phase in a 6 well dish were washed with 

2mL of PBS and lysed in 100μL RIPA buffer [25 mM Tris-Cl, 150 mM NaCl, 0.5% sodium 

deoxycholate, 1% Triton X-100, 1x cOmplete protease inhibitor (Roche)]. Cells were scraped and 

the resulting lysate was clarified by centrifugation at 21,000xg for 10 min. Protein concentration 

of the lysate was determined by BCA assay (Thermofisher). Proteins (20–30μg) were resolved on 

SDS-PAGE, 4 to 12% Bis-Tris Gels (Invitrogen) and transferred to a polyvinylidene difluoride 

membrane using the iBlot 2 Dry Blotting System (Invitrogen). Membrane was blocked with 

Intercept Blocking Buffer (Li-cor) at room temperature for 2h, stained with primary and secondary 

antibodies and then visualized using a LI-COR imager with Image Studio software version 2.1.10. 

The following primary antibodies were used: Ass1 (Atlas HPA020896; 1:200 dilution), 

Vinculin (Proteintech 66305-1-lg; 1:10000 dilution) and Beta-Actin (Proteintech 660009-1-lg; 

1:10000 dilution). The following secondary antibodies were used: IRDye 680LT Goat Anti-Mouse 

Ig (Li-cor G926-68020; 1:10000 dilution) IRDye 800CW Goat anti-Rabbit IgG (Li-cor 926-32211; 

1.:10000 dilution) and IRDye 800CW Goat anti-Mouse IgG (Li-cor 926-32210; 1:10000 dilution) 

 

2.10 qRT-PCR analysis 

RNA was extracted using the RNeasy Mini Kit and optional on-the-column DNAse 

digestion (Qiagen). Extracted RNA was converted to cDNA by reverse transcription using the 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Expression levels of Sdc1 

transcript were amplified using PowerUp SYBR Green Master Mix (Invitrogen) and custom 
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primers. Quantification was performed using a QuantStudio 3 Real-Time PCR System (Applied 

Biosystems). The average change in threshold cycle (ΔCt) values was determined for each of the 

samples relative to Gapdh levels and compared with vehicle control (ΔΔCt). Finally relative gene 

expression was calculated as (2-ΔΔCt). Experiments were performed in triplicate cultures. 

 

2.11 GC-MS analysis of arginine 

Dry polar metabolites extracts from intracellular extracts or media samples were 

derivatized with 16μL MOX reagent (ThermoFisher) for 1h at 37°C and then with 20μL 1% tert-

butyldimethylchlorosilane in N-tert-Butyldimethylsilyl-N-methyltrifluoroacetamide (Sigma 

Aldrich) for 3h at 60°C. Derivatized samples were analyzed with an 8890 gas chromatograph 

system (Agilent Technologies) with a HP-5ms Ultra Inert column (Agilent Technologies) coupled 

with an 5997B Mass Selective Detector (MSD) mass spectrometer (Agilent Technologies). Helium 

was used as the carrier gas at a flow rate of 1.2 mL/min. One microliter of sample was injected in 

splitless mode at 280°C. After injection, the GC oven was held at 100°C for 1 min. and increased 

to 300°C at 3.5 °C/min. The oven was then ramped to 320°C at 20 °C/min. and held for 5 min. at 

this 320°C. The MS system operated under electron impact ionization at 70 eV and the MS source 

was held at 230 °C and quadrupole at 150 °C. The detector was set in scanning mode with a 

scanned ion range of 100–650 m/z. Metabolite were identified using fragments for each individual 

metabolite as previously described [74] and quantified by integration of peak area. 
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2.12 Isotopic labeling experiments in cell culture and intracellular 

metabolite extraction 

To measure steady state labeling of polar metabolites by citrulline in cultured cells, 

triplicate cultures of 150,000 cells/well were seeded in a 6 well dish in 2 mL of medium. Cells 

were allowed to attach overnight. The following day cells were washed twice with PBS and then 

incubated with 8mL for 8 or 24h in TIFM with 13C5-citrulline (Cambridge Isotope Laboratories, 

CLM-8653) added at TIFM concentrations. Immediately after the labeling period, cells were 

quickly washed with ~8mL of ice-cold blood bank saline. Cellular metabolites were extracted with 

addition of 600μL of an ice-cold methanol followed by scraping the cells on ice. The solution was 

then vortexed for 10 min, and centrifuged at 21,000xg for 10 min. 450μL of each extract was 

aliquoted to fresh sample tubes, dried under nitrogen gas and stored at -80°C before further 

analysis. Dried-down cell extracts were re-suspended with 75 µL of 60/40 acetonitrile/water, 

vortexed, incubated on ice for 20 minutes, and centrifuged for 30 minutes at 4°C and 20,000 g. 

The pooled QC samples were generated by combining ~20µL from each sample and injected 

regularly throughout the analytical batch. 

2.13 CRISPR knockout and re-expression of Ass1 

sgRNAs targeting Ass1 were generated through the Broad Institute’s Genetic Perturbation 

Platform Web Portal (https://portals.broadinstitute.org/gpp/public/). Oligonucleotide pairs were 

manufactured by Integrated DNA Technologies (IDT) and cloned into lentiCRISPRv2 (Addgene: 

#52961) as previously described [75,76]. HEK293T cells (Dharmacon) were transfected with the 

Ass1 targeting lentiCRISPRv2 vectors and the lentiviral packing plasmids psPAX2 (Addgene: 
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#12260) and pMD2.G (Addgene: #12259). The medium was replaced after 24h, and lentivirus was 

harvested after 48h. Subconfluent mPDAC3-TIFM cells were infected with lentivirus using 

8µg/mL polybrene and infected cells were selected in 2µg/mL puromycin and maintained with 

100µM arginine. Single cell clones with immunoblot-confirmed loss of Ass1 were selected. A 

single cell clone without detectable Ass1 expression was transformed with a lentivirus produced 

as above with a vector encoding CMV-driven murine Ass1 cDNA that would not be targeted by 

the Ass1 sgRNA (VectorBuilder). 

2.14 shRNA knockdown of Sdc1 

Hairpin sequences targeting Sdc1 were obtained from [77]. Oligonucleotide pairs were 

manufactured by IDT and cloned into a lentiviral LT3GEPIR vector (Addgene: #111177) to allow 

for doxycycline-inducible repression of gene expression. Lentiviral transfection and 

transformation were performed as described in CRISPR knockout and re-expression of Ass1 

and successfully transformed cells were selected and maintained with 2μg/mL puromycin. Cells 

transformed with LT3GEPIR with a Renilla luciferase targeting shRNA were used as a control.  

2.15 Analysis macropinocytic capacity by DQ-BSA 

The macropinocytic capacity of PDAC cells was assessed using a DQ Red BSA 

(Invitrogen) uptake assay. Cells were seeded at either 15,000 cells/well for 12 wells or 50,000 

cells/well for 6 wells and allowed to attach over night. The following day the media was replaced 

with fresh media + 0.02mg/mL of the DQ Red BSA fluorogenic substrate and cells were harvested 

at different timepoints for up to 6 hours. Cells were then washed with PBS, trypsinized, washed 
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again with PBS, fixed in 4% paraformaldehyde for 15 minutes at 4oC and DQ Red BSA 

fluorescence was quantified by flow cytometry in at least 10,000 cells per sample. 

2.16 Animal experiments 

Animal experiments were approved by the University of Chicago Institutional Animal Care 

and Use Committee (IACUC, Protocol #72587) and performed in strict accordance with the Guide 

for the Care and Use of Laboratory Animals of the National Institutes of Health (Bethesda, MD). 

Mice were housed in a pathogen-free animal facility at the University of Chicago with a 12 h 

light/12 h dark cycle, 30–70% humidity and 68–74°F temperatures maintained. 

2.16.1 Orthotopic tumor implantation and monitoring 

C57BL6J mice 8-12 weeks of age were purchased from Jackson Laboratories (Strain 

#:000664). 250,000 cells were resuspended in 20µL of 5.6mg/mL Cultrex Reduced Growth Factor 

Basement Membrane Extract (RGF BME; R&D Biosystems #3433-010-01) and serum-free RPMI 

solution. The BME:cellular mixture was injected into the splenic lobe of the pancreas of the mice 

as previously described [78] to generate orthotopic tumors. After implantation mice, were 

monitored daily by abdominal palpation. 

2.16.2 In vivo Arg1 knockout 

C57BL6J Lyz2-Cre and Arg1fl/fl mice were bred to generate Lyz2-Cre +/+; Arg1fl/fl and litter 

mate control Arg1fl/fl mice. Animal husbandry was carried out in strict accordance with the 
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University of Chicago Animal Resource Center guidelines. Tumor implantation as described 

above was performed in mice at 8-12 weeks of age.  

 

2.16.3 In vivo arginase-1 pharmacological inhibition 

Orthotopic tumors were implanted in C57BL6J mice at 8-12 weeks of age. 4 weeks after 

induction, animals were treated with CB-1158. CB-1158 (MedChem Express) dissolved in sterile 

water was administered by oral gavage at 100mg/kg as previously described [79]. The acidity 

caused by the HCl in the drug solution was neutralized by adding an equivalent amount of NaOH. 

Control mice were treated with an equivalent amount of NaCl dissolved in sterile water as the 

vehicle. 2hrs after treatment with CB-1158 or vehicle, mice were euthanized by cervical 

dislocation, and tumors were harvested for TIF extraction. 

 

2.16.4 In vivo 15N2-glutamine tracing by bolus tail vein injections 

Orthotopic tumors were implanted in C57BL6J mice at 8-12 weeks of age. 4 weeks after 

induction tumor-bearing mice and healthy littermate controls were treated with 15N2-glutamine 

(Cambridge Isotope Laboratory #NLM-1328-PK) dissolved in sterile phosphate buffered saline at 

7.2mg/animal by tail vein injection as previously described [80]. Briefly, animals were dosed three 

times at 15-minute intervals. 15 minutes after the final dose, ~100uL of blood were be obtained by 

submandibular sampling as described previously (Parasuraman et al., 2010) and animals were 

euthanized. The tumor or pancreas from each animal was then harvested and immediately snap 

frozen using a BioSqueezer (BioSpec) cooled with liquid nitrogen and stored at -80°F until further 

analysis.  
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2.16.5 In vivo 15N2-glutamine tracing by jugular vein infusion 

6~8-month-old female & male Lyz2-Cre +/+; Arg1fl/fl and litter mate control Arg1fl/fl mice 

with mPDAC3-TIFM orthotopic tumors underwent dual jugular vein & carotid artery 

catheterization surgery. On day 5 of post recovery, mice received a 0.28 mg/g 10 min. bolus 

followed by a continuous 4 hr. infusion 0.005 mg/g/min infusion of 15N2-glutamine (Cambridge 

Isotope Laboratory #NLM-1328-PK). Plasma samples were taken at time points: 0, 15, 30, 60, 

120, 180, and 240 minute time points. Tumors and tissues were harvested at 240 min. and 

immediately snap frozen with liquid nitrogen stored at -80°C prior to analysis. 

 

2.16.6 IF isolation from PDAC tumors 

IF was isolated from tumors as described before [40]. Briefly, tumors were rapidly 

dissected after euthanizing animals. Tumors were weighed and rinsed in blood bank saline solution 

(150 mM NaCl) and blotted on filter paper (VWR, Radnor, PA, 28298–020). The process of 

dissection and tumor preparation took < 3min. Tumors were cut in half and put onto 20µm nylon 

mesh filters (Spectrum Labs, Waltham, MA, 148134) on top of 50 mL conical tubes, and 

centrifuged for 10min. at 4°C at 400xg. IF was then collected, snap-frozen in liquid nitrogen and 

stored at -80°C until further analysis.  
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2.17 Preparation of plasma and tumor samples from 15N2-glutamine 

tracing experiments for LC-MS analysis 

2.17.1 Metabolite extraction and sample analysis from bolus 15N2-

glutamine delivery tracing experiment 

Cryogenically frozen tumor pieces were ground to a fine homogenous powder with a liquid 

nitrogen cooled mortar and pestle. ~30mg of tissue powder was weighed into sample tubes, and 

metabolites were extracted with 600µL HPLC grade methanol, 300µL HPLC grade water, and 

400µL chloroform. Samples were vortexed for 10min at 4°C, centrifuged 21,000xg at 4°C for 10 

min. 400µL of the aqueous top layer was removed into a new tube and dried under nitrogen. Dried 

tumor extracts were resuspended in 100µL HPLC grade water prior to analysis. Plasma samples 

(10µL) were extracted with 90 ul of 75:25:0.2 HPLC grade acetonitrile:methanol:formic acid 

extraction mix. Samples were vortexed for 5 min at 4°C and centrifuged at 4°C at maximum speed 

for 10 min. 80µl of supernatant were aliquoted to a fresh tube prior to analysis. LC-MS analysis 

for both tumor and plasma samples was performed as described before [40,59]. XCalibur 2.2 

software (Thermo Fisher Scientific) was used identification and relative quantification for 

metabolites. Natural abundance correction was performed using the IsoCor [81]. 

 

2.17.2 Metabolite extraction from in vivo 15N2-glutamine infusion 

tracing experiment 

Plasma samples (10µL) were extracted with 40 µL of ice-cold methanol, vortexed for 5 

minutes at 4°C using an Eppendorf ThermoMixer, incubated on ice for 20 minutes, and centrifuged 
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for 30 minutes at 4°C at 20,000 g. The supernatant was dried down using a Genevac EZ-2.4 elite 

evaporator. Dried-down samples were re-suspended in 60 µL of 60/40 acetonitrile/water before 

LC-MS analysis. The snap-frozen tissue and tumor samples were ground to a powder using a 

mortar and pestle on dry ice, extracted with ice-cold 4/4/2 acetonitrile/methanol/water (20 µL 

solvent/mg of tissue), vortexed for 5 minutes at 4°C using an Eppendorf ThermoMixer. Samples 

were incubated on ice for 20 minutes, centrifuged for 30 minutes at 4°C at 20,000 g and 600 µL 

of supernatant was dried down and stored at -80°C. Samples were re-suspended in 100 µL of 60/40 

acetonitrile/water prior to LC-MS analysis described below. 

 

2.17.3 LC-MS data acquisition and analysis for in vivo 15N2-glutamine 

infusion tracing and in vitro 13C5-citrulline experiments 

Metabolite separation was performed using Thermo Scientific Vanquish Horizon UHPLC system 

and Atlantis BEH Z-HILIC (2.1x150 mm, 2.5 µM; part # 186009990; Waters Corporation) column 

at acidic pH or a iHILIC-(P) Classic (2.1x150 mm, 5 µm; part # 160.152.0520; HILICON AB) 

column at basic pH.  For the acidic pH method, the mobile phase A (MPA) was 10 mM ammonium 

formate containing 0.2% formic acid and mobile phase B (MPB) was acetonitrile containing 0.1% 

formic acid. The column temperature, injection volume, and flow rate were 30°C, 5 µL, and 0.2 

mL/minute, respectively. The chromatographic gradient was 0 minute: 90% B, 15 minutes: 20% 

B, 16 minutes: 20% B, 16.5 minutes: 90% B, 17 minutes: 90% B, and 23 minutes: 90% B. The 

flow rate was increased to 0.4mL/minute for 4.7 minutes during the re-equilibration. MS detection 

was done using Orbitrap IQ-X Tribrid mass spectrometer (Thermo Scientific) with a H-ESI probe 

operating in switch polarity mode for both methods except the in vitro 13C5 citrulline tracing 
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experiment data were data was collected only in positive mode. MS parameters were as follows: 

spray voltage: 3800 V for positive ionization and 2500 V for negative ionization modes, sheath 

gas: 80, auxiliary gas: 25, sweep gas: 1, ion transfer tube temperature: 300°C, vaporizer 

temperature: 300°C, automatic gain control (AGC) target: 25%, and a maximum injection time of 

80 milliseconds (ms).  

For the basic pH method, MPA was 20 mM ammonium bicarbonate at pH 9.6, adjusted by 

ammonium hydroxide addition and MPB was acetonitrile. The column temperature, injection 

volume, and the flow rate were 40°C, 2 µL, and 0.2mL/minute, respectively. The chromatographic 

gradient was 0 minute: 85% B, 0.5 minute: 85% B, 18 minutes: 20% B, 20 minutes: 20% B, 20.5 

minutes: 85% B and 28 minutes: 85% B. MS parameters were as follows: spray voltage:3600V for 

positive ionization and 2800 for negative ionization modes, sheath gas: 35, auxiliary gas: 5, sweep 

gas: 1, ion transfer tube temperature: 250°C, vaporizer temperature: 350°C, AGC target: 100%, 

and a maximum injection time of 118 ms.  

For both methods, data acquisition was done using the Xcalibur software (Thermo 

Scientific) in full-scan mode with a range of 70-1000 m/z at 120K resolution (acidic pH) and 60K 

(basic pH). Metabolite identification was done by matching the retention time and MS/MS 

fragmentation to the reference standards. Data analysis was performed using Tracefinder 5.1 

software (Thermo Scientific). 
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2.18 HPLC-MS-MS analysis amino acid levels in PDAC IF samples 

upon arginase inhibition 

IF samples were analyzed by High-Performance Liquid Chromatography and Tandem 

Mass Spectrometry (HPLC-MS-MS) using a Thermo Q-Exactive in line with an electrospray 

source and an Ultimate3000 (Thermo) series HPLC consisting of a binary pump, degasser, and 

auto-sampler outfitted with a Xbridge Amide column (Waters; dimensions of 3.0 mm × 100 mm 

and a 3.5 µm particle size). The mobile phase A contained 95% (vol/vol) water, 5% (vol/vol) 

acetonitrile, 10 mM ammonium hydroxide, 10 mM ammonium acetate, pH = 9.0; B was 100% 

Acetonitrile. The gradient was as following: 0 min, 15% A; 2.5 min, 64% A; 12.4 min, 40% A; 

12.5 min, 30% A; 12.5-14 min, 30% A; 14-21 min, 15% A with a flow rate of 150 μL/min. The 

capillary of the ESI source was set to 275 °C, with sheath gas at 35 arbitrary units, auxiliary gas at 

5 arbitrary units and the spray voltage at 4.0 kV. In positive/negative polarity switching mode, an 

m/z scan range from 60 to 900 was chosen and MS1 data was collected at a resolution of 70,000. 

The automatic gain control (AGC) target was set at 1 × 106 and the maximum injection time was 

200 ms. The targeted ions were subsequently fragmented, using the higher energy collisional 

dissociation (HCD) cell set to 30% normalized collision energy in MS2 at a resolution power of 

17,500. Besides matching m/z, target metabolites are identified by matching either retention time 

with analytical standards and/or MS2 fragmentation pattern. Data acquisition and analysis were 

carried out by Xcalibur 4.1 software and Tracefinder 4.1 software, respectively (both from Thermo 

Fisher Scientific). 
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2.19 Measuring intratumoral and IF concentrations of amino acids 

To quantitatively measure IF amino acid abundance, polar metabolites were extracted from 

5µL IF samples using 45µL 75:25:0.1 HPLC grade acetonitrile:methanol:formic acid extraction 

mix into which a mixture of isotopically labeled amino acids of known concentrations (Cambridge 

Isotope Laboratories, MSK-A2-1.2) was added. Samples were vortexed for 10 min, and 

centrifuged at maximum speed for 10 min. 30 μL of each extract was removed and dried under 

nitrogen gas and stored −80°C until further analysis. LC-MS analysis and calculating amino acid 

concentration in these samples was performed as in Quantification of metabolite levels in cell 

culture media. 

To measure amino acid amounts in tumor samples, intratumoral metabolites were extracted 

from ~30mg of tumor tissue and dried down as described in Preparation of plasma and tumor 

samples from 15N2-glutamine tracing experiments for LC-MS analysis. Dried samples were 

rehydrated with 2:1 methanol:water  into which a mixture of isotopically labeled amino acids of 

known concentrations (Cambridge Isotope Laboratories, MSK-A2-1.2) was added. Samples were 

then analyzed by LC-MS as described in Quantification of metabolite levels in cell culture 

media. Amino acid amounts in a given mass of tumor were determined by comparison of peak 

areas of unlabeled amino acids with peak areas of labeled amino acids that were present at known 

amounts and dividing by the mass of tumor extracted. 

To compare metabolite concentrations between tumor and TIF samples, the density for 

orthotopic mPDAC tumors was needed to convert amino acid amount per unit tumor mass into a 

concentration (amino acid amount per unit volume). The density of freshly isolated mPDAC3-

RPMI tumors was determined by measuring tumor mass and calculating the volume (V) of the 

tumors with the following formula:  
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V = 4/3 * π * A * B * C  

where A, B, C are the lengths of the semi-axes of an ellipsoidal shape, which were 

measured from tumors with an electronic caliper (Thermofisher). Tumor density was then 

calculated by dividing the tumor mass by the calculated volume. Tumor density was then used to 

convert amino acid amount per tumor mass measurements into an intratumoral concentration. 

 

2.20 Human samples regulation 

Human histology samples were obtained under approval by the Institutional Review 

Boards at the University of Chicago (IRB 17-0437). 

 

2.21 Immunohistochemistry 

For ARG1 and ASS1 staining, the slides were stained using Leica Bond RX automatic 

stainer. Dewax (AR9222, Leica Microsystems) and rehydration procedure were performed in the 

system and a 20 min treatment of epitope retrieval solution I (Leica Biosystems, AR9961) was 

applied. anti-Arginase-1 (1:100, Cell Signaling #93668) or anti-Ass1 (1:100, Atlas HPA020896;) 

and were applied on tissue sections for 60min.  Antigen-antibody binding was detected using Bond 

polymer refine detection (Leica Biosystems, DS9800). The tissue sections were counter stained 

with hematoxylin and covered with cover glasses.  

For F4/80 staining, tissue sections were deparaffinized and rehydrated with xylenes and 

serial dilutions of EtOH to deionized water. They were incubated in antigen retrieval buffer 

(DAKO, S1699) and heated in steamer at 97°C for 20 minutes. Anti-mouse F4/80 antibody (1:200, 

MCA497GA, AbD Serotec) was applied on tissue sections for 1hr at room temperature. Tissue 
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sections were washed with Tris buffered saline and then incubated with biotinylated anti-rat IgG 

(10 μg/ml, BA-4001, Vector laboratories) for 30 min at room temperature. Antigen-antibody 

binding was detected by Elite kit (PK-6100, Vector Laboratories) and DAB (DAKO, K3468) 

system. 

Slides were scanned using the Aperio ScanScope slide scanner and images were stored and 

analyzed with Aperio eSlideManager and Aperio ImageScope (version 12.4.6.5003) respectively 

Algorithm (Leica Biosystems Imaging, Inc.). Annotation and quantification of slides were 

supervised by a trained pathologist (Chris Weber) in a blinded fashion and regions for each 

experiment were annotated as described in figure legends. Staining coverage and intensity in the 

annotated regions were quantified using the Aperio Positive Pixel Count Algorithm (Leica 

Biosystems Imaging, Inc.), unmodified. Briefly, to calculate staining coverage for each annotated 

region, the total amount of stain positive pixels (as defined by the algorithm) was counted and 

classified for Low, Medium or High Intensity. Each intensity group was assigned a relative 

numeric value (Low = 1, Medium = 2, High = 3). The stain intensity value was then multiplied by 

the total number of positive pixels in each group, for each annotated region. The resulting values 

were then normalized to the total number of pixels in the analyzed region. These normalized 

staining intensity values were then averages for all analyzed regions in each histological sample.  
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CHAPTER 3 

PDAC CELLS GROWN IN TUMOR INTERSTITIAL FLUID-BASED 

CULTURE MEDIUM RECAPITULATE THE TRANSCRIPTOMIC 

BEHAVIOR OF PDAC CELLS GROWING IN VIVO 

3.1 Introduction 

Tumor metabolism differs markedly from that of untransformed tissues[82], which is 

driven in part by the influence of cell-intrinsic factors, such as oncogenic lesions[9]. However, 

cell-extrinsic factors in the tumor microenvironment (TME) also play a substantial role in 

regulating tumor metabolism[11,12,21]. Indeed, tumors have a substantially different 

microenvironment compared to normal tissues, and these microenvironmental abnormalities also 

contribute to the metabolic abnormalities observed in tumors. Thus, to better understand the 

contribution of metabolism to tumor biology, I am seeking to understand how cell extrinsic cues 

in the TME shape intracellular metabolic pathways. 

One such cell-extrinsic microenvironmental factor that strongly influences cancer cell 

metabolism is nutrient availability[83–85]. Factors such as vascularization, stromal composition, 

and immune cell infiltration influence nutrient delivery to tissues and these factors are abnormal 

in tumors, leading to altered nutrient availability in the TME[11,86,87], which could impact cancer 

cell metabolism. Despite the potential role of extracellular nutrient availability in shaping tumor 

metabolism, our knowledge of how this cell extrinsic cue impacts tumor metabolism is limited as 

we have had little understanding of TME nutrient levels.  
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To overcome this limitation, we developed a workflow to isolate interstitial fluid (IF), the 

perfusate of solid tissues and tumors, in murine models of pancreatic adenocarcinoma (PDAC) 

and profile the concentrations of metabolites[40]. In contrast to healthy tissues where nutrient 

levels in the interstitial fluid are comparable to plasma nutrient levels[88], we found that PDAC 

IF had substantially altered nutrient levels compared to the plasma, as has also been shown in other 

cancers including renal cell carcinoma and glioblastoma[52,89]. Thus, we now have a more 

complete understanding of TME nutrient availability in PDAC and are poised to use this to 

understand how this cell extrinsic factor impacts cancer cell metabolism. 

3.2 Results 

To study how the nutrient composition of the PDAC TME influences cancer cell biology, 

we developed a cell culture medium termed Tumor Interstitial Fluid Medium (TIFM) based on 

metabolite concentrations in PDAC IF [40]. To do so, we used an approach similar to those 

described for the generation of media with plasma levels of nutrients [90,91] (Fig. 3.1A). TIFM is 

composed of 115 metabolites at the average concentration previously observed in the IF of KrasLSL-

G12D/+; Trp53fl/fl; Pdx1Cre [40,92] murine PDAC tumors. These metabolites were selected on the 

following bases: (1) commercial availability at high purity, (2) stability in aqueous solution, and 

(3) presence in PDAC IF at a concentration > 0.5µM. To enable rapid identification of bio-active 

nutrients, TIFM is composed of 9 pools of metabolites that are separately compounded [90,91]. 
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To generate the complete medium, the individual metabolite powders are reconstituted in water 

along with salts at RPMI-1640 (RPMI) concentrations and 10% dialyzed fetal bovine serum 

(dFBS) to provide lipids, growth factors, and any other macromolecules necessary for cell growth. 

Sodium bicarbonate is also added at RPMI concentrations to maintain physiological pH [93]. 

Importantly, quantitative metabolite profiling by liquid chromatography-mass spectrometry (LC-

MS) of TIFM confirmed that TIFM contained metabolites at expected concentrations (Fig. 3.1B). 

Thus, TIFM recapitulates the nutrient microenvironment of PDAC. 

Figure 3.1. Tumor Insterstitial Fluid Medium sustains murine PDAC cell growth. (A) Diagram of 
the Tumor Interstitial Fluid Medium (TIFM) formulation. (B) Scatter plot of LC-MS 
measurements of metabolite concentrations in TIFM (n=6) plotted against expected 
concentrations of the metabolite in TIFM (average concentration of the given metabolite in mouse 
PDAC TIF). The values represent the mean of LC-MS measurements, and the error bars represent 
± SD. r2 and p-value were determined by Pearson correlation. (C) Diagram of the generation of 
paired PDAC cell lines grown in TIFM or in RPMI isolated from mouse PDAC tumors. PDAC 
tumors were used for the IF measurements on which the TIFM formulation is based. (D) Cell 
proliferation rate of paired mPDAC cell lines grown in TIFM or RPMI (n=3). The values represent 
the mean and the error bars represent ± SD. Statistical significance was calculated using a two-
tailed Student’s t test. 
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To determine if TIFM could sustain cancer cells, we isolated murine PDAC (mPDAC) cell 

lines from three individual mouse PDAC tumors by fluorescence activated cell sorting (FACS). 

This PDAC model is the same mouse model used for TIF metabolomics analyses and which 

formed the basis of TIFM composition [40]. We then split the cells isolated from each tumor into 

two populations, which were cultured either in TIFM or standard culture conditions (RPMI-1640) 

to generate paired mPDAC cell lines termed mPDAC-RPMI or mPDAC-TIFM (Fig. 3.1C). 

mPDAC-TIFM cells readily proliferate in TIFM culture, albeit at a slower rate than in RPMI-1640 

(Fig. 3.1D), suggesting that TIFM has the necessary nutrients to sustain PDAC cell proliferation. 

Interestingly, while mPDAC-TIFM cells continue proliferating when transitioned directly from 

culture in TIFM to RPMI-1640, transferring mPDAC-RPMI cells directly to TIFM results in near-

complete arrest of cell growth (Fig. 3.2). This suggests that long term growth of mPDAC cells in 

standard cell culture media results in loss of key adaptations to grow under TME nutrient stress. 

Thus, analysis of PDAC cell metabolism in TIFM could identify novel metabolic adaptations 

required for growth under TME conditions that would not be apparent from studying PDAC cells 

under standard culture conditions. 
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To identify such adaptations, we performed transcriptomic profiling comparing gene 

expression patterns of the same mPDAC cells (mPDAC3-TIFM) isolated by FACS: (1) after 

culture in TIFM, (2) after culture in RPMI-1640 and (3) after growing as syngeneic orthotopic 

murine tumors to provide an in vivo reference (Fig. 3.3A). This experimental design allowed us to 

identify transcriptionally-driven metabolic adaptations in TIFM and confirm these were operative 

in vivo. Further, the in vivo transcriptomic data allows us to assess how the transcriptional state of 

PDAC cells in different ex vivo models compares to the bona fide in vivo cell state. This analysis 

has recently been suggested to be a critical benchmark for assessing ex vivo model fidelity [94]. 

We first established that compared to standard culture conditions, mPDAC cells in orthotopic 

tumors substantially alter their transcriptional profile (Fig. 3.3B). The majority of detected 

transcripts (12,066/16,378) are differentially expressed in the same mPDAC cells when grown in 

vivo compared to standard culture conditions.  

Figure 3.2. mPDAC cells cannot proliferate in 
TIFM after long term culture in RPMI.  mPDAC 
cells were isolated from a mouse PDAC tumor 
and cultured directly in TIFM or RPMI. After 
long term culture (>1 month) in either media 
condition, cells were plated into the other media 
(i.e. cells grown in TIFM were subsequently 
cultured in RPMI and cells grown to RPMI were 
subsequently grown in TIFM, as indicated). The 
proliferation rate of the cells upon switching 
media conditions was measured (n=3). The 
values represent the mean and the error bars 
represent ± SD and statistical significance was 
calculated using a two-tailed Student’s t test. 
(n=3). The values represent the mean and the 
error bars represent ± SD. Statistical significance 
was calculated using a two-tailed Student’s t test. 
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Next, using this differential expression data, we generated gene sets of the most 

significantly upregulated and downregulated genes in mPDAC cells growing in vivo compared to 

RPMI (‘top 500 genes up in vivo’ and ‘top 500 genes down in vivo’ respectively). We then 

performed gene set enrichment analysis (GSEA) [72,95] using the transcriptomic data of 

mPDAC3-TIFM cells growing in TIFM and RPMI using the ‘top 500 genes up in vivo’ and ‘top 

500 genes down in vivo’ gene sets. Compared to mPDAC cells cultured in RPMI, mPDAC cells 

in TIFM show a strong enrichment for in vivo upregulated genes and negative enrichment for genes 

downregulated in vivo (Fig. 3.3C). While limiting these gene sets to 500 genes ensures there is no 

enrichment score inflation due to the large gene set size [72], using gene sets comprised of all 

5000+ genes significantly up or downregulated for each set generates the same enrichment patterns 

Figure 3.3. (following page) Genome set enrichment analysis (GSEA) shows mPDAC cells 
cultured in TIFM better recapitulate the transcriptomic behavior of PDAC cells in vivo. (A) 
Diagram of workflow for the transcriptomic comparison of mPDAC3-TIFM cells grown in 
TIFM (n=3), RPMI (n=3) or as orthotopic allograft murine tumors (n=6). mPDAC cells from 
each condition were isolated by FACS and RNA was isolated for transcriptomic analysis by 
next generation sequencing. (B) Volcano plot of differentially expressed genes (DEGs) between 
mPDAC3-TIFM cells growing in vivo vs. cultured in RPMI (Tumor/RPMI). Blue: 
downregulated genes in tumors with adjusted p<0.05. Red: upregulated genes in vivo with 
adjusted p<0.05. Gray: genes with adjusted p>0.05. Adjusted p-value was calculated using 
Limma with the Benjamini and Hochberg false discovery rate method (Benjamini & Hochberg, 
1995) (C) GSEA of transcriptomic data from mPDAC3 cells cultured in TIFM versus mPDAC3 
cells cultured in RPMI using custom gene sets generated from DEG analysis in (B), each with 
top 500 upregulated (top) or downregulated (bottom) genes as determined by adjusted p-value. 
Genes are ranked by t-statistic metric for differential expression between TIFM and RPMI 
cultured mPDAC3-TIFM cells calculated with limma. The top segment of each signature plot 
shows the running enrichment score for the gene set as the analysis progresses down the ranked 
list. The bottom segment of each signature plot shows where each member of the gene set as it 
appears in the ranked gene list. (D) Same analysis as in (C) with custom gene sets using all 
differentially upregulated (top) or downregulated (bottom) genes from DEG analysis in (B), as 
determined by adjusted p<0.05.  
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with similar enrichment scores (Fig. 3.3D). We also found a strong correlation between gene 

expression changes induced by culture in TIFM and growth in vivo (Fig. 3.4A). Lastly, among the 

top 20 up- and downregulated curated gene signatures from MSigDB [72,95] in TIFM cultured 

mPDAC cells compared to RPMI, most were similarly up or down-regulated in vivo compared to 

RPMI (Fig. 3.4B). Altogether, this analysis demonstrates that gene expression in TIFM cultured 

mPDAC cells more closely aligns with the gene expression pattern of mPDAC cells in vivo. 
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We also sought to understand which aspects of the in vivo mPDAC cell state were not 

recapitulated in TIFM. To identify the cellular processes that are differentially regulated between  

cells growing in TIFM and cells in vivo, we performed GSEA using Gene ontology (GO) based 

gene sets on transcriptomic data from mPDAC3-TIFM cells in vivo and in TIFM. The main cellular 

processes differentiating PDAC cells growing in vivo from cells growing in TIFM are cell-cell 

Figure 3.4. TIFM is a useful model for the discovery of cancer cell adaptations to physiological 
tumor nutrient stress in PDAC. (A) Log2 fold changes in mean gene expression between 
mPDAC3-TIFM cells in TIFM (n=3) versus RPMI (n=3) (x axis) compared to mPDAC3-TIFM 
cells in vivo (n=6) versus in RPMI (n=3) (y axis). Statistical significance was determined by 
Pearson correlation r = 0.3733, p<0.0001. (B) (left column) Heatmap of normalized enrichment 
scores (NES) for top 40 enriched or depleted gene sets from MsigDB curated gene set (C2) 
collection in mPDAC3-TIFM cells cultured in TIFM vs. mPDAC3 cells cultured in RPMI. 
(right column) NES for these gene sets in mPDAC3-TIFM cells grown in vivo versus in RPMI. 
Grey boxes represent gene sets not differentially enriched between conditions. (J) Main cellular 
processes differentially expressed in mPDAC3-TIFM cells grown TIFM versus in vivo 
(TIFM/in vivo) as determined by GSEA analysis with MsigDB GO-based (C5) gene set 
collection. Only gene sets with an nMoreExtreme = 0 were considered in this analysis. For GO 
gene sets with overlapping genes and enrichment scores driven by the same set of differentially 
expressed genes, the largest gene sets containing these differentially expressed genes were 
selected for display. 
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communication, response to biotic stimuli, cell surface receptor activated pathways, and regulation 

of the immune system (Fig. 3.4C). These differences are likely due to the presence of the immune 

compartment and other neighboring cell populations in PDAC tumors, an aspect of the TME not 

modeled in TIFM. On the other hand, the main cellular processes positively enriched in PDAC 

cells in TIFM relative to in vivo are ribosome complex biogenesis, rRNA processing, and mitotic 

cell division (Fig. 3.4C), suggesting that, although the slower proliferation of mPDAC cells in 

TIFM (Fig. 3.1D) is more reminiscent of cells in vivo, cell cycle progression and translation are 

nevertheless still higher in TIFM than in vivo. Altogether, these results show that mPDAC cells 

grown in TIFM more closely recapitulate the transcriptomic profile of cells growing directly in the 

TME, suggesting that TIFM is a useful system for the discovery and characterization of cancer 

cell adaptations to physiological tumor nutrient stress in PDAC.  

 

3.3 Discussion 

We directly assessed the impact of the TME on the cellular state of murine PDAC cells by 

transcriptomic analysis. We found that the TME does indeed induce substantial changes in the 

transcriptional state of PDAC cells compared to PDAC cells in standard culture, consistent with 

the microenvironment being an important regulator of cancer cell biology (Fig. 3.3B).  

Given that metabolism is highly interconnected with epigenetic regulation of gene expression 

[96–99] and that cellular metabolism is intricately tied to nutrient availability [13,21], we reasoned 

that physiological nutrient availability could have dramatic influences on cellular state and be a 

key microenvironmental factor influencing cancer cell biology. Indeed, we found that growth of 

PDAC cells in physiological nutrition caused substantial transcriptional reprogramming, pushing 

PDAC cells towards a more in vivo-like transcriptional state compared to non-physiological 
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standard culture conditions (Fig. 3.3C, D & Fig. 3.4 A, B). Thus, consistent with recent studies 

that have incorporated physiological nutrient levels into cell culture systems [33,65,90,91], we 

have found that modeling physiological nutrient availability substantially improves cell culture 

model fidelity.  

Thus, along with other efforts to improve the fidelity of cell culture models by incorporating 

microenvironmental factors such as bio-scaffolds enabling three-dimensional growth [100,101], 

we anticipate ensuring proper nutrient availability will be critical in the development of more 

physiologically relevant ex vivo cancer models, which will expand our ability to target cancer by 

enabling exploitation of microenvironmentally driven therapeutic targets [102,103]. 
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CHAPTER 4 

ARGININE BIOSYNTHESIS SUPPORTS PDAC CELL GROWTH 

UNDER TME NUTRIENT STRESS. 

4.1 Introduction 

Argininosuccinate synthase 1 (ASS1) is the rate-limiting enzyme in the biosynthetic pathway 

of the non-essential amino acid arginine [104]. ASS1 catalyzes the synthesis of argininosuccinate 

from citrulline and aspartate, which can then be converted to arginine and fumarate by 

argininosuccinate lyase (ASL). Thus, expression of ASS1 enables cells to synthesize arginine de 

novo. Arginine biosynthesis is a metabolically costly process due to its utilization of intracellular 

aspartate, a limiting nutrient for tumors [105,106]. Aspartate limitation that arises from arginine 

synthesis slows nucleotide production and, ultimately tumor growth [107]. Thus, ASS1 acts as a 

metabolic tumor suppressor and is silenced in many tumor types [108], making consumption of 

extracellular arginine essential in these cancers[109]. 

Arginine is one of the most limiting nutrients in the murine PDAC TME at 2-5μM relative to 

125μM in plasma, a 20-50 fold decrease [40], leaving the TME level of arginine below the reported 

Km for arginine transport [110]. Arginine is a critical metabolite required for many cellular 

processes. It is a proteinogenic amino acid as well as the precursor for other metabolites necessary 

for cellular function [109]. Indeed, cells that become depleted of arginine undergo cell death 

[111,112]. As this metabolite is so central for cellular function, cells have evolved arginine sensors, 

which initiate cell growth only when arginine is available [113], and arginine metabolism is tightly 

regulated by a handful of enzymes, including ASS1 [114]. Transcriptomic analyses of PDAC cells 

growing under tumor microenvironmental nutrient levels, showed that these cells upregulate ASS1 
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in response to tumor nutrient stress, both in our TIFM system and in vivo. We hypothesized that 

mPDAC cells are starved of arginine in the TME, and expression of ASS1 provides mPDAC cells 

an alternative cellular arginine source. 

4.2 Results  

We sought to identify metabolic adaptations cancer cells exhibit in response to tumor nutrient 

stress using the transcriptional profiles of mPDAC cells in TIFM and in vivo. We focused on 

adaptation to amino acid deprivation, as this gene signature is highly enriched in TIFM (Fig. 4.1A) 

and is similarly enriched in mPDAC cells in vivo (Fig. 3.4B). Leading edge analysis [72] identified 

Ass1 as the most differentially expressed gene in this signature (Fig. 4.1B). We further confirmed 

the upregulation of ASS1 at the protein level by immunoblotting for ASS1 in protein extracts from 

TIFM and RPMI cultured mPDAC cells (Fig. 4.1C). Immunohistological analysis of murine and 

Figure 4.1. (following page) Upregulation of ASS1 is an adaptation of PDAC cells to tumor 
nutrient stress. (A) GSEA analysis of the MsigDB Krige_Amino_Acid_Deprivation signature 
in mPDAC3-TIFM cells cultured in TIFM versus in RPMI. (B) (left) Row-scaled heatmap of 
the log2 fold change of trimmed mean of M values (TMM) normalized gene counts for 
Krige_Amino_Acid_Deprivation genes in mPDAC3-TIFM cells cultured in TIFM versus 
RPMI. (right) t-statistic metric for differential expression calculated with limma for expression 
of indicated genes between mPDAC3-TIFM cells cultured in TIFM versus RPMI. (C) 
Immunoblot analysis of ASS1 in mPDAC cell lines grown in TIFM or RPMI as indicated. (D) 
(left) Representative images of immunohistochemical staining for ASS1 in KrasLSL-G12D; 
Trp53fl/fl; Ptf1aCreER murine PDAC tumors (n=6) and untransformed murine pancreas (n=8) as 
well as in human PDAC tumors (n=9) and untransformed human pancreas (n=6). Scale bar: 
100µm. (right) IHC Scores were calculated as described in Chapter 2. Regions of ductal 
epithelial cells (for untransformed pancreas) and malignant (for PDAC tumors) cells were 
annotated for this analysis. Statistical significance was calculated using a two-tailed Student’s 
t test. 
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human PDAC tumors (Fig. 4.1D) shows similarly robust expression of ASS1, especially compared 

to the lack of expression in the untransformed exocrine pancreas. These data suggest that mPDAC 

cells express ASS1 in the TME or when exposed to TME nutrient stress.  

ASS1 is the rate-limiting enzyme for the de novo biosynthesis of non-essential amino acid 

arginine. To test if mPDAC cells require de novo synthesis to maintain intracellular arginine pools, 

we first asked if mPDAC cells in TIFM consume the metabolic substrates (citrulline or ornithine) 

used for de novo arginine synthesis. To do so, we used quantitative LC-MS metabolite profiling 

[40] to perform an analysis of 108 metabolites that mPDAC1-TIFM and mPDAC1-RPMI cells

consume or release in their respective media [63,64]. Interestingly, we found that mPDAC1-TIFM 

cells selectively consume citrulline, but not ornithine, at a rate similar to that of arginine uptake 

(Fig. 4.2A). Citrulline uptake by mPDAC cells in TIFM is consistent with active arginine synthesis 
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in TIFM cultured mPDAC cells contributing substantially to intracellular arginine levels. To 

determine if citrulline consumption by PDAC cells enables arginine synthesis, we cultured 

mPDAC cells in TIFM with isotopically labeled 13C5-citrulline and measured steady state 

incorporation of citrulline carbon into arginine and its precursor argininosuccinate by LC-MS (Fig. 

4.2B). 100% of intracellular argininosuccinate and almost half of total intracellular arginine was 

Figure 4.2. Arginine biosynthesis allows PDAC cells to adapt to low microenvironmental levels 
of arginine. (A) Cellular consumption/release rate of citrulline, ornithine and arginine by 
mPDAC1-TIFM cells cultured in TIFM (n=6). Statistical significance was calculated using an 
ordinary one-way ANOVA test with Tukey’s multiple comparison correction. (B) Diagram 
showing the metabolic pathway mediating isotopic label incorporation from 13C5-citrulline into 
arginine. (C) Mass isotopomer distribution of intracellular arginininosuccinate and (D) 
intracellular arginine in mPDAC1 cells grown in TIFM with 13C5-citrulline at PDAC IF 
concentration (67µM) (n=6). (E) Relative intracellular arginine levels of mPDAC1 cells grown 
in TIFM with (+) or without (-) TIF concentrations of citrulline (cit) and ornithine (orn). 
Statistical significance was calculated using a two-tailed Student’s t test. (F) Proliferation rate 
of mPDAC1 cells in same conditions as (E) (n=3). Statistical significance was calculated using 
a two-tailed Student’s t test. (F) Cell proliferation rate of mPDAC1-TIFM cells with or without 
TIFM concentrations of ornithine (orn) (n=3). Statistical significance was calculated using a 
two-tailed Student’s t test. (G) Cell proliferation rate of mPDAC1-TIFM cells with or without 
TIFM concentrations of citrulline (cit) (n=3). Statistical significance was calculated using a 
two-tailed Student’s t test. (H) mPDAC1-TIFM cells were infected with lentiviruses encoding 
a Ass1 targeting CRISPR vector. Ass1 knockout cells were then infected with lentiviruses 
expressing either CRISPR resistant Ass1 cDNA or empty vector (E.V.), as indicated. An 
immunoblot analysis of ASS1 and vinculin (loading control) of protein lysates from these 
modified cells is shown. (I) Cell proliferation rate of cells in (J) grown in TIFM with different 
arginine concentrations as indicated (n=3). Statistical significance was calculated using an 
ordinary one-way ANOVA test with Tukey’s multiple comparison correction. 
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labeled by 13C5-citrulline Fig. 4.2C,D). Thus, de novo synthesis contributes a substantial fraction 

of cellular arginine in TIFM cultured mPDAC cells. Consistent with this, inhibiting arginine 

synthesis by deprivation of citrulline and ornithine from TIFM results in a 10-fold decrease of 

intracellular arginine in mPDAC cells (Fig. 4.2E). This decrease in intracellular arginine is 

accompanied by a significant decrease in cell proliferation (Fig. 4.2F). Importantly, consistent with 

the consumption/release analysis by LC-MS (Fig. 4.2A), individual depletion of either citrulline 

or ornithine further shows that depletion of citrulline, but not ornithine, is the key substrate 

mPDAC cells require for arginine synthesis (Fig. 4.2G,H). To confirm the finding that de novo 

arginine synthesis is critical for mPDAC proliferation in TIFM, we used CRISPR-Cas9 to 

knockout (KO) Ass1 in mPDAC cells (Fig. 4.2I). Consistent with decreased mPDAC proliferation 

upon de novo arginine synthesis inhibition by citrulline withdrawal, Ass1 KO decreases mPDAC 

proliferation and this affect can be rescued by supplying additional exogenous arginine in TIFM 

or by re-expression of Ass1 (Fig. 4.2J). Altogether, these findings suggest that de novo arginine 

synthesis is important to maintain intracellular arginine levels and mPDAC cell proliferation in 

TIFM.  

Next, we asked if limited ability to synthesize arginine due to decreased Ass1 expression 

could explain the inability of mPDAC-RPMI cells to grow robustly in TIFM (Fig. 3.2). To test 

this, we first asked if increasing the arginine concentration in TIFM to 100μM could enable 

mPDAC-RPMI cells to grow in TIFM. We found arginine addition almost completely rescues the 

inhibition of cell growth observed when transferring mPDAC-RPMI cells directly to TIFM (Fig. 

4.3). Thus, mPDAC-RPMI cells lose the ability to grow under arginine-deprived conditions, 

leading to their inability to grow in TIFM. 
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We next asked if arginine biosynthesis contributes to arginine homeostasis in murine PDAC 

tumors. To assess intratumoral PDAC arginine synthesis, we performed 15N2-glutamine isotope 

tracing by multiple bolus intravenous injections of 15N2-glutamine into mPDAC orthotopic tumor 

bearing mice and healthy controls (Fig. 4.4B). 15N2-glutamine tracing can be used to monitor 

arginine synthesis and urea cycle activity in PDAC [115] by monitoring the incorporation of 

labeled glutamine derived nitrogen into arginine (Fig. 4.4A). After glutamine injection, healthy 

pancreas, tumor tissue, and plasma samples were collected, and 15N enrichment in arginine and 

arginine biosynthetic precursors was measured by LC-MS. Glutamine in plasma is also quickly 

metabolized by multiple organs, which can then release labeled arginine and other metabolites into 

the circulation, which contribute to arginine labeling in other organs and the tumor [116]. One of 

the main examples of these interorgan exchange fluxes is the intestinal-renal axis, where glutamine 

metabolized by the small intestine is released as citrulline, which is then used by the kidneys to 

produce arginine for other tissues [116,117]. Consistent with systemic production of arginine from 

isotopically labeled glutamine, we observed an enrichment of ~14% 15N1-arginine and ~7% 15N2-

arginine in the circulation of healthy and tumor bearing mice (Fig. 4.4C). For tissues whose sole 

Figure 4.3. Arginine supplementation rescues cell proliferation defect of 
mPDAC1-RPMI cells in TIFM. mPDAC1-RPMI were cultured in 
TIFM, TIFM supplemented with 100uM arginine or in RPMI, as 
indicated. The proliferation rate of mPDAC1-RPMI cells immediately 
after switching the cells to the indicated media was measured (n=6). The 
values represent the mean and the error bars represent ± SD. Statistical 
significance was calculated using an ordinary one-way ANOVA test 
with Tukey’s multiple comparison correction. 
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source of arginine is uptake from the circulation, we expect the relative abundance of labeled 

arginine in the tissue would resemble that of the circulation. In line with this, the labeling pattern 

of arginine in non-ASS1 expressing healthy pancreas resembles the arginine labeling distribution 

found in circulation (Fig. 4.4C). In contrast, there is a greater amount of labeled arginine in PDAC 

tumor tissue compared to plasma, with ~17% 15N1-arginine and ~9% 15N2-arginine in tumors (Fig. 

4.4C). While these non-steady state isotope labeling experiments cannot allow us to infer the 

fraction of intratumoral arginine that arises from de novo synthesis in PDAC tumors [118], the 

Figure 4.4. Arginine de novo synthesis is active in PDAC tumors. (A) Diagram showing the 
metabolic pathways mediating isotopic label incorporation from 15N2-glutamine into arginine. 
(B) Diagram of stable isotope tracing by bolus intravenous injections of 15N2-glutamine in 
orthotopic mPDAC3-TIFM tumor bearing mice and non-tumor-bearing controls followed by 
plasma sampling and tumor extraction for analysis of intratumoral metabolite labeling during 
the period of kinetic labeling. (C) Relative abundance of 15N-labelled arginine isotopomers in 
tissues or plasma after 15N2-glutamine tail-vein bolus injections (n=7). Statistical significance 
was calculated using a paired, one-tail student’s t test. (D) (left) Concentrations of amino acids 
in IF (n=3) and tumor samples (n=4) of mPDAC3-RPMI orthotopic tumors measured by LC-
MS. (right) Bar graph of intratumoral versus IF samples of arginine. For all panels, the bar 
graphs represent the mean and the error bars represent ± SD. Statistical significance was 
calculated using a two-tailed Student’s t test. 
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appearance of additional 15N enrichment in intratumoral arginine that cannot be explained by 

circulating labeled arginine confirms active synthesis of arginine in PDAC tumors, consistent with 

previous results that PDAC tumors highly express ASS1. Lastly, we compared the concentration 

of amino acids including arginine in the interstitial fluid of orthotopic murine PDAC tumors to the 

intratumoral arginine concentration (Fig. 4.4D). We observed that for most amino acids the 

intratumoral concentration was similar to the IF concentration. However, PDAC tumors had higher 

concentrations of free arginine than what is present in the TIF. Thus, we conclude that PDAC 

tumors accumulate higher levels of arginine than available from the local perfusate and that this is 

at least in part driven by de novo synthesis.  

Lastly, given the importance of de novo arginine synthesis for arginine homeostasis of both 

mPDAC cells in TIFM and in orthotopic tumors, we asked if inhibiting de novo synthesis would 

impair PDAC tumor growth as loss of this pathway impairs mPDAC cell growth in TIFM. To test 

this, we generated orthotopic PDAC tumors with mPDAC3-TIFM Ass1 KO cells and control cells 

where Ass1 was re-expressed (Ass1KO; mASS1). We found that loss of Ass1 did not affect tumor 

growth despite low levels of arginine in the TME (Fig. 4.5A). These results suggest that, although 

arginine biosynthesis is active and upregulated in PDAC tumors (Fig. 4.1D, Fig. 4.4C), inhibiting 

this pathway is not detrimental for PDAC tumor growth. 

Figure 4.5. Inhibiting de novo arginine synthesis 
does not impair PDAC tumor progression.  (A) 
Tumor weight of mPDAC3-TIFM-ASS1KO 
(n=14), and mPDAC3-TIFM-ASS1KO;mASS1 
(n=15) orthotopic tumors. Statistical significance 
was calculated using a two-tailed Student’s t test. 
(B) Arginine concentration in the TIF of
mPDAC3-TIFM-ASS1KO (n=11), and 
mPDAC3-TIFM-ASS1KO;mASS1 (n=12) 
orthotopic tumors. Statistical significance was 
calculated using a two-tailed Student’s t test. 
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4.3 Discussion 

Use of the TIFM model uncovered arginine biosynthesis as a metabolic pathway that 

PDAC cells use under tumor microenvironmental nutrient conditions. Arginine biosynthesis is a 

metabolically costly process due to the utilization of aspartate, leading to silencing of ASS1 in 

many tumor types [108]. Because of this, the finding of PDAC cells synthesizing arginine was 

initially surprising. Why would this tumor suppressive metabolic pathway be activated in PDAC? 

Multiple studies have also shown that cancer cells reactivate ASS1 expression and arginine 

biosynthesis when extracellular arginine becomes limited to support tumor growth. For example, 

ASS1-silenced tumors treated with arginine deiminase to eliminate extracellular arginine acquire 

resistance to such therapy by reactivating ASS1 expression [119,120]. In another example, 

reactivation of arginine biosynthesis was shown to be necessary to support metastasis of clear cell 

renal cancers to the arginine limited lung environment, whereas arginine biosynthesis was not 

necessary and inactive in the arginine-replete primary tumor [45]. Lastly, ATF4-CEBPβ mediated 

upregulation of ASS1 upon amino acid stress has been shown to allow AML cells to adapt to low 

levels of microenvironmental arginine [121]. Altogether, these findings suggest that the tumor 

suppressive role of arginine biosynthesis is context dependent. In the context of 

microenvironmental arginine deprivation, ASS1 and arginine biosynthesis can switch their role to 

become tumor supportive. One of the most depleted nutrients in the PDAC TME is the amino acid 

arginine, which we previously observed was depleted ~20-50 fold from circulatory concentrations 

to only 2-5µM [40]. Thus, we initially hypothesized that: (1) arginine deprivation in the PDAC 

TME would activate arginine biosynthesis, which (2) would be tumor promoting rather than tumor 

suppressive by enabling PDAC cells to maintain cellular arginine levels despite TME constraints. 
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However, our results suggest that the above model of arginine synthesis regulation and 

homeostasis in PDAC is far from complete. Both in TIFM and in vivo, we found that PDAC cells 

synthesize arginine (Fig 1M-N, Fig 2D-E & K), and that arginine synthesis is critical for PDAC 

arginine homeostasis and growth in TIFM (Fig 2F-H). However, this pathway is dispensable for 

PDAC growth in vivo (Fig 2 – Figure supplement 3). Thus, PDAC tumors in vivo can adapt to loss 

of this pathway while PDAC cells in TIFM cannot. It remains unclear how PDAC tumors 

metabolically compensate for loss of arginine synthesis. We speculate that this is possible through 

a variety of mechanisms that involve upregulation of alternative pathways to obtain arginine and 

or support from other components of the tumor microenvironment, both of which are discussed at 

length in Chapter 5.  
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CHAPTER 5 

ENHANCED UPTAKE OF ENVIRONMENTAL ARGININE 

ALLOWS PDAC CELLS TO COPE WITH INHIBITION OF DE 

NOVO ARGININE SYNTHESIS 

5.1 Introduction 

 The data presented in Chapter 4 of this thesis shows that under TME nutrient stress, PDAC 

cells require de novo arginine synthesis for maximal growth. Nevertheless, inhibiting arginine 

synthesis, either genetically or by starvation of precursors for this pathway (citrulline and 

ornithine) does not completely inhibit PDAC growth in TIFM, and PDAC tumor growth is not 

significantly impaired by inhibition of this pathway. This suggests that PDAC cells can adapt to 

survive and grow in the face of not only arginine starvation but inhibition of de novo synthesis as 

well. How do PDAC cells adapt? We hypothesized that PDAC cells must compensate with other 

mechanisms to acquire arginine when synthesis is inhibited. In addition to de novo synthesis, there 

are two other known pathways for arginine acquisition by PDAC cells: macropinocytosis, the 

nonselective uptake of extracellular fluid and material, [122] and cationic amino acid transporter 

mediated uptake [110] (Fig. 5.1).  

Previous studies have reported that Kras-driven PDAC cancer cells upregulate 

macropinocytosis[123]. Increase of micropinocytosis in PDAC is enabled by Kras-mediated 

regulation of transmembrane glycoprotein SDC1[124,125]. Thus, macropinocytic uptake and 

lysosomal breakdown of extracellular protein has been postulated as a source of amino acids for 

PDAC tumors[82,123,124]. Similarly, multiple tumors types have been previously reported to 
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preferentially upregulate extracellular arginine uptake to maintain arginine homeostasis after 

silencing of de novo arginine biosynthesis[108,126]. With this in mind, we wanted to test whether 

either or a combination of these pathways supports PDAC cell growth after inhibition of arginine 

de novo synthesis.  

 

5.2 Results 

To test if macropinocytosis is important for arginine homeostasis in mPDAC cells in TIFM, 

we generated mPDAC1-TIFM cells with a doxycycline-inducible shRNA targeting glycoprotein 

syndecan-1 (SDC1), an important mediator of macropinocytosis in PDAC cells [124] (Fig. 5.2A). 

Knockdown of Sdc1 effectively reduced mPDAC1-TIFM macropinocytosis rate as measured by 

uptake and catabolism of fluorogenic bovine serum albumin (DQ-BSA), a model 

Figure 5.1. Three cellular pathways to obtain arginine. Cells can acquire arginine by either of 
three routes: direct uptake of free arginine from the microenvironment, de novo synthesis and 
uptake and breakdown of extracellular protein (macropinocytosis). 

 



53 
 

macropinocytosis substrate (Fig. 5.2B). Sdc1 knockdown did not affect intracellular arginine pools 

nor cell proliferation in TIFM cultured mPDAC cells (Fig. 5.2C,D). Consistent with this, 

pharmacological inhibition of lysosomal protein breakdown with hydroxychloroquine (HQ) 

similarly impairs mPDAC1-TIFM macropinocytosis rate without disrupting cell proliferation (Fig. 

5.2E,F). Furthermore, knockdown of Sdc1 did not further impair mPDAC cell proliferation upon 

inhibition of arginine synthesis (Fig. 5.2G), suggesting macropinocytosis is also not critical for 

mPDAC cells upon inhibition of de novo arginine synthesis. Thus, we conclude that 

macropinocytosis does not contribute to mPDAC arginine homeostasis in TIFM, even as an 

adaptive mechanism upon de novo arginine synthesis inhibition.  

We next tested if uptake of the small amount of free arginine in TIFM (~2µM) mediates 

the ability of mPDAC cells to cope with inhibition of de novo arginine synthesis. In normal TIFM 

culture, removal of arginine does not affect mPDAC intracellular arginine levels nor proliferative 

capacity (Fig. 5.3A,B). Thus, as with macropinocytosis, arginine uptake is not critical for mPDAC 

arginine homeostasis in TIFM conditions. We next tested if depriving mPDAC cells of the 

Figure 5.2. (following page) mPDAC cells do not upregulate macropinocytosis after inhibition 
of arginine synthesis. (A) RTqPCR analysis for Sdc1 in mPDAC1-TIFM cells infected with 
lentiviruses encoding a dox inducible Sdc1 targeting shRNA or Renilla luciferase targeting 
control shRNA (shRen) with and without treatment with 1 µg/mL doxycycline or vehicle (n=6). 
(B) Macropinocytosis activity measured by kinetic DQ-BSA uptake assay in mPDAC1-TIFM 
cells from (A). (C) Relative intracellular arginine levels of mPDAC1-TIFM cells infected with 
lentiviruses encoding a doxycycline inducible Sdc1 targeting shRNA or a Renilla luciferase 
targeting control shRNA (shRen) treated with 1 µg/mL doxycycline or vehicle (n=6). (D) Cell 
proliferation rate of mPDAC1-TIFM cells in same conditions as (A) (n=6). (E) 
Macropinocytosis activity measured by kinetic DQ-BSA uptake in mPDAC1-TIFM cells 
treated with 10µM hydroxychloroquine (HQ) or vehicle (water). (F) Cell proliferation rate of 
mPDAC1-TIFM cells in same conditions as (E) (n=3). (G) Proliferation rate of mPDAC1-
TIFM cells as in (A) cultured in TIFM with or without citrulline (cit) and ornithine (orn) (n=5). 
For all panels, bar graphs represent the mean, and the error bars represent ± SD. Statistical 
significance for panels B and E was calculated using an ordinary one-way ANOVA test with 
Tukey’s multiple comparison correction. For panels A, C, D, F and G statistical significance 
was calculated using a two-tailed Student’s t test. 
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available microenvironmental arginine after de novo biosynthesis is impaired would affect 

mPDAC arginine homeostasis and growth. We found that inhibition of arginine synthesis in TIFM 

cultured mPDAC cells leads to increased transcription of arginine transporters (Figure 5.3C) and 

leads to an increased rate of arginine uptake by mPDAC cells (Fig. 5.3D). Furthermore, while we 

could not detect decreases in mPDAC intracellular arginine levels after eliminating extracellular 

arginine (Fig. 5.3E), eliminating TIFM extracellular arginine completely abrogates cell growth in 

of mPDAC cells upon inhibition of de novo arginine synthesis (Fig. 5.3F). Altogether, these data 
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suggest that mPDAC cells upregulate extracellular arginine uptake to cope with inhibition of 

arginine biosynthesis and that this could be in part mediated by the upregulation of cationic amino 

acid transporters. 

Figure 5.3. Enhanced uptake of environmental arginine allows PDAC cells to cope with 
inhibition of de novo arginine synthesis. (A) Relative intracellular arginine levels of mPDAC1-
TIFM cells grown in TIFM with or without TIFM concentrations of arginine (arg) (n=3). (B) 
Cell proliferation rate of mPDAC1-TIFM cells in same conditions as (A) (n=3). (C) Trimmed 
mean of M values (TMM)-normalized counts for Slc7a1 and Slc7a3, two cationic amino acid 
transporters capable of transporting arginine, from transcriptomic analysis of mPDAC3-TIFM 
cells grown in either TIFM or TIFM without citrulline and ornithine (n=3). (D) Per-cell 
consumption rate of arginine by mPDAC1-TIFM cells cultured in TIFM with or without 
citrulline and ornithine. Cells were supplemented with 20μM arginine to enable the 
consumption measurements (n=9). (E) Relative intracellular arginine levels of mPDAC1-TIFM 
cells grown in TIFM with or without PDAC IF concentrations of citrulline, ornithine, or 
arginine, as indicated (n=3). (F) Proliferation rate of mPDAC1-TIFM cells grown with or 
without TIFM concentrations of citrulline, ornithine, or arginine, as indicated (n=3). For all 
panels, bar graphs represent the mean, and the error bars represent ± SD and statistical and G 
statistical significance was calculated using a two-tailed Student’s t test. 
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5.3 Discussion 

Using TIFM, we have identified compensatory arginine uptake upon synthesis inhibition (Fig 

5.3). Arginine uptake could not fully compensate for the lack of arginine synthesis but still allowed 

PDAC cells to survive and grow at diminished rates. Given that inhibition of arginine biosynthesis 

does not affect PDAC tumor growth (Fig 4.5), it is possible that, in vivo, arginine uptake is further 

enhanced or is otherwise sufficient to enable PDAC tumors to grow unperturbed. In TIFM, we did 

not identify a role for macropinocytosis in arginine acquisition or maintaining PDAC viability and 

growth (Fig 3A-C).  

This is in contrast to other studies that have identified a role for macropinocytosis in PDAC 

amino acid acquisition and tumor progression [123,124,127,128]. However, other TME factors 

not included in the TIFM model such as hypoxia, activate macropinocytosis and render it more 

essential [129]. Thus, macropinocytosis could play a more active role in maintaining arginine 

homeostasis and PDAC growth in vivo, enabling PDAC tumors to compensate for the lack of 

arginine synthesis.  

Lastly, the TIFM model lacks stromal cells, which have been shown to exchange 

macromolecules and nutrients with cancer cells [130,131]. Stromal-cancer cell metabolic 

exchange in vivo could potentially buffer the lack of arginine synthesis. More analysis will be 

required to understand the metabolic mechanisms that PDAC uses to maintain arginine 

homeostasis in the TME. 
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CHAPTER 6 

MYELOID ARGINASE CAUSES LOCAL ARGININE 

DEPLETION IN PDAC 

6.1 Introduction 

PDAC tumors are characterized by extensive infiltration of immune cells, with macrophages 

being one of the most prominent immune cell populations among the PDAC tumor stroma 

[132,133], including many arginase-1-expressing cells [134]. Myeloid cell mediated arginase 

activity in solid tumors has been particularly studied as a hallmark of an alternatively activated, 

tumor promoting macrophage state, usually denoted as M2, mainly in the context of immune 

suppression. Our previous work has shown that arginine levels in the TIF are strikingly low[40]. 

We have also observed that levels of ornithine, a product of arginine catabolism by arginase, are 

higher in PDAC TIF relative to plasma, suggesting that arginase might play a role in the depletion 

of arginine in the microenvironment.  

 

 

 

 

Figure 6.1. Proposed model for arginine 
depletion in PDAC TIF. Myeloid cells 
release arginase into the extracellular 
environment, catabolizing it into 
ornithine and impeding uptake by 
adjacent cells.  
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Such a scenario of local nutrient availability in the TME being directly influenced by myeloid 

cells would fit a growing trend of stromal regulation of tumor metabolism. Indeed, recent studies 

have reported on the role of stromal cells in regulating nutrient availability in tumors. Fibroblasts, 

for example, influence the levels of various metabolites in the TME [135], including amino acids 

[131,136] and lipids [137]. More notably, myeloid cells have been shown to be the major glucose-

consuming cell type in multiple tumor types [51]. Thus, myeloid cells are important regulators of 

nutrient availability in the TME. With this in mind, we wanted to test whether myeloid derived 

arginase activity could be responsible for the low levels of arginine in the PDAC TME.  

6.2 Results 

We confirmed the presence of a robust myeloid and arginase-1 expressing population in both 

murine (Fig. 6.2A) and human PDAC (Fig. 6.2B) by immunohistochemical analysis. Arginase-1 

expressing cells are capable of metabolizing arginine into ornithine and urea [138]. Therefore, we 



59 

hypothesized that myeloid arginase-1 activity could be responsible for PDAC TME arginine 

starvation. To test this, we generated orthotopic allograft mPDAC tumors in a mouse model with 

myeloid specific Arg1 knockout (Lyz2-Cre+/+-; Arg1fl/fl) [139,140] and control animals Arg1fl/fl). 

We then isolated IF from these tumors at end-stage and measured the levels of amino acids, 

including arginine and ornithine in these samples (Fig. 6.2C). Compared to control animals, Lyz2-

Cre+/+-; Arg1fl/fl tumors show robust reduction of arginase-1 expression in tumors (Fig. 6.2D) 

confirming most arginase-1 in tumors is myeloid in origin. Lyz2-Cre+/+-; Arg1fl/fl tumors had ~9-

Figure 6.2. (previous page) Myeloid arginase causes microenvironmental arginine depletion in 
PDAC tumors. (A) Representative images (left) and IHC score (right) of immunohistochemical 
(IHC) staining for F4/80 and ARG1 in an orthotopic mPDAC1-TIFM tumor (n=5) and in 
healthy murine pancreas (n=5). Scale bars: 100µm. Multiple regions of malignant tissue for 
each sample were used to assess staining and the same annotated regions for F4/80 were utilized 
to assess ARG1 expression. (B) Representative images (left) and IHC score (right) of IHC 
staining for ARG1 in an advanced human PDAC tumors and adjacent untransformed pancreas 
(n=4). Multiple regions with myeloid cells for untransformed pancreas and for PDAC tumors 
for were used for this analysis. Scale bar: 500µm and 100µm, as indicated. (C) Schematic for 
crossing of Lyz2-Cre and Arg1fl/fl, tumor implantation in Lyz2-Cre+/+; Arg1fl/fl progeny and 
subsequent IF extraction. (D) Representative images (left) and IHC score (right) of IHC staining 
for ARG1 protein expression in orthotopic mPDAC3-TIFM tumors from Lyz2-Cre+/+; Arg1fl/fl 
(n=7) and Arg1fl/fl littermate controls (n=7). Scale bar: 100µm. Multiple regions of malignant 
tissue for each sample were used to assess ARG1 staining. (E) Absolute concentration of 
arginine and ornithine in the IF of orthotopic mPDAC3-TIFM tumors from Lyz2-Cre+/+; 
Arg1fl/fl (n=7) and Arg1fl/fl littermate controls (n=4). Statistical significance for all figures was 
calculated using a two-tailed Student’s t test. 
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fold increase in IF arginine concentration and a roughly equimolar decrease in ornithine (Fig. 

6.2E). Pharmacological inhibition of arginase-1 with the small-molecule inhibitor CB-1158 [79] 

in mPDAC orthotopic tumors also led to an increase in IF arginine compared to control tumors 

(Fig. 6.3). In summary, these results show that arginase activity in the myeloid compartment of 

PDAC tumors is responsible for arginine depletion in the TME.  

ASS1 expression is known to be tightly regulated in cancer cells. ASS1 expression in some 

cancer cells is silenced when exogenous arginine is available, as arginine synthesis can otherwise 

slow the proliferation of cancer cells [107]. Therefore, we asked if arginine synthesis is always 

active in PDAC tumors, or this pathway adaptively responds to TME arginine levels. To ask this, 

we assessed arginine biosynthesis in PDAC tumors in Lyz2-Cre+/+; Arg1fl/fl (high TME arginine) 

compared to Arg1fl/fl control (low TME arginine) host animals. We first assessed expression of 

Figure 6.4. Treatment with arginase inhibitor CB-1158 
increases arginine levels in mPDAC tumor TIF. Absolute 
concentration of arginine in the IF of mPDAC3-TIFM orthotopic 
tumors after treatment with 100mg/kg of arginase inhibitor 
CB-1158 or vehicle (n=5). Statistical significance was calculated 
using a two-tailed Student’s t test. 

Figure 6.3. mPDAC tumors in Lyz2-Cre+/+; Arg1fl/fl 
mice and controls show no difference in ASS1 
expression. Representative images (left) and IHC score 
(right) of IHC staining for ASS1 protein expression 
in orthotopic mPDAC3-TIFM tumors from Lyz2-Cre+/

+; Arg1fl/fl (n=7) and Arg1fl/fl littermate controls (n=7). 
Multiple regions of malignant tissue for each sample were 
used to assess ASS1 staining. Statistical significance 
for all figures was calculated using a two-tailed 
Student’s t test. 
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ASS1 and found no difference in PDAC cell expression of ASS1 between Lyz2-Cre+/+; Arg1fl/fl 

and control tumors (Fig. 6.4). Further, we assessed arginine synthesis by continuous infusion of 

15N2-glutamine in PDAC bearing Lyz2-Cre+/+; Arg1fl/fl and control animals [115]. We did not 

observe significant differences in labeling of tumor argininosuccinate or arginine (Fig. 6.5), from 

which we conclude arginine synthesis is similarly active in PDAC tumors with arginine starved 

and replete TMEs. Altogether, this data suggests arginine synthesis is constitutively active in 

PDAC tumors and does not respond to TME arginine availability. 

Figure 6.5. 15N2-glutamine tracing in Lyz2-Cre+/+; Arg1fl/fl, mPDAC3-TIFM tumor bearing 
mice does not show reduction of arginine biosynthesis. Mass isotopomer distributions of 
glutamine, citrulline, aspartate, argininosuccinate and arginine in mPDAC3 tumors in Lyz2-
Cre+/+; Arg1fl/fl (n=9) and Arg1fl/fl (n=3) hosts after 15N2-glutamine infusion. Statistical 
significance was calculated using a paired, two-tailed student’s t test. 
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6.2 Discussion 

We previously found that the TME is arginine depleted [40]. However, what drove arginine 

depletion in the TME was unknown. Here, we find that the arginase-1 expressing myeloid 

compartment in PDAC tumors is largely responsible for TME arginine depletion (Fig. 4). 

Consistent with these findings, Menjivar and colleagues also found PDAC associated myeloid 

cells are critical for mediating TME arginine depletion [141]. Thus, the most striking nutrient 

perturbation in the TME is not driven by abnormal cancer cell metabolism, but is instead driven 

by stromal metabolic activity. This finding aligns with recent studies documenting the critical role 

of stromal cells in influencing nutrient availability in the TME. For example, in addition to the role 

we have found for myeloid cells in limiting TME arginine, myeloid cells were also found to be the 

major glucose consuming cell type in a variety of tumor types [51].  

Thus, stromal myeloid cells may be key regulators of glucose availability in the TME. 

Fibroblasts have been shown to also regulate levels of key metabolites in the TME [135], such as 

amino acids [131,136] and lipids [137]. In addition, tumor innervating neurons were also shown 

to regulate availability of amino acids in the TME [142]. Thus, future studies delineating the 

complex metabolic interactions amongst tumor and stromal cells [5] will be critical to 

understanding how nutrient availability is regulated in the tumor ecosystem and how the resulting 

nutrient milieu impacts cancer and stromal cell metabolism and biology. 
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CHAPTER 7 

SIGNIFICANCE AND FUTURE DIRECTIONS 

7.1 Significance 

Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive, yet initially asymptomatic 

cancer that is usually diagnosed at a late stage, at which point the 5-year-survival rate is as low as 

3%[143]. The aggressive biology of PDAC and current lack of effective treatment modalities 

underscore the need for novel therapeutic targets against this disease[31].PDAC is characterized 

by high levels of desmoplastic growth that result in a hypovascularized, poorly perfused tumor. 

The prominence of desmoplastic stromal cells and dysfunctional vasculature in PDAC have been 

shown to reduce the levels of available oxygen in the tumor microenvironment (TME)[144,145], 

and we hypothesized that these same pathophysiological conditions result in an altered nutrient 

microenvironment beyond oxygen availability. Indeed, we have seen that nutrient availability in 

PDAC tumors is very different from that of circulation. With this work, we have further show that 

this altered nutrient microenvironment in turn affects biological proceses including but not limited 

to the metabolism cancer cells. The study and discovery of similar adaptations as the ones 

presented in this thesis will give us a better understanding of how PDAC cell biology enables 

disease progression, and thus get us closer to finding novel targets against PDAC.  

The need to develop more efficient targeted therapeutics is echoed for the treatment of 

multiple, aggressive cancer types. While efforts to target the metabolism of cancer cells have 

historically approached this by trying to uncover genetically driven changes in metabolic 

processes, growing evidence suggests that the environment cancer cells reside in can also affect 

therapy[83]. We have shown that tumor type, anatomical location and diet can all affect the 
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availability of nutrients in the TME[40]. Therefore, it is logical to assume that different tumor 

types, in different parts of the body, will not exhibit the same metabolic adaptations as PDAC cells 

exhibit in TIFM and their TME Thus, the use of TIFM may not directly be extended to study the 

metabolic adaptations of other tumor types. However, the methodology used in this thesis of 

measuring TME nutrient levels and developing media representing those conditions is not limited 

to studying PDAC, and the same workflow can be applied to a variety of cancers. Thus, the 

approaches I developed, have potential applications well beyond the scope of pancreatic cancer.  

The TME is a potent regulator of cell state and function. The TME impacts every type of cell 

present in a tumor. Malignant cells[146,147], macrophages[148,149], fibroblasts[150], and T 

cells[48,49] have all been documented to be heavily influenced by TME cues. TME influence of 

these different tumor resident cell populations can substantially impact tumor progression and 

clinical outcomes. For example, the TME has been linked to aggressive features of cancer cells 

such as chemoresistance[151,152] and metastatic behavior[153,154]. TME-stromal cell 

interactions also contribute to tumor progression. For example, tumor-associated macrophages 

adopt a pro-tumorigenic cell state intimately linked to the TME[155]. In another example, tumor-

infiltrating T-cells are driven to a dysfunctional cell state by the TME, which allows for immune 

evasion and disease progression [156]. Thus, interactions between multiple cell types resident in 

tumors and the TME are critical drivers of many aspects of tumor biology. Therefore, knowledge 

of the composition of the TME and how this interacts with various tumor resident cells will be 

essential to improve our understanding of tumor biology. 
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7.2 Future Directions 

7.2.1 The use of TIF-based analyses and  

the use of physiological media  

Cell-based models remain critical tools for mechanistic discovery and therapeutic target 

identification in cancer biology. However, many biological findings and drug targets that arise 

from these cell-based studies fail to translate to cancer cells in vivo or in clinical settings [58]. That 

cancer cells behave so differently in in vitro culture systems than when growing in tumors suggests 

that cancer cell behavior is not only cell-intrinsically encoded. Rather, cell-extrinsic cues in the 

TME are capable of dramatically influencing the cancer cell state and impacting many aspects of 

cancer cell biology, including therapy response [152]. The importance of TME cues in regulating 

cancer cell behavior has prompted new efforts to develop cell-based models that incorporate key 

microenvironmental influences to both improve their disease relevance and fidelity [58] and enable 

mechanistic studies delineating how the microenvironment influences cancer cell biology.  

Here, we have shown that growing PDAC cells in physiological nutrition caused substantial 

transcriptional reprogramming, moving PDAC cells towards a more in vivo-like transcriptional 

state compared to non-physiological standard culture conditions. Furthermore, incorporating other 

aspects of the TME with TIFM could further expand our ability to understand cancer cell 

metabolism using this modeling system. Indeed, components of the TME that are not intrinsically 

a part of TIFM, such as hypoxia, other cell populations, extracellular matrix, and others have been 

proposed to support the metabolic adaptation of cancer cells to nutrient stress, including arginine 

deprivation [129]. A notable example is the recent discovery that PDAC tumor hypoxia activates 

macropinocytosis in vivo, an adaptation that we do not observe using TIFM [129]. Thus, building 
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upon TIFM by modeling tumor oxygen levels could potentially lead to the discovery of other 

physiologically relevant PDAC metabolic adaptations. Our results not only underscore the key role 

of nutrient TME in regulating cancer cell metabolism and biology but also illustrate the potential 

of modeling the TME and building upon tools such as TIFM.  

The development of easily deployable techniques to isolate TIF and modern analytical 

technologies to characterize the composition of these isolates has led to a wealth of new 

information on the composition of the TME. This new understanding of TIF composition has 

already contributed to our knowledge of how the TME triggers key cell biological phenotypes that 

affect disease pathology. Thus, TIF analysis will play a key role in unraveling how the TME 

regulates tumor biology. We anticipate the following future developments will maximize our 

ability to learn about how the TME regulates tumor biology from TIF analysis. 

First, multi-analytical characterization of samples to completely characterize TIF 

composition will improve our understanding of the TME. Currently, most TIF analysis studies 

have focused on reporting the electrolyte, metabolite, or protein content of TIF from different 

tumors individually. However, these components of TIF play interrelated roles in regulating the 

biology of tumor resident cells. Thus, a more complete characterization of TIF will be necessary 

to uncover how these different molecular components of TIF interact collectively to regulate tumor 

cell biology. 

Second, while measurements of TIF composition provide information on the content of the 

TME, it is currently a challenge to determine which of the identified TIF components regulate 

tumor resident cells. By analogy with another TME component, while single cell analysis 

technologies can measure the cellular content of tumors[15], this does not indicate how different 

cell types in tumors impact cell and tumor biology. The development of techniques such as ligand-
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receptor pairing of cell types in the TME has been critical in determining how the cellular 

composition of the TME functionally regulates different cell types[16]. Similarly, our ability to 

measure the composition of TIF outstrips our ability to determine how TIF components regulate 

tumor cell biology. Thus, new experimental tools that enable systematic assessment of how TIF 

components regulate tumor cell biology will improve our ability to use TIF analysis to understand 

TME biology. Approaches such as developing model systems where cells can be cultured while 

exposed to TIF-mimicking media[41] may be one such technical advance enabling the 

identification of the TIF-cell interactions that are functionally critical for how the TME impacts 

tumor biology. However, further advances in this area will be necessary to translate our increasing 

knowledge of TIF composition into an understanding of how this key component of the TME 

influences tumor biology. 

7.2.2 Arginine deprivation in the tumor microenvironment  

We initially hypothesized that: (1) arginine deprivation in the PDAC TME would activate 

arginine biosynthesis, which (2) would be tumor promoting rather than tumor suppressive by 

enabling PDAC cells to maintain cellular arginine levels despite TME constraints. However, our 

results suggest that the above model of arginine synthesis regulation and homeostasis in PDAC is 

far from complete. First, arginine deprivation is not the sole microenvironmental signal that leads 

to upregulation of arginine synthesis in PDAC tumors. Raising TME arginine levels by inhibiting 

myeloid arginase expression does not appear to modulate ASS1 expression or tumor arginine 

synthesis. This strongly suggests that other TME cues aside from arginine deprivation drive 

expression of the arginine synthesis pathway. The fact that cells cultured in TIFM maintain 

expression of the arginine synthesis pathway suggests that other nutrient cue(s) may regulate 
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expression of arginine synthesis genes. More work will be required to understand the TME cues 

that lead to arginine synthesis in vivo. 

Second, in TIFM and in vivo, we found that PDAC cells synthesize arginine, and that arginine 

synthesis is critical for PDAC arginine homeostasis and growth in TIFM. However, this pathway 

is dispensable for PDAC growth in vivo. Thus, PDAC tumors in vivo can adapt to loss of this 

pathway while PDAC cells in TIFM cannot. It remains unclear how PDAC tumors metabolically 

compensate for loss of arginine synthesis. We speculate PDAC tumors could adapt to arginine 

synthesis inhibition by a combination of compensatory arginine uptake, as identified in TIFM, and 

other TME factors not included in the TIFM model such as hypoxia [129], as discussed in detail 

in Chapter 4. More analysis will be required to understand the metabolic mechanisms that PDAC 

uses to maintain arginine homeostasis in the TME. 

The lack of arginine in the TME can further have major impacts on stromal cells that may not 

have the adaptive capabilities of PDAC cells. For example, anti-tumor lymphocytes require 

arginine for functionality [157], but are not able to upregulate arginine biosynthesis upon arginine 

starvation [121]. Thus, microenvironmental arginine availability is known to limit immune 

responses in a variety of tumor types [158]. This has led to many recent efforts to develop 

pharmacological tools to increase TME arginine [79,159], which have improved 

immunotherapeutic outcomes in a variety of murine tumor models [79,159–161]. Thus, the severe 

arginine restriction in the PDAC TME could be a major barrier to immunotherapy in this disease, 

which is refractory to most immunotherapies [162]. Consistent with this hypothesis, low arginine 

availability does impair anti-tumor immunity in PDAC and raising TME arginine levels can 

improve tumor immune surveillance and response to immunotherapy [141,163]. Thus, arginine 

starvation is a key nutrient limitation that both PDAC and stromal cells face in the TME. De novo 
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arginine synthesis and other adaptive mechanisms PDAC cells allow cancer cells to cope with such 

arginine starvation. However, other cell types without such adaptive capacity, such as 

lymphocytes, face dysfunction in the arginine deprived TME. Future studies delineating how 

different cellular populations are affected by TME arginine starvation will prove critical to better 

understanding how tumor physiology impacts cancer and stromal cell biology. 
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