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ABSTRACT

Plants are colonized by a diverse community of bacteria, fungi, and other microorganisms.

This community, or microbiome, impacts numerous plant traits including growth rate, re-

productive yield, abiotic stress tolerance, and disease resistance. Disentangling the processes

that govern plant microbiome assembly will provide insight into plant-microbe interactions

and reveal strategies to effectively engineer microbiomes to achieve ecological or agricultural

goals.

In this dissertation, I explored microbiome assembly processes in Arabidopsis thaliana

from several angles, First, I evaluated if plant pattern recognition receptors, one arm of

the plant immune system, affect plant microbiome structure in the field. These receptors

detect microbe-associated molecular patterns (MAMPs), which are prevalent across diverse

microbial taxa and trigger a broad-spectrum antimicrobial response that regulates micro-

bial growth in single microbe infections. I found that the loss of MAMP-detecting pattern

recognition receptors had little effect on the structure of bacterial and fungal communities

residing within the tissues of A. thaliana, despite evaluating several tissue types over four

developmental stages. Next, I tested if disease induced by two native bacterial pathogens,

Pseudomonas syringae NP29.1a and Pseudomonas viridiflava RMX3.1b, altered resistance

phenotypes in future generations of A. thaliana. In contrast to previous work that used high

intensity infections, I found no evidence that these native pathogens triggered transgener-

ational induced resistance; bacterial growth and disease symptoms were not significantly

different between plants derived from lineages with or without historic pathogen exposure.

Finally, I explored how microbial dispersal affects plant and soil microbiome assembly. Using

a synthetic bacterial community in a closed, peat-based microcosm, I found that variation

in bacterial through-soil dispersal rates significantly affected microbiome structure in both

plants and soil for more than five weeks. Bacterial dispersal patterns generated pervasive,

long-lasting priority effects over time and spatial scales highly relevant to plants in the field.

xx



Together, this dissertation provides a deeper understanding of plant-microbe interactions

and the forces that influence microbiome assembly. This work demonstrates the challenges of

predicting plant interactions with complex microbial communities and/or native pathogens

using results obtained from high-intensity, single-microbe infections. Thus, to understand

plant microbiome assembly and function, experiments in the field, or experimental designs

that mimic conditions in the field, are required. Additionally, I found that bacterial dispersal

has a substantial impact on plant and soil microbiome assembly, illustrating that microbial

dispersal dynamics warrant increased consideration in microbiome studies.
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CHAPTER 1

INTRODUCTION

Plants are colonized by diverse microbial communities comprised of bacteria, fungi,

oomycetes, and other microorganisms. This community, or microbiome, is composed of

beneficial, commensal, and pathogenic microbes. The microbiome inhabits the intercellu-

lar space within plant structures (endosphere), the external surfaces of roots (rhizoplane)

and aerial tissues, and the soil immediately surrounding the roots (rhizosphere). The mi-

crobiome influences numerous plant traits including growth (Vessey, 2003), phenology (Lau

and Lennon, 2011; Wagner et al., 2014), abiotic stress tolerance (Rodriguez et al., 2008), and

disease resistance (Vannier et al., 2019). Disentangling plant microbiome assembly rules will

deepen our understanding of forces impacting plant ecology and evolution, and guide efforts

to engineer plant microbiomes to improve crop performance.

In this dissertation, I investigate plant microbiome assembly rules from several angles.

In recent decades, there have been considerable efforts to delineate the processes govern-

ing microbiome assembly. Abiotic conditions, soil type, host effects, and microbe-microbe

interactions all shape plant microbiome structure (Hassani et al., 2018; Fitzpatrick et al.,

2020; Sohrabi et al., 2023). Defining the causative agents underlying these observations,

such as the specific plant genes and traits that cause host effects, is an active area of re-

search. Importantly, even when all of the factors above are considered, significant portions

of microbiome variation observed in the field remain unexplained, suggesting other relatively

unexplored community assembly processes such as microbial dispersal patterns (Vannette

and Fukami, 2017; Debray et al., 2022) and ecological drift (Ramoneda et al., 2020) are

important components of plant microbiome assembly.
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1.0.1 Community ecology in the plant microbiome

Community assembly processes that have long been studied in macroscopic communities

of plants and/or animals are an excellent starting point to investigate microbiome assem-

bly. Vellend (2010) groups the mechanisms underpinning community assembly into four

classes: selection, dispersal, drift and speciation. In Vellend’s (2010) conceptual synthesis,

the processes governing ecological community assembly are analogous to the forces affecting

population genetics, but act at the level of species rather than alleles within populations.

There is evidence that all four community assembly processes, selection, dispersal, drift,

and speciation, act on microbial communities. Selection acts on the fitness disparities be-

tween different species (Vellend, 2010). For example, microbe-microbe interactions in the

plant rhizosphere could determine the relative abundance of species observed in a commu-

nity (Durán et al., 2018). Dispersal, or the movement of individuals across space, determines

if and when a given species arrives to a microbial community. Studies have demonstrated

that reducing global microbial dispersal rates affects microbiome composition (Vannette and

Fukami, 2017). Ecological drift is defined as the random fluctuation of species’ population

sizes (Hubbell, 2001; Vellend, 2010), and can be an important determinant of plant mi-

crobiome structure variation in some systems. For example, ecological drift is sufficient to

explain a large portion of variation in rooibos root nodule microbiomes when grown in wild

soil collected from several locations (Ramoneda et al., 2020). The final assembly process is

speciation, or the generation of new species. Interestingly, evolution and speciation may play

an observable role in microbial community assembly because many bacteria have short gen-

eration times and a high capacity for rapid evolution through both mutation and horizontal

gene transfer. Importantly, selection, dispersal, drift and speciation do not act in isolation;

these processes interact in complex ways to structure ecological communities. For example

the arrival order and timing of a species to a community (dispersal) can affect the outcome

of species interactions (selection) (Chase, 2003). This phenomenon, called priority effects,
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has been observed in many ecological systems and can have long-term effects on community

structure (Fukami, 2015). In this dissertation, I investigate how two community assembly

processes, selection acting on microbes and microbial dispersal, affect members of the plant

microbiome and overall assembly patterns in the model plant, Arabidopsis thaliana.

1.0.2 Study system

A. thaliana is an excellent model to explore plant microbiome assembly processes both in

controlled laboratory experiments and in the field. A. thaliana is an annual plant native to

Europe and Asia that was introduced to North America several hundred years ago (O’Kane

and Al-Shehbaz, 1997). In the Midwestern United States, A. thaliana germinates in the fall,

overwinters as rosettes, and then flowers and produces a large seed set in the spring. A.

thaliana typically self-pollinates and has a relatively small, diploid genome (The Arabidop-

sis Genome Initiative, 2000). Overall, its rapid lifecycle, copious seed set, small genome,

and large, public repositories of genetic mutants (e.g. the Arabidopsis Biological Resource

Center) make A. thaliana a powerful genetic tool. In nature, A. thaliana hosts a complex

microbiome (Kniskern et al., 2007; Traw et al., 2007; Bodenhausen et al., 2013; Horton et al.,

2014; Beilsmith et al., 2021; Brachi et al., 2022). Importantly, many of the bacterial species

that associate with A. thaliana can be cultured, which allows experimental reconstruction

and manipulation of these communities in a laboratory setting, (Kniskern et al., 2007; Traw

et al., 2007; Bodenhausen et al., 2013; Bai et al., 2015), as A. thaliana grows well in many

conditions, including several sterile growth systems. Throughout this dissertation, I capital-

ize on these useful traits to investigate the role of plant genetics and microbial dispersal in

plant microbiome assembly.
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1.0.3 Selection and dispersal in plant microbiome assembly

Selection on the plant microbiome can be divided into three primary categories: abiotic

conditions, host-effects, and microbe-microbe interactions. There are examples of all three

of these factors contributing to plant microbiome structure. Abiotic conditions such as

temperature, humidity, soil salinity, phosphorus availability and drought impact microbiome

composition (Cheng et al., 2013; Castrillo et al., 2017; Naylor et al., 2017; Santos-Medelĺın

et al., 2017; Berens et al., 2019; Chen et al., 2020; Karasov et al., 2022). The plant also

exerts host-specific effects on microbiome assembly. Microbiome structure varies by plant

species (Naylor et al., 2017; Tkacz et al., 2020; Wippel et al., 2021), genotype within species

(Bulgarelli et al., 2012; Lundberg et al., 2012; Horton et al., 2014; Bergelson et al., 2019;

Brachi et al., 2022), and tissue type within each individual plant (Bodenhausen et al., 2013;

Beilsmith et al., 2021). Finally, both laboratory- and field-based experiments have revealed

that microbe-microbe interactions structure plant microbiomes (Agler et al., 2016; Hassani

et al., 2018; Durán et al., 2018; Bergelson et al., 2019; Brachi et al., 2022). In Chapter 2 and

3, I investigate how host effects, specifically two arms of the plant immune system, impact

endosphere microbiome members and community assembly. In Chapter 4, I investigate how

microbial dispersal dynamics affect microbiome assembly and impact selection by the host

and/or microbe-microbe interactions.

Microbial dispersal likely plays a pivotal role in plant microbiome assembly (Vannette

and Fukami, 2017; Baltrus, 2020; Custer et al., 2022). Dispersal patterns can influence

microbiome structure by determining which microbes reach the plant and the timing of

their arrival. Indeed, priority effects have been experimentally demonstrated to affect plant

microbiome structure, although this is largely limited to artificial regulation of microbial

arrival order (Toju et al., 2018; Carlström et al., 2019; Debray et al., 2022, but see Boynton

and Peterson, 2019 for natural variation in fungal dispersal affecting microbiome structure).

Despite the putative importance of microbial dispersal in community assembly, natural vari-
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ation in microbial dispersal rates is largely unexplored (Barbour et al., 2023). Furthermore,

it is unknown if dispersal rate variation in microbes is likely to generate priority effects, and

if they do, if they have transient or long-term consequences on plant microbiome structure.

In Chapter 4, I address these questions by exploring the effect of bacterial dispersal on plant

microbiome assembly using a synthetic bacterial community in a closed microcosm.

1.0.4 Chapter summaries

The three chapters in my dissertation investigate different components of plant microbiome

assembly with experiments in natural and controlled settings. Exploring microbiome assem-

bly from multiple angles is necessary to fully comprehend how plant-associated communities

establish. Together, these chapters paint a more complete picture of microbiome assembly

rules in A. thaliana.

In Chapter 2, I test how one arm of plant immunity, pattern recognition receptors (PRRs)

that detect widespread, non-self microbe associated molecular patterns (MAMPs), affect

endophytic bacterial and fungal microbiome assembly in A. thaliana in the field. Four

lineages of A. thaliana with a knockout mutation in a MAMP-detecting PRR (fls2, efr, lore

and lyk4 ) were planted alongside congenic wild-type plants in the field in Southwest Michigan

in Fall 2017. Plants germinated in the fall and overwintered as rosettes, as is typical for local

A. thaliana populations. Several tissue types (roots, rosettes, stems, cauline leaves, flowers,

and siliques) were collected at four developmental stages (vegetative, flowering, immature

siliques, and mature siliques). The endophytic microbiomes of each tissue were characterized

by sequencing the 799F-1193R region of 16S rRNA and the ITS1 region of the internal

transcribed spacer to target bacteria and fungi, respectively. I found little effect of PRR

knockout on endophytic microbiome assembly. β-diversity of fungal microbiomes were subtly

shifted in lore mutants compared to wild-type plants in one developmental stage, suggesting

that in addition to its characterized role detecting bacterial lipids, LORE may function in
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regulating plant-fungal interactions. Bacterial communities were unaffected by the loss of

any PRR tested. I speculate that PRRs work in collectives, are maintained through epistasis

or are important in regulating specific plant-pathogen and/or plant-beneficial interactions

rather than generally structuring the commensal microbiome.

In Chapter 3, I investigate if two natural pathogens isolated from A. thaliana in the

field trigger transgenerational induced resistance phenotypes. Post-doctoral fellow Jacob

Herman infected A. thaliana with Pseudomonas syringae NP29.1, P. viridiflava RMX3.1b,

a co-infection of the two bacteria, or no bacteria over two generations. I challenged the

uninfected, third-generation progeny of these lineages with either P. syringae NP29.1 or

P. viridiflava RMX3.1b and measured microbial growth and disease symptoms. I found no

evidence of transgenerational induced resistance; infections in previous generations had no

effect on bacterial growth or disease symptoms induced by infection in either trial. This

suggests that the intensity of most pathogen encounters in A. thaliana are insufficient to

trigger transgenerational induced resistance, and are thus unlikely to affect microbial growth

in future generations.

In Chapter 4, I tested how microbial dispersal affects microbiome assembly in A. thaliana

using a bacterial synthetic community (SynCom) in a closed microcosm. With the help of

several undergraduates, I generated a complex, synthetic bacterial community of 83 isolates

from the rhizospheres of wild-grown A. thaliana. I also developed a closed, sterilized-peat

microcosm to test the effect of bacterial movement through soil on microbiome assembly. A.

thaliana was planted at one end of the microcosm and bacteria were released using each of two

inoculation methods. The first method required the SynCom to move through the microcosm

to colonize the plant, and was achieved by inoculating the SynCom into the soil on the

opposite side of the microcosm from the plant. In contrast, in the other inoculation method,

the SynCom was evenly distributed throughout the microcosm, including directly onto plant

tissues, and thus no movement was necessary to reach the plant. Community assembly in
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plant tissues and the soil was characterized by sequencing a fragment of DNA gyrase B

over the course of five weeks. I found that both plant and soil microbiomes were affected

by microbial dispersal treatment and that these effects persisted for at least five weeks.

Further experiments revealed that differences in plant microbiome structure were largely

due to widespread priority effects. Priority effects in soil community assembly had several

important effects. I found that increasing distance from the inoculation site augmented

the disparity between the inoculation site community and the colonized site community.

Interestingly, several microbial species that persisted in the inoculation site were unable to

colonize distant sites in both the soil and plant when released as part of a SynCom, despite

being able to colonize the soil microcosm when released alone. Thus, I inferred that priority

effects in soil communities generated “biological barriers” that effectively prevented some

bacteria from dispersing through the soil and colonizing the plant. Additionally, my work

demonstrates a large range of motility rates across bacterial isolates.
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CHAPTER 2

MICROBE-ASSOCIATED MOLECULAR PATTERN

RECOGNITION RECEPTORS HAVE LITTLE EFFECT ON

ENDOPHYTIC MICROBIOME ASSEMBLY IN

A. THALIANA IN THE FIELD

The content of this chapter was published as: Oldstone-Jackson, Caroline; Huang, Feng; and

Bergelson, Joy. Microbe-associated molecular pattern recognition receptors have little effect

on endophytic Arabidopsis thaliana microbiome assembly in the field. Frontiers in Plant

Science, (2023).

2.1 Introduction

Plants closely associate with complex microbial communities composed of bacteria, fungi,

oomycetes, and other microorganisms. This community, or microbiome, colonizes the soil

surrounding the roots (rhizosphere), external plant surfaces, and the spaces within plants

(endosphere). The microbiome affects plant growth (Vessey, 2003), phenology (Lau and

Lennon, 2011; Wagner et al., 2014), abiotic stress tolerance (Rodriguez et al., 2008) and

disease resistance (Vannier et al., 2019). These observations have sparked a major effort

to engineer plant microbiomes to improve crop yields and tolerance to abiotic and biotic

stress, thus reducing dependency on chemical fertilizers and pesticides and increasing crop

resiliency to the mounting challenges of climate change. To harness the microbiome to

achieve these agricultural goals, the rules governing plant microbiome assembly processes

must be elucidated.

Plant microbiomes are primarily composed of microbes derived from the environment.

Only a subset of environmental microbes associate with plants, suggesting that selective

filtering processes prevent certain microbes from joining the plant microbiome (Bulgarelli
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et al., 2012; Lundberg et al., 2012; Vorholt, 2012). Numerous factors, including abiotic

conditions, microbe-microbe interactions, and host effects, underpin this selective filtering

(Fitzpatrick et al., 2020). Selectivity typically increases in the endosphere; the microbial

communities within plant tissues are generally less diverse than those of external plant sur-

faces (Bulgarelli et al., 2012; Lundberg et al., 2012; Bodenhausen et al., 2013; Coleman-Derr

et al., 2016; Chen et al., 2020; Mina et al., 2020). This filtering effect is also tissue-specific

(Beilsmith et al., 2021) and host genetics likely play a role in filtering environmental mi-

crobes, as plant microbiomes are typically more similar within species than between species,

even when grown in common environments (Naylor et al., 2017; Tkacz et al., 2020; Wippel

et al., 2021). Within-species genotype can also affect microbiome composition (Bulgarelli

et al., 2012; Lundberg et al., 2012; Horton et al., 2014; Brachi et al., 2022).

How are microbes selected from the environment during colonization of plant tissues?

The plant immune system is an obvious candidate, as host-microbe interactions often involve

the host’s immune system. The plant immune system recognizes non-self and modified-self

molecules via two main classes of receptor proteins (Jones and Dangl, 2006; Dodds and

Rathjen, 2010). One class, transmembrane pattern recognition receptors (PRRs), detects

microbe-associated molecular patterns (MAMPs) and endogenous signals caused by damage

to plant cells, known as damage-associated molecular patterns (DAMPs). MAMPs are non-

self molecules commonly found across broad taxonomic classes of microbes that contribute

to microbial fitness in numerous environments, such as flagellin, elongation factor Tu, chitin,

peptidoglycan, and lipid metabolites (Boller and Felix, 2009; Tang et al., 2017; Kutschera

et al., 2019; Schellenberger et al., 2021). Indeed, genomic surveys reveal that most, if not all,

plant-associated bacteria produce immunogenic MAMPs (Garrido-Oter et al., 2018; Teixeira

et al., 2019). In addition to PRRs, plants employ Resistance (R) receptors to detect effectors,

molecules secreted by microbes to suppress plant immunity and/or manipulate the plant

environment to promote microbial growth (Cui et al., 2015). R proteins can also detect the
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modified plant targets of these effectors.

Upon detection of MAMPs, plants respond with a multifaceted response including ion

fluxes, reactive oxygen species bursts, and massive transcriptional reprogramming (Boller

and Felix, 2009; Macho and Zipfel, 2014). This response, pattern-triggered immunity (PTI),

moderates pathogen growth and is thought to control the majority of plant-microbe inter-

actions (Hacquard et al., 2017). If R proteins are stimulated in conjunction with PRRs, the

plant can generate an amplified immune response called effector-triggered immunity (Jones

and Dangl, 2006). While PTI can generate robust immunity independently of effector-

triggered immunity, effector-triggered immunity requires PTI to mount meaningful resistance

(Ngou et al., 2021; Yuan et al., 2021). Furthermore, PTI and effector-triggered immunity

can have systemic, long-term effects on plant physiology by inducing systemic resistance

(Mishina and Zeier, 2007; Pieterse et al., 2014). This causes distal, unexposed tissues to

exhibit enhanced resistance to pathogen infection; a phenotype that can persist over many

weeks and potentially into future generations (Luna et al., 2012).

Since MAMPs of numerous microbes are reactive with plant PRRs (Yu et al., 2019) and

PTI is a central component in plant immune responses that affect microbial growth, MAMP-

detecting PRRs may affect the structure of plant microbiomes. Experimental evidence from

plant-microbe pairs supports the hypothesis. For example, single knockouts of many well-

characterized plant MAMP-detecting PRRs in A. thaliana allow increased pathogen growth

and/or increased disease severity (Zipfel et al., 2004; Wan et al., 2008; Nekrasov et al., 2009;

Willmann et al., 2011; Wan et al., 2012; Ranf et al., 2015), likewise, transforming plants with

non-native PRRs can reduce pathogen growth and disease symptoms (Lacombe et al., 2010;

Liu et al., 2021). In addition to suppressing pathogen growth, plant PRRs can also mediate

the interaction between plants and beneficial microbes. For example, plant beneficial Bacillus

velezensis requires PTI induced by the PRR EF-TU RECEPTOR (EFR), which detects a

small fragment of bacterial elongation-factor Tu, to efficiently colonize the A. thaliana root
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surface (Tzipilevich et al., 2021). Similarly, beneficial arbuscular mycorrhizal fungi requires

stimulation of the PRR OsCERK1, which detects fungal chitin, to effectively colonize rice

(Miyata et al., 2014).

Although MAMP-detecting PRRs clearly regulate the interactions of many plant-microbe

pairs, how they sculpt the complex plant microbiome is less clear. In a complex community,

the effect of the plant immune system on a given microbe may depend on the activity of

other community members, including immunosuppression (Ma et al., 2021; Teixeira et al.,

2021). Furthermore, plants respond in a distinct manner to particular types of MAMPs

(Vetter et al., 2016). The baseline expression of MAMP-detecting PRRs and their down-

stream signaling pathways depends on the PRR in question, tissue type and developmental

stage (Millet et al., 2010; Wan et al., 2012; Wyrsch et al., 2015; Rich-Griffin et al., 2020;

Emonet et al., 2021; Verbon et al., 2023), thus the influence of PRRs on microbiome assembly

may be specific to the present MAMPs and localized within an individual plant. Experi-

ments evaluating the role of MAMP-detecting PRRs in A. thaliana microbiome assembly

using synthetic microbial communities have yielded mixed results. Colaianni et al. (2021)

found that root and shoot microbiomes were depleted in bacteria carrying immunogenic

versions of the MAMP flagellin compared to microbial communities in surrounding agar.

On the other hand, lab-based studies using complex synthetic communities rarely observe

differences in microbiome structure in MAMP-detecting PRRs knockout lines compared to

wild-type plants (Bodenhausen et al., 2014; Chen et al., 2020; Wippel et al., 2021; Wolinska

et al., 2021). However, the synthetic communities used in these experiments were derived

from microbes that closely associate with wild-type plants, potentially bypassing the filtering

of environmental microbes mediated by PRRs. Other greenhouse-based experiments found

evidence of small effects of PRRs on plant microbiome structure using soil collected from

the field (Wolinska et al., 2021; Fonseca et al., 2022). Fonseca et al. (2022) found that A.

thaliana fls2 mutant plants, which are unable to detect an epitope MAMP derived from
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flagellin, assembled distinct rhizosphere communities compared to wild-type plants, but the

rhizospheres of other PRR knockout lines (efr and cerk1, respectively) were indistinguishable

from wild-type plants. Wolinska et al. (2021) found minor changes in endophytic (within

tissue) bacterial root communities in the triple fls2 efr cerk1 mutants compared to wild-

type plants. Curiously, the triple mutant bak1 bkk1 cerk1, with dysfunctional coreceptors of

these PRRs, had no apparent effect on bacterial community structure. Additionally, exper-

iments using wild-soil and a synthetic community derived from the wild soil identified only

partially overlapping PRRs/PRR coreceptors as important factors in structuring microbial

communities (Wolinska et al., 2021).

Several key questions remain concerning the role of PRRs in microbiome assembly. When

exposed to the immense microbial diversity present in the field, do MAMP-detecting PRRs

modulate microbiome structure? If so, is the effect specific to certain tissues or developmental

stages? To address these questions, we grew wild-type A. thaliana Columbia-0 and four

single knockout lines of MAMP-targeting PRRs, fls2, efr, lore and lyk4, in the field in

southwest Michigan. Mutant plants were prevented or impaired from detecting various

well-characterized MAMPS: epitopes from bacterial flagellin or elongation factor-Tu, certain

bacterial lipids (medium-chain 3-hydroxy fatty acids and 3-hydroxyalkanoates), or fungal

chitin (Table 2.1). Mutant lines were also previously shown to affect the growth of at least

one microbe (Zipfel et al., 2004; Nekrasov et al., 2009; Wan et al., 2012; Ranf et al., 2015).

Surface sterilized seeds were planted in flats filled with field soil in Fall 2017. Flats were

placed into the field, where plants germinated, overwintered as rosettes, and bolted in the

spring as is typical for local, wild A. thaliana. At four developmental stages (Vegetative,

Flowering, Unripe Siliques, Ripe Siliques) all present plant tissues, including roots, rosettes,

stems, cauline leaves, flowers, and siliques (seed pods), were harvested. We characterized

the endophytic microbiome of each tissue because the microbial filtering effect is strongest

in internal plant spaces. This experiment reveals a comprehensive picture of if, when, and
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where MAMP-detecting PRRs influence A. thaliana endosphere microbiome structure in the

field.

Receptor Name MAMP detected
Microbes

affected
References

FLAGELLIN-SENSITIVE 2

(FLS2)

flg22 epitope from

flagellin
bacteria Zipfel et al. 2004

EF-TU RECEPTOR (EFR)
elf18 epitope from

EF-Tu
bacteria

Zipfel et al. 2006,

Nekrasov et al. 2009

LIPOOLIGOSACCHARIDE-

SPECIFIC REDUCED

ELICITATION (LORE)

medium-chain

3-hydroxy fatty

acid metabolites

bacteria

Ranf et al. 2015,

Kutschera et al.

2019, Schellenberger

et al. 2021

LYSM-CONTAINING

RECEPTOR-LIKE KINASE 4

(LYK4)

chitin/ ?
fungi/

bacteria
Wan et al. 2012

Table 2.1
Pattern recognition receptors evaluated in this experiment. Knockout lines of
each of these receptors was planted in the field alongside wild-type plants. Bacterial and
fungal microbiome composition was characterized across tissues and developmental stages.

2.2 Methods

2.2.1 Plant Materials

Wild-type A. thaliana Columbia-0 (Col-0) and four PRR T-DNA insertion lines in the Col-0

background were used. The mutants lore (SAIL 857 E06) and lyk4

(WISCDSLOX297300 01C) were obtained from the Arabidopsis Biological Resource Center.
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fls2 (SALK 141277) was a gift from J. Greenberg and efr (SALK 044334) was a gift from S.

Robatzek. All lines were previously confirmed to be null mutants and affect microbial growth

in planta (Zipfel et al., 2004; Zipfel et al., 2006; Nekrasov et al., 2009; Wan et al., 2012; Ranf

et al., 2015). Mutant lines were confirmed homozygous mutants by T-DNA amplification

with the primers listed in Appendix 6.2.1.

2.2.2 Study site and planting

The field experiment occurred from October 2017 - May 2018 at the University of Chicago

Warren Woods Ecological Field Station in southwest Michigan (41.837155, -86.631). Seeds

were surface sterilized with 50% bleach and stratified in sterile DI water for three days at

4◦C. In late September, soil was collected from the field site and sifted with a 2 mm sieve

to remove large debris. 36-cell flats were filled with the sifted soil and soil was soaked with

tap water. A plastic washer was placed in the center of each cell to mark target plants,

and a single stratified seed was pipetted into the center of the washer. Plant genotypes

were randomized across flats. Flats were placed in shallow holes in the field site and spaces

between each cell loosely packed with soil. Drainage holes in the bottom of each cell allowed

contact with the surrounding soil. Until the first true leaves emerged, flats were covered

with plastic domes during rainstorms to prevent seeds from washing away, but otherwise left

uncovered. Flats were initially watered daily with tap water for several weeks if required.

In total, 35 flats with 1250 plants (250 replicates of each genotype) were planted. Plants

germinated and overwintered as rosettes as is typical for local A. thaliana populations.
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2.2.3 Sample collection and processing

Stage Tissues Present Harvest Dates n

Vegetative root, rosette
March 9-10,

2018
40 (8 per genotype)

Flowering
root, rosette, stems,

cauline leaves, flowers

April 21-23,

2018
40 (8 per genotype)

Unripe

Siliques

root, rosette, stems,

cauline leaves, flowers,

immature siliques

May 6-15, 2018
90 (17-19 per

genotype)

Ripe Siliques

root, rosette, stems,

cauline leaves, flowers,

immature siliques, mature

siliques

May 15 - 23,

2018
40 (7-9 per genotype)

Table 2.2
Tissues and developmental stages harvested. Plants were harvested in sets of five
(one of each genotype). Developmental stages were defined as follows: Vegetative = no
reproductive tissues, Flowering = flowers present, but no siliques present, Unripe Siliques
= siliques present but immature, Ripe Siliques = at least some are ripe siliques are present.

Five soil samples spanning the experimental plot (the four corners and the center) were

collected each day plants were harvested. Flame-sterilized tweezers were pressed 5 cm deep

into the soil to extract a narrow core. Soil cores were placed into plastic storage tubes and

immediately frozen at -80◦C.

Plants tissues were randomly selected for harvesting at several developmental stages

described in Table 2.2. Plants were harvested in sets of five (one of each genotype) and

immediately processed. Siliques of each plant were counted if present. Excess soil was

removed by gently patting roots with a flame-sterilized metal spatula. Roots and aerial
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tissues were separated with a flame-sterilized razor blade and placed into a 50 mL conical

tube with 25 mL of surfactant buffer (6.33 g NaH2PO4·H2O, 16.5 g Na2HPO4·7H2O, per 1 L,

autoclaved then 200 µL Silwet L-77 added) (Lundberg et al., 2012). Epiphytes were removed

based on protocols described in Lundberg et al. (2012) and Perisin (2016). Briefly, tubes

were vortexted for 15 seconds, transferred to a fresh tube of buffer, and vortexed again for

15 seconds. Any remaining clumps of soil attached to plant tissues were removed by gently

rinsing with additional surfactant buffer and/or using flame-sterilized tweezers. Aerial plant

parts were separated using a flame-sterilize razor blade. The entire plant was retained, and

replicate parts were combined into a single tube (e.g. all cauline leaves of an individual were

combined into a single sample). Separated plant parts were transferred to fresh tubes of

surfactant buffer; large plant parts in 50 mL conical tubes (25 mL surfactant buffer) and

small plant parts in 1.7 mL Eppendorf tubes (1 mL surfactant buffer) and sonicated for total

of 5 minutes with 30 second on/off cycles. Plant parts were transferred to storage tubes and

immediately placed at -80◦C until further processing. If samples were too large to fit into a

single tube, they were spread across additional tubes.

2.2.4 Spike-in sequences and design

Plasmids containing synthetic sequences that coamplify with ITS1 region of the fungal inter-

nal transcribed spacer region were acquired from Addgene (Tkacz et al., 2018), and synthetic

sequences that coamplify the 799F - 1193R region of 16S were designed in-house (Appendix

6.7). Plasmids were grown in E. coli and purified using QIAGEN MiniPrep kits. Known

amounts of purified plasmid were added to the initial PCR reaction to allow absolute quan-

titation of microbial load across samples as described in (Tkacz et al., 2018).
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2.2.5 DNA extraction

Sample preparation and DNA extraction was performed as in (Perisin, 2016). Briefly, sam-

ples were lyophilized (LABCONCO FreeZone 4.5), weighed, and randomized across plates.

Negative controls (TES: 10 mM Tris-Cl, 1 mM EDTA, 100 mM NaCl) and a synthetic con-

trol community composed of 10 microbes (ZymoBIOMICS Microbial Community Standard,

D6300) were included in each extraction plate. Samples were homogenized by bead beating;

2-3 sterilized 2.3 mm silica beads were added to each tube, and samples were homogenized

over two, 2.5 minute cycles at 1750 RPM (2010 Geno/Grinder, SPEX). Samples that were

not adequately homogenized were subjected to additional bead beating cycles using several

2.3 mm steel beads and/or manual grinding. Samples were suspended in TES at 0.05 mg

sample per µL, with a minimum volume of 250 µL TES. Samples were homogenized once

more at 1750 PRM for 2.5 minutes, and DNA was extracted using a double enzyme digest,

chloroform/isopropanol precipitation (Perisin, 2016, Appendix 6.1.1).

2.2.6 Mutant confirmation

After DNA extraction, each plant sample from the field was tested to confirm it matched the

expected genotype using T-DNA insert amplification with the primers listed in Appendix

6.2.1. Only plants that were the expected genotype were included in the downstream analysis.

If samples appeared heterozygous for the T-DNA insertion (likely due to well-to-well cross-

contamination), they were excluded from the analysis.

2.2.7 Library preparation and sequencing

Amplicon libraries were generated using KAPA HotStart HiFi PCR kits (Roche), with cus-

tom Illumina primers with inline barcodes (Appendix 6.2.2). Briefly, in the first amplification

round, the V5-V7 region of 16S ribosomal gene (Bodenhausen et al., 2013) or ITS-1 (Horton

et al., 2014) were amplified (Appendix 6.3). PCR products were purified with magnetic beads
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(Appendix 6.1.2) and indexed with custom Illumina MiSeq indexing primers (Appendix 6.3,

Tables 6.13 & 6.12, Appendix 6.2.2, Table 6.4). PCR products were bead purified and

quantified with Quant-iT PicoGreen dsDNA kits (Invitrogen) according to manufacturer’s

instructions (3 µL PCR product in 200 µL total volume per sample). PCR products were

pooled based on nucleic acid concentration and concentrated (SpeedVac, ThermoFisher).

Concentrated pools were size selected between 200-700 bp on a 1.5% agarose gel to remove

primer dimers (BluePippin, Sage Science). Size selected libraries were bead purified and

library quality was assessed with a Bioanalyzer (High Sensitivity DNA, Agilent). Final

libraries were sequenced on an Illumina MiSeq with a v3 2x 300 kit with ∼ 12% PhiX.

2.2.8 Data processing

Raw FASTQs were initially demultiplexed using the MiSeq onboard bcl2fastq2 software.

Primer sequences were trimmed using cutadapt (paired 5’ primers, e=2.0, minimum length

= 100 for both reads) (Martin, 2011). Each MiSeq run was processed separately until

chimera removal, after which libraries of the same amplicon were pooled. For 16S libraries,

truncation length and maximum expected error for DADA2 were determined using FIGARO

on untrimmed reads (Sasada et al., 2020). ITS1 libraries were not trimmed. Reads were

filtered, inferred, and merged using DADA2 (merging = minimum 40 bp overlap) (Callahan

et al., 2016). Runs within amplicon type were combined and chimeras were removed with

DADA2 (method = pooled). Sequences were classified to the genera level with Naive Bayes

classifiers custom-built with python scikit-learn in QIIME2 (Bolyen et al., 2019). The 16S

classifier was built using the SILVA-138 database (Quast et al., 2013), and the ITS1 classifier

was built using the UNITE database (version 8) (Nilsson et al., 2018). Taxonomic trees were

generated using MAAFT in QIIME2 (Bolyen et al., 2019).

Spike-in sequences were identified by BLAST alignment in QIIME2. Reads mapping to

E. coli TOP10 16S sequence were removed from the analysis, as this strain was used to grow
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the plasmid carrying the spike sequence. Downstream analysis was performed in R (R Core

Team, 2022) using the phyloseq package unless otherwise noted (McMurdie and Holmes,

2013).

2.2.9 Microbial load analysis and scaling for absolute quantitation

For overall load and absolute quantitation, only samples that had 20% - 80% spike reads of

the total reads were considered to improve accuracy (Tkacz et al., 2018). Experimental read

counts were then scaled by the amount of spike-in sequences recovered using the following

equation:

Experimentalscaled = Experimentalraw × Spikemedian

Spikesample
(2.1)

where Experimentalraw are the number of experimental (non-spike) reads in the sample,

Spikemedian is the median count of spike reads across the data set and Spikesample is the

number of spike reads in the sample.

2.2.10 Quality filtering

For all community composition analyses using 16S and ITS1 data sets, samples with less than

500 reads were discarded. Amplicon sequence variants (ASVs) with less than 10 reads across

the entire data set were also discarded. Senescent siliques were excluded from downstream

analyses because their low biomass frequently resulted in poor DNA yields and representation

in microbiome data set.
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2.2.11 α-diversity

Data was repeatedly rarefied to account for read depth variation (Cameron et al., 2021).

Sampling depth was determined by analyzing rarefaction curves generated with the vegan

package (Oksanen, 2021). Each data set was rarefied by sampling without replacement

(sample depth: 16S = 1380, ITS1 = 751) 100 times. Shannon Diversity (Shannon, 1948)

and Pielou’s Evenness (Pielou, 1966) was calculated after each iteration of raregying for

16S and ITS1 data using the microbiome package in R (Lahti and Shetty, 2017). Faith’s

Phylogentic Distance corrected for species richness (Faith, 1992) was also calculated for the

16S data set using picante (Kembel et al., 2010). The mean α-diversity of each sample after

100 iterations was used in downstream analysis (Cameron et al., 2021).

Statistical analysis of α-diversity was performed using 3-way permutational ANOVA

(Manly, 2007) using the following model where all terms interact:

AlphaDiversity = Tissue ∗ Stage ∗Genotype (2.2)

2.2.12 Defining the core microbiome

As is typical for plant-associated microbiome data from the field, most ASVs present in the

data set were very rare (Bodenhausen et al., 2013; Horton et al., 2014; Beilsmith et al.,

2021; Brachi et al., 2022). To effectively compare microbial communities to one another, we

limited our β-diversity analyses to the core microbiome. We defined the core microbiome

in three ways. Core A represents a global plant endophyte core, spanning all plant parts

and developmental stages. ASVs with at least 0.5% relative abundance in four or more

samples across the data set were retained. Core B represents a core compiled from tissue

and stage specific communities, since tissue type and developmental stage affects microbiome

composition of A. thaliana at our field site (Beilsmith et al., 2021). Samples were separated

by tissue type and stage score, and ASVs with ≥ 1% relative abundance in at least 20% of

20



samples in at least one subset were retained. Finally, the Indicator Core was composed of

ASVs enriched in the plant compared to the surrounding soil, determined by the indicspecies

package (De Cáceres and Legendre, 2009).

2.2.13 β-diversity analysis

Sample depth variation: rarefying

Filtering levels Transformation methods Diversity metrics

Core A Repeat rarefy Bray-Curtis

Core B Repeat rarefy, spike-in scaled Jaccard

Indicator Core Weighted Unifrac*

Compositionality: log ratio transformations

Filtering levels Transformation methods Diversity metric

Core A Robust center log ratio Euclidean (Aitchison)

Core B Additive log ratio (spike-in scaled)

Indicator Core

Table 2.3
Data filtering, transformations, and diversity metrics used in β-diversity analysis. Each
factorial combination of core type, data transformation and diversity metric were
compared. Core A: Retained ASVs with at least 0.5% relative abundance in four or more
samples across the data set. Core B: Retained ASVs with at least 1% relative abundance
in at least 20% of samples within one or more tissue by stage subset (i.e. rosettes at the
vegetative stage). Indicator Core: Retained ASVs significantly associated with the plant
compared with the surrounding soil. *Weighted Unifrac used in 16S analysis only.

β-diversity, or measures of (dis)similarity between communities was assessed to determine

the extent that experimental factors (tissue, stage, and genotype) influence community com-

position. Numerous combinations of core filtering procedures, data transformations, and
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β-diversity indices were completed (summarized in Table 2.3).

Two broad classes of transformations methods, rarefying and log ratio transformations,

were applied to the data sets. Each transformation method was applied to each core mi-

crobiome (as previously defined), which then was analyzed with the appropriate distance

metric(s).

Rarefying

Sample depth varies over three orders of magnitude in these data sets. To mitigate the

spurious correlations generated by read depth variation, we repeat rarefied the ASV table

100 times (sample depth: 16S = 1380, ITS1 = 751) (Cameron et al., 2021). The mean

ASV table from 100 rounds of rarefying was used in downstream analyses. The rarefied

table was filtered according to different core definitions described previously. For absolute

abundance analyses, ASV counts were scaled using the ratio of spike-in reads to the total

sample reads. Bray-Curtis Dissimilarity (Bray and Curtis, 1957), which uses an abundance-

weighted presence/absence metric to measure community dissimilarity, and Jaccard Index

(Jaccard, 1912), which only uses presence/absence information to compare communities,

were calculated on for 16S and ITS1 data sets using vegan (Oksanen, 2021). Weighted

UniFrac (Lozupone et al., 2011), which incorporates both the abundance of and phylogenetic

distance between each taxa was calculated for 16S data only using QIIME2 (Bolyen et al.,

2019). Since UniFrac uses phylogenetic tree branch lengths to determine the phylogenetic

relatedness between taxa, it cannot be used on ITS data reliably.

Log ratio transformations

We also used β-diversity analyses appropriate for compositional data sets (Quinn et al., 2019)

in parallel with the transformations described above. Transformations included the robust
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center log ratio (rCLR) (Martino et al., 2019) and additive log ratio (ALR) (Aitchison, 1986).

For rCLR transformations, core microbiomes were scaled to the median read depth before

transformation. For ALR calculations, core microbiomes ASV counts were scaled by the

number of spike reads within the sample. The Euclidean distances between log-transformed

communities were used for downstream cluster analyses (Quinn et al., 2019).

Statistical analysis of β-diversity metrics

The factors influencing microbiome community structure in all resulting distance matrices

were evaluated using PERMANOVA (Anderson, 2017) with the adonis2 function in vegan

(Oksanen, 2021), using the equation:

Distance ∼MiSeqRun : Plate+ Tissue ∗ Stage ∗Genotype (2.3)

where plate nested in MiSeq run is considered a random effect, and tissue, stage, and

genotype are fixed effects in a three-way interaction.

2.2.14 Differential abundance

Differential abundance analysis was performed using ANCOM-BC2 (Lin and Peddada, 2020).

Untransformed (raw counts) core microbiomes were analyzed in ANCOM-BC2. The effect

of genotype was tested with the model:

Abundance ∼ Tissue+ Stage+Genotype (2.4)

We also manually tested the interactions between genotype, stage and tissue. To accom-

plish this, the data were subsetted by tissue, stage, and tissue by stage, and the data was

reanalyzed for a genotype effect.
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2.2.15 Within genotype microbiome dispersion

To test if microbiome community structure was equally variable within different genotypes,

the genotype group dispersion was calculated using PERMDISP2 (Anderson et al., 2006),

implemented using the betadisper and permutest functions in vegan Oksanen (2021). This

analysis was applied to distance matrices generated by all microbiome cores, transformation

methods, and β-diversity indices generated in previous sections. Additionally, dispersion

was evaluated in a minimally filtered data set to capture variability derived from rare com-

munity members. Since PERMDISP2 can only be applied to models with a single factor,

we evaluated the dispersion of different genotype across all tissues and stages, as well as

the genotype within stage, tissue, and tissue within stage to test for an interaction between

genotype and other fixed factors.

2.2.16 Microbiome variation within individual plants

We tested if microbiomes derived from different tissues of the same individual plant were

more similar to one another in PRR knockout lineages compared to wild type plants. Three

different tissue subsets were analyzed: 1) all tissue types (roots, rosettes, stems, cauline

leaves, flowers, and siliques) to cover the possible scope of within-plant tissue variation (lim-

ited to the final developmental stages) 2) roots and rosettes only to allow all developmental

stages to be assessed and 3) all aerial tissues except siliques, because above-ground selective

pressures are highly distinct from below-ground pressures. Only individual plants with all

relevant tissue types present in the data set were considered in each subset.

After selecting appropriate samples, distance matrices were generated using Bray-Curtis

dissimilarity. The betadisper function was used to ordinate these data and calculate the

distance between the median community of individual plant and each its associated tissues

(Oksanen, 2021). The mean of these distances used to quantify tissue similarity within

individuals. A permutational ANOVA was used to determine the influence of stage and
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genotype on within individual community similarity with the following equation:

MeanDistanceToMedian ∼ Stage ∗Genotype

2.2.17 Early fitness analysis

Two fitness proxies for vegetative biomass and seed output (Violle et al., 2007) were assessed:

rosette dry weight (vegetative biomass) and silique count (seed production). Rosette dry

weight and siliques counts were measured during sample processing as described in section

2.2.3. Plants were harvested before all siliques emerged, thus this assay assessed only early

fitness. As expected, rosette dry weight typically correlated with total silique count (Figure

2.1).

Figure 2.1
Rosette dry weight significantly correlates with silique count in week 31 and
week 32. Pearson correlation of rosette dry weight and silique counts by plant age in
weeks. Week 31, n=30, R2=0.55, p=0.002; week 32, n=88, R2=0.81, p<0.001; week 33,
n=8, R2=0.67, p=0.07.

25



2.3 Results

2.3.1 A single PRR knockout does not affect endophytic microbiome

α-diversity

Endophytic microbiomes appear to actively filter environmental microbes (Bulgarelli et al.,

2012; Lundberg et al., 2012; Wippel et al., 2021) As front-line mediators of plant-microbe

interactions, MAMP-detecting PRRs may contribute to this effect. We tested if the endo-

sphere microbiomes of PRR mutant plants had increased α-diversity, which could indicate

less plant selectivity. We calculated Shannon Diversity (Shannon, 1948) on rarefied 16S and

ITS1 data sets and Faith’s Phylogenetic Distance scaled for species richness (Faith, 1992) on

the rarefied 16S data set. To account for data loss from rarefying, this process was repeated

100 times and the mean diversity score was used in statistical analyses (Cameron et al.,

2021). There was no difference between PRR knockouts and wild-type plants in bacterial

or fungal Shannon diversity (three-way permutational ANOVA, p > 0.05; Figure 2.2, Sup-

plemental Tables 2.4 and 2.5) or the Faith’s phylogenetic distance of bacterial communities

(three-way permutational ANOVA, p > 0.05; Supplemental Figure 2.9, Supplemental Tables

2.4 and 2.5). Tissue type, developmental stage, and the interaction between these factors

affected α-diversity (Supplemental Tables 2.4 and 2.5). We also considered the possibility

that MAMP-detecting PRRs preferentially filter high-growth, pathogenic microbes. If PRR

knockout allows previously excluded pathogens to infiltrate and then dominate the micro-

biome, community evenness - the distribution of abundances of the species in the community

- may be affected. However, we did not find any support for this supposition; Pielou’s even-

ness in bacterial and fungal microbiomes is indistinguishable between PRR knockouts and

wild-type plants (three-way permutational ANOVA, p > 0.05; Supplemental Figure 2.10,

Supplemental Tables (2.4 and 2.5).
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Figure 2.2
No significant effect of PRR knockout on Shannon diversity of bacterial or
fungal microbiomes. PRR knockouts efr, fls2, lore, and lyk4 do not have significantly
different Shannon diversity than wild-type plants of A) bacterial or B) fungal communities,
either as a main effect (permutational ANOVA, p > 0.05) or in interactions with tissue and
stage (permutational ANOVA, p > 0.05; Supplemental Tables 2.4 and 2.5).

2.3.2 A single PRR knockout has a small effect on fungal, but not

bacterial, endosphere microbiome composition

We then asked if PRRs affected the β-diversity of endosphere microbiome composition. We

evaluated the significance of genotype, tissue type, and developmental stage on core endo-

sphere microbiome structure using several different approaches to target different features of

β-diversity (Table 2.3). PRR knockout had a small effect on endophytic fungal communities

and interacted with developmental stage (Fig. 2.3, Bray-Curtis, R2 = 0.0044, p < 0.05,

Supplemental Table 2.8), although this effect was detected in only some β-diversity metrics

(Supplemental Tables 2.8 2.9). Post-hoc analyses revealed that genotype affected endo-

sphere fungal communities in the Unripe Siliques and Ripe Siliques stages (PERMANOVA,

p < 0.05 and p < 0.05, respectively). Pairwise comparisons showed that lore knockouts had
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statistically different fungal communities than wild-type plants in the Ripe Siliques stage

(Bray-Curtis, wild-type vs. lore pairwise PERMANOVA within the Ripe Siliques devel-

opmental stage, R2 = 0.015, p < 0.05). This was surprising because LORE detects some

bacterial lipids (Ranf et al., 2015; Kutschera et al., 2019; Schellenberger et al., 2021), but

has no documented effect on fungi. However, it is possible that LORE has a yet undoc-

umented interaction with fungal MAMPs - other PRRs detect multiple elicitors and affect

plant interactions with both fungi and bacteria (Willmann et al., 2011; Wan et al., 2012).

Alternatively, the bacterial microbiome has been shown to strongly influence fungal micro-

biome structure (Durán et al., 2018); if LORE transiently affected the bacterial community,

this may have had cascading effects on the fungal microbiome. Other notable but statisti-

cally insignificant differences in fungal community composition between wild-type and PRR

knockouts include lore in the Unripe Siliques stage and lyk4, a chitin-responsive PRR, in

the Ripe Siliques stage (Bray-Curtis, pairwise PERMANOVA: R2 = 0.0081, p = 0.069 and

R2 = 0.041, p = 0.067, respectively). Finally, genotype effects were only detectable on

the ITS1 ASV level (data not shown). In contrast, genotype had no effect on bacterial β-

diversity across all core communities, transformation methods and diversity metrics (Figure

2.3, PERMANOVA, R2 = 0.005, p > 0.05, Supplemental Table 2.6 and 2.7). Additionally,

genotype had no effect on bacterial community composition at higher taxonomic levels (data

not shown). Considering all of the β-diversity analyses together, we found that PRRs have

little effect on endosphere microbiome β-diversity as effects were limited to a single genotype

and developmental stage within the fungal microbiome.

We next evaluated if any bacterial or fungal ASVs were differentially abundant between

wild-type and PRR knockout lineages using ANCOM-BC2 (Lin and Peddada, 2020). No

bacteria or fungi were differentially abundant when genotype was considered across the

entire data set, nor when genotype was tested within tissue, developmental stage, or tissue

by stage subsets (ANCOM-BC2, p > 0.05).
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Figure 2.3
PRR knockout has subtle effects on the Bray-Curtis β-diversity of endophytic
fungal microbiomes, but not bacterial microbiomes. Principle Coordinate Analysis
(PCoA) of Bray-Curtis distances between bacterial (A) or fungal (B) microbiomes. (A)
PRR mutations, denoted by color, do not explain community variation in Bray-Curtis
distances in endophytic bacterial communities as a main effect or as an interaction with
tissue and/or stage (PERMANOVA, p > 0.05). (B) PRR genotype had subtle effects on
Bray-Curtis distance but this effect is not obvious on primary PCoA axes (PERMANOVA,
R2 = 0.005, p < 0.05). In accordance with previous work at this field site, tissue type
(represented by shape) had the strongest effect on community composition (Beilsmith
et al., 2021, PERMANOVA, bacteria: R2 = 0.183, p < 0.05; fungi R2 = 0.121, p < 0.05).

2.3.3 A single PRR knockout and wild-type plants show no difference in

microbiome variability

Plant control of the microbiome can manifest in numerous ways. Host selection is a de-

terministic force governing microbiome assembly (Bulgarelli et al., 2012; Lundberg et al.,

2012; Horton et al., 2014; Tkacz et al., 2020; Wippel et al., 2021; Brachi et al., 2022). If the

host plant is unable to effectively select microbes, variability (i.e. dispersion) in microbiome

structure between individuals could increase as stochastic processes such as microbial disper-

sal and drift become more important in community assembly (Arnault et al., 2022). Thus, if

PRRs contribute to host control of the microbiome, within-genotype microbiome variability
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in PRR mutants may be increased compared to variability between wild-type plants. To test

this, we compared β-diversity dispersion of each genotype using the PERMDISP2 procedure

(betadisper function in vegan (Oksanen, 2021)). Neither bacterial nor fungal communities

were more variable within PRR mutants than within wild-type plants, even if the effects of

tissue and stage were controlled (Figure 2.4, PERMDISP2 analysis of multivariate homo-

geneity of group dispersions, p > 0.05, Supplemental Table 2.10). This indicates that single

PRRs are not required for deterministic selection of environmental microbes.

Figure 2.4
PRR mutant microbiomes are not more variable than wild-type microbiomes.
PCoA of Bray-Curtis distance of (A) bacterial and (B) fungal communities. Only roots
and rosettes are shown. To visualize group dispersions, ellipses encircle the 80% confidence
interval t-distribution of samples in genotype group and are colored according to genotype.
Genotype has no statistical effect on within-group microbiome variation (PERMDISP2, p
> 0.05). Further, there is no effect of genotype on microbiome variability within tissue,
stage, and tissue by stage subsets (PERMDISP2, all subsetsp > 0.05).

2.3.4 The degree of tissue specificity in endophytic microbiome structure is

not affected by the loss of individual PRRs, but changes over time.

PRRs and plant immunity may help maintain the distinct microbial communities found in

each tissue via two mechanisms. First, the expression patterns of MAMP-detecting PRRs
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and the regulation of downstream immune signaling pathways is cell-type specific (Millet

et al., 2010; Wan et al., 2012; Beck et al., 2014; Vetter et al., 2016; Rich-Griffin et al., 2020;

Emonet et al., 2021; Verbon et al., 2023). Second, PTI may impede the systemic spread of

microbes (Yadeta and Thomma, 2013; Beck et al., 2014; de Lamo et al., 2021). Interestingly,

there is evidence in humans that within-individual site specificity of microbiomes decline

in disease; critically ill patients exhibit reduced body-site specificity (Rogers et al., 2016).

We tested if PRRs help maintain tissue specificity within individual plants by calculating

Bray-Curtis distances between each tissue within each plant and then calculating the mean

distance from the microbiome of each tissue to the median community of the individual

plant. A two-way permutational ANOVA with genotype and development stage as fixed

effects was used to test statistical significance.

We found that PRR knockout lines had the same degree of tissue-specificity of both fungal

and bacterial microbiomes within individual plants (Figure 2.5, Supplemental Table 2.11.

Interestingly, we found that both fungal and bacterial microbiomes of aerial tissues, excluding

siliques, generally became more similar within individuals as plants matured (Figure 2.6,

permutational ANOVA p < 0.05 with Wilcoxon post-hoc tests; Supplemental Table 2.11).

Thus, although the microbiomes of most aerial tissues become more similar within individuals

over time, we found no evidence that PRRs play a direct role in regulating microbiome tissue

specificity in A. thaliana.

31



Figure 2.5
Aerial tissues within individual PRR mutants and wild-type plants do not show
different levels of site-specific microbiomes. The mean Bray-Curtis distance from the
microbial communities of the rosette, stems, cauline leaves, and flowers to the individual
median community was calculated to measure within-individual tissue specificity.
Within-individual tissue specificity does not vary by genotype in A) bacterial
(Kruskal-Wallis, p > 0.05) or B) fungal communities (Kruskal-Wallis, p > 0.05).
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Figure 2.6
Aerial tissues of individual plants generally become more similar as plants age.
In bacterial communities (A), the mean distance of each tissue’s microbiome to the plant
median community decreased between the Flowering (no siliques present) and Immature
Siliques stages, thus tissues became more similar (Kruskal-Wallis, p < 0.05, Wilcoxon
post-hocs with Benjamini-Hochberg correction for multiple testing). However, this trend
did not hold in the Mature Siliques stage (Wilcoxon post-hoc, p > 0.05 after p-value
adjustment.) In fungal communities (B), site specificity was significantly higher in
Flowering plants than both the Immature Siliques and Mature Siliques stages, indicating
that, like bacterial communities, fungal communities associated with different tissues
became more similar over time (Kruskal-Wallis, p < 0.05, with Wilcoxon post-hocs with
Benjamini-Hochberg correction for multiple testing).

2.3.5 No evidence of increased microbial load or reduced fitness in single

PRR knockouts

In binary laboratory infections, a single PRR knockout can increase microbial load (Zipfel

et al., 2004; Wan et al., 2008; Nekrasov et al., 2009; Willmann et al., 2011; Wan et al., 2012;

Ranf et al., 2015). It is critical that plants regulate the total microbial load, as high microbial

loads are associated with reduced fitness in the field (Traw et al., 2007). We thus asked if

PRRs regulate total microbial load and if PRR mutants affected early fitness indicators.

To estimate microbial load, a known amount of synthetic spike-in DNA that co-amplified

with 16S or ITS1 was added to the initial PCR reaction. This allowed us to estimate total
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microbial load by scaling total read counts by the number of spike sequences (Tkacz et al.,

2018). We detected no change in either bacterial or fungal load in PRR knockouts compared

to wild-type plants (Figure 2.7A, Bacterial load: ANOVA, p > 0.05, Figure 2.7B, Fungal

load: ANOVA, p > 0.05, and Supplemental Table 2.12). We also failed to find evidence that

loss of MAMP-detecting PRRs impacted early silique counts (Figure 2.8A: Kruskal-Wallis,

p > 0.05) or rosette dry weight (Figure 2.8B: Kruskal-Wallis, p > 0.05). Thus, we found

no evidence that individual MAMP-detecting PRRs control total microbial load in the field,

nor that PRRs impact early plant fitness.

Figure 2.7
PRR knockout does not affect bacterial or fungal load. Microbial load was
calculated by adjusting to microbial reads to synthetic spike-in read counts. Wild type and
PRR knockout plants do not have significantly different microbial loads of bacteria (A) or
fungi (B) (ANOVA, p > 0.05)
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Figure 2.8
No significant effect of PRR knockout on early plant fitness in the field. (A)
Silique counts and (B) rosette dry weight were measured as early fitness indicators. PRR
knockouts efr, fls2, lore, and lyk4 do not have significantly different silique counts
(Kruskal-Wallis within stage, p > 0.05) or rosette dry weight (Kruskal-Wallis within stage,
p > 0.05) than wild-type plants when grown under field conditions. Sample size per
genotype within stage: Vegetative: n = 7-8, Flowering: n = 7-8, Immature Siliques: n =
17-19, Mature Siliques: n = 7-8.

2.4 Discussion

Complex microbial communities assemble on and within plant tissues, influencing plant

phenotype. A key aim of many research programs is to effectively engineer these plant-

associated microbiomes to achieve agricultural objectives, such as increased yield or resilience

to abiotic and biotic stress. Elucidation of microbial community assembly rules has the

potential to improve the efficiency and reproducibility of these efforts.

Plant-associated microbiomes are comprised of only a subset of the microbes present

in the environment, suggesting that plants filter and/or select associated microbes. Plant

immunity, which includes pattern recognition receptors that detect microbial MAMPs, is

thought to impact the structure of microbial communities (Kniskern et al., 2007; Traw et al.,

2007; Carvalhais et al., 2015; Lebeis et al., 2015; Hacquard et al., 2017; Kudjordjie et al.,

2021; Colaianni et al., 2021; Parys et al., 2021; Fonseca et al., 2022). Indeed, in binary
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plant-microbe interactions, single MAMP-detecting PRRs affect the colonization and in

planta growth of particular bacteria or fungi (Zipfel et al., 2004; Nekrasov et al., 2009;

Vetter et al., 2012; Wan et al., 2012; Ranf et al., 2015; Colaianni et al., 2021; Parys et al.,

2021). However, the impact of PRRs on the assembly of complex endophytic microbial

communities in the field is unknown. We characterized both bacterial and fungal endophytic

microbiomes of wild-type A. thaliana and MAMP-detecting PRR knockout lines grown in

the field, across several developmental stages and plant parts. This unprecedented scope

allowed us to determine if, when, and where individual MAMP-detecting PRRs shape the

endophytic microbiome in the field.

We found little evidence that individual MAMP-detecting PRRs impact endophytic mi-

crobiome structure despite measuring several α-diversity and β-diversity metrics, the vari-

ability in microbiome composition, the degree of tissue differentiation within individual

plants, and the estimated total microbial load. We also failed to find an impact of PRRs on

early plant fitness indicators. Indeed, we found no effect of PRR knockouts on the compo-

sition of bacterial communities and, for fungal communities, only Bray-Curtis and Jaccard

diversity were altered in PRR knockout lineages (both R2 = 0.005, p = 0.03; Supplemental

Table 2.8). Post-hoc analyses revealed that lore mutants hosted slightly modified fungal

communities compared to wild-type plants, potentially revealing a role for LORE in plant-

fungal interactions. Field data suggests that fungal communities can be affected by host

factors that do not impact the bacteria community (Horton et al., 2014; Bergelson et al.,

2019; Brachi et al., 2022) and that fungal communities are more strongly affected by host

genotype than bacterial communities (Bergelson et al., 2019). A restricted impact of PRRs

on fungi is furthermore consistent with analyses of co-occurrence networks suggesting that

most microbe-microbe effects in wild A. thaliana occur within kingdom (Agler et al., 2016;

Bergelson et al., 2019; Brachi et al., 2022).

There are several possible explanations for the general lack of effect of PRRs on micro-
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biome community structure. First, redundancy in the plant immune system may maintain

robust plant immune responses despite the loss of a single PRR. Members of microbial con-

sortia produce diverse MAMPs that induce PTI to varying degrees (Garrido-Oter et al.,

2018; Colaianni et al., 2021; Parys et al., 2021). Although loss of an individual PRR al-

lows increased microbial proliferation in single microbe inoculations (Zipfel et al., 2004; Wan

et al., 2008; Nekrasov et al., 2009; Willmann et al., 2011; Wan et al., 2012; Ranf et al., 2015),

in complex microbial consortia, there may be some microbes that elicit PTI via other intact

PRRs which could counteract this phenomenon. In nature, the plant respond to a complex

input of MAMPs, DAMPs, effectors and other signals. Compellingly, Zhou et al. (2020)

demonstrated that MAMP signaling must coincide with cellular damage to generate sub-

stantial PTI. Thus, depending on the combination of signals produced by the microbiome,

commensals may largely avoid activating PTI.

Some plant-associated microbes have the ability to suppress plant immune responses, a

process that facilitates the colonization of PTI-triggering microbes (Ma et al., 2021; Teix-

eira et al., 2019). Three independent surveys (Yu et al., 2019; Ma et al., 2021; Teixeira

et al., 2021) found that 31%-42% of plant-associated bacteria suppress PTI. This trait spans

broad taxonomic categories and, importantly, the impact of suppressive strains dominates

that of nonsuppressive strains in mixed bacterial communities (Ma et al., 2021; Teixeira

et al., 2019). Considering the frequency, taxonomic diversity, and dominance of this trait,

immunosuppressive microbes almost certainly affected community assembly in our natural

microbiomes. If the anti-microbial response generated by stimulating PRRs is dampened by

the endophytic microbiome, loss of a PRR would have little effect on subsequent microbiome

assembly, as observed in our experiment. In this case, other aspects of plant-microbe as-

sociations such as plant structural components, bacterial metabolism, and microbe-microbe

interactions (Horton et al., 2014; Bai et al., 2015; Levy et al., 2018; Salas-González et al.,

2021; Velásquez et al., 2022) would have relatively more influence on commensal microbiome
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structure.

This study provokes two related questions. First, if PRRs are effectively redundant, why

does selection maintain multiple PRRs? Second, if pattern-triggered immunity is broadly

suppressed, why maintain PRRs at all? One hypothesis (Hacquard et al., 2017) is that rather

than filtering microbes from the environment, PRRs help regulate the total microbial load

of the commensal microbiome to prevent damaging overgrowth. We found no evidence that

single MAMP-detecting PRR knockouts supported higher microbial loads in the field (Figure

2.7 and Supplemental Table 2.12). Related experiments using PRR and PRR coreceptor

multi-mutants report conflicting impacts of these genes on microbial load, both within and

between experiments (Xin et al., 2016; Wolinska et al., 2021). This inconsistency suggests

that PRRs regulate the microbial load of some communities, but that this is not a general

effect.

An alternative hypothesis is that individual MAMP-detecting PRRs are maintained by

selection from virulent pathogens or mutualists, rather than from interactions with commen-

sals. Aggressive pathogen growth is typically accompanied by other signals such as DAMPs

and effectors, which may allow the plant to overcome background PTI suppression. These

pathogens are often controlled by powerful effector-triggered immunity which requires sus-

tained PTI signaling to adequately function (Ngou et al., 2021; Yuan et al., 2021). Thus,

pathogens may exert selective pressure on the specific subset of PRRs they activate, and,

since different pathogens activate overlapping PRRs (Zipfel et al., 2006; Wan et al., 2012;

Ranf et al., 2015; Colaianni et al., 2021; Parys et al., 2021), each receptor could be main-

tained through interactions with numerous pathogens, even if encounters with a particular

pathogen species are infrequent. Another possibility is that mutualisms exert selective pres-

sure on specific PRRs. For example, orthologs of the PRR CERK1 are required for both

defense against pathogenic fungi and establishing mutualisms with arbuscular mycorrhizal

fungi (AMF) in several distantly related plant species (Miyata et al., 2014; Bozsoki et al.,
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2017; Feng et al., 2019; Gibelin-Viala et al., 2019; Zhang et al., 2019). Because the effect

of PRRs on microbiome composition would only be detectable in the presence of virulent

pathogens or important mutualists in these scenarios, results between different microbiomes

could be inconsistent, as has been observed in this study and others (Bodenhausen et al.,

2014; Chen et al., 2020; Wippel et al., 2021; Wolinska et al., 2021; Fonseca et al., 2022).

Finally, specific PRRs may be maintained due to pleiotropic effects. For example, CERK1

appears to have a conserved role in promoting lateral root formation in numerous plants,

including A. thaliana, independently of accommodating an AMF mutualism (Chiu et al.,

2022). It is feasible that other PRRs may have developed additional functions, especially

since MAMP-detecting PRRs are already integrated into growth-defense signaling pathways

(Huot et al., 2014).

Finally, other biological and technical factors could explain why we detected few effects

of PRRs on microbiome structure in the field. Myriad environmental conditions including

temperature, humidity, soil salinity, phosphorus availability and drought are known to mod-

ulate the strength of plant immunity and affect microbiome composition (Cheng et al., 2013;

Castrillo et al., 2017; Naylor et al., 2017; Santos-Medelĺın et al., 2017; Berens et al., 2019;

Chen et al., 2020). Although the field conditions in our experiment were representative of

Midwestern USA, an area in which A. thaliana is common (Platt et al., 2010; Exposito-

Alonso et al., 2018; Shirsekar et al., 2021), it is possible that PRR signaling was rendered

unimportant by environmental conditions. Nevertheless, two lines of evidence suggest that

our results may be generalizable. First, we characterized endophytic microbiomes over sev-

eral time points, which would mitigate the chance of mischaracterizing the effects of plant

immunity due to short-term environmental fluctuations. Second, genome-wide association

analyses on field-grown A. thaliana across years and locations occasionally identify known

PRRs as candidate genomic features that affect microbiome composition, but these effects

are limited to one or two specific microbes rather than overall community composition and
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are often ephemeral (Horton et al., 2014; Brachi et al., 2022; Roux et al., 2023). We also

cannot rule out the possibility that our lack of signal is a result of technical limitations. For

example, the immunogenicity of flagellin is broadly linked to taxonomy (Colaianni et al.,

2021; Parys et al., 2021), but the substantial within-genera and within-species variation of

flagellin epitopes and their capacity to trigger PTI is unlikely to be resolved by 16S marker-

gene sequencing (Vetter et al., 2016; Colaianni et al., 2021; Parys et al., 2021). In addition,

PRRs may impact microbial subcommunities within tissues due to their localized, cell-type

specific responses (Millet et al., 2010; Rich-Griffin et al., 2020; Emonet et al., 2021; Verbon

et al., 2023); assessing microbiome structure of whole plant parts as we did in this experiment

may mask these effects. Finally, we did not test every MAMP-detecting PRR identified in

A. thaliana. However, even if other PRRs actively shape the commensal microbiome, why

selection maintains the PRRs assessed in this experiment remains an important question.

In conclusion, we demonstrate that individual PRRs have little effect on the overall

endophytic bacterial and fungal microbiome in A. thaliana in the field, as measured at the

level of 16S and ITS1 characterization. Although initially surprising, these results offer

valuable insight into the function of MAMP-detecting PRRs in the field and help target

the search for plant genetic factors that play an important role in sculpting commensal

microbiomes. Further investigation of hypotheses concerning the role of plant immunity in

structuring the microbiome will broaden our understanding of plant-microbe interactions in

a complex setting, leading to more effective plant microbiome engineering.

40



2.5 Supplemental Material

Diversity Metric Factor df pseudo-F p

Shannon Diversity Tissue 5 21.066 <0.001 *

Stage 3 4.294 0.007 *

Genotype 4 0.749 0.565

Tissue x Stage 10 3.122 <0.001 *

Tissue x Genotype 20 0.763 0.742

Stage x Genotype 12 0.517 0.891

Tissue x Stage x Genotype 40 0.858 0.708

Faith’s Phylogenetic Tissue 5 23.732 <0.001 *

Distance (adjusted) Stage 3 0.755 0.523

Genotype 4 0.516 0.749

Tissue x Stage 10 2.422 0.009 *

Tissue x Genotype 20 1.067 0.377

Stage x Genotype 12 0.971 0.458

Tissue x Stage x Genotype 40 0.71 0.91

Pielou’s evenness Tissue 5 11.522 <0.001 *

Stage 3 3.962 0.009 *

Genotype 4 0.464 0.756

Tissue x Stage 10 3.127 <0.001 *

Tissue x Genotype 20 0.633 0.889

Stage x Genotype 12 0.351 0.969

Tissue x Stage x Genotype 40 1.204 0.185

Table 2.4
Genotype does not explain α-diversity variation in repeat rarefied bacterial
microbiomes. Permutational ANOVA analyses on Shannon diversity, Faith’s
Phylogenetic Distance adjusted for species richness, and Pielou’s Evenness. Variation in
endophytic microbiome α-diversity is not explained by genotype as a main effect nor an
interaction between genotype and other factors (p > 0.05). Tissue, developmental stage
and their interaction affect α-diversity (p < 0.05).
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Diversity Metric Factor df pseudo-F p

Shannon Diversity Tissue 5 41.031 <0.001 *

Stage 3 10.841 <0.001 *

Genotype 4 0.603 0.685

Tissue x Stage 10 3.446 <0.001 *

Tissue x Genotype 20 0.928 0.551

Stage x Genotype 12 0.882 0.548

Tissue x Stage x Genotype 40 1.011 0.445

Pielou’s evenness Tissue 5 46.298 <0.001 *

Stage 3 2.9 0.038 *

Genotype 4 1.826 0.104

Tissue x Stage 10 2.88 0.002 *

Tissue x Genotype 20 0.769 0.736

Stage x Genotype 12 0.83 0.613

Tissue x Stage x Genotype 40 0.948 0.566

Table 2.5
Genotype does not explain α-diversity variation in repeat rarefied fungal
microbiomes. Permutational ANOVA analyses on Shannon diversity and Pielou’s
Evenness. Variation in endophytic ITS1 microbiome α-diversity is not explained by
genotype as a main effect nor an interaction between genotype and other factors (p >
0.05). Tissue, developmental stage and their interaction affect α-diversity (p < 0.05).
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Figure 2.9
No significant effect of PRR knockout on Faith’s Phylogenetic Distance
(corrected for species richness) in bacterial microbiomes. Endophytic bacterial
communities in PRR knockouts efr, fls2, lore, and lyk4 do not differ in Faith’s
Phylogenetic Distance compared to wild-type plants (3-way ANOVA, p > 0.05).
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Figure 2.10
No significant effect of PRR knockout on Pielou’s evenness in bacterial or
fungal microbiomes. Bacterial or fungal microbiomes in PRR knockouts efr, fls2, lore,
and lyk4 do not differ in Pielou’s evenness compared to the microbiome associated with
wild-type plants (3-way ANOVA, p > 0.05).
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Diversity Metric Factor df R2 pseudo-F p

Bray-Curtis MiSeq Run 5 0.016 3.674 0.001 *

Tissue 5 0.183 43.159 0.001 *

Stage 3 0.031 12.122 0.001 *

Genotype 4 0.003 1.003 0.458

MiSeq Run:Plate 9 0.019 2.451 0.001 *

Tissue x Stage 10 0.031 3.596 0.001 *

Tissue x Genotype 20 0.016 0.954 0.736

Stage x Genotype 12 0.010 0.934 0.783

Tissue x Stage x Genotype 40 0.031 0.915 0.972

Jaccard MiSeq Run 5 0.013 2.694 0.001 *

Tissue 5 0.119 25.229 0.001 *

Stage 3 0.023 8.041 0.001 *

Genotype 4 0.004 1.015 0.414

MiSeq Run:Plate 9 0.017 1.973 0.001 *

Tissue x Stage 10 0.028 3.011 0.001 *

Tissue x Genotype 20 0.018 0.974 0.734

Stage x Genotype 12 0.011 0.947 0.839

Tissue x Stage x Genotype 40 0.036 0.947 0.97

Weighted UniFrac MiSeq Run 5 0.026 6.110 0.001 *

Tissue 5 0.327 77.960 0.001 *

Stage 3 0.071 28.423 0.001 *

Genotype 4 0.003 0.771 0.714

MiSeq Run:Plate 9 0.018 2.446 0.001 *

Tissue x Stage 10 0.028 3.382 0.001 *

Tissue x Genotype 20 0.012 0.702 0.981

Stage x Genotype 12 0.009 0.889 0.696

Tissue x Stage x Genotype 40 0.030 0.885 0.824

Table 2.6
Genotype does not explain β-diversity variation in rarefied 16S core
communities. PERMANOVA analyses on beta-diveristy distance matrices generated with
Bray-Curtis, Jaccard and Weighted Unifrac β-diversity meterics on rarefied data sets.
ASVs were included in this analysis if present at 1% relative abundance in 20% of samples
in at least one tissue by stage subset (Core B). Genotype does not explain 16S core
community β-diversity variation as a main effect nor interact with other factors.
Statistically significant factors are denoted by asterisks and include tissue, developmental
stage and their interaction (fixed effects), MiSeq run and PCR plate nested within MiSeq
run (random effects).
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Diversity Metric Factor df R2 pseudo-F p

Robust CLR MiSeq Run 5 0.012 2.600 0.001 *

Tissue 5 0.121 26.385 0.001 *

Stage 3 0.017 6.301 0.001 *

Genotype 4 0.004 1.049 0.266

MiSeq Run:Plate 9 0.012 1.429 0.001 *

Tissue x Stage 10 0.027 2.952 0.001 *

Tissue x Genotype 20 0.018 0.958 0.801

Stage x Genotype 12 0.012 1.081 0.101

Tissue x Stage x Genotype 40 0.036 0.989 0.58

ALR MiSeq Run 5 0.014 2.477 0.001 *

Tissue 5 0.176 31.046 0.001 *

Stage 3 0.026 7.592 0.001 *

Genotype 4 0.005 1.095 0.204

MiSeq Run:Plate 9 0.017 1.657 0.001 *

Tissue x Stage 10 0.033 2.904 0.001 *

Tissue x Genotype 20 0.022 0.955 0.761

Stage x Genotype 12 0.015 1.086 0.166

Tissue x Stage x Genotype 40 0.043 0.955 0.834

Table 2.7
Genotype does not explain β-diversity variation in log-transformed 16S core
communities. PERMANOVA analyses on Euclidean distances between robust CLR or
ALR transformed core communities. ASVs were included in this analysis if present at 1%
relative abundance in 20% of samples of at least one tissue by stage subset (Core B).
Genotype does not explain 16S core community β-diversity variation as a main effect nor
does genotype interact with other factors. Statistically significant factors are denoted by
asterisks and include tissue, developmental stage and their interaction (fixed effects),
MiSeq run and PCR plate nested within MiSeq run (random effects).
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Diversity Metric Factor df R2 pseudo-F p

Bray-Curtis MiSeq Run 2 0.012 6.309 0.001 *

Tissue 5 0.195 42.710 0.001 *

Stage 3 0.027 9.947 0.001 *

Genotype 4 0.005 1.349 0.031 *

MiSeq Run:Plate 11 0.020 1.972 0.001 *

Tissue x Stage 10 0.033 3.670 0.001 *

Tissue x Genotype 20 0.017 0.915 0.862

Stage x Genotype 12 0.013 1.182 0.047 *

Tissue x Stage x Genotype 40 0.033 0.912 0.947

Jaccard MiSeq Run 2 0.008 4.124 0.001 *

Tissue 5 0.130 25.489 0.001 *

Stage 3 0.020 6.461 0.001 *

Genotype 4 0.005 1.218 0.034 *

MiSeq Run:Plate 11 0.018 1.619 0.001 *

Tissue x Stage 10 0.029 2.819 0.001 *

Tissue x Genotype 20 0.019 0.954 0.803

Stage x Genotype 12 0.014 1.114 0.052

Tissue x Stage x Genotype 40 0.038 0.932 0.982

Table 2.8
Genotype explains a small fraction of β-diversity variation of rarefied ITS1 core
communities. PERMANOVA analyses on β-diversity distance matrices generated by
Bray-Curtis and Jaccard distances on rarefied data sets ASVs were included in this
analysis if present at 1% relative abundance in 20% of samples of at least one tissue and
stage subset (Core B). Genotype explains a small fraction (0.5%) of ITS1 core community
variation as a main effect and significantly interacts with developmental stage in
Bray-Curtis community variation. The genotype-stage interaction is marginal using the
Jaccard Index. Statistically significant factors and/or interactions are denoted by asterisks.
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Diversity Metric Factor df R2 pseudo-F p

Robust CLR MiSeq Run 2 0.006 3.328 0.001 *

Tissue 5 0.117 24.008 0.001 *

Stage 3 0.024 8.120 0.001 *

Genotype 4 0.005 1.187 0.077

MiSeq Run:Plate 11 0.015 1.434 0.001 *

Tissue x Stage 10 0.037 3.842 0.001 *

Tissue x Genotype 20 0.018 0.947 0.833

Stage x Genotype 12 0.013 1.121 0.057

Tissue x Stage x Genotype 40 0.036 0.937 0.962

ALR MiSeq Run 2 0.012 3.939 0.001 *

Tissue 5 0.150 19.750 0.001 *

Stage 3 0.031 6.895 0.001 *

Genotype 4 0.007 1.118 0.175

MiSeq Run:Plate 11 0.022 1.328 0.001 *

Tissue x Stage 10 0.034 2.227 0.001 *

Tissue x Genotype 20 0.027 0.896 0.961

Stage x Genotype 12 0.017 0.932 0.82

Tissue x Stage x Genotype 36 0.047 0.870 1

Table 2.9
Genotype does not explain β-diversity variation of log-transformed ITS1 core
communities. PERMANOVA analyses on the Euclidean distance between robust-CLR or
ALR transformed communities. ASVs were included in this analysis if present at 1%
relative abundance in 20% of samples of at least one tissue and stage subset (Core B).
Genotype is not statistically significant after robust CLR transformation or ALR
transformation (PERMANOVA, p ¿ 0.05). Statistically significant factors and/or
interactions are denoted by asterisks.
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Marker Subset type Subset name df pseudo-F p

16S Overall (none) Overall (none) 4 0.873 0.469

Within tissues Roots 4 0.827 0.508

Rosettes 4 1.410 0.251

Stems 4 0.470 0.755

Cauline leaves 4 0.305 0.872

Siliques 4 0.328 0.849

Flowers 4 0.639 0.631

Within stage Vegetative 4 1.174 0.322

Flowering 4 0.205 0.931

Unripe siliques 4 1.497 0.184

Ripe siliques 4 0.730 0.553

ITS Overall (none) Overall (none) 4 0.649 0.616

Within tissues Roots 4 1.470 0.229

Rosettes 4 1.538 0.193

Stems 4 0.298 0.874

Cauline leaves 4 0.448 0.791

Siliques 4 0.080 0.986

Flowers 4 0.551 0.695

Within stage Vegetative 4 0.330 0.85

Flowering 4 0.197 0.941

Unripe siliques 4 0.395 0.805

Ripe siliques 4 0.635 0.636

Table 2.10
Microbiome β-diversity dispersions are not different in PRR knockout
genotypes compared to wild-type plants. Multivariate homogeneity of group
dispersions (PERMDISP2) on Bray-Curtis distances of core 16S and ITS1 microbiomes
(Core B) reveals that wild-type and mutant genotypes do not have significantly different
variability. The effect of genotype on group dispersions was tested in the overall data set
and within tissue, developmental stage, and tissue by stage subsets. This effect was
additionally tested using the Jaccard distance, other cores, and with a minimally filtered
ASV set (non-core). Similar results were obtained in all analyses (data not shown).
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Marker Factor df pseudo-F p

16S Stage 2 6.969 0.001 *

Genotype 4 0.609 0.666

Stage x Genotype 8 0.824 0.590

ITS Stage 2 7.969 < 0.001 *

Genotype 4 1.249 0.299

Stage x Genotype 8 1.127 0.357

Table 2.11
Within-individual tissue specificity of bacterial and fungal microbiomes is
affected by developmental stage but not PRR knockout. The results of
permutational ANOVAs testing the effect of developmental stage and genotype on mean
Bray-Curtis distance of aerial tissues to the individual plant median, a measure of tissue
specificity. Asterisks denote significant results. Only samples from plants with all tissues
retained were considered for analysis. Sample size for Stage x Genotype subsets: Bacteria:
n=2-13, Fungi: n=2-12.
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Marker Factor df pseudo-F p

16S Tissue 5 59.885 <0.001 *

Stage 3 2.084 0.101

Genotype 4 1.234 0.295

Tissue x Stage 10 3.166 0.001 *

Tissue x Genotype 20 1.388 0.121

Stage x Genotype 12 1.374 0.174

Tissue x Stage x Genotype 40 1.027 0.428

ITS Tissue 5 17.012 <0.001 *

Stage 3 5.428 0.001 *

Genotype 4 0.996 0.409

Tissue x Stage 10 1.795 0.059 .

Tissue x Genotype 20 0.906 0.580

Stage x Genotype 12 0.597 0.845

Tissue x Stage x Genotype 36 0.835 0.741

Table 2.12
Single PRR knockout does not affect microbial load. ANOVA table showing factors
tested for their effects on microbial load variation. Relative microbial load was determined
by comparing the ratio of spike-in copy number to marker gene copy number, and log10
transformed for analysis. Tissue and developmental stage affect microbial load, but PRR
knockout genotype does not.

51



CHAPTER 3

INVESTIGATING TRANSGENERATIONAL INHERITANCE

OF RESISTANCE PHENOTYPES IN A. THALIANA TO TWO

NATURAL PATHOGENS, PSEUDOMONAS VIRIDIFLAVA

AND PSEUDOMONAS SYRINGAE

3.1 Introduction

The dynamics of plant-microbe interactions are influenced by numerous external factors,

including abiotic conditions (Saijo and Loo, 2020) and the presence of other organisms

(Tollenaere et al., 2016; Hassani et al., 2018). Interestingly, these factors can impact the

trajectory of a microbial infection even if they do not occur at the same time as the infec-

tion. Historic conditions, previously experienced within the lifetime of the host plant or by

its parents, can impact future plant-microbe interactions (Mauch-Mani et al., 2017).

Consider the phenomenon of plant priming, for example. When plants encounter a

pathogen, a complex, multifaceted response is triggered that causes a broad range of physi-

ological changes (Dodds and Rathjen, 2010) that can persist across the lifetime of the plant

and, in some cases, be transmitted to the next generation (Mauch-Mani et al., 2017). Re-

tained epigenetic modifications promote a faster and/or stronger defense response if the

pathogen is encountered again (Conrath et al., 2006), resulting in less severe disease pheno-

types and higher fitness relative to unprimed plants (Van Hulten et al., 2006; Traw et al.,

2007). The fitness cost of maintaining a primed state is not well-studied, but, in the absence

of the stressor, costs appear to be low to undetectable (Van Hulten et al., 2006; Walters

et al., 2008). On the other hand, priming for a particular pathogen can interfere with the

defense response to other pathogens (De Vos et al., 2005; Abdullah et al., 2017). This trade-

off is particularly likely when plants encounter pathogens, which grow on live host cells,
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and necrotrophic pathogens, which consume dead host cells. Biotrophs typically activate

the salicylic acid defense pathway, whereas necrotrophs activate the jasmonic acid/ethlyene

pathway (Glazebrook, 2005). These two major plant defense signaling pathways are mutu-

ally antagonistic (Pieterse et al., 2009). The activation of salicylic acid defense pathways

can increase susceptibility to pathogens that stimulate jasmonic acid defense pathways, and

vice versa (Spoel et al., 2007).

A handful of studies have demonstrated that under intense disease pressure in labora-

tory conditions, A. thaliana can transmit a primed phenotype to the next generation (Luna

et al., 2012; Slaughter et al., 2012; López Sánchez et al., 2021). This phenomena, transgen-

erational induced resistance, is associated with offspring epigenetic states (e.g. chromatin

structure and DNA methylation patterns) that reflect the disease experience of their parents

(Hannan Parker et al., 2022). Plants that experience severe infection from Pseudomonas

syringae pv. tomato DC3000 (Pst DC3000), a hemi-biotrophic bacteria, produce offspring

that exhibit fewer disease symptoms and lower bacterial loads when infected with the same

isolate, compared to offspring of mock infected plants (Luna et al., 2012; Slaughter et al.,

2012; López Sánchez et al., 2021). However, progeny of Pst DC3000-infected plants are more

susceptible than offspring from mock-treated plants to the necrotrophic fungus Alternaria

brassicicola (Luna et al., 2012). These trade-offs illustrate that any benefit derived from

transgenerational induced resistance is highly dependent upon the ecological context of both

parent and offspring. Thus, it is unsurprising that the epigenetic transmission of stress re-

sistance to the next generation is not a general response to stress (Pecinka et al., 2009; Uller

et al., 2013).

Most stress-induced epigenetic marks are reset either within the lifetime of the stressed

plant or between generations (Iwasaki, 2015). This processes uses the considerable cellular

machinery that exists to reset the epigenetic state after the stress is alleviated (Pecinka

and Mittelsten Scheid, 2012). The exact conditions and stressors that trigger transgener-
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ational induced resistance are poorly understood, though it is known that responses are

variable, even when the same plant lines and stressors are assayed (for example, compare

salt tolerance in Boyko et al. 2010 and Lopez-Sanchez et al. 2021). Furthermore, plants

experience numerous, concurrent stressors in nature, whereas lab experiments typically test

a single stressor in isolation. Due to a dearth of investigations that evaluate stress-induced

transgenerational resistance in conditions that mimic the experience of plants in the field, the

ecological and evolutionary significance of this phenomenon remains an open and contentious

question (Uller et al., 2013; Crisp et al., 2016; López Sánchez et al., 2021; Hannan Parker

et al., 2022).

Existing studies that demonstrate transgenerational induced resistance in A. thaliana

- bacteria pathosystems (Luna et al., 2012; Slaughter et al., 2012; López Sánchez et al.,

2021) poorly represent wild A. thaliana-bacterial interactions for several reasons. First, they

use Pst DC3000, a highly aggressive pathogen isolated from tomato, as the representative

bacterial strain. Pst DC3000 consistently grows in excess of 106 CFU/cm2 in leaf tissues,

whereas strains of Pseudomonas syringae isolated from wild A. thaliana consistently grow to

population sizes in the range of 103 - 105 CFU/cm2 when tested in standardized conditions

(Kniskern et al., 2011; Karasov et al., 2019). In the field, pathogen densities in naturally

infected A. thaliana leaves rarely exceed 105 CFU/cm2 (Dunning, 2008). Second, the in-

ducing infections in the parental generations were uncharacteristically intense. In Luna et

al. (2012) and Lopez-Sanchez et al. (2021), plants were sprayed 2-5 times with 107 to 109

colony forming units (CFU) per mL of virulent Pst DC3000; this is a high intensity infection

even in the context of laboratory assays (Katagiri et al., 2002). Slaughter et al. (2012)

syringe inoculated 108 CFU/mL of avirulent Pst DC3000 avrRpt2. This infection condition

rapidly and visibly induces hypersensitive response, i.e programmed cell death (Katagiri

et al., 2002). Third, these studies evaluate a single pathogen strain at a time. Co-infections

are common in many pathosystems (Abdullah et al., 2017) and can play a major role in
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epidemiological and evolutionary processes (Tollenaere et al., 2016). In wild A. thaliana,

multispecies co-infections are more common than expected given the prevalence of single

species infections (Dunning, 2008). Furthermore, within a bacterial species, infection with

multiple pathogenic strains of P. syringae is common (Karasov et al., 2018). In summary,

while these initial studies offer a proof of concept, their relevance in ecologically realistic

conditions remains unclear.

To address this gap in knowledge, we tested if bacterial pathogens induced transgen-

erational resistance in A. thaliana using a experimental design that more closely reflects

infection parameters in nature. Jacob Herman developed A. thaliana infection lineages with

two naturally occurring bacterial strains that were isolated from, and cause disease on, A.

thaliana: Pseudomonas viridiflava RMX3.1b (Pv RMX3.1b), and P. syringae NP29.1a (Ps

NP29.1a) (Jakob et al., 2002). Genetically identical A. thaliana were spray inoculated once

with 107 - 108 CFU/mL of Pv RMX3.1b alone, Ps NP29.1a alone, a mixture of both bac-

teria (co-infection), or sterile 10mM MgSO4 (mock) to create four foundational lineages (P

generation, Figure 3.1). These infection lineages were extended another generation in a full

factorial design: the progeny of each of these parental plants were spray inoculated with one

of these four treatments, resulting in 16 different infection lineages (S1, Figure 3.1).

In these infection conditions, the average growth of both Pv RMX3.1b and Ps NP29.1a

typically peaks below 106 CFU in wild-type plants (Fig. 3.6), which more closely replicates

characteristics of strong infections observed in the field (Karasov et al., 2019). The co-

infection treatment was designed to investigate how transgenerational induced resistance is

affected when mutually antagonistic components of the plant immune system are activated.

Ps NP29.1a more strongly activates the salicylic acid defense pathway, whereas representa-

tive strains of P. virdiflava more strongly activate the jasmonic acid defense pathway (Jakob

et al., 2007). Importantly, despite the prevalence of multispecies co-infections in nature, to

our knowledge there has been no investigation of transgenerational induced resistance in this
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context. These infection lineages offer an excellent opportunity to investigate transgenera-

tional induced resistance in an ecologically realistic context.

Experimental design and previous work

The effect of bacterial infections on genomic methylation and the transcriptome were

measured in the parental and S1 generations, respectively. Using bisulfite sequencing, Ja-

cob Herman found that the pathogen treatments affected the overall genomic methylation

patterns in the parental generation (Supplemental Figure 3.10). Each inoculation type, Pv

RMX3.1b, Ps NP29.1a, co-infection, or sterile MgSO4, resulted in many distinct differen-

tially methylated regions (DMRs) that had minimal overlap with each other (Supplemental

Figure 3.11). Plants thus had different epigenetic responses to each pathogen and to the

co-infection treatment. Interestingly, there was evidence of transgenerational effects in the

S1 generation. The transcriptomes of 7/16 lineages (Fig. 3.1) revealed a number of differen-

tially regulated genes as a function of inoculation type in both generations, including several

pathogenesis-related genes (Beilsmith, 2020).

Figure 3.1
Generation of infection lineages. Two-letter abbreviations at the bottom of the figure
indicate the parental (P) (first letter) and S1 (second letter) treatments. Resistance
phenotypes were evaluated in the S2 generation. Asterisks denote the lineages selected for
phenotyping.

56



Current work

While differences in genomic methylation patterns and transcription suggest transgener-

ational effects are occurring, whether these effects are strong enough to impact subsequent

levels of resistance is unknown. Confirming that selectable phenotypes are generated is key

to understanding the ecological and evolutionary importance of transgenerational induced

resistance. Here, I test if two generations of exposure to Pv RMX3.1b, Ps NP29.1a, or a

co-infection treatment affects the bacterial growth and symptom severity in their progeny

(S2 in Fig. 3.1). Plants with parents and grandparents exposed to the same infection regime

were used in this experiment due to the expectation that they would have the strongest and

most straightforward phenotypes out of the 16 infections lineages.

Based on preliminary results and previous publications, we generated two main hypothe-

ses: 1) Pathogen exposure in two previous generations will produce progeny with increased

resistance to the same pathogen. We expected that the offspring of plants in the Ps NP29.1a

infection lineage would show decreased bacterial growth and/or decreased symptoms com-

pared to plants with a mock treatment lineage when inoculated with Ps NP29.1a. We ex-

pected the same would be true for Pv RMX3.1b infections in Pv RMX3.1b infection lineages.

2) Pathogen exposure in two previous generations would increase offspring susceptibility to

a pathogen with an alternative infection strategy. We thus expected that exposure to Ps

NP29.1a in previous generations would result in increased bacterial growth and/or increased

symptoms following a Pv RMX3.1b infection and vice versa.

The effect of historic co-infections, on the other hand, was difficult to anticipate. If the

two microbes trigger mutually antagonistic plant defense pathways, the protective priming

could be cancelled out, resulting in no difference in phenotype when compared to the mock

treatment. Alternatively, if one pathogen is competitively dominant to the other, we might

expect the dominant microbe to induce resistance patterns akin to a single infection treat-

ment. Finally, a co-infection could lead to increased resistance or susceptibility to both single
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infection challenges. Although there is no research on transgenerational induced resistance

in the face of multiple, simultaneous biotic stressors, plastic resistance phenotypes are of-

ten erased in the next generation when plants are challenged with multiple abiotic stressors

(Lampei, 2019).

Here, I evaluate these hypotheses using two infection procedures and two measures of dis-

ease severity. The infection lineages were initially generated via spray infection. I measured

resistance phenotypes using both spray inoculation assays and syringe (pressure) inoculation

assays. Syringe inoculations force bacteria directly into the leaf apoplast leading to more

consistent infections between biological replicates (Katagiri et al., 2002). However, some

early plant defenses are bypassed. Spray inoculation deposits microbes on the surface of the

plant leaves and requires that bacteria migrate into the plant tissues for an internal infection

to progress (Katagiri et al., 2002). This often results in more variability between biological

replicates, but more faithfully imitates field infections and exposes pathogens to more com-

ponents of plant defense. Disease severity was characterized by quantifying microbial growth

as well as by measuring symptomatic leaf area. Each experiment was completed twice for

each inoculation type and pathogen to confirm observed trends.
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3.2 Materials & Methods

3.2.1 Overview of experiment

Figure 3.2
Experiments to quantify transgenerational induced resistance phenotypes.
Resistance to single infections of Ps NP29.1a or Pv RMX3.1b was measured in plants with
different infection lineages. Although infection lineages were originally generated using
spray infections, resistance was evaluated in the S2 generation using both syringe and
spray inoculation. Each combination of bacteria and inoculation type was tested twice,
with minor variations.

The broad overview of the experimental layout is detailed above (Figure 3.2). There were two

iterations (Round 1 and Round 2) of each inoculation method (spray and syringe). Within

each iteration, plants were challenged with single infections of either bioluminescent lux -

tagged Ps NP29.1a or lux -tagged Pv RMX3.1b. Bacterial load was quantified by counting

CFUs or measuring bacterial luminescence. Symptoms were assessed in most iterations of

the experiment. There were minor procedural adjustments between each infection round, as

noted in Figure 3.2.

3.2.2 Plant materials and growth conditions

Resistance phenotypes were tested using plants grown from seeds produced by the second

generation of four different infection lineages: 1) two previous generations of Pv RMX3.1b

infection (V-V, lineage 3-8), 2) two previous generations of Ps NP29.1a infection (S-S, lineage

59



2-7), 3) two generations of a co-infection treatment (C-C, lineage 2-12) and 4) two generations

of mock treatment (M-M, lineage 1-5). All lineages were in the Columbia-0 (Col-0) genetic

background, and historic infection regimes of one spray inoculation of 107 − 108 CFU/mL

of bacteria or mock treatment per generation. Seeds were surfaced sterilized via exposure

to chlorine gas for two hours. Sterilized seeds were then stratified in sterile, deionized water

for three days at 4 ◦C. Stratified seeds were planted using a pipette in a pseudo-random

layout in 36-cell flats in a peat based potting mix (50:50 Berger BM-1 and BM-2), avoiding

the four corner cells (32 plants). Ultimately there were 8 plants per infection lineage in each

flat. Flats were grown in growth chambers at 22◦C, 80% RH, 60% white light and rotated

through the chamber every 2-3 days. Plants were infected 4.5 weeks after planting.

3.2.3 Development of Pv RMX3.1b and Ps NP29.1a bioluminescent

reporter system

I sought to develop a bioluminescent reporter system for Pv RMX3.1b and Ps NP29.1a to

efficiently measure bacterial growth and circumvent the laborious and time-intensive pro-

cedures of serial dilution, plating, and colony counting. Previous work reported measuring

microbial titers from luminescent signal intensity of lux -tagged bacteria (Fan et al., 2008).

Developing a similar system would eliminate the need for colony counting, thus enabling a

higher sample size and the evaluation of more infection lineage and pathogen combinations.

3.2.4 Generation of electrocompetent Pv RMX3.1b and Ps NP29.1a for

transformation with lux reporter

Labelled microbial strains were generated from Pv RMX3.1b and Ps NP29.1a colonies

streaked from J. Herman’s stocks, both of which are natural pathogens isolated from wild A.

thaliana in the field (Jakob et al., 2002). Electrocompetent cells were generated according
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to protocols described in Perisin (2016). Single colonies were picked and grown in 5 mL

King’s Broth media (KB) overnight at 28 ◦C, 200 RPM. The following morning, cultures

were diluted and grown to mid-log phase: 5 mL of the overnight cultures were added to 100

mL fresh KB and incubated for 4-5 hours at 28◦C, 150 RPM. 50 mL of the cultures were

transferred to conical tubes. Cells were pelleted at ∼6500 x g for 10 minutes, the super-

natant was removed, and cells were resuspended in 50 mL sterile 300 mM sucrose. Cells were

washed a total of three times. After the final wash, the supernatant was completely removed,

and cells were resuspended in 1 mL 300 mM sucrose. 100 µL of this final suspension was

aliquoted and stored at −80 °C until electroporation.

3.2.5 Generation of transgenic Pv RMX3.1b and Ps NP29.1a expressing

the bioluminescent lux reporter

The bioluminescent lux reporter gene was integrated into Pv RMX3.1b and Ps NP29.1a,

using the mini-Tn7 system developed by Choi and Schweizer (2006) and protocols devel-

oped specifically for these strains by Perisin (2016). The plasmid carrying the transposase

(pTNS3) and the mini-Tn7 plasmid (hereafter pLux) carrying the bacterial lux gene and

gentamicin resistance (Choi et al., 2005) were isolated using the Qiagen MiniPrep kit and

eluted in water. 100µL of electrocompetent bacteria, 170 ng pLux and 200 ng pTNS3 (10

µL of DNA total) were combined in a 2 mm gap cuvette and mixed by gentle stirring. The

bacterial-DNA mix was electroporated with a BioRad MiniPulser using the Eco2 settings

(1 pulse, 2.5 kV). 1 mL of KB was immediately added to electoporated cells. Cells were

transferred to a cell culture tube and an additional 4 mL of KB was added. Cultures were

incubated at 28 ◦C at 225 RPM for 6 hours. Cells were then pelleted (10 minutes at 6500

x g) and all but ∼100 µL of the supernatant was removed. The entire 100 µL of cells were

plated on selective KB agar plates with 5 µg/µL gentamicin. Plates were allowed to grow for

2-3 days at 28◦C. Antibiotic resistant colonies were checked for luminescence using a CCD
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camera. Several lux -positive, antibiotic resistant colonies were picked and grown in liquid

KB overnight, at 28 ◦C, 200 RPM. An equal volume of 40% glycerol was added to each stock

stored at -20 ◦C.

3.2.6 Evaluating luminescent signal as representative of colony forming

units

The relationship between lux signal and CFUs of Pv RMX3.1b and Ps NP29.1a was eval-

uated. For these measurements, 100 µL of the undiluted leaf homogenate from infected

plants was pipetted into opaque, white 96 well plates. These plates were read on a lumines-

cence plate reader (Tecan SparkControl) using a 30s exposure per well and a 60s exposure

time for Ps NP29.1a; these differences were necessary because NP29.1a had a much dimmer

signal than the Pv RMX3.1b strain. The luminescence signal decayed over the course of

reading the samples. This is expected because the total light generated in each sample is

the combined output of light from the external environment and light produced by the lux

protein within the sample. Various tactics were used to minimize external light exposure,

but some environmental light was unavoidable. A luminescence decay curve was created by

sampling blank buffer over the course of the luminescence reading process. The resulting

decay curve was used to normalize the luminescence counts from each sample. Decay curves

were generated for each plate.

Below 104 CFUs per 28 mm2 leaf area, bacterial luminescence could not be distinguished

from environmental noise (Figure 3.3). Below this threshold, some true negatives, confirmed

by plating, had positive luminescence values after signal normalization. Additionally, below

this threshold, true positives sometimes had negative or zero luminescence values after signal

normalization with negative controls (Fig. 3.3).

The brightness of signal and CFUs were moderately well-correlated (Pv RMX3.1b: R2 =

0.73, 95% CI [0.48, 0.82], p < 0.001; Ps NP29.1a: R2 = 0.54, 95% CI [0.41, 0.63], p < 0.001),
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Figure 3.3
Relationship of bacterial CFU to lux output, including samples below detection
limits.

Figure 3.4. Nevertheless, this model exhibited two important limitations associated with

the use of luminescence to infer bacterial titers. First, residual analysis could not confirm

accuracy for bacterial titers above 105 CFUs per 28 mm2 leaf tissue due to a paucity of data at

high-infection titers. Second, variation around the CFU-luminescence model is substantial,

reducing the resolution (Fig. 3.4). As we expected growth patterns to be fairly variable

between replicates, it is unlikely that our bioluminescence assay alone would be sensitive

enough to detect transgenerational induced resistance. Because of these limitations, bacterial

growth in our experiments was primarily measured by traditional serial dilution and colony

counting. Luminescence alone was used only in the second iteration of spray infections

(Fig. 3.1, Spray - Round 2). In this round, we attempted to find an infection “breakaway”

point in infections by analyzing each leaf punch individually, which quadrupled the number

of samples in which we measured bacterial titers. No breakaway point was found, so this

component of the analysis is not shown.
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Figure 3.4
Relationship of bacterial CFU to lux output within detection limits. Pv
RMX3.1b 95% CI [0.48, 0.82], p < 0.001, Ps NP29.1a: 95% CI [0.41, 0.63], p < 0.001

3.2.7 Bacterial growth and infection procedures

Colonies of Pv RMX3.1b and Ps NP29.1a transformed with the luminescent lux reporter

were plated on KB with agar and grown for two days at 28◦C. A single colony was picked

and grown in liquid KB for 24 hours, at 28◦C and 225 RPM. For spray inoculations, 1 mL

of the 24h culture was used to inoculate 100 mL KB flask and allowed to grow overnight.

Syringe infiltration: Bacteria were diluted to 1.5 x 106 colony forming units (CFU) per

mL in sterile 10mM MgSO4. In each round, each strain was inoculated into 96 plants:

24 individual plants of the 4 infection lineages. In addition, 8 plants per infection lineage

were mock inoculated. True leaves 3, 4, 5, and 6 were selected for inoculation and their

petioles were marked with a permanent marker for accurate resampling. Bacteria were gently

infiltrated into leaves with a blunt-end syringe until the entire leaf appeared water soaked.

Plants receiving a mock treatment were infiltrated with sterile 10mM MgSO4. Plants were

allowed to dry for ∼1.5 hours, or until water soaking symptoms had disappeared. The plants
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were then placed in humidity domes, which remained for the duration of the experiment,

and returned to the growth chamber. This process was performed twice with Ps NP29.1a

and twice with Pv RMX3.1b (Fig. 3.1, Syringe inoculations).

Spray inoculations: Bacterial concentrations were adjusted to 5 x 108 CFU/mL in sterile

DI water with 0.04% Silwet L-77, a surfactant that facilitates entry into the leaf. In total,

each strain was inoculated into 96 plants: 8 individual plants of each of the four infection

lineages at two sampling time points plus one replicate set that was reserved for symptom

scoring. Eight plants per infection lineage were mock inoculated. Bacteria were immediately

sprayed onto plants using a sterilized airbrush applicator, until all leaves were visibly covered

with the microbial solution, approximately 25 mL per flat. Mock treated plants were sprayed

with sterile DI water with 0.04% Silwet L-77. Leaves were allowed to dry for 1.5 hours, and

then placed in humidity domes, which remained for the duration of the experiment, and

returned to the growth chamber. This process was performed twice with Ps NP29.1a and

twice with Pv RMX3.1b (Fig. 3.1, Spray inoculations).

3.2.8 Measuring bacterial growth

For syringe inoculated plants, leaf samples were harvested at three time points, 4 hours post-

infection to measure the initial density of microbes in plant tissues, and 24 and 48 hours

post-infection to assay microbial growth. Two methods were used to account for variation in

leaf sizes. In Round 1, four leaves per plant were clipped at the base and weighed. The wet

weight was used to standardize the CFU counts. In Round 2, one 28 mm2 punch per leaf was

harvested from four leaves per plant. Whole leaves or leaf punches were dipped in freshly

prepared 70% ethanol for 15 seconds to remove surface microbes, rinsed in sterile DI water

and blotted on paper towels. Sterilized punches were then placed in a 96-well DeepWell

plate (Nunc 2mL) with 2-3 2.3 mm steel beads per well. In Round 1, the four punches from

the same plant were pooled into a single well. In Round 2, each leaf punch was processed
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individually (Fig. 3.2). Samples were then homogenized by bead beating on a Spex 2010

Geno/Grinder for 2 cycles of 15 seconds at 1750 RPM. 200 µL of 10mM MgSO4 was added

to each well and homogenized for 2 cycles of 20 seconds at 1750 RPM.

Spray inoculated plants were collected at only two time points, 24 hours and 48 hours

post-infection; plants were not harvested immediately after infection because time for the

bacteria to enter the leaf tissues is required. In order to assess the basal levels of microbes

in the leaves, untreated plants were harvested the same day that spray infections took place.

In both Round 1 and Round 2, one 28 mm2 punch per leaf was harvested from four leaves

per plant. Leaf punches were then dipped in freshly prepared 70% ethanol for 15 seconds to

remove surface microbes, rinsed in sterile DI water and blotted on paper towels. Punches

were subsequently transferred to a 96-well DeepWell plate (Nunc 2mL) with 2-3 2.3 mm steel

beads per well. In Round 1, the four punches from the same plant were pooled into a single

well. In Round 2, each leaf punch was processed individually (Fig. 3.2). Samples were then

homogenized by bead beating on a Spex 2010 Geno/Grinder for 2 cycles of 15 seconds at

1750 RPM. 200 µL of 10mM MgSO4 was added to each well and homogenized for 2 cycles

of 20 seconds at 1750 RPM.

In both rounds of syringe inoculations and Round 1 of spray inoculations, CFUs were

quantified by serial dilution and plating. Leaf homogenates were serially diluted in 10mM

MgSO4. 10µL of each dilution was plated on KB plates and incubated at 28◦C. After colonies

appeared, between 24-36 hours, colonies were counted by hand. Since both Pv RMX3.1b and

Ps NP29.1a were lux transformed, plates were photographed using a CCD camera to confirm

that they were lux positive. The vast majority of colonies were luminescent. In cases where

contaminating microbes were observed, both the luminescent titer (target bacteria) and the

non-luminesent titer (contamination) were recorded. In Round 2 of the syringe inoculations,

luminescence was measured on the plate reader in addition to colony counting. In Round 2

of the spray infections, only luminescence on the plate reader was recorded. The methods for
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this direct measurement of luminescence is detailed above. Given the previously discussed

limitations associated with luminescence reads, results from this round of the experiment

are reported only as support for the CFU counts.

3.2.9 Symptom analysis

In order to score symptoms, plants were photographed daily for several days post-infection

after one iteration of syringe infections (Round 2) and both iterations of spray infections.

Syringe infections were compared at 7 days post-infection and spray infections were compared

5 days post-infection. This discrepancy is due to incomplete data: the symptom analysis

was added while the experiment was already in progress; 7 days post-infection as the only

day that both Ps NP29.1a and Pv RMX3.1b syringe infections were photographed, whereas

spray infections were photographed 5 days post-infection. Symptoms were scored by eye

on a scale of 0-3. 0: no visible symptoms, 1: 1-33% of leaf symptomatic, 2: 34-66% of leaf

symptomatic, 3: 67-100% of leaf symptomatic (Roux et al., 2010). Symptoms included water

soaking, leaf yellowing, and leaf necrosis. The scores from 4 leaves per plant were summed

to get a Sum Symptom Score. This total score was used to test if infection lineage affected

overall plant symptom severity. In addition, the relationship between infection lineage and

the distribution of symptom severity was evaluated by comparing the proportion of leaves

receiving each score (0-3) within each infection lineage.

3.2.10 Statistical analysis

All statistical analyses were performed in R, using the stats, ggsignif and ggpmisc packages.

CFU - luminescence regression analysis: After removal of all values below detection

limits, the remaining data was fit to a linear model using stat poly eq function in R. Other

polynomial fits were explored, but none had improved fits over a linear model.

Bacterial load assays: CFU titers (all syringe assays and spray inoculations, Round 1) or
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normalized luminescence scores (spray inoculations, Round 2) were log10 transformed before

analysis. If leaf punches were measured separately (Fig. 3.1, Syringe Round 2 and Spray

Round 2), the mean of the CFU count or luminescence score per plant was used in the

statistical analysis. All microbial titers were compared using the Kruskal-Wallis rank sum

test.

Symptom analysis: In the overall symptom analysis, Kruskal-Wallis rank sum tests were

used to compare the Sum Symptom Score of total plant symptoms. Fisher’s Exact Test was

used to determine of the proportion of leaves receiving each score (0-3), varied by infection

lineage. In this analysis, each leaf was considered individually.

3.3 Results

3.3.1 Exposure to pathogens in previous generations does not impact

growth of Pv RMX3.1b or Ps NP29.1a in A. thaliana leaves after

syringe inoculation

Infection lineage had no effect on the growth of Pv RMX3.1b nor Ps NP29.1a after syringe

inoculation (Figure 3.5). Pv RMX3.1b grew to the same titers in plants descended from

mock, Ps NP29.1a, Pv RMX3.1b, and co-infection lineages at both 24 hours post-infection

(Kruskal-Wallis rank sum test, p > 0.05) and 48 hours post-infection, when growth had

typically plateaued (Kruskal-Wallis rank sum test, p > 0.05). However, this conclusion is

based on experimental Round 1 (3.5A), because Pv RMX3.1b failed to vigorously grow in

Round 2 (3.5B). Similarly, infection lineage had no effect on growth of Ps NP29.1a after a

syringe inoculations (Figure 3.5, C and D). Note that during the harvest at T0 in Round 1

of the Ps NP29.1a infection, technical errors required the removal of several replicates.
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Figure 3.5
Growth of bacterial (CFUs) in A. thaliana leaves after syringe inoculation. A.
thaliana with distinct infection lineages (n = 8), were infected with either Pv RMX3.1b (A,
B) or Ps NP29.1a (C, D). In experiment 1 (A, C), total CFUs from four pooled leaves per
plant were quantified and standardized by wet weight. In experiment 2 (B, D), the per
plant mean of CFUs per leaf punch from four leaves is presented.

3.3.2 Exposure to pathogens in previous generations does not impact

growth of Pv RMX3.1b or Ps NP29.1a in A. thaliana leaves after

spray inoculation

In agreement with the syringe infection assays, there was no evidence of transgenerational

induced resistance on bacterial growth after spray infection. In Round 1, Pv RMX3.1b

grew to the same titers in all four plant lineages (historic mock, Ps NP29.1a, Pv RMX3.1b,

or co-infection) at both 24 hours post-infection or 48 hours post-infection (Figure 3.6 A,

Kruskal-Wallis rank sum test, p > 0.05). Spray infections of Ps NP29.1a resulted in the
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same pattern - bacterial growth was not impacted by infection lineage (Fig. 3.6, B). This

finding was supported in the second round of spray infections, where strength of luminescent

signal was used to measure bacterial load (Figure 3.6, C and D, Kruskal-Wallis rank sum

test, p > 0.05).

Figure 3.6
Growth of bacterial (CFUs) in A. thaliana leaves after spray inoculation. A.
thaliana with distinct infection lineages (n = 8), were spray infected with either Pv
RMX3.1b (A, C) or Ps NP29.1a (B, D). In A and B, points represent total CFUs from four
pooled leaf punches per plant. In C and D, each point represents the mean luminescence
from each individual plant, calculated as the mean of 4 leaf punches.

3.3.3 Infection lineage does not impact disease symptom severity in

syringe or spray infections

Plants derived from Ps NP29.1a, Pv RMX3.1b, or co-infection infection lineages had the

same overall symptom severity as plants derived from mock lineages and each other when
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challenged with either Ps NP29.1a or Pv RMX3.1b. In each plant, symptom scores of four

leaves were added together to obtain the sum symptom score. There was no difference in the

sum symptom score 7 days after syringe (Fig. 3.7) or 5 days after spray infections (Fig. 3.8)

with either microbe (Kruskal-Wallis, p>0.05). for Following syringe infections, symptoms

were evaluated in Round 2 only. Symptoms were evaluated in both Round 1 and Round 2

of spray infections.

Figure 3.7
Symptom severity in A. thaliana leaves 7 days after syringe inoculation. A.
thaliana of four distinct infection lineages (n = 7-8), were inoculated with either Ps
NP29.1a (A) or Pv RMX3.1b (B). Four leaves per plant (n = 7-8) were scored for
symptoms. Scale: 0 = no symptoms, 1 < 33% symptomatic leaf area, 2 = 34-67%
symptomatic leaf area, 3 > 67% symptomatic leaf area. The scores of the 4 leaves were
added together to obtain the sum symptom score. The mean and standard error of the sum
symptom score are plotted.
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Figure 3.8
Symptom severity in A. thaliana leaves 5 days after spray inoculation. A.
thaliana with distinct infection lineages (n = 7-8), were infected with either Ps NP29.1a
(A, C) or Pv RMX3.1b (B, D). Four leaves per plant (n = 7-8) were scored for symptoms.
Scale: 0 = no symptoms, 1 < 33% symptomatic leaf area, 2 = 34-67% symptomatic leaf
area, 3 > 67% symptomatic leaf area. The scores of the 4 leaves were added together to
obtain the sum symptom score. The mean and standard error of the sum symptom score
are plotted.

In addition to analyzing overall plant symptom severity, we attempted to increase the

resolution of our symptom analysis by determining the distribution of the symptom scores

of individual leaves was compared between plant lineages. For example, a bimodal symptom

pattern (with some leaves developing severe symptoms and some leaves remaining asymp-

tomatic, i.e. leaf scores 3, 3, 0, 0) could result in the same overall score as a more uniform

symptom pattern (all leaves developing moderate symptoms, i.e. leaf scores 2, 2, 1, 1).

Plant lineage had no effect on the distribution of disease symptom severity of individual

leaves in any infection condition (Fisher’s exact test, p > 0.05). Symptoms were measured

after Round 2 Ps NP29.1a and Pv RMX3.1b syringe infections (figure not shown) and after

both rounds of Ps NP29.1a and Pv RMX3.1b spray infections (Figure 3.9).
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Figure 3.9
Proportions of symptom severity in leaves after spray infection, by infection
lineage. Four leaves per plant (n = 7-8) were scored for symptoms following Pv RMX3.1b
(A, B) or Ps NP29.1a (C, D) spray infection. Scale: 0 = no symptoms, 1 < 33%
symptomatic leaf area, 2 = 34-67% symptomatic leaf area, 3 > 67% symptomatic leaf area.
The number of leaves in each bin was counted by infection lineage.

3.4 Discussion

Current and historic abiotic and biotic conditions impact the pathogenesis of bacterial in-

fections (Tollenaere et al., 2016; Hassani et al., 2018; Saijo and Loo, 2020). High-intensity

infections with an aggressive bacterial pathogen, Pst DC3000, can even affect pathogene-

sis in future generations, as infected plants produce offspring that are more resistant to Pst
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DC3000 infections but exhibit increased susceptibility to necrotrophic pathogens (Luna et al.,

2012; Slaughter et al., 2012; López Sánchez et al., 2021). However, the infection conditions in

these experiments are highly atypical in the field, thus, the importance of transgenerational

induced resistance in nature is unclear. We addressed this question by better emulating key

parameters of field infections in A. thaliana for two generations and then evaluating the

progeny for transgenerational induced resistance phenotypes. We found no evidence that

exposure to resident, naturally occurring bacterial strains at realistic titers triggers trans-

generational induced resistance phenotypes, despite transgenerational epigenetic changes at

the molecular level (Beilsmith, 2020).

Field surveys indicate that our experiments are representative of strong bacterial infec-

tions in nature (Dunning, 2008; Karasov et al., 2019), but that wild A. thaliana rarely,

if ever, experience infections akin to the high-intensity Pst DC3000 infections assayed in

previous work. In planta growth of Ps NP29.1a and Pv RMX3.1b is comparable to the

growth of numerous P. syringae and P. viridiflava strains that have been isolated from

wild A. thaliana (Jakob et al., 2002, 2007; Kniskern et al., 2011). Pst DC3000, on the

other hand, consistently grows to titers at least an order of magnitude higher (Jakob et al.,

2007; Kniskern et al., 2011). In addition to phenotypic differences among strains, we used

relatively moderate infection conditions compared to previous studies, with lower bacterial

loads and/or fewer within-generation exposures (Luna et al., 2012; Slaughter et al., 2012;

López Sánchez et al., 2021). Our initial conditions produce infections that peak on the high

end of leaf microbial titers observed in nature (Dunning, 2008; Karasov et al., 2019); more

intense initial conditions produce infections that are more extreme than natural infections.

The strength of the stress can determine the strength of resistance phenotypes in the next

generation (Hannan Parker et al., 2022), thus, typical field infections may simply be too

weak to trigger transgenerational induced resistance. Since there is no evidence of trans-

generational induced resistance in these ecologically relevant conditions, the ecological and
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evolutionary significance of this phenomena in A. thaliana - bacterial interactions is called

into question.

How likely is it that bacterial infections often trigger transgenerational induced resis-

tance, yet we failed to detect it? Although our sample size was modest (n = 7-8), we found

no consistent trends or marginally significant results (p < 0.1), except for symptoms after

syringe infection of Pv RMX3.1b (p = 0.099, see Fig. 3.7). Thus, there is no clear in-

dication that increasing the sample size would reveal transgenerational induced resistance

phenotypes. Another possible limitation is that each infection lineage is represented by the

progeny of a single plant. Bacterial infections are variable between biological replicates;

using a single lineage risks randomly selecting a line with an unusually strong (or weak)

inducing infection, which could impact the strength of resistance phenotypes in the next

generation (Hannan Parker et al., 2022). The fact that we used lines that had two genera-

tions of the same stress treatment, however, likely mitigated variability between plant lines

from potential uneven infection conditions in one generation. Third, the seeds used in our

experiment were approximately two years old. Lang-Mladek et al. (2010) found that stress-

induced genomic instability decays rapidly as seeds age; plants derived from stressed parents

are indistinguishable from control plants in as little as 2-4 months of seed aging. It is there-

fore possible that our experimental conditions initially triggered transgenerational induced

resistance, but resistance phenotypes were reset before the offspring were challenged with

the pathogens. That said, the time between generations of wild A. thaliana is ∼6 months

(Shindo et al., 2007): in the field, inherited resistance from previous generations may be

reset prior to germination if these phenotypes decay quickly. Further research examining the

stability of transgenerational induced resistance is critical to understanding its relevance in

an ecological context.

The challenges of observing transgenerational induced resistance would likely be greater

in field conditions. In nature, plants are subject to a slew of abiotic and biotic stressors over
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the course of a lifetime. Simultaneous exposure to multiple abiotic stressors generally im-

pedes transmission of plastic resistance phenotypes to the next generation (Lampei, 2019).

Similarly, we found that plants subjected to multispecies co-infections produced offspring

with the same resistance phenotypes as the offspring of mock treated plants; co-infection lin-

eages did not exhibit increased resistance or susceptibility to Pv RMX3.1b nor Ps NP29.1b.

Furthermore, any plastic resistance phenotypes that are successfully transmitted to the next

generation are often overwhelmed and quickly reset by within-generation stress (Uller et al.,

2013; Ballhorn et al., 2016). Thus, field conditions are less likely to generate and maintain

measurable transgenerational induced resistance than high-intensity, single-stress exposures

assayed in the lab.

The disparity between our study and previous work in transgenerational induced resis-

tance in A. thaliana-bacterial pathosystems highlights the need for experiments utilizing

conditions that more closely replicate field conditions, or better yet, true field studies. It is

clear that transgenerationally transmitted plastic phenotypes can be generated in many sce-

narios in the lab, but unusually intense, single-stress assays in the laboratory do not always

translate well to ecologically relevant conditions.

In conclusion, we argue that in nature, typical pathogenic bacterial infections of A.

thaliana are unlikely to cause transgenerational induced resistance that impacts the evolution

of A. thaliana-bacterial pathosystems. We found no evidence that pathogenic bacterial

infections result in transgenerational induced resistance in A. thaliana when basic infection

parameters mimic natural infections. Indeed, this makes sense in light of observations that

wild A. thaliana interacts diffusely with its bacterial pathogens (Karasov et al., 2014); thus

it is unlikely that parental disease pressure accurately predicts disease pressure in offspring.

Selection is not predicted to favor transgenerational induced resistance unless the ecological

context of parental plants strongly predicts the ecological context of their offspring (Kuijper

et al., 2014). Thus, it is unlikely that transgenerational induced resistance is an important
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factor in A. thaliana - bacterial interactions in nature.

3.5 Supplemental Figures

Figure 3.10
Inoculation-induced differentially methylated regions (DMRs) in the parental
generation. Each green tick denotes a genomic region where the methylation level
changed more than 20% in response infection, as compared to the methylation level of the
same region in the mock-treated sample. There are 9 methylation profiles, 3 comparisons x
3 sequence contexts: the first three rows are mock vs. Ps NP29.1a CG methylation, CHG
methylation, and CHH methylation; the next three rows are mock vs. Pv RMX3.1b CG,
CHG, and CHH; and last three rows are mock vs. co-infection CG, CHG, and CHH. Image
credit, J. Herman

Figure 3.11
Col-0 CHG DMRs in different infection contexts. co-infection induced distinct
changes compared to single-species inoculations. Results for the CG and CHH sequence
contexts are similar (data not shown). Figure credit: J. Herman.
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CHAPTER 4

NATURAL VARIATION IN BACTERIAL THROUGH-SOIL

DISPERSAL RATES GENERATES CASCADING PRIORITY

EFFECTS IN PLANTS AND SOIL WITH ENDURING

EFFECTS ON MICROBIOME STRUCTURE

4.0.1 Abstract

Despite the importance of dispersal in community assembly (Vellend, 2010) little is known

about its impact on plant and soil microbiome assembly. Here I show that dispersal rate vari-

ation across bacterial isolates substantially affects community assembly processes with long-

term consequences for plant and soil microbiome structure. Using a moderate-complexity

synthetic bacterial community in a closed, peat-based microcosm, I show that remarkable

variation in through-soil colonization rates across bacterial isolates rapidly generates restric-

tive microbial communities within centimeters of soil. These “biological barriers” interfere

with subsequent bacterial dispersal, which, in conjunction with plant-specific priority effects,

has enduring consequences for plant microbiome structure. Furthermore, when dispersal is

required to colonize distant soil sites in this experimental system, the impact of priority

effects on soil community structure increases with the distance to the microbial inoculation

site, likely from greater spacing between arrival times. These processes occur at spatial and

temporal scales that are highly relevant to plants in the field and underlie the maintenance

of divergent communities in a continuous soil environment. Given the growing efforts to ma-

nipulate microbial communities for agricultural, health, and industrial purposes, microbial

dispersal - a key driver of community assembly - deserves increased attention.
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4.0.2 Introduction

Dispersal, or the movement of species through space, is widely accepted as a major factor in

macroscopic community assembly (Vellend, 2010) and is likely to play a key role in free-living

and host-associated microbiome assembly (Baltrus, 2020; Custer et al., 2022). In addition to

determining the ability of an organism to reach a target community, relative dispersal ability

affects the order and timing of species’ arrival to a community. This is important because

arrival order and timing can change how community members interact with one another,

leading to significant alterations in community membership and composition (Chase, 2003).

For example, when similar species compete for the same niche space, species that arrive early

in community assembly may gain an advantage over later arrivals by preempting niche space.

Additionally, early arrivals may modify the environment to the detriment, or benefit, of later

arrivals (Fukami, 2015). This phenomenon, known as priority effects, can have long-term

effects on community structure and function and has been documented in many ecological

systems (Fukami, 2015). In plants, experiments manipulating the arrival order and timing

of microbes to plant tissues show that priority effects can have lasting effects on microbiome

structure (Toju et al., 2018; Carlström et al., 2019; Debray et al., 2022). However, it remains

uncertain if natural variation in microbial dispersal rates is likely to generate priority effects.

Dispersal rate variation is well-documented across macroscopic taxa. Dispersal rate vari-

ation among microbial taxa, on the other hand, is poorly elucidated (Barbour et al., 2023).

A wide range of microbial dispersal rates in terrestrial environments is certainly possible.

Microbes employ diverse cellular machinery to move through space (Wadhwa and Berg,

2022) and vary in their movement speeds across agar and other surfaces (Henrichsen, 1972;

Krüger et al., 2018). Nevertheless, data on the variation of active, through-soil microbial

dispersal rates is almost nonexistent; to my knowledge only one study with a short temporal

scope exists (Wolf et al., 2015). Understanding through-soil bacterial dispersal patterns is

key to understanding plant microbiome assembly because the soil surrounding the plants is
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a major source of bacteria that populate the plant microbiome (Bodenhausen et al., 2013;

Tkacz et al., 2020). Critically, if microbial through-soil dispersal rate variation generates

priority effects with meaningful, long-term impacts on plant microbiome structure, priority

effects likely play a role in plant microbiome assembly in nature.
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4.0.3 Results

Figure 4.1
Sampling procedure with soil microcosm. Before inoculation, 10 µL pipette tips were
placed 90 mm apart in microcosms to ensure equivalent testing locations across replicates.
Soil cores were extracted at three points, Source Soil, Midpoint Soil, and Far Soil, as
indicated by the orange asterisks. Plant tissues were harvested at each time point (pink
asterisks) with entire cotelydons and young seedlings harvested as a single sample. After
Day 14, roots and rosettes were processed separately. All plants within a microcosm were
combined into a single sample. In Localized Start microcosms, Source Soil was the
inoculation point for the SynCom. In Mixed Start Boxes, the SynCom was evenly
distributed throughout the entire microcosm, including onto host plants. Blue asterisks
denote the additional sampling points for individual movement assays, in which each
SynCom member was inoculated alone at the Source Soil location.

To address these open questions, I curated a bacterial Synthetic Community (SynCom)

composed of 83 isolates, representing 42 species, from field-grown Arabidopsis thaliana rhi-
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zospheres (Supplementary Table 4.1). Isolates were selected to maximize phylogenetic di-

versity of the synthetic community rather than by functional characterizations. In closed,

peat-based microcosms (loosely based on Kremer et al. (2021)), I inoculated the SynCom

using two methods that altered the amount of through-soil dispersal required to reach the

host plant and compared the resulting plant microbiome structure. In the first treatment,

designated “Mixed Start”, the SynCom was evenly distributed throughout the microcosm,

including direct inoculation onto plants; thus, there was limited opportunity for dispersal

variation to impact microbiome assembly. In the second treatment, designated “Localized

Start”, the SynCom was inoculated at a single location (Source Soil), requiring bacteria to

disperse through approximately 6 centimeters of soil to colonize plants. Microbiome struc-

ture was characterized for five weeks by marker gene sequencing. Plant tissues and soil

cores from three locations (Source, Midpoint, and Far) were destructively harvested at two

days post-inoculation and weekly from Day 7 - Day 35 (Figure 4.1, n = 7 with plants, per

inoculation method per time point). Thus, I tested if microbial dispersal through several

centimeters of soil altered plant and soil microbiome structure over time frames relevant to

the lifespan of A. thaliana.
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Figure 4.2
Plant community structure varies between dispersal treatments and tissue
types. Each stacked bar represents the mean community composition of biological
replicates at one time point. Each color represents a distinct species; only species that
reached at least 5% relative abundance or greater are included on the legend. Top row:
Localized Start (colonized) plant tissues. Bottom row: Mixed Start (directly inoculated)
plant tissues.
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Figure 4.3
Root and rosette associated microbiomes in different dispersal treatments do
not converge. Principal coordinate analysis of Bray-Curtis dissimilarity. A) Root and B)
Rosette community structure over time. Circles denote Localized Start communities while
triangles denote Mixed Start communities. The color of the point denotes time as indicated
in the legend. The enlarged points represent the group median of each dispersal treatment
and time point combination. Solid arrows follow Localized Start communities over time,
while dashed arrows follow Mixed Start communities over time.

Initial dispersal limitation had long-lasting and substantial effects on plant microbiome

structure. Considering all plant tissues over the course of the experiment, dispersal treat-

ment accounted for 17% of the variation in community structure (Bray-Curtis dissimilarity,

PERMANOVA, df = 1, F = 52.9, p < 0.01). In addition to dispersal treatment, tissue type,

time, and the interaction between these three factors also explained significant portions of

community structure (Supplemental Table 4.2), as expected from previous work Fitzpatrick

et al. (2020). These effects remained consistent across data transformation procedures and

community composition metrics (Supplemental Table 4.2).

Localized Start rosettes and roots remained distinct from their Mixed Start counterparts

over several weeks (Figures 4.2 & 4.3). Post-hoc analyses within tissues revealed that dis-

persal treatment explained large portions of variation in community structure (Bray-Curtis

dissimilarity, within roots: df = 1, R2 = 0.49, F = 28.8, p < 0.01; within rosettes: df = 1,
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R2 = 0.25, F = 15.6, p < 0.01). Additionally, effect of dispersal remained significant when

comparing Localized Start tissues with their Mixed Start counterparts at Day 35 (p < 0.01).

Not only did the two dispersal treatments remain distinct, they did not appear to be on a

trajectory moving towards convergence over time on major principal coordinate axes, thus

these differences were likely to extend beyond the five weeks of the experiment (Fig. 4.3).
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Figure 4.4
SynCom isolates colonize the soil microcosm at variable rates. Each horizontal
line represents an isolate. The point represents the mean colonization rate of the isolate,
and error bars represent one standard deviation. Isolates within a species complex (defined
as containing a unique fragment of DNA gyrase β) are the same color and proximal to each
other on the graph. The graph is ordered by the mean colonization rate of the species
complex. Colonization rates were calculated by averaging the daily movement rates for
three days. In instances where isolates moved across the box in less than 3 days, rates were
calculated from daily movement rates of the first 1-2 days.
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Figure 4.5
Closely related species disperse through and colonize the soil at similar rates.
Phylogeny was based on genomic gyrB sequences using MAFFT to align sequences and
FastTree to construct the phylogenetic tree. SynCom species are colored by mean dispersal
rate as indicated on the legend. The ranked dispersal rate out of 42 SynCom species is
listed in brackets by each species’ name, with 1 being the fastest.

If variation in motility is sufficient to explain the differences in microbiome structure

across dispersal treatments, I predicted that immobile or low-motility species would be ab-

sent from Localized Start plant tissues but present in Mixed Start plant tissues. To explore

this hypothesis, I first determined the individual through-soil dispersal rates of each Syn-

Com member when released alone in the soil microcosm by recording the locations of colony
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forming units in 10 evenly spaced sites across the soil (modified from Bashan (1986), Sup-

plemental Figure 4.19). Microcosms were repeatedly sampled immediately post-inoculation

and every 24 hours thereafter to obtain a per day dispersal rate. There was impressive

variation in species’ colonization rates, ranging from ∼0.3 mm per day to >63 mm per day

(Figure 4.4). Isolates colonized the soil at approximately linear rates (Supplemental Figure

4.11). All SynCom species, with the exception of two Bacillus species, colonized the entire

soil sampling region well within the experimental time frame (Supplemental Figure 4.11).

However, the absence of these two Bacilli did not explain differences between the complex

communities that formed in the two dispersal treatments. Instead, I found that these two

largely immobile Bacilli species were immediately excluded from all soil and plant associ-

ated communities, regardless of dispersal requirements. Thus, innate motility limitation did

not prevent SynCom members from reaching the plants (Supplemental Figure 4.14, Bacillus

GB19 and GB40).

I additionally found that through-soil dispersal rate was linked to phylogeny. In general,

isolates within a species complex, defined here as sharing identical copies of a fragment

of DNA gyrase β-subunit (gyrB), dispersed at comparable rates (but note several clear

instances of intraspecific variation, Fig. 4.4). Closely related species likewise exhibited

similar movement rates; several non-random clusters of movement rates were observed across

the tree (Fig. 4.5, Local Indicator of Phylogenetic Association, p < 0.05). Thus, two

important patterns emerged; first, species arrived asynchronously to distant sites (including

plant tissues) and second, related species were often predicted to arrive at the plant at similar

times.
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Figure 4.6
Microbiomes in Localized Start plant tissue and Far Soil are enriched for
fast-moving microbes compared to Mixed Start microbiomes. The relative
abundance of each species was multiplied by its mean colonization speed to obtain mean
community level colonization speed. At Day 35, the overall community speed of roots,
rosettes, and Far Soil was faster when substantial through-soil dispersal was required
(Localized Start) compared to directly inoculated counterparts (Mixed Start).
Kruskal-Wallis (p < 0.05), using within sample type Wilcoxon post-hocs (p < 0.05).

Although immobility was insufficient to explain the differences between plant micro-

biomes in Localized and Mixed Start inoculations, microbial dispersal rate could still affect

community composition if priority effects altered community interactions. Because priority

effects typically benefit early arrivals in related systems (Carlström et al., 2019), I asked if

fast dispersers were over-represented in microbiomes assembled after Localized Start inoc-

ulation. To test this, I calculated the community-level dispersal rate of final microbiomes

by multiplying the relative abundance of each species by its mean individual colonization

speed and compared community level dispersal rates between dispersal treatments. Total

community dispersal rates were significantly higher in Localized Start plant tissues and Far

Soil sites relative to Mixed Start plant and soil sites (Fig. 4.6). This suggests that priority

effects, with an early arrival advantage, may be contributing to the structure of soil and
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plant microbiomes.

Figure 4.7
Differentially abundant SynCom species in roots and rosettes. Bars show the
log2-fold enrichment or depletion of SynCom species in Localized Start plant tissues
compared to their Mixed Start counterparts on Day 35 (DESeq2, p < 0.01). Bars are
colored on a gradient scale by the species’ mean colonization rate.

To further investigate whether priority effects acted through a modification of species

interactions, I explored the simplistic hypothesis that dispersal rate would correlate pos-

itively with membership or final relative abundance of individual taxa in Localized Start

communities. I found that dispersal rate did not predict membership in Localized Start

communities (Supplemental Figure 4.12, Kruskal-Wallis, p > 0.05) and did not correlate

with relative abundance of species within microbiomes (4.13, linear regression, R2 < 0.01).

I then asked which species were affected by dispersal treatment, and if this had any relation

to dispersal rate. Of the 8/42 SynCom species that were differentially abundant in Localized

Start plant tissues compared to Mixed Start plant tissues, both relatively fast- and slow-

moving taxa were affected (Figure 4.7, DESeq2, p < 0.01). Generally, species were depleted

in Localized Start plant microbiomes compared to Mixed Start microbiomes, but depleted

taxa exhibited a range of dispersal rates. Thus, while dispersal rate variation affected overall
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community structure, the impact of dispersal rate on individual species was more complex,

likely reflecting the interplay between dispersal, selection by the environment and species

interactions.

Priority effects appear to drive at least some of these changes in relative abundance across

dispersal treatments. One particularly compelling example is Plantibacter GB31, which was

highly successful in Mixed Start rosettes, reaching ∼15% relative abundance by Day 35, but

was absent from Localized Start rosettes (Fig. 4.2, Supplemental Figure 4.14). This absence

is not explained by motility limitation because Plantibacter GB31 established populations in

roots and the surrounding Far Soil in Localized Start microcosms, albeit at lower prevalence

and abundance (Fig. 4.7 and Supplemental Figure 4.14). This suggests Plantibacter GB31

was excluded from rosette communities via rosette-specific priority effects. Indeed, of the 8

differentially abundant taxa between dispersal treatments, 6 species successfully established

in plant tissues or the immediately surrounding soil. This suggests that plant-based priority

effects altered the final representation of these species in the community.

Intriguingly, priority effects in soil communities appeared to prevent some species from

reaching the plant at all. Like Plantibacter GB31, Acidovorax GB1 was well-represented in

Mixed Start rosettes and colonized the soil matrix in approximately one week in isolation.

However, Acidovorax GB1 failed to colonize Localized Start rosettes (Fig. 4.2 & 4.7, Sup-

plemental Figure 4.11). The absence of this relatively slow-dispersing species was mirrored

in the roots and in the Far Soil surrounding the plant (Supplemental Figure 4.14). Unex-

pectedly, Acidovorax GB1 coexisted for 5 weeks within the SynCom at the inoculation site

(Source Soil), suggesting that its exclusion from other soil communities was a result of its

late arrival. This suggests that restrictive bacterial communities quickly established within

soil, effectively creating “biological barriers” that impaired otherwise mobile species from

reaching favorable environments like plant tissues. Such barriers could theoretically be es-

tablished through numerous mechanisms, for example, early arrivals may have consumed the
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resources required to support active motility (Mart́ınez-Garćıa et al., 2014), secreted toxic

compounds (Lewis, 1929), or established physical structures (e.g. biofilms) that inhibit col-

onization (Nadell et al., 2015). Strikingly, biological barriers appeared over short time scales

and distances. Considering the individual colonization rates of these bacteria, restrictive

communities must have assembled within days and over centimeters of soil.

Figure 4.8
Distinct communities in different soil locations are maintained after Localized
Start inoculations. Each stacked bar represents the mean community composition of
biological replicates at one time point. Each color represents a species; only species that
reached at least 5% relative abundance or greater are included on the legend. Columns
displays communities from different soil location; the schematic above the column label
shows the sampling location (orange asterisk) in relation to the plants (green symbols).
Top row: Localized Start - the SynCom was inoculated into Source Soil, other soil
locations are colonized by movement from this pool. Bottom row: Mixed Start - all
locations were directly inoculated with the same initial community.
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Figure 4.9
Species richness in the soil decreases as distance to inoculation site increases.
Top row: Richness of soil communities at three sites after a Localized Start inoculation.
Bottom row: Richness of soil communities after a Mixed Start inoculation. Each panel
denotes a different time point and the color of the box plot represents the soil site, as
indicated by the legend. In Localized Start microcosms, Far and Midpoint Soil (blue and
green) never attain the species richness maintained in the inoculation site (Source Soil,
red). Midpoint Soil maintains greater diversity than Far Soil. In Mixed Start microcosms,
all sites were directly inoculated and maintain the same number of species as one another
except at Day 28. Asterisks denote statistically significant differences (p < 0.05) in
Wilcoxon post-hoc tests with Benjamini-Hochberg correction for multiple testing. “ns” =
not significant.
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Figure 4.10
More species are affected by priority effects in soil as distance to inoculation
site increases. Differentially abundant species at different soil sites within Localized Start
microcosms. Bars show log2 fold enrichment or depletion of species between soil sites
(DESeq2, p < 0.05 and ANCOM). Asterisks denote significance using ANCOM including
structural zeros, i.e. species were present in Source Soil but absent from distant soil sites.
More species are differentially abundant in Source Soil vs. Far Soil than in Source Soil vs.
Midpoint Soil. Increased distance from the inoculation site augments the advantage for
Pseudomonas GB21 and Pseudomonas GB32 in Localized Start microcosms.

To further investigate the ecological significance of priority effects on the structure of soil

communities, I compared community composition of the three sampled soil locations. Across

all soil samples, dispersal treatment, soil site, time and the interactions between these factors

explained significant components of community variation (PERMANOVA, Bray-Curtis dis-

similarity, p < 0.01). Consistent with the importance of priority effects in plants, Midpoint

and Far Soil sites remained distinct and on separate successional trajectories from the Source

Soil within Localized Start treatments over the course of the experiment (PERMANOVA

site effect within each time point: p < 0.01), whereas soil sites within Mixed Start treat-

ments were indistinguishable from one another (PERMANOVA site effect within each time

point: p > 0.01) (Figure 4.8, Supplemental Figure 4.15). The dissimilarity between soil
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communities in Localized Start dispersal treatments increased as physical distance from the

Source Soil increased (effect of site in pairwise PERMANOVAs on Bray-Curtis dissimilarilty

at Day 35, Source versus Midpoint: R2 = 0.24, F = 20.0, p < 0.01; Source versus Far: R2

= 0.49, F = 7.30, p < 0.01), which was likely due to the extended intervals between species’

arrivals enhancing priority effects (Svoboda et al., 2018). Species richness of soil commu-

nities reflected the presence of biological barriers; fewer species successfully established in

Far Soil than in Midpoint Soil, which in turn had lower richness than Source Soil (Figure

4.9, Kruskal-Wallis (p < 0.05), Wilcoxon posthoc with Benjamini-Hochberg adjustment, p <

0.05). Overall, the dispersal treatment affected the representation of more than a third of the

SynCom (15/42 species) in soil communities (Figure 4.10). Thus, priority effects appeared

to have a widespread influence on soil communities, generating and maintaining distinct

microbial communities within a continuous environment. This suggests that variation in

bacterial dispersal rates will generate localized distributions of soil microbes and support

the maintenance of well-documented heterogeneity in local soil communities (O’Brien et al.,

2016).

Finally, I considered the possibility that the presence of A. thaliana altered nearby Far

Soil communities, contributing to this difference in community structure between Far Soil

and Source Soil. The presence of A. thaliana explained a small but statistically significant

portion of community variation in Far Soil but was vastly overshadowed by the impact of

inoculation method (PERMANOVA, Inoculation Method: R2 = 0.29, Plant presence: R2 =

0.01, p > 0.01, Supplemental Table 4.3). Interestingly, post-hoc analyses within inoculation

method revealed that Far Soil microbiomes were affected by plant presence only in Localized

Start inoculations (PERMANOVA, p < 0.05), but small effects in Mixed Start inoculations

may have been undetected due to a relatively smaller sample size.

95



4.0.4 Conclusion

This experiment demonstrates that natural variation in through-soil bacterial dispersal rates,

over small physical and temporal scales, generates priority effects with lasting effects on plant

microbiome structure. Dispersal through centimeters of soil, with arrival intervals between

hours to days, alter plant microbiomes for upwards of five weeks. This is, in part, due

to priority effects within plant microbiomes, a phenomenon that has been experimentally

demonstrated by manipulating the arrival sequence of individual taxa or groups of species

(Toju et al., 2018; Carlström et al., 2019; Debray et al., 2022). Here, I extend this result

to consider arrival order that results from natural variation in dispersal rates. In addi-

tion, I show that the rapid establishment of locally restrictive microbial communities in the

soil affects subsequent microbial dispersal, contributing to the maintenance of distinct soil

communities within a well-connected and initially identical abiotic environment. This has

significant implications for plant microbiome assembly in nature because a significant por-

tion of the plant microbiome is derived from the soil (Bodenhausen et al., 2013; Tkacz et al.,

2020), and these biological barriers can interfere with dispersal to the host. My results thus

reveal the importance of biotic structure for understanding microbial dispersal patterns in

soil, with significant implications for plant microbiome assembly. How these observations will

translate to natural settings, where there are more avenues of dispersal and more potential

for priority effects, is an exciting question.

These results provoke additional questions regarding observed patterns in plant micro-

biome structure in nature. Within plant populations in the field, a significant proportion

of inter-individual variation in microbiome structure remains unexplained by deterministic

factors such as environment (Beilsmith et al., 2021). Do highly localized soil microbial com-

munities and/or priority effects contribute to this variability? Considering the variation in

movement rates across microbial taxa, a natural question that arises is whether the predom-

inance of Pseudomonads in wild A. thaliana microbiomes (Bodenhausen et al., 2013; Bartoli
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et al., 2018; Karasov et al., 2018) is driven in part by their relatively high dispersal rates and

priority effects? Addressing these questions will help define plant microbiome assembly rules

in the field and enhance our understanding of ecological processes that drive the evolution

of plants. A deeper understanding of microbial dispersal patterns and their link to priority

effects and other community assembly processes will improve predictability in microbiome

assembly, a major stumbling block in microbiome engineering.
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4.0.5 Supplemental Figures

Table 4.1
Synthetic Community members. The SynCom is composed of 83 isolates that fall into 42
species groups. Species are defined as containing a unique gyrase B fragment and are listed
here with names beginning with “GB”. The number of isolates within each species complex
is listed in parentheses after the species name. Isolate names are listed after the semicolon,
with names beginning with “SC”.

98



PERMANOVA results

Bray-Curtis Jaccard Unifrac

Factor R2 p value R2 p value R2 p value

Tissue 0.46602 0.001 0.35506 0.001 0.10066 0.001

Inoc. Method 0.1747 0.001 0.13894 0.001 0.23292 0.001

Time 0.05233 0.001 0.05862 0.001 0.08014 0.001

Tissue x Inoc. Method 0.03712 0.001 0.0636 0.001 0.0358 0.009

Tissue x Time 0.01481 0.151 0.02391 0.047 0.06638 0.001

Time x Inoc. Method 0.02245 0.021 0.02663 0.018 0.04444 0.01

Tissue x Time x Inoc.

Method

0.01475 0.148 0.02306 0.061 0.03196 0.079

Table 4.2
The effect of dispersal treatment is robust across β-diversity metrics. Sample
type (roots or rosettes), time, inoculation method, and all interactions explain variation in
community structure across many metrics. Significance was tested performing
PERMANOVA on the model Tissue× InoculationMethod× Timepoint (999
permutations).
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(a) Soil colonization over time for individual isolates, set 1.
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(b) Soil colonization over time for individual isolates, set 2.
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(c) Soil colonization over time for individual isolates, set 3.
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(d) Soil colonization over time for individual isolates, set 4.

Figure 4.11
Most isolates colonize the soil at roughly linear rates, and are capable of
colonizing the soil matrix within 26 days. Each panel shows through-soil colonization
rates of individual SynCom isolates. Panel titles list the species complex name and the
isolate name underneath. Isolates were inoculated at position 1. The liquid inoculum
diffused during inoculation, thus measurement immediately after inoculation (D0) are at
position 2 or 3. Positions were evenly spaced 9 mm apart, with position 10 was the most
distant site. Some trials were truncated due to external contamination. Error bars are
standard deviation of biological replicates. Multiple isolates may represent a single species,
see Table 4.1 for details. In species complexes encompassed many isolates, not all isolates
were assayed, particularly if isolates had extremely similar genomes.
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Figure 4.12
Mean colonization rate of species present in communities. After five weeks,
increased dispersal speed did not translate into increased presence in Localized Start
communities compared to Mixed Start communities. Community unweighted speed was
calculated by adding the dispersal rate of all species present in the community and dividing
by the species richness. Faster taxa were not more likely to be present in Localized Start
communities in soil or within plants (Kruskal-Wallis rank sum, p < 0.05).
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Figure 4.13
Correlation between species’ soil colonization speed and community dominance
in rosettes at Day 35. Individual soil colonization speed is not predictive of relative
abundance in Localized Start rosettes after five weeks. Colonization speed was not
correlated with taxa relative abundance in rosettes, roots, or any soil location, in either
dispersal treatment.
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Figure 4.14
Prevalence of each SynCom species is affected by inoculation method, time and
sample type. The proportion of samples where the species is present (>4 reads within a
sample) is tracked on the y axis. Sample types are represented by line color. Some species
showed identical prevalence patterns in colonized (solid lines) and directly inoculated
(dashed lines) sites, whereas others did not.
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Figure 4.15
Midpoint and Far Soil sites follow distinct successional trajectories when
through-soil dispersal is required to arrive on site. Principal Coordinate Analysis of
Bray-Curtis dissimilarity. Localized Start Far Soil (pink points) and Midpoint Soil (orange
points) remain distinct from directly inoculated soils at Day 35 (Localized Start Source
Soil and all Mixed Start sites). Color represents a combination of site and dispersal
treatment categories. Shapes show community change over time. Large points are group
medians of each site/time/dispersal combination. Arrows follow these group medians over
time, solid lines follow Localized Start dispersal treatments, whereas dashed lines follow
Mixed Start dispersal treatments.
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Factor R2 p

Time 0.25541 0.001

Inoculation method 0.29233 0.001

Plant presence 0.01163 0.004

Time x Inoculation method 0.15668 0.001

Time x Plant presence 0.01862 0.066

Inoculation Method x Plant presence 0.00443 0.105

Time x Inoculation method x Plant Presence 0.02336 0.019

Residual 0.23754

Table 4.3
Plant presence has a small affect on Far Soil community composition.
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4.1 Methods

4.1.1 Collection and isolation of Synthetic Community members

Collection of rhizosphere samples

The SynCom was derived from the rhizospheres of three mature, field-grown Arabidopsis

thaliana collected in southwest Michigan in Spring 2018. Rhizosphere samples were collected

by gently patting roots with a small, sterilized spatula to remove loosely associated soil.

Roots were separated from aerial tissues with a flame-sterilized razor blade and vortexed in

a microtube of Nutrient Broth (NB) media for 15 seconds. Root tissues were removed from

the tube, leaving behind rhizosphere microbes. An equal volume of sterile 50% glycerol was

added to the NB/rhizosphere slurry, and stored at -80◦C until isolation.

Isolation of rhizosphere bacteria

25 µL of rhizosphere slurry was plated on 5 agar media types: tryptone yeast extract glucose

agar, tryptone soy agar, and Reasoner’s 2A agar (R2A) to target bacteria, and malt extract

agar + 100 ug/mL ampicillin and potato dextrose agar+ 100 ug/mL ampicillin to target

fungi. Individual colonies were picked and grown in liquid NB or the liquid version of their

isolation media. Cultures were grown at 28◦C, 200 RPM, until turbidity or visible growth,

mixed with an equal volume of 50% gylcerol, and stored at -80◦C. A 500 µL aliquot of each

culture without glycerol was stored at -20◦C for sequencing.

4.1.2 Library preparation

DNA was extracted using a double enzyme digest, chloroform/isopropanol precipitation (Ap-

pendix 6.1.1, modified from Perisin (2016)). Amplicon libraries were generated using KAPA

HotStart HiFi PCR kits (Roche), with custom Illumina primers containing inline barcodes.

Barcodes were factorially combined with Illumina dual indexes in a dual amplification pro-

cesses to allow for ultra-high throughput sequencing (Appendix 6.2.2, barcodes based on
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Bartoli et al. (2018)). Briefly, in the first amplification round, the V5-V7 region of 16S

ribosomal gene (Bodenhausen et al., 2013) and a fragment of the DNA gyrase β subunit

(Bartoli et al., 2018) of putative bacterial isolates were amplified separately. ITS-1 (Horton

et al., 2014) and V8 18S (van Hannen et al., 1998) were amplified from suspected fungal

isolates (Appendix 6.3). PCR products were purified with magnetic beads (Appendix 6.1.2)

and indexed with custom Illumina MiSeq indexing primers (Appendix 6.3, Tables 6.13 &

6.12, Appendix 6.2.2, Table 6.4). The bacterial (16S and gyrB) or fungal (ITS1 and 18S)

amplicons of each isolate were coamplified in the indexing PCR. PCR products were bead

purified and quantified with Quant-iT PicoGreen ds DNA reagents (Invitrogen) according

to manufacturer’s instructions (3 µL PCR product in 200 µL total volume). PCR products

were pooled with equal nucleic acid content from each sample and concentrated (Speed-

Vac, ThermoFisher). Concentrated pools were size selected between 200-700 bp on a 1.5%

agarose gel on a BluePippin (Sage Science) to remove primer dimers. Size selected libraries

were bead-cleaned and quality checked on a Bioanalyzer (Agilent). Final libraries were se-

quenced on an Illumina MiSeq with a v3 2x 300 kit with ∼ 12% PhiX. Over 1000 isolates

were marker gene sequenced.

4.1.3 Taxonomic identification

Libraries were demultiplexed and indexes removed using both onboard MiSeq software (in-

dices) and cutadapt (barcodes) (Martin, 2011). Sequences were denoised and merged in

DADA2 (Callahan et al., 2016). 16S and ITS1 were classified using custom-trained Naive-

Bayes classifiers (Bolyen et al., 2019), built from the SILVA-138 database (Quast et al., 2013)

and the UNITE database (Nilsson et al., 2018), respectively. gyrB and 18S were classified

in BLAST (Sayers et al., 2020). Data was organized in R using phyloseq (McMurdie and

Holmes, 2013).
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4.1.4 Genomic sequencing of the Synthetic Community

83 bacterial isolates from the rhizosphere isolate collection were selected to maximize bac-

terial diversity based on 16S and gyrB sequences. Fungal isolates were excluded to simplify

downstream assays. The effect of each isolate on plant growth (beneficial, pathogenic or

commensal) was not assessed before inclusion within the SynCom. First, I verified that

the community was stable over time: the SynCom remained diverse and assembled in a

repeatable manner across biological replicates in soil and plant tissues in small peat-based

microcosms over 3 weeks. SynCom genomes were sequenced to elucidate the taxonomic clas-

sification and functional capabilities of the SynCom members. Isolate DNA was fragmented

and tagged using Illumina TDE1 enzyme kits. Libraries were amplified and indexed using

custom primers and bead purified (Additional details: (Appendix 6.4), primers: Table 6.4).

Libraries were quantified, pooled, and concentrated as described above. Libraries were size

selected (330 - 1000 bp) on a 1.5% agarose cassette using a BluePippin (Sage Science). Size

selected libraries were purified, quantified, quality checked, and sequenced on several MiSeq

v3 2x 300 bp lanes.

Genomes were assembled in SPAdes (Bankevich et al., 2012). Taxonomy was assigned

to the genus level in anvi’o (Eren et al., 2021) by aligning 22 single copy core genes from

the Genome Taxonomy Database (Parks et al., 2018; Buchfink et al., 2015) (Appendix 6.6).

Taxonomy was modified to match SILVA-138 taxonomy for downstream classification (Quast

et al., 2013). I then defined species as containing a unique allele of a fraction of gyrB gene

(Bartoli et al., 2018). Ultimately, the 83 SynCom members spanned 4 phyla, 14 genera, and

42 species (Supplemental Table 4.1). Finally, two sets of isolates within the Arthrobacter K

GB2 species complex were distinguishable by a single nucleotide polymorphism in topoiso-

merse IV (parE ), a gene that co-amplifies with gyrB (Poirier et al., 2018). This is denoted

by the asterisk in the table.
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4.1.5 Plant material and sterilization

Arabidopsis thaliana Columbia-0 (6909) seeds were sterilized with chlorine gas (Lindsey et al.,

2017). Sterility was confirmed by germinating seeds on 1/2x Murashige and Skoog (MS) agar

plates (pH 5.7) in growth chambers. Sterile seeds were stratified in sterile DI water for 3

days in the dark at 4◦C prior to planting.

4.1.6 Synthetic Community generation

SynCom isolates were grown separately in R2B (28◦C, 200 RPM) for up to 48 hours. Cul-

tures were checked regularly for turbidity and transferred to 4◦C if significant growth was

observed. At 48h, OD600 of each stock was measured on a plate reader (Tecan SparkControl;

200 µL isolate stock in clear 96- well plate (Corning Costar 3370)). Isolates were pooled,

with an equal amount of each isolate as determined by OD600, to a final total community

concentration of OD600 = 0.4 in R2B. The community slurry was immediately mixed by

inversion, aliquoted into 50 mL tubes, combined with an equal volume of 40% glycerol, and

stored at -80◦C. For consistency across replicates and over time, all community inoculations

used an aliquot of this original pool. Final community inoculum was OD600 = 0.2 in 20%

glycerol in R2B; the concentration of each isolate within the community was OD600 = 0.0024.
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4.1.7 Experimental microcosm design

Figure 4.16
Microcosm design. A clear, polypropylene microbox engineered for sterile plant
cultivation was used to house the experimental system (SacO2, TP1600+TPD1600 #40
NG/NP). Microboxes have two HEPA filters on the lid to allow gas exchange, but
prevent microorganisms from infiltrating the box. An empty, lidless tip box
(ThermoFisher SureOne 10 µL - 200 µL tip boxes or similar) with 11 drainage holes was
filled with soil, and sits atop an empty tip rack. Two sterile 10 µL pipette tips were
placed 90 mm apart within the box. A. thaliana seeds were planted near one marker.

Microcosms and soil sterilization procedures were modified from Kremer et al. (2021). Mi-

croboxes designed for sterile plant cultivation encapsulated the microcosms (Fig. 4.16).

Microboxes (SacO2, TP1600+TPD1600 #40 [NG/NP]) had two HEPA filters on the lid to

allow gas exchange, but prevent microorganisms from infiltrating the box. Empty 10 µL to

200 µL polypropylene tip boxes were used as pots (ThermoFisher SureOne 10 µL - 200 µL

or similar). Empty tip boxes were cleaned, lids removed, and 11 8-mm drainage holes were

drilled into the bottom of each box. The tip box filled with soil was placed atop an empty

tip rack to allow excess water to drain from the soil (Fig. 4.16).
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4.1.8 Soil substrate and sterilization

Pre-autoclaved tip boxes were loosely filled with soil. In community assembly assays, a 50:50

mix of Berger BM-1 and BM-2 (75 - 80% peat Moss, 20 - 25% vermiculite and perlite) was

used. In Individual Movement assays, a 50:50 mix of ProMix PBX and coarse vermiculite

was used to improve long-term sterility. Eight soil-filled tip boxes were placed on a stack (3-

4) of tip racks in polypropylene containers (Sterilite). Boxes were watered to saturation with

DI water and allowed to drain for 30 minutes. The polypropylene containers were covered

and autoclaved for 65 minutes (Liquids exhaust, 121 C, 15 psi). Polypropylene boxes were

allowed to rest for 48 hours at room temperature. In community assembly assays, soil was

undisturbed during this period. In Individual Movement assays, polypropylene containers

were transferred to a biological safety cabinet, where the soil within each tip box was mixed

with a sterilize wooden applicator sticks during the rest period. After the rest period, boxes

were autoclaved a second time for 65 minutes.

4.1.9 Microcosm sterilization and assembly

Microboxes with a pre-autoclaved tip rack inside were autoclaved for 35 minutes (Gravity and

dry, 121 C, 15 psi). Autoclaved soil-filled tip boxes were transferred to a sterile polypropylene

rinse stand using flame sterilized tweezers in a biological safety cabinet. Each soil box

was flushed with ∼ 300 mL sterilized DI water to remove phytotoxic byproducts generated

by autoclaving and allowed to drain for 30 minutes. Soil pots were placed into prepared

microboxes by using flame sterilized tweezers. Sterilized 10 µL pipette tips were placed

into each box 90 mm apart using an autoclaved multichannel pipette to mark locations for

consistent sampling distances.

If microcosms contained plants, five sterilized, stratified A. thaliana seeds were planted

into soil-filled tip boxes in a shallow V shape with the base of the V near one marker (Fig.

4.1). Microcosms were housed in walk-in growth chambers (Percival) at 23◦C, 20% RH, 70%
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white light LED setting on a 14:10 hour light:dark cycle. Microcosms were rotated every

two days.

4.1.10 SynCom inoculation

Figure 4.17
Experimental design overview.

The full community was inoculated into prepared microcosms three days after A. thaliana

seeds were planted. Newly emerged cotelydons were present at the time of inoculation. The

two inoculation methods are as follows. In Mixed Start microcosms, 500 µL of the community

slurry was added to 12 mL 1/2x MS media and mixed well. 12.5 mL of the slurry-MS mix

was distributed evenly over the soil box with a multichannel pipette, including directly onto
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cotelydons (Fig. 4.17). In Localized Start microcosms, 12 mL 1/2x MS was first distributed

over the soil using a multichannel pipette. Then, 500 µL of undiluted SynCom slurry was

added immediately adjacent to the starting pipette tip marker (Fig. 4.17).
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4.1.11 General microcosm characteristics

Figure 4.18
The SynCom is detrimental to plant health. Representative plant phenotypes 38
days after planting and 35 days after SynCom inoculation in the microcosm. Photos A and
B represent typical plant phenotypes after growth in microcosms without any added
microbes. Photos C, D and E represent typical phenotypes when grown in the presence of
the SynCom. C is representative of the best phenotypes typically observed when plants
were grown in the presence of the SynCom, with some growth and generally green leaves.
In D the red arrow indicates a representative plant of this class, where little growth
occurred, but some leaves appeared green. Other plants showed little to no growth from
seedling size and diseased leaves that were brown, yellow and/or translucent (E, red
arrows). The white circle in the center top of each box is a 10 µL pipette tip head.

Condensation was persistent within the microboxes, indicating a high-humidity environment

throughout the experiment. The only nutrient added beyond the initial soil mix was 12 mL
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of 1/2 MS distributed throughout the soil box during inoculation. A. thaliana grew well in

the control microcosms, albeit slower than greenhouse-grown A. thaliana. The SynCom was

detrimental to plant health, delaying or arresting rosette growth (Figure 4.18).

4.1.12 Sampling procedure

Start Point End Point Distance

Start marker End marker 90 mm

Inoculation center Inoculation spread ∼ 18 mm

Inoculation spread Midpoint Soil ∼ 14 mm

Far Soil ∼ 50 mm

A. thaliana ∼ 59 mm

Final individual movement position ∼ 63 mm

Midpoint Soil Far Soil ∼ 36 mm

Individual movement step 9 mm

Table 4.4
Distances between points in the soil environment. Approximate distances are
denoted with a tilde.

Mixed Start and Localized Start microcosms with and without plants (n = 4 - 7), were

destructively harvested at 2, 7, 14, 21, 28, and 35 days post inoculation. Additionally, to

capture early assembly dynamics, three Localized Start microcosms with A. thaliana were

harvested daily for 20 days post-inoculation. Soil cores were extracted from three locations in
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the soil: Source Soil - the inoculation site in Localized Start microcosms and the equivalent

location in Mixed Start microcosms; Far Soil - on the opposite side of the box to Source

Soil and adjacent plants if present; and Midpoint Soil - the halfway point between the two

sites (Fig. 4.1). Distances between sampling sites are described in Table 4.4. If present,

the plant(s) and surrounding soil was scooped out of the box with flame-sterilized tweezers

and transferred to a flame-sterilized glass surface. Roots were gently patted with tweezers

to remove excess and loosely associated soil. Between Day 0 - Day 13, plant tissues were

not separated to maintain sufficient tissue mass for DNA extraction, henceforth referred to

as Whole Young Plants. From Day 14 - Day 35, roots and rosettes were separated with a

flame sterilized razor blade. Both endophytes and epiphytes were included in the community

characterization, i.e. plant tissues were not washed or manipulated further. Plants from the

same microcosm were combined into a single sample. Samples were stored in at -80◦C in 1.4

mL Matrix tubes (ThermoFisher) until further processing.

4.1.13 Sample processing, library preparation, and sequencing

Frozen soil cores and plant samples were lyophilized overnight (LABCONCO FreeZone 4.5).

Dry weight was recorded, samples randomized, and then stored at room temperature for

several days until DNA extraction. DNA extraction was performed as described in Ap-

pendix 6.1.1), except DNA precipitation was performed in 100% ethanol with an overnight

incubation at -20◦C. Library preparation was performed as described in section 4.1.2 with

the following modifications. The gyrB gene was amplified using custom primer mixes based

on the gyrB sequences of the SynCom members to reduce the degeneracy of the primers

and improve PCR performance (Appendix 6.2.2, Tables 6.5 and 6.6). A synthetic spike-in, a

plasmid with synthetic DNA that co-amplifies with gyrB, was added before each PCR ampli-

fication to allow abundance normalization (Appendix 6.7). The first PCR amplification was

performed in triplicate, pooled, and bead purified. Specific library preparation parameters
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are described in Appendix 6.3. Libraries were sequenced on two MiSeq v3 2x 300 bp lanes.

4.1.14 Data processing

Sequencing data was demultiplexed with onboard MiSeq software. Indices and primers were

removed using cutadapt (Martin, 2011). Sequences were denoised and merged in DADA2

(Callahan et al., 2016) with trimming parameters determined by FIGARO (Sasada et al.,

2020). A custom database of gyrB sequences was built from the JGI database (Nordberg

et al., 2014), the NCBI database (Sayers et al., 2020), and SynCom genomes. A Naive-Bayes

classifier in QIIME2 (Bolyen et al., 2019) was trained on this data set and used to classify

sequences. Synthetic spike-in and Escherichia coli gyrB sequences (used to replicate the

spike-in plasmid) were separated from the rest of the data set using BLAST in QIIME2

(Bolyen et al., 2019). Data was then exported to R for analysis.

4.1.15 Data filtering

Analysis was performed in R (R Core Team, 2022), primarily using the phyloseq package

(McMurdie and Holmes, 2013). ASVs with less than 10 reads and samples with less than

500 sequences were removed. Most non-SynCom ASVs and negative control samples were

removed by these filters. Several high prevalence ASVs were manually identified as off-

target contamination by BLAST and removed. Since the custom classifier defined sequences

as belonging to SynCom species, ASVs were glommed at the species level. Any experimental

samples with less than 75% of reads assigned to SynCom members were removed; it should be

noted that most samples contained well over 90% SynCom reads. A 95% SynCom threshold

was also tested with similar results. For most downstream analysis, only reads classified as

SynCom members were considered.
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4.1.16 Data transformation

Two data normalization and transformation methods were assessed with similar results.

1) Rarefying:

Data was rarefied to control for spurious effects derived from sampling depth variation,

which spanned three orders of magnitude (Weiss et al., 2017). Communities were repeat

rarefied without replacement 100 times (629 read depth) using custom scripts (McMurdie

and Holmes, 2013) based on Cameron et al. (2021).

2) Aitchison transformation:

I also considered the composition nature of the samples and additionally analyzed the data

with metrics appropriate for compositional data sets (Gloor et al., 2017). Separately, com-

munity compositions were transformed with a robust Aitchison transformation (centered

log-ratio, ignoring zeros) using vegan (Oksanen, 2021). β-diversity analyses were repeated

using the Aitchison distance with similar results to repeat rarefying.

4.1.17 Statistical analysis

All statistical analyses were performed in R (R Core Team, 2022). Plotting was performed

using ggplot2 (Wickham, 2016) and numerous other accessory packages.

α-diversity

α-diversity was calculated using repeat rarefied data using the microbiome R package (Lahti

and Shetty, 2017). Species richness was calculated for each iteration of rarefied communities,

and mean richness of all iterations was used in downstream analysis (Cameron et al., 2021).

Statistical analysis (Kruskal-Wallis rank sum and Wilcoxon tests) were calculated in base R

(R Core Team, 2022).
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β-diversity and community composition

If a rarefied community was used, the mean ASV table generated by repeat rarefying was

used in β-diversity analyses. Bray-Curtis, Jaccard and UniFrac distances were calculated

in phyloseq (McMurdie and Holmes, 2013) and robust Aitchison distance was calculated in

vegan (Oksanen, 2021). Permutational multivariate analysis of variance was used to calcu-

late statistical significance with 999 permutations unless otherwise noted. (PERMANOVA,

(Anderson, 2017) adonis2 function in vegan).

All factors were assessed individually in PERMANOVA for statistical significance and

then combined into an overall model to assess the impact of these factors on general com-

munity structure, where × denotes an interaction:

distance ∼ SoilLocation× TimePoint× InoculationMethod+ PlateID (4.1)

To determine what time points and sample types were impacted by these factors post-

hoc PERMANOVAs were performed on subsets of these data as described in the results (i.e.

within a time point, within a sample types, inoculation type, or combination of the three),

with appropriate adjustments to the model. Plant only models were also calculated.

To test the effect of plant presence on soil community structure, all soil samples were

tested with the PERMANOVA run with the following formula:

distance ∼ SampleType× TimePoint× InoculationMethod× PlantPresence (4.2)

For post-hoc analysis, only Far Soil samples (the soil near plants) were considered. Analy-

ses were performed separately on Localized Start and Mixed Start samples with the formula:
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distance ∼ TimePoint× PlantPresence (4.3)

Community convergence with Principal Coordinate Analysis (PCoA)

Ordination of distance matrices were performed using phyloseq (Bray-Curtis, Jaccard,

UniFrac) or qiime2 (Aitchison) (Bolyen et al., 2019)). Ordinations were plotted using ggplot2

(Wickham, 2016), and assessed on the top 5 axes. Since sample type was a major explanatory

factor (soil vs. roots vs. rosettes), distance calculations and ordinations were constrained

within sample type for community convergence assays. Whole community PCoAs had similar

patterns to subsetted PCoAs.

Differential abundance

Differentially abundant microbes in the rarefied data set at Day 35 were identified with

DESeq2 (α < 0.01) (Love et al., 2014) and ANCOM (Mandal et al., 2015). Species present

in 3 or fewer samples were excluded. ANCOM was run both with and without structural

zeros.
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4.1.18 Individual movement assays

Figure 4.19
To measure isolate colonization progress, a multichannel pipette with 10 sterile 10 µL tips
is dipped into the soil box, and then immediately touched onto R2A agar plates. Progress
is determined by presence of CFUs at increasing distances from the inoculation point.
Colony forming units were maintained at previous locations, suggesting concurrent
bacterial movement and growth. Microcosms were sampled daily to obtain a per day
colonization rate.

Individual colonization rates of SynCom members were measured using a method modified

from (Bashan, 1986). Individual isolates were grown in R2B (28◦C, 200 RPM) until turbid,

pelleted and resuspended in 1/2 MS media at OD600 = 0.2. 12 mL 1/2x MS was distributed

over the soil of prepared microcosms using a multichannel pipette. 500 µL of the individual

isolate was slowly inoculated adjacent to the starting marker. Immediately following inocu-

lation, ten evenly spaced locations were sampled by dipping a pipette with sterile 10 µL tips

into the soil and immediately tapping onto R2B plates (Figures 4.19 and 4.1). Microcosms

were repeatedly sampled every 24 hours until the isolate reached the final sampling site, 26

days post inoculation, or box contamination, whichever came first. Soil colonization rates

were calculated by averaging the per day movement rate for the first three days of the assay.
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If the isolate reached the final soil sampling site in less than three days, mean movement

rates were calculated from the daily movement rates of one or two days.

Individual colonization dynamics were tested in microcosms both with and without a

25-day-old A. thaliana plant near the end marker for approximately half of the isolates.

Because the presence of a plant had no discernible effect on the colonization rate of any

of these microbes, the colonization rates of the remaining microbes were tested only in

microcosms without plants. I did not distinguish between microcosms with and without

plants while calculating the colonization rates.
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CHAPTER 5

CONCLUSIONS

Microbiome assembly is a complex, multifaceted process. This dissertation investigated sev-

eral aspects of microbial assembly processes and contributes to an improved understanding

of the forces drive plant microbiome assembly. In Chapter 2, I asked if plant pattern recogni-

tion receptors (PRRs), which detect microbe-associated molecular patterns (MAMPs), affect

endophytic bacterial and fungal microbiome assembly in the field using knockout mutants. I

found that the loss of a PRR had little effect on endophytic microbiome structure. In Chap-

ter 3, I tested if two native pathogens of A. thaliana triggered transgenerational induced

resistance in A. thaliana rosettes, but found that the disease status of previous generations

had no impact on the growth and pathogenesis of these native pathogens. In Chapter 4, I

tested if bacterial dispersal rates affected plant microbiome structure using a synthetic bacte-

rial community in a closed system. I found that substantial variation in bacterial movement

through soil generated priority effects that had an enduring impact on both soil and plant

microbiome structure.

Selective processes, including abiotic conditions, host effects, and microbe-microbe in-

teractions, are important factors in plant microbiome assembly. One way host effects can

manifest is through plant immunity, which can alter important features of the host environ-

ment and regulate the growth of many microbes (Hacquard et al., 2017). Plant immunity

is thus thought to widely affect plant-associated microbiomes (Hacquard et al., 2017). In

Chapter 2 and 3, I investigated how two arms of plant immunity affected members of the

plant microbiome.

In Chapter 2, I tested the impact of MAMP-detecting PRRs on endophytic microbiome

assembly in the field. I found that the loss of a MAMP-detecting PRR had little effect

on endophytic fungal and bacterial microbiome structure. This result was unanticipated,

since extensive previous work demonstrated that plants initiate substantial antimicrobial
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responses to diverse MAMPs (Boller and Felix, 2009; Tang et al., 2017) and immunogenic

MAMPs are prevalent across microbial taxa (Garrido-Oter et al., 2018; Teixeira et al., 2019).

Based on these observations, it was widely presumed that most microbial encounters would

stimulate MAMP-detecting PRRs and plant immunity to a certain extent, thus influencing

plant microbiome composition or total load (Hacquard et al., 2017). My results did not sup-

port this hypothesis when individual MAMP-detecting PRRs and endophytic microbiomes

are considered. This general lack of effect is observed in numerous plant tissues and across

several developmental stages. However, MAMP-detecting PRRs could still impact other

facets of plant microbiome assembly that this experiment did not address. For example,

epiphytes were excluded from the data set. Since epiphytes are affected by plant immunity

(Lee et al., 2012), it is possible that MAMP-detecting PRRs influence this subsection of the

community. Furthermore, it is possible that MAMP-detecting PRRs act redundantly/in con-

cert with each other to influence microbiome structure, rather than as individual receptors.

Since I used single locus knockout lineages to test the effects of MAMP-detecting PRRs on

microbiome assembly, the group effect of largely redundant receptors may not be detectable.

In Chapter 3, I tested if two bacterial pathogens isolated from wild A. thaliana in the

Midwest USA (Pseudomonas syringae NP29.1a and P. viridiflava RMX3.1b, Jakob et al.,

2002), could produce long-term, cross-generational immunity. Transgenerational induced

resistance could potentially affect many members of the microbiome because it affects the

growth and/or pathogenicity of microbes not present during the inducing infection (Luna

et al., 2012; Slaughter et al., 2012; López Sánchez et al., 2021). However, I found no evidence

that either of these two native bacterial pathogens triggered transgenerational induced resis-

tance in A. thaliana rosettes. Previous work demonstrated that infection intensity, tested by

manipulating the number of sequential exposures over the lifetime of the plant, affects the

strength of transgenerational induced resistance phenotypes (López Sánchez et al., 2021).

Additionally, previous studies that generated transgenerational resistance phenotypes used
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high initial titers of virulent P. syringae DC3000 that cause significant growth reduction in

the plant (Luna et al., 2012; López Sánchez et al., 2021), or avirulent P. syringae DC3000

avrRpt2 that induced rapid, widespread cell death via hypersensitive response (Slaugh-

ter et al., 2012), respectively. In my experiments, P. syringae NP29.1a and P. viridiflava

RMX3.1b never grew to the microbial titers measured in these works. Thus, these infections

may not have sufficient strength to induce transgenerational induced resistance. If this is

the case, it is likely that bacterial infections in the field rarely reach the titers or disease

severity necessary to trigger transgenerational induced resistance (Dunning, 2008; Karasov

et al., 2019). Thus, I speculate that infections in previous plant generations rarely influence

in planta growth of bacterial pathogens, important members of the plant microbiome.

In Chapter 4, I pivoted from exploring the role of immunity in plant microbiome assembly

to test the importance of another community assembly process: microbial dispersal. Little

is known concerning the role or relative importance of dispersal in microbial community

assembly (Fitzpatrick et al., 2020). To address this gap in knowledge, I developed a closed

microcosm and synthetic bacterial community (SynCom). Using this system, I demonstrated

that microbial dispersal has a large impact on microbiome assembly, even in a continuous

environment. Plant microbiome membership and relative abundance profiles were strongly

affected by dispersal treatment, i.e. if the SynCom was required to disperse through the soil

to colonize a plant or directly inoculated onto plants. Importantly, this difference was driven

by phenomena likely to apply in other assembly contexts. I found that plant-associated bac-

teria have significant variation in through-soil dispersal rates, which generates priority effects

in both soil and plant microbiome assembly. Interestingly, priority effects in soil communities

quickly created established restrictive communities that acted as “biological barriers” over

centimeters of soil, preventing some bacteria from colonizing the plant. This chapter reveals

unexpected mechanisms of microbiome assembly mediated by variation in microbial disper-

sal dynamics. Microbial dispersal is clearly a critical process in plant microbiome assembly
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and deserves increased recognition and attention.

5.0.1 Improvements and lessons learned

The design and execution of these experiments could be significantly improved in several

ways. If I performed these experiments again, I would design experiments to more definitively

show that results in Chapter 2 and 3 are a true negative by increasing my statistical power. In

the future, I will carefully consider the specific requirements and limitations statistical tests

I expect to use in the analysis of the data to help guide experimental design. For example,

in Chapter 2 (MAMP-detecting PRRs in microbiome assembly), I designed my experiment

to test a wide breadth of plant tissues and developmental stages at the expense of sample

size in each tissue and stage category. While this choice was both intentional and justified,

it weakened some components of the analysis in unanticipated ways (e.g. small sample

sizes substantially limit the power of differential abundance tests using ANCOM-BC2; Lin

and Peddada, 2020). Small sample sizes are a recurrent limitation in my experiments. If

I performed these experiments again, I would prioritize a priori power analyses based on

previous data in the literature and/or pilot studies to ensure meaningful negative results.

I would also consider ways to increase sample size by adjusting the motivating question to

reduce the breadth and/or ameliorate laborious protocols.

5.0.2 Future directions

While the importance of host effects in plant microbiome assembly should not be dismissed,

microbial dispersal is a critical, yet poorly understood, assembly process that demands fur-

ther investigation. The experimental system I developed in Chapter 4 could easily be used to

address further questions concerning the role of microbial dispersal in microbial community

assembly. First, the synthetic community I used in Chapter 4 was detrimental to plant health

(Figure 4.18). By using different SynComs, one could determine if dispersal plays an equally
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important role in growth-promoting or commensal community assembly. Second, targeted

manipulation of the plant microbiome by adding beneficial microbes is an important agri-

cultural goal (King and Bell, 2022). This microcosm could be used to test if can beneficial

target microbes freely disperse through the soil to reach the plant or if are they immobile or

stymied by biological barriers. Can the addition of specific substrates like nutrients, water,

or other substances help focal microbes successfully overcome biological barriers and travel

through the soil? Third, this system is amenable to testing the interaction of dispersal with

other selective factors like abiotic conditions (soil salinity, pH, nutrient concentrations, etc.)

and microbe-microbe interactions. Lastly, recent work shows that bacterial populations in

A. thaliana leaves are maintained at a constant level through birth/death cycling (Velásquez

et al., 2022). Given the rapid generation time of bacteria, microbes associated A. thaliana

for 5 weeks would cycle through many generations, allowing for rapid adaptation and pos-

sibly speciation. Metagenomic analysis of the existing (or augmented) data in Chapter 4

could unveil a role of adaptation/speciation or drift in plant microbiomes. These experiment

are a fraction of the exciting possibilities offered by this experimental system. In conclu-

sion, my dissertation helps delineate the impact of plant immunity on members of the plant

microbiome and demonstrates that the role of microbial dispersal cannot be ignored. Fur-

ther efforts to disentangle microbial dispersal processes may yield unanticipated insights into

plant microbiome assembly rules and potentially uncover new strategies to more effectively

engineer microbiomes.
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CHAPTER 6

APPENDICES

6.1 General Protocols

6.1.1 DNA extraction

Isolate cultures were pelleted at 6600 x g for 15 minutes, the supernatant removed, and pellets

resuspended in 150 µL TES (10 mM Tris-Cl, 1mM EDTA, 100mM NaCl). 2-3 2.33 mm

sterilized, silica beads were added to each tube, and tubes were homogenized for 2 minutes

at 1750 RPM in a Spex GenoGrinder2000. 100 µL lysozyme mix (EpiCenter ReadyLyse

lysozyme diluted to 125 U/µL in TES) was added to each well, gently vortexted for 10

seconds, and incubated at room temperature for 30 minutes. 250 µL Proteinase-K mix (0.5

mg/mL Proteinase-K, 1% SDS, to volume in TES) was added to each well, vortexed for 10

seconds to mix, and incubated at 55◦C for 4 hours. 500 µL 24:1 chloroform:isoamyl was

mixed into each well, and plates were centrifuged for 15 minutes at 6600 x g at 4◦C. The

top 350 µL of each well was added to plates with 500 µL cold 100% isopropanol, mixed, and

then incubated at -20 C for 1 hour. Plates were centrifuged for 15 minutes (4◦C, 6600 x

g), isopropanol removed, and DNA pellets were washed with 400 µL 70% ethanol. Ethanol

was removed and samples were dried in a biological safety cabinet using a 96-well blower to

remove any remaining ethanol. DNA was then resuspended in 100 µL TE (10 mM Tris-Cl,

1mM EDTA) by vortexting for 2 minutes. To remove excess carbohydrates, plates were

incubated on ice for 5 minutes and then centrifuged for 12 minutes (4◦C, 6600 x g). 75 µL

of the supernatant containing the DNA was removed and placed into fresh plates for further

analysis.
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6.1.2 Bead clean up

Bead clean ups were performed with in-house Solid Phase Reversible Immobilization (SPRI)

beads (Rohland and Reich, 2012), which contain:

0.1% SpeedBead Carboxylate-Modified Magnetic Particles (Hydrophobic) (rinsed in TE

buffer)

18% PEG-8000 (w/v)

1M NaCl

10mM Tris-HCl pH 8.0

1 mM EDTA, pH 8.0.

Clean up was performed as described in Rohland and Reich (2012) with the following

parameters: beads were added at 1:1 PCR volume, two rinses 80% EtOH were used, and the

purified DNA was eluted in molecular-grade, sterile water.
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6.2 Primers

6.2.1 PRR mutant confirmation primers

Genotype Primer Sequence

efr Forward CTGTGGTGGTTAGGGATTCG

Reverse GATGGGTTACCATCACTGGC

Insert LBb1.3: ATTTTGCCGATTTCGGAAC

fls2 Forward AGGGCTTCTTACAAACCTTCG

Reverse CGTTGATGTTTTTGAACACCC

Insert LBb1.3: ATTTTGCCGATTTCGGAAC

lore Forward CATTTTCATCCATCGATGGAC

Reverse TTCCCTTTCACAACAATCCTG

Insert SAIL-LB1short: TGGATAAATAGCCTTGCTTCC

lyk4 Forward GAAGAATGGTTTTGAACGACAAG

Reverse AGAAAAGGAAACAGGGAAGTGTC

Insert p745: AACGTCCGCAATGTGTTATTAAGTTGTC

6.2.2 Illumina 16S, gyrB, 18S and ITS1 sequencing

Barcoded primers for 16S, gyrB, 18S and ITS1 amplification (PCR1) for library

preparation on the Illumina MiSeq Platform:

Forward amplification primer description:

Field number (space-delimited), description:

1. 5’ Illumina overlap region

2. forward inline barcode (Table 6.1)

3. gene specific forward primer (Table 6.2)
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TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG NNNNNN LENGTHVARIES

Reverse amplification primer description:

Field number (space-delimited), description:

1. 3’ Illumina overlap region

2. inline forward barcode (Table 6.1)

3. gene specific reverse primer (Table 6.3)

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG NNNNNN LENGTHVARIES

Forward Forward Reverse Reverse
barcode barcode barcode barcode
name sequence name sequence
t1 forward GACTAC t1 reverse AAGGCC
t2 forward CTGGTT t2 reverse GTCAGG
t3 forward ACTCGA t3 reverse CCTCTT
t4 forward TGCTGT t4 reverse TCGTAG

Table 6.1
Barcodes used with gene specific amplification primers in Illumina library prep.

Forward name Forward sequence

16S 799F forward AACMGGATTAGATACCCKG
gyrB forward MGNCCNGSNATGTAYATHGG

18S 1427F forward TCTGTGATGCCCTTAGATGTTCTGGG
ITS1 forward CTTGGTCATTTAGAGGAAGTAA

Table 6.2
Forward primers used in gene specific amplification for Illumina library preparation. Name
includes target and primer name.
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Reverse name Reverse sequence

16S 1193R reverse ACGTCATCCCCACCTTCC
gyrB reverse ACNCCRTGNARDCCDCCNGA

18S 1616R reverse GCGGTGTGTACAAAGGGCAGGG
ITS1 reverse GCTGCGTTCTTCATCGATGC

Table 6.3
Reverse primers used in gene specific amplification for Illumina library preparation. Name
includes target and primer name.
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Primers for library indexing (PCR2) on the Illumina MiSeq Platform:

P5 (forward) indexing primer description:

Field number (space-delimited), description:

1. 5’ Illumina adapter

2. i5 index (Table 6.4)

3. PCR 1 overlap region

AATGATACGGCGACCACCGAGATCTACAC NNNNNNNN TCGTCGGCAGCGTC

P7 (reverse) indexing primer description:

Field number (space-delimited), description:

1. 3’ Illumina adapter

2. i7 index (Table 6.4)

3. PCR 1 overlap region

CAAGCAGAAGACGGCATACGAGAT NNNNNNNN GTCTCGTGGGCTCGG
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i5 name i5 index i7 name i7 index

SA501 ATCGTACG NA701 AACTCTCG
SA502 ACTATCTG NA702 ACTATGTC
SA503 TAGCGAGT NA703 AGTAGCGT
SA504 CTGCGTGT NA704 CAGTGAGT
SA505 TCATCGAG NA705 CGTACTCA
SA506 CGTGAGTG NA706 CTACGCAG
SA507 GGATATCT NA707 GGAGACTA
SA508 GACACCGT NA708 GTCGCTCG

NA709 GTCGTAGT
SB501 CTACTATA NA710 TAGCAGAC
SB502 CGTTACTA NA711 TCATAGAC
SB503 AGAGTCAC NA712 TCGCTATA
SB504 TACGAGAC
SB505 ACGTCTCG NB701 AAGTCGAG
SB506 TCGACGAG NB702 ATACTTCG
SB507 GATCGTGT NB703 AGCTGCTA
SB508 GTCAGATA NB704 CATAGAGA

NB705 CGTAGATC
SC501 ACGACGTG NB706 CTCGTTAC
SC502 ATATACAC NB707 GCGCACGT
SC503 CGTCGCTA NB708 GGTACTAT
SC504 CTAGAGCT NB709 GTATACGC
SC505 GCTCTAGT NB710 TACGAGCA
SC506 GACACTGA NB711 TCAGCGTT
SC507 TGCGTACG NB712 TCGCTACG
SC508 TAGTGTAG

SD501 AAGCAGCA
SD502 ACGCGTGA
SD503 CGATCTAC
SD504 TGCGTCAC
SD505 GTCTAGTG
SD506 CTAGTATG
SD507 GATAGCGT
SD508 TCTACACT

Table 6.4
Illumina indices used in library amplification.
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Custom primers for Synthetic Community gyrase B library amplification

Forward gyrB SynCom mix primer description:

Field number (space-delimited), description:

1. 5’ Illumina adapter

2. Forward gyrB targeting sequence (Table 6.5)

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG NNNNNNNNNNNNNNNNNNNN

Reverse gyrB SynCom mix primer description:

Field number (space-delimited), description:

1. 3’ Illumina adapter

2. Reverse gyrB targeting sequence (Table 6.6)

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

NNNNNNNNNNNNNNNNNNNN

Forward Name Sequence Mix Fraction

gyrBF consensus CGNCCSGGBATGTAYATYGG 101/117
gyrBF add1 CGTCCATCGATGTATATTGG 2/117
gyrBF add2 C GTCCAGGAATGTACATTGG 4/117
gyrBF add3 CGACCCGGAATGTACATCGG 5/117
gyrBF add4 CGTCCCGGAATGTACATCGG 2/117
gyrBF add5 CGGCCAGGGATGTATATTGG 1/117
gyrBF add6 AGACCAGGGATGTATATCGG 1/117
gyrBF spike CGTCCGGCTATGTACATAGG 1/117

Table 6.5
Forward primers used in custom Synthetic Community gyrase B amplification mix and
their proportion in the final primer mix.
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Reverse Name Sequence Mix Fraction

gyrBR consensus ACRCCRTGSARRCCRCCRGA 77/117
gyrBR 18T ACACCATGAAGACCGCCTGA 1/117
gyrBR 15T ACTCCGTGAAGTCCTCCCGA 2/117
gyrBR 9T ACACCGTGTAATCCACCAGA 3/117
gyrBR 3C1 ACCCCGTGCAAGCCGCCGGA 2/117
gyrBR 3C2 ACCCCGTGCAATCCACCGGA 2/117
gyrBR 9A ACACCGTGAAGGCCGCCGGA 1/117

gyrBR spike ACTCCGTGAAGTCCGCCAGA 1/117
gyrBR 18C ACGCCGTGCAGKCCGCCCGA 10/117
gyrBR 12T ACACCGTGCAATCCGCCGGA 1/117
gyrBR 12C ACGCCGTGSAGCCCGCCGGA 5/117
gyrBR 3T ACTCCGTGCAAACCACCGGA 11/117

Table 6.6
Reverse primers used in custom Synthetic Community gyrase B amplification mix and
their proportion in the final primer mix.

6.3 PCR recipes and cycling parameters for Synthetic

Community isolate characterization

Ingredient Volume

HiFi Buffer 3 µL
10 mm dNTPs 0.45 µL

10 uM forward primer 0.45 µL
10 uM reverse primer 0.45 µL
HiFi HotStart enzyme 0.2 µL

PCR water 9.45 µL
Template 1 µL

Total Volume 15 µL

Table 6.7
PCR recipe for 16S, 18S, and ITS1 library amplification.
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Ingredient Volume

HiFi Buffer 3 µL
10 mm dNTPs 0.45 µL

10 uM forward primer 1.8 µL
10 uM reverse primer 1.8 µL
HiFi HotStart enzyme 0.2 µL

DMSO 0.75 µL
MgCl2 1.67 µL

PCR water 4.33 µL
Template 1 µL

Total Volume 15 µL

Table 6.8
PCR recipe for gyraseB library amplification with highly degenerate primers.

Temperature Time Step number

95◦C 3:00 1
98◦C 0:20 2
69◦C 0:15 3
72◦C 0:15 4

Repeat steps 2-4 30x
72◦C 1:00 5
4◦C hold 6

Table 6.9
Isolate PCR1: cycling for amplification and inline barcoding for 16S and 18S sequences in
isolate identification

Temperature Time Step number

95◦C 3:00 1
98◦C 0:20 2
69◦C 0:20 3
72◦C 0:20 4

Repeat steps 2-4 35x
72◦C 1:00 5
4◦C hold 6

Table 6.10
Isolate PCR1: cycling for amplification and inline barcoding for ITS1 sequences in isolate
identification
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Temperature Time Step number

95◦C 3:00 1
98◦C 0:20 2
65◦C 0:20 3
72◦C 0:20 4

Repeat steps 2-4 20x, decrease annealing temperature (Step 3) 0.5 C each time.
98◦C 0:20 5
55◦C 0:20 6
72◦C 0:20 7

Repeat steps 5-7 22x
72◦C 1:00 5
4◦C hold 6

Table 6.11
Isolate PCR1: Touchdown PCR cycling for gyrB amplification and inline barcoding in
isolate identification

Temperature Time Step number

Temperature Time Step Number 95◦C 3:00 1
95◦C 0:30 2
69◦C 0:30 3
72◦C 0:30 4

Repeat steps 2-4 8x
72◦C 5:00 5
4◦C hold 6

Table 6.12
Isolate identification PCR2: PCR cycling for Illumina indexing of PCR1 amplicons in
isolate marker gene amplicons.
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Ingredient Volume

HiFi Buffer 3 µL
10 mm dNTPs 0.45 µL
5 uM i5 Index 1.5 µL
5 uM i7 Index 1.5 µL

HiFi HotStart enzyme 0.2 µL
PCR water 6.35 µL
Template 1 1 µL
Template 2 1 µL

Total Volume 15 µL

Table 6.13
PCR recipe for Illumina indexing isolate marker gene sequencing. Two amplicons were
indexed in each sample. Template 1 and 2 represent either 16S and gyrB amplicons or
ITS1 and 18S amplicons.

6.4 Library preparation for genomic sequencing of SynCom

isolates

Reagent Volume

TDE1 0.5
TD 2.5

Water 0.3
Template (1 ng/µL) 1.7

Table 6.14
Recipe for tagmentation of isolate DNA for genomic sequencing.
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Reagent Volume

HiFi Buffer 3 µL
10 mm dNTPs 0.45 µL

HiFi HotStart enzyme 0.2 µL
PCR water 3.35 µL

Tagmentation product 5 µL
5 uM i5 index 1.5 µL
5 uM i7 index 1.5 µL
Total Volume 15 µL

Table 6.15
Recipe for indexing of tagmented DNA for genomic sequencing.

6.5 Library preparation protocols for Synthetic Community

assembly experiments

Ingredient Volume

HiFi Buffer 3 µL
10 mm dNTPs 0.45 µL

10 uM forward mix 0.9 µL
10 uM reverse mix 0.9 µL

HiFi HotStart enzyme 0.2 µL
PCR water 7.55 µL

Spike (0.58 pg/µL) 1 µL
Template 1 µL

Total Volume 15 µL

Table 6.16
PCR1 recipe for SynCom gyrB amplification for Illumina library preparation.
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Ingredient Volume

HiFi Buffer 4 µL
10 mm dNTPs 0.6 µL
5 uM i5 Index 2 µL
5 uM i7 Index 2 µL

HiFi HotStart enzyme 0.26 µL
PCR water 9.14 µL
Template 2 µL

Total Volume 20 µL

Table 6.17
PCR2, Illumina indexing, recipe for SynCom gyrB in Illumina library preparation.

Temperature Time Step number

95◦C 3:00 1
98◦C 0:20 2
53◦C 0:15 3
72◦C 0:15 4

Repeat steps 2-4 30x
72◦C 1:00 5
4◦C hold 6

Table 6.18
SynCom PCR1: cycling for gyrB amplification of SynCom community assembly.
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6.6 Core genes used to classify isolate genomes

Single copy core genes used to classify SynCom genomes

Ribosomal L1
Ribosomal L13
Ribosomal L16
Ribosomal L17
Ribosomal L2
Ribosomal L20

Ribosomal L21p
Ribosomal L22

Ribosomal L27A
Ribosomal L3
Ribosomal L4
Ribosomal L6

Ribosomal L9 C
Ribosomal S11
Ribosomal S2

Ribosomal S20p
Ribosomal S3 C
Ribosomal S6
Ribosomal S7
Ribosomal S8
Ribosomal S9
ribosomal L24

Table 6.19
The Genome Taxonomy Database 22 single-copy core genes used to define Synthetic
Community genome taxonomy to the genus level.

6.7 Synthetic spike sequences

All spike sequences were carried on a plasmid in E. coli TOP10 cells. Spike plasmids were

purified using a QIAGEN MiniPrep following manufacturer’s instructions. Spikes gyrB and

16S were designed in house, the spike for ITS1 was designed by Tkacz et al. (2018).

Spike target sequences

Field number (space-delimited), description:
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1) Forward primer for co-amplification.

2) Synthetic filler region.

3) Reverse complement of reverse primer for co-amplification.

gyrB: CGTCCGGCTATGTACATAGG gacggagtgccgacgccccatccggcggtggccaaccggtttc

tctcggcgagttgtagcggtgcacggcctgcccctcaaaagtactgcagtgccccgacgccagggtgtagggtccagtctgacggg

ccagaagcagggcccatcgtcatgatgctgggagctggctcacagttaagacatgtgtttcagtttgcgcacacgaactcgcgggg

gccctatcccgaactgtaccagtgttgtgccgcctcta TCTGGCGGACTTCACGGAGT

16S, 799F-1193R: AACCGGATTAGATACCCGG gtgacccccgttcgccttcgatcggctcaccat

attaatcttggtggcagaccttttagaggattgtgttgctcgactatgaccgactttgtacttcaccgtttgggggagaagcctacct

tggccttgcccaccggctgcggtcacggagaagcgagaccgttgacgccgtcagagaaagaatcgagaactggcaaatcgggtgg

gatagctaactagtggcggctgaccaataggcagtgagaatgcttccgggtccacagccgcttcggttccgttattggtctatacag

agctcctggctcaggaactgacacataccccact GGAAGGTGGGGATGACGT

ITS1: (Tkacz et al., 2018) CTTGGTCATTTAGAGGAAGTAA tcccttgtctcctaaaaaaca

aagatttactatgcacagaggaacgtctatctaacggttggtatcttgaatgctcggtcccttttgtcattccggattaattcatttcc

ctcattcacaagcttgcgaagtctatattgatatatgaatgcaatctagaagagggcacttaaaattagcagtagttaatattttaa

actccatttggtttattcgttacgagactgatt GCATCGATGAAGAACGCAGC
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drea R. Watson, Özcan C. Esen, Ryan M. Moore, Quentin Clayssen, Michael D. Lee,
Veronika Kivenson, Elaina D. Graham, Bryan D. Merrill, Antti Karkman, Daniel Blanken-
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