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ABSTRACT

Recent advances in edge computing and networking have led to a renaissance in the field of

ubiquitous sensing. Emerging applications range from imaging in autonomous vehicles to

geospatial data in remote satellite imagery. For such data, storage and communication is a

major bottleneck and lossy data compression can help. However, lossy data compression is

not as well developed beyond “perceptual” data formats such as images, audio, and video.

The errors such algorithms introduce can interact with downstream sensing algorithms and

lead to unforeseen consequences. This dissertation develops a principled approach to lossy

data compression over structured arrays of floating-point data. It presents algorithms that

guarantee the l∞ error, or the maximum error over all elements. These algorithms rely

on different combinations of floating point quantization and spatial quantization, both of

which preserve l∞ guarantees, and thus can be adaptively interspersed depending on the

data. Results show improved compression ratios for high-resolution geospatial raster data

and novel algorithms for optimizing edge-resident time-series data.
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CHAPTER 1

INTRODUCTION

In recent years, the realm of edge computing and networking has witnessed remarkable

strides, igniting a resurgence of interest in ubiquitous sensing. As the computing infras-

tructure moves closer to the data source, applications are broadening their reach, from

autonomous vehicles utilizing real-time imaging, satellite systems capturing geospatial infor-

mation to ubiquitous sensing in farms and remote areas. These advancements have undoubt-

edly revolutionized the way we perceive and interact with the world around us. Nevertheless,

they have also precipitated new challenges, most notably in data storage and communication.

Data storage and communication bottlenecks can be a significant hindrance to the func-

tionality of sensing systems. High-resolution data arrays are particularly demanding in terms

of storage space and bandwidth, making it increasingly difficult to operate these systems effi-

ciently. In order to mitigate these challenges lossy compression has been widely used in order

to compress large scale data. Lossy compression introduces a trade-off between compression

ratio and error introduced on the data. The greater the compression desired the worse the

reconstruction of the encoding.

In this dissertation we explore a special case of lossy compression, where the error is

bounded by the worst reconstruction obtained on all data points in the reconstructed set, i.e.

l∞ error. We propose methods to compress multivariate time series data in a hierarchical

manner and raster geospatial data while respecting the user choice of a l∞ bound. Our

algorithms combine float point and spatial quantization with different techniques in order to

improve the state of the art.

We evaluate our systems against several different baselines at each domain, comparing not

only the compression ratio, but the latencies required to compress and decompress the data.

We show that our methods bring significant advantages in their respective tasks improving

either the overall compression ratio or one of the latency metrics.
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CHAPTER 2

HIERARCHICAL RESIDUAL ENCODING FOR

MULTIRESOLUTION TIME SERIES COMPRESSION

2.1 Introduction

In today’s data analytics infrastructure, it is common for data storage to be separated from

computational resources ?. For example, very large datasets can be stored in a block storage

system like Amazon S3 and only transferred to compute nodes for analysis. Similarly, in

edge computing, data might reside on edge nodes for privacy or cost reasons and only be

transferred to a central location when needed ??. In such on-demand retrieval architectures,

the time needed to transfer data between storage and computation nodes is an important

bottleneck, and data compression is one of the main techniques for controlling the cost of

data movement.

Traditionally, data compression approaches are divided into two categories: lossless and

lossy. In lossless compression, the data are compressed and decompressed without loss of

any information. Examples of such approaches include dictionary coding for string com-

pression ??, GZip/BZip for byte-sequence compression ?, and turbo-coding for integer com-

pression ?. In contrast, lossy compression allows for minor errors in the reconstruction that

would not affect a downstream application. By nature, lossy compression is mostly aimed

at high-dimensional quantitative data. Examples include JPEG for images ?, H.264 for

video ?, and a variety of techniques for scientific data ???. Lossy compression techniques

sacrifice accuracy (the degree of errors in the reconstruction) for storage size (the size of the

compressed data).

To cope with ever growing datasets, lossy compression has been increasingly adopted in

edge-computing and sensing systems ?????. Data compression can be pushed towards the

point of data collection to save on downstream data transfer, storage, and computation. For

2



example, a visual dashboard monitoring a sensor only needs the data to be accurate up to

the screen pixel resolutions. On the other hand, machine learning models that consume the

data are often robust to small amounts of imprecision in the input features. While such

“compression pushdown” can be extremely effective, it is most useful when there is only a

single downstream application consuming the data.

Multiple downstream applications can have differing accuracy demands (e.g., a visual

dashboard requires a 1e-3 maximum error in all values, but the anomaly detection framework

only requires 1e-1 precision). In such cases, the available pushdown strategies essentially

are: (Strict Encoding) encode the data once at the strictest accuracy demand, (Multiple

Encoding) re-encode the data at all of the different accuracy demands, and (Lazy Encoding)

first encode and store the data at the strictest accuracy demand, then at retrieval time

decode the data and re-encode it at the error target. The strict encoding strategy has the

obvious drawback that it forces every application to pay the same data transfer cost as

the one with the strictest accuracy requirement. On the other hand, the multiple encoding

strategy allows different applications to selectively retrieve data encoded at their particular

accuracy demands. However, the multiple encoding strategy has a steep cost in terms of

compression latency or compression throughput (i.e., linear in the number of applications),

and local storage (i.e., stores one encoding per application). Finally, lazy encoding does not

use as much storage as the multiple encoding strategy and has a lower transfer cost than

strict encoding. However, the decompression process is significantly slower, since it requires

re-encoding the data.

This paper navigates this impasse on time series data and studies efficient methods for

supporting multiple downstream consumers of lossy (or lossless) data. Ideally, it should be

possible to store a single encoding that can be selectively decompressed at all of the different

resolutions and thus mitigate the downsides of both strategies described above. We call this

problem the multiresolution compression problem, where the objective is to construct a sin-

3



gle encoding of a time series that can be decompressed at different cell-level error tolerances

(hereafter called L∞ errors). While related problems have been proposed in a number of

adjacent areas such as in reduced-precision ML ? and approximate query processing ??; to

the best of our knowledge, multiresolution compression has not been extensively evaluated

in the data compression literature. This problem setting subtly changes the typical met-

rics of interest for data compression. An effective multiresolution compression algorithm:

(Compression ratio) should require significantly less storage than a separate encoding at

each error tolerance; (Compression latency) should be significantly faster to construct the

encoding than a separate encoding at each error tolerance; (Decompression latency) should

be faster to decompress data for higher error tolerances. This means that a multiresolu-

tion compression algorithm might not be the most effective at any single error tolerance,

but in aggregate across multiple tolerances, it outperforms the strict and multiple encoding

strategies.

This paper proposes an effective multiresolution compression algorithm, called Hierar-

chical Residual Encoding (HIRE), for univariate and multivariate time series data. HIRE

assumes a mini-batch data acquisition model where data are streamed to the system in

small blocks, and these blocks represent contiguous time-segments of collected data. HIRE

constructs a synopsis data structure through a recursion of partitioning and residualizing

steps. The partitioning step approximates a time series with a piecewise approximation,

and the residualizing step calculates a signal that represents the approximation error. This

error signal can further be approximated at increasingly finer granularities. We find that

these residual signals are often highly compressible, since many values may lie under the

error threshold of the strictest application. To retrieve data at a particular error threshold,

we apply a simple summation of the preceding layers. This result is not surprising as such

residualizing operations are effective in time series forecasting ?, and in differential equation

solvers ?.
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2.2 Background

First, we will motivate the general problem statement and give context to our contributions

in multiresolution compression. Through this paper, we will consider the following running

example.

[Edge Data Storage and Retrieval] Data transfer over a network is one of the most

expensive (in terms of cost and energy) tasks in any distributed sensing application. Many

recent sensing architectures argue for lazy data retrieval ?, where data are persisted on

the edge for some period of time and only centralized if/when needed. Let’s consider a

simplified two server version of this architecture. Consider a sensor deployed at a climate

research observatory that collects a time series of numerical data. The data are compressed

online at an “edge server” during data collection (located at the observatory), and stored

locally for a maximum of 10 days. The compressed versions can be retrieved from the edge

server, transferred to a remote server (e.g., at a research university), and decompressed at

the remote server.

2.2.1 Time Series Compression Basics

Let us consider a time series with observations:

X = [x0, x1, . . . , xT−1].

For now, let us assume that each xi is a single floating point number (i.e., a univariate time

series). We will relax this assumption later, but it will be easier to understand the baselines

in the univariate case. A compression algorithm consists of an encoder and decoder pair

CX = enc(X) X ′ = dec(CX)

5



that produces a compressed representation of X called CX and reconstructs an estimate of

the original time series X ′ from CX . Without loss of generality, we can consider CX to be a

vector as well. There are several important metrics of interest that describe the performance

of such a compression algorithm:

• Compression Ratio. Let H(·) denote the size in bits of a vector. The compression

ratio is defined as H(CX)
H(X)

. A lower compression ratio indicates better performance in

terms of storage. In our running example, the compression ratio directly affects how

much data are transferred from the edge to the remote server.

• Compression Latency. The compression latency of an algorithm is the time needed

to produce CX from X. In our running example, the compression latency affects the

data collection throughput of the edge server.

• Decompression Latency. The decompression latency of an algorithm is the time

needed to produce X ′ from CX . In our running example, the decompression latency

affects how much extra time beyond data transfer is spent on the remote server.

• Reconstruction Error. The difference between X and X ′ is called the reconstruc-

tion error, for some measure of dissimilarity. In our running example, the reconstruction

error measures how different the data processed on the remote server is compared to

the edge server.

While there are many such compression algorithms, we primarily focus on the ones with

deterministic L∞ reconstruction error guarantees. That is, we bound the maximum allowable

error of the reconstructed time series X ′ = dec(enc(X)) with respect to the original time

series X by specifying an error threshold parameter ε. The L∞ reconstruction error ||X −

X ′||∞ is defined as the maximum absolute disagreement between X and X ′ at any time-step

i:

L∞ = ||X −X ′||∞ = max
i
|xi − x′i|

6



We then enforce an error guarantee by ensuring that the L∞ error is within the pre-specified

threshold ε, which means ||X−X ′||∞ ≤ ε. For example, ε may represent the maximum error

that the observatory is willing to tolerate in the reconstructed time series to avoid a negative

impact on subsequent weather forecasting tasks. We choose such guarantees because they

are the strictest and most compatible with a wide variety of applications. The main trade-off

in most techniques is when ε is increased (i.e., more error), the compression ratio decreases.

2.2.2 Compression with Bounded L∞ Error

There is an extensive body of literature on time series compression techniques (refer to

survey ?). However, not all compression algorithms can provide L∞ error guarantees. For

example, a spectral approach like PCA, or an FFT, can only control the average error but

not the worst-case error for any given observation. For techniques that do provide L∞ error

guarantees, they generally follow the same design pattern composing three main components:

(1) Quantization, (2) Temporal Decorrelation, and (3) Byte Encoding.

Quantization

The most basic technique for compressing numerical data with an error guarantee is quanti-

zation. Quantization is the process of rounding a floating point number to nearest valid value

of fixed precision. Even simple data quantization can be very effective and is employed in

Amazon Redshift ?. Proceeding to the technical formulation of quantization, let us suppose

that x−, x+ are the minimum and maximum of X respectively. Define Rϵ to be the relative

L∞ error, i.e., a desired error tolerance relative to the range of X:

Rϵ =
ε

x+ − x−

7



A uniform quantization scheme cuts the range [x−, x+] into 1
Rϵ

equal-sized buckets 1. To

encode a dataset using this scheme, one sets each numerical value to its resident integer

bucket (note that the floor function discretizes the formerly continuous input):

enc(xi) =
⌊
(xi − x−)
(x+ − x−)

· 1

Rϵ

⌋
(2.1)

We examine the quantization formula, we notice that the main term ⌊ (xi−x
−)

(x+−x−) ·
1
Rϵ
⌋ is

integer-valued and ranges from 0 to ⌈ 1
Rϵ
⌉. In its most basic implementation, we can assign

a fixed-length binary code to each of the integer values. This would result in storage size of

log2⌈ 1
Rϵ
⌉ per values.

To decode, one simply reverses the transformation:

x′i = dec(enc(xi)) = enc(xi) ·Rϵ · (x+ − x−) + x− (2.2)

As long as we also store x+, x−, Rϵ, we can translate the stored integer into its corresponding

floating point quantum. Unfortunately, regardless of whether quantization is applied to a

column sampled from a normal distribution or to a time series with high autocorrelation, it

yields the same mapping.

Temporal Decorrelation

For this reason, either before or after quantization most time series compression algorithms

attempt to factor out all of the “predictable” terms, thereby only leaving uncorrelated er-

rors to be compressed. The simplest approach to accomplish this is delta-encoding, which

transforms a time series so that every value is represented as a successive difference from the

previous value:

xδi = xi − xi−1

1. In the degenerate case of ϵ = 0 one just keeps each element of X in its own bucket
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This transformation is completely reversible with a left-to-right cumulative sum, so no in-

formation is lost. Since time series often have highly similar values along the time axis, the

range of delta values is smaller in magnitude and variation than the original values. Thus,

the deltas can often be effectively stored with reduced precision.

We can think of delta-encoding as a simple form of “predictive” compression. The previous

value xi−1 can be interpreted as a simple model that predicts the value of its neighboring

element ?. The same trick would work for any function f of the previous j lagged elements:

xδi = xi − f(xi−1, xi−2, . . . , xi−j)

Given the dependence of the current value on the previous (lagged) values, the structure of

delta encoding is suitable for autoregressive models of any flavor. It is worth noting that

the better the predictive model, the more skewed the Xδ values will be towards zero. If

the effective domain of the numbers can be greatly reduced, then fewer bits can be used to

represent Xδ.

In general, any time series modeling technique can be used to decorrelate the data.

For example, there are a number of piecewise approximations for time series that exploit

trend structure in a typical time series. Piecewise approaches decompose a time series into

segments and use the segments to approximate the time series such as in Piecewise Aggregate

Approximation (PAA) ? and Piecewise Linear Approximation (PLA) ?. Like delta encoding,

we can think of piecewise approximation as a simple model that predicts the next value. One

only needs to store the model and the compressed residual. If this model is accurate, the

residual error is likely very sparse and highly compressible.
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Byte-Encoding

Finally, after quantization and decorrelation, general-purpose compression algorithms can

be used to simply translate the remaining data into a series of bytes and reduce redundancy.

Most of these approaches are based on run-length encoding or the LZ77 algorithm that look

for byte-level repetitions within sliding windows of data ?. Generally speaking, byte-oriented

techniques are lossless—meaning that the L∞ error is always 0—so they can provide a trivial

error guarantee. In numerical data, the obvious limitation is that while two floating point

numbers may be close to each other numerically, there might not be a very strong similarity

between their binary representations leading to poor compression with an LZ77 technique.

This is why quantization and decorrelation are generally applied first to exploit the numerical

structure.

2.2.3 The Multiresolution Problem

For any combination of quantization and decorrelation described above, the encoded rep-

resentation CX is tied to a specific target error. Let us consider how this can cause an

unnecessary performance bottleneck in our running example.

[Two Applications With Different Error Tolerances] Consider two remote applications

consuming the climate data collected at the observatory. The first application is a nightly

report that is generated over all of the collected data. This report requires that every value

processed is no more than ε = 1e− 4 of the true value. The second application is a minute-

by-minute anomaly detector to detect whether the observatory has abnormal readings. This

application is far more tolerant to error and requires that each value processed is only within

ε = 1e− 1 of the true value.

If we use the state of the art, there are three clear solutions—all of which have significant

drawbacks.

• Compress at the Strictest Tolerance. The most obvious approach would be to
10



compress the data at the strictest error tolerance. Unfortunately, this would mean that

every retrieval would pay a data transfer cost of the strictest threshold. In our running

example, the frequent anomaly detection tests would have to repeatedly transfer data

encoded with a target of ε = 1e− 4 due to the relatively infrequent nightly reporting.

• Compress at All Tolerances. Another approach would be to encode the data at all

relevant error tolerances. While this approach allows each application to only transfer

data encoded at an appropriate error tolerance, it shifts the burden towards encoding.

Each additional error target would reduce the effective throughput available for data

collection, since we are compressing the data twice. In our running example, we would

cut our ingestion capacity by roughly a factor of two.

• Lazy Re-Encoding. A hybrid approach would be to first encode the data at the

strictest error tolerance, then at retrieval time decode the data and re-encode it at the

error target of each retrieving application. The core challenge is that decompression

is often significantly slower than compression in many popular algorithms, and this

hybrid approach incurs these costs at the edge. In our running example, the frequent

anomaly detection tests would trigger expensive re-encoding processes that would burden

the edge server.

These drawbacks suggest the need for a new type of time series compression algorithm

aimed at supporting multiple downstream applications. Ideally, there should be a single

encoding that can be selectively decompressed at different target resolutions.

[Multiresolution Compression] A multiresolution compression algorithm produces a sin-

gle encoding CX that can be selectively decomposed into sub-encodings C ϵ1
X , . . . , C

ϵl
X with

corresponding error thresholds ϵ1, . . . , ϵl:

CX = C ϵ1
X

⊕
C ϵ2
X

⊕
. . .

⊕
C

ϵl
X

11



where
⊕

denotes some combination operation of the sub-encodings.

Decomposable encodings allow one to selectively transfer data for any target resolution.

The multiple encoding strategy described above can be thought of as a trivial case where⊕
is simply the concatenation operation over independent encodings of the data. The key

issue with this strategy is that no work is shared between any of the encodings, and effec-

tively sharing work will be the main premise of this paper. We will show that an additive

decomposition, where
⊕

is a linear combination operation, is a simple but effective solution.

Consequently, the goal of this paper is to investigate such algorithms, understand how to

evaluate them, and how to optimize for different performance objectives in the multiresolu-

tion setting.

2.3 Mathematical Intuition

We will provide some basic technical intuition on how such an algorithm can be constructed.

2.3.1 Residualization

From the previous section, let X be a time series and X ′ be an approximation of it (e.g., a

decoding of a lossy encoding). The residual series is also a time series and is defined as:

R = X −X ′

which is the difference between the original series and its reconstruction. It clearly follows

from this definition that if one knows the approximation and the residual, one can fully

reconstruct the original series X ′ + R = X. Such a decomposition of terms is called an

additive decomposition and is well-studied in modeling time-dependent phenomena outside

of data compression ?. For example, it is common to decompose time series into a trend

component (which represents the general trend of the series) and noise (which represents

12



variation along the trend). The trend component would be our X ′ and the noise would be

our R.

Additive decompositions are recursive in nature, since the residual R is itself another time

series and can be further decomposed. Now, let us suppose that we have an approximation

to R denoted R′. We can similarly define a residual series S = R−R′. Through substitution,

we can see that our additive decomposition now looks like this:

X = X ′ +R′ + S

This process can be repeated, further and further decomposing the residual, which yields a

natural recurrence equation:

R0 = X (2.3)

Ai = approx(Ri)

Ri = Ri−1 − Ai−1

where approx(·) is some approximation function. We can clearly see from this equation that

for k such recursions:

X =
k−1∑
i=0

Ai + Rk

We leverage this basic intuition to construct an effective multiresolution compression algo-

rithm. Written in another way the equation above is simply
∑k−1

i=0 Ai ≈ X. We need to

construct a sequence of successive approximations that reduces the size of the residual signal

until the residual is less than our desired error threshold.

2.3.2 Relevance to Time Series Compression

The next section will show how to leverage a series of successive refinements of the residual

series to represent the original series. At each step, we compress the residual vector from

13



Figure 2.1: (A) Illustrates an example time series, (B) illustrates a coarse approximation of
the time series, (C) illustrates the residual series, (D) illustrates a finer approximation of
the residual series, and (E) shows how the summations of the residuals lead to progressively
better approximations

the previous step, progressively increasing the fidelity of the compression. As more of the

variation in the data is explained by each subsequent step, the residual vector becomes

smaller in magnitude and sparser.

Let us consider a concrete example. In Figure 2.1(A), we have plotted an example time

series. One can coarsely approximate this time series with a piecewise constant approxima-

tion of 3 segments (Figure 2.1(B)). Between this approximation and the original series, there

is a residual (Figure 2.1(C)). This residual can be captured by another piecewise constant

approximation with 6 segments (Figure 2.1(D)). As long as each subsequent approxima-

tion includes additional information (i.e., increasing the number of segments), the remaining

residual series reduces in magnitude. A summation of these approximations gets closer to

the original value (Figure 2.1(E)). While the intuition is simple, realizing this idea turns out

to be more difficult. The next section describes how we can enforce an error guarantee in

this process of successive refinement and how to implement such an approach efficiently.
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2.3.3 Novelty

Our new compression method for recursively approximating a time series has some similari-

ties with other classical mathematical methods for approximating functions such as Fourier

and Taylor. For instance, a Taylor series can in fact provide an upper bound error for each

distinct partial sum, and the error decreases as the size of the partial sum grows. However,

there are key differences in our formulation because of how we refine our approximation and

measure the resulting bounds. In particular, in series approximation, error is only used to

decide when to terminate the series (i.e., a stopping condition), which is entirely different

from how we recursively approximate the error values themselves. We leverage the intuition

that residuals often contain a sparser signal than the function values. By recursively ap-

plying approximation to the residuals at increasingly granularity, the resulting residual gets

sparser (more blocks under the error threshold). This leads to more long runs of 0 values

and thus better compressibility. By setting the midrank function as the pool function, we

show that the L∞ error is strictly non-increasing with respect to the level of the hierarchy,

a similar theoretical guarantee to the Taylor series.

The novelty of our submission is therefore: i) a new problem definition highlighting

the emerging need for multiresolution (de)-compression systems, ii) hierarchical recursive

approximation of residual vectors in the domain of time series compression with L∞ guaran-

tees—which has not been proposed before, iii) the use of pool function properties along with

vector theory to propose linear time compression and decompression algorithms computing

the errors on the fly, and iv) practical implementation of the theoretical algorithms making

use of vectorization and parallel computing.

2.4 Hierarchical Residual Encoding

Based on our intuition from the previous section, we design an algorithm that constructs a

progressively refined set of residual signals. This algorithm is called Hierarchical Residual
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Encoding (HIRE). We describe our method considering a univariate time series. We can also

handle multivariate time series by running independent encodings.

2.4.1 Algorithm Basics

Before we introduce the algorithm, it would be informative to define a few general building

blocks. As before, let X = [x0, x1, . . . , xT−1] be a univariate time series represented as a

vector of data, where xi ∈ R and X ∈ RT . We further assume that the user provides us

with an error ε∗ or the strictest error threshold that the encoding must guarantee.

Quantized Pooling

HIRE relies on a piecewise approximation of each residual series: over disjoint windows, the

value of the window is approximated by a single scalar aggregate. To use machine learning

terminology, this operation is called (temporal) pooling. Pooling reduces the dimensionality

of a data series along the time axis over a series of fixed-size windows. The pooling operation

is defined by two parameters, an aggregation function f and a time series X. In particular

let pf (X) : Rn → R, pf (X) = f(x0, . . . , xn−1), for any positive integer n 2. In other words,

a pool function provides a concise estimate of a given time window with a single value. The

choice of pooling function is a hyper-parameter and different pooling functions have unique

properties. We can think of them as different ways of approximating the values in a time

window. For a window X = [x0, . . . , xn−1], we define:

• Mean: f(X) = 1
n

∑
i xi. The mean value is a natural pooling function that minimizes

the squared error with respect to the window.

• Midrank: f(X) = 1
2 (maxi{xi} −mini{xi}). We can show that midrank is the opti-

mum pool function to minimize the L∞ error of the residual vector in each node of the

2. We slightly abuse the notation and use X as either the input time series with size T , or any time series
with size n.
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hierarchy, as described in the next subsection.

• Median: f(X) returns the median value of vector X.

• Random: f(X) = xi with probability 1/n. We can show that a random pooling

function is robust to seasonal variation within windows of a time series.

To efficiently store the results of a pooling operation, we further quantize the aggregate

value to a particular error threshold (using the process described in Section 2). Quantization

ensures that all of the pool values are integers, so more efficient compression methods can

be used to compress/decompress them. During the decompression we derive the pool values

P and transform them to the corresponding real values before we take their sum. Care must

be taken in how these values are quantized, and Section 2.2.2 describes how to translate ε∗

into a quantization threshold.

Spline interpolation

Pooling is generally a lossy operation for n > 1 and is only lossless for n = 1 (i.e., window size

of 1). Thus, inverting this operation will only give us an approximation of the original series.

To do so, we require some function that estimates the original time series from the pooled

values. We define a spline function sw(pf (X)) ≈ X, where w = |X|. The user can choose

the spline function that they prefer. Our default option is a simple interpolation function

that duplicates the value pf (X), w times. In particular, sw(pf (X)) = [pf (X), . . .×w]. This

duplication-oriented spline can be thought of as constructing a step function interval with

length w and value pf (X). Specifically, the default spline computes a step function where

each interval captures a pooled value that covers w time steps. In doing so, we map from a

lower dimensional summary to an approximation of the input series of a certain coarseness.

With an increasingly smaller w, the step approximation of X improves proportionally to w

itself.
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Figure 2.2: The main algorithmic workflow. Compression flows from left to right and top
to bottom just like reading text. Decompression flows from bottom to top and inverts
residualization with a summation.

Residual Vectors

The spline function returns an approximation of the original time series. Let RX = X −

sw(pf (X)) be the residual vector representing the error of the spline function with respect

to the original vector. The key insight of our work is that residual vectors are generally more

compressible than the original time series. It is clearly true that X = RX + sw(pf (X)),

and we can plug in this approximation into our recurrence equation of the previous section

(Equation 2.3), where approx(Ri) = sw(pf (Ri)).

2.4.2 Algorithm Description

The main idea is to run the procedure described above recursively in a hierarchical manner

following the recurrence described in Equation 2.3. For simplicity we consider that size of the

time series is a power of 2, so T = 2k. First, we check if the L∞ norm of vector X is at most

ε∗. If yes, then we can stop the recursion setting the pool value to 0. Otherwise, we compute

the pool value pf (X) over the entire vector X. As stated, we also apply quantization on

pf (X). To simplify the notation and the proposed procedure we use the same notation for the

pool values and the quantized pool values 3. Then we set RX = X−sw(pf (X)) as described

3. Otherwise, we can consider that any pool function applies quantization before it returns the final result.

18



above. In the next level of the recursion, we call the same procedure twice: the first time with

input X ← RX [0, . . . , T/2 − 1] and the second time with input X ← RX [T/2, . . . , T − 1].

Let Pi = [p(i,0), . . . , p(i,2i−1)], for i = 0, . . . , k, be the vector of the pool values in the i-th

level of the hierarchy sorted from left to right. Let P =
⋃

i=0,...,k Pi. We stop the recursion

when the error is at most ε∗ or after having |X| = 1. In other words, as we traverse down the

hierarchy, there is a successively more accurate approximation of the residual at each level.

After running this algorithm, the quantized pool values can be stored with any byte-encoding

format.

We describe the pseudocode in Algorithm 1 (for simplicity, we describe the pseudocode

considering that P is a global set of variables over the recursion) and provide a visual in

Figure 2.2.

Algorithm 1: Hierarchical
Input : X, i, j, ε∗

Output: P
1 if ||X||∞ ≤ ε∗ then
2 p(i,j) = 0;
3 return;

4 T = |X|;
5 p(i,j) = pf (X);
6 RX = X − sT

(
pf (X)

)
;

7 if T > 1 then
8 Hierarchical(RX [0, . . . , T/2− 1], i+ 1, 2 · j, ε∗);
9 Hierarchical(RX [T/2, . . . , T − 1], i+ 1, 2 · j + 1, ε∗);

Intuitively, we can think of a binary tree structure where the original time series lies

in the root and its residual vector is split into two equal length sub-vectors creating two

children in the tree structure. In each node of the tree, we store the corresponding singular

pool value. Let T be the tree structure representing the hierarchical compression. For a

node u in T , let pu be the pool value in this node. For example, if u is the j-th node in the

i-th level, we have pu = p(i,j). Let also Ru be the residual vector that is found from our
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algorithm at node u.

We note that it is not necessary to start the hierarchical compression from the zero level—

considering the entire time series X. Instead, we can start the hierarchical compression from

any level Γ, splitting the original time series into 2Γ parts, X[0, . . . . , T/2Γ−1], X[T/2Γ, . . . , 2·

T/2Γ − 1], . . . , X[(2Γ − 1) · T/2Γ, . . . , T − 1] and run the Hierarchical algorithm for each of

them independently. In fact, we mostly run the hierarchical compression for the last 10 or

12 levels, i.e., we set Γ = k − 10 or Γ = k − 12 in our experiments.

Finally, we note that it is not necessary to keep the pool values in different variables

p(i,j) or pu storing the indexes (i, j) or u. We only use this notation to make the description

of the algorithm easier. Algorithm 1 can put all pool values in a single table P following

the ordering: P [h1] = p(i1,j1), P [h2] = p(i2,j2) for h1 < h2 if and only if i1 < i2 or i1 = i2

and j1 < j2. When the decompression algorithm needs to access p(i,j), it corresponds to

the element P [2i + j − 1], so we have direct access in O(1) time. Furthermore, as we will

see in the next subsection, sometimes we might need to have access to the pool value of the

parent or the left (right) child of a node u. If u corresponds to the j-th node in the i-th

level then p(i−1,j mod 2), p(i+1,2·j), p(i+1,2·j+1) is the pool value of the parent, left child, and

right child, respectively.

2.4.3 Decompression

Before we describe how we can decompress P to derive an approximation with L∞ recon-

struction of X (lossy) or the exact X (lossless) we show an interesting property of the

residual vectors over the nodes of T . Let ui be the j-th node of the i-th level in the hi-

erarchy. Let X̄ = X[j · w, . . . , (j + 1) · w − 1], where w = T/2i, be the corresponding

part of the original time-series in node ui. Let u0 → . . . → ui be the path from the

root of T to ui. From their definitions, Rui = X̄ −
∑

ℓ≤i sw(puℓ). Hence, it follows that

maxh{|Rui [h]|} = ||X̄ −
∑

ℓ≤i sw(puℓ)||∞, i.e., the L∞ error of the sum of the spline vectors
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from the root node to the current node with respect to the original X̄ vector, is the L∞

error of the residual vector Rui . We extend the previous observation to each level of T . For

each level i ≤ k let Ei be the maximum L∞ error of all residual vectors found at level i.

Let E =
⋃
i≤k Ei. Our system compresses both P,E using any known compression method.

If M1,M2 are the compression methods used for P,E, respectively, the overall compression

ratio of our method is H(M1(P ))+H(M2(E))
H(X)

, where again H(·) denotes the size in bits.

Multiresolution Decompression Let us see how the decompression algorithm works

with our running example. Recall that we have two different applications that require error

thresholds of ε = 1e−4 and ε = 1e−1 after retrieving data from an edge server. First, using

HIRE, we construct a compressed residual encoding with ε∗ = 1e − 4. Along with every

retrieval request, a desired error threshold is sent ε. The edge server first finds the maximum

error Em such that Em ≤ ε. Then we transfer all compressed pool values Pi for i ≤ m, from

the edge server to the remote machine that made the request. Finally, the decompression

procedure runs on the remote machine, finding X ′ =
∑

i≤m sT/2i(Pi), where the function

sT/2i(Pi) takes as input the vector Pi and returns another vector repeating every value of

Pi, T/2i times. Using the observations above, we have the guarantee that ||X −X ′||∞ ≤ ε.

2.5 Optimizations

In this section we describe multiple algorithmic and implementation optimizations that im-

prove the running time of our algorithms. In the previous section k = log T , i.e., the

maximum height of the tree in the compression algorithm. Recall that the execution of our

compression algorithm finishes when the L∞ error is at most ε∗, hence the final depth of the

recursion (or height of the tree) might be less than log T . We slightly abuse the notation

and we use k to denote the actual number of levels of recursion (or the actual height of the

tree) after finishing the compression algorithm.
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2.5.1 Algorithmic Optimizations

Compression

We first note that Algorithm 1 runs in O(kT ) time. There are at most k levels of recursion

and in each level we construct the residual vectors of all nodes. Hence, in each level we spend

O(T ) time. We show how we can run Algorithm 1 in only linear, O(T ) time.

The main observation is that we do not need to construct the residual vectors explicitly.

These vectors are helping to run the recursion algorithm and at the same time show what

is the maximum L∞ error in each node. We claim that we can still run the same algorithm

without constructing the residual vectors. Let u be the j-th node in the i-th level and

let v0 → . . . → vi−1 = vi = u be the path of the nodes from the root to node u. Let also

X̄ = X[j ·w, . . . , (j+1) ·w−1], for w = T/2i, be the subset of time series X that corresponds

to the part of node u. It is straightforward to see that: p(i,j) = pu = f
(
X̄ −

∑i−1
ℓ=0 sw(pvℓ)

)
.

This is a very important observation because it shows that by using only the original time

series along with the previously computed pool values, we can get the new pool value that

we need to store and compress.

Next, we show an efficient way to compute f
(
X̄ −

∑i−1
ℓ=0 sw(pvℓ)

)
. Of course, the actual

algorithm depends on the function f . Hence, we check all of the main functions that we used.

This method can be extended to a large family of functions. For all functions we are using,

we have the next observation: it holds that either f
(
X̄ −

∑i−1
ℓ=0 sw(pvℓ)

)
= f(X̄)−

∑i−1
ℓ=0 pvℓ

or f
(
X̄ −

∑i−1
ℓ=0 sw(pvℓ)

)
= f(X̄). It is easy to maintain (when needed) the term

∑i−1
ℓ=0 pvℓ

during the execution of the compression algorithm. Let Sv be the sum of all pool values

from the root to the node v. We can update Schild(v) = Sv + pchild(v) in constant time.

Hence, we only focus on how to compute f(X̄) efficiently. In particular, we aim to construct

a data structure D in O(T ) time such that given a query range [a, b], compute f(X[a, . . . , b])

in O(1) time.
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We start considering the midrank function f . We pre-process X and we build a range

MAX/MIN data structureD using the LCA technique ?. It is known thatD can be computed

in O(T ) time, it has O(T ) space, and can answer a range MAX or MIN query in O(1) time.

Hence, we can run Algorithm 1 in O(T ) time.

Next, we consider the mean function f . Again, we need a data structure to find the mean

of X in a query range. We compute and store the prefix sums of X: D[h] =
∑h

z=0X[z].

Overall, we construct a data structure D in O(T ) time such that given a range [a, b] we return

f(X[a, b]) =
D[b]−D[a−1]

b−a+1 in O(1) time. Again, we run Algorithm 1 for the mean function in

O(T ) time.

It is straightforward how to get a random item in X[a, . . . , b] efficiently for the random

function f . We just get a random number t ∈ [a, b] and we return X[t]. So we can also run

Algorithm 1 in O(T ) time for the random function.

Next, we note that it is also straightforward to run the compression algorithm for the

pool functions with quantization. The only difference is that when we find the value of

f
(
X̄ −

∑i−1
ℓ=0 sw(pvℓ)

)
we compute in O(1) time the integer bucket it belongs to. Unfortu-

nately, to the best of our knowledge, there is not any known data structure to compute the

median function in a query range in O(1) time, using at most linear pre-processsing time.

Interestingly, the data structure we used for the midrank pool function is actually needed

in all pool functions to measure the L∞ error in each node/level in the hierarchy. Previously,

having a residual vector we could find the L∞ error by checking the absolute values of its

elements. In the optimum algorithm we do not construct explicitly the residual vectors,

so we cannot do the same procedure. Instead, we argue as before. From the definitions

it follows that Ru = X̄ −
∑i

ℓ=0 sw(pvℓ). Hence, eu = ||Ru||∞ = maxh{|X̄[h] − Su|} =

max{|maxh{X̄[h]} − Su|, |minh{X̄[h]} − Su|}. As we explained above, we can calculate

Su (from the parent node) in O(1) time. Using the same data structure D we used for the

midrank function ?, we can find the MAX and the MIN values of the original time series
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X in a query range in O(1) time. Hence, we can compute the L∞ error in a node u of T in

O(1) time. The overall running time of Algorithm 1 for every pool function f we use (except

the median), including the error calculation, is O(T ).

Decompression

The decompression algorithm we described in the previous section runs in O(kT ) time, since

we take the sum of the residual vectors to retrieve the original time series or an approximation

of it. We show how we can execute the decompression algorithm in only linear O(T ) time.

More specifically, the algorithm can be executed in time linear to the number of nodes in the

hierarchy that we need to retrieve to run the decompression procedure. While the algorithm

is more tedious to describe than the compression algorithm, it is independent of the pool

function f that we used in the compression phase.

For simplicity, assume that the decompression method needs to take the sum over all the

pool values (using spline interpolation) up to level L ≤ k. The algorithm can be extended in

case that we need to take the sum of vectors (starting) from different levels. We describe an

algorithm doing it without computing the spline interpolation vectors explicitly. The main

idea is the following: we run a sweep-line algorithm starting from left to right maintaining

the total sum of all the corresponding pool values in the hierarchy. For example, imagine

that we are currently considering an index h ≤ T in a node u at level L. Let Sh be the

total sum of the pool values from the root to u. We observe that the decompressed value

is X ′[h] = Sh. Hence, the goal is to maintain the correct values Sh over all indexes h from

left to right. In order to derive the value Sh from Sh−1, we subtract the pool values that

correspond to the nodes that index h−1 belongs to and add the pool values that correspond

to the nodes that index h belongs to. The pseudocode can be seen in Algorithm 2. The

while condition on line 5 checks if there is a change in the pool values from index h − 1 to

h at level i. Then variable j stores the node at level i that index h belongs to. We update
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Algorithm 2: FastDecompression
Input : P
Output: X ′

1 S−1 = 0;
2 for h = 0 to T − 1 do
3 i = L;
4 Sh = Sh−1;
5 while h mod T

2i
== 0 AND i ≥ 0 do

6 j = h
T/2i

;

7 Sh = Sh + p(i,j) − p(i,j−1);
8 i = i− 1;

9 X ′[h] = Sh

10 return X ′;

the value Sh subtracting the pool value p(i,j−1) (i.e., pool value in (j − 1)-th node at level

i) and adding the pool value p(i,j) (i.e., pool value in j-th node at level i). We recall that

the notation p(i,j) is only used to simplify the description of the algorithm. We can always

access the pool value in the j-th node at the i-th level, taking the value P [2i + j − 1] in

constant time. Algorithm 2 visits each compressed value in P two times, one to add it to

the sum and one to subtract it from the sum. Hence, the running time is O(T ).

2.5.2 Implementation Optimizations

Moving now from theory to practice, here we highlight a few best practices for implementing

a scalable encoder-decoder pair—that is, a pair with a low latency and runtime memory

footprint.

Compression

The first step in optimizing the encoder (Algorithm 1) is to convert the recursive formulation

to an iterative formulation—thereby avoiding the allocation of unnecessary stack space. At

each level, we apply the pool and spline operations in succession. A naive implementation of
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pooling might map the function of choice to each individual window. However, there is a large

amount of extra work in that we might perform an unnecessary memory allocation operation

to rearrange the array into windows of size n and then redundantly compute w small sums—

only to eventually divide each sum by the exact same value. Instead, we can compute a prefix

sum over the entire input with a single optimized function call and then in constant time

deposit each pooled value into a pre-allocated array. This technique exploits the vectorization

and instruction-level parallelism present in conventional superscalar processors.

Now suppose that we have a multivariate time series Y ∈ RT×p that consists of p uni-

variate columns. We can apply the encoding algorithm to each column in parallel and thus

achieve a latency speed up. Further suppose that we have b blocks in each univariate column.

We can also apply the encoding algorithm to individual blocks—or groups of blocks, for that

matter—which introduces a more granular form of parallelism.

Decompression

As an alternative approach to the linear time technique expressed in Algorithm 2, we can also

in principle exploit threaded parallelism within the decoder. The HIRE decoding algorithm

must calculate a linear combination over a large number of recomputed spline arrays. This

summation does not need to be done in a sequential order due to the fact that the pooled

values are already in memory. Visually, we can partition the hierarchy along the depth axis of

the tree such that each individual spline reconstruction and summation operation (Figure 2.2)

is assigned to a single thread. As a concrete example, if ten residual subtraction operations

are performed during encoding, ten addition operations must be performed during decoding.

If we have two cores available, then we can assign five operation pairs (reconstruction and

summation) to one thread and the remaining five to the other thread. We then perform

a meta summation over the vectors returned by each thread which therefore yields the

reconstructed time series X ′.
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2.5.3 Extensions

We extend HIRE to work with other error functions, and we show how we can split a time

series to optimize the hierarchical compression algorithm. Furthermore, we show how our

technique can be optimized to handle smoother reconstruction errors. We only show the

high level ideas and skip the low level details.

Lp error.

Our compression method can actually bound the error of any Lp norm, extending the pre-

vious results for the L∞ norm. For simplicity we focus on L1, and L2 norms. The main

observation is that the residual vector RX explicitly computed by Algorithm 1, or implicitly

computed by the optimized algorithm, contains the absolute differences from the original

vector. Hence, we argue that the Lp error of a node u is the Lp norm of vector RX in node

u. More specifically, in line 1 of Algorithm 1, we check whether ||X||∞ ≤ ε∗. For any Lp

norm we can use the condition ||X||p ≤ ε∗ to check the Lp error in the current node of the

hierarchical compression. If we want to measure the overall Lp error of the compressed time

series we take the sum of the errors over the nodes within the same level. In particular, if

w1, . . . , wn are the Lp errors of n nodes at level h, then the overall Lp error at level h is

defined as
(∑

i≤nw
p
i

)1/p. We can show that the optimum pool function to minimize the L1

error is the median function, while the optimum pool function for the L2 error is the mean

function. The linear time optimized compression algorithm can be applied for the L2 error.

The L2 norm can be computed without constructing the residual vector explicitly by calcu-

lating prefix sums for both the values of the original time series and their squared values.

The mean function can also be computed in constant time for each node as we described

in Section 2.5.1. For a general Lp error function, the compression algorithm runs in O(kT )

time, as we had with the L∞ error (recall that k is the number of levels in the hierarchical

compression). Finally, we note that the linear time optimized decompression algorithm is
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independent of the error function.

Optimum splitting

We also explore different ways to split a time series during the compression algorithm. For

example, using the midrank function for bounding the L∞ error, the best option is to split

the time series such that the maximum pairwise absolute difference of elements in each sub-

time series is minimized. Specifically, given a time series X with n elements we want to

find the element j such that max{maxi≤j X[i] − minℓ≤j X[ℓ],maxi>j X[i] − minℓ>j X[ℓ]}

is minimized. In order not to define a different optimization problem for every error and

pool function, we consider the following splitting function that can split a time series in any

scenario: split at the element j such that the maximum squared error of the two sub-time

series is minimized. In particular, the maximum squared error of splitting a time series X

on j is defined as max{
∑

i≤j(X[i] − X̂≤j)2,
∑

ℓ>j(X[ℓ] − X̂>j)
2}, where X̂≤j is the mean

of X[1], . . . , X[j] and X̂>j is the mean of X[j + 1], . . . , X[n]. Intuitively, the maximum

squared error captures how homogeneous each sub-time series is. Ideally, we would like

to create homogeneous time series so that by applying a pool function we minimize its

error. It is known that both functions, maximum difference and max of squared errors, are

increasing with respect to the number of elements in a time series. Hence, we run a standard

binary search on the elements of X and for each element j we evaluate the splitting function

on the ranges [1, .., j] and [j + 1, .., n] corresponding to the left and right side of the split,

respectively. By constructing a data structure in linear time during the pre-processing phase,

we can evaluate the squared error of a query range in O(1) time. The binary search on a

residual vector of size n takes O(log n) steps. Given an input time series of size T , the overall

compression algorithm takes O(T +2k log T ) = O(T log T ) time. Finally, we note that while

non-trivial splitting functions can help to reduce the error faster, it should explicitly store

the size of each sub-time series in the hierarchical encoding.
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Smoother reconstruction errors

One drawback of our solution is that we do not have any control of the errors E in each level

of the hierarchy. Using the midrank function we know that these errors are non-increasing,

however there are only k of them and they might not be smooth. For example, as described

earlier, given a reconstruction error ε, our method first finds the largest error Em such that

Em ≤ ε. Recall that Em is the maximum error at the m-th level of T . Then by transferring

the pool values stored in nodes with depth at most ε, we make sure that the reconstruction

error is Em. However, Em might be much larger than ε. Here, we describe a few ways to

decompress in a larger variety of error thresholds without changing the main ideas of our

compression method. In particular, instead of defining the errors with respect to the levels

of T we define them with respect to the nodes of T .

Let eu = ||Ru||∞ be the L∞ error in node u. Let E = {eu | u ∈ T } contains all

errors in each node u of T . Given a reconstruction error threshold ε, we could traverse T

to find the set of nodes Uε having the largest errors that are at most ε. Then we transfer

only the compressed pool values of all the ancestor nodes (along with Uε) U ⊇ Uε. For the

decompression method we compute the sum of the spline functions of the pool values in U .

It guarantees that the L∞ error is at most ε. While this method works, it is very inefficient

to store and compress all errors eu in E because of the high compression ratio. Ideally, we

would like to keep the compression ratio as low as possible. Next, we describe three different

ways to do it.

Imagine that the error in a node eu is high and the it remains high in the next t levels in

the subtree of u as we run the hierarchical compression method. For instance, assume that

the error is always at least α · eu for α < 1 in the next t levels. After the hierarchy visits

the node u at level i, we can directly jump to the level i + t and continue the hierarchical

approach, skipping all of the intermediate levels in the subtree of u. The selection of the

parameters t, α depend on a given compression ratio upper bound and the original errors E
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in the nodes of T .

As we observe in the experiments, the compression ratio of our method is better than

the overall compression ratio of the other methods. Hence, we have the ability to store more

errors in the nodes and still improve on other techniques. However, we need to be strategic

about the selection of those nodes. Similar to what we had in the previous technique, if

the error at node v is not much smaller than the error at its parent node u, i.e., ev ≥ αeu,

then we can skip ev from E. The real parameter α ≤ 1 can be selected based on a given

compression ratio upper bound and the current errors E.

Before our system transfers the pool values from the edge to the remote server, one idea

is to identify a set of nodes to transfer with error at most ε, without storing any error value,

i.e., E = ∅. In order to do so, we should spend some time during the decompression phase on

the edge server to identify these nodes. The idea is the following: in the edge server, before

we transfer the compressed data, we run a bottom-up procedure on T finding the error in

each node that we visit until we find nodes with error greater than ε. Let Uε be these nodes

and let U ⊇ Uε be the set Uε along with all of their ancestors. We send all of the pool

values stored in U to the remote server. While this method increases the overall time to

decompress the data, it has two significant advantages. First, it has the lowest compression

ratio, since we do not need to store any errors. Second, the method is parallelizable, so it

can be executed extremely fast on the edge server.

We did not implement these methods in the current experiments. In most of the datasets

that we used, the errors are quite smooth over the levels of T , so it was left to future work.

2.6 Related Work

There has been substantial work in lossy numerical compression. Beyond the earlier dis-

cussion and the baselines used in our evaluation, there has been work in lossy compression

for scientific data ???. Like our study, most of these techniques focus on spatio-temporal
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data, where the data are organized on some continuous axis (such as space, time, or both).

Example of such techniques include SZ family of compression algorithms ??? and the ZFP

algorithm ?. These algorithms follow a familiar structure to those described in our work, and

offer L∞ error guarantees. They generally pre-process/transform the data, quantize it, and

then apply a byte-level encoding algorithm. We omit an extensive comparison because the

problem settings are quite different. Scientific data compression algorithms generally focus

on maximizing compression for data at rest, and the applicability of these techniques in an

online or mini-batch setting is more limited. Furthermore, to the best our our knowledge,

multiresolution extensions to these algorithms have not been developed.

There has also been significant interest in multiresolution problems in adjacent areas. In

approximate query processing, the DAQ project ? uses a vertical layout of floating point

bits to construct incrementally more accurate query results with error guarantees. This

approach does no compression (i.e., it does not save on storage), but it does reduce the

query latency for aggregate queries. The MLWeaving project has a similar approach to

achieve machine learning training at different levels of precision ?. Similarly, multiresolution

trees have been widely applied in approximate query processing where data are aggregated

at hierarchy predicates ???. Similar “multiresolution” results for aggregate queries are seen

in wavelet techniques for AQP ?, online aggregation ?, and sketching ?. This work inspires

our approach in HIRE, but is unfortunately only restricted to answering aggregate queries

and not point-lookups. Wavelet techniques beyond the scope of traditional linear algebra

decompositions have also been explored for multiresolution matrix compression ?.

Thus, we focus our study on a key set of baseline compression algorithms that: (1) can run

efficiently in the online setting with rapid incoming data, (2) provide L∞ error guarantees

for point queries, and (3) do not require dataset-specific modeling for compression. It is

worth mentioning recent data compression work that has been excluded from this study.

The DeepSqueeze project ? uses an auto-encoder to learn a low dimensional set of features
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that can represent the original dataset. In our experiments, we found that the “encoder”

portion of the auto-encoder was very large in size (often the same order of magnitude as

the data), and since it is dataset-specific, it has to be included in the compression ratio

measurement. The encoder is required to compress any new data that arrives. Similarly, we

build a simplified version of Squish that works assuming column-independence ?.

2.7 Experiments

We conducted most of the main experiments on an Intel NUC with a dual-core 2.30 GHz i3-

6100U processor, 16GB RAM, and a 256GB SSD.4 All implementations were done in Python

3.9. Our technique, in addition to each baseline, was applied to 7 different multivariate time

series data sets from the UCI ? repository. For HIRE and the relevant baselines, we use the

Turbo Range Coder to encode the final codes into bytes ?.

2.7.1 Datasets

Our data sets are from four different projects within the UCI repository and in each case

we used a subset of the entire data as described: Heterogeneity activity recognition data set

?, from which we used four different data sets 53.3MB each, phones accelerometer (PA),

phones gyroscope (PG), watch accelerometer (WA), watch gyroscope (WG); Sensors for

home activity monitoring (SHAM) data set ? 46.2MB; Individual household electric power

consumption data set (IHEPC) 29.4MB; Bitcoin heist ransomware address data set (BC)

?, 50.3MB. We removed all non-numerical columns, since numerical values are the focus of

our present research. We also removed missing data when present. As mentioned earlier,

we assume a mini-batch model for data arrival. Since HIRE assumes mini-batches that are

sized as powers of 2, we simply cut the different datasets to a multiple of our block sizes.

4. Buff failed on BC dataset. We ran LFZip on a comparable Macbook Pro with a 1.4 GHz quad-core i5
processor due to incompatibility.
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This modification does not change our experiments and is simply done for consistency.

2.7.2 Baselines

Our baselines feature both lossless and lossy techniques. For the lossless techniques, we

simply consider a single encoding of the data (i.e., it defaults to the “strict encoding” strategy

described before). Below is a brief description of each baseline:

• Identity Gzip (IdG): Lossless compression baseline; we apply Gzip to an array of

numbers represented as floating point values.

• Quantize (Q): We convert each floating point number to an integer according to a

user-defined error threshold, thereby saving exponent and mantissa bits (see 2.2.2 for

more details). The numbers are stored as integers with bitpacking. The compression

ratio is proportional to ⌈log2 1/ϵ⌉ which captures the effect of the error threshold ϵ

alone on the size of the compressed representation.

• Quantize Gzip (QGZ): This method consists of a quantization step and Gzip as the

downstream compressor.

• Quantize TRC (QTRC): This method consists of a quantization step and the Turbo

Range Coder (TRC) as the downstream compressor. TRC uses a Burrows–Wheeler

transform (BWT) ? to rearrange blocks of values into runs of the same symbol (i.e.,

integer), and then applies an arithmetic encoder ? during the entropy encoding step.

• Sprintz (Spz): We apply quantization to map to integer time series. First, it predicts

the current sample based on the previous sample and encodes its difference (see 2.2.2

for more details). Second, it bitpacks the errors and stores metadata to allow for

unpacking. Third, it uses run length encoding on blocks of all zero errors. Lastly, it

Huffman encodes the headers and payload ?.

• AdaptivePiecewiseConstant (APC) Piecewise approaches decompose a time series
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into segments and use the segments to approximate the time series. Our version of

the algorithm adaptively sizes segments to enforce an error bound ?. The downstream

data are compressed with GZip.

• Gorilla (Grl): This technique employs a scheme that consists of a bitwise XOR

between pairs of consecutive values. It then produces a lossless encoding for each pair

based on the number of leading or trailing zeros and the meaningful bits present ?.

The downstream data are compressed with GZip.

• LFZip: This method employs a pipeline of causal prediction, quantization, and en-

tropy coding. It first uses a Normalized Least Mean Square filter to predict the

next value in the sequence based on the previous values. Subsequently, the differ-

ence between the prediction and the actual value is obtained and quantized to a user-

determined L∞ error. Finally, a version of BWT is applied to the quantized data

?.

• Buff : This technique was designed to exploit bounded range and precision in floating

point sensor data. It eliminates less-significant bits by adjusting for a certain precision.

It also compresses the integer and mantissa bits independently ?.

2.7.3 Performance Overview

Table 2.5 from Subsection 2.7.6 exemplifies the main argument behind the benefits of using

HIRE over competing methods. We show the compression ratio of the compressed data

at 10 different error thresholds. The breakdown of compression ratio shows that at very

low thresholds, we can always choose an error threshold using HIRE that will yield a more

compressed representation than the competing methods. Hence, we need to encode the other

methods at all possible error thresholds. On the other hand, because of how our method

is constructed, we only need to store the lowest threshold and we are still able to retrieve

all of the intermediate thresholds by traversing the tree structure until we reach the desired
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resolution.

Overall, we perform better than all of the competing methods when it comes to the

combined compression ratio of all resolutions considered. For the experiments that we per-

formed, 10 different resolutions were chosen that are inside the scope of real world usage:

ε∗ ∈ {0.15, 0.1, 0.075, 0.05, 0.025,

0.01, 0.0075, 0.005, 0.0025, 0.001}. A key factor motivating our choice of thresholds is that

for Quantize (Q) the combined compression ratio across the error thresholds adds up to ap-

proximately 1.0 regardless of the specific dataset. HIRE requires half of the space to store all

of the resolutions when compared to other baselines. Furthermore, the compression latency

of HIRE is significantly better than methods with low compression ratios, again due to the

fact that we only need to run the encoder once to produce multiple resolutions.

2.7.4 Compression Ratio

We evaluated the compression performance of each method on all seven datasets. The

resulting lossy compression ratios comprised of all of the resolutions are displayed in the

bottom portion of Table 2.1; the single encoding compression ratios for the lossless baselines

are included in the top portion of the table. The best methods for a single error threshold

scenario are Quantize Turbo Range Coder (QTRC) and Sprintz (Spz), but when summing

up all of the different resolutions, their performance is on average two times worse than

HIRE. One exceptional case is the SHAM data set, where the performance was really close

to ours. On this specific dataset, the sample coefficient of variation (CV) i.e., the standard

deviation over the mean, is extremely low due to the relative stability of the data. This

impacts HIRE’s smoothness throughout the various levels, which consequently results in a

worse performance.
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PA PG WG WA SHAM HIEPC BC

Grl 0.818 0.592 0.638 0.806 0.765 0.295 0.806

IdGZ 0.555 0.402 0.449 0.464 0.769 0.217 0.230

Buff 0.421 0.390 0.390 0.421 0.468 0.453 *

Q 1.000 1.000 1.000 1.000 1.000 1.000 1.000

QGZ 0.526 0.415 0.351 0.431 0.172 0.436 0.175

QTRC 0.258 0.156 0.119 0.170 0.029 0.183 0.116

Spz 0.275 0.157 0.119 0.179 0.023 0.222 0.164

APC 1.844 1.004 0.986 1.093 0.207 0.551 0.296

LFZip 0.349 0.212 0.168 0.210 0.043 0.545 0.434

HIRE 0.116 0.085 0.070 0.085 0.021 0.091 0.061

Table 2.1: The compression ratios for the lossy baselines in the multiresolution setting
compared to HIRE (bottom). The single trivial resolution is reported for the lossless baselines
(top). Some of the values are above 1 due to the multiresolution sum of different thresholds.

2.7.5 Compression and Decompression

The evaluation of compression latency includes the compression algorithm (counting entropy

coding) and writing the compressed data to disk. HIRE outperforms all of the lossy low

compression ratio baselines as displayed in Table 2.2.5 The main driver of HIRE’s significant

performance advantage is the fact that we require only a single call to our compression

routine in order to produce multiple resolutions. This directly contrasts with the lossy

baseline methods, each of which compresses the data once per error threshold to produce 10

separable encodings. In the case of the lossless baselines, there is a single encoding at the

trivial resolution ϵ = 0 reflecting one function call.

5. We report the latency without bitpacking times. We found in our experiments that bitpacking intro-
duced a latency bottleneck that skewed some of the results in favor of HIRE. We removed bitpacking time
from those baselines, inflating their results.
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PA PG WG WA SHAM HIEPC BC

Grl 1.602 1.497 1.628 1.649 1.668 5.349 1.649

IdGZ 0.362 0.377 0.344 0.340 0.162 0.145 0.452

Buff 0.030 0.029 0.029 0.030 0.235 0.148 *

Q 0.056 0.051 0.066 0.056 0.102 0.073 0.120

QGZ 1.595 1.039 0.910 1.450 1.269 8.264 43.50

QTRC 7.617 7.423 6.930 7.221 29.72 20.99 33.07

Spz 7.125 7.465 7.241 7.150 55.52 35.30 63.12

APC 1.844 1.003 0.986 1.093 0.207 0.561 0.362

LFZip 6.509 5.880 5.854 6.175 78.78 37.58 54.36

HIRE 0.431 0.376 0.357 0.388 1.027 2.020 1.921

Table 2.2: Compression latency (s): sum of all resolutions (lossy) and single trivial resolution
(lossless).

The evaluation of decompression latency includes reading the encoding from disk and

the decompression algorithm (counting entropy coding). When it comes to decompression

latency, we report the average value for all of the different resolutions in Table 2.3. HIRE

performs about the same or better than the lossy low compression ratio methods on the first

four data sets. However, HIRE is significantly outpaced by QTRC on the last three. Once

again, this is likely due to the characteristics of the datasets. Applying HIRE to the first four

datasets generates very smooth residuals, which allows for a shorter path of traversal along

the tree until the desired resolution is reached. On data sets with extreme CVs, the traversal

may not terminate until very low levels, which is overall detrimental to decompression latency.

Gorilla performs considerably worse in this scenario due to its complex recursive encoding

where adjacent values are compared and bitwise operations executed.6

6. We do note the caveat that the Python implementation that we used for Gorilla likely does not perform
bitwise operations efficiently which may explain some of the poor results for latency.
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PA PG WG WA SHAM HIEPC BC

Grl 2148 1870 2118 2313 29753 8508 2313

IdGZ 0.08 0.07 0.07 0.08 0.48 0.22 0.34

Buff 0.02 0.02 0.02 0.02 0.17 0.12 *

Q 0.01 0.01 0.01 0.01 0.04 0.02 0.03

QGZ 0.01 0.01 0.01 0.01 0.05 0.02 0.04

QTRC 0.07 0.06 0.05 0.06 0.10 0.15 0.18

Spz 0.51 0.51 0.51 0.51 2.15 1.36 2.35

APC 0.18 0.10 0.10 0.11 0.02 0.06 0.04

LFZip 0.50 0.49 0.48 0.48 7.50 3.37 4.86

HIRE 0.07 0.06 0.06 0.07 0.19 0.40 0.23

Table 2.3: Decompression latency (s): average of all resolutions (lossy) and single trivial
resolution (lossless).

2.7.6 Edge Retrieval Experiments

We ran an experiment that mirrors the example in Section 2. We simulated a retrieval task

with data (PA dataset) collected and stored on an NVIDIA Jetson Nano with an ARM64

processor (4 cores) and 4GB of RAM. In other words, data are stored on the edge device

and are retrieved by remote applications. We measure the end-to-end latency of this process

for four multiresolution encoding strategies: strict encoding, all encoding, lazy re-coding,

and HIRE. We only report using a standard lossless method (IdGZ) and the best competing

lossy method (QTRC) as baselines. Results across different baseline algorithms were highly

similar and are available upon request.

The retrieval workload is simple. There are ten different resolution requirements. A

retrieval request is a request to the edge for one block of data (53.3MB) at one of those given
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resolutions. We assume that choice is uniformly at random. We evaluate the multiresolution

strategies with the following metrics:

• Ingestion Latency (IL). The time needed to compress one block of new data (53.3MB).

• Transfer Size (TS). The average amount of data transferred from edge to remote

per retrieval request.

• Retrieval Overhead (RO). The average time needed beyond data transfer to de-

compress or transcode per retrieval request.

• Local Storage (LS). The average amount of data stored per block locally.

Algorithm Scheme IL TS RO LS

QTRC Strictest 4.8s 3.8MB 0.3s 3.8MB

QTRC All 44.5s 1.3MB 0.2s 12.9MB

QTRC Lazy 4.8s 1.3MB 5.1s 3.8MB

GZip Lossless 0.9s 28MB 0.17s 28MB

HIRE Multiresolution 1.2s 2.0MB 0.18s 5.8MB

Table 2.4: This table compares different edge retrieval protocols on four metrics: ingestion
latency, transfer size, retrieval overhead, local storage. HIRE has a much lower latency in
both ingestion and retrieval compared to other lossy baselines, while improving on a lossless
baseline by over 14x in terms of compression ratio.

The results for the compression and decompression latencies are displayed in Table 2.4.

First, HIRE is significantly faster than the best compression baseline in terms of both inges-

tion latency and retrieval overhead. In fact, it only has a minor overhead over a lossless GZIP

baseline. Second, while HIRE does transfer more data than the lossy baseline in the “all”

or “lazy” settings, it is still competitive to them and is significantly smaller than the lossless

compression (by 14x). We believe that this is a tradeoff worth making. Edge devices are

storage constrained, and HIRE allows for a more efficient use of local storage. Next, network
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transfers are a major component in energy usage, which HIRE directly addresses. In other

words, we achieve similar latencies to a simple lossless compression framework

but can significantly lower the data footprint if the downstream applications can

tolerate inaccurate results.

Detailed Breakdown of Compression Ratios

For the sake of completeness, we include the per-threshold compression ratios for HIRE. The

results for the compression ratio are displayed in Table 2.5. One key point worth reempha-

sizing is that we only need to store the encoding for the strictest threshold in HIRE, which

in this case is 0.1164 at 0.001 error, since we are able to reconstruct all of the intermediate

representations from that single encoding.

Thresholds 0.15 0.10 0.075 0.050 0.025 0.010 0.0075 0.005 0.0025 0.001

HIRE 0.008 0.009 0.011 0.014 0.023 0.038 0.045 0.057 0.082 0.116

IdGZ 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555

QTRC 0.005 0.006 0.007 0.009 0.014 0.025 0.029 0.036 0.051 0.076

Table 2.5: Compression ratio for different resolutions on an edge device

2.7.7 Micro-benchmarks

We ran several different experiments in order to understand our method’s most important hy-

perparameters: block size and start level. Additionally, we tested different pooling functions

and their effects on the relevant metrics. All experiments in this subsection were performed

on the Phones Accelerometer (PA) data set.

Block Size

A block represents a subset of the entire data set meant to be compressed. It allows for

an online/streaming application of the method, since one can wait until a pre-determined
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(a) Compression ratio (b) Compression latency

(c) Decompression latency

Figure 2.3: Breakdown of performance at different block sizes

block size is buffered before applying HIRE. However, it also affects the performance of the

algorithm. We evaluate two different scenarios in which we vary the block size: with and

without adjusting the starting level.

We notice in Figure 2.3a that as we increase the block size, the compression ratio in-

creases. This behavior can be attributed to two distinct reasons. First, the larger the block

size, the greater the range of values within each block. This phenomenon could possibly

impact the variance of the residuals at each level, leading to less redundancy for the down-

stream compressor to exploit. Second, the presence of outliers can be mitigated at smaller

block sizes, since their impact will be contained to a smaller subset of the data. Starting at

a lower level in the tree structure also reduces the amount of data being stored, which leads

to a positive impact on the compression ratio at each block size.

On the other hand, the increase in block size has a positive effect on compression la-

tency, especially when going from a very small block (512 time steps) to 8192 as we see in

Figure 2.3b. After that, the compression latency plateaus on the adjusted level scenario and

slightly increases on the regular one. We attribute this fact to hardware limitations that
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Figure 2.4: Compression ratio for different
starting levels

Figure 2.5: L∞, L1, L2 errors for 6 levels

impede further scalability due to the fixed number of CPU cores. Finally, when analyz-

ing the decompression latency shown in Figure 2.3c, we can clearly see that once again it

decreases with the block size until it reaches a min value at roughly the same point as in

compression—8192. This observation is also due to hardware constraints. The level-adjusted

scenario performs significantly better than the regular one while being less affected by the

hardware constraints.

Starting level

The starting level corresponds to the initial number of segments into which we break the

original time series X and apply the pooling function; or equivalently, the initial number

of nodes at level Γ of the binary tree T . That is, we do not need to start the recursion at

the first level, or even at the first few levels for that matter. Concretely, there is often little

to no value in pooling large segments, particularly when the block size is purportedly large.

We can therefore adjust the starting level in order to improve both compression ratio and

latency, albeit we lose the resolutions that correspond to the levels that are skipped. Such

a trade-off is important in certain cases, as we may want to maintain a sufficient number

of levels to allow for a specific number of resolutions. Figure 2.4 shows that as we increase

the starting level, the compression ratio decreases. Furthermore, the inverse relationship

observed here is exponential in nature, since the number of values stored after pooling
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increases exponentially—specifically by a factor of 2—until we reach the upper bound of

T values at the leaf nodes of the hierarchy.

Pooling function

The pooling function plays an important role in how the data are summarized and conse-

quently the resulting residuals. We described its role in detail in Section 2.4.1. In Figure

2.6a, we display the compression ratios at various error thresholds for the three pooling

functions: mean, median, and midrank. In Figures 2.6b and 2.6c respectively, we compare

the compression and decompression latency achieved by the three pooling functions. The

compression latency of the mean is markedly lower at all of the thresholds we tested. The

decompression latencies are consistent at smaller error thresholds but diverge at larger error

thresholds.

2.7.8 Additional Experiments

In this section we run HIRE considering i) different error functions, and ii) a different splitting

method. First, we implement Algorithm 1 using the mean pool function and measure the

L1 and L2 errors for each level of the compression tree, as described in Section 2.5.3. In

particular, we run HIRE on the first 1024 samples from the first column of IHEPC and

measure the L∞, L1, and L2 error in the last 6 levels of the compression tree. The results

are displayed in Figure 2.5. Note that the L1 and L2 errors are divided by the size of the

time series to obtain an element-wise metric (given in black), and the size of the bars are

adjusted for scale. We observe that while HIRE was designed to explicitly bound the L∞

error, the L1 and L2 errors are implicitly bounded. Furthermore, the errors decrease in

lockstep with one another as HIRE progresses to lower levels. Note that we do not apply

a distinct optimized pool function to each error. Instead, we run the traditional HIRE and

show that it can still decrease the L∞, L1, and L2 errors in low levels of the hierarchy.
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(a) Compression ratio (b) Compression latency

(c) Decompression latency

Figure 2.6: Breakdown of performance for three different pooling functions

Second, we implement a variation of HIRE that splits at the optimum location as de-

scribed in Section 2.5.3. We compare the compression ratio and the compression latency

of optimal split HIRE (OS) and midpoint split HIRE (MS). The experiment was run on a

block of 4096 samples from the first column of IHEPC. Both versions of HIRE start from

the first level and have an error threshold of 0.01. The results are displayed in Table 2.6.

Midpoint split (MS) of HIRE has a smaller compression ratio and lower compression latency

than OS. While OS optimizes the split (minimize the maximum squared error), there are

two drawbacks that affect the results. First, OS needs to store twice as many values as MS

because it stores the size of each time series in the hierarchical encoding. This increases the

compression ratio. Second, OS needs additional time to find the optimal split with respect

to the minimum squared error as described in Section 2.5.3. On the other hand, MS can

find the splitting point in O(1) time, so the compression latency is much lower for the MS

method.
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Ratio Latency (s)

OS 0.242 2.042

MS 0.083 0.012

Table 2.6: Compression ratio and compression latency (s) of OS and MS on a small block.
The relative contribution to OS ratio is 0.114 for the optimum split pooled values alone and
0.146 for storing the sizes alone.

2.8 Conclusion

We presented HIRE, a novel system for multiresolution compression that uses hierarchical

residual encoding for time series data. We showed that strict, multiple, and lazy encoding

suffer from a high transfer cost, high compression ratio, or high retrieval overhead in edge

storage and retrieval applications. We proposed an efficient technique to handle multireso-

lution compression that alleviates the limitations of the previous methods. Our experiments

validate that our system performs better than the baselines at multiresolution compression

for edge computing applications. HIRE can also be extended to the multidimensional case

(e.g., image compression). As mentioned, one simple way is to encode each column inde-

pendently. A more involved and efficient way is to extend our hierarchical method in order

to natively support more dimensions. We leave the details and the implementation of the

multidimensional case to future work.
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CHAPTER 3

RASTERSTORE: ADAPTIVE COMPRESSION FOR FULLY

RASTERIZED GEOSPATIAL DATA

3.1 Introduction

From the early days of relational databases, supporting geospatial analytics has been an

important research area. Motivated by applications such as ride-sharing and other location-

based services, most geospatial databases are optimized for “vector data” that is data which

consist of latitude, longitude (and perhaps altitude) points, polygons, and paths. In contrast,

many do not support “rasterized data”, which contains data organized like an image with

discrete values in regularly-spaced pixels or voxels. Rasterized data is important for appli-

cations in satellite imaging, robotics, scientific imaging, and increasingly, applying machine

learning over vector data.

Rasterized data is fundamentally array-structured data, but in most geospatial appli-

cations, the majority of this data is uninteresting. For example, in robotic mapping, one

might be interested in identifying the location of an obstacle in a mostly empty room. A

vector format is naturally compressed where only the relevant information is represented,

but a rasterized format has to expend memory to store the empty pixels or voxels. Since

rasterized data is often sensor collected, such data grows very rapidly even if much of it is

uninteresting ?.

Data compression ? is a key tool to control the costs of rasterized data. Furthermore,

lossy compression can allow users to trade-off data quality for improved storage and transfer

performance. Traditionally, many simply apply image compression algorithms like JPEG ?

on such data . Firstly, while rasterized data resemble images, not all rasterized data are

natural images, and thus, image codecs may elide key features valuable to analysis. Second,

while image compression algorithms are highly effective at preserving perceptual similarity,
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they do not offer strong pixel-wise guarantees on error rates. For lossy compression to be

effective at a wide variety of rasterized data, it must offer a strong pixel-wise error guarantee;

that is, maximum allowed error is bounded (hereafter called an ℓ∞ guarantee). Maximum

error guarantees are common in the context of both scientific data compression ???? and

general time series codecs ??.

To harmonize the need for ℓ∞ guarantees with an effective codec that exploits the natural

structure of rasterized data, we present RasterStore a compression framework that finds

a good combination of spatial and pixel-wise error. In contrast to many ℓ∞ preserving

methods from scientific data compression (e.g., SZ ? and ZFP ?), expensive prediction and

transformation steps are omitted from our framework. Additionally, RasterStore pushes the

majority of computation toward the encoding stage of the pipeline and does not require

equally-expensive decoding routines to invert decorrelation steps. Efficient decompression

makes repeated decoding viable, a common requirement for machine learning pipelines that

frequently move training data between disk and main memory.

Our approach addresses what we call the spatial-pointwise precision tradeoff, where the

objective is to allocate error to competing spatial and pointwise dimensions. To illustrate

what we mean by these two dimensions, consider the following example.

Define two blocks A = [1.10, 1.14, 1.15, 1.16] and B = [1.10, 2.51, 3.89, 4.26] from a 2D

rasterized array that are both linearized for the sake of simplicity. We are given an ℓ∞

requirement of ϵ = 0.05.

For the first block, we notice that if we choose 1.15, all of the values in the block are

contained in the interval 1.15 ± 0.05, and hence if we replace those three values with 1.15

we maintain the ℓ∞ bound. In other words, this observation follows from the fact that

maxi |ai − 1.15| ≤ 0.05. This replacement strategy improves the redundancy in the block,

since each value ai ∈ A will now be mapped to the same code.

On the other hand, it is clear that in block B, the same strategy will not work at the
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strict guarantee of ϵ = 0.05. The best strategy in this case is to simply quantize the values

at the error ϵ = 0.05 and pass the values to the entropy coder.

In many cases, however, the choice between spatial replacement and quantization will

not be so clear-cut. Suppose that we combine the two blocks to form C = [1.10, 1.14, 1.15,

1.16, 1.10, 2.51, 3.89, 4.26]. In this instance, it is likely suboptimal to choose to exclusively

apply either replacement or quantization, so it would make sense to try a combination of

both strategies. Put simply, some of the error can be allocated to the replacement strategy

and the remaining error can be allocated to quantization. This is precisely what is meant

by the spatial-pointwise precision tradeoff.

Given a combined error threshold ϵ and a replacement allocation x RasterStore consists

of the following steps:

1. Blocking: The 2D array is divided into multiple smaller blocks, which we call windows.

2. Replacement: In each window, a pivot value is selected, and all values in the window

falling within ±xϵ of the pivot are replaced by the pivot value.

3. Quantization: Each modified window is quantized using the remaining error (1−x)ϵ.

4. Flattening: The quantized windows are flattened (linearized) to form a 1D integer

array.

5. Entropy coding: The resulting 1D array of integers is passed to an entropy coder

that exploits redundancy over the discrete distribution of integer codes.

Note that blocking, flattening, and entropy coding are all lossless operations, while replace-

ment and quantization are lossy operations. Each operation has multiple degrees of freedom.

3.2 Preliminaries

Below, we describe the main intuition behind our method. Raster data is represented as a

multidimensional array of values, where each value is often associated with a spatial location
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??. A common example of raster data is the LandSat satellite that collects hyper-spectral

image data across the visible spectrum as well as several other frequency bands ?. A Landsat

pixel corresponds to a location on the surface of the earth at a certain spatial resolution (e.g.,

30x30 meters). For the sake of simplicity, we can consider a single frequency band such as

the visible color red, and we will assume that the input data forms a square. In the running

example, this yields a square matrix of pixels A, where each pixel Ah represents the intensity

of the color red at a certain location.

3.2.1 Compression Basics

A compression algorithm consists of an encoder and decoder. To mirror the terminology

presented in later sections, we assume that the input to the compression algorithm is a

square matrix A ∈ RN×N . The encoder (enc) produces a compressed representation CA

and the decoder (dec) returns a new version of the original matrix A′:

CA = enc(A) A′ = dec(CA) (3.1)

In a lossless compression algorithm, it is always true that A′ = A but in a lossy compression

algorithm such as HIRE it is only required that A′ ≈ A. Specifically, this means that

A′ = A+ E for some error matrix E .

There are many ways in which error can be introduced, which range from soft constraints

on perceptual quality, as is common with images ?, to hard constraints on the pointwise error

between any two values, as is common with scientific data ?. We restrict our discussion to the

latter category of constraints and describe an effective algorithm that maintains a guarantee

on the maximum pointwise error.
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3.2.2 RasterStore Overview

Now moving on to our system, the user first specifies an error threshold ϵ, which is the

pixel-wise ℓ∞ error guarantee that must be met by the codec. In particular, the following

must hold for any input:

||vec(A−A′)||∞ = max
h
|Ah −A′h| ≤ ϵ (3.2)

where vec(·) is the matrix vectorization operator and A′h is any element of the decoded

matrix that corresponds to element Ah in the input matrix.

Apart from standard entropy coding, there are two lossless steps in our framework: block-

ing and flattening. These two steps interact with each other to capture spatial redundancy.

Blocking partitions the input matrix into a block matrix, where we call each block a window.

Immediately prior to entropy coding, the flattening algorithm then defines how the blocks

are to be linearized, effectively mapping the block matrix to a single vector. As will be shown

in later sections, there are many possible flattening approaches.

At a high level, the encoding algorithm has two lossy steps that fully allocate the al-

lowable ℓ∞ error ϵ to the compressed representation. These two steps are replacement and

quantization. Slightly abusing notation, for a given fraction 0 ≤ x ≤ 1 the error quantity xϵ

is allocated to replacement and the remaining error (1− x)ϵ is allocated to quantization, so

indeed xϵ+ (1− x)ϵ = ϵ. Window replacement first deliberately chooses a pivot value from

a particular block and then sets all values within a distance from the pivot of ±xϵ to the

pivot value, increasing redundancy. The remaining error (1− x)ϵ is then used as a step size

to quantize the result and produce integer codes.

In general, RasterStore codec combines the lossless and lossy operations that we described

above to produce a decoding that has a strict pointwise guarantee on the error. While it is

intuitive that the two lossy steps would preserve the desired ℓ∞ error, we can easily prove

that this is the case in the next section.
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3.3 Our Method

In this section we describe our main lossy method. The principle is illustrated in Figure

3.1. Let A ∈ RN×N be an array of real numbers. Without loss of generality, we assume

that A is a square matrix; all our methods work for any general matrix. Let t = N
s . We

partition A into t2 =
(
N
s

)2
windows of size s × s. Let W = {W1,1, . . . ,Wt,t}, where

Wi,j = A[((i− 1) · t+ 1)× (i · t) , ((j − 1) · t+ 1)× (j · t)].

The algorithm visits every window Wi,j and applies our compression approach. More

specifically, for every Wi,j let pi,j be its pivot point, and xi,j be the ratio of the L∞ error

for window replacement. That is, the L∞ error for window replacement is xi,j · ε while the

L∞ error for quantization is (1 − xi,j) · ε. We describe how we choose pi,j and xi,j in the

next Section.

We describe an algorithm to make two passes over the data to prepare for data compres-

sion. Given Wi,j , pi,j , and xi,j , the goal is to replace the input Wi,j with W̄i,j consisting of

a set of integers that they will be used for compression. We go through all items in Wi,j in

any arbitrary order: For any ah ∈ Wi,j we check whether |ah − pi,j | < xi,jε. If this is true

then we set a′ = pi,j . Otherwise we set a′h = ah. In the mean time, we keep track of the

minimum value a′h we encounter. Let µi,j be the minimum value of a′h we find. Then we go

over all items one more time to apply quantization: For every a′h, we set āh = ⌊ a′h−µi,j
(1−xi,j)·ε

⌋.

In the end, we set W̄i,j ∈ Ns×s to be the window similar to Wi,j replacing the ah values

by the new computed āh values. Finally, we set Ā as the input to the data compression

algorithm we use.

We make two passes over the input elements so the running time of the algorithm in

every window is O(s2). Overall, the running time to construct all new windows W̄i,j , is

linear with respect to the input size, i.e., O(t2 · s2) = O(N2).

We state the fact that our algorithm guarantees the ℓ∞ error ϵ in the following Proposi-

tion.
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Figure 3.1: How RasterStore allocates error in a given window.
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Given an ℓ∞ error ϵ > 0 and window replacement ratios 0 ≤ xi,j ≤ 1 for all i, j and any

input matrix A the decoded matrix A′ after applying window replacement and quantization

has the following guarantee:

||vec(A−A′)||∞ = max
h∈[N2]

|Ah −A′h| ≤ ϵ

Proof. We simply need to show that for a given window, the two lossy operations from our

codec preserve the ℓ∞ error guarantee. Let Aw
i,j = R(Ai,j) be the result of applying window

replacement with error xi,jϵ. Let A′ = Q−1(Q(Aw
i,j)) be the result of quantizing (Q) the

replacement array to integer codes with error (1−xi,j)ϵ and then dequantizing (Q−1) back to

the reals. We observe that ||vec(Ai,j−A′i,j)||∞ = ||vec((Ai,j−Aw
i,j)+(Aw

i,j−A
′
i,j))||∞. By

construction of the algorithm described above ||vec(Ai,j −A′i,j)||∞ ≤ xi,jϵ and ||vec(Aw
i,j −

A′i,j)||∞ ≤ (1 − xi,j)ϵ. Since ℓ∞ is a norm that satisfies the triangle inequality, we have

||vec((Ai,j − Aw
i,j) + (Aw

i,j − A
′
i,j))||∞ ≤ ||vec(Ai,j − Aw

i,j)||∞ + ||vec(Aw
i,j − A

′
i,j)||∞ ≤

xi,jϵ + (1 − xi,j)ϵ = ϵ. Hence, the bound is satisfied for all windows A′i,j , so we conclude

that the bound is satisfied for the full decoded matrix A′ as required.

3.4 Optimizations

In this section, we describe various methods on how to optimally choose the values p and x

in order to achieve the best compression ratio. Unfortunately, the actual compression ratio

highly depends on the structure of the dataset and the entropy coder we use. In order to

select the best parameters p and x, we introduce some metrics to estimate how compressible

the data is. We use the variance, entropy, mode, and combinations of them to estimate

the compression ratio. Let A = {a1, . . . , an} be a list of n integer numbers. The list A

corresponds to the items stored in a window W̄i,j .

• Variance: V ar(A) = 1
n2

∑
h∈[1,n] a

2
h −

1
n2

(∑
h∈[1,n] ah

)2
. Intuitively, the smaller the
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variance, the more compressible the data is.

• Entropy: Let D(A) be the set of distinct integers in A, m = |D(A)|, and let fh

be the frequency of item ah ∈ D(A). The entropy of A is defined as H(A) =

−
∑

h∈[1,m] fh log fh. Intuitively, the smaller the entropy, the more compressible the

data is.

• Mode: M(A) = argmaxah∈D(A) fh. Intuitively, the larger the mode is, the more

compressible the data is.

3.4.1 Statistical pivot selection

In this section, we define the statistical pivot selection problem and state several practical

algorithms for choosing a suitable pivot in a given window. We focus on the problem of

finding an estimate for the mode of a window without explicitly requiring that the values are

discretized by the quantization scheme, in contrast to what will be presented in later sections.

We first assume that each window Wi,j contains samples from a continuous distribution with

some unknown probability density function fi,j(y) that can be approximated by an estimate

f̂i,j(y). This is a well-studied statistical problem called (non-parametric) density estimation

???.

Formally, the objective in the context of compression is to choose an optimal pivot pi,j

such that the probability density
∫
I f̂i,j(y)dy on the interval I = [pi,j − xi,jϵ, pi,j + xi,jϵ] is

maximized. Following the algorithm described in Section 3.3, this corresponds to maximizing

the number of elements in a particular window that are contained in the interval I.

However, the interval may not be known in advance, so it suffices to consider the problem

of finding a pivot that falls in a high density region of the probability distribution without

explicit prior knowledge of the interval length xi,jϵ. Concretely, the pivot is to be chosen so

many values will fall near the pivot, regardless of the length of the interval.

What we seek is a pivot that maximizes an estimate f̂i,j constructed from the values in
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a given window Ai,j for the window probability density function fi,j(y). This optimal pivot

is simply an estimator of a mode. Crucially, the mode estimate must be found in a non-

parametric fashion, so the pivot selection procedure can use the actual values in a window as

input. Without loss of generality, we can constrain the pivot to the set Ai,j . In particular,

it is satisfactory to find a value ah ∈ Ai,j that is close to a mode estimate. This leads us to

the following canonical form for statistical pivot selection:

pi,j = argmax
ah∈Ai,j

f̂i,j(ah) (3.3)

where again f̂i,j is some density estimate.

Practical algorithms

Below, we list several practical algorithms based on non-parametric density estimates that

can be used to select a pivot. The list is roughly in ascending order of latency overhead.

• First element: Choose the first element in the window. This is an efficient systematic

sampling method that does not require random number generation.

• Random element: Choose an element uniformly at random from the window by

generating a random number for each dimension.

• Histogram: Construct an equi-width histogram H with m bins B = {B1, B2, . . . , Bm}

each having a corresponding bin density p(Br). Find Bo = argmaxBr∈B p(Br) and

select any element that satisfies ah ∈ Bo. A histogram can be seen as a lower resolution

version of quantization.

• Kernel density estimate: Using a valid kernel K the kernel density estimate f̂(a) =

1
s2z

∑
ah∈Ai,j

K(a−ahz ) is first computed, where z is the bandwidth. Then, the element

argmaxah∈Ai,j
f̂(ah) is chosen.
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Note that at larger window sizes, the histogram and kernel density estimate can be con-

structed from a random sample drawn uniformly from the window, instead of the entire

window. Sampling would likely reduce the overhead imposed by these more complex meth-

ods, while still ensuring that the general distribution is closely approximated.

3.4.2 Pivot selection given the ratio

Next, we assume that we know the ratio xi,j for a window Wi,j . We show how we can find

the optimum pivot p := pi,j in near-linear time.

First, we construct A = {a1, . . . , am}, a sorted array (ah ≤ ak for h < k) that contains

all items in Wi,j . We visit each ah ∈ A, and we compute its quantization bin bh = ⌊ ah−a1
(1−x)ε⌋,

without considering the pivot. For every bin bh we compute the number of items it contains,

denoted by fh. We also compute S1 =
∑

h fh · bh and S2 =
∑

h(fh · bh)2.

For simplicity, we search for the optimum pivot satisfying p > a1 + x · ε; the minimum

value a1 remains always the same. The algorithm can be extended to search for p ≤ a1+x ·ε,

however it becomes more tedious.

Let I = [a1, a1+x ·ε] be an interval in R1. We move this interval and we use its pI to find

all possible pivots. Let V , E, M be the current variance, entropy, and mode, respectively, of

Wi,j , with pivot pI , and ratio x. Let bs be the bin that the current pivot pI belongs to, i.e.,

bs = ⌊ pI−a1(1−x)ε⌋. Let also ps = |I∩A|, i.e., the number of elements in I after their quantization

with pivot pI . If bℓ and br are the bins that the left and right endpoints of I belongs to, let

ℓI be the number of elements in the bin bℓ that are contained in I at the left of pI and let

rI be the number of elements in the bin br that are contained in I and at the right of pI .

Finally, let T be a max-heap that stores each bin bh with weight fh. This max-heap is only

used to find the mode.

We show how to update the values V,E,M efficiently each time that we try the next

possible pivot. After visiting all possible pivot points, we return the one that leads to either
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the lowest variance, the lowest entropy, or the highest mode. We move the interval I to the

right until one of its endpoints intersects an item from A or one of its endpoints intersects

the boundary of a bin or its center pI intersects the boundary of a bin.

First, we consider the case where pI intersects the right boundary of bs. Equivalently,

this is the left boundary of bs+1.

If br > bs+1 and bℓ < bs then we update S2 = S2 − (ps · bs)2 + (ps · bs+1)
2, S1 =

S1− ps · bs+ ps · bs+1, and V = 1
mS2− 1

m2S
2
1 . We also remove the item bs from T and insert

the item bs+1 with weight ps. The mode M is updated by the top-weight in T . Finally, we

set bs = bs+1. The entropy E remains unchanged.

If br = bs+1 and bℓ = bs then we update S2 = S2 − ((ps + fs − ℓI) · bs)2 − ((fs+1 − rI) ·

bs+1)
2 + ((fs− ℓI) · bs)2 + ((ps + fs+1− rI) · bs+1)

2, S1 = S1− (ps + fs− ℓI) · bs− (fs+1−

rI) · bs+1 + (fs − ℓI) · bs + (ps + fs+1 − rI) · bs+1, and V = 1
mS2 − 1

m2S
2
1 . We also update

the weights of the items bs and bs+1 from T to be fs − ℓI and fs+1 + ℓI . The mode M is

updated by the top-weight in T . We also update the entropy E = E − fs+rI
m log m

fs+rI
−

fs+1−rI
m log m

fs−rI + fs−ℓI
m log m

fs−ℓI +
fs+1+ℓI

m log m
fs+1+ℓI

. Finally, we set bs = bs+1.

Equivalently, we handle the cases i) br > bs+1, bℓ = bs, ii) br = bs+1, bℓ < bs.

Next, we consider the case where an endpoint of I intersects the boundary of a bin.

Without loss of generality assume that the left endpoint of I intersects the right boundary

of a bin bh = bℓ. If bℓ < bs − 1 then ℓI = fh+1. Otherwise, we set ℓI = |A ∩ [bh+1, pI ]|. We

know A∩ [bh+1, pI ] by i) maintaining the number of elements between the left endpoint of I

and pI with straightforward manner, or by ii) construct a search binary tree over A and ask

a O(log(n)) time count query to compute it. In the end we update bℓ = bh+1. Equivalently,

we handle the case where the right endpoint of I intersects the right boundary of a bin bh.

Finally, we assume that an endpoint of I intersects an element ak ∈ A from bin bk.

Without loss of generality we assume that ak intersect the right endpoint of I and bℓ < bs.

We need to update V,E,M adding ak in I. We have, S1 = S1−bk ·(fk−rI)−bs ·ps+bk ·(fk−
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rI−1)+bs·(ps+1), and S2 = S2−(bk ·(fk−rI))2−(bs·ps)2+(bk ·(fk−rI−1))2+(bs·(ps+1))2.

We update, V = 1
mS2

1
m2S

2
1 , and E = E− fk−rI

m log m
fk−rI −

ps
m log m

ps
+ fk−rI−1

m log m
fk−rI−1+

ps+1
m

m
ps+1 . In order to update the mode, we update T . More specifically, we update the

weight of bs to be ps + 1 and we update the weight of bk to be fk − rI − 1. The mode M

is updated by the top-weight in T . In the end, we update rI = rI + 1 and ps = ps + 1.

Equivalently, we can update all the variables if bℓ = bs. The algorithm is also almost identical

when ak intersects the left endpoint of I.

From Wi,j , we construct the sorted array A in O(m logm) time. We initialize the bins,

the interval I and the variables we use in O(m) time. Then for every algorithm we make

one pass over all items in A. For each item, we spend O(1) time to update V and E and

O(logm) time to update T for the mode M . Hence, for a window Wi,j with m items we can

find the optimum pivot in O(m) time. Overall, we compute the optimum pivot for every

window Wi,j in O(N2 logN) time.

Putting everything together we have the next theorem. Let A be an array of m elements

and let x be the window replacement ratio. There exists an algorithm to find the pivot that

minimizes either the variance or the entropy, or maximizes the mode in O(m logm) time.

3.4.3 Ratio selection given the pivot

In this section we describe how to select the ratio x assuming that the pivot point p is given.

First, we define some additional useful notation. Let H(p, x, A), V ar(p, x, A), M(p, x, A)

be the entropy, variance, and mode respectively for A if the ratio is x and pivot is p. In this

subsection, p is fixed so we can skip it from the notation.

For every metric, we make an assumption that the value of the metric does not change

drastically for two distinct but close values of x. This is a realistic assumption that we

also observed from our experiments in real data (see also Section 3.5). Formally, for any

γ ∈ (0, 1) and δ ∈ (0, 1), a function g is called (γ, δ)-bounded, if max{g(x,A),g((1+γ)x,A)}
min{g(x,A),g((1+γ)x+δ,A)} ≤
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1+ r(γ, δ), where g(·, ·) is either the variance, the entropy or the mode, and r(γ, δ) is a small

approximation factor that depends on γ and δ. If γ = δ, we write r(γ).

The main idea is to find an approximation of the best ratio by trying different values of

x. First, we sort all points in A. Then, we discretize x’s domain, i.e., the range [0, 1], to

the values S = {0, δ, (1 + γ)δ, (1 + γ)2δ, . . . , 1}. We note that |S| = O( 1γ log 1
δ ). For every

possible s ∈ S, we run the algorithm from the previous subsection to compute g(p, s, A)

(notice that we know both parameters pivot p and ratio s.). In the end, we return the the

ratio x ∈ S with the minimum g(p, x, A) value if g represents the entropy or the variance,

or the maximum g(p, x, A) if g represents the mode.

Let x∗ be the real optimum ratio for the function g. If x∗ ∈ [0, δ] There exists a value

x̂ ∈ S such that x̂ − x∗ ≤ δ, while if x∗ ∈ (δ, 1] there exists a value x̂ ∈ S such that

x̂/x∗ ≤ 1 + γ. In any case, for entropy and variance, it holds that there exists x̂ ∈ S such

that g(p, x̂, A) ≤ (1 + r(γ, δ))g(p, x∗, A). For mode, it holds that there exists x̂ ∈ S such

that g(p, x̂, A) ≥ 1
1+r(γ,δ)

g(p, x∗, A)

We need O(m logm) time to sort A. Then using the algorithms from the previous sub-

section for every s ∈ S we compute g(p, s, A) in O(m) time. Overall the algorithm runs in

O(m(logm+ 1
γ log 1

δ )) time.

Let A be an array of m elements and let p be the pivot point. If the entropy, variance,

and mode are (γ, δ)-bounded functions for γ, δ ∈ (0, 1), then there exists an algorithm to find

an (1 + r(γ, δ))-approximation of the optimum variance, entropy, or mode in O(m(logm +

1
γ log 1

δ )) time.

3.4.4 Pivot and ratio selection

In this section we describe an efficient algorithm to find both the optimum x and p that

optimize the data compression. We focus on optimizing the entropy; in the end we briefly

describe how to extend for variance and mode.
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We note that the algorithm of the previous subsection can be applied here, straight-

forwardly. Indeed, for every possible pivot point p ∈ A we run the algorithm finding the

best x given p. While, this algorithm returns a r(γ, δ) approximation, it is quadratic in

the size of A, which is m. There are O(m) possible pivot points and each execution of

the previous algorithm takes O(m(logm + 1
γ log 1

δ )). In total, such this algorithm runs in

O(m2(logm+ 1
γ log 1

δ )) time. This algorithm is not scalable in large tables. Next, we propose

an efficient (near-linear time) randomized algorithm for finding the best pivot and ratio.

Similarly to the straightforward algorithm, our efficient algorithm tries all possible pivot

points. For every pivot, we try all discrete values of ratios in S. However, for every pivot p

and ratio x ∈ S, we estimate (with high probability) the entropy efficiently without visiting

all elements in A.

Given a pivot p and a ratio x, the goal is to estimate the entropy H(p, x, A). We use

the ideas estimating the entropy from ????. More specifically, as shown in ?,we can get

a multiplicative 1 + γ approximation of H(p, x, A) for any p and any x, if we have a data

structure D that can answer efficiently the following queries: i) Get a random sample ah from

A, ii) given an item ah ∈ A, identify its bucket bh, and iii) count the number of elements in

a bin bh, i.e., if Ih is the interval representing bin bh then the data structure should return

|A ∩ Ih|. Given A, let P be the preprocessing time to construct D and Q be the query time

to answer i), ii), iii) queries. Given p, x, we can get an 1+ γ multiplicative approximation of

H(p, x, A) in O(Q log2m
γ2

) time with probability at least 1
m .

Our data structure D consists of a binary search tree T over A. Every element in A is

stored in a distinct leaf node of T , and every node u of T stores mu the number of elements

in the leaf nodes of the subtree rooted at mu. We also store the minimum element a1 in A.

This tree has O(m) space and it is constructed in O(m logm) time.

We show how T can be used to answer the queries i, ii, iii given a pivot p and a ratio

x. For query i), it is known that the counters in the nodes of T can be used to return a
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random sample of A in O(logm) time. Let v, w be the children of a node u. Then we return

a point in the subtree of v with probability mv/(mv +mw), and a point from the subtree of

w with probability mw/(mv +mw). For query ii), given a sample ah we identify its bin bh

as follows. If |p − ah| ≤ xε then ah has the same bucket with the pivot point p. Hence we

return bh = ⌊ p−a1
(1−x)ε⌋. If |p− ah| > xε we return bh = ⌊ ah−a1

(1−x)ε⌋. The running time is O(1).

Finally for query iii) we use T to count the number of elements in bin bh. Let bp be p’s bin. If

bh ̸= bp then we define the interval I = [bh(1−x)ε, (bh+1)(1−x)ε]\ [p−xε, p+xε]. We run a

counting query on T using the query interval I. The result is the number of elements in bin

bh. If bh = bp then we define the interval I = [bh(1−x)ε, (bh+1)(1−x)ε]∪[p−xε, p+xε]. We

run a counting query on T using the query interval I. The result is the number of elements

in bin bh. In both cases, the running time is O(logm).

Overall, the query time of every query on T takes O(log n) time. Putting everything

together, we conclude with the next theorem.

Let A be an array of m elements and let p be the pivot point. If the entropy, is a (γ, δ)-

bounded functions for γ, δ ∈ (0, 1), then there exists an algorithm to find a multiplicative

(1+γ)(1+r(γ, δ))-approximation of the optimum entropy in O(m logm+ log3m
γ3

log 1
δ ) time.

The algorithm returns a correct result with probability at least 1− 1/m.

If we use the variance or the mode instead of entropy, we can still use the data structure

D to estimate the optimum values using random samples. However, we cannot get the result

with high probability as we had for the entropy. Instead, we return an approximation with

confidence interval bounds.

3.5 Experiments

We conducted all of the experiments on an Intel NUC with a dual-core 2.30 GHz i3-6100U

processor, 16GB RAM, and a 256GB SSD. All implementations were done in Python 3.11.

All different compression techniques were applied to 4 different datasets generated from the
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city of Chicago data portal. For SR and QTRC, Turbo Range Coder was chosen as the

downstream compressor to encode the final codes into bytes ?, whereas Gzip was chosen for

QGzip.

3.5.1 Datasets

Our datasets are all from the city of Chicago data portal. The other four datasets were

obtained from the city of Chicago which has its own data portal ?. We downloaded data

pertaining parks locations, energy consumption, Sidewalk Cafe permits and Array of things

locations. Then we proceeded to rasterize the data into 1024x1024 blocks in order to maintain

consistency among the experiments. Each of those files is 5MB in size approximately.

3.5.2 Baselines

Our baselines consist of both standard compression algorithms used for multiple file formats

and scientific data compression algorithms used on research labs for large scale data storage.

We briefly describe each of them below:

• Identity Gzip (IdG): Lossless compression baseline; we apply Gzip to an array of

numbers represented as floating point values.

• Quantize Gzip (QGZ): We convert each floating point number to an integer ac-

cording to a user-defined error threshold, thereby saving exponent and mantissa bits

(see 2.2.2 for more details). The numbers are stored as integers with bitpacking. The

compression ratio is proportional to ⌈log2 1/ϵ⌉ which captures the effect of the error

threshold ϵ alone on the size of the compressed representation. We apply Gzip as the

downstream compressor for the final step.

• Quantize TRC (QTRC): This method consists of a quantization step and the Turbo

Range Coder (TRC) as the downstream compressor. TRC uses a Burrows–Wheeler
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transform (BWT) ? to rearrange blocks of values into runs of the same symbol (i.e.,

integer), and then applies an arithmetic

• Fixed-Rate Compressed Floating-Point Arrays (ZFP): It maps 4d values in d

dimensions to a fixed number of bits per block, which is chosen by the user.?

3.5.3 Main Experiments

The main experiments consist of comparing the compression ratio, compression latency

and decompression latency of all baselines against our method. We evaluate the aforemen-

tioned metrics in all datasets previously described and on the following l∞ error thresholds:

(0.15,0.1,0.05,0.01,0.005,0.001). They are meant the encapsulate real world use scenarios.

Figure 3.2: Compression ratio improvement over QTRC
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We start by showing our method’s improvement over QTRC which is the degenerate case

of our solution when the window is set to use 0% of the l∞ error budget. We notice on 3.2

that for errors larger than or qual to 0.01 we are able to generate significant improvements

in compression ratio, upwards to 33% on a sample data set (park distance). Most of the

improvement is derived from mapping neighboring points to the same quantization bucket

when applying the window replacement, therefore increasing the run length on the subsequent

downstream compressor.

On table 3.1 we see the results of our method and the competing ones. We notice that our

method is able to produce the best compression ratio in most scenarios, achieving upwards

to 35% improvements when compared to the second best baseline. It once again works

more effectively on higher error thresholds, due to the size of the quantization buckets. One

noticeable exception is the energy dataset, where our window method only improves upon

the QTRC baseline on the higher error threshold 15%. That result is due to the higher

variability of that dataset where neighboring units might have completely different energy

consumption therefore mitigating the spatial effects of agglomeration.

We it comes to compression latency we observe a different trend. On 3.2 we notice that

ZFP has compression latencies an order of magnitude faster than our method. That basically

comes down to their highly optimized C++ code and the simpler operations performed during

the block assignments and error allocation. When compared to QTRC we observe a slight

increase in compression latency, but in the worst case scenario it adds roughly 15% to the

already low latency baseline.

Finally when it comes to decompression latency we observe values on par to the highly

optimized ZFP and similar (if not identical) to QTRC. Our method does not add any steps

to QTRC when it comes to decompression, so it essentially conducts the same number of

operations. Since we do not make any estimations during the process, we are able to match

even ZFP when retrieving the data in its original format.
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Data ϵ RS QTRC GZip QGzip ZFP
Park 0.15 0.0152 0.0190 58.77 0.0383 12.39

0.1 0.0164 0.0216 58.77 0.0434 13.26
0.05 0.0261 0.0343 58.77 0.0693 14.14
0.01 0.0997 0.0895 58.77 0.1486 16.01
0.005 0.1661 0.1496 58.77 0.1541 16.99
0.001 0.5013 0.4594 58.77 0.7447 19.20

Energy 0.15 0.0508 0.0512 33.93 0.0593 13.56
0.1 0.0514 0.0492 33.93 0.0589 14.38
0.05 0.0521 0.0533 33.93 0.0752 15.19
0.01 0.0632 0.0612 33.93 0.098 16.82
0.005 0.0737 0.0718 33.93 0.0826 17.64
0.001 0.1729 0.1586 33.93 0.2197 20.63

SW 0.15 0.0145 0.0165 47.481 0.0405 13.37
0.1 0.0154 0.0185 47.486 0.0443 14.18
0.05 0.0176 0.0234 47.48 0.0602 14.99
0.01 0.0607 0.0625 47.48 0.102 16.62
0.005 0.1200 0.113 47.481 0.105 17.44
0.001 0.3486 0.338 47.48 0.4086 19.57

AOT 0.15 0.0819 0.0823 3762 0.0797 14.07
0.1 0.0842 0.0824 37.62 0.0751 14.89
0.05 0.0842 0.0845 37.62 0.0953 15.72
0.01 0.0910 0.0930 37.62 0.122 17.37
0.005 0.1008 0.1018 37.62 0.0963 18.34
0.001 0.2066 0.1924 37.62 0.2293 21.78

Table 3.1: Compression ratio for different error thresholds (%)
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Data ϵ RS QTRC GZip QGzip ZFP
Park 0.15 0.1549 0.1318 0.3749 0.0200 0.0421

0.1 0.1441 0.1312 0.3753 0.0229 0.0307
0.05 0.1475 0.1460 0.3728 0.0249 0.0338
0.01 0.1441 0.1325 0.3716 0.0489 0.0341
0.005 0.1456 0.1354 0.3762 0.0679 0.0358
0.001 0.1521 0.1403 0.3736 0.0548 0.0405

Energy 0.15 0.1597 0.1388 0.7155 0.0247 0.0594
0.1 0.1453 0.1328 0.7203 0.0309 0.0341
0.05 0.1501 0.1410 0.7187 0.0260 0.0374
0.01 0.1483 0.1391 0.7652 0.0347 0.0378
0.005 0.1476 0.1373 0.7186 0.0331 0.0413
0.001 0.1515 0.1392 0.7190 0.0387 0.0463

SW 0.15 0.1536 0.1551 0.5998 0.0132 0.0344
0.1 0.1422 0.1346 0.6044 0.0175 0.0352
0.05 0.1464 0.1359 0.5975 0.0162 0.0343
0.01 0.1497 0.1333 0.5977 0.0274 0.0384
0.005 0.1397 0.1312 0.5992 0.0306 0.0383
0.001 0.1451 0.1367 0.5969 0.0430 0.0418

AOT 0.15 0.1620 0.1320 0.5648 0.0332 0.0338
0.1 0.1464 0.1380 0.5661 0.0394 0.0354
0.05 0.1481 0.1395 0.5641 0.0307 0.0357
0.01 0.1461 0.1349 0.6097 0.0439 0.0408
0.005 0.1416 0.1322 0.5661 0.0380 0.0400
0.001 0.1456 0.1353 0.5649 0.0421 0.0458

Table 3.2: Compression latency for different error thresholds (s)
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Data ϵ RS QTRC GZip QGzip ZFP
Park 0.15 0.02602 0.0206 0.0780 0.01089 0.0245

0.1 0.02039 0.0216 0.0733 0.01086 0.0175
0.05 0.0202 0.0216 0.0833 0.0108 0.0182
0.01 0.0207 0.0207 0.0647 0.0117 0.0205
0.005 0.0212 0.0213 0.0717 0.0108 0.0217
0.001 0.0283 0.0256 0.0727 0.0108 0.0240

Energy 0.15 0.0257 0.0201 0.0639 0.0116 0.0292
0.1 0.0199 0.0207 0.0738 0.0109 0.0177
0.05 0.0203 0.0204 0.0730 0.0109 0.0187
0.01 0.0202 0.0203 0.0684 0.0108 0.0200
0.005 0.0208 0.0212 0.0838 0.0117 0.0211
0.001 0.0236 0.0235 0.0768 0.01090 0.0255

SW 0.15 0.0192 0.0179 0.0749 0.0075 0.0166
0.1 0.0181 0.01802 0.0923 0.0075 0.0179
0.05 0.0175 0.0188 0.0784 0.0092 0.0192
0.01 0.0177 0.0194 0.0734 0.0076 0.0206
0.005 0.0182 0.0186 0.0732 0.0074 0.0214
0.001 0.0218 0.0220 0.0749 0.0075 0.0246

AOT 0.15 0.0269 0.0202 0.0557 0.0108 0.0178
0.1 0.0206 0.0209 0.0750 0.0107 0.0188
0.05 0.0201 0.0203 0.0694 0.0107 0.0186
0.01 0.0206 0.0206 0.0589 0.0108 0.0207
0.005 0.0207 0.0212 0.0628 0.0108 0.0223
0.001 0.0235 0.0241 0.0679 0.0108 0.0270

Table 3.3: Decompression latency for different error thresholds (s)
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(a) Compression ratio: course, medium,
fine (b) Compression ratio: fine

Figure 3.3: Breakdown of performance for several different data resolutions

3.5.4 Micro-benchmarks

We ran several different experiments in order to understand our compression method’s most

important hyperparameters: window size, pivot selection and error allocation. Additionally,

we tested different flattening techniques to evaluate their corresponding performance. All

experiments in this subsection were performed on the rasterized parks data set and the L∞

error was set to 10%.

Raster Data Resolution

When rasterizing a data set, one needs to choose the appropriate resolution of the data that

will be stored. In this context this is a trade-off between the precision and storage, as one

increases the precision of the data being stored, there will be more points representing the

same space and therefore it will require more storage space. Furthermore, we can always

upsample from a finer grid to a coarse, but the other direction will involve an inference

step with regards to the points being estimated. Therefore, whenever possible, we want to

store data in the finer possible granularity in order to preserve information. We analyse the

performance of our method on 3 different rasterized grids [1.1m, 5.5m, 11m] of the same

data set. The values represent the distance between 2 points in the final data set.
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On Figure 3.3a, we can see that as we increase the spatial resolution of the data sets the

compression ratio improves. That’s an expected result, since the adjacent points will be more

similar in values, therefore improving the results. When it comes to the effect of different

budget allocations for the different granularity levels, we notice that the 11m and 5.5m

data sets have their best compression ratio at the degenerate case (w = 0%). The window

method only improves the performance of the compression when the values are relatively

smooth within their vicinity, which is the expected as we increase the number of points

within an area. However, Figure 3.3b show that when the raster data is fine grained the

gains are substantial, once again achieving a 24% improvement over the QTRC baseline. As

the spatial resolution of datasets continues to improve due to advances in sensing technology,

we would expect that HIRE would be able to exploit the increasingly fine-grained structure.

Window Size

A window represents the 2d section of the data being analyzed at each point in time as

described. We tested different window sizes ranging from 2x2 to 64x64 to evaluate their

effects on both the compression ratio and latency.

We notice in Figure 3.4a that the effect of the window size is not monotonic. It initially

improves the compression ratio until it reaches its minimum at w = 8 and then it starts to

get continuously worse. The optimal value seems to be data set dependent, where the more

similar the neighboring data points are the greater the improvement of a larger window is.

Once the window size surpasses the radius of similarity within the data the benefits subside.

On the other hand, the compression latency has the expected behavior with regards to

the window size as shown on Figure 3.4b. The greater the window size, the faster the com-

pression. One improvement that we aim to implement in the future is the use of parallelism

with regards to the window’s computations. If the windows are performing replacements in

parallel we could have a balancing effect between the size of the window and the number of
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(a) Compression ratio (b) Compression latency

Figure 3.4: Breakdown of performance for several different window sizes

(a) Compression ratio (b) Compression latency

Figure 3.5: Breakdown of performance for several different error allocations

possible parallel computations (up to a upper bound provided by the hardware).

Error Allocation

Error allocation is a vital parameter to consider in our method. As explained in ?? it

determines how the total error budget (L∞ error defined by the user) will be allocated to the

window replacement method instead of the quantization. We evaluate the effects of allocating

the following percentages of the overall budget to the window: [0,0.125,0.25,0.375,0.5,0.75].

In the following experiments we consider a total budget of 10% of l∞ error, therefore once

the window budget is chosen the quantization is its complement.

We can see on Figure 3.5a that the optimal choice of error to be allocated to the window
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replacement is 12.5% of the total budget. The difference between the degenerate scenario

with 0% o the error allocated to the window (QTRC baseline) and the best allocation

corresponds to a 24% improvement in compression. Once again, the optimal choice will be

data dependent, where the similarity between values will determine the best window ratio.

In Figure 3.5b we see that the compression latency is barely affected by the change in

error allocation. This behavior is expected, since the computations involved are similar up

to value replacements, where the more effective the allocation the more replacements are

needed. However, those are barely noticeable in a modern computer architecture.

Flattening

Flattening corresponds to how the data is linearized in order for the downstream compressor

to operate. Different flattening methods could affect how long the downstream compressor’s

run length is and therefore its performance. We tested 3 different versions: row, window and

contiguous window. The row method flattens the data row by row sequentially, trying to

maintain the run length along the horizontal axis. The window methods leverage the spatial

relationship between adjacent data points by performing horizontal flattening within each

window. The objective of the window methods is also to capture the redundancy introduced

by the replacement algorithm, as well as the spatial characteristics of the dataset.

The difference between the window and window contiguous methods are the order of

traversal through the input array. The window variant simply iterates through the windows

from left to right and top to bottom, in a conventional pattern. On the other hand, the

window contiguous method forces the order of traversal to only consider contiguous windows.

If a window is on the edge of the array, the algorithm advances one window in the vertical

direction and reverses the order of traversal in the horizontal direction. This ensures that

every window is contiguous with respect to at least one other window when considering the

ordering of the flattened array.
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(a) Compression ratio (b) Compression latency

(c) Decompression ratio

Figure 3.6: Breakdown of performance for several flattening methods: row, window, con-
tiguous window

In Figure 3.6 we see the effects of different flattening methods on the compression ratio,

compression latency, and decompression latency. Although we might expect the window

methods to perform better in terms of compression ratio, that is not the case on this dataset.

In Figure 3.6a the row method, even though simpler, performs better at capturing the local

similarities and extending the run length of the downstream encoder. While this result may

seem surprising, at smaller window ratios, it is likely that the flattening method does little

to magnify the effects of the replacement strategy. Hence, these conclusions may change at

different combinations of window ratio and dataset. Furthermore, row flattening is faster

both in terms of compression and decompression, as shown in Figures 3.6b and 3.6c.
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(a) Compression ratio (b) Compression latency

Figure 3.7: Breakdown of performance for several pivot methods

Pivot selection

There are several pivot selection methods that could be employed in our window method.

We described 4 different ones in 3.3: first element, random element, histogram and kernel

density estimate (KDE). Their corresponding effects on compression ratio are described in

Figure 3.7a. We see that choosing the first element is the most effective choice even when

compared to more complex estimation methods such as KDE. That is probably due to the

other parameters, specially the window size. As we increase the window size, the effectiveness

of more complex methods improves as both the statistical properties of the estimators (if we

assume that the estimators are consistent, then as n→∞ the estimator converges to the real

parameter) and the coverage of the window replacement increases inducing an improvement

in the results.

When it comes to compression latency, the results are as expected. The more complex

the method, the worst it performs in terms of latency. We notice on figure 3.7b that the

choice the first element as pivot leads to significantly better results as the more complex

algorithms perform much worse. In particular, the density estimation is the slowest due to

its maximum likelihood procedure.
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3.6 Conclusion

We presented RasterStore, an innovative framework to generate and compress rasterized

data. We showed that traditional methods are not suitable to compress raster data due

to their limited capacity to properly leverage spatial similarity within neighboring points

or their lack of strong guarantees on error rates. We proposed a solution that extends

Quantized TRC in order to replace similar points withing a window while preserving a user

defined l∞ error bound. Our experiments show that our method improves the compression

ratio significantly while maintaining the decompression latency at excellent levels.
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CHAPTER 4

GEOSPATIAL CASE STUDY: THE SOCIOME DATA

COMMONS

4.1 Introduction

We present a case study that generated the interest in raster data compression. All the

datasets used in the RasterStore paper had their origins in the following clinical research

which also helps to motivate the necessity of a raster data compression framework.

Non-clinical aspects of life, such as social, environmental, behavioral, psychological, and

economic factors, play significant roles in shaping patient health and health outcomes. These

are broadly studied as Social Determinants of Health, which the World Health Organization

defines as “conditions in which people are born, grow, live, work and age” and “fundamental

drivers of [health] ?.” The design of such studies is fundamentally a data problem, where clin-

ical patient data have to be integrated with other data sources to characterize a patient’s life

outside of their clinical interactions. We refer to the entirety of these non-clinical factors as a

patient’s “sociome.” Due to the diversity of data sources and file types that sociome research

has to consider, key bottlenecks in scaling such research to large patient populations include

data integration?, data harmonization ?, uneven data quality?, and statistical modeling of

multimodal datasets?. Consequently, studies often focus on one factor, a composite index,

or a set of highly related factors6, where potentially crucial nuances and interactions among

factors can be lost.

Here, we report the design and implementation of the Sociome Data Commons (SDC).

Leveraging the expertise of the Pediatric Cancer Data Commons ?, we created a repository

of pre-harmonized, geospatial sociome datasets that can be used in concert with clinical data

to predict a variety of outcomes. To this end, we:

• Assembled and integrated publicly-available geocoded datasets about social, environ-
75



mental, behavioral, psychological, and economic exposures.

• Developed a data governance framework using a structured, standardized metadata

model that conforms to FAIR (findable, accessible, interoperable, reusable) principles.

• Established a statistical methodology for analyzing sociome datasets of varying scope

and quality, and for scaling and sustaining such analysis over large populations, envi-

ronments and diverse data sources.

To evaluate the SDC, we performed a pilot use case to identify sociome factors associated

with pediatric asthma exacerbations on the South Side of Chicago. Pediatric asthma was

selected as it is a community priority, has well-documented social disparities, and is known to

have many sociome influences, including housing and environmental conditions. In addition,

clinical factors alone or models with limited variables have lacked sufficient predictive power

for asthma outcomes.

4.2 Materials and Methods

In this manuscript, we use the following terms as defined below:

• Sociome Data Commons (SDC): A cloud-based repository of datasets characterizing

a variety of local social, environmental, behavioral, psychological, and economic expo-

sures.

• Metadata: Standardized descriptions of the content, quality, ownership, lineage, and

scope of a dataset in the SDC.

• Model: A statistical or machine learning analysis that associates factors in the SDC

to clinical outcomes derived from the electronic health record (EHR).

• Data Governance: The overall management and control of the assets in SDC, encom-

passing the policies, procedures, and frameworks that ensure data quality, accessibility

to researchers, ethics, and privacy throughout its lifecycle.
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• Generalizability: The ability for the SDC to store and serve multiple types of data and

multiple types of models.

• Sustainability: The software infrastructure and organizational processes that govern

the SDC will persist beyond initial pilot studies. The SDC is intended to be a persistent

platform that can be meaningfully engaged by researchers across disciplines. It is built

with the guiding principles described in Figure 4.1.

Figure 4.1: SDC Guiding principles

4.3 Software Implementation

The SDC team has assembled and integrated diverse datasets into a simple, well-documented

interoperable format. Researchers can use an application programming interface (API) to

access these datasets directly from code or via an interactive website (Figure 4.1). The

datasets are categorized with a structured, standardized metadata model that conforms to

FAIR principles. These sociome datasets can be pulled into a protected enclave where they

can be joined to clinical data (protected health information or a limited data set). Private

(on premises) deployments can simplify privacy and security requirements, while a cloud-

based multi-tenant solution could facilitate larger-scale collaborative research projects. Each

dataset is documented with metadata describing its scope, quality, and units of measure. The
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project utilizes a Python toolkit (that will be made available with an open-source license)

to aid with common data integration and harmonization steps that researchers using the

data might encounter. Researchers can identify the types of sociome factors they wish to

investigate and easily build an integrated profile for a certain region.

4.4 Governance and Sustainability

The SDC establishes standards for dataset quality, dataset inclusion, metadata annotation,

and data access. These standards will help promote trust in the included data and any

derived conclusions. Novel contributions are presented in Figure 4.2.
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Figure 4.2: SDC Standards

4.5 Asthma Pilot Methodology

We conducted a pilot use case of the SDC for demonstration and to test workflows. The pilot

investigated sociome factors potentially related to pediatric asthma exacerbations. Clinical

data was extracted from the University of Chicago Hospital’s electronic health record (EHR)

for all pediatric visits (age < 18). Data management and analysis on the extracted data

occurred mainly in Python. 15 All clinical data (address history, demographics, diagnoses,
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and encounters) were stored and analyzed on University of Chicago HIPAA-compliant com-

pute and storage infrastructure. Some potentially-important clinical data, including allergy

testing, asthma control test score, and overweight status, were not available at the time of

this pilot. This study was approved by the University of Chicago BSD IRB, 21-1920, and a

waiver of consent was granted for this retrospective study.

4.5.1 Geocoding

To adhere to privacy requirements for PHI, an on-site geocoder was preferred. To test and

show robustness between available geocoder platforms (both cloud-based and on premises),

a test was performed using 1,000 randomly-selected publicly-available Chicago addresses16

as well as systematic misspellings of Chicago’s city hall address (a public landmark). We

tested batch geocoding with Decentralized Geomarker Assessment for Multi-Site Studies

(DeGAUSS, locally-hosted geocoding software) against industry standards: OpenStreetMap,

GoogleV3 (both via GeoPy18), and the Census geocoder. DeGAUSS performed as well as

GoogleV3 and the Census, and all outperformed OpenStreetMap.

4.5.2 Missing data

The level of missingness in the clinical data was low. Insurance was 5% missing, race/eth-

nicity 2%, and gender < 1%. Missingness was resolved in two phases. First, by patient

and sorted by date, values were filled forwards and backwards. Second, remaining miss-

ingness (2% for race/ethnicity, < 1% for insurance and gender) was resolved with multiple

imputation.

4.5.3 Outcome definition

Visits for asthma and asthma exacerbations were categorized by the encounter text de-

scription including “asthma” and “exacerbation”, respectively. Using text captured 2,010
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additional asthma encounters (out of 3.3 million total visits, 2006-2021) than using ICD

codes alone. Both terms were required in the visit text to qualify for a visit for an acute

asthma exacerbation.

4.5.4 Spatial clustering

Spatial clustering is based on the assumption that “location matters.” Events near each

other are often related more than events far apart. Clustering combines geographic areas

(here, census tracts) together to maximize similarity among the census tracts and maximize

dissimilarity between the clusters. This clustering is performed to find meaningful spatial

commonalities. Further, clustering reduces the size of large location datasets. For example,

over 300 census tracts on the South Side of Chicago can be reduced to fewer than 10 spatial

clusters. Different clusters can have different characteristics, summary descriptions and,

especially of interest here, risk profiles. Clustering itself is an unsupervised learning problem

in that the researcher does not know which areas will be grouped together (though the

researcher does need to decide on the number of clusters). We used the skater algorithm21

in R22, which creates a connectivity graph of tracts’ central points as well as edges from

tracts’ contiguous borders. The “cost” of each edge is established from the dissimilarity

between neighboring tracts, and edges with greater costs are pruned. Statistical significance

is assessed with Moran’s I statistic, which measures spatial autocorrelation (observations

at locations which are either contiguous or not). Spatial clustering was conducted with

exacerbation visits as a proportion of all asthma visits and only for tracts with at least 10

visits. The exacerbation percentage was then mean centered and standardized. Since we did

not know how many clusters would be meaningful, we output 5 different spatial clustering

variables. These variables had different numbers of cluster assignments – between 3 and 7

– and were designed to be tested in our later model. That is, the model would determine

whether 3 total clusters or up to 7 total were more important (described below).
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4.5.5 Sociome Data Commons

For SDC datasets, a breadth of high-quality data types were chosen for this pilot study. All

data were consistently aggregated at the census tract level to match the included American

Community Survey (ACS) planning database and to avoid the modifiable areal unit problem

of using different geographic levels in the same study. As available, data were reduced to years

2017-2019 to match the clinical data. Chicago crime was characterized via FBI guidelines as

violent or not and rates for all crime, violent crime, and homicide (as a subset of violent crime)

were created. Rates were also created for Chicago building code violations. ChiVes, the

Chicago data collaborative and community mapping application, assembled a novel dataset

including tree cover, biodiversity, summer PM (particulate matter) 2.5 estimates, traffic

levels, and housing cost burden, among others. We developed a housing dataset, including

building age and repair condition, sourced from the Cook County Tax Assessor’s Office. The

Environmental Protection Agency (EPA)’s Environmental Justice mapping and screening

tool (EJ Screen) data was also included. Select variables in the ACS planning database

are relative to the population (census tract averages, percentages, or median values). ACS

average and percentages variables with less than a 10% range were also excluded, as variable

data are needed to find meaningful differences. Census tract race/ethnicity distributions

were also excluded to prevent overfitting on race. Reciprocal measures (e.g., percentage

male and female) were reduced to one variable. To account for poverty and still identify

other components of neighborhood conditions, we collapsed all ACS poverty-related variables

together. Correlations were assessed relative to the percentage of persons living below the

poverty level. The inclusion threshold was set at |0.5|. Both Pearson (linear relationships)

and Spearman (monotonic) methods were used to maximize inclusion. Principal component

analysis (PCA), which combines variables together with a linear orthogonal transformation,

was conducted for feature reduction for the poverty-correlated variables (hereafter “poverty

PCA”).

82



4.5.6 Model

Data were modeled on the visit level and restricted to asthma visits. To avoid a UChicago-

specific EHR artifact that occurred in late 2016 as well as COVID-19 pandemic complications,

data were restricted to visits from 2017 to 2019. Because of sparse data outside of the South

Side of Chicago, this pilot was limited to census tracts on the South Side Figures 4.3. Patient

race/ethnicity and insurance variables were excluded: race/ethnicity to prevent overfitting

on race as well as to permit later bias testing and insurance status because public health

insurance is a proxy for poverty. All 5 spatial cluster variations were included to determine

which provided the most information to the model.
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Figure 4.3: SDC Data pipeline

One nonlinear machine learning algorithm, a boosted decision tree, was piloted. Decision

trees are non-parametric and do not make assumptions about the form of the data. This

allows more flexibility and use of more complex datasets but also risks overfitting to the

noise or randomness in the data. Boosted trees are an ensemble meta-algorithm, converting

weak learning decision trees to strong ones in an iterative manner, such that each new tree

improves upon the previous one. To assess overfitting, we split the data into train and test
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sets. The model is designed (“fit”) on train data only, and then solely “run” on the test data

to predict outcomes. Model prediction accuracy, defined below, is compared between train

and test datasets to determine if the model is overfitting on the initial train data. Weights

were adjusted to account for outcome imbalance. Hyperparameters were optimized with

Hyperopt, and manually adjusted after fit assessment with a 70/30 train/test split; with the

final hyperparameters, shuffled 5-fold cross validation was conducted.

4.5.7 Evaluation

Metrics center on comparing model predictions to actual values. “Positive” indicates the out-

come of interest, here, an asthma exacerbation, while “negative” indicates no exacerbation.

“True” indicates that the actual outcome in the data matches the model-predicted outcome,

while “false” indicates a mismatch between real and predicted outcomes. The metrics are:

true positive (TP); true negative (TN); false positive (FP); and false negative (FN). Accu-

racy is the proportion of correct predictions ((TP + TN) / (TP + FP + TN + FN)). Test

accuracy is the accuracy of the model on only the test dataset. Recall is the proportion of

actual positives identified correctly (TP / (TP + FN)). Variable importances were deter-

mined by gain, which is the relative improvement in accuracy contributed by a particular

feature. Gain provides a ranking of all variables in the model to indicate which are most

important. It is vital to note that decision trees are not regression lines. If two variables are

correlated, the decision tree will rank as more important whichever variable provides better

accuracy. For example, we included 5 different spatial clustering variables to test which

the model ranked highest, that is, which of the 5 provided the most gain. This served as

variable selection for spatial clusters for future efforts. A baseline model included clinical

and ACS data only. This was followed by a model with all SDC datasets and clusters to

determine any improvement in predictive power. Further, the model would decide which of

the 5 cluster variations provided the most gain to the model and, additionally, if clusters
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were at all important relative to other variables.

4.5.8 Protocol testing

Two data-driven inclusion protocols were tested as future optional tools for users, and each

used lasso-regularized logistic regression and added SDC datasets one-by-one to the clinical

data (serially, not cumulatively). The first protocol assessed including full datasets via the

AIC metric (Akaike information criterion; the lower the value, the better the model quality).

The second protocol used lasso as variable selection. Each variable that reached statistical

significance (p<.05) was included. Lasso regularization compresses coefficients to reduce bias

and is a useful technique for variable selection.

4.5.9 Challenges

Challenges for this pilot include clinical data availability and the relatively low predictive

power of variables (“signal”) with the high variability of individual patients (“noise”). There

is also a sampling bias in that the University of Chicago sees a distinct patient population

– demographically, socio-economically, and geographically – which likely does not generalize

to other populations.

4.6 Results

4.6.1 Sociome Data Commons

SDC Scope and Quality

The initial data repository consists of 22 total datasets and 375 individual metadata entries

documenting their quality, provenance, and scope. Dataset content categories include envi-

ronmental exposures (n=16), public safety (n=3), demographics (n=2), access and mobility
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(n=2), property (n=1), and economic activity (n=1). The geographic levels include street

addresses (n=14), census tract (n=7), census block (n=1), and latitude/longitude points

(n=3). In the initial pilot use case, only high quality datasets were included. All 22 datasets

to date have a data quality score of 4 or higher and 3 of the datasets have a score of 5.

Furthermore, we found that datasets had varying geographic granularities. The fine-grained

data, i.e., data at a finer precision than census tract, were in varying formats and scope.

This requires significant efforts to harmonize and align with the other datasets using our

software toolkit. In all, the datasets include 1906 total variables.

Usability Metrics

We evaluated the incremental cost of adding new datasets to the SDC by measuring the

time required by a data engineering intern. These datasets had already been assessed by the

team for relevance and quality. The metrics measure the time needed to use the automated

harmonization software to reformat the data and enter the metadata into the commons.

Over 13 random datasets, the average time to add to the Sociome Data Commons was 25

minutes with a wide standard deviation of 21 minutes.

CONSORT and Clinical Trial Ethos

We leveraged the deep expertise of the clinicians on the SDC team to develop a dataset

inclusion pipeline that resembles a clinical trial flowchart. Datasets are assessed through a

review process and progress through a number of stages until inclusion. Figure 4.3 shows

the current status of this inclusion process.
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4.6.2 Asthma pilot results

Clinical data

Using DeGauss, 93% of all clinical data were successfully geocoded from patient address to

latitude and longitude, census block, and census tract. The other 7% of addresses were post

office boxes (0.4%), non-address text (0.2%), and “imprecise” (6.9%), where “the address was

geocoded, but results were suppressed because the precision was intersection, zip, or city

and/or the score was less than 0.5.”38 The table below is restricted to asthma visits among

residents of Chicago between 2017 and 2019. The UChicago pediatric asthma patient pop-

ulation is 77% Medicaid and 89% non-Hispanic Black. Given the hospital’s location and

consequent patient catchment, restricting the data to the South Side of Chicago captured

most asthma visits. However, population changes during the study period included reduc-

tions in the non-Hispanic Asian/Mideast Indian (78%) and White (81%) patients, while 97%

of non-Hispanic Black and 92% of Hispanic patients remained, reflecting the segregation by

race/ethnicity in Chicago. Spatial clustering of census tract exacerbations as percentage of

asthma visits was significant (Moran’s I = 0.5958, p<.0001) and also showed a dominant

and geographically large cluster 1 where 39% of asthma visits were for exacerbations (Figure

4.4.C). In contrast, only 18% of visits were for exacerbations in cluster 5. The University of

Chicago hospital itself resides within cluster 1, though the cluster extends far to the south

and west (Figure 4.4.C). Restricting clinical data to patients within cluster 1, most asthma

visits were retained. However, important changes include a dramatic reduction in the South

Side Hispanic population 31%.
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Figure 4.4: Clinical Maps

4.6.3 Sociome Data Commons datasets

For the poverty PCA, Spearman added four additional variables not included in the Pearson

results, while Spearman alone would have excluded eight identified from Pearson. Twenty

nine variables correlated with percent below the poverty level at |0.5| or above (see the supple-

ment) and, along with percent below the poverty level, were mean centered and standardized.

These variables were reduced to one PCA loading, which explained 56% of variance.

Model

A baseline boosted tree was run with only clinical and ACS data (which included the poverty

PCA) with a test accuracy of 58%. With all datasets for the entire South Side, accuracy was

increased to 62%, with recall for 1 (an asthma exacerbation) at 65%. Feature importance

for the South Side revealed clear outliers for gain around 21 and again at 28. Most features
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were at the lowest end of gain. Spatial clustering appeared twice in the top features. Seven

clusters and the average age of housing provided the most gain in accuracy, followed by age

at visit, proximity to Superfund pollution sites (marked for decontamination by the EPA),

median rent, and the violent crime rate. The proportion of residential housing, urban flood

susceptibility, and 3 spatial clusters followed in the top 10 variables. Given the geographic

dominance of spatial cluster 1 and its high proportion of asthma exacerbations, we ran a

model only on those patients residing within that cluster. Cross validated accuracy was

57%, accuracy was 61%, and recall for 1 was 60%. For cluster 1, there is a clear grouping of

top feature importances at gain above 25. Otherwise, there is an accumulation of features

around 8. The average age of housing units, the percentage of those under age 19 with no

health insurance, the visit month, and the patient’s age at visit were dominant variables in

the model. These were followed by a second grouping of features in the top 10 of those 65

and over with no health insurance, housing cost burden, foreign born residents, median cost

of rent, the poverty PCA, and several variables indicating a lack of health insurance.

Variable importances changed between the model including all of the South Side and the

model restricted to cluster 1. Housing age (Figure 4.5.A) remained a top variable, as did pa-

tient age and median rent (Figure 4.5.B). However, moving from the full South Side to only

cluster 1, urban flood susceptibility (Figure 4.5.C), the violent crime rate (Figure 4.5.D),

and proximity to Superfund sites (Figure 4.5.E) left the top 10 important variables.Instead,

several lack of health insurance variables and the poverty PCA (Figure 4.5.F) gained impor-

tance.
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Figure 4.5: Sociome Maps

4.7 Conclusion

4.7.1 Platform discussion

he sociome data commons (SDC) has been purposefully designed to support and encourage

extension of the platform into new data sets as well as the continued development, refinement,

and adoption of SDC standards for dataset quality, dataset inclusion, metadata annotation,

and data access / governance. The asthma pilot has served as the first driver use case for the

SDC. Additional projects will be selected, in part for their ability to exercise and grow the

capacity of the SDC to meet its ambitious goals. The purpose of this study is twofold: (1)

to further the understanding of sociome factors in a variety of pathologies and (2) to under-

stand principles of sustainable data commons design. The first purpose has parallels to other

similarly-intentioned ongoing efforts. The National Neighborhood Data Archive (NaNDA)

at the University of Michigan, the Health Equity Explorer (H2E) at Boston Medical Cen-
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ter, Exposomics from the University of Utah, the City Health Dashboard from New York

University, PopHR at the University of Tennessee, and SDOH and Place are among many

groups aggregating important data expressly to enable researchers’ use of sociome factors.

We believe the second purpose - to understand the principles of sustainable data commons

design - is unique to this project. The SDC is studying the design and implementation of

such a data commons as a scientific problem including establishing quantitative metrics for

assessing data quality, ease-of-use, researcher adoption, and sustainability. This manuscript

contributes a framework for evaluating such criteria and we believe this to be an important

contribution to this research area. This pilot and manuscript have been tailored to Chicago,

but we are collecting national datasets, and can build additional location-specific datamarts

as needed. However, local understanding provides critical context to properly using the data,

and our group holds high knowledge of Chicago and available datasets. Notably, not all cities

have tools such as the City of Chicago’s Data Portal. In ongoing work, the team plans to

make the entire SDC infrastructure publicly available and open source. It will include the

software artifacts designed as a part of the project, such as the data harmonization and

analysis code. It will further open-source the management infrastructure of how to host and

serve these datasets. Furthermore, we will release policy templates for data governance and

quality assurance. Once we finish integration of datasets, the SDC will serve as a refer-

ence implementation for data commons across a variety of social contexts of health research

problems.

4.7.2 Analysis discussion

The pilot use case reported above was helpful in providing direction for our future SDC

and analytic efforts. Spatial clustering of exacerbations, housing conditions, proximity to

Superfund sites, violent crime, urban flood susceptibility, lack of health insurance, and the

poverty PCA all contributed importantly to prediction of asthma exacerbation. Some of

92



these reflect current literature on risks for asthma, such as housing conditions and violence.

Further, housing variables appeared in the top 20 variables, such as the building violation

rate and mobile home percentage . Of course, these housing quality indicators are only

proxy estimates for each individual patient’s actual housing conditions and exposures, such

as indoor air quality, first, second, or third-hand smoke exposure, and mold or pest expo-

sure.47–50 Given a subset of patients’ actual housing and indoor air quality, we could work

to identify which, if any, SDC datasets could serve as a best proxy. The addition of personal

exposure data might increase predictive accuracy, and the extent to which this occurs would

inform how well (or not) generalized survey data like the sociome datasets perform in their

stead. Proximity to Superfund sites merits further exploration of these and other pollution

sites such as landfills and risk management plan sites. Exploring patient-level distance to

these, rather than census tract estimates, is a next step. Notably, known risks such as PM2.5

exposure and traffic proximity48 did not appear in the top 10 variables, though they are in

the top 20. Other findings, such as the violent crime rate and lack of insurance, also replicate

the literature. Rarely-seen findings53 to be further explored and include urban flood sus-

ceptibility, which could indicate poorer housing quality and perhaps indicate susceptibility

to damp housing and mold growth. Further exploration of flooding is needed. In this pilot,

spatial clustering proved to be important. Model stratification was only conducted for the

dominant cluster 1. A comparison of top variable importances demonstrates the promise

of providing geography-specific risks, though further work is needed to clarify the reasons

for the cluster differences, as well as a comparison model for the full South Side exclud-

ing clustering variables. Still, future work exploring cluster-specific models could inform

geographically-tailored interventions.
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4.7.3 Limitations

This study suffers from several data set limitations. For example, some probability surveys

(such as NHANES54) contain important Sociome data, but are not publicly available at the

census tract level. The models resulted in rather weak signals. While we anticipated that

the importance might lie in an aggregation of multiple weak signals, predictive improve-

ment is still needed. By choosing just a few datasets, we might not have yet included the

most important datasets. We anticipate that broadening the range of sociome factors in

an expanded SDC (which we are currently building) may increase model performance. The

University of Chicago catchment area does not generalize to all pediatric asthma patients

in Chicago. Variable data are needed to appreciate differences, and we need EHR data

from other metropolitan Chicago health systems to provide greater patient heterogeneity.

Efforts to expand the data are underway with our partners from the Institute for Transla-

tional Medicine. The spatial clustering of exacerbations might be affected by proximity to

the UChicago hospital, as exacerbations are often urgent or emergency events. However,

cluster 1 does extend far to the south and southwest of the hospital. Adding other hospitals’

data should clarify clustering of exacerbations against hospital proximity. Analysis needs

to be expanded. We piloted data as cross-sectional, and future efforts will use longitudi-

nal methods and correct for this temporal bias, which will also enable causal exploration.

Patient-level, rather than visit-level, analysis might also increase predictive performance, as

many of the asthma exacerbation visits could have been from a particular subset of patients.

By matching patients to specific locations in our housing dataset, we can move to sub-census

tract metrics. Future efforts should include patient-specific distance to the nearest hospi-

tal and also investigate asthma exacerbations in more detail, for example, if a visit to the

emergency department was needed. Modeling itself needs to be expanded. With machine

learning, multiple models can be combined, leveraging the models’ strengths and balancing

their respective deficiencies. For this pilot study, we were missing data on many traditional
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clinical phenotypes (disease severity, atopic status, comorbidities) and all biological (genetic,

epigenetic) information about the pediatric asthma patients included in this study. As a next

step, by obtaining clinical notes and using natural language processing, we aim to identify in-

dividual patients’ levels of asthma control, an important clinical covariate. Asthma severity

can also be assessed via medication prescriptions. If we are able to obtain biomarker data for

select patients, that could allow identification of gene-environment interactions. The users

were restricted to the project team with insights and guidance provided by the team. A

robust governance framework will be crafted. In addition to the data governance discussed

here, we will address appropriate use, responsible use, and community impact including a

flexible regulatory module to meet varied and changing requirements. We will activate a

multi-disciplinary work group composed of technical, research, and legal experts, ethicists,

and community representatives.

In sum, the pilot study reported here demonstrates promise for future analyses of the

complex interactions of the sociome and clinical health factors using the Sociome Data

Commons. We expect that its further development, including accounting for dataset quality

metrics, will facilitate the accounting for sociome factors in a wide range of clinical research

topics, from analysis of response to cancer immunotherapy, to pandemic preparedness, to

common complex diseases like diabetes mellitus, and more.
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