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ABSTRACT

Planetary-scale magnetic fields provide a unique window into a planet’s deep interior. From

the magnetic field of Earth to that of Jupiter, the existence of such fields is tied to the pres-

ence of an electrically conductive convecting fluid (dynamo source region) in the interior.

Thus, detections of planetary-scale magnetic field signals offer constraints on the planets’

thermal state, interior structure, and dynamics. In this thesis, we present thermal evolu-

tion calculations for rocky exoplanets. We aim to determine whether super-Earths can host

dynamo-generated magnetic fields and explore how dynamo lifetimes scale with planet prop-

erties (such as planet mass, Mpl, and core mass fraction, CMF). To achieve this, we couple a

1D thermal evolution model with a Henyey solver to calculate their thermal evolution. The

code solves the energy balance equation in the iron-dominated core and the silicate mantle.

We use a modified mixing length formulation to model convection in the silicate mantle with

low and high Reynolds numbers. In addition, by including the Henyey solver, the model

self-consistently accounts for adjustments in the interior structure as the planet evolves in

time. We explore the possibility of the planet hosting a dynamo source in its iron-dominated

core and/or magma ocean. We find that the heat loss rate of the core scales with Mpl. This

results in a greater dynamo lifetime in the core of a more massive planet with Mpl < 6M⊕.

However, for planets with Mpl > 6M⊕, the core fully solidifies before liquid core convection

shuts off. The dynamo lifetime in the core decreases with increasing Mpl, owing to the short

lifetime of the liquid core associated with the high core heat loss rate. In addition, a magma

ocean could only host a dynamo if its melt fraction is high enough to have liquid-like con-

vection. The dynamo in the magma ocean in an Earth-like planet (Mpl = 1M⊕, CMF=0.33

and Tpl = 255K) could only last ∼0.25 Myr. However, a magma ocean may sustain a long-

term dynamo on a lava planet or a sub-Neptune, whose silicate mantle could stay molten or

partially molten on a billion-year timescale. Future studies of these planets may shed light

on the role of a magma ocean sustaining a planetary-scale magnetic field.
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CHAPTER 1

INTRODUCTION
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Planetary magnetic fields are ubiquitous in the solar system and the explanation for

their existence has been linked to planetary interiors. Strong planet-scale magnetic fields

have been detected for Mercury, Earth, Ganymede, and all of the gas giants in the solar

system [Ness et al., 1975, 1986, 1989, Finlay et al., 2010, Kivelson et al., 1996, Burke and

Franklin, 1955, Smith et al., 1980]. These magnetic fields have been attributed to dynamo

currents, which are generated by thermal convection, compositional convection, differential

rotation, or a combination of several processes within the planetary interior. Consequently,

the presence or absence of strong planet-scale magnetic fields constrains the planet’s thermal

evolution history and interior dynamics. For example, the discovery of Jupiter’s magnetic

field indicates a convectively-driven dynamo action in the electrically conductive metallic

hydrogen layer [Stanley and Glatzmaier, 2010], whereas the lack of a magnetic field for

Venus indicates an inefficient core cooling rate due to the lack of plate tectonics [Stevenson,

2010].

The observational detection of an exoplanet’s magnetic field would open an unprecedented

window into exoplanet interiors and add a new dimension to exoplanet characterization. To

date, the characterization of exoplanets has largely focused on their shrouding atmospheres,

mass-radius relationships and orbital architectures. Radius and mass measurements derived

from transit photometry and radial velocity data constrain planetary average densities and

bulk compositions. Additionally, transmission and emission spectroscopy provide informa-

tion about the atmospheric thermal budget and chemical composition. However, exoplanet

interior structure and dynamics remain ambiguous. The interpretation of planet mass-radius

measurements suffers from degeneracies; a single mass-radius measurement can be consistent

with various bulk compositions and interior structures [e.g., Adams et al., 2008, Rogers and

Seager, 2010]. Eventually, observational measurements of exoplanet magnetic fields may ex-

tend the current mass-radius relationship to a mass-radius-magnetic field strength diagram

and help reduce the degeneracy in the interpretation. Most generally, a strong planetary
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scale magnetic field requires an electrically conductive convecting fluid region within the

planet. In the case of a rocky exoplanet, a magnetic field detection would imply the exis-

tence of a convecting liquid iron core or a layer of molten silicate in the mantle [Soubiran

and Militzer, 2018].

Detection of planetary-scale magnetic fields on planets with a range of atmosphere com-

positions enables studies of the influence of magnetic fields on atmosphere preservation. The

comparison among the atmospheres of Earth, Venus and Mars is often used to argue that

a dynamo-generated magnetic field could protect the atmosphere of a rocky planet from

losing its water [Lundin et al., 2007]. However, the mechanism of such protection remains

unclear. Moreover, despite of Earth having a global magnetic field, its atmosphere loss rate

is comparable to other rocky planets in the solar system [Gunell et al., 2018]. Ideally, a large

sample of planets with a range of atmospheric compositions and magnetic field properties

will allow studies of the interactions between magnetic fields and atmosphere loss rate. The

results would have implications for the assessment of the habitability of exoplanets, and

complement the current focus on biosignatures in exoplanetary spectra.

Given the importance of dynamo-generated magnetic fields, their detection will be a

frontier in exoplanetary science in the coming decades. So far, various groups have looked

for observational signatures of magnetic fields from exoplanets [e,g., Winterhalter et al.,

2006, Zarka, 2007, Hallinan et al., 2013]. Kao et al. [2018] determined the magnetic field

strength of a brown dwarf by detecting its radio aurora emission. The recently commis-

sioned Low Frequency Array [LOFAR, van Haarlem et al., 2013] and Long Wavelength Array

[LWA, Ellingson et al., 2009] reach ∼mJy sensitivities at frequencies below 100MHz, enabling

searches for the magnetic fields of gas giants. Using LOFAR, Turner et al. [2020] detected

radio signals from τ Boötis and ν Andromedae systems, which are attributed to the self-

sustaining magnetic fields of Jovian-sized planets. Due to their weaker expected magnetic

field strength [≲ 3G, Bonati et al., 2021], detections of radio signals from sub-Neptunes and

3



super-Earths may require observations at frequency below 10 MHz, which are inaccessible

to ground-based telescopes due to Earth’s ionospheric cutoff. The Sun Radio Interferometer

Space Experiment [SunRISE, Alibay et al., 2017] is a spaced-based telescope designed to

study the sun at frequencies below 15 MHz. SunRISE will not be sensitive enough to detect

exoplanets, but may observe auroral emission from Saturn, and thus prove the concept of

using space-based telescopes to detect planetary radio aurora in a bandpass below 15 MHz.

To guide future surveys for exoplanetary magnetic fields and to eventually translate detected

signals into constraints on the planets’ interior structure and dynamics, extensive modeling

of the thermal evolution history of exoplanets across a range of masses, compositions, and

stellar incident flux is needed.

Multiple groups have investigated the thermal and magnetic evolution of rocky plan-

ets using a box model [e.g., Stevenson et al., 1983, Papuc and Davies, 2008, Driscoll and

Bercovici, 2014]. In their models, the mantle and core are treated as two boxes, and the

thermal history is described by the time evolution of the average mantle and core temper-

atures. The heat flow throughout the planet is evaluated by modeling conduction across

the thermal-boundary layers at the core-mantle boundary (CMB) and the planetary surface.

Under the assumption of whole mantle convection, the heat flow across the thermal boundary

layers are set by the critical Rayleigh number, a dimensionless number describing the onset

of convection flow. Boundary layer theory and box models are effectively zero-dimensional

energy-balance models. The thermophysical properties of mantle and core materials (e.g.,

heat capacity, viscosity, and thermal expansion coefficient) are modeled with an effective

value that is constant throughout each “box” (upper mantle, lower mantle, core, and thermal

boundary layers). They are not true 1-D treatments wherein thermophysical and structure

quantities are calculated as a function of radius. In addition, with constant pressure and den-

sity profiles adopted for the core and mantle, the work done by planet expansion/contraction

is not self-consistently included.
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We have developed a new fully 1-D thermal evolution model for rocky planets to explore

the possibility of molten silicate or liquid iron serving as dynamo source regions. Our code

solves for the radial distribution of temperature, melt fraction, pressure, density, and conduc-

tive and convective heat fluxes, and evolves these profiles forward in time. Thermophysical

properties that affect the planet’s structure and evolution, such as viscosity and thermal

expansion coefficient, are evaluated based on the local pressure and temperature. We use a

generalized Schwarzschild criterion based on the density gradient to determine where convec-

tion occurs in the mantle and a modified mixing length theory to model the convective heat

flow. The mixing length theory is traditionally used to estimate the convective heat flow

of an inviscid fluid [e.g. heat transport in stars, Vitense, 1953]. The modified formulation

[e.g., Sasaki and Nakazawa, 1986a, Abe, 1995, Tachinami et al., 2011, Wagner et al., 2019]

accounts for the viscous drag force induced by viscous fluid with a small Reynolds number,

such as solid phase mantle silicate. We further extend the modified mixing length theory to

estimate the convective heat flow in both single- and multi-phase regions (Appendix 2.B).

Additionally, we include a Henyey solver (section 2.2) to adjust the pressure and density

profiles within the model as the planet cools. This feature allows us to include heating (cool-

ing) due to planetary contraction (expansion) self-consistently. The ultimate output is to

obtain the time evolution of the convective heat flow throughout the planet, which we use

to determine the location and duration of possible dynamo source regions.

In this dissertation, we aim to explore the effect of planet mass and core mass fraction on

the rocky planet thermal and magnetic history, and assess which combinations of these two

parameters would lead to the greatest predicted dynamo lifetime. In chapter 2, we describe

the theoretical framework to calculate planet interior and thermal evolution. In chapter 3,

we validate our modeling approach by computing the thermal and magnetic history of an

Earth-like case and comparing results to previous work and observations of Earth. In chapter

4, we present results for a grid of planets with planet masses between 1 and 8M⊕ and core
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mass fractions between 0.1 and 0.8. Lastly, we offer a brief description of ways to further

improve our model and ideas to utilize our model to explore thermal evolution of exoplanets.
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CHAPTER 2

METHODOLOGY
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Figure 2.1: Algorithm of the model. Initial profiles are prepared in step 1. Subsequent
updates in temperature, melt fraction and structural profiles are carried out by iterating
step 2 and 3.

2.1 Introduction

We have developed a 1-D spherically symmetric discretized model to simulate the thermal

evolution of rocky planets as they cool from an initial post-formation hot state with a liquid

iron core and molten silicate mantle. We apply the model to explore the impact of planetary

mass (Mpl), core mass fraction (CMF), and equilibrium temperature (Teq) on the thermal

history of rocky planets and the timing and duration of possible dynamos in both the liquid

core and magma ocean.

We consider planets consisting of a silicate mantle surrounding a iron dominated core

with 10% light elements by mass. Future work will explore the effect of different chemical

compositions in the core and mantle as well as the level of differentiation between the iron

and silicates in the planets.

The overall algorithm is briefly summarized in figure 2.1 and here:

1. The planet is discretized radially into multiple cells with equal mass in the core and

mantle depending on Mpl and CMF. An initial structure profile, including radius (r),

pressure (P ) and density (ρ) as a function of mass interior (m), is prepared by in-

8



tegrating the structural equations (section 2.2) with appropriate equations of state

(EoS, section 2.3) using a fourth order Runge-Kutta method. A hot adiabatic initial

temperature profile (T ) is assumed in both the core and the mantle.

2. The solution to the interior structure (r, P and ρ as a function of m) — be it the initial

structure from step 1 or a subsequent structure updated after a thermal timestep from

step 3 — is updated by a Henyey solver (section 2.2) so that it satisfies the boundary

conditions at both the center and the surface. The relative tolerance in the Henyey

relaxation for both radius and pressure is set to be 10−4.

3. A new thermal profile at the new thermal timestep, t+∆t, is obtained by solving the

energy balance equation in both the core and the mantle (sections 2.4 and 2.5). The

surface heat flow is set by gray-body radiation with an emissivity of one. The cooling

rate of the core is determined by heat conduction through the core-mantle boundary

as well as the rate of inner solid core nucleation. Radial profiles of thermophysical

properties, such as viscosity, are updated based on the new thermal profile.

Time evolution is calculated by iterating steps 2 and 3 forward in time.

Compared to a parameterized model [e.g., Papuc and Davies, 2008, Driscoll and Bercovici,

2014] that estimates the convective flux under the assumption of whole mantle convection

using a global Rayleigh number, our approach has two key advantages. First, our model

takes variations of thermophysical properties with depth in the planet into account. Second,

instead of assuming whole mantle convection, we directly evaluate which layers are unstable

to convection with a generalized Schwarzschild criterion based on the entropy gradient.

In the rest of the section, we explain each component in more detail. We discuss the

interior structure calculation in section 2.2, choice of bulk composition and the correspond-

ing equation of state (EoS) in section 2.3, energy transport in the core and the mantle in

sections 2.4 and 2.5, mantle viscosity in section 2.6, internal heat production in section 2.7,
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initial conditions in section 2.8, boundary conditions in section 2.9, and the dynamo criterion

in section 2.10.

2.2 Interior structure

We consider a spherically symmetric planet that evolves quasi-statically in hydrostatic equi-

librium. In our interior structure model, the iron core and silicate mantle are each divided

into hundreds to thousands of cells with equal mass of dm (a Langrangian formulation),

depending on Mpl and CMF. For example, the iron core and silicate mantle of an Earth-like

planet (Mpl = 1M⊕ and CMF=0.326) are each divided into 1000 cells. At each instant in

time, the interior structure is described by the following coupled differential equations for

radius r(m) and pressure P (m):

∂r

∂m
=

1

4πr2ρ
, (2.1)

∂P

∂m
= − Gm

4πr4
, (2.2)

where r is the radial distance from the center of the planet, G is the gravitational constant,

and ρ is the local density, calculated based on the EoS (described in section 2.3) for a given

material at the local pressure and temperature level.

The coupled differential equations 2.1 and 2.2 have boundary conditions at both the

center and the surface. The radius at the center (m = 0) is to 0, while the pressure level at

the surface (m = Mpl) is set by the atmospheric boundary condition (herein chosen to be 1

bar). A detailed description of the surface boundary conditions can be found in section 2.9.

To start the evolution, the initial structure profile is obtained by numerically solving the

above differential equations using a fourth order Runge-Kutta technique integrating from

the planet center to the surface (a shooting technique). We set the initial temperature
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at the planet center to be 500 K above the melting temperature. The initial temperature

distribution in the core and the mantle is assumed to be adiabatic. Our choice of the initial

temperature distribution is hot enough such that both the core and the mantle are fully

molten. We reiterate the shooting technique to search for an appropriate central pressure

corresponding to the chosen Mpl and CMF until the surface pressure satisfies the surface

boundary condition with a relative error less than 10−4. The resulting solution is fed into the

Henyey solver (discussed below) to further reduce the relative error in the surface pressure.

When applying shooting techniques (like the well-known Runga-Kutta method) to model

the planet interior structure, the boundary conditions are only fully satisfied at either the

planet surface (when integrating from the outside in) or at the center (when integrating

from the inside out), not both. Iteration is needed to reach a solution that satisfies the

second boundary condition within a preset tolerance. For example, when setting the initial

starting structure, we iterate to find the central pressure corresponding to the desired total

planet mass, Mpl, whereas other models that apply a shooting method to integrate from

the outside in [e.g. Valencia et al., 2006, Rogers and Seager, 2010] iterate to solve for the

total planet radius that leads to r ≈ 0 at m = 0. To model the detailed time evolution

and energy transport throughout the planet, it is necessary to simultaneously match the

boundary conditions at the center and the surface.

We use a Henyey solver [Henyey et al., 1959], an implicit iterative Newton-Raphson inte-

gration scheme, to solve equations 2.1 and 2.2, while simultaneously satisfying the specified

boundary conditions at both the planet center and the surface. The Henyey solver approxi-

mates the spatial derivatives in equations 2.1 and 2.2 at the boundary between two adjacent

mass cells using the finite difference method, resulting in 2(n− 1) difference equations for n

mass cells. Together with 2 boundary conditions at planet center and surface, there are 2n

equations governing 2n unknowns (P and r at each cell). Provided with an approximated

solution to the unknowns, an improved solution can be found with the Newton-Raphson
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method. The Henyey solver iterates the procedure a few times until a converged solution is

reached (i.e. the maximum change in the radius and pressure profiles is less than the relative

tolerance of 10−4). We run the Henyey solver after each thermal timestep to update the

radius, pressure, and volume of each cell based on the new temperature and melt fraction

profiles. A major advantage of the method is that it can reach convergence rapidly given

a reasonable starting point (which, in our case, is the solution for the pressure and radius

profiles at the previous timestep). On top of this, adjustments in the interior structure due

to phase transitions in the mantle and core are taken into account self-consistently.

2.3 Bulk composition and EoS

The density within each layer is calculated based on the composition and the appropriate

choice of EoS, which is a unique function that relates density to temperature and pressure

for a given material. Our code is modular and could be readily extended to include EoS

options in addition to the ones described in this section, enabling sensitivity analyses over

the uncertainty of various EoSs and assumed compositions (for example, MAGARATHEA

compiles a list of EoSs appropriate for mantles and cores of super-Earths [Huang et al.,

2022]). However, this is beyond the scope of this thesis. For this thesis, we have chosen a

set of EoSs that are semi-empirical fits to experimental data by high-pressure experiments

or ab initio calculations. In this section, we will discuss the bulk composition of the planets

and the choice of EoS for the individual materials.

2.3.1 Composition and phase structure

In this study, we consider terrestrial planets with a iron-dominated core with 10wt% of Si and

a MgSiO3 mantle. The mantle is molten while the local temperature is above the liquidus

of MgSiO3, solid below the solidus of MgSiO3 and a mixture of liquid and solid in between.
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We adopt the solidus and liquidus for MgSiO3 in [Stixrude, 2014] for post-perovskite,

Tl,ppv = 5400K

(
PGPa

140GPa

)0.48

Ts,ppv = Tl,ppv(1− log 0.79)−1,

(2.3)

where PGPa is the value of pressure in GPa. For enstatite and bridgmanite, we consider

the liquidus and solidus for the bulk silicate Earth from Fiquet et al. [2010] and Suer et al.

[2021],

Tl,bse = 2022 + 54.21PGPa − 0.34P 2
GPa + 9.0747× 10−4P 3

GPa

Ts,bse = 1621 + 38.415PGPa − 0.1958P 2
GPa + 3.8369× 10−4P 3

GPa.

(2.4)

The latent heat release upon melting of mantle silicate, L, is 7.322× 105 J kg−1[Hess, 1990].

Upon solidification, the mantle is further divided into 3 layers consisting of enstatite,

bridgmanite and post-perovskite from low to high pressures. The pressure-induced phase

transition from enstatite to bridgmanite has a Clapeyron slope of -0.0013 GPa K−1[Fei

et al., 2004], and from bridgmanite to post-perovskite 8.5 MPa K−1[Sun et al., 2018]. A

study exploring other choices for the Mg/Si ratios in the mantle will be pursued in the

future.

The iron-dominated core is divided into a solid inner core and a liquid outer core. For

the melting cuvre of pure Fe, we adopt the ab initio simulation results from Morard et al.

[2011] fitted by a Simon-like power law [Stixrude, 2014],

TFe = 6500K

(
P

340GPa

)0.515

. (2.5)

The cores of rocky exoplanets are unlikely to be pure Fe. The exact composition of the cores

depend on the composition of host stars and the formation history of individual planets.

For this project, we consider 10wt% of silicon in the iron-dominated cores as a proxy for

impurities. To account for freezing point depression owing to impurities in the liquid cores,
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we estimate the freezing point using a cryoscopic equation [Stixrude, 2014],

TFeSi = TFe(1− log x0)
−1, (2.6)

where x0 is the molar fraction of Fe. The latent heat of fusion of iron due to core nucleation,

LFe, is 1.2× 106Jkg−1[Anderson and Duba, 1997].

As the inner core solidifies, various amount of impurities is exsoluted into the liquid

core depending on the partition of the specific impurity between solid- and liquid-phase

Fe. We consider two extreme scenarios where the impurities are either distributed evenly

throughout the core and the dynamo is driven by thermal convection alone, or all impurities

are partitioned into the liquid outer core and the dynamo is driven by both thermal and

compositional convection.

2.3.2 EoS of molten silicate

For molten silicate, we adopt the recently developed EoS for liquids under high temperature

and pressure conditions [Wolf and Bower, 2018]. The EoS comprises an isothermal com-

ponent and a thermal perturbation described by the generalized Rosenfeld-Tarazona model

[Rosenfeld and Tarazona, 1998]. The EoS reads

P (ρ, T ) = P (ρ, T0) + ∆PE(ρ, T ) + ∆PS(ρ, T ), (2.7)

where the first term on the right is the isothermal component and the second and the

third terms are the energetic and entropic contributions to the thermal perturbation. The

isothermal component is given by the Vinet EoS [Vinet et al., 1989],

P (ρ, T0) = 3K0

(
ρ

ρ0

)2/3
[
1−

(
ρ

ρ0

)−1/3
]
exp

[
3

2

(
K ′
0 − 1

)(
1−

(
ρ

ρ0

)−1/3
)]

, (2.8)
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where T0 is the reference temperature of 3000 K, and ρ0, K0, and K ′
0 are the density, isother-

mal bulk modulus, and derivative of isothermal bulk modulus at the reference temperature

and zero pressure. The thermal perturbation terms, which are described by the generalized

Rosenfeld-Tarazona model, are written as:

∆PE(ρ, T ) = −b′(ρ)[fT (T )− fT (T0)],

∆PS(ρ, T ) =
b′(ρ)
m− 1

[T (f ′T (T )− f ′T (T0S))− T0(f
′
T (T )− f ′T (T0S))] + γ0SρcV,0S(T − T0).

(2.9)

In these two equations, b′(ρ) is the derivative of thermal coefficients, which is given as

b(ρ) =
∑
n

bn

(
ρ0
ρ

− 1

)n

, (2.10)

where bn are fitted polynomial parameters, and fT measures the deviation from the reference

temperature,

fT =

(
T

T0

)m

− 1, (2.11)

where m is a power law exponent with a theoretically expected value of 0.6 [Rosenfeld and

Tarazona, 1998]. T0S , cV,0S and γ0S are the temperature, specific heat capacity at constant

volume and Grüneisen parameter along the reference adiabat, whose expressions are given

in Wolf and Bower [2018].

Model parameters, including ρ0, K0, K ′
0 and bn, are fitted to molecular dynamic simu-

lations of Spera et al. [2011] with data over a range of temperatures (∼2500 K-5000 K) and

pressures (0-150 GPa). The resulting EoS accurately predicts densities of liquid MgSiO3

from shock-wave experiments on MgSiO3 glass [roughly in the range of 50-150 GPa and
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3000-6000 K, Mosenfelder et al., 2009].

Thermophysical properties, such as specific heat capacity at constant volume and pressure

per unit mass, cV and cP , and Grüneisen parameter, γ = (∂lnT/∂lnV )S , are also directly

output by the EoS, and expressions are provided in the Appendix of Wolf and Bower [2018].

The isothermal bulk modulus, KT , and thermal expansion coefficient, α, are calculated using

their definitions and quantities output by the EoS,

KT = −ρ
∂P

∂ρ

∣∣∣∣
T
,

α =
γρcV
KT

,

(2.12)

where V is the volume at pressure, P , and temperature, T .

2.3.3 EoS for solid phase silicate and the iron-dominated core

Similar to the EoS of MgSiO3 melt, the EoSs for enstatite, bridgmanite (Mg-perovskite),

post-perovskite, liquid- and solid-phase iron, as well as Fe16Si (an Fe-Si alloy with 16wt%

of Si) all consist of an isothermal component and a thermal perturbation. In this section,

we provide a brief overview on the choices of EoSs.

In the mantle, the density at a given pressure level and a constant reference temperature,

T0 =300 K, for enstatite, bridgmanite and post-perovskite are calculated by the Vinet [Vinet

et al., 1989], the third order Birch-Murnaghan (BM3) [Birch, 1952] and Keane’s EoS [Stacey

and Davis, 2008],

PVinet(ρ, T0) = 3K0

[(
ρ

ρ0

)2
3

−
(

ρ

ρ0

)1
3

]
exp

{
3

2
(K ′

0 − 1)

[
1−

(
ρ

ρ0

)−1
3

]}

PBM3(ρ, T0) =
3

2
K0

[(
ρ

ρ0

)7
3

−
(

ρ

ρ0

)5
3

][
1 +

3

4

(
K ′
0 − 4

)(( ρ

ρ0

)3
2

− 1

)]

PKeane(ρ, T0) = K0

{
K ′
0

K ′2∞

[(
ρ

ρ0

)K ′
∞

− 1

]
−
(

K ′
0

K ′∞
− 1

)
ln

(
ρ

ρ0

)}
,

(2.13)
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where T0 is the reference temperature of 300 K, and ρ0, K0, K ′
0 and K ′

∞ are the density,

isothermal bulk modulus, derivative of isothermal bulk modulus at the reference temperature

and zero pressure, and derivative of isothermal bulk modulus in the limit of infinite pressure

at the reference temperature. Fitted values for ρ0, K0, K
′
0 and K ′

∞ for the EoS of various

phases of MgSiO3 are summarized in table 2.1.

Material EoS ρ0(kgm
−3) K0(GPa) K ′

0 K ′
∞ T0(K) Ref.

Enstatite Vinet 3215 105.8 8.5 N/A 300 a, b, c
Bridgmanite BM3 4108 263 3.9 N/A 300 b, d

Post-perovskite Keane 3977.6 197.7 4.82 2.56 300 e, f
Liquid Fe Vinet 7037.8 83.7 5.97 N/A 1181 g

Solid Fe (ϵ) Vinet 8267 163.4 5.38 N/A 300 h
Fe16Si BM3 7179.4 206.5 4.0 N/A 300 i

Table 2.1: Fitted parameters for isothermal EoSs. References: (a) Aguichine et al. [2021];
(b) Sotin et al. [2007]; (c) Vacher et al. [1998]; (d) Hemley et al. [1992]; (e) Wagner et al.
[2011]; (f) Oganov and Ono [2004]; (g) Dorogokupets et al. [2017]; (h) Dewaele et al. [2006];
(i) Fischer et al. [2012]

In the iron-dominated core, the isothermal component of the EoS of solid- and liquid-

phase iron is calculated by the Vinet EoS with a reference temperature of 300 K and 1181 K

respectively. The isothermal component of the EoS of all phases of Fe16Si is calculated by

BM3 EoS with a reference temperature of 300 K. Fitted values for ρ0, K0, K
′
0 and K ′

∞ for

the EoS of solid- and liquid-phase Fe and Fe16Si are summarized in table 2.1.

To incorporate the effect of temperature on density of enstatite, bridgmanite, post-

perovskite, liquid Fe and Fe16Si, we add a Debye thermal pressure term, which accounts

for the lattice vibrational energy with a cut-off frequency corresponding to the Debye fre-

quency. The Debye thermal pressure is given as:

PDe(ρ, T ) = γρEin(ρ, T ), (2.14)

where γ is the Grüneisen parameter, and Ein is the internal energy per unit mass. Ein is
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calculated based on the Debye model:

Ein = 9nRgT

(
T

θ

)3 ∫ θ
T

0

t3

et − 1
dt, (2.15)

where n is the atomic molar density in (mol kg−1), Rg is the molar gas constant,and θ is

the Debye temperature. The complete equation of state is then:

P (ρ, T ) = P (ρ, T0) + [PDe (ρ, T )− PDe (ρ, T0)]. (2.16)

In addition to the effect of Debye thermal pressure, the density of solid iron is subject to

an additional effect of anharmonic and electronic thermal pressures. The complete EoS for

solid iron is

P (ρ, T ) =P (ρ, T0) + [PDe (ρ, T )− PDe (ρ, T0)]

+ [Pan(ρ, T )− Pan(ρ, T0)] + [Pel(ρ, T )− Pel(ρ, T0)],

(2.17)

where Pan and Pel are anharmonic and electronic thermal pressures, and given as:

Pan =
3

2
Rgρma0

(
ρ

ρ0

)−m

T 2

Pel =
3

2
Rgρge0

(
ρ

ρ0

)−g

T 2.

(2.18)

Parameters a0,m, e0 and g are given by Dewaele et al. [2006]: a0 = 3.7×10−5 K−1, m=1.87,

e0 = 1.95× 10−4 K−1 and g=1.339.

The Grüneisen parameter, γ, and the Debye temperature, θ, vary with density. For

enstatite and bridgmanite, these values are calculated as
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Material γ0 γ∞ θ0 (K) λ n Ref.

Enstatite 1.009 0 710 1 49.8058 a, b, c
Bridgmanite 1.96 0 1017 2.5 49.8058 b, d

Post-perovskite 1.553 1.114 1100 4.731 49.8058 e, f
Liquid Fe 2.033 0 263 1.168 17.907 g

Solid Fe (ϵ) 1.875 1.305 417 3.289 17.907 h
Fe16Si 1.8 0 417 1 20.7415 i

Table 2.2: Parameters used for the thermal correction according to Mie–Grüneisen–Debye.
References: (a) Aguichine et al. [2021]; (b) Sotin et al. [2007]; (c) Vacher et al. [1998]; (d)
Hemley et al. [1992]; (e) Wagner et al. [2011]; (f) Oganov and Ono [2004]; (g) Dorogokupets
et al. [2017]; (h) Dewaele et al. [2006]; (i) Fischer et al. [2012]

γ = γ0

(
ρ

ρ0

)−λ

,

θ = θ0

(
ρ

ρ0

)γ

.

(2.19)

For post-perovskite, Fe16Si, and solid- and liquid-phase iron, these values are given in the

Al’Tshuler form [Al’Tshuler et al., 1987],

γ = γ∞ + (γ0 − γ∞)

(
ρ

ρ0

)−λ

,

θ = θ0

(
ρ

ρ0

)γ∞
exp


(
1− (ρ/ρ0)

−λ
)
(γ0 − γ∞)

λ

 ,

(2.20)

where subscript 0 denotes values evaluated at reference state and ∞ at infinite large pressure.

Parameters relevant to the thermal correction are summarized in table 2.2.

The specific heat capacity at constant pressure per unit mass, cP , is approximately

constant for mantle silicate within the pressure range (≲ 1000 GPa) in the mantle of the

studied planets in this thesis [Stamenković et al., 2011]. The thermal conductivities of both

mantle silicate and iron have been shown to increase with growing pressure [Stamenković

et al., 2011]. In this work, we assume average Earth mantle and core values, which are

summarized in table 2.3. We offer a discussion on how different thermal conductivities for
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mantle silicate and iron could affect the lifetime of the dynamo in the liquid core in Chapter 4.

The isothermal bulk modulus, KT , and the thermal expansion coefficient, α, are calculated

using the expression in eqn 2.12, where cV is

cV =
cP

1 + γαT
. (2.21)

Material k(Wm−1K−1) cP (JK−1kg−1) Ref.

Enstatite 4 1250 1
Bridgmanite 10 1260 1

Post-perovskite 10 1260 1
Molten silicate 4 N/A 2

Fe 40(3) 840(1) 1, 3

Table 2.3: Parameters used for the thermal correction according to Mie–Grüneisen–Debye.
References: (1) Yukutake [2000]; (2) Bower et al. [2018]; (3) Konôpková et al. [2016]

2.4 Core cooling

The temperature distribution in the liquid iron core is assumed to be adiabatic, and the

adiabatic temperature gradient is given as

(
∂T

∂P

)
S
=

αT

ρcP
, (2.22)

where α and cP denote the thermal expansion coefficient and specific heat per unit mass at

constant pressure. The inner core starts solidifying once the adiabat of the liquid iron core

intersects with the melting curve of iron. We assume the solid inner core to be conductive

and solve the heat conduction equation to calculate its cooling process,

ρcP
∂T

∂t
=

1

r2
∂

∂r

(
r2kc

∂T

∂r

)
+ αT

∂P

∂t
, (2.23)
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where kc is the thermal conductivity of iron. The second term on the right side of the

equation is rate of heating due to adiabatic compression. Pressure changes in the planet are

calculated using the Henyey solver.

The cooling process of the liquid core is described by its energy balance equation,

∫ Mc

Mic

cP Ṫ dm−
∫ Mc

Mic

αT

ρ
Ṗdm = 4πR2

ckLM
∂T

∂r

∣∣∣∣
CMB

− 4πR2
ICBkc

∂T

∂r

∣∣∣∣
ICB

+ LFeṀic,

(2.24)

where Mic and Mc are masses of the solid inner core and the entire iron core, RICB and Rc

are radii of the solid inner core and the entire core, kLM and kc are the thermal conductivity

of the lower mantle at CMB and iron at the inner core boundary (ICB), and (∂T/∂r)CMB

and (∂T/∂r)ICB are temperature gradients at the base of the mantle and the base of the

liquid core. The left hand side of the equation is the internal energy change rate of the iron

core. The first and second terms on the right hand side of equation 2.24 are the heat loss

rate by conduction across the CMB and rate of heat gain across the ICB by conduction. The

third term is the latent heat release rate due to inner core solidification.

The thermal history of the liquid core can be described by a potential temperature, TPot,

which is the temperature of the liquid iron core if it were adiabatically decompressed to a

fixed pressure reference point, PPot [Unterborn and Panero, 2019]. For each planet we choose

an arbitrary reference point at a pressure level ∼ 5 GPa lower than PCMB at the beginning

of the evolution. For example, the PPot for the planet with 1M⊕ and CMF=0.326 is 120

GPa. The first term on the left side of equation 2.24 is related to TPot by the following

equation

∫ Mc

Mic

cP Ṫ dm =

∫ Mc

Mic

cP
∂T

∂TPot

∣∣∣∣
P
ṪPotdm+

∫ Mc

Mic

cP
∂T

∂P

∣∣∣∣
TPot

Ṗ dm. (2.25)

TPot is a proxy for entropy, and (∂T/∂P )TPot
is the adiabatic temperature gradient, given
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by equation 2.22. The second term on the right side of equation 2.25 becomes

∫ Mc

Mic

cP
∂T

∂P

∣∣∣∣
TPot

Ṗ dm =

∫ Mc

Mic

αT

ρ
Ṗdm. (2.26)

We can rewrite equation 2.24 in terms of TPot using equations 2.25 and 2.26, and the

adiabatic compression term (the second term) on the left side of equation 2.24 is cancelled

by equation 2.26:

ṪPot

∫ Mc

Mic

cP
∂T

∂TPot

∣∣∣∣
P
dm = 4πR2

ckLM
∂T

∂r

∣∣∣∣
CMB

− 4πR2
ICBkc

∂T

∂r

∣∣∣∣
ICB

+ LFeṀic. (2.27)

This is because heating due to adiabatic compression is accounted for when parameterizing

the P-T profile by TPot.

ṪPot is expressed in terms of the change in conditions at the CMB by:

ṪPot =
∂TPot

∂TCMB

∣∣∣∣
PCMB

ṪCMB +
∂TPot

∂PCMB

∣∣∣∣
TCMB

ṖCMB. (2.28)

The partial derivatives with respect to TPot, TCMB and PCMB in equations 2.25 and 2.28

are calculated numerically using the pre-calculated table of core adiabats.

The inner core nucleation decelerates the cooling rate of the core by releasing latent heat.

Given a potential temperature, we can determine Mic, and the pressure and radius at the

boundary of inner and outer cores, PICB and RICB, by the intersection of the core adiabat

and the melting curve (equation 2.6). Consequently, we can express Ṁic as

Ṁic =

 0 PICB > Pcenter or PICB < PCMB
dMic
dPICB

dPICB
dTPot

ṪPot PCMB < PICB < Pcenter.
(2.29)

dPICB/dTPot is evaluated numerically and dMic/dPICB is obtained from equation 2.2,
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dMic

dPICB
= −

4πR4
ICB

GMic
. (2.30)

Combining equations 2.24 to 2.29, we obtain the energy balance equation of the core as a

function of a single temperature, TCMB.

2.5 Mantle heat transport

The basic equation for calculating the energy transport in the mantle is provided by Sasaki

and Nakazawa [1986a]. Here, we express the energy transport equation in terms of entropy

instead of temperature,

ρT
∂s

∂t
= − 1

r2
∂

∂r

(
r2F

)
+ ρH, (2.31)

where s is specific entropy per unit mass, H is energy generation rate per unit mass, and F

is the sum of conductive and convective flux. We write equation 2.31 in terms of entropy be-

cause it is a natural coordinate for convecting systems of both pure solid/liquid and partially

molten aggregates.

Thermal conduction is given by Fourier’s law, which is split into an adiabatic and a

super/sub-adiabatic part [Bower et al., 2018],

Fcond = −ρcPκ
∂T

∂r

∣∣∣∣
s
− ρTκ

∂s

∂r
, (2.32)

where κ is the thermal diffusivity, and (∂T/∂r)s is the adiabatic temperature gradient, given

by (∂T/∂r)s = ρg (∂T/∂P )s .

Thermal convection occurs when the entropy gradient, ∂s/∂r, is negative. We use the

modified mixing length theory [Sasaki and Nakazawa, 1986a, Abe, 1995, Senshu et al., 2002]

to evaluate the convective heat flow, which considers the energy transport by the vertical

motion by fluid parcels. This method allows us to use local values of physical quantities to
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evaluate heat transport within each zone. Fconv, the convective heat flux, is given as

Fconv = −ρTκh
∂s

∂r
, (2.33)

where κh is eddy diffusivity.

In a fully solid/liquid case, convection is driven by the temperature gradient, and κh is

κh =



√
−αgT l4

16cP

∂s

∂r
for − αgT l4

18cP ν
2

∂s

∂r
≥ 9

8

−αgT l4

18cP ν

∂s

∂r
for 0 < − αgT l4

18cP ν
2

∂s

∂r
<

9

8
,

(2.34a)

(2.34b)

where g gravitational acceleration, l mixing length, and ν kinematic viscosity. The eddy

diffusivity for inviscid fluid (equation 2.34a) is derived in Vitense [1953] and for viscous

fluid (equation 2.34b) is adapted from Sasaki and Nakazawa [1986a]. Both equations in the

original papers are expressed in terms of the temperature gradient, and the ones in terms

of the entropy gradient are provided in [Bower et al., 2018]. A detailed derivation is given

in Appendix 2.A. The transition between the inviscid and viscous regimes is determined

by the velocity of fluid parcels. In equation 2.34a, the velocity is estimated based on the

exchange between the kinetic and gravitational potential energy of parcels; in equation 2.34b,

the velocity is estimated by the Stokes velocity, which considers the force balance between

buoyancy force and viscous drag force exerted on fluid parcels.

In the case of a solid and liquid mixture, ρ is determined from the densities of pure solid,

ρs, and pure liquid, ρm, at Tsi,m at a specified pressure by the additive volume mixing rule.

The temperature profile is fixed on the melting curve of mantle silicate for the idealized

cases of a single pure compound, and convection is then driven by the melt fraction gradient

rather than the temperature gradient. We derived κh in such a case (see Appendix 2.B for

details),
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κh =



√
−
αxgTsi,ml4

16L

∂s

∂r
for −

αxgTsi,ml4

18Lν2
∂s

∂r
≥ 9

8

−
αxgTsi,ml4

18Lν

∂s

∂r
for 0 < −

αxgTsi,ml4

18Lν2
∂s

∂r
<

9

8
,

(2.35a)

(2.35b)

where αx is the expansion coefficient due to changes in melt fraction, and defined as

αx ≡ −1

ρ

∂ρ

∂x

∣∣∣∣
P
= ρ

(
1

ρm
− 1

ρs

)
. (2.36)

The melt fraction x is related to the entropy by

x(s, P ) =


0 for s ≤ ss(P )

s− ss(P )

sm(P )− ss(P )
for ss(P ) < s < sm(P )

1 for s ≥ sm(P ),

(2.37a)

(2.37b)

(2.37c)

where sm and ss are the specific entropies of pure liquid and pure solid at Tsi,m(P ). Similarly

to the single phase case, the transition between formula 2.35a and 2.35b is determined by

the velocity of the convecting parcels.

To improve the numerical stability of the code, we employ a transition function, z(y),

to ensure that κh varies smoothly and continuously when the mantle silicate goes through

phase transitions from pure liquid phase to a liquid and solid mixture, and from the mixture

to pure solid phase. κh is then

κh =

z(ym)κh,2.34a + (1− z(ym))κh,2.35a for inviscid fluid

(1− z(ys))κh,2.34b + z(ys)κh,2.35b for viscous fluid ,

(2.38a)

(2.38b)

where κh,2.34a,κh,2.34b,κh,2.35a and κh,2.35b are given by corresponding formula for κh. The

transition function, z(y), approaches 0 as y → −∞, and 1 as y → ∞, and is given as,
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z(y) =
1

2
+

1

2
tanh(y), (2.39)

where y is

ym =
s− sm
sw

for inviscid fluid

ys =
s− ss
sw

for viscous fluid.
(2.40)

with sw being the transition width. We choose sw to be sw = 0.02× (sm− ss), which corre-

sponds to 0.02 in melt fraction. ym and ys appear in equations 2.38a and 2.38b separately

because the transition from fully liquid to the 2-phase mixture happens in the inviscid regime

while the transition from the 2-phase mixture to fully solid happens in the viscid regime.

The mixing length, l, describes the characteristic length that a fluid parcel can travel

due to the thermal buoyancy force before it merges with the surroundings. Abe [1995] set

l to be the distance from the nearest boundary of convection (D). Several groups [e.g.

Tachinami et al., 2011, Wagner et al., 2019] calibrated the 1-D mixing length theory against

boundary layer theory and 3-D convection models for rocky planets, and came up with

different prescriptions for l. Tachinami et al. [2011] compared the evolution result of the

Earth using mixing length theory to calculations using the boundary layer theory and found

l = 0.82D to be the best choice, which we use for all simulations in this study. Such

a prescription results in a small mixing length and thus a low convective heat flow near

convection boundaries, and heat transport is dominated by thermal conduction. Calculations

with other prescriptions for l are left for future investigation.

In this thesis, we consider whole mantle convection where the only convection boundaries

are the planet surface and the CMB. However, the mixing length formulation employed in

our model can be easily applied to mantle convection with additional barriers, as Tachinami

et al. [2011] pointed out. Several groups suggest that phase boundaries in the mantle may

serve as barriers to mantle convection, such as the solid/melt boundary [Labrosse et al.,
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2007] or the upper/lower mantle phase boundary [Honda et al., 1993].

To save computation time while solving equation 2.31, we pre-tabulate thermophysical

quantities, including T , ρ, α, and cP,m (specific heat of silicate per unit mass in liquid phase),

as a function of s and P using the EoSs described in section 2.3. Values of these quantities

are obtained using a 2D interpolation routine (RectBivariateSpline) in SciPy during each

thermal timestep in the evolution calculation.

Viscosity, η, and radiogenic heating, H, are two other important components of mantle

dynamics, which we discuss in sections 2.6 and 2.7.

2.6 Viscosity of mantle silicate

The dynamic viscosity of mantle silicate, η = νρ, is one of the most important quantities

in the thermal evolution calculation of rocky planets, especially during the later stage when

the entire mantle has solidified. The level of viscosity determines the cooling rate of the

mantle, which then controls how fast the iron-dominated core can cool. For silicate in

the liquid phase, we take ηm = 100Pa s [Abe, 1997]. For enstatite and bridgmanite, we

follow Tachinami et al. [2011], Zhang and Rogers [2022] and adopt we adopt an Arrhenius

formulation for temperature- and pressure-dependent viscosity [Ranalli, 2001],

ηs =
1

2

[
1

B1/nc
exp

(
E∗ + PV ∗

nRgT

)]
ϵ̇(1−nc)/nc , (2.41)

where B, Rg, nc, E∗, V ∗ and ϵ̇ are the Barger coefficient, molar gas constant, creep index,

activation energy, activation volume and strain rate, respectively. Values of these parameters

for enstatite and bridgmanite are listed in table 2.4.

Ammann et al. [2010] and Tackley et al. [2013] applied the density function theory cal-

culations to explore the viscosity of post-perovskite. They found that the diffusion rates of

Mg2+ and Si4+ in post-perovskite is anisotropic, depending on the lattice orientation. The
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Material B(Pa−ncs−1) nc E∗(103Jmol−1) V∗(10−6m2mol−1) ϵ̇(s−1)

Enstatite 3.5×10−15 3.0 430 10 10−15

Bridgmanite 7.4×10−17 3.5 500 10 10−15

Table 2.4: Parameters of viscosity for enstatite and bridgmanite [Ranalli, 2001]

fastest and the slowest diffusion rates of magnesium and silicon result in the lower-bound

and upper-bound rheology for post-perovskite. The viscosity of post-perovskite with two

rheologies is given as

η(T, p) = η0 exp

[
H(p)

RT
− H(0)

RT0

]
, (2.42)

where η0 is the reference viscosity obtained at zero pressure and reference temperature

T0 = 1600 K, and H(p) is the migration enthalpy. H(p) is calculated based on the following

equation,

H(p) = E∗ + pV ∗ exp (−p/pdecay). (2.43)

Parameters in equations 2.42 and 2.43 are summarized in table 2.5.

Rheology E∗(103Jmol−1) V∗(10−6m2mol−1) pdecay (GPa) η0(Pa · s)
Lower-bound 162 1.4 1610 1.9×1021

Upper-bound 780 1.7 1100 1.05×1034

Table 2.5: Parameters of viscosity for post-perovskite [Tackley et al., 2013]

As Ammann et al. [2010] argues, the lower-bound rheology might be relevant to the

weak D” layer in the lowermost mantle of Earth. We therefore choose the lower-bound

rheology as the fiducial choice in the calculation of the viscosity of post-perovskite. We also

perform calculations with the upper-bound rheology for post-perovskite to explore the effect

of viscosity of the thermal and magnetic history of rocky super-Earths.

The viscosity of partially molten material should capture an abrupt change at the critical

melt fraction xcrit = 0.4 as the molten aggregate shifts between liquid-like and solid-like.

We adopt a similar formulation to Bower et al. [2018], and model η as
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log10η = zlog10ηm + (1− z)log10ηs, (2.44)

where ηm and ηs are dynamic viscosity for liquid and solid phase silicate. z is the same

transition function as equation 2.39 with y defined as y = (x− xcrit)/0.15.

In addition to the above formulation for viscosity, our code can readily take a wide range

of other viscosity parameterizations, including those adopted by Abe [1995], Stamenković

et al. [2012], and Driscoll and Bercovici [2014]. In this thesis, we consider a single choice

to demonstrate the workings of code and to explore the influence of a temperature- and

pressure-dependent viscosity on the planet evolution.

2.7 Internal heat production

Internal heat production, H, is important for rocky planet evolution on geological timescales.

For Earth, the heat production is generated by the decay of 40K, 232Th, 235U and 238U. The

estimated amount of these elements in Earth’s mantle and their half life time are compiled

in table 2.6. The total mantle radiogenic heat production is the sum over 4 isotopes,

H =
∑
i

q0,i exp (ln2 (t⊕ − t) /τi) , (2.45)

where t⊕ is the current age of Earth, q0,i is the current radiogenic heat production rate

per unit mass in Earth’s mantle and τi is the radioactive decay time of four major isotopes.

Previous works have studied the effect of different concentrations of radionuclides [e.g. Nimmo

et al., 2020]. However, for this study, we assume the same abundance of radioactive elements

in the mantle as those in Earth’s mantle and model the elements as uniformly distributed

with mass in the mantle through convection.
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Element q0(Wkg−1) τ(Gyr)

40K 8.69×10−13 1.25
232Th 2.24×10−12 14
235U 8.48×10−14 0.704
238U 1.97×10−12 4.47

Table 2.6: Parameters of radiogenic elements [McDonough and Sun, 1995]

2.8 Initial conditions

We assume the initial temperature profile to be adiabatic in both the iron-dominated core

and the silicate mantle. We integrate the adiabatic temperature gradient from the planet

center to the surface with a surface pressure of 1 bar and initial central temperature, Tc,

which is tied to the initial thermal energy of the planet. The adiabatic temperature gradient

is (
∂T

∂P

)
S
=

αT

ρcP
. (2.46)

The initial thermal energy of the planet is determined by its gravitational potential

energy. During the formation of the planet, the gravitational potential energy released by the

accretion of cold planetestimals and embryos partially converts to thermal energy heating the

planet. A significant fraction of the thermal energy is lost to radiation during the formation

process and only a fraction h is retained by the planet in the form of thermal energy. Since

we do not model the planet formation, we choose h ∼ 0.15 as the default value. The effect of

the choice of h —or more generally the initial post-formation temperature profile— on the

predicted dynamo lifetime in the liquid core will be explored in the future.

The initial thermal energy of the planet is

E0 = h

∫ Rpl

0

[4πr2ρ(r)][43πr
3ρ(r)]

r
dr =

∫ Mpl

0
cP∆Tdm, (2.47)

where Mpl and Rpl are planetary mass and radius, G is the gravitational constant and ∆T
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is the temperature rise from surroundings (∼ 255 K for Earth-level stellar irradiation) to

the initial local temperature in individual cells in the planet. We iterate the integration of

equation 2.46 to search for an appropriate Tc that corresponds to an h of 0.15 in equation 2.47

within a relative tolerance of 10−4.

2.9 Boundary conditions

In this study, we explore a simplified scenario where planets cool down through radiation at

the planet surface. The surface heat flow is thus chosen as a gray-body radiation,

Fsurf = −kUM
∂T

∂r

∣∣∣∣
surf

= σ
(
T 4
surf − T 4

eq

)
, (2.48)

where Fsurf is the net outgoing surface heat flux, kUM is the thermal conductivity of the upper

mantle, σ the Stefan-Boltzmann constant, Tsurf surface temperature and Teq the equilibrium

temperature, which corresponds to the radiation from the host star.

Our model does not explicitly differentiate between stagnant-lid and mobile-lid convec-

tion and impose the thickness of conductive thermal boundary layers. Instead, a boundary

layer where thermal conduction dominates is automatically captured by the mixing length, l.

When approaching a convection barrier (the surface or CMB), κh decreases rapidly in propor-

tion to l4. Our choice of the mixing length, as described in section 2.5, represents an Earth-

like scenario with mobile-lid convection. Wagner et al. [2019] calibrated the mixing length

theory against a 3-D mantle convection simulation. They presented various parametrizations

of the mixing length for stagnant-lid, sluggish-lid, and mobile-lid convection, which we plan

to explore using our model in future studies.

The surface temperature and pressure is typically determined by the atmosphere for a real

planet. Abe [1997] discussed the thermal blanketing effect of a steam or H2/He atmosphere,

which may sustain a shallow surface magma ocean. Elkins-Tanton [2008] explored Earth’s
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and Mars’ atmosphere growth due to magma ocean solidification, and found that the final

atmospheric pressure could reach several thousand bar. However, exploring the influence of

an atmosphere on the thermal evolution of rocky planets is beyond the scope of this thesis.

Additionally, Bower et al. [2019] points out that the silicate mantle may not experience an

appreciable amount of compression due to an outgassed atmosphere, as the bulk modulus

of molten and solid silicate is around 100 GPa. In this thesis, the surface temperature is

determined by solving the energy transport equation (equation 2.31) at the planet surface

and the surface pressure is set to be 1 bar. At the bottom surface of the mantle, namely the

CMB, the heat flux is evaluated based on heat conduction through the CMB layer, the first

term on the right hand side of equation 2.24,

FCMB = −kLM
∂T

∂r

∣∣∣∣
CMB

, (2.49)

where kLM is the thermal conductivity of lower mantle.

The partial derivatives in equations 2.48 and 2.49 indicate the slopes of the radial temper-

ature profile in the upper and lower thermal boundary layers in the mantle. Together with

the thermal conductivities in the thermal boundary layers, the partial derivatives determine

how much heat can be conducted into and out of the mantle. For the major portion of the

planet evolution, we use the finite-difference method and the temperatures at the faces of

the bottom and the top cells to approximate the partial derivatives. During the magma

ocean stage, however, the thickness of the conductive boundary at the planet surface and

the core mantle boundary (CMB) is ultra-thin due to the low viscosity of molten silicate, on

the order of a few centimeters to a few meters. The thickness of the boundary layers is below

the spatial resolution in the code (a few kilometers). To eliminate artifacts due to spatial

resolution in individual layers, we calculate the thickness of the conductive boundary layers

using local conditions at the planet surface and the CMB during the magma ocean stage.

We briefly describe the calculation in the rest of this section.
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In the thermal boundary layers, the Rayleigh number, RaBL is calculated as

RaBL =
ρ2cPαg∆TBLδ

3
BL

kη
, (2.50)

where δBL is the thickness of the boundary layer, and ∆TBL is the temperature jump across

the thermal boundary layers. Setting RaBL = Rac, we can calculate the thickness of the

conductive thermal boundary layers,

δBL =

(
Rackη

ρ2cPαg∆TBL

)1/3

. (2.51)

Thermophysical properties, including ρ, α, g and η, are evaluated based on the temperature

and the pressure at the center of the thermal boundary layers at the preview timestep. ∆TBL

is TCMB− TLM and TUM− Tsurf for the lower and the upper thermal boundary layers, with

TLM and TUM being the temperature at the top and the base of the lower and the upper

thermal boundary layers.When δBL is smaller than the spatial resolution at the planet surface

and/or the CMB, the top and/or the bottom cells in the mantle are split into two sub-cells,

with one sub-cell being the conductive boundary layer and the other one merged into the

convection zone below/above.

2.10 Criterion to drive a dynamo in rocky planets

A dynamo action within the planet requires a magnetic Reynolds number that exceeds a

critical value,

Rem = µ0vLcσ > Rem,crit, (2.52)

where µ0 is the magnetic permeability in vacuum, v is the flow velocity, Lc is the thickness

of the magma ocean/liquid iron core, and σ is the electrical conductivity of the convective

fluid. As Christensen and Aubert [2006] suggest, a self-sustained dynamo action requires a

33



critical value, Rem,crit, of order 50, which we adopt for both the iron core and the magma

ocean in our model. We note, however, that the study in Christensen and Aubert [2006] is

configured to represent modern Earth’s core and we advocate for dynamo studies focusing

on the magma ocean.

Several groups have attempted to measure the electrical conductivity of molten silicate

using dynamic and ab initio calculations [Soubiran and Militzer, 2018, Stixrude et al., 2020].

They have shown that molten silicate is semi-metallic and estimated its electrical conductiv-

ity to be of the order of 104 Sm−1. Given the level of electrical conductivity and using an

illustrative value for the thickness of the convective layer, ∼ 106 m, a minimal flow velocity

of the order of 1mms−1 is required so that Rem can exceed the critical value in a magma

ocean.

We evaluate Rem in each cell to determine whether and where a dynamo action can occur

in the magma ocean. The flow velocity is estimated with the modified mixing length theory,

v ∼ κh/l. We use the equation provided in Stixrude et al. [2020] to calculate the electrical

conductivity of molten silicate, which includes ionic and spin-polarized electric contributions,

σ = σ0T
−1 exp

(
−Eσ + PVσ

RgT

)
. (2.53)

Values of σ0, Eσ, and Vσ for ionic and spin-polarized electric contributions are summarized

in table 2.7. The electrical conductivity of partial melts is weighted by the melt fraction.

Contribution σ0(Sm
−1) E∗(103 Jmol−1) V ∗(10−6 m2mol−1)

Spin-polarized electronic contribution 1.754×109 108.6 0.0611
Ionic contribution 1.0811×109 131 0.437

Table 2.7: Parameters for electrical conductivity of molten silicate [Stixrude et al., 2020]

We compute Rem for the entire liquid iron core to determine whether the dynamo can

operate within the liquid core and its lifetime. To translate the core convective flux to the
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flow velocity, we employ a mixing length scaling law [Christensen, 2010],

v =

(
LcFc
ρHT

)1/3

, (2.54)

where HT = cP /(αg) is the temperature scale height, Fc is the effective core convective flux

and Lc is the thickness of the convecting liquid core. In the case where the core dynamo is

solely driven by thermal convection, Fc is the same as the core convective heat flux, Fconv,

which is calculated as the difference between the total heat flux coming out of the core

(FCMB) and the conductive heat flux along the core adiabat (Fcond), given as

Fcond = kc

(
αgT

cP

)
s,CMB

. (2.55)

The liquid iron core is no longer convecting if FCMB < Fcond, and Fconv is taken to be 0. In

the case where the core dynamo is driven by both thermal and composition convection, Fc

is obtained from the sum of thermal and chemical buoyancy flux [Christensen et al., 2009].

The thermal and chemical buoyancy flux, Fth and Fχ, are given by [Driscoll and Bercovici,

2014],

Fth =
αcgc
ρccP,c

Fconv (2.56)

Fχ = gic
∆ρχ
ρic

(
Ric

Rc

)2 dRic

dt
, (2.57)

where subscripts c and ic refers to values taken at the CMB and the ICB, and ∆ρχ is the

density contrast between the inner and the outer core at the ICB. We can then translate Fχ

to an equivalent thermal flux by (ρccP,c)/(αcgc)Fχ. The effective core convective flux, Fc,

in this case is

Fc = Fconv +
cP,c
αc

∆ρχ

(
Ric

Rc

)2 dRic

dt
. (2.58)

The convection in the liquid core is shut off if Fc reaches 0.
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We use the Wiedemann-Franz law to calculate the electrical conductivity of liquid iron,

σ =
kc
L0T

, (2.59)

where kc is the thermal conductivity of liquid iron and L0 is the Lorenz number. We use 80

Wm−1K−1 as the default value for kc . However, a range of kc under the core conditions (18

to 150Wm−1K−1) have been reported [e.g. Monteux et al., 2011, Pozzo et al., 2012, 2014,

Konôpková et al., 2016, Ohta et al., 2016, Zhang et al., 2020, 2022, Pourovskii et al., 2020,

Inoue et al., 2020], and we discuss the effect of different levels of kc on the lifetime of the

dynamo in the liquid core in section 4.2. Values of ρ, α, g, and σ used in the calculation of

Rem are mass-weighted average for the liquid iron core.

In general, unless the outer liquid iron core is very thin, so long as the liquid iron core

exists and is convective, it could support a dynamo with Rem > Rem,crit. Using illustrative

values for Earth-like and super-Earth planets for quantities in equations 2.52 and 2.54,

σ ∼ 106 Sm−1, Lc ∼ 106 m, ρ ∼ 104 kgm−3, cP = 840 kg J−1K−1, g ∼ 10 m s−2 and

α ∼ 10−5K−1, the required Fc to sustain a dynamo in the liquid iron core is very low

∼ 10−10Wm−2. Since Fcond >> 10−10Wm−2, Rem of the liquid iron core will exceed

Rem,crit as long as it is convecting. However, in cases where the liquid iron core is thin (i.e.,

as the core approaches complete solidification), Rem may drop below the critical value and

the dynamo might cease even while convection continues. For example, if Lc decreases to

10km, the required Fc to sustain a dynamo increases to ∼ 0.1Wm−2, which is non-negligible

compared to Fcond (typically ∼ 0.1Wm−2 for kc = 80Wm−1K−1).
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APPENDICES

We give a brief overview on the modified mixing length formulation, which is used to esti-

mate the convective heat flow within the planetary interior. The original formulation [Abe,

1995] was derived for thermal convection driven by thermal profiles with super-adiabatic

temperature gradients. The formula for Fconv for viscous fluid and inviscid fluid are given

by Sasaki and Nakazawa [1986b] and Vitense [1953]. Here, we derive the same formula in

terms of the entropy gradient, since entropy is a natural coordinate for convecting systems of

both pure solid/liquid and partially molten aggregates. We further develop similar formulae

for convection driven by super-adiabatic melt fraction gradients.

2.A Fundamentals of the modified mixing length formulation

The general idea of the mixing length theory is that a thermal fluid parcel in the planetary

interior can move in between regions with high and low heat content due to a buoyancy

force. The thermal parcel can move for a characteristic distance of l before it merges with

the surroundings. For thermal convection, the buoyancy force is generated by a temperature

difference between the fluid parcel and the surroundings, and the heat flux can be written

as

Fconv =
1

2
ρcP v∆T, (2.60)

where ρ is the density, cP is the specific heat capacity per unit mass, v is the fluid velocity.

∆T is the temperature difference between the fluid parcel and the surroundings, which is

generated as the fluid parcel moves for l, and is estimated as ∆T = l[(∂T/∂r)s − ∂T/∂r],

where (∂T/∂r)s is the adiabatic temperature gradient. The numerical factor 1/2 comes from

the fact that about half of the matter rises and the other half descends at any location with

convective instability.

In cases where the viscous drag force is significant, the fluid velocity is constrained by
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the Stokes flow, and is given by the Stokes velocity,

v =
2∆ρl2g

9ρν
, (2.61)

where g is the local gravitational acceleration, ν is the kinematic viscosity, and ∆ρ is the

density difference between the surrounding fluid and the fluid parcel, and approximated as

∆ρ = ρα∆T . Convective instability occurs when ∆ρ is positive. Plugging equation 2.61

into equation 2.60, and adding an additional numerical factor of 1/2 to match the original

formulae provided in Sasaki and Nakazawa [1986b] and Abe [1995], we obtain

Fconv =
ρcPαgl

4

18ν

(
∂T

∂r

∣∣∣∣
s
− ∂T

∂r

)2

. (2.62)

We note that the numerical factor of 1/2 is inconsequential as equation 2.62 is calibrated

against a 1-D boundary layer theory model for rocky planets to obtain the proper mix-

ing length [Tachinami et al., 2011] (but nonetheless should be included to ensure proper

calibration). The effective eddy diffusivity, κh ∼ vl, is obtained from equation 2.33 as

κh =
αgl4

18ν

(
∂T

∂r

∣∣∣∣
s
− ∂T

∂r

)
. (2.63)

Both temperature gradients are defined to be negative. Convective instability does not occur

when (∂T/∂r)s ≤ ∂T/∂r, in which case Fconv and κh are both 0.

Now we want to express the temperature gradients in terms of the entropy gradient,

∂s/∂r. ∂T/∂r can be expressed as

∂T

∂r
=

∂T

∂P

∣∣∣∣
s

∂P

∂r
+

∂T

∂s

∣∣∣∣
P

∂s

∂r

=
∂T

∂r

∣∣∣∣
s
+

T

cP

∂s

∂r
.

(2.64)

Now we can rewrite ∆ρ, ∆T , Fconv and κh in terms of the entropy gradient,
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∆T = −l
T

cP

∂s

∂r
, (2.65)

∆ρ = −ραl
T

cP

∂s

∂r
, (2.66)

Fconv =
ραgT 2l4

18νcP

(
∂s

∂r

)2

, (2.67)

κh = −αgT l4

18cP ν

∂s

∂r
. (2.68)

Convection occurs when the entropy gradient is negative, and Fconv and κh are calculated

using equations 2.67 and 2.68. Otherwise, both Fconv and κh are 0.

In cases where viscosity is low and viscous drag force is insignificant, then the flow velocity

is the free fall velocity estimated based on the energy exchange between the gravitational

potential energy and kinematic energy of the fluid parcel. The sum of the buoyancy force

and gravity on the fluid parcel per unit volume is f = g∆ρ. The fluid parcel can rise (i.e.

convective instability occurs) when f is positive. The work done on the fluid parcel per unit

volume to move it through a distance l is

W (l) =

∫ l

0
g∆ρdl′ = g

∫ l

0
∆ρdl′ =

1

2
g∆ρl. (2.69)

Assuming W (l) could all be transformed into kinetic energy of the parcel, Ek = ρv2/2, then

the fluid velocity is

v =

(
g∆ρl

ρ

)0.5

, (2.70)

and ∆ρ is the same density difference between the fluid parcel and the surrounding fluid

as in equation 2.61. Plugging this velocity into equation 2.60 and including the numerical

factor of 1/2 to match the formula in Vitense [1953] and Abe [1995], we have
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Fconv = ρcP

√
αgl4

16

(
∂T

∂r

∣∣∣∣
s
− ∂T

∂r

)3

, (2.71)

and

κh =

√
αgl4

16

(
∂T

∂r

∣∣∣∣
s
− ∂T

∂r

)
. (2.72)

We now use equation 2.64 to rewrite equations 2.71 and 2.72 in terms of the entropy gradient

instead of the temperature gradient, we have

Fconv = ρT

√
−αgT l4

16cP

(
∂s

∂r

)3

, (2.73)

and

κh =

√
−αgT l4

16cP

∂s

∂r
. (2.74)

The convection criterion for inviscid fluid remains the same as that for viscous fluid.

The transition criterion between the low and high viscosity regimes is determined based

on Stokes velocity and the free fall velocity of the fluid parcel. The convective heat flux

and κh are limited by the either one of the slower velocity. We determine the transition by

equating equations 2.61 and 2.70,

∆ρgl3

18ρν2
=

9

8
. (2.75)

Plugging equation 2.66 into equation 2.75, we obtain the transition criterion

− αgT l4

18cP ν
2

∂s

∂r
=

9

8
. (2.76)

When the quantity on the left side of equation 2.76 is greater than 9/8, the convective heat

flow is then in the low viscosity regime, otherwise the flow is in the high viscosity regime.
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2.B Modified mixing length formulation for solid and liquid

mixtures

In this section, we aim to extend the modified mixing length formulation described in ap-

pendix 2.A and develop a formula to estimate the convective heat flow within a mixture of

solid and liquid phases. Herein, we consider the case where the two phases are well mixed

and do not separate (no rain-out); the solid condensate (fluid melt) is completely entrained

with the fluid (solid). For a pure substance, the temperature of a solid-liquid mixture is

fixed on the melting curve. The density of the solid and liquid mixture is

ρ =

(
x

ρm
+

1− x

ρs

)−1

, (2.77)

where ρm and ρs are the densities of the liquid and solid phases on the melting curve.

The buoyancy force that drives the convection is generated by a difference in the melt

fraction between the adiabatically displaced fluid parcel and the surroundings. The fluid

parcel carries latent heat with it as it moves up and down due to the convection, and the

convective heat flux is

Fconv =
1

2
ρLv∆x, (2.78)

where L is the latent heat of fusion and ∆x is the difference in melt fraction between the

fluid parcel and the surrounding fluid. Similar to ∆T in thermal convection, ∆x can be

approximated as ∆x = l [(∂x/∂r)s − ∂x/∂r], with (∂x/∂r)s being the adiabatic melt fraction

gradient.

In the case where viscous drag force is significant, the flow velocity is given by equa-

tion 2.61. Including the factor of 1/2 the same way as equation 2.62, the convective heat

flux is
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Fconv =
L∆ρl3g

18ν

(
∂x

∂r

∣∣∣∣
s
− ∂x

∂r

)
, (2.79)

where ∆ρ is the density difference between the surrounding material and the fluid parcel.

In analogy to the thermal expansion coefficient, we define an expansion coefficient due to

changes in melt fraction, αx,

αx ≡ −1

ρ

∂ρ

∂x

∣∣∣∣
P
= ρ

(
1

ρm
− 1

ρs

)
, (2.80)

so that ∆ρ = ραx∆x. Substituting this expression back into equation 2.79, we have

Fconv =
ραxLgl

4

18ν

(
∂x

∂r

∣∣∣∣
s
− ∂x

∂r

)2

, (2.81)

and κh is obtained using equation 2.33

κh =
αxgl

4

18ν

(
∂x

∂r

∣∣∣∣
s
− ∂x

∂r

)
. (2.82)

The next goal is to rewrite the melt fraction gradient in terms of the entropy gradient.

The specific entropy of a solid and liquid mixture is

s = xsm + (1− x)ss, (2.83)

where sm and ss are the specific entropy of the liquid and solid components on the melting

curve. We expand ∂s/∂r and express it as

∂s

∂r
=

[
x

(
dsm
dP

− dss
dP

)
+

dss
dP

]
∂P

∂r
+ (sm − ss)

∂x

∂r
. (2.84)

Rearranging the equation, we obtain
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∂x

∂r
= − 1

sm − ss

[
x

(
dsm
dP

− dss
dP

)
+

dss
dP

]
∂P

∂r
+

1

sm − ss

∂s

∂r
. (2.85)

The first term on the right side of the equation is the adiabatic melt fraction gradient and

the second term is the super-adiabatic component. Given that sm − ss = L/Tm with Tm

being the melting temperature, we have

∂x

∂r

∣∣∣∣
s
− ∂x

∂r
= −Tm

L

∂s

∂r
. (2.86)

Putting this into equations 2.81 and 2.82, we have

Fconv =
ραxgT

2
ml4

18Lν

(
∂s

∂r

)2

, (2.87)

and

κh = −αxgTml4

18Lν

(
∂s

∂r

)
. (2.88)

The convective instability can occur when the entropy gradient is negative.

In the case where the viscous drag force is insignificant, the convective heat flow is limited

by the free fall velocity (equation 2.70). Again, with the numerical factor 1/2, the convective

heat flow and κh are

Fconv = ρTm

√
−αxgTml4

16L

(
∂s

∂r

)3

, (2.89)

and

κh =

√
−αxgTml4

16L

∂s

∂r
. (2.90)

The transition criterion between the low and high viscosity regimes for convection driven

by a super-adiabatic melt fraction gradient is still given by equation 2.75. Substituting the
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expression for ∆ρ due to melt fraction differences between the parcel and surroundings into

equation 2.75, we have

−αxgTml4

18Lν2
∂s

∂r
=

9

8
. (2.91)

When the quantity on the left side of equation 2.91 is greater than 9/8, the convective heat

flow is then in the low viscosity regime, otherwise the flow is in the high viscosity regime.
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CHAPTER 3

THERMAL AND MAGNETIC HISTORY OF AN EARTH-LIKE

CASE
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3.1 Introduction

In this chapter, we present our simulations of magma ocean solidification and late-time

evolution after the mantle fully solidifies for an 1M⊕ planet with CMF=0.33 and Teq = 255K.

We compare our results to previous work [Lebrun et al., 2013, Solomatov, 2015, Tachinami

et al., 2011] as well as observations of current-day Earth [Dziewonski and Anderson, 1981,

Davies and Davies, 2010] to validate our model approach. Additionally, we aim to assess the

possibility of the liquid core and the magma ocean of hosting a dynamo source region, and

the lifetime of the dynamo sources within.

3.2 Evolution of an Earth-like case

3.2.1 Thermal history of an Earth-like case

Here we present the thermal evolution and magnetic history of a representative case: an

Earth-like planet with Mpl = 1M⊕ and CMF= 0.33. The core is made of iron and 10% Si (a

proxy for light elements) by mass, and the mantle is made of MgSiO3 in various phases (liq-

uid, post-perovskite, bridgmanite, and enstatite). We assume no atmosphere at the planet

surface. We consider the lower-bound rheology [Tackley et al., 2013] for ppv when calculat-

ing its viscosity and a core radioactivity of 1 TW at present day (∼140 ppm potassium).

Figure 3.2.1(a) shows the evolution of the temperature profile (T (P )) throughout the entire

planet and Figure 3.2.1(b) shows the evolution of the heat flux at the CMB (FCMB), which

is indicative of the cooling rate of the core.

The cooling history of the planet is split into 3 stages: (i) from t = 0 to t ∼ 1 kyr (ii)

from t ∼ 1 kyr to t ∼ 10 Myr and (iii) after t ∼ 10 Myr. During stage (i), the cooling

rate of the mantle is extremely rapid due to the low viscosity of molten and partially molten

silicate. As figure 3.2.1(b) shows, the temperature at the base of the mantle decreases from

∼ 5500 K to ∼ 4600 K during this time. δLBL, the lower conductive boundary layer at the
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Figure 3.2.1: Evolution of (a) the temperature profile for the entire planet and (b) the
heat flux at the CMB for a 1M⊕ planet with a CMF of 0.3 and a iron-dominated core
and MgSiO3 mantle composition. The orange shaded area in (a) is for the silicate melting
interval (solidus-liquidus) and the dotted curve in (a) is the temperature corresponding to
40% melt fraction (T40). The dashed curve in (a) is the melting curve of the iron-dominated
core. The embedded plot in (b) is the evolution of FCMB in log-log space to highlight the
behavior in the first 0.1 Gyr. The dotted curve in (b) shows the conductive flux along the
adiabat of the core with kc =40 Wm−1K−1. FCMB has to exceed the conductive flux in
order to have a positive thermal buoyancy flux.

47



base of the mantle is ultrathin (∼0.1 m) due to its low viscosity, resulting in a high level of

FCMB on the order of 104Wm−2. With the rapid cooling in the mantle in the first 1 kyr,

the temperature difference across the lower boundary layer builds up, leading to an increase

in FCMB. At the end of stage (i), FCMB peaks at ∼8 × 104 Wm−2 with δLBL ∼ 0.08 m,

∆TLBL ∼700 K and k = 10Wm−1K−1.

During stage (ii), the mantle continues to solidify, and the temperature profile in the

mantle first reaches T40 from its base. Upon reaching a temperature of T40, the partially

molten silicate experiences a rheology transition where its viscosity changes from liquid-like

to solid-like. For example, the viscosity at the base of the mantle increases from ∼ 100Pa · s

to ∼ 1016Pa · s from the beginning to the end of stage (ii). The rheology transition front

progresses toward the planet surface and reaches the surface at the end of stage (ii). The

total mass fraction of solid in the mantle reaches over 95% at the end of stage (ii) and mantle

heat transport becomes dominated by solid-state convection.

The start of stage (ii) is marked by an abrupt drop in FCMB from ∼8 × 104 Wm−2 to

∼10 Wm−2, following which FCMB stays fairly constant for the remainder of stage (ii). The

sudden decrease in the core cooling rate is triggered by a thickening of the lower boundary

layer in the mantle. δLBL increases from ∼ 0.1 m to over 1 km in stage (ii) due to the

increase in viscosity at the base of the mantle. As the mantle solidifies, it compresses the

iron-dominated core and PCMB increases from ∼126 GPa to ∼132 GPa. The core experiences

heating due to adiabatic compression, which is comparable to the core cooling rate during

this stage. Consequently, the core temperature only experiences a minor decrease in the

10 Myr time period (∼60 K).

In the last stage (iii), the mantle heat transport is dominated by solid state convection.

As the mantle continues to cool over the remainder of the evolution, its viscosity increases

and reduces the convective heat flux in the mantle. As indicated by the temperature profiles

in Figure 3.2.1(a), the temperature in the mantle decreases at a progressively slower rate.
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Meanwhile, the core continues to lose heat to the mantle and the temperature difference

across the lower boundary layer in the mantle decreases over time, which lowers FCMB

(Figure 3.2.1b) and slows the cooling rate of the core. With kc = 40Wm−1K−1, FCMB stays

above Fcond for the entire simulation of 12 Gyr, indicating that thermal convection in the

liquid outer core can operate for at least 12 Gyr. If kc increases to 80 Wm−1K−1, thermal

convection shuts off at ∼9 Gyr.

Our thermal evolution result for the Earth-like case is in decent agreement with pre-

vious models and observations of Earth. We predict the surface heat flow to be ∼0.072

Wm−2 at ∼4.5 Gyr, which agrees well with the value predicted by Tachinami et al. [2011],

∼0.08 Wm−2. The result is also in decent agreement with the current observed surface heat

flow of Earth, ∼ 0.09 Wm−2 [Davies and Davies, 2010]. The onset of inner core solidification

happens around 3.3 Gyrs. This puts the ∼1 Gyr age of the solid inner core predicted by

our model within the 0.5-2 Gyrs range indicated by many previous thermal models of Earth

[e.g., Tachinami et al., 2011, Driscoll and Bercovici, 2014, Labrosse, 2015, Zhang et al., 2020].

The solid inner core grows to ∼ 1300 km at 4.5 Gyrs, which is comparable to the results of

Tachinami et al. [2011] and Driscoll and Bercovici [2014] and the observed value of current

day Earth, ∼1221 km [Dziewonski and Anderson, 1981].

Our model obtains an interior structure comparable to that of present-day Earth using

the Henyey code. Figure 3.2.2 shows the radial density profile of the planet at 4.5 Gyrs

with comparison to results of Preliminary Reference Earth Model [PREM, Dziewonski and

Anderson, 1981]. The comparison shows decent agreement and the mismatch in the planetary

radius is less than 0.1%, which further validates our modeling approach. The discrepancy in

the inner core density between PREM and the result shown in Figure 3.2.2 (b) is due to the

presence of elements lighter than iron in Earth’s inner core and our choice to keep all light

impurities in the liquid outer core in this case.
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Figure 3.2.2: Model predicted radial density profile at 4.5 Gyrs and comparison to the result
from Preliminary Reference Earth Model [PREM, Dziewonski and Anderson, 1981]. Our
model predicted a higher density in the solid inner core due to the lack of light impurities.
The model predicted planetary radius is in excellent agreement with the PREM result.
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Figure 3.2.3: Evolution of buoyancy fluxes in the liquid core of a 1M⊕ planet with CMF=0.33
and (a) kc = 40Wm−1K−1, (b) kc = 80Wm−1K−1. In both panels, red, brown and blue
curves indicate thermal (FT ), chemical (Fx) and total buoyancy fluxes. Dashed curves rep-
resent a negative thermal buoyancy flux, which is the amount the chemical buoyancy flux
has to overcome to keep the liquid core unstable to convection. Positive total/thermal buoy-
ancy flux indicates an active dynamo in the liquid iron core with/without the contribution
of chemical buoyancy flux.

3.2.2 Magnetic history of an Earth-like case

In this section, we discuss the lifetime of the dynamo in the liquid core of the representative

Earth-like planet (Mpl = 1M⊕ and CMF=0.33) when sustained by only thermal convection

or by both thermal and compositional convection. In cases where the dynamo is driven solely

by thermal convection, we assume the partitioning of light elements is comparable between

the solid and liquid phases of iron and thus that there is no exsolution of light elements

into the liquid core as the solid inner core forms. A positive FT is required to maintain

an active dynamo for these cases. In cases where the dynamo is driven by both thermal

and compositional convection, we take the other extreme and assume that all light elements

partition into the liquid outer core as the inner core crystallizes. For these cases, the sum
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of FT and Fx needs to be positive to maintain an active dynamo. Figure 3.2.3 shows the

evolution of FT and Fx, as well as the total buoyancy fluxes for two choices of kc (40 and

80 Wm−1K−1).

The thermal buoyancy flux can reach as high as ∼ 10−6m2s−3 at the beginning of the

evolution (stage i) due to the high level of FCMB (∼ 104Wm−2). As the cooling rate of the

liquid core slowly decreases in stage (iii) (figure 3.2.1(b)), FT gradually decreases as well.

In the absence of chemical buoyancy flux, the dynamo can operate for the entirety of the

simulation (12 Gyr) with kc = 40Wm−1K−1 and for ∼4.5 Gyr with kc = 80Wm−1K−1.

Chemical buoyancy may contribute to sustaining the dynamo in the liquid core if light

elements are expelled from the inner to the outer core during inner core crystallization.

We calculate the chemical buoyancy flux of this planet under the assumption that all light

elements are partitioned into the liquid outer core. As indicated by the brown curves in

both panels of Figure 3.2.3, the inner core starts crystallizing and Fx becomes positive at

∼3 Gyr. In the case where kc = 40Wm−1K−1, the dynamo is always generated in part

by thermal convection, as FT remains positive for the entire simulation. The outer core

buoyancy flux experiences a boost due to the inner core crystallization at ∼3 Gyr. When kc

is 80Wm−1K−1, the dynamo lifetime could increase from ∼4.5 Gyr to over 12 Gyr with the

contribution of chemical buoyancy.

3.3 Magma ocean as an alternative dynamo source

3.3.1 Magma ocean solidification

We first validate our models by comparing the magma ocean’s solidification timescale with

previous work [Lebrun et al., 2013, Solomatov, 2015]. We simulate the magma ocean solid-

ification of an 1M⊕ planet with an Earth-like composition — an iron-dominated core and

silicate mantle with a core mass fraction of 0.33 — following the procedure described in
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chapter 2.

To facilitate the comparison, we run simulations both with and without a degassed at-

mosphere. In the case that considers a degassed atmosphere, we use the same initial water

(4.3×10−2wt%) and CO2 (1.4×10−2wt%) content as Lebrun et al. [2013]. The atmosphere

is treated as a gray emitter and the surface heat flux is calculated using equations 7-9 in

Elkins-Tanton [2008]. The surface heat flux is modified by the emissivity of the atmosphere,

which is a function of the mass of the atmosphere. The evolution of surface heat flux (Fsurf)

and fraction of total mantle mass in the liquid phase (xm =
∫ surf
CMB xdm/Mmantle) with and

without an overlying steam atmosphere are shown in figure 3.3.1.

Following Lebrun et al. [2013], we divide the solidification of magma ocean into three

stages: (i) totally molten stage, (ii) partially molten stage, where the magma ocean starts

solidifying from the CMB to the planet surface, and (iii) mush stage, where a cold thermal

boundary layer starts developing at the surface and the surface temperature approaches the

planet equilibrium temperature (Teq). The totally and partially molten stage corresponds

to stage (i) and the mush stage corresponds to stage (ii) in section 3.2.1.

As shown in figure 3.3.1 (a), stages (i) and (ii) are fairly short ( ∼1 kyrs), when there

is no insulating atmosphere at the planet surface. During these stages, the convection is

extremely vigorous due to the low viscosity of molten silicate, and the surface heat flow

can reach as high as 5× ∼ 105 Wm−2. As the mantle cools down rapidly, the magma

ocean starts solidifying from the bottom and becomes partially molten near the CMB at

∼ 100 years. This partially molten zone quickly expands from the CMB to the surface in

the next ∼1 kyrs and xm drops to around 25% in this time period. After the surface starts

solidifying, the thermal boundary layer at the planet surface starts thickening due to an

increasing local viscosity and the mush stage begins. The solidification of the magma ocean

slows significantly during the mush stage in comparison to the molten and partially molten

stages due to the decreasing Fsurf . The mantle fully solidifies at ∼500 Myr.
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Figure 3.3.1: Evolution of (a) surface heat flow (Fsurf) and (b) fraction of total mantle mass
in the liquid phase (xm) for a 1 M⊕ planet with CMF=0.326 and Teq=255K. Brown curves
are for the case with no atmosphere and blue curves are for the case with a degassed gray
atmosphere with initial water content of 4.3×10−2wt% and CO2 content of 1.4×10−2wt%.
Dotted, dashed and solid curves represent the fully molten stage, the partially molten stage
and the mush stage. Discontinuities at ∼10 Myr are numerical artifacts that appear when
the thermal boundary at the planet surface reaches the thickness of the top cell in the planet
and stops growing.
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Even though we use a different prescription of surface heat flux (equation 2.48) from the

parameterized surface flux used by Lebrun et al. [2013], the lifetimes of totally and partially

molten stages are comparable, ∼1 kyrs. Our result also agrees qualitatively with the magma

ocean crystallization timescale predicted by the scaling law by Solomatov [2015] within an

order of magnitude (∼ 400 years). In addition, our model predicts a similar level of Fsurf

during all three stages of magma ocean solidification as compared to Lebrun et al. [2013],

from ∼ 106 Wm−2 during the totally molten stage to less than 10 Wm−2 during the mush

stage. However, we predict Fsurf to decrease gradually upon entering the mush stage (see

Figure 3.3.1(a)), whereas it has a sudden decrease to ∼10Wm−2 when approaching the mush

stage (see Figure 3(d) in Lebrun et al. [2013]). This is caused by different viscosity models

for partially molten silicate. Lebrun et al. [2013] considers a drastic increase in the viscosity

of the partial melts as the melt fraction decreases to the xcrit = 0.4, whereas we include a

transition function to smooth the abrupt change in the viscosity. As a result, the thermal

boundary layer at the planet surface has an abrupt growth before the start of the mush stage

in Lebrun et al. [2013], whereas it grows gradually for the entirety of the mush stage.

Including a degassed atmosphere during the magma ocean solidification results in a slower

cooling process than when no atmosphere is present. This increases the duration of the to-

tally and partially molten stage to ∼0.3 Myrs and thus delays the mush stage. This result

differs from that predicted by Lebrun et al. [2013] (∼0.2 Myrs when the atmosphere is

treated as a gray emitter) by 50%. We attribute the difference mainly to the different par-

tition coefficients of volatiles in mantle silicate, as we assume all volatiles are degassed into

the atmosphere while Lebrun et al. [2013] considers non-zero partition coefficients. These

illustrative simulations highlight the sensitivity of the magma ocean evolution to the choice

of atmospheric boundary condition. Results presented in this section are qualitatively com-

parable to those of Lebrun et al. [2013] and Solomatov [2015]. This gives our model the

credibility to simulate magma ocean solidification on rocky planets.
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Figure 3.3.2: Time evolution of (a) dynamo source region and (b) magnetic Reynolds number
profiles of the magma ocean for 1M⊕ planet with CMF=0.326 and a degassed gray atmo-
sphere with initial water content of 4.3×10−2wt% and CO2 content of 1.4×10−2wt%. The
dotted line in (b) indicates the threshold above which the region can potentially support a
dynamo.

3.3.2 Dynamo source region in the magma ocean

As explained in section 2.10, a dynamo may be sustained in the magma ocean where Rem

exceeds the critical value of 50. Figure 3.3.2(a) shows the evolution of the dynamo source

region in the magma ocean and figure 3.3.2(b) shows the evolution of the magnetic Reynolds

number profile of a Earth-like case with a degassed gray atmosphere with an initial water

and CO2 content of 4.3×10−2 and 1.4×10−2wt% of mass of Earth’s mantle respectively. At

the very beginning of our simulation, the entire liquid mantle could potentially generate a

magnetic field, with a low viscosity (100 Pa s) and a magnetic Reynolds number (≳ 10000)

well above the dynamo threshold (∼ 50) throughout the entire mantle. As the mantle

becomes partially molten, the melt fraction descends below xcrit starting from the CMB and

moving upward in ∼0.25 Myr. In the region with x < xcrit, the magnetic Reynolds number,

which depends on the convective velocity, is limited by the viscous drag force (with a ∼10

orders of magnitude increase in the viscosity level compared to x > xcrit, equation 2.61) and
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declines below the dynamo threshold. The thickness of the dynamo source region decreases

from over 3000 km to 0 in this time period. Even though the magma ocean does not fully

solidify until ∼500 Myr, the dynamo source in the magma ocean is only viable where the

melt fraction is high enough to allow liquid-like convection. Hence, the dynamo source in

the magma ocean shuts off around the time the solidification front reaches the planet surface

at ∼0.25 Myr.

3.4 Discussion and conclusion

In this chapter, we apply our 1D thermal evolution model coupled with a Henyey solver

to explore the thermal and magnetic history of an Earth-like planet (Mpl = 1M⊕ and

CMF=0.33). In particular, we consider a planet with an MgSiO3 mantle (liquid, enstatite,

bridgmanite and post-perovskite phase) and a iron-dominated core with 10wt% of Si as a

proxy for light elements. The results shown in this chapter serve to validate our modeling

approach and to illustrate the capabilities of our code. In addition, we discuss the possibility

of the liquid core and the magma ocean being a dynamo source region in the interior of the

planet. We summarize the thermal evolution and dynamo source region results here.

Thermal history of the Earth-like case with a low kc predicts a long lasting dynamo driven

by thermal convection alone (∼9 Gyr with kc = 40Wm−1K−1). However, an increasing num-

ber of studies suggest that kc under core conditions is larger, between 70-200 Wm−1K−1[e.g.

de Koker et al., 2012, Inoue et al., 2020, Pozzo et al., 2012, Zhang et al., 2020]. Increasing kc

to 80 Wm−1K−1, we find that thermal convection shuts off after ∼4.5 Gyr, and the dynamo

could only operate if there is compositional buoyancy provided by the inner core solidifica-

tion. If kc in Earth’s core is larger than 80 Wm−1K−1, thermal convection could shut off

before the onset of inner core solidification. As a result, the liquid core could become ther-

mally stratified and the dynamo could not operate. This is not supported by paleomagnetic

evidence that suggests an ancient geodynamo going back 3-4 Gyr [e.g., Bono et al., 2019].
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A systemic study, such as Driscoll and Davies [2023], that explores of uncertainties in core

thermal conductivity, core radiogenic heat production rate, melting curve of the core, lower

mantle viscosity and initial CMB temperature may shed a light on this.

The dynamo source region in the magma ocean is confined to the region where the

melt fraction is above the xcrit. The liquid/solid assemblages in such regions behave like

a liquid and therefore could have a convective velocity great enough to support a dynamo.

In comparison, partially molten silicate with low melt fraction is solid-like. The viscous

drag force dramatically suppresses the convective velocity and the dynamo shuts off. Melt

fraction greater than xcrit is a necessary but not sufficient criterion for Rem ≥ 50 in the

magma ocean.

The magma ocean is unlikely to host a long-term dynamo in an Earth-like exoplanet.

The dynamo could last only ∼0.3 Myr in the Earth-like case with a degassed atmosphere,

which is a negligible fraction of the lifetime of a rocky planet. In addition, our predicted

lifetime of the dynamo in the magma ocean is likely to be an upper limit, as we ignore the

gravitational separation between melt and solid as the magma ocean solidifies. As shown

in Bower et al. [2018], gravitational separation could contribute a positive heat flux in the

partially melt region, which could speed up the solidification of the magma ocean. We will

update our model to properly treat the mass and heat flux associated with gravitational

separation between melt and solid in the future.

The magma ocean could potentially host a long-term dynamo in rocky planets with a

high equilibrium temperature or a sub-Neptune-typed exoplanet. As shown in Zhang and

Rogers [2022], a permanent magma ocean could persist at the surface of a rocky planet, if

its equilibrium temperature is greater than the melting temperature of silicate at the planet

surface. However, planets with such high Teq are likely to be tidally locked and a magma

pond could form on the star-facing side of highly-irradiated tidally locked planets instead of

a global magma ocean [Gelman et al., 2011]. A 1D model like ours is not appropriate in this
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case, as differences and heat transport between the sub- and anti-stellar hemispheres need to

be accounted for to properly simulate their evolution. For sub-Neptune-type exoplanets, if

the H/He envelope is significant enough, the temperature and pressure levels at the surface

of the rocky interior could allow a permanent magma ocean to persist. Our thermal model

for the rocky interior of a sub-Neptune-typed exoplanet needs to be coupled with a thermal

model for the H/He envelope to properly simulate such cases.

59



CHAPTER 4

MAPS OF THE LIFETIME OF THE DYNAMO IN THE LIQUID

CORE
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4.1 Introduction

As stated previously in this thesis, magnetic fields or the lack of one may offer unique

windows into the interior structure and dynamics of exoplanets. Many groups have looked

into whether super-Earths are likely to host a dynamo-generated magnetic field or not.

Previous studies have suggested that it is unlikely for super-Earths to host a dynamo for

various reasons. For example, Valencia et al. [2006] calculated the interior structure of super-

Earths up to 10M⊕ using scaling relations based on the thermal structure of current-day

Earth. They concluded that the cores of super-Earths are likely to be fully solid owing to the

great pressure. Thus super-Earths could not host a dynamo in their cores. Tachinami et al.

[2011], on the other hand, ran a 1D thermal evolution simulation to explore the magnetic

history of super-Earths. However, their model did not include post-perovskite, which has a

lower viscosity compared to bridgmanite, and thus overestimated the viscosity of the lower

mantles of super-Earths. Owing to an overestimated viscosity level in the lower mantles of

super-Earths, Tachinami et al. [2011] predicted elevated temperatures in the lower mantles

and small core-mantle temperature contrasts. As a result, they concluded that the liquid

cores of super-Earths are thermally stratified and cannot host a dynamo.

More recent studies, however, predict that super-Earths are likely to host a dynamo

in their liquid cores. Blaske and O’Rourke [2021] and Boujibar et al. [2020] calculated

thermal structures of super-Earths at a single time in the evolution (a snapshot model), and

determined that the cores of super-Earths have a higher heat loss rate, and thus could host a

dynamo. Groups including Bonati et al. [2021] and Zuluaga et al. [2013] ran parameterized

models (a 0-D approach) to simulate thermal evolution of super-Earths and reached the same

conclusion. However, these studies either focus on super-Earths with Mpl < 5M⊕ or planets

with the same CMF as Earth.

In this chapter, we apply our 1D thermal evolution model coupled with a Henyey solver

to a wide range of rocky planets with Mpl between 1 and 8M⊕ and CMFs between 0.1 and
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0.8. The main goal is to isolate the effect of Mpl and CMF on the thermal and magnetic

history of rocky planets, and determine what combinations of Mpl and CMF could result in

the greatest predicted lifetime for the core dynamo.

4.2 Results for the fiducial case

In this section, we discuss the lifetime of the dynamo in the liquid cores of planets with

various planet masses (between 1 and 8 M⊕) and core mass fractions (between 0.1 and

0.8). We consider two scenarios: one where the dynamo is sustained by thermal convection

alone, and where both thermal and compositional convection contribute. We consider 4

choices of kc to calculate FT and evaluate its effect over the dynamo lifetime, 40, 80, 120

and 160 Wm−1K−1. For the fiducial case, we consider the same model for the viscosity of

MgSiO3 and the same amount of radiogenic heating per unit mass as the representative case

in section 3.2. We discuss the impact of different models of mantle viscosity and amount of

radiogenic heating in the core in sections 4.3 and 4.4. Results for the lifetime of the dynamo

driven by thermal convection alone and by both thermal and compositional convection are

summarized in figures 4.2.1 and 4.2.7.

4.2.1 The lifetime of the dynamo driven by thermal convection

The lifetime of the possible dynamo source in the liquid core is closely related to the lifetime

of thermal convection therein, i.e. the time period for which the liquid iron core exists and

stays convective. In cases where the liquid iron core does not fully solidify, so long as the

liquid iron core is convecting, its magnetic Reynolds number will exceed Rem,crit. This

was argued based on order-of-magnitude reasoning in section 2.10 and is born out in our

simulations (Figure 4.2.1). On the other hand, in cases where the entire core solidifies before

thermal convection stops (i.e., FT > 0 at the time of complete solidification), the dynamo

may shut off shortly before the solidification of the convective liquid core as Lc decreases
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Figure 4.2.1: Maps of lifetime of dynamo in the liquid cores of planets with various Mpl and
CMFs in Gyr. We assume thermal convection as the only driver to maintain dynamo in the
liquid core. Each sub-panel shows dynamo lifetime calculated with various kc (40, 80, 120,
and 160 Wm−1K−1). Contour lines indicate dynamo lifetime in Gyr. Earth-like cases are
represented by ⊕. The predicted dynamo lifetimes for an Earth-like case are over 12 Gyr,
∼5 Gyr, ∼3 Gyr and ∼1.6 Gyr, with kc =40, 80, 120 and 160 Wm−1K−1, respectively.
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and reduces Rem. The difference between the lifetimes of the dynamo and of the thermal

convection in the liquid core is small. For example, for a 8M⊕ planet with a CMF of 0.3,

the lifetime of the dynamo is 6.97 Gyr for all kc considered in our model, while the liquid

convecting core lasts for 7.00 Gyr, a 0.4% difference.

The lifetime of the dynamo increases as Mpl increases and CMF decreases, and starts

decreasing after Mpl reaches ∼ 6M⊕ and CMF reaches ∼ 0.5, as shown in figure 4.2.1. The

planet with Mpl = 6M⊕ and CMF=0.1 has the longest dynamo lifetime out of all simulated

planets, over 12 Gyr for all 4 choices of kc. This trend is due to how three quantities vary as

a function of Mpl and CMF: the core heat loss rate (FCMB), the conductive heat flux along

the core adiabat (Fcond) and the lifetime of the liquid core.

The core heat loss rate is greater for more massive planets with the same CMF, as shown

in Figure 4.2.2. FCMB at 12 Gyr, FCMB,12Gyr, increases from ∼ 0.032Wm−2 for a 1M⊕

planet with CMF=0.3 to ∼ 0.14Wm−2 for a 6M⊕ planet with the same CMF. For this choice

of CMF, FCMB,12Gyr can be described by a power-law scaling relation,

FCMB,12Gyr(Mpl) = FCMB,12Gyr(M⊕)
(
Mpl

M⊕

)0.75

. (4.1)

Similarly, Fcond at 12 Gyr, Fcond,12Gyr, can be described by the same scaling relation with a

power-law exponent of 0.23. The power-law exponent for FCMB is over three times as large as

that for Fcond, indicating that more massive planets are likely to have longer lasting dynamos

sustained by thermal convection in the liquid core, so long as the core does not fully solidify

when thermal convection shuts off. As Figure 4.2.2(b) shows, with kc = 80Wm−1K−1,

the core dynamo sustained solely by thermal convection is still operating for planets with

Mpl = 3− 6M⊕ and CMF=0.3 at t=12 Gyr, while the dynamo in the core no longer exists

for 1 and 2M⊕ planets with the same CMF.

The varying level of FCMB is a consequence of the thermal blanketing effect of the mantle,

namely how much heat can be transported through the lower thermal boundary layer in the
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Figure 4.2.2: Left: time evolution of heat flux at CMB, FCMB, for planets with Mpl = 1M⊕
(orange), 3M⊕ (light brown) and 6M⊕ (dark brown), and CMF=0.3. Dashed curves are the
conductive heat flux along the core adiabat calculated with kc = 80Wm−1K−1, which is the
threshold flux for the liquid core to be convecting. Right: FCMB (solid curve) and Fcond
(dotted curve) at 12 Gyr for planets with various masses and CMF of 0.3.

mantle. Using equation 2.51, we can rewrite FCMB as

FCMB = −k
dT

dr

∣∣∣∣
LM

∼ ∆T
4
3
BL(kρ)

2
3 (cPαg)

1
3 (Racη)

−1
3 , (4.2)

where k, ρ, cP , α, g and η are the thermal conductivity, density, specific heat, thermal

expansion coefficient, gravitational acceleration and viscosity in the thermal boundary in

the lower mantle, ∆TBL and Rac = 660 is the critical Rayleigh number. We use a modified

mixing length theory to model mantle convection, which does not explicitly calculate the

thickness of the thermal boundary layer. Instead, our model computes radial profiles of

conductive and convective heat flow in the mantle. We define the thermal boundary layer

in the lower mantle as the region above the CMB where heat transport is dominated by

conductive heat flow. ∆TBL is the temperature decrease across the thermal boundary layer

in the lower mantle. ρ, α, g and η are mass averaged values in the thermal boundary layer
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in the lower mantle. We consider a constant k and cP for the lower mantle, 10 Wm−1K−1

and 1265 JK−1kg−1 respectively. Following the analysis in Blaske and O’Rourke [2021], we

assume the dependence of ρ, α, g, η and ∆TBL on planet mass obeys the power-law with a

form Xi(Mpl)/Xi(M⊕) = (Mpl/M⊕)xi , where xi is the power-law exponent for the quantity

Xi. Combining all power-law exponents, we have

FCMB(Mpl) ∝
(
Mpl

M⊕

)4
3x∆TBL

+2
3xρ+

1
3 (xα+xg−xη)

(4.3)

We fit the power-law relation to quantities for 1-6M⊕ planets with a CMF=0.3 at 12 Gyr.

The results are summarized in figure 4.2.3. We remind that we exclude 7 and 8M⊕ planets in

this analysis, as the cores of these planets fully solidify at ∼8.8 Gyr and ∼7.0 Gyr. Summing

all power-law exponents in equation 4.3, we recover the power-law exponent for FCMB,12Gyr

in equation 4.1, 0.75. In particular, ∆TBL with a power-law exponent of 0.56 contributes

the most to the increasing FCMB as Mpl grows. Indeed, the difference between the average

mantle and average core temperatures at 12 Gyr increases from ∼2200 K to ∼6300 K as Mpl

increases from 1 to 6M⊕.

Given the same planet mass, the core heat loss rate remains comparable for planets

with various CMFs. For example, FCMB,12Gyr are between 0.07Wm−2 and 0.085Wm−2 for

3M⊕ planets with all CMFs considered in the simulations, as shown in Figure 4.2.4. At the

same time, Fcond grows threefold as CMF increases from 0.1 to 0.8. This is caused by the

steeper adiabatic temperature gradient at lower PCMB of planets with smaller CMFs. As the

threshold flux for maintaining thermal convection and dynamo in the liquid core increases

with increasing CMFs, the lifetime of the dynamo decreases. As indicated by Figure 4.2.4,

with kc = 80Wm−1K−1, the core dynamo driven by thermal convection alone still operates

at 12 Gyr for 3M⊕ planets with CMFs between 0.1 and 0.4, but not for planets with the

same mass and CMFs between 0.5 and 0.8.

Dependence of FCMB on CMF, similar to that on Mpl, is due to the combined effect of
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Figure 4.2.3: How density (ρ), thermal expansion coefficient (α), gravitational acceleration
(g) and viscosity (η) of the thermal boundary layer in the lower mantle, and the temperature
decrease across the thermal boundary layer in the lower mantle (∆TBL) and heat flux across
CMB FCMB at 12 Gyr vary as a function of Mpl. The dots are values calculated using
thermal and structural profiles of planets at 12 Gyr in the simulation. Gray lines show the
best fit power-laws for individual quantities. x is the power-law exponent for each quantity.
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Figure 4.2.4: FCMB (solid curve) and Fcond (dotted curve) at 12 Gyr for planets with various
CMFs and Mpl = 3M⊕.

various thermophysical properties in the thermal boundary layer in the lower mantle. We

assume the dependence of ρ, α, g, η and ∆BL on PCMB follows a power-law relation,

FCMB(PCMB) ∝
(

PCMB

PCMB,CMF=0.8

)4
3x∆TBL

+2
3xρ+

1
3 (xα+xg−xη)

, (4.4)

where PCMB,CMF=0.8 is the pressure level at the CMB for a 3M⊕ planet with CMF=0.8.

We choose PCMB,CMF=0.8 as the reference pressure because the planet with CMF=0.8 has

the lowest pressure at its CMB among all 3M⊕ planets, and PCMB of planets with the same

Mpl increases with decreasing CMF. The fitting results for all five quantities and FCMB are

summarized in Figure 4.2.5. ∆TBL and ρ are two terms that contribute to increasing the

Rayleigh number (Ra) in the lower mantle as PCMB increases, thus resulting in more vigorous

mantle convection. However, their contribution to a more vigorous mantle convection is

cancelled by the increasing in η and the decreasing in g and α as PCMB increases. Thus

FCMB can remain relatively comparable among all CMFs considered in the simulations. We

remind readers that the power-law fit to FCMB is not a perfect fit, as the simple relation
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does not fully capture the complex nature of mantle heat transport. Instead, the relation

highlights the weak dependence of FCMB on PCMB and CMF.

Lastly, the lifetime of the dynamo in the liquid core is limited by the lifetime of the liquid

core for massive planets (Mpl > 6M⊕) with smaller cores (CMF ≲ 0.5). The short lifetimes

of liquid cores of these planets are the result of a high level of FCMB and a low core mass.

As explained above in the section, FCMB increases with growing planet mass. As a result,

the solid inner core is able to grow faster in a more massive planet than in a less massive

one. For Ric/Rc to grow to 0.5, it takes a 1M⊕ planet with CMF=0.3 ∼6.5 Gyr and only

∼2 Gyr an 8M⊕ planet with the same CMF. Further, the thermal energy needs to be lost

by the core for it to fully solidify is more achievable for planets with smaller CMFs. In our

simulations, the cores of 8M⊕ planets with CMFs between 0.1 and 0.5 fully solidify within

12 Gyr and the drop in average core temperatures are all around 19000K. The decreases

in average core temperature from t = 0 to when the core fully solidifies are comparable for

planets with the same mass and various CMFs. However, by simply having a less massive

core, the core in the case with CMF=0.1 becomes fully solid in ∼5.5 Gyr, while it takes the

core in the case with CMF=0.5 ∼9.5 Gyr.

In addition to FCMB, Fcond and the lifetime of liquid core, the thermal and magnetic

history of rocky planets are subject to the thermal conductivity of mantle and core. In

our simulations, we assume a constant thermal conductivity in the lower mantle, kLM =

10Wm−1K−1, and 4 choices of thermal conductivity in the liquid core, kc =40, 80, 120 and

160 Wm−1K−1. With an increasing level of kc, the threshold flux for maintaining a dynamo

driven by thermal convection increases and results in a decrease in predicted lifetime of

the dynamo in the liquid core. For an Earth-like case (Mpl = 1M⊕ and CMF=0.33), the

predicted lifetime of the dynamo is over 12 Gyr, ∼5 Gyr, ∼2.5 Gyr and ∼1.6 Gyr, with

kc =40, 80, 120 and 160 Wm−1K−1.

However, it has been proposed that the thermal conductivity of mantle silicate and
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Figure 4.2.5: Same as Figure 4.2.3, except quantities are shown with respect to PCMB of
3M⊕ planets with CMFs between 0.1 and 0.8. PCMB decreases with an increasing CMF for
planets with the same Mpl.
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liquid iron could increase for massive rocky planets due to the increase in the temperature

and pressure levels [Stamenković et al., 2011]. On one hand, an increase in kLM in massive

rocky planets indicates a greater FCMB than predicted in our simulations, and thus possibly

lengthening the lifetime of the dynamo. On the other hand, an increase in kc in massive

rocky planets indicates that threshold flux for maintaining thermal convection and dynamo

is greater than that of less massive planets. Inclusion of a thermal conductivity consistent

with temperature and pressure levels for both the mantle and the core is left for a future

study.

4.2.2 The lifetime of the dynamo driven by both thermal and compositional

convection

In this section, we explore the effect of including compositional convection on the predicted

lifetime of dynamo in the liquid core of rocky planets. Compositional convection is produced

by light material released at the inner-core boundary. In our simulations, we consider 10%

Si by mass as a proxy for light material in the core. We assume all Si partitions into the

liquid outer core as the inner core solidifies. The lower density of light material compared

to iron provides a buoyancy force that drives compositional convection in the liquid outer

core in rocky planets. To evaluate the lifetime of the dynamo driven by both thermal and

compositional convection, we calculate thermal and chemical buoyancy flux and the sum of

two fluxes needs to stay positive for the dynamo in the liquid core to be active.

Including compositional convection could alter the magnetic history of a planet in various

ways. Figure 4.2.6 shows the evolution of buoyancy fluxes in the liquid core of 1, 2, 5 and 8M⊕

planets with CMF=0.4 and kc = 80Wm−1K−1, and the results indicate when the dynamo

is active for individual planets, with or without the contribution of composition convection.

For an 1M⊕ planet, thermal convection in the liquid core shuts off after ∼2.5 Gyr and the

liquid core becomes thermally stratified (FT < 0). The core starts solidifying at ∼4 Gyr and
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Figure 4.2.6: Evolution of thermal (red curves), chemical (brown curves) and total (blue
curves) buoyancy fluxes for 1, 2, 5 and 8M⊕ planets with CMF=0.4 and kc = 80 Wm−1K−1.
Dashed curves indicate negative thermal buoyancy fluxes, which chemical buoyancy fluxes
need to overcome to sustain dynamos in liquid cores. The evolution ends at 8 Gyr in the
case of 8M⊕ planet when the core fully solidifies.

72



Fx becomes positive. However, Fx is not able to overcome the thermal stratification in the

liquid core due to the low FT , and thus does not lengthen the lifetime of the dynamo in this

case. For the case with Mpl = 2M⊕, Fx starts contributing to sustaining the dynamo at

∼1.8 Gyr and Fb stay positive for the entire simulation of 12 Gyr. Thermal convection shuts

off at ∼10 Gyr and the dynamo is driven by composition convection alone from t = 10 Gyr

to 12 Gyr. For 5 and 8M⊕ planets, the inner cores start solidifying at ∼0.5 Gyr and

∼0.2 Gyr respectively. Both FT and Fx of the two planets stay positive for the remainder of

the evolution, indicating the core dynamo of these two planets are driven by both thermal

and compositional convection. For the 5M⊕ planet, a simulation of a longer time period

than 12 Gyr is required to test if compositional convection may lengthen the lifetime of the

dynamo. For the 8M⊕ planet, the core fully solidifies at ∼8 Gyr, and as a result the lifetime

of the dynamo remains the same with or without considering compositional convection.

Compositional convection lengthens the lifetime of the dynamo in the liquid core, so long

as the total buoyancy flux (Fb = FT + Fx) is positive and the liquid core still exists by the

time Fb reduces to 0. Out of our simulations, a 6M⊕ planet with CMF=0.1 has the greatest

dynamo lifetime, exceeding 12 Gyr for all kc considered. The dynamo lifetime for an Earth-

like case (Mpl = 1M⊕ and CMF=0.33) is over 12 Gyr for kc =40 and 80Wm−1K−1, and

∼6 Gyr for kc = 80Wm−1K−1. When kc = 160Wm−1K−1, the dynamo lifetime for the

Earth-like case is only ∼1.8 Gyr, indicating that an additional amount of radiogenic heating

in the liquid core might be required for an active dynamo at current time.

How the lifetime of the dynamo driven by both thermal and compositional convection

scales with Mpl and CMF is similar to that of the dynamo driven by thermal convection

alone. The lifetime of the dynamo increases as Mpl increases and CMF decreases, and starts

decreasing after Mpl reaches ∼ 6M⊕ and CMF reaches ∼ 0.5. The determining factor is

how fast the core loses heat, i.e. FCMB. A high FCMB indicates a fast growing inner core

and thus resulting in a high Fx (equation 2.57). Given the same CMF, an increase in planet
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Figure 4.2.7: Same as figure 4.2.1, except that the dynamo is driven by both thermal and
compositional convection.
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mass leads to a greater FCMB (as explained in section 4.2.1) and thus a higher Fx. For

example, with CMF=0.4, FCMB at 5 Gyr increases from ∼0.06 Wm−2 to ∼0.45 Wm−2 as

Mpl increases from 1 to 8M⊕, and Fx at the same time increases from 4.77 × 10−13m2s−3

to 1.82× 10−11m2s−3. In addition, Fconv = FCMB − Fcond grows with increasing Mpl and

decreasing CMF, leading to two possible scenarios. In one scenario, FT eventually becomes

negative and it is more attainable for Fx to overcome the negative thermal buoyancy flux in

a more massive planet with a smaller CMF. Therefore, dynamo driven by both thermal and

compositional convection in the liquid cores of massive planets with small CMFs could last

longer. In the other scenario, for the most massive planets with smaller CMFs out of our

simulations (Mpl > 6M⊕ and CMF≲ 0.5), the core fully solidifies before FT could become

negative. Thus, the dynamo lifetime is limited by the age of the liquid core.

4.3 Impact of mantle viscosity on the lifetime of the dynamo in

the liquid core

In this section, we present results of the same grid of planets as in section 4.2 calculated

with a different model of viscosity of post-perovskite. The lifetimes of the dynamo driven by

thermal convection alone and both thermal and compositional convection are summarized

in Figures 4.3.1 and 4.3.2.

Compared to the fiducial case (Figures 4.2.1 and 4.2.7), the dynamo lifetime shown in

Figures 4.3.1 and 4.3.2 exhibits a different dependence on planet mass. Applying the upper-

bound rheology for ppv in the evolution calculation, we find that the 3M⊕ planet with

CMF=0.1 has the longest predicted lifetime of the dynamo driven by thermal convection,

∼8.5 Gyr, ∼8.4 Gyr and ∼6.3 Gyr with kc =80, 120 and 160Wm−1K−1, instead of the 6M⊕

planet with CMF=0.1 using the lower-bound rheology for ppv. When kc = 40Wm−1K−1,

the 2M⊕ planet with CMF=0.1 has the longest predicted dynamo lifetime (over 12 Gyr), as

the dynamo lifetime of the 3M⊕ planet with CMF=0.1 is ∼8.5 Gyr, limited by the lifetime of
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the liquid core. For cases with CMF=0.3, kc = 120Wm−1K−1 and the upper-bound rheology

for ppv, the lifetime of the dynamo driven by thermal convection increases from ∼1.8 Gyr

with Mpl = 1M⊕ to ∼6.2 Gyr with Mpl = 3M⊕. The dynamo lifetime then decreases to

∼0.6 Gyr as Mpl increases to 8M⊕. Including compositional convection as an additional

driver for the dynamo, the predicted dynamo lifetime for cases with the same CMF, kc and

the model for viscosity of ppv could reach ∼1.9 Gyr and ∼12 Gyr with Mpl = 1M⊕ and

3M⊕. The dynamo lifetimes for planets with masses greater than 3M⊕ remain the same with

the addition of compositional convection as the core fully solidifies before thermal convection

shuts off.

The difference in the predicted dynamo lifetime between the fiducial case and the case

presented in this section lies in how viscosities of ppv with upper- and lower-bound rheologies

depend on temperature and pressure. The contour maps shown in Figure 4.3.3 show the

viscosity of ppv with two rheologies. The dashed curve indicates temperature and pressure

levels where two rheologies lead to the same viscosity for ppv. The regions above and below

the curve are temperature and pressure levels where the lower-bound rheology (the fiducial

choice) leads to a higher and lower viscosity for ppv than the lower-bound rheology. For

example, the mantle temperature profile of the 1M⊕ planet with CMF=0.3 is in the lower

region in the viscosity map, and the viscosity at the base of the mantle predicted by the

lower-bound rheology is ∼1 order of magnitude lower than that by the upper-bound rheology.

As a result, the case with the lower-bound rheology for ppv has a higher FCMB than the case

with the upper-bound rheology (∼ 0.22Wm−2 vs ∼ 0.18Wm−2 at 1 Gyr), which leads to a

longer predicted dynamo lifetime. The lifetimes of the dynamo driven by thermal convection

predicted using the lower- and upper-bound rheologies for ppv for this planet are ∼5.4 Gyr

and ∼3.0 Gyr. However, for a 5M⊕ planet with CMF=0.3, the temperature and pressure

levels in the lower thermal boundary layer in the mantle are in the upper region of the

contour map. The lower-bound rheology for ppv predicts a viscosity that is ∼2 orders of
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Figure 4.3.1: Same as figure 4.2.1, except that we consider the lower-bound rheology for the
viscosity of post-perovskite [Tackley et al., 2013].
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Figure 4.3.2: Same as figure 4.2.1, except that the dynamo is driven by both thermal and
compositional convection.
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magnitude higher than the upper-bound rheology. For this planet, the case with the upper-

bound rheology for ppv has a higher FCMB than the case with the lower-bound rheology

(∼ 1.87Wm−2 vs ∼ 0.88Wm−2 at 1 Gyr). FCMB for the case with the upper-bound rheology

is high enough such that the core fully solidifies in ∼3.28 Gyr, which shuts off the dynamo.

In contrast, the liquid core could persist for over 12 Gyr in the case with the lower-bound

rheology.

4.4 Impact of radiogenic heating in the core

Radiogenic heating in the core provides extra energy for magnetic field generation, in addition

to the leftover energy from planet formation as well as latent heat and gravitational energy

release due to inner core growth. Radiogenic heating could decrease the rate at which the

core temperature decreases, thus extend the time period for which the CMB heat flux stays

above the threshold heat flux for maintaining thermal convection and core dynamo. The

exact effect of radiogenic heating in the core on the thermal and magnetic history of rocky

planets depend on how much radiogenic elements can partition into the metallic core during

planet formation.

The exact amount of radiogenic heating in the core of Earth remains unclear. For K,

experimental studies and ab initio calculations suggest that its concentration in Earth’s core

could be between 25 ppm and several hundred ppm [Gessmann and Wood, 2002, Murthy

et al., 2003, Hirao et al., 2006, Watanabe et al., 2014, Blanchard et al., 2017, Xiong et al.,

2018]. In the fiducial case, we consider ∼140 ppm of K in the core of rocky planets. This

value is motivated by the Earth-like case presented in Chapter 3, which requires ∼140 ppm

of K in its core to match the present inner core size and maintain dynamo action with

kc = 80Wm−1K−1. To quantify the effect of radiogenic heating in the core on the thermal

and magnetic history of rocky exoplanets, we compute the thermal history of the same grid

of rocky planets as presented in section 4.2 with zero radiogenic heating in the core and
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Figure 4.3.3: Viscosity of post-perovskite (ppv) in Pa s calculated based on upper- and
lower-bound rheology of ppv [Tackley et al., 2013]. Contour lines indicate the log base 10
of viscosity in Paṡ. Dashed curve indicates temperature and pressure levels where both
rheologies produce the same viscosity for ppv. Regions below and above the dashed curve
indicate temperature and pressure levels where the lower-bound rheology produces lower and
higher viscosity respectively than the upper-bound rheology does. Dark blue, pink, yellow
and brown curves are the temperature profiles of the mantle in ppv phase at 12 Gyr for 1,
2, 3 and 5M⊕ planets with CMF=0.3.

80



Figure 4.4.1: Time evolution of (a) temperature at the CMB, (b) radius of the solid inner
core and (c) heat flux at the CMB for a 1M⊕ planet with CMF=0.33 and two levels of
radiogenic heating in the core. Red and blue curves represent cases with a current day
radiogenic heating of 1 TW (the fiducial choice) and 0 in the core.

compare the results to the fiducial case.

Figures 4.4.1 (a) and (c) show the decline in temperature at the CMB and growth of

solid inner core for an Earth-like case (Mpl = 1M⊕ and CMF=0.33). Figure 4.4.1 (b)

shows the change in FCMB of the same planet. Compared to the fiducial case (red curves

in figure 4.4.1), the lack of radiogenic heating in the core leads to an overall cooler core

throughout the evolution; at 4.5 Gyr, TCMB is 124 K cooler (3912 K vs 4036 K). The onset

of the inner core solidification is earlier by ∼1.33 Gyr compared to the fiducial case, and the

predicted inner core radius at 4.5 Gyr is ∼500 km thicker (∼1350 km vs ∼1850 km). With

a cooler core in the case with zero core radioactivity, the temperature contrast between the

core and the mantle is smaller, which leads to a lower FCMB. For example, we predicted

FCMB to be ∼0.07 and ∼0.056 Wm−2 at 4.5 Gyr for the fiducial case and the case with

no radiogenic heating in the core. As a result, the core dynamo shuts off earlier in the case

with no radiogenic heating in the core. With a kc of 80 Wm−1K−1, the dynamo driven by

only thermal convection shuts off at ∼4.5 Gyr and ∼2.9 Gyr for the fiducial case and the

case with no radiogenic heating in the core. As the rate of radiogenic heat production in

the core decays exponentially over time, the difference in the thermal structure of the core
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between two cases continues to decrease. The differences in the predicted TCMB, Ric and

FCMB between two cases reduce to ∼46 K, ∼106 km and ∼0.0027 Wm−2.

In addition, we run simulations for 3M⊕ planets with various CMFs and two levels of

radiogenic heat production rate in the core to illustrate the effect of core radioactivity on the

thermal and magnetic history of rocky exoplanets. Results are summarized in Figure 4.4.2.

Similar to the Earth-like case described above in this subsection, less and more radiogenic

heat production in the core result in lower and higher FCMB, larger and smaller solid inner

cores, as well as shorter and longer ages of the core dynamo.

Given the same concentration of potassium in the cores of various planets, the total

radiogenic heat production in the core increases with increasing CMFs. For example, the

rates of radiogenic heat production in the core of 3M⊕ planets with CMF=0.1 and 0.8 at

4.5 Gyr are ∼39 TW and ∼309 TW. As a result, the impact of radiogenic heat production in

the core on the age of the core dynamo is more prominent for planets with higher CMFs than

those with lower CMFs. When kc = 120Wm−1K−1, the difference in the lifetimes of the core

dynamo with two levels of radiogenic heat production in the core increases from ∼0.83 Gyr

to ∼1.23 Gyr with CMF increasing from 0.1 to 0.8. The behavior of FCMB as a function

of CMF is complicated, because of the competing effect of Qrad,c as an additional power to

elevate FCMB and the changes in the core-mantle temperature contrast. The former effect

alone tends to elevate FCMB more with increasing CMF. However, a greater level of Qrad,c

tend to heat up the mantle more in cases with higher CMFs due to their smaller mantle mass,

which would decrease the core-mantle temperature contrast. As shown in the top panel of

Figure 4.4.2, the difference in FCMB at 10 Gyr has a maximum at CMF=0.6. The difference

in Ric at 10 Gyr is the smallest for the case with CMF=0.8, despite of having the greatest

radiogenic heat production in the core, as shown in the middle panel of Figure 4.4.2. This is

due to the slope of the melting curve of the core. The melting curve of the core is less steeper

for planets with lower CMFs and the same Mpl because of a lower pressure level in the cores
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Figure 4.4.2: Thermal and magnetic results for 3M⊕ planets with various CMFs and 2 levels
of radiogenic heat production in the core, the fiducial case with ∼140 ppm of potassium and
another case with no radiogenic heating in the core. Top panel: FCMB at 10 Gyr. Blue
solid and dashed curves represent cases with ∼140 ppm of potassium and no radiogenic heat
production in the core. Black curve indicates the difference in FCMB between two cases.
Middle panel: same as the top panel but for Ric. Bottom panel: ages of core dynamo with
4 levels of kc and two levels of radiogenic heat production in the core. The lifetime of the
core dynamo is capped at 12 Gyr.
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of these planets. Hence, for the same decrease in TCMB, Ric increases more in planets with

lower CMFs. For example, at 10 Gyr, Ric would increase by ∼2.97 km as TCMB by 1 K in

the 3M⊕ planet with CMF=0.1, and by ∼1.2 km in the 3M⊕ planet with CMF=0.8.

The exact amount of radiogenic heating in the iron-dominated core of rocky exoplan-

ets depends on the abundance of radioactive elements in the host stars, planet composition

and the planet formation process. In particular, the stellar abundance limits the maximum

amount of radiogenic elements that could be present in the planet. The partitioning of radio-

genic elements between the silicate mantle and iron-dominated core depends on temperature,

pressure and the oxygen fugacity of the mantle [e.g., Wilson et al., 2023]. The results shown

in this section is a simple exercise to isolate the effect of radiogenic heat production in the

core and explore its impact on the thermal and magnetic history of rocky planets quantita-

tively. A systematic study of radiogenic heat production for a range of planets with different

masses, CMFs and compositions is left for the future.

4.5 Conclusion

We developed a 1D thermal evolution model coupled with a Henyey solver to study the effect

of planetary mass and core mass fraction on the thermal history of and possible dynamo

source regions in exoplanets. We extended the modified mixing length theory and applied it

to model the convective heat flow within 1- and 2-phase regions in the silicate mantle. Here,

we offer a summary on the thermal evolution and dynamo source region results.

1. The heat loss rate of the core, FCMB, is predicted to increase with increasing planet

mass. In cases where the convection shuts off before the liquid core fully solidifies,

the predicted lifetime of the core dynamo increases with increasing planet mass, due

to elevated levels of FCMB. In cases where the liquid core where fully solidifies before

convection shuts off, the lifetime of the dynamo is limited by the age of the liquid core.

The predicted lifetime of the core dynamo decreases with increasing planet mass, as
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the solid core grows faster due to the elevated FCMB.

2. Given the same planet mass, the heat loss rates of cores in planets with various CMFs

are comparable. However, more heat can be transported in the liquid cores in the

form of thermal conduction in cases with higher CMFs, owing to steeper adiabatic

temperature gradients at the CMB of these planets. Hence, convection tends to shut

off earlier in planets with higher CMFs, resulting in shorter predicted lifetimes of the

core dynamo for these planets.

3. Varying the thermal conductivity of iron, kc, within its uncertainty range may change

the lifetime of the dynamo in the liquid core. For example, for a 3M⊕ planet with

a CMF of 0.4, the lifetime of the core dynamo driven by thermal convection alone

decreases from over 12 Gyr to ∼11.5 Gyr, ∼8 Gyr and ∼5.5 Gyr when kc increases

from 40 Wm−1K−1 to 80 Wm−1K−1, 120 Wm−1K−1 and 160 Wm−1K−1. However,

the dynamo lifetime is limited by the age of the liquid core in cases where the liquid

core fully solidifies before convection shuts off. Thus varying kc in this case has no

effect on the dynamo lifetime.

4. Mantle viscosity is the most uncertain thermophysical property in our model. The

predicted lifetime of the core dynamo sensitively depends on the choice of the model

for mantle viscosity. For example, with lower-bound rheology for post-perovskite (the

fiducial choice), the lifetime of the core dynamo driven by thermal convection is ∼8 Gyr

with kc = 120Wm−1K−1 for the case with Mpl=3M⊕ and CMF=0.4. However, the

lifetime reduces to ∼5.5 Gyr with the upper-bound rheology for post-perovskite. Some

recent studies suggest that mantle viscosity in large rocky planets may be low at depth,

as post-perovskite dissociates into MgO and MgSi2O5. The exact viscosity of this

mixture depends on the volumetric fraction of MgO. Experimental and/or numerical

study of the viscosity of such a mixture at extreme pressure levels (> 0.9 TPa) will be

85



necessary to improve predictions of the thermal and magnetic history of large rocky

exoplanets.

5. More and less radiogenic heat production in the core results in longer and shorter

lifetime of the core dynamo respectively. For example, with kc = 120Wm−1K−1,

the predicted lifetimes of the core dynamo for a 3M⊕ planet with a CMF of 0.4 are

∼7.86 Gyr and ∼6.85 Gyr for cases with ∼140 ppm and no potassium in the core.

However, the exact abundance of radiogenic elements in the core depends on their

abundance in host stars, partitioning of these elements between the metallic core and

the silicate mantle, as well as planet formation history.

The thermal and dynamo histories of rocky planets are subtle and complex. In this

work, we isolate the effect of planet mass and core mass fraction on planet thermal and

magnetic history. We also conduct a simple exercise to quantify the effect of uncertainty in

mantle viscosity and radiogenic heat production in the core on the predicted dynamo lifetime.

In addition, the model can be readily extended to enable a broader exploration of planet

parameter space by including additional EOSs for other bulk compositions, investigating

various atmospheric boundary conditions, and considering different convection regimes (e.g.,

mobile-/sluggish-lid convection). Ultimately, we aim to develop the code presented here

into a premier modeling tool to help guide and interpret observational searches for strong

planetary-scale magnetic fields on low-mass exoplanets.
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CHAPTER 5

FUTURE WORK
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In this chapter, we discuss various ways to further improve the current thermal evolution

model for exoplanets and a few directions we can utilize the model to study planet evolution.

We provide a brief description of these ideas in the rest of the chapter.

5.1 Dynamo source region in sub-Neptunes

A decade of space-based exoplanet searches have revealed that the most common planets

in the galaxy are ones with mass smaller than Neptune (sub-Neptunes) and larger than

Earth (super-Earths) [e.g., Borucki et al., 2011, Thompson et al., 2018]. Moreover, these

planets have been resolved into two distinct sub-populations: sub-Neptunes seem to have

an extended gaseous envelope, while super-Earths are primarily rocky with a negligible gas

envelope.

The next major advance in our thermal model is to incorporate the effect of a primordial

H/He envelope. The goal is to simulate the concomitant thermal evolution of both the gas

envelope and the rock interior to explore the possibility of the planet hosting a dynamo

source in its iron-dominated core and/or magma ocean. On one hand, the gas envelope may

impede the convection in the core and cause the dynamo action to stop; on the other hand,

the temperature and pressure conditions may be such that silicates near the interior/envelope

boundary are molten and thus the magma ocean could host a dynamo. In particular, we

will consider two scenarios: 1) a simple case of 3 distinct layers (iron-dominated core/silicate

mantle/gas envelope); 2) a case allowing mixing between rock and volatiles. One application

of the new thermal model is to interpret the magnetic field detection of a Neptune-sized

exoplanet, HAT-P-11 b [Ben-Jaffel et al., 2022], and constrain the geometry of its dynamo

source region.
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5.2 Dynamo source region in lava planets

Lava planets are exoplanets with extremely high equilibrium temperature and their rocky

surface melts into a magma ocean. These are one of the best candidates of terrestrial

planets for which detailed characterization is currently feasible with the James Webb Space

Telescope, and they provide unique opportunities to learn about magma oceans via remote

sensing rather than geophysical modelling. These planets are expected to be tidally locked,

which results in a permanent day-side with surface temperature exceeding 2000 K and a

permanent night-side with a temperature of several hundred kelvin.

Magnetic fields could be important for the atmosphere of lava planets because thermal

ionization ensures that the atmosphere is tightly coupled to the planetary magnetic field.

At the very least, this leads to magnetic drag (slower winds) and ohmic dissipation (local

warming of the atmosphere); in more extreme cases the atmospheric dynamics could be the

realm of magnetohydrodynamics. As an initial exploration of the possibility of these planets

hosting a dynamo, we will couple two 1-D models, one for the day-side hemisphere and the

other one for the night-side hemisphere. The boundary conditions at the top of the two 1D

columns would reflect the temperatures of the day- and night-side. The two 1-D models for

the iron-dominated core would be shared, as temperature gradients along the core mantle

boundary is small.

5.3 Mantle minerology of rocky exoplanets

As an initial step to assess the dependence of the lifetime of core dynamo on Mpl and CMF,

we assumed a 1:1 Mg/Si ratio and ignore possible pressure induced phases of silicate beyond

post-perovskite. In addition, we considered no other elements such as Al, Ca and Fe in the

mantle. However, the exact composition of mantles in exoplanets should reflect those of the

host stars and planet formation processes. By adopting EoSs for various compositions, we
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will be able to explore the impact of various mantle compositions on mantle dynamics and

planet magnetic history. Here, we list a few of these possible effects.

The thermal and magnetic history of a planet are strongly influenced by its radial vis-

cosity profile, which is determined by the rheological properties of the constituent minerals.

Adopting two end-member rheologies for post-perovskite predicted by Ammann et al. [2010]

and Tackley et al. [2013], we demonstrated the impact of the uncertainty in mantle viscosity

could have on the predicted lifetime of the core dynamo in rocky planets. Mantle composi-

tion may add additional uncertainty to mantle viscosity estimates. In general, oxides such

as MgO and FeO are weaker than silicates. It has been proposed that Ca- and Mg-post-

perovskite could dissociate into (Mg,Ca)O and (Mg,Ca)Si2O5 between 600-900 GPa, and

MgSi2O5 could further dissociate into MgO and SiO2 at ∼2.1 TPa [Umemoto and Wentz-

covitch, 2011]. As a result, the viscosity of the deep mantle of rocky exoplanets may decrease

as planet mass increases, owing to the increasing volume fraction of oxides. An accurate de-

scription of viscosity of mantle silicate with various compositions will be necessary to further

improve our prediction in the planet thermal history and dynamo lifetime.

As the magma ocean solidifies, Fe and trace elements could exsolve into the magma ocean

and affect the mantle dynamics. The new solid that forms at the solid/liquid boundary at

later times during the solidification has a higher concentration in Fe and the trace elements,

which would influence its density. This may lead to a gravitationally unstable density profile

with denser material at the top compared to the bottom of the solid mantle. Consequently,

cold dense material may sink to the bottom of the mantle and light material may float up.

The mass transfer may transport additional heat from the deep interior to the surface in

addition to convective heat transfer considered in our model. We need a realistic compo-

sitional model coupled with our thermal evolution model to study the feedback between

mantle dynamics and chemical compositions.
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