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ABSTRACT

Cavity quantum electrodynamics, which explores strong light-matter interaction at the

single-photon level, has provided a foundation for work to study, manipulate, and build

systems managing quantum states. A parallel site of richness has been the study of topology

in condensed matter physics; beyond its intrinsic value, the robustness to disorder afforded

by topological structure, sometimes generated via a time-reversal-symmetry-breaking gauge

field as in the case of the quantum Hall effect, has become of interest as a route to protection

of quantum excitations.

In this thesis, we mix these two regimes, exploring cavity quantum electrodynamics in

a topological metamaterial which breaks time-reversal symmetry for microwave photons by

realizing a synthetic gauge field ‘felt’ by these photons. We strongly couple the edge of

this quarter-flux Harper-Hofstadter lattice, a 2D array of coupled superconducting cavity

resonators, to a single transmon qubit, demonstrating Rabi oscillations between the excited

transmon and each individual mode of the topological band structure and profiling the

multimode Lamb shift on the qubit from the forest of the synthetic vacuum.

Then, inspired by recent efforts to achieve chiral emission and transport of photons for

use in quantum information science, we introduce a second transmon qubit to another site

along the lattice edge and use this to detect a single photon confined to propagate in the

chiral edge of this topological photonic bulk. This demonstration of non-reciprocal transport

between quantum emitters coupled to an engineered chiral channel offers opportunities to

use this platform to build and probe entangled states of light which gain structure from the

system topology, and is a step along the path to exploring topological quantum matter.

xv



CHAPTER 1

INTRODUCTION

1.1 Motivation: topological photonics

1.1.1 Why topology?

A hallmark of topological order in matter is the global protection of system states which are

made robust to small, smooth perturbation and local disorder. Of particular interest to this

thesis is the expectation that when one supplies an edge to an insulator characterized by a

nonzero topological invariant (the Chern number), the boundary between that topological

system and vacuum will give rise to directional, conducting edge states engendered and

protected by the structure of the topological bulk.

An excitation propagating in one of these edge channels set up at a boundary may en-

counter disorder in the form of barriers to tunneling like contortions in the edge or distortions

in the energies of materials lattice sites. But because it requires a substantial modification

to the energy-momentum landscape of the bulk material, closing the gap between bulk in-

sulating bands in which this edge state lives, to disrupt the system’s topological invariant

(see Chapter 3), small alterations that register as smooth perturbations to the Hamiltonian

will leave the system topology undamaged [72], preserving directional conduction against lo-

cal imperfection. Topologically-protected directional conduction arises not just in quantum

matter, but in classical systems hosting wave physics: topological order stemming from the

Coriolis force has been shown to produce directional currents in the Earth’s atmosphere and

ocean [207], and lattice-like fluid stratification in the oceans is theorized to support bulk

waves and surface states that can be described with topological band theory [63].

The characteristic protection against backscatter – protection against the halting or redi-

rection of transport by a barrier to tunneling – makes topological systems attractive to re-

searchers seeking to engineer, in the messy context of experiment, platforms which control
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and probe the dynamics of materials states. Such insulation against local disorder is of

particular interest to those seeking to leverage this control for use in quantum information

science; when trying to manipulate, move around, and probe quantum states subject to de-

coherence and decay, it is valuable to to be able to draw on the globally-rooted protection

afforded by topological structure [131].

Figure 1.1: Conducting edge of a
topological bulk. At top, a mag-
netic flux applied through a conduct-
ing plane causes an electron bounc-
ing off the boundary to be redirected
by the Lorentz force and transported
chirally along the system edge. Even
if there exist barriers in the edge,
this overall transport can be main-
tained by a strong flux. At bot-
tom, a generic boundary between
such a quantum Hall regime and one
with a different topological invariant
n supports a chiral edge mode. Panel
adapted from Hasan and Kane [72].

As the Hilbert space of a quantum-mechanical sys-

tem with N two-level (spin-12) elements scales as 2N ,

storing the details of a macroscopic quantum state

scales exponentially with system size, putting full

representations of large entangled quantum materials

states out of the range of classical tractability. The

superposition and entanglement attainable across a

system of many quantum bits (qubits) [70] provide a

powerful opportunity, in combination with good de-

sign choices, to simulate such large entangled systems

and to leverage quantum states as computational re-

sources [154]. In quantum computing, where error

rates are high compared to classical computing, the

imperative to protect quantum states is core to cur-

rent and future capacities. Gottesman [64] explains

that it is a goal of the field to achieve fault-tolerance

in quantum computing, a way of encoding states that

allows all aspects of a computation (state prepara-

tion, gates between quantum bits, and measurement)

to persist in the face of local error.

A branch of work sees a route to fault-tolerant
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quantum computing by leveraging the long-range structure inherent to topological order [39]

to encode quantum bits in a way that brings about resistance to local errors. As an example,

Raussendorf [159] argues that 3D cluster states, states of multidimensionally entangled pho-

tonic qubits, manipulated in a way that incorporates topology, are sufficient as a substrate

for universal fault-tolerant quantum computation. Nayak et al. [131] review the approach

debuted by Kitaev [86] to realize fault-tolerant quantum computation in a two-dimensional

system hosting topology: generating a topological Hamiltonian in a 2D operator-space lat-

tice and performing operations by moving its excitations, quasiparticles called non-Abelian

anyons which are structured by the long-range topological order, around each other ren-

ders the logical states less-sensitive to local-qubit decoherence and decay. This approach,

like spin-based magnetic information storage in classical computing, is “fault tolerant by its

physical nature” [86].

A set of recent landmark results from two quantum computing firms demonstrated com-

putational operations performed by exchange of non-Abelian anyons. These are a genre of

quasiparticles which are predicted to be present in fractional quantum Hall systems and which

obtain their fractional statistics from the interplay of many-body interactions and the topol-

ogy that results, in ‘real’ systems, from the application of a gauge field. Both groups [3, 77]

generate non-Abelian anyonic states in operator-space lattices built from arrays of physical

qubits, and perform a set of operations to ‘braid’ these quasiparticles around each other,

generating an observable which reflects the phase accumulated during the braiding opera-

tion. Google then uses a set of non-Abelian anyons to generate three logical qubits, which it

entangles via a braiding operation to realize a Greenberger-Horne-Zeilinger state [3]. Both

groups argue, as laid out above, that non-Abelian topological order might provide a route to

fault-tolerant quantum communication, as the globally-encoded states used for operations

are undisturbed by local perturbations associated with individual physical qubits.

Note that, while these applications of system topology to error resistance in quantum
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computing are a major motivation for the study of topology in the quantum information

context, the topological metamaterial detailed in this thesis achieves a different sort of

protection (from local disorder’s impact on dynamics) than the sort (protection from local

errors and decay, as quantum states are broadly encoded across a topological space) afforded

by the above two approaches to fault-tolerant topological quantum computing.

Beyond its application to protection of quantum states for computing, topological order

may be valuable in systems where a state needs both to be protected and to go somewhere fast

for a reason, as in the case of quantum communication [85, 42, 133]. The option to flexibly

engineer a topological system to shape the form and direction of state dynamics [140], and

even alter that topological system on-the-go to direct the flow of light [213], is a powerful

tool in the modern paradigm of work in quantum information science that seeks to design

and control systems as a route to understanding [211]. In this thesis we realize one such

system which leverages engineered topology to shape, speed, and protect against disorder

the dynamics of photons. Excitations propagating in the conducting edge channel of our

two-dimensional topological lattice are afforded a steep dispersion (speed of propagating

light in a direction) by the system’s topological Hamiltonian and would need to meet with

disorder close to the size of the band gap [37] to cease their edge-propagation.

Our system also allows photons to be interfaced with photon-number-sensitive oscillators,

here superconducting quantum bits, to explore the dynamics of topologically structured

quantum light. Such investigation of topological structure in quantum systems is further

motivated in Section 1.2.2. Introducting further nonlinearity, in the form of the photon-

number-sensitive oscillators, would open future avenues to exploring the combination of

topology and quantum many-body interactions which underpins the fractional quantum Hall

effect. With a system modeling this phenomenon (see Section 1.2.1), we might ask questions

about how state localization, thermalization, and transport occur in a system afforded global

structure by its topology. How, in this complicated case, can we connect the microscopic
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physics of interacting quantum particles with a very distinctive macroscopic observable?

The intellectual richness of quantum many-body physics has served as a historical anchor

for the discipline of condensed matter physics. Some industrial ‘solid state’ physicists prac-

ticing in the Cold War US leveraged this richness to re-describe their work as ‘condensed

matter’ physics, framing it as ‘pure’ enough of an activity to remain an academic pursuit

and shaping their scientific discipline in the process [114, 115]. Topological, and topologi-

cal many-body, phenomena in materials continue to hold an influential place in condensed

matter, photonic, and atomic physics; the response of bulk material properties like the quan-

tized plateaus of conductivity in the quantum Hall effect to disorder [189], and the depth of

interest afforded by the interplay of topology and quantum many-body interactions in the

fractional quantum Hall effect [196, 185], remain generators of interest for today’s research.

1.1.2 Why photonics?

Fabry-Pérot cavities, which can be understood as houses of mirrors with partially transmit-

ting walls [186], are by definition good photon holders, or at least better photon holders

than their surrounding non-resonator terrain. Photons confined to Fabry-Pérot cavities can

be largely shielded from the environment, maintained within the cavity for extended life-

times relative to other system dynamics or leaked out with a specific rate or energy. This

fine control of photons’ environments – the rate at which they decay and leak or jump be-

tween neighboring photon holders – provides a playground to engineer photons’ preservation,

dissipation specifics, and band structure and density of states.

Restricted to a small volume, cavity-confined photons see their densities of states in-

flated so high that it is possible to attain dramatically enhanced light-matter interaction by

placing an atom within the cavity. This physics is the core of cavity quantum electrodynam-

ics. Rather than working with actual atoms, in this thesis we realize this interaction using

transmon qubits, superconducting circuits which are macroscopically ‘quantum’. These su-
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perconducting qubits are quantum anharmonic oscillators that act like artificial atoms and

achieve strong light-matter interaction [175] via their circuit elements which couple capaci-

tively to the cavity mode field landscape.

Figure 1.2: Two-level emitter cou-
pled to photon in Fabry-Pérot
cavity. In this archetypal model of
cavity quantum electrodynamics [70,
174, 186], a Fabry-Pérot cavity (blue
walls) traps photons (pale blue) and
supports coherent interactions between
these photons and a two-level quantum
emitter (green) with rate g. Photons
decay from the cavity at rate κ, and
from the emitter at rate γ.

In purely photonic systems, arrays of connected

cavities localizing photons can be engineered gener-

ally to shape the dispersion (speed and direction) of

propagating light, enabling researchers to construct

localized [84, 35] and traveling [66, 13, 55] states of

light with the frequencies and spatial profiles they

need. In some cases, it is possible to exploit the

tight confinement of light for spin-momentum lock-

ing, imparting light with an effective sort of angu-

lar momentum in its polarization [102]. Arrays of

weakly connected photon-holders afford a photon

effective mass and can thus be used to construct a

Hamiltonian for a propagating single photon which

is a convenient analog of a particle hopping in some

material, following the tight-binding model (see Sec-

tion 2.2) in which we treat nuclei as static and elec-

trons as free to hop between potential wells [199].

Such flexible, controllable photonic systems are exciting on their own; a rich range of

work [103, 140, 155], detailed in Chapter 3, has sought to introduce topology to photonic

systems via interventions in both physical and synthetic dimensions. Being able to cause

photons to move in a bespoke way with engineerable access to band structure and band gaps

has intrinsic value across the field of optics. But adding sufficiently strong nonlinearity to a

photonic system, through strongly coupling in an atom or artificial atom, also opens access
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to studying interactions between photons, which natively do not ‘feel’ each others’ presence.

Figure 1.3: Transmon
qubit coupled to su-
perconducting cavity
resonator. At bottom, we
schematize the anharmonic
potential of the nonlinear
transmon and the resonator’s
bare harmonic potential,
with some specific transition
coupled at rate g.

Coupling a photon-holder to another oscillator (see Fig-

ure 1.3) allows energy to pass between the two, setting up

a new set of system eigenstates that are hybrid mixtures of

both components [174]. If a harmonic oscillator is coupled to

a nonlinear one, the formerly linear photonic cavity becomes

mildly nonlinear, as it inherits a bit of anharmonicity through

its coupling to the nonlinear oscillator (see Chapter 2). With

strong enough coupling, this means that photons populating

the cavity no longer see a ‘bosonic ladder’ of evenly-spaced

quantum harmonic oscillator energy states – the spacing be-

tween each set of energy levels becomes idiosyncratic, so a

photon incident upon the cavity will ‘know’ if another photon

is already present, depending on whether its resonant transi-

tion is available to excite. This ‘blockade’ effect [20, 35] gives

rise to effective photon-photon interactions.

Combining the creative playground of photonic platforms

with nonlinearity, introduced through either (1) coupling-in

of nonlinear oscillators at specific locations or (2) use of an

intrinsically nonlinear material as part of the photonic struc-

ture, allows us to shape and make use of this oscillator hy-

bridization. Following option (1) can provide a route to explore light-matter interaction

in a controllable landscape more dynamically interesting than a single cavity. The bur-

geoning subdiscipline of waveguide quantum electrodynamics (waveguide QED), introduced

further in Section 1.2.2 and Xueyue Zhang’s PhD thesis [211], does just this, exploring the

physics of nonlinear emitters interacting through, or passing photonic wavepackets along,
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continuum waveguides and engineered photonic metamaterials [120, 101, 79]. In this thesis,

‘quantum emitter’ generically describes a two-level quantum system or quantum anharmonic

oscillator, such as a transmon qubit, in which a distinctive level transition may be isolated,

supplying a site of absorption and emission of a single photon. Proposals in waveguide

QED argue that strongly coupling many quantum emitters to a waveguide might offer a

chance to realize collective phenomena like many-body localized phases [54] and interaction-

induced topology [152]. Experiments in waveguide QED have generated chiral scattering

from emitters [120] and emitter pairs coupled to waveguides [106]. Work in this area with

superconducting circuits seeks to develop control of traveling photons using strongly-coupled

single-photon-sensitive nonlinear emitters [91, 10, 25, 92], or to use engineered waveguides to

mediate emitter-emitter interactions [84, 212], directions of interest as quantum information

systems scale up in size and towards communication between modules.

Figure 1.4: Paradigm of multi-
emitter waveguide quantum elec-
trodynamics. Two-level systems
emit to a waveguide at rate Γ and else-
where at rate Γ′. The Purcell factor,
Γ/Γ′, describes emitter-waveguide cou-
pling strength. Adapted from [211].

Option (2), building photonic systems from in-

trinsically nonlinear materials, can be limited by

the generally weak nonlinearity available in opti-

cal photonic materials, and is particularly relevant

for work combining topological photonics with gain

and loss [87, 136, 155]. A recent thread of work

realizes lasing in edge modes of synthetic topologi-

cal insulators [11, 12], introducing nonlinearity via

semiconductor metamaterials and contending that

topology can enhance lasing properties. Another

thread of work seeks to profile the combination of

topology and non-Hermitian physics through pairing drives and engineered losses [136, 155].

The potential of cavities and photonic systems to intensify light-matter interaction, al-

lowing us to profile quantum light inhabiting engineered landscapes, is powerful for studying
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the generation and transport of quantum states and the waveguide-assisted emitter-emitter

interactions valuable for quantum networking [211]. In this thesis, we contribute to this line

of work, connecting a set of quantum emitters to a few-mode channel to probe a regime

intermediate between coupling an emitter to some continuum waveguide or near-continuum

photonic crystal (the standard in waveguide quantum electrodynamics) and coupling it to a

single-mode cavity or few-mode landscape without long-distance dispersion.

The same strong light-matter interaction in a system designed from the ground up is also

powerful for modeling materials. Combining photon-photon interactions with bandstructure

engineering opens the possibility of constructing synthetic materials, incorporating many-

body interactions, out of light [157, 31, 32]. Using techniques from photonics to isolate and

prolong the lifetimes of quantum states, and using techniques from cavity or circuit quantum

electrodynamics to enable interactions of quantum-mechanical excitations, can allow us to

prepare and measure quantum many-body dynamics in growing sizes of systems, and perhaps

eventually to probe the boundary between quantum systems and the classical ones which

lack entanglement [70].

1.2 Motivation: circuit quantum electrodynamics

1.2.1 Circuits for analog quantum simulation

Research in analog quantum simulation seeks to build, from the ground up, systems which

emulate the expected Hamiltonians of quantum materials. This approach stands in contrast

to digital quantum simulation, in which a target Hamiltonian is Trotterized (time evolution

under it is cumulatively executed via gates representing short-time chunks under split-apart

Hamiltonians) and the target dynamics is simulated rather than emulated. As dynamics and

observables in analog quantum simulation remain tangible even in the presence of currently

realistic quantum errors [43], it is not necessary to await the advent of a fault-tolerant digital
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quantum computer in order to gain a “practical quantum advantage” [47] in using analog

quantum simulation to study problems in quantum many-body physics. This statement

especially applies to out-of-equilibrium dynamics and thermalization of many-body systems

in two dimensions, which are intractable to classical methods [65].

Taking advantage of the power of interacting quantum bits to contend with a Hilbert space

that rapidly balloons with system size, work in the discipline of analog quantum simulation

spins off the paradigm of isolating, controlling, and measuring single quantum particles

and states developed in quantum information science and uses these techniques to find the

ground states of many-particle quantum systems and measure out-of-equilibrium system

dynamics [43]. Work in quantum simulation is presently moving past methods development

and recapitulation of understood physics and towards drawing novel connections between the

microscopic mechanisms underlying quantum materials physics and the observed macroscopic

phenomena of function.

A recent analog quantum simulation experiment pushed past the limits of empiricism

with ‘real’ matter and made first observation of a new many-body phenomenon, quantum

many-body scars [177, 18], in a 51-element Ising spin model realized with cold atoms which

were excited to interact in their Rydberg states. Here, after state preparation and a quench

of the system to resonance, some starting many-body states experienced revivals at later

times, realizing an unexpected oscillation in system ordering, while the rest thermalized

ergodically without revival as might be expected.

Superconducting circuits and resonators provide great resources with which to approach

analog quantum simulation because of the long photon lifetimes, particularly strong light-

matter coupling strength, and flexibility of design and engineering available with these fab-

ricated systems. Circuit platforms also provide convenient options to engage engineered

dissipation or dissipative stabilization of steady states of light [74, 82, 96, 110], as it is

relatively straightforward to couple in another antenna, connect the system with a lossy
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resonator, or just supply another drive to pump the system to a target state. The tools of

engineered dissipation, dissipative stabilization, and reservoir engineering are a particularly

powerful advantage of modeling materials with circuits.

A range of analog quantum simulation platforms realized in superconducting circuits

explore how to generate and probe quantum fluid states of computationally tractable mod-

els [172, 168, 83], or move towards regimes of engineered long-range couplings [212] which

might support simulation of systems that look quite different from the circuit array initially

visible [211]. Recent work implemented both with circuits [198] and later with trapped ions

[191] has also pushed to model a real-world-relevant chemical reaction, simulating quantum

dynamics important to light-driven processes in photosynthesis and vision.

The set of experiments detailed in this thesis do not approach the limit of analog quan-

tum simulation of interacting materials; our topological photonic metamaterial realizes the

Hamiltonian of a single noninteracting electron (no Pauli exclusion here!) hopping in the

lattice of a material. To approach the limit of modeling interactions between particles, we

would need to include nonlinearity at sites throughout the metamaterial, emulating electron-

electron interactions with the photon-photon interactions that our experimental system is

designed to allow. Instead, we introduce several localized sites of nonlinearity, and explore

the quantum optics of specific quantum emitters coupled to a topological band structure.

1.2.2 Circuits + topological photonics for chiral quantum optics

The strong coupling rates attainable between superconducting circuits and superconducting

transmission lines or resonators [174] are standout among light-matter-interaction platforms

and offer a significant advantage to those (like us, here) seeking to employ superconducting

qubits as sources of nonlinearity in topological photonic metamaterials. Other emitters

coupled to topological photonic platforms, even if they reach above the strong-coupling

threshold of Purcell factor Γ/Γ′ (see Figure 1.4) for Purcell enhancement of emission from a
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nonlinearity coupled to a resonator [14], do not currently display the easy access to coherent

emitter-cavity interactions needed to spur and probe dynamics.

In this thesis, we strongly couple two superconducting qubits to a topological photonic

metamaterial and access coherent Rabi oscillations between each nonlinearity and this res-

onator array. Our metamaterial is a 25-site square lattice of coupled cavity resonators which

realizes a synthetic magnetic field ‘felt’ by the microwave photons propagating within it.

Coupling qubits to this 25-eigenmode system allows us to probe the boundary between the

classic single-mode cavity quantum electrodynamics (QED) paradigm [70] and the classic

paradigm of waveguide QED, in which a quantum bit, or set of quantum bits, couple(s) to

some photonic mode continuum. Past work combining superconducting qubits with a topo-

logical photonic crystal [84] has been done in one dimension; by moving to a two-dimensional

5 × 5 system, although we are limited to 25 eigenmodes, we also gain access to conducting

chiral edge channels that support multi-round-trip wavepacket propagation rather than the

1D topological edge states which show an exponential falloff of amplitude with distance

from the coupling site [194]. An initially apparent use of such channels might be to use

them for topologically robust state transfer [209, 50] in some quantum network. While we

do not work with attention towards the scalability needed for networking, we do explore

edge channel transport here as a topic itself of interest in a chiral quantum optics platform.

There exists an incentive for those broadly interested in networking between distant

sites of quantum state preparation and measurement to use the strong coupling attain-

able in circuit QED to attach multiple quantum emitters to some channel for transmission.

This channel might be a transmission line, waveguide, or photonic system with a sloped

dispersion which sets up a group velocity that permits the use of transmissible, malleable-

in-envelope photonic wavepackets to move quantum information around between quantum

network nodes [85, 42]. Since the platform used in this thesis is not extensively scalable due

to its size, and involves substantial decay-based losses due to the permanent magnetic field
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involved, we steer away from such a networking-based direction when motivating our work.

Significant work has been done to achieve photonic state transmission between supercon-

ducting quantum bits, first to show coherent interaction of superconducting qubits coupled

to the same transmission line [193], and then to deterministically transfer single photons

between qubits coupled via a multimode landscape [100] and use superconducting circuits to

prepare, launch, and efficiently capture ‘flying’ or ‘itinerant’ photons, i.e. single- or multi-

photon propagating wavepackets employed to transmit quantum information, in bidirectional

transmission lines [129, 91, 30, 10, 25, 167].

A breadth of research is developing a toolbox for, in particular, directional coupling

between superconducting qubits and waveguides. In contrast to work at optical wavelengths

which largely relies on spin-momentum locking of confined light [102] to generate chiral

emitter-waveguide coupling, these experimental interventions with superconducting qubits

at microwave frequencies lean on interference effects between emission points or couplings

to generate chiral scattering [165] and emission [80, 81, 79] from these qubits to intrinsically

bidirectional landscapes for photonic propagation. This work is chiral quantum optics in the

sense that it is quantum optics with chiral emission.

We reverse the above paradigm, working in chiral quantum optics by spurring a priori

directionally-unrestricted emission from superconducting qubits to a channel that is itself

chirally structured. Coupling quantum emitters to the chiral edge of a topological bulk

can help us to see the connections between chiral structure of emitter-emitter interaction

and long-range entanglement, which can be understood as synonymous with topological or-

der [39]. Already some work has been done in topological photonics to propose and show

topological protection of correlated states of light propagating in the chiral edges of topo-

logical photonic setups [123, 22, 200]. Regardless of whether the waveguide or the emission

is chiral, though, systems of multiple quantum emitters interacting through a directional

channel (chiral waveguide QED) are of interest for those invested in studying nonlocal en-
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tanglement between multiple quantum bits [102].

Figure 1.5: Paradigm of multi-
emitter chiral waveguide quan-
tum electrodynamics. We picture
two-level systems emitting at rate Γ to
a chiral waveguide and Γ′ elsewhere. In
this thesis, our transmon qubits do not
emit to a mode continuum but rather
couple coherently at rate g̃k to a set of
discrete waveguide modes k.

Theoretical works in chiral quantum optics [179]

have interrogated the physics of waveguide-

mediated collective interaction between multiple

emitters chirally coupled to a waveguide [29, 182]

and the behavior of many-photon bound states in

such a system [113]. Experiments have demon-

strated “topology-dependent cooperative radiation

effects” between qubits coupled to a 1D topologi-

cal photonic waveguide [84] and measured statistics

of correlated photonic states in a waveguide made

nonlinear by chiral coupling to many atoms [153].

Many-emitter setups chirally coupled to a shared

waveguide are termed ‘cascaded quantum networks’ [184, 158, 148]. In a result that a re-

view by Lodahl [102] flags as ‘quite remarkable’, application of drive and dissipation to such

networks is predicted to generate pure entangled steady states of many emitters, and many-

site decoupled ‘dark states’ of these two-level systems, supported by the chiral structure

of the coupling or the waveguide itself. Authors argue that while quantum entanglement

is generally sensitive to degradation due to interactions with the environment, in the case

of multi-emitter chiral quantum optics, an environment-oriented driven-dissipative approach

might actually be used to instead distill or distribute entanglement over a distance [195, 184].

When dealing with driven-dissipative approaches, our cavity-array system has an advan-

tage: it admits many sites of coupling that might be straightforwardly used to introduce

drives and losses. In the topological photonic setup described in this thesis, introduction

of generalized dissipation is anticipated to stabilize entangled steady states of light that

draw their character from the system structure [82, 148]. Introducing a specific engineered
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reservoir [208] or a non-Hermitian pairing operation [151] at some local site can access, re-

spectively, stabilization of a pure, entangled steady state or onset of a new system instability.

1.3 What we do in this thesis

Introductory chapters: In Chapter 2, we introduce basics of the physics of coupled oscilla-

tors, as well as qubit-cavity interactions, helpful for those seeking to understand the rest of

the document. We present an introduction to the four-wave mixing process, accessible under

strong classical drive, that will allow us to transfer excitations between fixed-frequency trans-

mon qubits and the modes of the topological lattice that are natively over 1 GHz detuned. In

Chapter 3, we provide theoretical background introducing the physics of a particle hopping

on a 2D lattice under a magnetic field, survey other experimentalists’ work to build topolog-

ical photonic platforms with and without added nonlinearity, and provide an introduction

to how one constructs a quarter-flux Harper-Hofstadter lattice for microwave photons.

Experimental chapters: In Chapter 4, we detail the experimental specifics of assembling

this topological photonic metamaterial, and describe site- and time-resolved measurements of

photon dynamics in this platform which show transport of excitations in two nondegenerate

chiral lattice edge channels. In Chapter 5, we summarize the final result of the first paper of

this thesis, demonstrating strong coupling between a superconducting transmon qubit and

the edge of this lattice, and measuring, for the first time, a Lamb shift on the qubit resulting

from the global effect of a multimode synthetic vacuum. In Chapter 6, we detail the second

paper of this thesis, characterizing non-reciprocal transport of a single photon between two

quantum emitters coupled to a chiral lattice edge channel. Here we explore challenges and

subtleties of the multiphoton drive needed to access resonant qubit-lattice interactions.

Conclusion: In Chapter 7, we consider options for modifications to this experiment and

share some potential future directions of work.
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CHAPTER 2

OSCILLATORS, LATTICES, AND QUBIT-CAVITY

INTERACTIONS

2.1 Coupled oscillators

The core physics of this thesis – a microwave cavity array realizing a particular topological

Hamiltonian for photons, and a pair of superconducting qubits strongly coupled to it – is

built up from coupled harmonic and anharmonic quantum oscillators. Our experimental work

goes towards keeping states of light trapped and un-decayed long enough for dynamics to

occur, shaping the phase structures and tunneling behavior of light to achieve the dynamics

of interest, and doing these things in a cold enough environment that we can use anharmonic

oscillators to prepare, manipulate, and count single quanta of energy resolvably above the

threshold of thermal noise.

2.1.1 Two coupled harmonic oscillators

As Aziza Suleymanzade explores at greater length in her thesis [186], much of the physics

of resonance and coherence that underpins our work in cavity quantum electrodynamics

can be accessibly modeled with sets of classical, harmonic oscillators. As moving energy

around between resonators is a central tool deployed in this thesis, it is worth considering

the simplest paradigm of this, two coupled classical harmonic oscillators.

Figure 2.1: Coupled oscillators.

If a single, undamped mass-on-spring of

mass m and spring constant k has the equa-

tion of motion mẍ = −kx = −mω2x with

resonance frequency ω =
√

k
m and displace-

ment x, we can write the equations of motion

of coupled oscillators experiencing damping rates γ1, γ2 as:
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m1ẍ1 +m1γ1ẋ1 +m1ω
2
1x1 = kc(x2 − x1)

m2ẍ2 +m2γ2ẋ2 +m2ω
2
2x2 = kc(x1 − x2)

(2.1)

We can characterize how this system responds to injected power – what kinds of shaking

make the masses respond with the most movement? – by applying a periodic drive with

angular frequency ωD to one of the masses:

m1ẍ1 +m1γ1ẋ1 +m1ω
2
1x1 = kc(x2 − x1) + FeiωDt

m2ẍ2 +m2γ2ẋ2 +m2ω
2
2x2 = kc(x1 − x2) + 0

(2.2)

We can write these equations out in matrix form for X =

x1
x2

:

m1 0

0 m2

 Ẍ +

m1γ1 0

0 m2γ2

 Ẋ +

m1ω
2
1 + kc −kc

−kc m2ω
2
2 + kc

X =

F
0

 eiωDt (2.3)

And condense this equation by defining a mass matrix, a decay rate matrix, and a matrix

for the various spring constants involved:

M =

m1 0

0 m2

 , Γ =

γ1
γ2

 , K =

m1ω
2
1 + kc −kc

−kc m2ω
2
2 + kc

 (2.4)

MẌ +MΓẊ +KX =

F
0

 eiωDt (2.5)

We can introduce an ansatz for X, an oscillatory solution for this set of linear equations
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which we pick to rotate with the frame of the drive: X =

A1

A2

 eiωDt = AeiωDt. Introducing

the ansatz and pulling off the rotation allows us to generate a steady-state equation describing

the system response:

A(ωD) =
(
−Mω2D + iωDMΓ+K

)−1 F
0

 (2.6)

Figure 2.2: Response of pair of coupled
oscillators when one is driven. We plot
∥A1(ω)∥2 for a range of kc values between cou-
pled oscillators with weak damping across a
range of drive frequencies ω.

Solving for ∥A∥2 as a function of ωD

will provide us with the system response

(heuristically, how perturbed the masses’

positions are by the drive) across the space

of drive frequencies. When we plot this for

a pair of masses with the same k and m,

we see two big spikes at the frequencies of

the system’s two normal modes: ω =
√

k
m ,

where both masses are oscillating together

at their uncoupled bare frequency, and ω =√
(k+2kc)

m , where the masses oscillate out-

of-phase [125]. As we increase the coupling

strength kc, we see these two peaks split

more and more, and the scale of the higher-frequency response shrink. For small γi, these

peaks are at the system eigenfrequencies.

We can also numerically solve these coupled differential equations in Equation 2.1.1 to

probe time dynamics; if we start with one of the masses displaced, and plot displacement

coordinates x1 and x2 in time, we see amplitude of displacement swap back and forth between
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the resonators. We plot an example, with some damping γ on both oscillators, in Figure 2.3

– starting out with oscillator 1 displaced, we see displacement amplitude trade back and

forth between the resonators at a steady rate on top of an underlying resonant frequency.

The core idea to take away here is that providing a coupling between a pair of independent

resonators provides a way for energy to slosh from one to the other at some rate that’s related

to the coupling strength, as we’ll see later and throughout this thesis.

Figure 2.3: Oscillation of displacement
amplitude between coupled resonators.

Alongside this coupling rate comes an al-

teration of the system eigenstates – what

would be a pair of degenerate system eigen-

frequencies
√

k
m for on-resonance indepen-

dent oscillators sees its degeneracy broken as

the coupling kc splits off one of the system

response peaks in the response plot above.

To address the phenomenon of this energy

splitting a bit more, let’s find the eigenen-

ergies of a more generic system of coupled,

undriven and undamped oscillators, following Novotny’s classical treatment of avoided level

crossings [134]:

We allow different spring constants ki for masses m and couple them using a spring with

kc:

mẍ1 + k1x1 + kc(x1 − x2) = 0

mẍ2 + k2x2 + kc(x2 − x1) = 0

(2.7)

We again seek oscillatory solutions X = Aeiωt, resulting in:
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−mω2 + k1 + kc −kc

−kc −mω2 + k2 + kc


A1

A2

 = 0 (2.8)

This matrix equation has nontrivial solutions only if the determinant is 0 – otherwise

the solution is that the masses don’t go anywhere, ever! From this requirement we extract

system eigenfrequencies ω. If we were to have no coupling (kc = 0), we would have just the

bare resonant frequencies of the uncoupled oscillators:

ω2 =
1

2

(
ω21,0 + ω22,0 ±

√(
ω21,0 − ω

2
2,0

)2)
= ω21,0 or ω22,0 (2.9)

Here ω21,0 = k1
m , the bare frequency of mass 1. For k1 = k2 these are degenerate. If we

go ahead and include the contribution of kc to the diagonal elements of the matrix equation

we’ve been solving,

−mω2 + k1 + kc 0

0 −mω2 + k2 + kc


A1

A2

 = 0, (2.10)

and redefine ω1 =
√

k1+kc
m and ω2 =

√
k2+kc
m to involve the presence of the coupling

spring, we still don’t see any splitting of eigenfrequencies at k1 = k2, as altering the diagonals

of an eigenvalue equation just shifted both the energies:

ω2 =
1

2

(
ω21 + ω22 ±

√(
ω21 − ω

2
2

)2
+ 0

)
= ω21 or ω22 (2.11)

We can pick a different energy baseline at any time without altering the system dynamics

(this baseline shows up as a total time derivative in the system Lagrangian, so can’t have an

impact) – for an oscillating system we do this by rotating frame. Adding in the off-diagonal

couplings, though, does alter system dynamics and produce the desired eigenenergy splitting!
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If we solve all of Equation 2.1.1, we retrieve:

ω2 =
1

2

k1
m

+
k2
m

+
2kc
m
±

√(
k1 − k2
m

)2

+ 4

(
kc
m

)2


ω2 =
1

2

ω21 + ω22 ±

√(
ω21 − ω

2
2

)2
+ 4

(
kc
m

)2
 (2.12)

If we work in the condition that k1 = k2, so the modified frequencies ω1 and ω2 of the

harmonic oscillators are on resonance, then we get:

ω2± = ω21 ±
(
kc
m

)
= ω22 ±

(
kc
m

)
(2.13)

The off-diagonal couplings in the eigenequation matrix produce an eigenfrequency differ-

ence of 2kcm . We depict this in Figure 2.4.

Figure 2.4: Avoided level crossing of
eigenfrequencies for system of two cou-
pled oscillators. We plot system eigenfre-
quencies ω± for a range of values of uncoupled

ω=1

√
k1+kc
m , with ω2 held constant. At reso-

nance, ω+ and ω− are split by
√

2kc
m .

By coupling the two formerly indepen-

dent oscillators, we have created a set of

‘dressed’ system eigenstates, each of which

is a mixture of the states of both oscilla-

tors. Accordingly with this dressing, the

system eigenfrequencies at former resonance

are split apart by an amount proportional

to the strength of the coupling which hy-

bridizes the eigenstates. We see this avoided

crossing feature throughout cavity and cir-

cuit quantum electrodynamics, as a level

splitting larger than the state linewidths is

an indicator of strong coupling between two
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resonators. Avoided crossing is often thought of a quantum phenomenon, but it is not in-

trinsically related to quantum mechanics or to specifically anharmonic oscillators like atoms

and transmon qubits.

Figure 2.5: Avoided crossing of coupled
qubit-cavity eigenenergies. Adapted from
Figure 2.3 in David Schuster’s thesis [174].

We see this avoided crossing again when

dealing with quantum oscillators – in Fig-

ure 2.5, we adapt a plot from David Schus-

ter’s PhD thesis [174] to depict bare resonant

frequencies of a cavity resonator and trans-

mon qubit, and show the avoided crossing

that occurs when these oscillators are cou-

pled with rate g. Here |g, 1⟩ is the system

state with 1 cavity photon and none in the

two-level qubit, and |e, 0⟩ is the state with 1

photon in the qubit and none in the cavity.

As we sweep the resonant frequency of the qubit past that of the cavity, the coupling causes

eigenstates to hybridize into ‘phobit’ and ‘quton’ states (written out in pink and purple)

with eigenenergies split by 2g.

Here we only consider two qubit energy levels, |g⟩ and |e⟩, so the qubit is indistinguishable

from a harmonic oscillator as long as we do not excite it outside of this two-state manifold.

However, the nonlinearity of the Hamiltonian describing a transmon qubit ensures that its

level structure is anharmonic, with each pair of higher levels differently spaced. Excitations of

hybrid states of such a nonlinear oscillator with a linear one are referred to as polaritons, and

even if they ‘live’ primarily in the linear resonator, the states are afforded some nonlinearity

by hybridization with the qubit. To be discussed further later, this sharing of nonlinearity

is a core tool we will use for assessing qubit states by making measurements on weakly-

hybridized cavity resonators, and for generating single-photon states in qubit and resonator
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by the application of classical microwave drives.

2.1.2 Three-oscillator ring

It’s worth briefly considering a ring of three identical, identically-coupled oscillators, as this

system is a good analog of the microwave cavity resonator with three quarter-wavelength

posts which we implement later in this thesis.

Figure 2.6: Ring of three cou-
pled oscillators. We could include
a spring with kb coupling each mass
m to some ground, but this would
just rotate the bare resonance fre-
quency of each mass, so we neglect
it.

We can model a ring of three nearby-spaced con-

ducting posts as a ring of coupled resonators – individ-

ually, each would host an electromagnetic resonance,

and here excitations, in the form of electric field am-

plitude, can propagate around the ring of resonators

via post-post coupling. The equations of motion for

this ring of oscillators are:

mẍ1 = −k(x1 − x3)− k(x1 − x2)

mẍ2 = −k(x2 − x1)− k(x2 − x3)

mẍ3 = −k(x3 − x2)− k(x3 − x1)

(2.14)

Implementing the now standard complex exponen-

tial ansatz for X,


−ω2 + 2ω20 −ω20 −ω20
−ω20 −ω2 + 2ω20 −ω20
−ω20 −ω20 −ω2 + 2ω20



A1

A2

A3

 = 0 (2.15)
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The eigenvalues and eigenvectors of the matrix at left are:

−ω2,


1

1

1

 ,−ω2 + 3ω0,


−1

0

1

 ,−ω2 + 3ω0,


−1

1

0

 (2.16)

The leftmost eigenvector realizes the displacement of all three masses together in the ring

– this is the lowest-frequency three-post eigenmode, in which the three resonator posts act

like one distributed post and host one fundamental resonance. The other two eigenvectors,

associated with a pair of degenerate eigenenergies−ω2+3ω0, encode opposite-direction phase

windings for excitations (displacement waves) propagating around the resonator ring. These

will map onto right- and left-handed degenerate chiral modes that arise in the three-post

cavity resonators discussed later.

2.1.3 Long chain of coupled oscillators: Wavepackets!

For some jth oscillator in a boundary-less one-dimensional chain of identical coupled oscilla-

tors, we can write down an equation of motion in terms of the impact on the oscillator from

its nearest neighbors to which it is coupled:

ẍj =
k

m
(xj+1 − 2xj + xj−1) (2.17)

Our ansatz for xj should include eiωt but also includes a spatial oscillatory compo-

nent, eikxj = eikna, where a is the unperturbed oscillator spacing and n indexes how many

oscillator-spacings xj is from some hypothetical x = 0. The new spatial oscillatory compo-

nent of the ansatz encodes spatial periodicity of any excitation along this boundless chain.

Plugging in xj = Aeinkaeiωt, we get the dispersion relation, or energy-wave momentum

relationship, for excitations on the oscillator chain:
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−ω2eijka =
k

m
(eikaeijka − 2eijka + e−ikaeijka)

ω2 =
2k

m
(1− cos ka)

ω(k)2 =
4k

m
sin2 (

ka

2
)

ω(k) = 2

√
k

m
sin (

ka

2
)

(2.18)

Here k = 2π
λ is the spatial oscillation frequency for wavelength λ. The smallest possible

λ for an identifiable oscillation in this chain is 2a, so the largest value of k is π/a. From this

dispersion, we can extract the group and phase velocity for excitations in this chain – the

phase velocity ω
k describes the speed of a single-k sinusoid through the chain. If we’d like to

instead send a wavepacket, some kind of spatially-localized bump or wiggle, it’s necessary to

synthesize this from multiple Fourier components with different spatial oscillation frequencies

k [125]. The velocity of this wavepacket is described by the group velocity, dω
dk . As each

Fourier component has a different phase velocity, this wavepacket will eventually decohere.

Much work in photonics has been done to design dispersions for photons confined to,

and hopping in, engineered photonic resonators and waveguides. Controlling the velocity of

wavepackets of light and designing the localization/delocalization of states is of broad interest

to efforts seeking to prepare information in quantum states and move those states around.

Ferreira et al. [55] used a photonic crystal to engineer a slow-light waveguide, allowing them

to prepare a photonic qubit in a wavepacket, and sent that wavepacket out to a mirror

and back to a generating transmon with enough time gap to resolve an ensuing entangling

interaction. Martinez, Chiu, et al. [116] use a small lattice of transmon qubits, in their role

as nonlinear photon-holders, to engineer a flat dispersion for photons, so that the excitations

they study stay localized until interactions enter the picture and break that localization.
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2.2 Bloch equations and the tight binding model

Figure 2.7: Tight-binding model realized in cavities. At top, we picture a 1D array of
superconducting cavity resonators with fundamental modes at ωj , with holes milled between
them allowing a photon to hop between them at rate t. At bottom, we schematize these
resonators as quantum harmonic oscillators at sites xj in a tight-binding chain.

We can ‘make a material’ out of coupled quantum oscillators – if we imagine each atomic

nucleus in a material as supplying a potential well to a tunneling electron, we can cartoon-

ishly describe the motion of that electron as hopping between a discrete array of harmonic

oscillator lattice sites [190] (see Figure 2.7). This combination of the ingredients of local-

ity and hopping applies also to our cavity array, in which a photon is held in a harmonic

potential, but some overlap between field landscapes of neighboring cavities through small

holes presents some rate of that photon hopping between cavities. Following Tong [190], the

Hamiltonian for a photon seated somewhere on an array of uncoupled quantum harmonic

oscillators with transition energy E0 = ℏω0 and |n⟩ representing the photon’s presence on
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the nth oscillator is:

H0

ℏ
= ω0

∑
n

|n⟩⟨n| (2.19)

Allowing the photon to hop between nearest-neighbor sites in the chain at some rate t

produces the Hamiltonian:

H0

ℏ
= ω0

∑
n

|n⟩⟨n| − t
∑
n

(|n⟩⟨n+ 1|+ |n+ 1⟩⟨n|) (2.20)

If we use the language of second quantization and identify the nth site’s occupation

number operator |n⟩⟨n| as â†nân, where â†n is the creation operator for a photon on site n

and move to a two-dimensional lattice, we can write out the two-dimensional tight-binding

model as:

H

ℏ
=
∑
i,j

ωi,j â
†
i,j âi,j − t

∑
i,j

(
â
†
i,j+1âi,j + âi,j â

†
i+1,j + h.c.

)
(2.21)

The first term describes the holding of photons at site (i, j) – although this expression

admits multiple photons, we consider just the one excitation and think of each oscillator

as a two-level system – and the second term inscribes hopping of a particle vertically and

horizontally between adjacent sites with a rate t.

Since we are working not in a continuum but in a lattice of photon holders – which we

give spacing a in both dimensions of a square lattice – when we produce solutions to the

Schrodinger equation for this Hamiltonian, we can place some expectation on the resulting

states that has to do with the lattice periodicity.

Following an early paper by Wannier on ‘dynamics of band electrons’ [205], we can use

the lattice vector r⃗ = max̂ + naŷ, which encodes the lattice periodicity by connecting sites

that ‘look the same’ upon translation in the lattice along that vector, to describe position

indexed by (m,n) on this square lattice with spacing a, since all the sites ‘look the same’ !
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We can then define a variety of lattice translation operators

T̂ (k⃗) = eik⃗·r⃗ (2.22)

using crystal momentum p⃗ = ℏk⃗ for a lattice-tunneling particle. By definition, these

translation operators commute with the Hamiltonian. Wannier defines Fourier expansions of

Bloch wavefunctions for lattice position x⃗ and lattice momentum k⃗, which are eigenfunctions

both of this tight-binding Hamiltonian on a lattice and of the translation operators:

Ψq(x⃗; k⃗) =
∑
r⃗

eik⃗·r⃗ψq(x⃗− r⃗) (2.23)

In the above expression, q indexes the band of energies, useful when more broadly de-

scribing materials – in this particular tight-binding model, we’ll restrict ourselves to low

momentum and neglect q. ψ(x⃗− r⃗) is the Wannier function, describing the wavefunctions of

states on the localized oscillators. As the lattice spacing is a, the largest ∥k⃗∥ can be is π
a . This

condition defines the first Brillouin zone for the tunneling particle. If ∥k⃗∥ = ∥k⃗∥ + 2π
a , the

exponential eik⃗·r⃗ will look the same, but the ultimate particle energy E(k⃗) will be different

– this is a higher-energy band indexed by different q, and we neglect it here.

Inserting the Bloch equations into the time-independent Schrodinger equation ĤΨ = EΨ,

we can extract a dispersion E(k⃗).

ĤΨ((max̂, naŷ); k⃗) = EΨ((max̂, naŷ); k⃗)

ω0 − t
(
eik⃗·ax̂ + eik⃗·(−ax̂) + eik⃗·aŷ + eik⃗·(−aŷ)

)
= E(k⃗)

ω0 − t
(
2 cos kxa+ 2 cos kya

)
= E(k⃗)

(2.24)

We’ll deploy this dispersion in the following chapter when we consider modifying the

tight-binding model by applying a magnetic field!
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2.3 Circuit quantum electrodynamics

2.3.1 The transmon Hamiltonian

Superconducting transmon qubits are microwave resonators which incorporate Josephson

junctions that act as nonlinear inductors [88]. When these circuits are cooled below the su-

perconducting transition, it is possible to leverage the existence of the global superconducting

quantum-mechanical state across the resonator to describe this large circuit as something

quantum, a quantum oscillator with some added nonlinearity that makes it anharmonic. The

canon of theses describing the physics of transmon qubits, and circuit quantization [132], is

already extensive and I will evade recapitulating much of the introductory material already

laid out in theses by many others [174, 163, 199, 21]. I encourage the reader to search for a

resource which is most accessible to them, as the options are numerous.

We introduce the Hamiltonian of the transmon, written in terms of charge n̂ on the

superconducting island in the circuit, and phase ϕ̂. The Josephson energy EJ and charging

energy EC shape the circuit properties and must take on certain values for the circuit to

work in the transmon regime [174, 21].

Ĥ = 4EC(n̂− ng)2 − EJ cos (ϕ̂) (2.25)

Here ϕ̂ is the phase across the Josephson junction, one of the two quantized conjugate

variables (charge, phase) that play the roles of position and momentum for this quantum

oscillator. n− ng is a relative charge, with n̂ the other conjugate variable. If we set ng = 0,

choosing a gauge, and expand the cosine, we can write this as:

Ĥ = 4EC n̂
2 − EJ

(
1− ϕ̂2

2!
+
ϕ̂4

4!
+ ...

)
(2.26)

Following a similar presentation in Chris Wang’s thesis [199], we recast the conjugate vari-
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ables n̂ and ϕ̂ using the second-quantization language of creation and annihilation operators

for excitations in a resonator:

n̂ = i

(
EJ

8EC

)1
4 âq − â†q√

2
; ϕ̂ = i

(
8EC

EJ

)1
4 âq + â

†
q√

2
(2.27)

We can eliminate −EJ , a total derivative offset, and use these operators to rewrite the

above transmon Hamiltonian as a quantum harmonic oscillator with a perturbation from

the nonlinear inductance that the Josephson junction supplies [163]. A great number of the

multiplicative terms here are scooped into lowest qubit transition frequency ωq.

Ĥ = ℏωqâ†qâq + Ĥnonlinear; Ĥnonlinear = −EJ

(
cos ϕ̂

)
− EJ

2
ϕ̂2 (2.28)

So by expanding the cosine up in Equation 2.26, we were ordering the nonlinear con-

tributions to the transmon Hamiltonian by their perturbative strength. Keeping terms

up to fourth order and removing ones that don’t conserve energy or are aggressively off-

resonant (‘counterrotating’, in this frame), we retrieve the lowest-order nonlinear effect in

the transmon Hamiltonian, the Kerr nonlinearity which supplies the transmon anharmonicity

α ≈ −EC :

Ĥ ≈ ℏωqâ†qâq − EC â
†
qâ
†
qâqâq (2.29)

Sticking with the un-expanded Hamiltonian for now, we can introduce a resonator coupled

to the transmon qubit via a dipole interaction, as pictured in one of the halves of Figure 2.8.

We’ve done a lot of work above to explore this physics of coupled oscillators – here the

resonator to which we couple the transmon can be treated as a quantum harmonic oscillator,

resulting in the Hamiltonian [21]:
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Figure 2.8: Coupling of transmon qubit to a pair of resonators. In this thesis,
we couple each transmon qubit both to a readout resonator with frequency ωr/2π ∼ 10.8
GHz and to some eigenmode k of the chiral lattice with frequency ωk/2π ∼ 8.9 GHz. The
transmon (in blue at top, frequency ωq/2π ∼ 7.8 GHz) is dipole-coupled to the electric field
landscape in each cavity via a capacitive pad. At bottom, we draw schematic harmonic
potentials for each cavity mode and the central anharmonic potential of the transmon. We
couple the transmon to the readout resonator at rate gr and to the lattice mode k at rate
gk.
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H = ℏωqâ†qâq − EJ

(
cos ϕ̂

)
− EJ

2
ϕ̂2 + ℏωr(a†rar +

1

2
) + βn̂(a

†
r + ar) (2.30)

Here the last term expresses the dipole coupling between the resonator and transmon,

proportional to the voltage of the resonator (a†r + ar) and the transmon charge n̂. Coupling

these resonators will create some dressed eigenstates of the hybrid system, and accordingly,

ϕ̂ across the Josephson junction can be recast in terms of contribution from the coupled-in

resonator [199, 132, 99], providing a mechanism by which a transmon ‘shares’ its nonlinearity

through hybridizing with strongly-coupled photons.

If we move to approximating the transmon as a system of its two lowest levels (describable

by a Pauli spin operator), we can present the above Equation 2.30 in the classic form of the

Jaynes-Cummings Hamiltonian for coupled two-level quantum bit and resonator:

ĤJC

ℏ
= ωq

σ̂z
2

+ ωr(â
†
râr +

1

2
) + gσ̂x(âr + â

†
r)

≈ ωq
σ̂z
2

+ ωr(â
†
râr +

1

2
) + g(σ̂+âr + σ̂−â†r)

(2.31)

The rate of coupling g between qubit and resonator is again scaling a product of their

operators. To reach the final approximation in Equation 2.31 above, we perform the rotating

wave approximation, arguing that only operations that stay near zero relative energy in the

frame of the qubit transition are likely to occur, as the rest appear to be oscillating ‘fast’

enough to be neglected from the Hamiltonian-described dynamics.

2.3.2 Jaynes-Cummings Hamiltonian in the dispersive limit

A wide range of resources in this field discuss how to make the dispersive approximation

for the above Hamiltonian, in which the qubit-resonator ∆ = ωq − ωr or (for lattice modes

k detailed later) ∆ = ωq − ωk is much larger than gr or gk. In general one perturbatively
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expands and retains only the lowest-order elements of the nonlinear term in the Hamiltonian,

in the style of Equation 2.26. We can write the Jaynes-Cummings Hamiltonian for qubit

and resonator in the dispersive limit [199] as:

ĤJC

ℏ
=

(
ωq
2

+
g2

2∆

)
σ̂z + ωrâ

†
râr +

ωr
2

+
g2

∆
σ̂z â
†
râr (2.32)

This expression accounts for the alterations to system eigenenergies due to qubit-resonator

coupling g. The ωr
2 is just some total time derivative stemming from vacuum fluctuations

in the resonator that we can neglect when considering dynamics. The qubit’s resonant

frequency, represented by the first multiplier on σ̂z, is shifted by an amount

g2

2∆
, the Lamb shift. (2.33)

The Lamb shift holds a stable value and results purely from off-resonant coupling to

a resonator hosting vacuum quantum fluctuations. The qubit and the resonator also now

‘see’ each other in the form of a dispersive shift, seen in the last term hosting operators for

both oscillators – when a photon populates the resonator (note that the resonator photonic

number operator is â†râr), the qubit’s frequency will shift over by an amount

2χ =
g2

∆
, the dispersive shift. (2.34)

For a resonator prepared with some average photon number (e.g. if we inject a coherent

state, supplying a Poisson-distribution-weighted set of cavity Fock states), we expect the

qubit line to shift by 2χn̄, where n̄ is the photonic population of the coupled resonator.

This photon-number-dependent AC Stark shift will become relevant later when we explore

putting more and more photons into relevant resonators in our system. As a note to the

reader, it is important to discern whether an author is quoting χ or 2χ as the dispersive shift,

as this can vary across the field and affect calculations. It is also important to note that
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this expression for the dispersive shift must be modified to accommodate a further transmon

level if one ceases to approximate the transmon as a two-level system [21, 137].

Figure 2.9: Regimes of validity of the dis-
persive limit. We plot eigenvalues for the
Hamiltonian listed at top left – orange and blue
are the originals, and red and green (labeled at
right) are expansions of the eigenvalues in small
g
∆ with the lowest-order term g2

∆ removed. Set-
ting g = 1, we see that as long as g

∆ < 1
4 , the

higher-order terms in expansions of the eigen-
values don’t do much to change these values
from their full values, so staying in the disper-
sive limit and considering expansions in g

∆ to
only lowest order is warranted.

It is quite straightforward to write down

the dispersive-limit Hamiltonian for a qubit

coupled to multiple cavity resonators, ex-

pressing the situation dealt with in this the-

sis. Here we couple in the corner site of

our topological photonic metamaterial to

the transmon, and decompose a localized

excitation in that site in terms of the 25

eigenmodes, indexed by k, available in the

25-coupled-resonator lattice. gk is the cou-

pling between the transmon and a partic-

ular lattice mode, smaller than the overall

gl between transmon and lattice corner site

and scaled proportionally to the participa-

tion ratio of each lattice mode at that site.

ĤJC

ℏ
=

(
ωq
2

+
g2r
2∆r

+
g2l
2∆l

)
+ ωrâ

†
râr + ωlâ

†
l âl +

g2r
∆
σ̂z â
†
râr +

g2l
∆l
σ̂z â
†
l âl

ĤJC

ℏ
=

(
ωq
2

+
g2r
2∆r

+
∑
k

g2k
2∆k

)
σ̂z + ωrâ

†
râr +

∑
k

ωkâ
†
kâk +

g2r
∆
σ̂z â
†
râr +

∑
k

g2k
∆k

σ̂z â
†
kâk

(2.35)

In Figure 2.9, we explore the expansion of the nonlinear term in the dispersive Jaynes-

Cummings Hamiltonian in powers of g
∆ . We trace the eigenenergies of resonators detuned

by ∆ and coupled (via off-diagonal terms in the Hamiltonian) at rate g, which should be
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modified by this coupling as detailed in earlier sections. We conclude that as long as g
∆ ≤

1
4 or

so, the departure between the full-expansion system eigenvalues and the simple lowest-order

system eigenvalues is minimal. This qualitative and vague judgement sets an approximate

threshold for the validity of the dispersive approximation.

The canonical signal of strong interaction between dispersively (g ≪ ∆) coupled nonlinear

and linear resonators like the above is number-splitting of resonances (see results detailed

in Chapter 5 and Schuster’s original paper [175]), in which the resonant frequency of some

transition moves by more than its linewidth in response to photonic population in a coupled

resonator. We leverage the effect of this dispersive shift to read out qubit states, watching for

a dip in reflected power when a qubit-coupled readout resonator sees its resonant frequency

shifted due to qubit population.

2.4 Four-wave-mixing path to resonance

Figure 2.10: Schematic of driven
four-wave mixing process used
to prepare single lattice pho-
tons. The transmon nonlinearity
(black cross at center) provides access
to four-wave mixing. This depiction
style is inspired by other work [10]
which deploys this process.

We’ve just dealt with dispersive interaction due to

nonlinearity shared between resonators and trans-

mon qubits. It’s also possible to leverage the g be-

tween these oscillators to produce coherent interac-

tions, supplying a drive to close the energy gap and

access resonant processes otherwise significantly de-

tuned. By supplying a multiphoton drive, we can

access effective couplings g̃ that appear, counterro-

tating, in the generally-neglected higher-order terms

of the expanded Jaynes-Cummings Hamiltonian for

coupled qubit and resonator, and use these couplings

to permit movement of photons around the system.

Following the supplement of [99], we can write the
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Hamiltonian for a transmon qubit with bare ωq coupled to two cavity modes, the readout

mode ωr and the lattice mode ωk, with drive ϵDe−iωDt applied to the readout mode, as

follows:

Ĥ

h
= ω̄qâ

†
qâq + ω̄râ

†
râr + ω̄kâ

†
kâk −

EJ

ℏ

(
cos (ϕ) +

ϕ2

2

)
+ 2Re

(
ϵDe
−iωDt

)(
âr + â

†
r

)
,

ϕ = ϕq

(
âq + â

†
q

)
+ ϕr

(
âr + â

†
r

)
+ ϕk

(
âk + â

†
k

)
(2.36)

Bars are placed on the resonator frequencies to indicate that these are the bare versions

unmodified by the nonlinear Josephson portion of the Hamiltonian – un-barred frequencies

are what we’ll measure if we probe frequencies of the hybridized modes. We decompose ϕ, the

phase across the Josephson junctions, as a hybrid combination of its contributions from the

qubit and both of the coupled-in oscillator modes. The last term in the Hamiltonian, built

from operators (âr + â
†
r), expresses the application of an oscillatory drive to the resonator,

much as we earlier applied drives F0 cos (ωDt) to an oscillator in a coupled-classical-oscillator

system.

We can perform a unitary transformation to rotate out some of the system frequencies

ωq and ωD. We use the operator U :

U = eiω̄qtâ
†
qâqeiωDtâ

†
râr (2.37)

and perform the transformation according to:

ˆ̃H

ℏ
= U

Ĥ

ℏ
U† − iUU̇† (2.38)

We can additionally perform a displacement transformation in order to translate the sys-

tem frame to follow the displacement of the cavity state introduced by the drive ϵDe−iωDt,
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which should place the resonator r into a coherent state of light. The operator for this

transformation incorporates a quantity ξD which represents the effective scale of the dis-

placement drive in the cavity and, when run through the time-derivative portion of the

unitary transformation, can be described with a differential equation:

U = e−ξDâ†r+ξ∗Dâr ;
dξD
dt

= −iω̄rξD − i2Re
(
ϵDe
−iωDt

)
− κr

2
ξD (2.39)

For readout cavity with κr, after some ringup time 1
κr

, we have the ‘field trajectory’ [199]:

ξD = e−iωDt −iϵD
κr
2 + i(ω̄r − ωD)

≈ e−iωDt −iϵD
κr
2 + i(ωr − ωD)

(2.40)

The effect of executing the displacement transformation on the whole Hamiltonian is to

pull the classical drive term ξD inside the cosine which stems from the Josephson nonlin-

earity, moving the applied drive from something that acts on that resonator in particular to

something that participates in the transmon operator and thus scales nonlinear elements of

the hybridized Hamiltonian, allowing us to access drive-sensitive multiphoton processes.

After executing these transformations on the system Hamiltonian, we are left with:

ˆ̃H

ℏ
= (ω̄r − ωD)ˆ̃a

†
r ˆ̃ar + ω̄kâ

†
kâk +

EJ

ℏ

(
cos (ϕ̃) +

ϕ̃2

2

)
,

ϕ̃ = ϕq

(
ˆ̃aq + ˆ̃a

†
q

)
+ ϕr

(
ˆ̃ar + ˆ̃a

†
r

)
+ ϕk

(
âk + â

†
k

)
+ ϕr

(
ξD + ξ∗D

)
,

ˆ̃aq = e−iω̄qtâq, ˆ̃ar = e−iωDtâr

(2.41)

If we expand cos (ϕ̃) to fourth order, the EJ term in the above Hamiltonian becomes

EJ

ℏ

(
1− ϕ̃2

2
+
ϕ̃2

2
+
ϕ̃4

4!

)
=
EJ

ℏ
ϕ̃4

4!
(2.42)

Plugging in ϕ̃4, we generate an enormous number of cross-multiplied terms due to the
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contributions each mode and the drive make to ϕ̃. We keep only those that conserve energy

– other terms, while they exist in the Hamiltonian, are energetically far counterrotating and

can be neglected. In a situation without the applied classical drive ξD, that would mean that

we only kept terms with an equal number of â† and â. As we now incorporate the classical

drive, we can use it to close energetic gaps, and keep terms with odd numbers of creation

and annihilation operators. In particular, we keep a term that looks like:

EJ

ℏ
12

24
ϕqϕqϕkϕk∥ξD∥ˆ̃a

†
q ˆ̃a
†
qâk =

χqk
2
∥ξD∥ˆ̃a

†
q ˆ̃a
†
qâk = g̃∥ξD∥ˆ̃a

†
q ˆ̃a
†
qâk (2.43)

which resonantly converts a pair of photons in the transmon to one in the lattice mode

k and other in the classical drive applied to the readout resonator.

Figure 2.11: Dressed-state picture of
four-wave swap process. We can
understand this particular multiphoton
process in Equation 2.43 as bringing a
‘dressed’ excited state of the transmon
(teal level) onto resonance with modes
in the spectrum of our topological lat-
tice (drawn at right) via a classical drive
(drawn in green).

Here χqk is the cross-Kerr interaction be-

tween qubit and readout resonator that stems

from the Josephson nonlinearity. We define an

effective coupling rate g̃ =
χqk
2 ∥ξD∥ describing

the coupling the coupling strength between two-

photons-in-qubit and one-photon-in-mode-k.

This same operation, performing a displace-

ment transformation to incorporate the role of

a drive inside the transmon nonlinearity in the

Hamiltonian, also provides other more common

drive-dependent shifts like the Stark shift: keep-

ing only energy-conserving terms in the expan-

sion of the cosine, we also hold onto a term which

(possibly missing a scalar multiplier) represents

the AC Stark shift on the qubit due to applica-

tion of the classical drive to the readout resonator, quadratic with amplitude ξD:
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EJ

ℏ
6

24
ϕqϕqϕrϕr∥ξD∥2ˆ̃a

†
q ˆ̃aq =

1

4
χqr∥ξD∥2ˆ̃a

†
q ˆ̃aq (2.44)

We refer to the process that elicits these now-resonant terms as a ‘four-wave process’ (see

Figure 2.10), as it is an example of ‘four-wave mixing’, an umbrella term for processes in the

higher-order ϕ4 portion of the hybrid qubit-cavity nonlinearity, which involve four photons

through invocation of either classical drive amplitude ξD or resonator ladder operators.

Without the transmon nonlinearity, this mixing would not be possible.

2.4.1 Effective coupling under drive

Imagine (see Figure 2.8) that we have a transmon qubit, with the transition frequency

between its lowest two states |g⟩ ↔ |e⟩ being ωq/2π and anharmonicity of level spacings

−α/2π, coupled to a readout resonator which has frequency ωr/2π and some other cavity

with harmonic |0⟩ ↔ |1⟩ transition ωk/2π (for us, this is relevantly an eigenmode k of the

chiral lattice to which the transmon is coupled). We can employ the scheme detailed above,

applying a strong multiphoton drive to access the transition found in Equation 2.43 and

converting two photons prepared in the qubit to one in the lattice and another in the drive.

The effective displacement amplitude ξD, as shown in Equation 2.43, sets the ‘importance’

of this process in the Hamiltonian. In the experiments in this thesis, we apply the strong

drive through the readout resonator, accessing a four-wave process between qubit and lattice

mode k, as executed in the derivations above. It is also reasonable to write this drive as

acting directly on qubit operators to start out.

To bring the relevant process, which is normally counterrotating and easily neglected,

onto resonance in our rotating frame, we need to pick a drive frequency ωD/2π which ‘closes

the loop’ between the detuned states and makes the relevant term pop out as resonant in the

step between Equations 2.42 and 2.43. To close the energy loop for this process, we apply the

drive at the energy difference between that of two photons in the qubit (|g⟩ ↔ |e⟩+|e⟩ ↔ |f⟩)
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and that of one photon in the lattice (|0⟩ ↔ |1⟩), using angular frequency

ωD = ωef + ωge − ωk = 2ωq − α− ωk. (2.45)

Figure 2.12: Level diagram of the
|f, 0⟩ ↔ |g, 1⟩ swap process Adapted
from Pechal et al. [145]. Vertical state
axis represents the state of the qubit, and
horizontal state axis represents that of the
coupled cavity mode k.

This operation takes the qubit-cavity state

from |f, 0⟩ to |g, 1⟩ and is referred to through-

out this thesis as an |f, 0⟩ ↔ |g, 1⟩ swap pro-

cess, as the drive-dependent coupling g̃ gener-

ated between these two system states permits

resonant swapping of excitations, in a quantum-

mechanical analog of Figure 2.3. We can cal-

culate an approximate effective g̃, the coupling

rate between |f, 0⟩ and |g, 1⟩. We can write

the applied classical drive, which Pechal et

al. [145] apply directly to the qubit as Ω(t) =

Ω0 cos (ωDt+ ϕ(t)). Representing the Hamilto-

nian of a qubit with anharmonicity −α and lad-

der operator â†q, and a single resonator â†r, in the

rotating frame of this drive, we write, for bare

qubit-resonator coupling g [145],

H(t) = (ωq−ωd)â
†
qâq−

1

2
αâ
†
qâ
†
qâqâq+(ωr−ωD)â

†
râr+g(ârâ

†
q+ â

†
râq)+

1

2
(Ω(t)∗âq+Ω(t)â

†
q)

(2.46)

Note that because we’re representing the qubit in terms of harmonic oscillator ladder

operators, the second term here encodes the Kerr nonlinearity which realizes the transmon

anharmonicity. The level structure of this setup is diagrammed in Figure 2.12; the two
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most dominant perturbative paths the coupling and drive set up between |f, 0⟩ and |g, 1⟩

are illustrated in purple. We can treat this as a Raman process, effectively adiabatically

eliminate the middle states [210], and extract an effective |f, 0⟩ ↔ |g, 1⟩ transition rate g̃ by

combining paths. Below, ∆ = ωk − ωq, and we neglect a factor of two used later.

g̃ ≈ gΩ
√
2

(−∆)
+

gΩ√
2(∆− α)

=
gΩ√
2

(
α−∆

∆(∆− α)
+

∆

∆(∆− α)

)
=
gΩ√
2

α

∆(∆− α)

g̃(t) ≈ gΩ0e
iϕ(t)
√
2

α

∆(∆− α)

(2.47)

We largely neglect the phase ϕ of the process drive – but it will become relevant again

right at the end of this thesis! To execute the swap process (Figure 2.12), we prepare the

qubit in its |f⟩ state with a set of π pulses prior to pulsing the process drive; see, e.g.,

references [128, 169] for introductions to qubit control. It is important to note that the

application of a strong microwave drive will induce a substantial Stark shift on the |g⟩ ↔ |e⟩

and |e⟩ ↔ |f⟩ transitions of the qubit involved in this process. Zeytinoğlu et al. [210] derive

a subtle way to calculate the scale of this shift, which is quadratic in drive amplitude at

low drive powers but diverges at higher powers (see this experimentally demonstrated in

Figure 6.17).

This tool of using a strong classical drive to gain access to higher-order nonlinear processes

that are normally far counterrotating is really powerful; despite the fact that the transmon

qubits used in this thesis have fixed transition frequencies ωq, we are able to dress the excited

states of this qubit onto and off of resonance with relevant cavity modes by using a strong

drive, and the presence of nonlinearity in the Hamiltonian, to close the energetic gap. This

opens up a world of exploration where one can turn on and off qubit-resonator couplings to

move energy between the qubits, our single-photon preparers and detectors, and a landscape

of largely linear cavity modes of the topological metamaterial we will discuss next.
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CHAPTER 3

A TOPOLOGICAL INSULATOR FOR PHOTONS

This thesis chapter, and the chapter that follows, are in part based on the first paper of

this PhD [139], with additional details added on the setup, simulation, and measurement.

In that paper, we demonstrated a scalable architecture for probing interacting topological

physics with light. Building on a prior experiment realizing a chiral photonic lattice at room

temperature [138], we demonstrated a similar lattice at cryogenic temperatures. This 5× 5

array of superconducting resonators acts as a quarter flux (α = 1
4) Hofstadter lattice [73],

exhibiting topological bulk and edge modes for the photons that reside within it.

This chapter will address the design and modeling of a synthetic gauge field for microwave

photons. The following chapter will explore its implemetation in the platform used in this

thesis.

3.1 Introduction: Making materials out of light

Materials made of light are a frontier in quantum many-body physics [31]; relying upon

non-linear emitters to generate strong photon-photon interactions and ultra-low-loss meta-

materials to manipulate the properties of the individual photons, this field explores the

interface of condensed matter physics and quantum optics, while motivating production of

devices for manipulating light [180, 16]. Recent progress in imbuing photons with topological

properties [140], in particular those that lead the photons to undergo circular time-reversal-

symmetry-breaking orbits, promises opportunities to explore photonic analogs of such solid-

state phenomena as the (fractional) quantum Hall effect [196, 185], Abrikosov lattices [1],

and topological insulators [72].

In electronic materials, the circular electron orbits result from magnetic or spin-orbit

couplings [72]. Unlike electrons, photons are charge-neutral objects and so do not directly

42



couple to magnetic fields. In order to cause photons to behave like they ‘feel’ a magnetic

field, much work has been done in photonic platforms to create a ‘synthetic’ magnetic field

for photons by modifying properties of the Hamiltonian which a tunneling photon obeys.

Significant progress in this arena has been made in both optical- and microwave-based

topological photonics: in silicon photonics [164, 66] and optics [173, 45], synthetic gauge

fields have been achieved while maintaining time-reversal symmetry by encoding a pseudo-

spin in either the polarization or spatial mode. In RF and microwave meta-materials, both

time-reversal-symmetric [78, 105] and time-reversal-symmetry-broken models have been ex-

plored, with the T-breaking induced either by coupling the light to ferrimagnets in magnetic

fields [203, 138], by Floquet engineering [170], by pumping to generate a synthetic lattice

dimension with time-reversal symmetry breaking [75], or by building geometries for twisted

qubit-qubit coupling [116].

We want to end up with photons that have effective mass, effective charge, and are

confined to two dimensions, the necessary ingredients for quantum Hall physics [196]. To

achieve this, in our platform, microwave photons are trapped in a 2D array of microwave

resonators, and thereby confined to two transverse dimensions and imbued with an effective

mass due to the finite tunneling rate between the resonators. Photons are afforded an

effective charge by the assignment of a synthetic gauge field (see Section 3.2) which they

‘feel’ as though they were electrons tunneling in a two-dimensional material under an applied

flux; we execute this synthetic gauge field by coupling the photonic landscape of certain

cavities to ferrimagnets in magnetic fields, modifying the phase landscape of those cavities

and ultimately realizing a Harper-Hofstadter model for microwave light.
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3.2 Harper-Hofstadter model realized in a microwave cavity array

3.2.1 The Harper-Hofstadter model

The behavior of a photon traveling in our cavity lattice platform can be described by the

Harper-Hofstadter model: this model is a lattice-physics description of the behavior of a

single charged particle propagating in two dimensions under the influence of an out-of-plane

magnetic field [71, 73]. In the most general version of this model, a tight-binding description

of a particle hopping on a lattice sees some of these hopping rates modified to be complex,

a change which encodes the field:

H

ℏ
=
∑
m,n

ωm,nâ
†
m,nâm,n − t

∑
m,n

(
eiϕ

y
m,n â

†
m,n+1âm,n + eiϕ

x
m,n âm,nâ

†
m+1,n + h.c.

)
(3.1)

Figure 3.1: Onsite potentials and hop-
ping rates in the most general Harper-
Hofstadter model. Cartoon quantum har-
monic oscillators represent sites (m,n) in a
two-dimensional tight-binding lattice for pho-
tons. The hopping rate t is modified by a dif-
ferent complex phase for each direction.

As illustrated in Figure 3.1, t is the rate

of particle hopping between sites and the

magnetic flux orthogonal to the tunneling

plane is encoded by the value of the com-

plex phase on each hopping term. Assuming

the phases are nontrivial, their introduction

breaks time-reversal symmetry in the for-

merly time-reversal-symmetric tight-binding

system. If the magnetic field is uniform

across the area of the two-dimensional lat-

tice, phases ϕxm,n and ϕ
y
m,n will retain their

same values for any specific lattice coordi-

nate (m,n).

The Harper-Hofstadter Hamiltonian can
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also be represented (see Figure 3.2 and equation 3.2) in a gauge such that the flux is encoded

in complex hopping multipliers along only one dimension.

H

ℏ
=
∑
m,n

ωm,nâ
†
m,nâm,n − t

∑
m,n

(
â
†
m,nâm+1,n + h.c.

)
− t
∑
m,n

(
ei2παmâ

†
m,nâm,n+1 + h.c.

)
(3.2)

Figure 3.2: Onsite potentials and hop-
ping rates in the Landau gauge Harper-
Hofstadter model. If the field is uniform
across the lattice, y-direction hopping rates
are the same for all m.

What is going on here? Why does stick-

ing some complex phases on tunneling terms

encode a magnetic field? 1

Let’s take a very big step back and think

about a charged, massive particle propagat-

ing in a magnetic field. A particle of mass m

and charge −e traveling with v⃗ will experi-

ence a Lorentz force, mdv⃗
dt = −ev⃗×B⃗, under

field B⃗. For a particle propagating in two di-

mensions (x, y) under a uniform orthogonal-

to-plane magnetic field B⃗ = Bz⃗, the above

equation of motion will render the coupled

equations mẍ = −eBẏ and mÿ = eBẋ.

Solving these equations shows that the particle will travel in a circle (Figure 3.3) at the

cyclotron frequency ωB = eB/m. The thing to note here is that the cyclotron frequency for

a specific particle is fixed purely by the strength of the field and its direction on that circle

set by the sign of the field along z⃗ [189].

1. The following presentation of representing magnetic fields in the Harper-Hofstadter model follows a
mixture of Hofstadter’s original 1976 paper [73] calculating the eigenspectrum of Harper’s equation, Wan-
nier’s 1962 paper describing Bloch electrons tunneling in fields [205], the legendary David Tong’s online
lecture notes on the quantum Hall effect [189], and Monika Aidelsburger’s PhD thesis [6] introducing one of
the two contemporaneous first implementations of the Harper-Hofstadter model in cold atoms.
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3.2.2 Hofstadter’s approach to a Bloch electron in a magnetic field

Figure 3.3: Cartoon of an electron’s
cyclotron orbit in an out-of-plane
magnetic field.

The modification the magnetic field inflicts upon

the dynamics of the particle means that the vector

potential A⃗ which generates Bz⃗ = ∇× A⃗ goes into

the particle’s Lagrangian; that Lagrangian yields a

canonical momentum (the variable conjugate to po-

sition) that also reflects A⃗:

L =
1

2
m ˙⃗x2 − e ˙⃗x · A⃗; p⃗ =

∂L

∂ ˙⃗x
= m ˙⃗x− eA⃗ (3.3)

We can explore the effect of this new canonical momentum for a Bloch electron (see

Section 2.2) moving in a two-dimensional periodic tight-binding potential in the lowest band

of its energy spectrum. We will eventually see that the applied field causes this band to

fragment into several sub-bands in a way that reflects the strength of the field. Let’s start

with the dispersion of the lowest-energy band for a Bloch electron hopping along in a two-

dimensional tight-binding model without any applied field, which Hofstadter defines, for

lattice spacing a and crystal momenta kx and ky, as

W (k⃗) = 2E0
(
cos kxa+ cos kya

)
(3.4)

We insert for the quantum particle’s momentum an expression which incorporates the

vector potential’s modification to the dynamics, thus carrying out the ‘Peierls substitution’:

p⃗ = hk⃗ → p⃗ = mp
˙⃗x− eA⃗ (3.5)

Expressing kx and ky in Equation 3.4 in terms of the modified p⃗ using ℏk⃗ = mp
˙⃗x −
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eA⃗. If we promote W (k⃗) to an operator, we can now use W (k⃗) as an ‘effective single-

band Hamiltonian’ [73, 71]. Preparing to deploy this Hamiltonian in the time-independent

Schrodinger equation, we can write momentum-space Bloch wavefunctions Ψ(x⃗; k⃗) (assumed

to be normalized) on the 2D lattice in terms of sums on excitations localized on specific

lattice sites ψ(x⃗; r⃗). Here r⃗ = mx̂ + nŷ is the lattice vector for site (m,n) based on lattice

primitive vectors x̂ and ŷ (which are just coordinates for a square lattice), r⃗′ is a hypothetical

spatial translation vector, and k⃗ is the reciprocal lattice vector corresponding to r⃗.

Ψ(x⃗; k⃗) =
∑
r⃗

eik⃗·r⃗ψ(x⃗; r⃗);

Ψ(x⃗− r⃗′; k⃗) =
∑
r⃗

eik⃗·r⃗ψ(x⃗− r⃗′; r⃗)
(3.6)

Wannier [205] defines lattice translation operators for a situation without magnetic field

using the lattice vector r⃗:

T̂ (r⃗) = e
ip⃗·r⃗
ℏ ; T̂ (r⃗)f(p⃗, x⃗) = f(p⃗, x⃗+ r⃗)T̂ (r⃗) (3.7)

Keeping this in mind, we follow Wannier to further rewrite the Bloch wavefunction above

(3.6), which is an eigenstate of the lattice translation operator, two ways, the latter with the

index r⃗ relabeled a lattice site over from the first:

Ψ(x⃗− r⃗′; k⃗) =
∑
r⃗

eik⃗·(r⃗−r⃗
′)ψ(x⃗; r⃗)

Ψ(x⃗− r⃗′; k⃗) =
∑
r⃗

eik⃗·r⃗ψ(x⃗; r⃗ + r⃗′)
(3.8)

If we, following Wannier’s somewhat arcane choices, capitalize upon the translatability

of an infinite lattice, we can call both indices r⃗ the same. If we also set the coordinate r⃗ to
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0, recall the effect of translation operators, and then neglect the 0, we get:

∑
r⃗

eik⃗·(r⃗−r⃗
′)ψ(x⃗; r⃗) =

∑
r⃗

eik⃗·r⃗ψ(x⃗; r⃗ + r⃗′)

ψ(x⃗− r⃗′; 0) = ψ(x⃗; 0 + r⃗′)

ψ(x⃗− r⃗′) = ψ(x⃗; r⃗′)

(3.9)

We can redeploy this understanding to re-express the k⃗-space Bloch wavefunction (3.6)

in terms of what Wannier himself terms the ‘Wannier functions’ ψ(x⃗− r⃗) for this particular

band which represent the localized wavefunction on each site:

Ψ(x⃗; k⃗) =
∑
r⃗

eik⃗·r⃗ψ(x⃗− r⃗) (3.10)

We can express the time-independent Schrodinger equation using W (k⃗) and the Bloch

wavefunction in Equation 3.10:

HΨ(x⃗; k⃗) = EΨ(x⃗; k⃗)

W (k⃗)
∑
r⃗

eik⃗·r⃗ψ(x⃗− r⃗) = E
∑
r⃗

eik⃗·r⃗ψ(x⃗− r⃗)

∑
r⃗

eik⃗·r⃗W (k⃗)ψ(x⃗− r⃗) =
∑
r⃗

eik⃗·r⃗Eψ(x⃗− r⃗)

(3.11)

We then deploy the Peierls substitution (Hofstadter simply articulates that “work to

justify this substitution has been done” [73] and we similarly sweep some subtlety under

the rug). With lattice spacing a, and x-position m = ax in r⃗ = mx̂ + nŷ, we retrieve the

resulting expressions:

∑
r⃗

eik⃗·r⃗2E0
(
cos kxa+ cos kya

)
ψ(x⃗− r⃗) =

∑
r⃗

eik⃗·r⃗Eψ(x⃗− r⃗) (3.12)
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∑
r⃗

eik⃗·r⃗2E0

(
cos

(
(
mpẋ′

ℏ
− eA⃗ · x̂′

ℏ
)a

)
+ cos

(
(
mpẏ′

ℏ
− eA⃗ · ŷ′

ℏ
)a

))
ψ(x⃗− r⃗)

=
∑
r⃗

eik⃗·r⃗Eψ(x⃗− r⃗)
(3.13)

We go ahead and choose the Landau gauge in which the vector potential is all along y⃗:

A⃗ = B (0x̂ + xŷ + 0ẑ) where B is the field strength. We also recall that mẋa
ℏ = px

ℏ , the

momentum in the x̂ direction where the vector potential A⃗ has no participation.

∑
r⃗

eik⃗·r⃗2E0

(
cos

(
(
mpẋ′

ℏ
)a

)
+ cos

(
(
mpẏ′

ℏ
− eA⃗ · ŷ′

ℏ
)a

))
ψ(x⃗− r⃗)

=
∑
r⃗

eik⃗·r⃗Eψ(x⃗− r⃗)

E0

∑
r⃗

eik⃗·r⃗
(
e
impẋa

ℏ + e
−impẋa

ℏ + e
impẏa

ℏ e
−ieBxa

ℏ + e
−impẏa

ℏ e
ieBxa

ℏ

)
ψ(x⃗− r⃗)

=
∑
r⃗

eik⃗·r⃗Eψ(x⃗− r⃗)

(3.14)

Implementing the sum on r⃗ in Equation 3.14, we retrieve:

E0

(
ψ(x+ a, y; k⃗) + ψ(x− a, y; k⃗) + e

−ieBax
ℏ ψ(x, y + a; k⃗) + e

+ieBax
ℏ ψ(x, y − a; k⃗)

)
= Eψ(x⃗)

(3.15)

Looking at the expression for translation operators (Equation 3.7) alongside Equation 3.15,

we can see that introducing the vector potential A⃗ to the tunneling particle’s p⃗ resulted in

the application of translation operators scaled to the field strength within the above single-

band Hamiltonian. This makes sense given that we were expecting the uniform applied field

to alter the dynamics in a broadly regular way that scales with the field strength.
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From this application of the time-independent Schrodinger equation to a gauge-field-

modified single-band tight-binding dispersion for a particle, we have an equation which says

something about the spectrum of a particle hopping under the applied field. To pursue this

further, we continue to follow Hofstadter [73]:

We collapse ψ(x, y; k) to ψ(x, y) and write it in terms of indices on lattice sites: ψ(x, y) =

ψ(ma, na), as r⃗ = mx̂ + nŷ indexes the discrete x and y coordinates in the lattice using

(m,n). We assume that the wavefunctions ψ(x, y) look like Bloch wavefunctions in the y

direction, as application of a vector potential introduced no y-translation operators / made

no modifications to the tight-binding nature of the y-direction Hamiltonian (Equation 3.15)

in this gauge [73]. Therefore, the y portion of ψ(ma, na) should be a periodic in a (already

accomplished here!) and look like a plane wave. If g(m) describes the wavefunction’s x = ma

dependence, we arrive at:

ψ(ma, na) = eiνng(m). (3.16)

Using this, we can decouple the unmodified y translation portion of the dynamics and

write an effective one-dimensional version of Equation 3.15 that represents hopping along

x = ma. It is important to note that this equation still makes a statement about the

eigenenergies for a particle experiencing two-dimensional dynamics; it’s simply that our

choice of gauge has placed the impact of the applied field along one direction; much like we

selected a single band to get W (k⃗) earlier in this chapter, here we select some specific value

of ν and are left with an equation in the single index m which still contains the information

about what the gauge field does to the particle eigenenergies but is friendlier to work with.
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eiν(n)g(m+ 1) + eiν(n)g(m− 1) + e
−ieBax

ℏ eiν(n+1)g(m) + e
+ieBax

ℏ eiν(n−1)g(m)

=
E

E0
eiν(n)g(m)

g(m+ 1) + g(m− 1) + e
−ia2Bm

ℏ/e +iν
g(m) + e

+ia2Bm
ℏ/e −iν

g(m) =
E

E0
g(m)

(3.17)

At this point, it’s worthwhile to define α: this is the dimensionless ratio of the flux

through one plaquette (ring of four lattice sites in a two-dimensional tight-binding lattice)

to one magnetic flux quantum. It is broadly used as the descriptor of the strength the flux

through the plane of a Harper-Hofstadter lattice. Here, if we sweep a factor of c a bit under

the rug we get:

α =
1

2π

a2B

ℏ/e
(3.18)

Deploying this in Equation 3.17, we get ‘Harper’s equation’ in one dimension:

g(m+ 1) + g(m− 1) + 2 cos (2πmα− ν)g(m) =
E

E0
g(m) (3.19)

We can find the spectrum of eigenvalues E/E0 for this differential equation; since we’re

now working with a lattice equation in the single dimension indexed by m, we can apply some

periodicity conditions [73] and conclude that to achieve bounded wavefunctions g(m), it is

necessary for α to be rational, α = p/q where p and q are both some integers. q is defined to

index how many unit translations in m under application of this hopping differential equation

are needed to bring g(m) back to itself. This makes sense – a stronger field, described by

a larger α, would generate a faster cyclotron orbit for an imaginary free two-dimensional

electron. This intuition maps onto an expectation that fewer translations are needed to

accomplish a period in the wavefunction along the remaining lattice dimension.
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Figure 3.4: Hofstadter’s butterfly, a fractal
spectrum for a charged particle hopping on
a lattice under applied gauge field. Energy
eigenvalues are plotted for rational α and stretch
from +4 to −4 times the hopping rate, which here
is 1. Quarter-flux (α = 1/4) is highlighted with a
pink dashed line.

We can plot eigenvalues E/E0,

which range betwen 4 and -4 times the

(unit) hopping, against rational values

of α to extract the classic Hofstadter’s

butterfly. In this thesis we work with

α = 1/4, or ‘quarter flux’. We call

this out with a pink dashed line in Fig-

ure 3.4, plotted by Hofstadter for ratio-

nal α. At a quarter flux, the spectrum

fragments into four bands, and the two

center bands touch at a specific point.

This leaves two large bulk band gaps

to the right and left of band center –

these are where edge modes in our fi-

nite, edge-possessing Harper-Hofstadter

will live.

To summarize, we took the dispersion of a single tight-binding electron tunneling in

a two-dimensional lattice, and made the Peierls substitution to include a uniform vector

potential A⃗ = xBŷ in the particle’s canonical momentum. This resulted in complex phases

e
±i
(
−a2Bm

ℏ/e +ν
)

appearing on terms in the one-dimensional Harper’s equation that describes

lattice wavefunctions under translation.

Other presentations of the Peierls substitution, including Monika Aidelsburger’s [6] which

we follow closely in the next section, take this complex phase as axiomatic, and explore its

meaning and implementation.
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3.2.3 Aidelsburger’s implementation of the Peierls phase

In this section we’ll describe a slightly different way of arriving at the same Harper equation,

which provides the energy spectrum for a tight-binding particle propagating in 2D under an

applied magnetic field.

Using the second-quantized creation and annihilation operators for particles on neighbor-

ing sites, Aideslburger contrasts the hopping part of a zero-field tight-binding Hamiltonian

in two dimensions,

H

ℏ
= −t

∑
m,n

(
â
†
m+1,nâm,n + â

†
m,n+1âm,n + h.c.

)
, (3.20)

with a similar Hamiltonan under an applied magnetic field, which now incorporates

generic Peierls phases ϕim,n = −eAi
m,n/ℏ on each hopping leg between sites:

H

ℏ
= −t

∑
m,n

(
eiϕ

x
m,n â

†
m+1,nâm,n + eiϕ

y
m,n â

†
m,n+1âm,n + h.c.

)
, (3.21)

Here, rather than appearing as an addition of the vector potential to the particle’s mo-

mentum p⃗, the Peierls substitution is asserted directly as a complex phase multiplier on

the translation operators between lattice sites. This is based on the argument, detailed be-

low, that the applied gauge field changes the lattice translations under which the particle’s

wavefunction can be expected to be periodic. This argument is ultimately the same as the

argument delivered above that q in flux α = p/q should be some integer number of single-

dimension lattice translations under which the wavefunction, operating in a gauge choice

where all of the effects of A⃗ appear along that dimension, returns to itself.

For a zero-field tight-binding Hamiltonian in two dimensions with lattice sites (m,n), the

translation operators, which translate the lattice over by a site, are the site-to-site hopping

elements of Ĥ and commute with each other and with the Hamiltonian [205]:
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T̂x = −t
∑
m,n

â
†
m+1,nâm,n; T̂y = −t

∑
m,n

â
†
m,n+1âm,n (3.22)

Introducing a vector potential modifies the Hamiltonian so that these operators don’t

necessarily commute with it, as there is now possibly some change in A⃗ on the scale of

that translation. If we modify these translation operators to incorporate a complex phase

like those we’ve seen enter into the Hamiltonian in Equation 3.15, and select this phase

appropriately for the details of the applied flux and gauge we’re using, we can get modified

magnetic translation operators to commute with the Hamiltonian again:

T̂M
x = −t

∑
m,n

eiθ
x
m,n â

†
m+1,nâm,n; T̂M

y = −t
∑
m,n

eiθ
y
m,n â

†
m,n+1âm,n (3.23)

Aidelsburger [6] derives the requirement that, in order for these new operators to commute

with Ĥ (but not necessarily with each other), they must bear a certain relationship to hopping

phases ϕm,n, the Peierls phases, acquired on lattice legs adjacent to (m,n) and to the flux

per plaquette (here square unit cell) Φm,n, which can generically vary across the lattice if

the field is nonuniform:

θxm,n = ϕxm,n + Φm,nn; θ
y
m,n = ϕ

y
m,n − Φm,nm (3.24)

Φm,n = ϕxm,n + ϕ
y
m+1,n − ϕ

x
m,n+1 − ϕ

y
m,n (3.25)

These variables are depicted on a schematic lattice section in Figure 3.6. For a uniform

synthetic field like we use in this thesis, Φm,n = Φ is constant for each plaquette in the

lattice.

The modification of tunneling terms in the Hamiltonian with the multiplication of a

complex phase factor ϕim,n enforces the acquisition of a Peierls phase for a particle hopping

between a pair of sites of the lattice. A particle tracing out some trajectory around the lattice
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Figure 3.5: Cartoon of non-magnetic and magnetic translation operators. A discrete
spatial lattice is plotted alongside a continuous spatial vector potential A⃗. The vertical axis
of A⃗ represents its position in some abstract parameter space; coordinates at the same height
indicate that A⃗ holds all the same parameter values.
Translation operators, in both cases, effect a site-wise translation on the lattice. At left, for
a nonexistent vector potential (which is a constant across parameter space), T̂x commutes
with the Hamiltonian. At right, a present vector potential A⃗ may vary in such a way that
it’s not constant at each lattice point accessible to the translation operator T̂x. We introduce
modified translation operator T̂M

x for this case that ends up enforcing a complex phase on
hopping terms in Ĥ.
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will continue acquiring phase as it jumps; if it returns to its original position, that acquired

phase may wash out to nothing, or it may hold some other value. In this way, the Peierls

phases on tight-binding hopping, which we’ve asserted inscribe a magnetic field, produce

an Aharonov-Bohm phase like that acquired by a particle tunneling in the 2D continuum

around a flux-threaded region.

Figure 3.6: Plaquette schematic. Adapted
from Figure 2.2 of [6]. The Peierls phases are
those on the individual hopping legs between
lime-green lattice sites.

This is the most intuitive explanation

for the Peierls phases ϕm,n – whereas here

mathematically, and eventually in our exper-

imental implementation, we enforce hopping

phases that end up realizing a phase acquisi-

tion on a charged particle tunneling in a loop

in our system, in a two-dimensional plane

threaded by some actual magnetic flux, the

presence of that flux will enforce a phase on

a charged particle tunneling in a loop.

For a specific uniform gauge field across

the lattice, for example the α = 1/4 flux

we use in this thesis, each plaquette may be

threaded by some fraction of a flux quantum,

and it helpful to define a set of magnetic translation operators that may generate non-single-

site translations such that they cover a ‘magnetic unit cell’ and tile a region enclosing a

full flux quantum. Such translation operators will commute with each other, in addition to

commuting with Ĥ, as the vector potential should return to itself under lattice translations

by both operators.

Aidelsburger picks a magnetic unit cell, for a quarter-flux (p/q = 1/4, q = 4) case, that

is 1 lattice coordinate high and 4 long, enclosing a single flux quantum. She thus defines
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Figure 3.7: Aharonov-Bohm analogy for Peierls phases. At left, an excitation, tun-
neling in our tight-binding model with hopping phases that realize a uniform magnetic field
felt by that particle, acquires some phase Φ per plaquette. At right, an electron, looping in
a closed path around a regime threaded by some flux, acquires an Aharonov-Bohm phase
ΦAB commensurate with the flux enclosed.

commuting magnetic translation operators:

M̂1
x =

∑
m,n

â
†
m+1,nâm,n; M̂

q
y =

∑
m,n

â
†
m,n+qâm,n (3.26)

She picks a wavefunction that is unchanged under the relevant magnetic translation

operators rather than standard lattice translation operators as seen earlier:

Ψm,n = eikxmaeikynaψn; ψn+q = ψn

−π/a ≤ kx ≤ π/a; −π/(aq) ≤ ky ≤ π/(aq)

(3.27)

This wavefunction fulfills a version of Bloch’s theorem that incorporates the acquisition
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of a geometric phase upon hopping:

M̂1
xΨm,n = Ψm+1,n = eikxaΨm,n

M̂
q
yΨm,n = Ψm,n+q = eqikyaΨm,n

(3.28)

Plugging Ψm,n into the time-independent Schrodinger equation made with the hopping

portion of the Harper-Hofstadter Hamiltonian, we get:

−t
(
e−iΦnΨm+1,n + eiΦnΨm−1,n +Ψm,n+1 +Ψm,n−1

)
= EΨm,n

−t
(
e−iΦneikxaψn + eiΦne−ikxaψn + eikyaψn+1 + e−ikyaψn−1

)
= Eψn

−t
(
2 cos (kxa− Φn)ψn + eikyaψn+1 + e−ikyaψn−1

)
= Eψn

(3.29)

And we’re back to Harper’s equation, introduced earlier in Equation 3.19. Here we re-

trieved this equation by applying Peierls phases to hopping elements in the Harper-Hofstadter

Hamiltonian, selecting a gauge that aligns the vector potential A⃗ with a convenient dimen-

sion, and enforcing periodicity expectations for wavefunctions Ψm,n under the magnetic

translation operators M̂ .

3.2.4 An implementation of the Harper equation

Excitingly, experimental work was done by the now Google-affiliated group at Santa Barbara

using a chain of nine coupled superconducting qubits to realize a system governed by Harper’s

equation [171]. In this case, the experimentalists applied a periodic potential along the single

spatial lattice dimension available to them. By altering that potential, they were able to

explore a range of synthetic flux strengths and trace out the eigenthings that make up

Hofstadter’s butterfly.

The Harper model can describe a single-quasimomentum slice of the 2D Harper-Hofstadter

58



model realized on a cylinder (with one periodic boundary condition). Roushan et al. take

the hopping part of the Harper-Hofstadter Hamiltonian,

H

ℏ
= −t

∑
m,n

(
â
†
m,nâm+1,n + h.c.

)
− t
∑
m,n

(
ei2παmâ

†
m,nâm,n+1 + h.c.

)
, (3.30)

and apply a periodic boundary condition along one dimension, substituting the quantum

Fourier transform â
†
m,n =

∑
k e
−iknâ†m,k to retrieve:

H

ℏ
= −t

∑
m,n

(∑
k

e−iknâ†m,k

∑
k

eiknâm+1,k + h.c.

)

−t
∑
m,n

(
ei2παm

∑
k

e−iknâ†m,k

∑
k

eik(n+1)âm,k + h.c.

) (3.31)

For a particular quasi-momentum identifier k, this leaves the same physics we’ve now

seen twice above:

Hk

ℏ
= −t

∑
m

(
â
†
m,kâm+1,k + h.c.

)
− t
∑
m

(
2 cos(2παm+ k)â

†
m,kâm,k

)
(3.32)

They [171] realize this for a specific k and trace out Hofstadter’s butterfly by looking

at eigenenergies in a 9-qubit 1D array at different applied synthetic fluxes achieved by a

potential of strength ∆ modulated across the chain.

H

ℏ
= ∆

∑
m

cos 2πnαn̂m +−t
∑
m

(
â
†
mâm+1 + â

†
m+1âm

)
+
∑
m

ωmn̂m (3.33)
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Figure 3.8: Mapping from Harper-Hofstadter model on a cylinder to 1D Harper
model. Implementing cylindrical boundary conditions on one dimension of a 2D Harper-
Hofstadter lattice allows one to decouple bands of lattice physics indexed by different k,
working with one k value at a time. This figure is adapted from the supplement of the
paper [171] implementing the 1D Harper model with superconducting qubits.

3.2.5 Berry phase and the Chern number

Above, we’ve discussed above how applying a gauge field modifies the lattice translation

operators of a tight-binding system, impacting energy-momentum relationships for particles

obeying such a Hamiltonian. We’ve also discussed how a particle hopping in a loop in

a Harper-Hofstadter lattice accumulates some Aharonov-Bohm phase made by summing

Peierls phases that’s related to the hopping trajectory, and directly proportional to the

area that trajectory encloses when the gauge field is spatially uniform. This accumulated

trajectory-sensitive phase, which persists even if the state of the system returns to itself after

the particle hops in some loop, is an example of a Berry phase. What is a Berry phase?

If one prepares a system in an eigenstate and then varies the Hamiltonian parameters

slowly (adiabatically), one can move the the system around Hamiltonian-parameter space

without ejecting it from an eigenstate. This technique is used by my collaborators [172,

168] to prepare excitations in wildly-detuned lattices of coupled qubits and then move the

system into a Bose-Hubbard lattice of resonantly coupled qubits while keeping a single

excitation present in an eigenstate. If you slowly wiggle Hamiltonian parameters so that

your state of interest traces out a loop in parameter space and comes back to itself, that

state |ψ⟩ will accrue a complex phase, |ψ⟩ → eiγ |ψ⟩, which incorporates both the dynamical
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evolution e−iEt/ℏ that just happens to an eigenstate persisting through time under the

Hamiltonian, and an additional ‘geometric’ (not dynamical) phase eiγ+iEt/ℏ from tracing

out that parameter-space loop. This geometric phase is the Berry phase [189].

Berry’s original paper introducing this phase [19] argues that the Aharonov-Bohm ef-

fect [2] is an example of the acquisition of a geometric phase; a particle propagating under

the rules of dynamical evolution for an eigenstate will, if it travels in a loop threaded by a

flux, acquire some phase from that travel even if it returns to its original location. Here,

the gauge-sensitive vector potential associated with the magnetic flux is a version of the

more-general ‘Berry connection’ which one integrates along a particle trajectory in parame-

ter space to produce the gauge-insensitive Berry phase. And the magnetic flux itself, which

one can integrate over the area enclosed by the tunneling photon to produce a Berry phase,

is a version of the more-general ‘Berry flux’.

In the context of a lattice-physics system, like a tight-binding lattice realized, boundary-

less, on a torus in x and y, we can retrieve the Chern number by integrating the ‘Berry flux’

across that system’s first Brillouin zone. When we move from a tight-binding model to one

with an applied gauge field, we alter the system’s Hamiltonian-commuting translation oper-

ators to be the magnetic ones (Equation 3.2.3). This, in turn, modifies the lattice Brillouin

zone as seen in our treatment of the new magnetic translation operators above [9], providing

the alteration necessary to yield a nonzero Chern number.

For magnetic Bloch-like wavefunctions ψk(m,n) for position x⃗ = (ma, na) in a lattice,

obeying

Ψk(m,n) = eikxmaeikynaψk(m,n); ψk(m,n+ q) = ψk(m,n), (3.34)

we recall that in the quarter-flux Harper-Hofstadter lattice we work with q = 4, and

also that the magnetic Brillouin zone (also defined in Equation 3.27) is spanned by lattice

momenta
−π
a
≤ kx <

π

a
;
−π
qa
≤ ky <

π

qa
. (3.35)
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Following David Tong, who presents a wonderful introduction to this material [189], we

can express the phase winding of some state around this magnetic Brillouin zone via the

Berry connection,

Ai(k⃗) = −i⟨ψk(x⃗)|
∂

∂ki
|ψk(x⃗)⟩. (3.36)

Here generic i indexes the different choices of states k – in two dimensions, these are

identified by lattice momenta kx and ky. The Berry curvature, or Berry flux in the Aharonov-

Bohm analogy, is

Fxy =
∂Ax

∂ky
−
∂Ay

∂kx
= −i⟨ ∂ψ

∂ky
| ∂ψ
∂kx
⟩+ i⟨ ∂ψ

∂kx
| ∂ψ
∂ky
⟩ (3.37)

This certainly does look like a field strength derived from some magnetic vector potential

that enforces a phase winding! We obtain the Chern number by integrating this Berry flux

over the magnetic first Brillouin zone:

C =
−1
2π

∫
Magnetic Brillouin zone

Fxyd2k (3.38)

The Chern number is a quantized integer topological invariant, related to the Hall con-

ductance, whose nonzero presence is a common signifier of topology [72]. This invariant is

robust under smooth perturbation, accounting for the robustness of the associated topolog-

ical materials properties; one would have to do a whole lot (perturbing the band structure

enough to open or close a band gap! [9]) in the lattice to structurally modify the whole

Brillouin zone in order to change this integral’s value. This again illustrates how topological

properties derive from the global properties of the bulk.

People discussing topology often reference the ‘bulk-edge correspondence’, the idea that at

the interface between some bulk topological material and a regime with a different topological

invariant (the ‘edge’), some number of localized edge states or modes will exist, dictated and
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protected by the topological properties of the system bulk. In Chern insulator, the topological

invariant of the Chern number sets the number of nondegenerate localized channels spanning

the bulk band gaps [6] that arise at the system edge.

The fact that spatially localized, directional conducting channels appear at the edges

of Chern insulators is a hallmark of topological insulators and motivates the interest of

many people who build engineered versions of these systems. The localization of an edge

excitation, and its zippy propagation velocity relative to the speed of excitations in the

insulating bulk, are upheld and protected by the overall Chern insulator topology, lending

the system robustness to smooth and small perturbation as it takes a lot of effort to alter the

Chern number. A classic genre of experiment with synthetic Chern insulators, an example

of which is depicted in Figure 3.11, introduces a barrier to tunneling of an edge excitation

and profiles the topology-rooted preservation of directional, edge-localized transport.

While conducting edge states of a topological bulk arise at the boundary between this

bulk and vacuum (which has no Chern number!), such states more generally arise at in-

terfaces between regimes with different topological invariants, as depicted in Figure 1.1.

A range of experimental approaches have leveraged the presence of such edge states at

a generic boundary to build topological systems showing transport along a dynamically-

modifiable ‘edge’: Cheng et al. [40] physically alter sites in a topological photonic array of

copper pillars to change the shape of a domain wall that provides a site for chiral edge-state

transport. Pirie et al. [150] offer a simulation-based proposal to use ultrasound heating of a

thermally-responsive baseplate supporting a topological phononic crystal of steel pillars to

dynamically direct edge conduction between topologically-trivial and topologically spin-Hall

regimes, arguing that this could be useful for computing. Zhao et al. [213] leverage non-

Hermitian physics, dynamically setting up degenerate right- and left-handed edge modes in

a topological photonic ring resonator array by optically pumping parts of it to produce a

programmable boundary between regions of gain and loss.
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Overall, the presence of a topologically-protected conducting edge, which can suffer some

degree of local loss and disorder without shredding the Chern-number-boundary that sup-

ports the edge state, is a powerful tool for reliably moving light.

3.2.6 Relationship to Bose-Hubbard model

Because the Harper-Hofstadter model as we’ve presented describes noninteracting particles,

one thinks of it as applying to one boson tunneling around; to get the kind of particle-

particle interactions one would hope to see in a model exploring the many-body phases seen

in quantum matter, one would need to add more elements to this Hamiltonian.

Another description for tunneling bosons which incorporates particle-particle interactions

is the Bose-Hubbard model: here, in addition to nearest-neighbor tunneling, particles ex-

perience interactions when occupying the same site, and the system can be subjected to a

global chemical potential which supplies a particle number, to which this model is sensitive.

For a 1D chain, neglecting the chemical potential, this Hamiltonian can be written as:

H

ℏ
= −J

∑
m

(
â
†
mâm+1 + â

†
m+1âm

)
+
U

2

∑
m

n̂m (n̂m − 1) +
∑
m

ωmn̂m (3.39)

Here n̂i = â
†
mâm is the photon number operator for site m, J is the same thing as t

from above, a hopping rate, and U is the strength of the particle-particle interaction on each

site. This is the Hamiltonian of some work, not described in this PhD thesis, in which I also

participated [172, 168] – realizing a model which incorporates particle-particle interactions

on sites opens up a world of many-body physics to explore.

This particular Bose-Hubbard model is not topological. To more easily compare with the

Harper-Hofstadter Hamiltonian shown above, let’s look at the Bose-Hubbard Hamiltonian

in 2D, with J written as t – this makes it easy to see the lack of complex phases modifying
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the hoppings, and added particle-particle interactions:

H

ℏ
=
∑
m,n

ωm,nâ
†
m,nâm,n − t

∑
m,n

(
â
†
m,n+1âm,n + âm,nâ

†
m+1,n + h.c.

)
+
U

2

∑
m,n

â
†
m,nâm,n

(
â
†
m,nâm,n − 1

) (3.40)

To get a model which incorporated both particle-particle interactions on each site and

topology from a synthetic gauge field, we would instead need to write:

H

ℏ
=
∑
m,n

ωm,nâ
†
m,nâm,n − t

∑
m,n

(
e−i2παmâ†m,n+1âm,n + âm,nâ

†
m+1,n + h.c.

)
+
U

2

∑
m,n

â
†
m,nâm,n

(
â
†
m,nâm,n − 1

) (3.41)

3.3 Survey: Synthetic gauge fields for photons!

As demonstrated by the implementation of the 1D Harper model via periodic potential in

the previous section, there are a range of ways of imparting such a synthetic gauge field on

photons, many of which rely on artificially introducing this complex Peierls phase on hopping

terms to an engineered lattice model for light.

A set of broad reviews is available describing different ways of imparting topology (a

broad regime of pursuits which includes the addition of synthetic gauge fields to mimic the

band structures of topological insulators) to photonic systems [140, 155] and those realized

in particular in circuit quantum electrodynamics [89, 32]. The work laid out in these reviews

falls into five broad categories of methods used to source topology:

Method 1: Exploit effective spin-orbit coupling in nanophotonically confined light. Much

of the wealth of work done in experimental topological photonics in the past fifteen years

has been in silicon photonics, in nanophotonic systems where the tight (subwavelength)
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confinement of light can enable an effective spin-orbit interaction for that light where its

polarization determines its propagation direction. Many works implementing topological

band structures in silicon photonics realize the quantum spin Hall effect, in which light with

a different ‘pseudospin’ sees a different propagation direction.

Because this model does not break time reversal symmetry, this results in degenerate

right- and left-handed chiral edge channels in engineered quantum spin Hall lattices; selec-

tively coupling, or emitting to, their topological edge modes can be accomplished by choosing

the direction of transmission or the state of a coupled emitter. Examples of this work can be

found in both photonics [68, 66, 38] and atom-waveguide coupling [147]. Notably, Shomroni

et al. [180] use the connection between the state of an emitter and photonic dynamics in

a waveguide to realize a switch controlling the propagation direction of light in one such

optical system. And Cheng et al. [40] realize spin-Hall physics similar to that mentioned

above in optical photonic systems, but using copper and at microwave frequencies!

Achieving strong coupling of nonlinearities to such silicon photonics platforms can be

challenging; Barik et al. [13] laid out the platform for this and then realized it [14] by

exploiting the bulk-edge correspondence to set up topological edge modes at the bound-

ary between two photonic crystals which host different Berry curvatures. As illustrated in

Figure 3.9, they strongly coupled a quantum dot to the counterpropagating modes in this

boundary, an effective chiral resonator, emitting selectively to one or the other depending

on the polarization (σ±) of the transition excited in the quantum dot. By applying a bias

field they achieved energy resolution between emission of opposite chiralities from the quan-

tum dots. Strong coupling was demonstrated by Purcell enhancement of emission from the

quantum dot to an edge channel, rather than by any coherent transfer of excitation.

Method 2: Build a twisted geometry for the light. In optics, topological states of photons

have been realized [173], and used to build Laughlin states [45], by twisting the landscape in

which photons propagate rather than putting them in a simple landscape and modifying their
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Figure 3.9: Emission from a quantum dot to chiral channels in a photonic metama-
terial. Reprinted with permission from Mohammad Hafezi and Sabyasachi Barik: Physical
Review B, ‘Chiral quantum optics using a topological resonator’, v.1 p.205303, 2020. Copy-
right (2020) by the American Physical Society [14]. The top panel reproduces part of Figure
3: in a, the authors use a laser to excite transitions of a quantum dot sited along a triangular
chiral channel made of the interface between two materials hosting different topological in-
variants. Excitations propagating in one direction will preferentially couple out to grating R
along a chiral boundary, and those propagating in the other will couple out to grating L. In e
and f, photoluminescence measurements taken at grating couplers L and R respectively show
that as a bias field splits degenerate quantum dot transitions of opposite polarization apart
via Zeeman shift, energy resolution between chiral light-matter interactions emerges as each
polarization of dipole transition emits to a channel of opposite chirality. The bottom panel
reproduces part of Figure 5: in b, as a bias field tunes Zeeman-split quantum dot transitions
through resonance with the topological resonator, the intensity of their photoluminescence
is increased. In c, a cut of the intensity of a quantum dot’s emission is shown as that dot is
tuned across resonance with the chiral channel, showing Purcell enhancement by a factor of
∼ 3.
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propagation properties with applied field or complex hopping. Martinez, Chiu et al. [116]

implemented a similar ‘twisting’ approach in a circuit QED platform – by flipping an asym-

metric coupling on one-site of a four-qubit ring, they generated a π-flux Harper-Hofstradter

lattice in a way that amounted to producing a Mobius geometry.

Figure 3.10: π-flux lattice formed from a ring of transmon qubits. Reprinted with
permission from Christie Chiu: arXiv, ‘Flat-band localization and interaction-induced delo-
calization of photons’, arXiv:2303.02170v2, 2023. [116]. Panel reproduces part of Figure 1.
In e, a false-color of the photograph highlights the transmon ring in green. In f, a cartoon
schematic shows how flipping the orientation of capacitive couplers of one qubit in the ring
asserts a negative tunneling rate between a pair of transmons. The authors use this α = 1/2
synthetic flux that enforces a geometric phase of π on a loop-tunneling photon to explore
localization and delocalization of photons hopping on a lattice that incorporates a flat band
(courtesy of the synthetic gauge field) and onsite interactions (courtesy of the transmon
nonlinearity, as is possible in Bose-Hubbard chains [172]).

Method 3: Construct the photonic system out of a material that responds to magnetic field.

Constructing a photonic lattice out of a material that itself hosts a magneto-optical response,

and then applying an external field, can enforce the effects of magnetic field on photons ex-

ploring the engineered material landscape. The original, pioneering experimental work [203]

in topological photonics used this approach, demonstrating a time-reversal-symmetry-broken

chiral edge state in a microwave photonic platform realized as an array of field-responsive
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ferrite YIG posts with a conducting boundary. This work by Wang et al. [203] emerged a

year after the theory proposals of Haldane and Raghu [69, 157] suggested that such direc-

tional modes were possible to realize in topological photonics platforms and advertised the

futures of such platforms, when combined with nonlinearities, to emulate fractional quantum

Hall physics. Figure 3.11 illustrates the simulated steady-state electric field and power flow

along the edge of a ferrite pillar array subjected to a bias field.

Figure 3.11: Robust propagation of chiral edge states in a ferrite pillar ar-
ray. Reprinted with permission from Nature, ‘Observation of unidirectional backscattering-
immune topological electromagnetic states’, v.64 p.772-776, 2009 [203]. Panel reproduces
part of Figure 2. In a, simulation shows the electric field and direction of power flow (black
arrow) when a drive is injected at site A: injected microwaves propagate unidirectionally
along the system’s chiral edge channel. The black line at the top illustrates the conducting
boundary at the edge of the array of ferrite pillars (yellow dots). In b, when a chirally
propagating edge state is incident upon a conducting intrusion (gray bar), the simulated
field pattern wraps around that edge disorder and returns to supporting robust directional
movement of power in the chiral system edge.

Other work like this introduced nonlinearity by building a photonic system out of GaAs

to investigate topological exciton-polaritons, which were still largely photonic [87]. It could

also be argued that the proposal from Wang et al. [201] to make a metamaterial lattice out

of SQUIDs and source an effective gauge field from their response to an external flux bias

counts too.

The work described in this thesis is best categorized as an application of Method 3 – we
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generate a synthetic gauge field from a real gauge field, by capitalizing upon the effect said

real bias field has upon a material incorporated into our system. We deploy this material

(ferrite Yttrium-Iron-Garnet (YIG) crystals) selectively alongside permanent magnetic field

to modify the phase windings of local lattice sites in a way that can be re-broadcast as a

global Peierls phase on hoppings that generates a Harper-Hofstadter lattice for tunneling

photons.

Reviews and commentaries in the field often allude to the challenge of achieving strong

enough time-reversal-symmetry breaking via magneto-optical materials responses to see re-

ally strong backscatter protection in topological photonic systems at optical frequencies (see,

e.g., a proposal to do chiral quantum optics with color centers in diamond coupled to a pho-

tonic crystal [146]). Working at microwave frequencies, as Wang et al. [203] do, addresses

this issue by allowing use of materials with a stronger field response. But why is achieving

strong time-reversal symmetry breaking a concern?

In the example of our chiral lattice platform, a more substantial splitting of lattice site

photonic modes of right- and left-handed chirality is ultimately attributable to a stronger

applied bias field. The larger splitting provides a wider band of energies in which the re-

alization of the Harper-Hofstadter model is isolated with input from only chiral modes of

the appropriate handedness. So stronger response to an applied magnetic field ultimately

amounts to a protection of the handedness of the chiral system, and thus protection from

backscatter/unintended scatter in the lattice edge channels. In our data, to be detailed later,

we see a distinct difference in the group velocity of wavepackets in edge channels on different

sides of the lattice band center – the higher-frequency edge eigenmodes are moved around in

the spectrum due to the influence of virtual photonic coupling through the (closer to top of

band) split-off ‘backwards’-handed chiral site modes. This changes the edge wavepacket dis-

persion and ultimately makes wavepackets in the higher-frequency edge channel experience

a faster group velocity.
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Method 4: Use time modulation to make an effective synthetic gauge field Instead of re-

lying on static aspects of the system construction, some groups generate a synthetic gauge

field for photons by relying on time modulation [53, 46]. In the technique of Floquet engi-

neering, application of a time-periodic external drive can add new attributes to the system

Hamiltonian, creating an effective long-time Hamiltonian that incorporates new physics, like

the addition of topology to the band structure. If you ‘catch’ the system at the right peri-

odicity, you see the evolution of the target physics! Examples of experimental work using

Floquet engineering to generate synthetic gauge fields include a number of works across

photonics [53, 164, 111, 170, 183, 127]. Floquet generation of broader topology (here the

Su-Schrieffer-Heeger model, which does not involve a synthetic gauge field) was also realized

in circuits by Cai et al. [28].

The 2017 work by Roushan et al. [170] with a ring of three qubits is particularly important

in reference to the work in this thesis. The experimenters sinusoidally modulate the couplings

between pairs of mutually detuned qubits at the frequencies of the qubit-qubit detunings.

This modulation re-builds coupling between the qubits, and the phase of this modulation

imparts a phase on the hoppings. The overall phase a photon picks up while hopping around

this ring realizes the synthetic flux. By changing the sign of this overall phase, the authors

are able to alter the direction of chiral photonic transport, working with a system that also

incorporates nonlinearity via the qubits! As shown in Figure 3.12, they measure hopping in

both directions along the couplers between qubits in this smallest-possible three-site loop.

Method 5: Build a synthetic gauge field in synthetic dimensions. A final method of

building a synthetic gauge field for photons is to build part of it in a dimension that departs

from real space. It is possible to construct a lattice along some degree of freedom internal to a

system, typically momentum (i.e. along a lattice of modes with different frequency), assisting

couplings between lattice sites by supplying drives. Lee et al. [98] do this to generate a tight-

binding chain across a set of modes that hosts propagating wavepackets. Dutt et al. [51] do
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Figure 3.12: Chiral transport in a three-qubit ring hosting synthetic flux. Reprinted
with permission from Nature Physics, ‘Chiral ground-state currents of interacting photons in
a synthetic magnetic field’, v.13 p.146-151, 2017. [170] Top panel reproduces part of Figure
1. In a, a cartoon shows three qubits and their couplers in a ring threaded by synthetic flux
ΦB . In b, a false-color circuit image shows the qubits and their coupler ring. In c, a diagram
of the involved states shows how parametric modulation of the coupling between detuned
qubits results in a complex resonant hopping between the two. Bottom panel reproduces
part of Figure 2. In c, different choices of coupler modulation produce synthetic fluxes
ΦB = π/2, 0,−π/2. A photon prepared in Q1 at t = 0 propagates directionally around the
three-qubit ring in a left- and right-handed manner for nonzero fluxes, whereas for ΦB = 0
there is no chiral propagation.
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this in a ring resonator with a set of two different synthetic dimensions (the ‘pseudospin’, or

propagation direction, of modes in the ring and the mode frequencies) to realize a ‘ladder’-

style lattice with synthetic flux.

Working in synthetic dimensions can involve less overhead in terms of building lattice

sites and their associated control hardware, and supplies access to a more flexible array

of lattice connectivities that may not be realizable in real space at all [98]. Working in

synthetic dimensions can also make it more accessible to incorporate pump- and reservoir-

based processes like pairing interactions (â†j+1â
†
j) [27], opening up a wider range of physics

to exploration in the highly controlled environments of engineered photonic systems.

Excitations can be made to obey the same onsite-energy and hopping physics in a syn-

thetic dimension as is seen in the Harper-Hofstadter model, but in which the relevant complex

hopping phase may be easier to impart. Some work in topological photonics [90, 215, 107]

builds hybrid lattices which live partially in real-space arrays of coupled sites, and partially

in a synthetic dimension. Other work realizes lattice physics with complex hoppings entirely

in synthetic dimensions by coupling modes of a system [75].

In addition to the photonic methods for sourcing topology described above, there are some

alternative bonus methods available if working with cold atoms (this is not an exhaustive

list):

• Method: Rotate your system! The Coriolis force experienced by massive particles in

a rotating frame behaves effectively like a Lorentz force on a charged particle [46]. If

one can coerce a set of bosons to both experience a strong synthetic flux (by rapid

rotation) and remain in a low-lying energy state so that single-band dynamics may

be investigated [56], it’s even possible to perform experiments exploring the interplay

of topology and interactions [126] in a spun-condensate system. This work [56] is

spiritually similar to the twisted-geometry work done in a photonic setting by Schine

et al. [173].
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• Method: Use lasers to generate desired site-site couplings! In an accessible review

on work towards simulating fractional quantum Hall physics with bosonic atoms,

Cooper [46] argues that all drive-based approaches to couple atom lattices with a

Peierls phase fall under the heading of Floquet physics.

Some approaches involve shaking the whole system with a drive to generate an effective

Hamiltonian. Another range of works, which use laser-assisted tunneling via resonant

modulation as part of a scheme to realize topology in cold atom arrays [4, 124, 5, 188,

108], is spiritually similar to the time-modulation approach listed above, in particular

the parametrically-modulated couplings demonstrated by Roushan et al. [170]. The

contemporaneous 2013 papers realizing Harper-Hofstadter models for atoms in optical

lattices [4, 124] place atoms along the lattice at a potential-energy tilt and close that

tilt, while imparting a Peierls phase, via the application of pairs of drives from lasers.

• Method: Apply a topological pump! Works which realize topological (Thouless) pump-

ing for cold-atom systems [119] are an atomic-physics version of the synthetic-dimensions

preparation scheme described above, where one of the dimensions is time. Thouless

pumping – in which slow periodic modulation of system parameters generates a quan-

tized particle current without external bias [44] – can also be thought of as ‘backwards’

from Floquet modulation in the sense that the temporal modulation used to modify

system dynamics is slow, rather than fast, relative to system timescales. Topological

Thouless pumps apply a slow form of temporal modulation that adiabatically moves

states between sites; this externally enforced transport, quantized per pump cycle,

can be thought of as effected by a synthetic flux and associated with a Chern num-

ber. [33, 140] In this way, it’s possible to build out Harper-Hofstadter physics with one

spatial and one temporal dimension!

The above section shares a menagerie of approaches to engineering topological band

structures for photons and for atoms. It is important to note that while we mentioned
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systems with particle-particle interactions in some of the examples provided, the section

focused on the interaction-free aspects of systems with hopping and synthetic gauge fields.

The introduction of nonlinearity and associated particle-particle interaction will be discussed

further in the chapter to follow.

3.4 Modeling the chiral lattice

The microwave cavity lattice used in this thesis realizes a synthetic gauge field for tunneling

photons without any interactions; sites of nonlinearity are added later in the form of couplings

to transmon qubits. An instructive way to think about the Harper-Hofstadter model for

such a system is on a cylinder, with one boundary condition of the 2D hopping model made

periodic and the other left as an open edge – this setup allows generation of a continuum

band structure from the continuum of states allowed by the one periodic dimension, while still

providing access to modeling edge modes of interest in the actual doubly-finite system. Code

for simulating this partially-periodic ‘strip geometry’ Harper-Hofstadter model is available

in Appendix B.3.

In Figure 3.13, a bandstructure simulated for this strip-geometry Harper-Hofstadter

model with α = 1/4 (‘quarter flux’) shows four somewhat flat bulk bands, the center two of

which touch at a point as expected for the quarter-flux eigenspectrum seen earlier in Hofs-

tadter’s butterfly. A large band gap sits between each outermost bulk band and the central

pair of bulk bands; each of these gaps hosts a narrow continuum of edge modes, which are

the only excitations able to persist in the band gap.

The edge mode continua above and below the band center have opposite slopes over

quasimomentum kx, and central regions where those slopes look basically flat – these are

regions of linear dispersion, and a wavepacket excited in these energy regimes would be

expected to propagate without decohering, as all of its continuum of Fourier components

would share the same group velocity. For more on this, see the section of chapter 2 dealing
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with wavepacket dynamics in continua and lattices. The specific dispersions of opposite

sign indicate that the edge channels above and below the center of this band structure have

specific, handed propagation directions which are opposite!

Figure 3.13: Simulated band structure for
strip geometry Harper-Hofstadter lattice.
Simulated for a hopping rate of −t = 18.5 MHz,
the band structure of a Harper-Hofstadter lattice
shows four bulk bands (green). The outer two
band gaps host opposite-slope red and blue con-
tinua of conducting edge modes.

An important thing to note here

is the substantial energy difference be-

tween edge channels (regimes of edge

modes with pretty-constant dispersion,

that could hold a chirally propagating

wavepacket) – in spin-Hall models, chan-

nels of opposite handedness are degen-

erate, but in this quantum Hall analog,

the time-reversal symmetry breaking in-

troduced by the complex phases on lat-

tice hopping splits that degeneracy. The

strength of the synthetic gauge field sets

the size of the band gap – Hofstadter’s

butterfly traces the allowed locations of

the bulk bands across different gauge

field strengths, visualizing gap openings

and closings with different values of flux.

The size of this gap is important to protect the edge-ness and thus backscatter protection

of edge-propagating wavepackets, as a gap closing is connected to destruction of system

topological invariants. In experiments which can realize tunable lattice disorder, it is found

(as expected) that edge-ness and directionality are maintained up until the point at which

site-energy disorder competes with the scale of the gap opened by the synthetic field. [37]

Because the work in this thesis deals with a finite 5×5 lattice with all boundary conditions
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Figure 3.14: Fragmentation of lattice bandstructure to discrete modes. Schematic
diagrams at top show a Harper-Hofstadter lattice with one (left) and zero (right) periodic
boundary conditions. We can calculate a band structure with continua of bulk and edge
states for a lattice with one periodic boundary condition (left), which reproduces the edge
states classic to topological insulator band structures. At right, for a square 25-site lattice,
the 25 discrete eigenmodes ‘sample’ this band structure.
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and no infinite dimension, the discrete 25 eigenmodes which realize the energy landscape of

the system ‘sample’ discretely from the band structure simulated in the above ideal model

(Figure 3.13). This fragmentation of the bandstructure into a discrete eigenspectrum is

illustrated in Figure 3.14. Generation of a wavepacket in each of the two chiral edge channels

is realizable by exciting a set of the geometrically edge-like eigenmodes that live in what

would be a bulk band gap. As the smallest lattice which hosts a distinct bulk and edge, a 5-

by-5 cavity array allows clear distinctions to be drawn between its 25 eigenmodes, and offers

access to explore finite-size effects. In Figure 3.15, we plot a set of simulated eigenmodes of a

disorder-free version of this lattice. As the eigenspectrum of a disorder-free Chern insulator

should be symmetric around the center mode (pictured near 8.90 GHz), only 13 modes must

be plotted.

Figure 3.15: Simulated eigenmodes of a 5x5 Harper-Hofstadter lattice. Excitation
profiles of 13 eigenmodes of the chiral lattice are calculated for the center frequency and
hopping rate of the actual platform. The regime highlighted red is the expected bulk band
gap, in which four edge-like eigenmodes are located.

For a system this small there are only four modes located in each bulk band gap for a

total of eight “edge” modes. However, two of the edge modes in each gap are much closer
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to the bulk band frequency, which causes the eigenvectors of the these modes to have more

participation in the bulk. The 13th (Dirac) mode is located where the two middle bulk bands

touch and maintains its large delocalization for a lattice of any size.

Figure 3.16: Simulation of wavepacket dy-
namics in the disorder-free chiral lattice.
Using a Mathematica model of the lattice (Ap-
pendix B.3), we model dynamics of Gaussian
pulses supplied to lattice corner site 0. Blue
highlights on a simulated band structure de-
pict the full width at half-maximum of each
pulse.

In Figure 3.15, these two edge modes

that are isolated further from the edge mode

have a stronger response in edge-edge trans-

mission, while transmission through the

modes located closer to the bulk bands starts

to decrease in comparison. This transition

from bulk to edge mode at the band edge

is seen in larger systems as well. For future

experiments where we use the chiral channel

to transport quantum states, photons must

be transferred into a superposition of edge

modes in order to create a localized traveling

wave packet. These two modes located clos-

est to the center of the band gap are ideal

modes to prioritize in creating a traveling

single photon state, since their spatial pro-

files incorporate less leakage into the bulk.

As we have modeled the eigenthings of

this lattice model, we can also trace (linear)

dynamics after preparing an excitation in a

particular site. In a disorder-free model, we

expect the velocities of excitations prepared

symmetrically around band center in the upper- and lower-frequency edge channels to be

79



identical. In Figure 3.16 we plot examples of such simulations – one can clearly identify

wavepackets with opposite, and approximately identical, velocities propagating around the

lattice edge!

In this figure, we place a wavepacket into the lattice edge by driving a corner site with a

Gaussian pulse. Excitations in the lower and upper edge channel are tracked at all edge sites

and propagate around the edge at approximately the same speed; differences in dynamics are

due to slightly different excitation frequencies, chosen to match those used in later experiment

with a disordered 5× 5 lattice.
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CHAPTER 4

REALIZING THE CHIRAL LATTICE

This chapter describes the construction of a synthetic gauge field for photons and addresses

microwave transmission and reflection measurements taken on the cryogenic chiral lattice

using antennas in the many-photon classical-drive regime. We spectroscopically resolve indi-

vidual bulk and edge modes of the lattice and make site- and time-resolved measurements of

wavepacket transport in both of its chiral edge channels. The following chapter will explore

the experiments which concluded this paper that show strong coupling of a transmon qubit

to the spectrally resolved modes of this topological band structure.

4.1 A superconducting Harper-Hofstadter lattice for microwave

photons

We realize an α = 1/4 Harper-Hofstadter model using an array of coupled 3D superconduct-

ing microwave resonators, cooled to below the superconducting transition so that photons

inhabiting these resonators are very long-lived and so that we can later couple them to

superconducting qubits, which interact strongly enough with these trapped photons that

timescales for photonic dynamics in the qubits and lattice are much shorter than the photon

lifetime.

4.1.1 Niobium cavity resonators

The chiral lattice sites are machined in a solid block of niobium and cooled to ∼ 31 mK

when used in conjunction with transmon qubits. The resonators are arranged in a 5 × 5

square lattice, which is the minimum lattice size that supports a clear distinction between

bulk and edge.
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Figure 4.1: Chiral lattice machined in niobium. At left, a schematic of coupled 3D
microwave resonators in the chiral lattice highlights single-post cavities with green posts and
three-post cavities, used to set up the synthetic gauge field, with pink posts. The cavities to
either side of the main lattice are used for qubit control and readout. At right, a photograph
of the actual apparatus used in this thesis; YIG spheres are visible as black dots inserted in
the center of each three-post cavity.

Clai Owens’ doctoral thesis [137] is the authority on the design and construction of these

microwave resonators and provides much more extensive detail on the development process

leading to the final cavity design. Andrew Oriani’s thesis [135] and Matt Reagor’s thesis

[163] offer extensive discussion on principles underlying high-quality-factor superconducting

microwave cavities.

Readers seeking to gain more introduction to 3D superconducting cavities for circuit

quantum electrodynamics should note that Paik et al. [141] showed the original strong dis-

persive coupling between a 3D microwave cavity resonator and a superconducting qubit, and

Reagor et al. [161] followed up by demonstrating a 3D microwave cavity with lifetime high

enough to be compatible with the then- (and still-) current millisecond lifetimes of excited

states in superconducting qubits. Reagor et al. [162] then strongly coupled a microwave

resonator to a superconducting qubit and kept the resonator lifetime around a millisecond.

Chakram et al. [34] developed a multimode seamless cavity coupled to a transmon with

mode lifetimes around 2 ms. In his thesis, Oriani [135] describes as-yet-unpublished work
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demonstrating qubit-coupled cavity lifetimes in the tens of milliseconds. Historically, 3D su-

perconducting cavities have outperformed 2D on-chip superconducting resonators in terms of

photon lifetimes, but recent work by Ganjam et al. [60] has demonstrated on-chip supercon-

ducting resonator lifetimes of above a millisecond, opening futures in using entirely on-chip

platforms to execute tasks like autonomous error correction of bosonic GKP states [94] pre-

viously limited to the good photon-holders of 3D cavities.

4.1.2 Cavity design priorities

The core set of design priorities for the cavities forming the chiral lattice were:

Good electrical conductivity when cold: To be able to spur and probe dynamics in the

chiral lattice, it is necessary to support lattice photon lifetimes that are long on the timescale

of qubit/lattice cavity interactions. The less conductor losses and surface dielectric loss

contribute to dissipation of energy from the currents on the conducting cavity boundary, the

longer the cavity will be able to hold photons before they decay. A cavity material that is a

good conductor at cryogenic temperatures (in this case, a superconductor), hosting limited

materials and surface dielectric loss, supports the high quality factor needed.

Avoidance of seam loss: An important thread of the design innovation by my predeces-

sor Clai Owens [137] was in designing monolithic λ
4 (‘quarter-wave’) post coaxial cavities

without internal seams (basically, a boundary acting as an impedance to the charge carriers

supporting electromagnetic resonances in a cavity which acts as a site of dissipation com-

plementary to materials and dielectric losses [135]) in order to reach higher cavity quality

factors. Because of the rotation of the locus of electric field amplitude in time in chiral

cavities with a phase winding [137], creative seam placement to limit the current at the seam

site (the limitations and use of which are discussed by Brecht et al. [24] in the context of

superconducting cavities) was not a feasible option. These reentrant cavities are milled out

of a single piece of metal without need for attachment or assembly.
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Dimensions chosen to support quality factor: The cavities are quarter-wave post res-

onators, in which the length of the post is dominantly responsible for the frequency of the

fundamental cavity mode. Reagor et al. [162] offer an accessible way to think about such

cavities: in a transmission line where the post is the inner conductor and the conducting

shell is the cavity periphery, a quarter-wave resonator has one end terminated in a short

circuit (where the post connects to the cavity floor) and the other in an open circuit (the

vacuum/dielectric at the top end of the post). The lowest-frequency resonance supported

occurs at wavelength λ four times the post length.

Figure 4.2: Schematic quarter-wave
coaxial resonator. Adapted from Su-
leymanzade [186]. The central λ/4 post
sets the fundamental mode frequency.
The exponential fall-off of electric field
strength is called out in purple. Electric
field amplitude should be symmetric and
localized near the top of the quarter-wave
post.

The shape of the cavity shell affects its loss

properties. A larger cavity base footprint (the

two smallest dimensions of the 3D cavity) will

enable lower surface loss as the field remains

localized to the post but the nearby surface

area of conducting shell increases [137]. This

effect competes with the fact that increasing

the footprint brings the cutoff frequency of the

roughly-cylindrical-cavity-as-waveguide (higher-

frequency than the λ
4 fundamental mode) closer

in frequency to the fundamental mode targeted

for use, weakening the fall-off of field amplitude

along the long dimension of the cavity and adding

strength to an additional loss source [135]. As

shown in Figure 4.2, there is an exponential fall-

off in (evanescent) field amplitude along the long direction of the cavity [186], so making

cavities suitably tall can minimize loss from leakage out of the cavity via that route. Here,

in order to maximize the quality factor of each resonator, the depth of the cavity is set so
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that the evanescent decay from the post mode is much less than the residual resistive loss of

the superconductor from which the cavity is fabricated.

Robustness under DC magnetic field: As described broadly above and in more detail be-

low, the superconducting properties of the cavity material must persist even when a constant

magnetic field penetrates through the chiral lattice wall in order to bias the ferrite spheres

used to generate the synthetic gauge field. Niobium is a type-II superconductor, hosting a

low Hc1 (critical applied field at which flux begins to penetrate the superconductor, screened

from the conducting regions by formation of current vortices) and high Hc2 (critical field

for the quenching of superconductivity). Thus, when cooled through its superconducting

transition with a permanent magnet of the appropriate field strength already in place for

ferrite biasing, a block of niobium will support a flux tube that allows the DC field bias to

persist [186]. This magnetic field bias ultimately limits the achievable quality factor of the

lattice cavities, making it unnecessary to prioritize niobium purity (which would help with

conductive loss) in fabricating the lattice.

Rotational symmetry to support chiral modes: As is discussed more in the preceding and

following sections, modifying some of these cavities to host a right- and left-handed phase

winding in their mode structure enables construction of a synthetic gauge field. In order to

be able to write the first-excited mode manifold of a three-post cavity as a pair of chiral,

rotationally symmetric modes of opposite handedness, it was necessary to preserve rotational

symmetry in the field landscape, aided by the rounded-edge-square shape of the cavity bases

[137].

4.1.3 Splitting chiral modes with YIG spheres

To produce lattice cavities which host an internal chiral phase winding, we modified some of

the quarter-wave post cavities in our lattice, machining them with three quarter-wave posts

instead of just one, causing them to host a pair of degenerate modes with right- and left-
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handed chiral spatial phase windings. The fundamental source of our synthetic gauge field

for photons is the introduction of ferrite crystals which support a global magnetic resonance

that couples to microwave light and splits the right-and left-handed chiral cavity modes. This

precession of the global magnetic moment of such a crystal, frequency-tunable by an applied

magnetic field, thus connects an actual gauge field to a phase modification in microwave

resonators which is ‘felt’ by normally field-agnostic photons.

Figure 4.3: Splitting chiral cavity modes by introduction of a field-biased ferrite.
At left, a three-post cavity hosts a pair degenerate right- and left-handed chiral modes in
its first-excited state manifold. At right, introduction of a YIG crystal (black sphere) to
the center of the rotationally symmetric cavity, and the application of a permanent bias
magnetic field, splits one of these modes off while leaving the other largely unperturbed.

A hangup in explaining the three-post cavities in talks has been in helping audiences

understand the pair of degenerate right- and left-handed chiral cavity modes to which the

three posts give rise. A simple model of a three-post cavity as a set of three coupled oscillators

illustrates the genesis of these modes – see Chapter 2, Section 2.1.2 for more details. In
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essence, we expect a pair of degenerate modes in which the field amplitude propagates with

opposite polarizations.

Transmission

Figure 4.4: Splitting of chiral cavity modes
under applied bias field. Magnetic field ap-
plied to an in-cavity YIG sphere splits the chiral
modes of a three-post cavity. Both magnitude
and phase of measured transmission between an-
tennas sited 45◦ apart along the cavity edge are
plotted; data hue represents differential phase
while saturation represents normalized S12−S21
transmission magnitude. For each slice in the y-
direction, a test cavity is warmed above the TC
of niobium to 12 K, so that the magnetic field
on the YIG sphere can be changed. The cav-
ity is then cooled to 2 K and the magnetic flux is
locked in place by the superconducting transition
of the cavity. The two cavity modes diverge in
frequency when the magnetic field is applied and
the px − ipy mode is split off while the px + ipy
mode is more minimally perturbed; the accumu-
lated phase differences are −90◦ and +90◦ due to
the opposite mode chiralities.

We place YIG spheres in divots ma-

chined between the three posts of the lat-

tice cavities hosting chiral modes. These

spheres rest freely until secured in place

by their attraction to the permanent mag-

nets used for field bias. To create the

bias field, we place a 1.6 mm diameter

permanent neodymium cylindrical mag-

net in a small hole milled into the back of

the cavity directly underneath each YIG

sphere, leaving a 0.3 mm thick layer of

niobium between the magnet and the in-

side of the cavity and the YIG. Creat-

ing a local magnetic field in the vicinity

of the YIG spheres with small magnets

minimizes the magnetic fields permeating

the system, which in turn minimizes the

amount of niobium which sees its super-

conductivity quenched by the B-field, as

the strongest part of the magnetic field is

localized to the area between the ferrite

and the magnet, whereas the bulk of the

modal surface currents flows in the posts

of the cavity, locations where the B-field has decayed substantially.

87



We generate sufficient field (∼ 0.18 T) to break the degeneracy between the two chiral

cavity modes by 180 MHz, while maintaining a cavity quality factor of 200,000. The splitting

between these two modes is a measure of how strongly time-reversal symmetry is broken.

This splitting also limits the maximum tunneling rate in the lattice, as the Hofstadter

model assumes one orbital per lattice site, requiring the tunneling energy to remain small

enough to avoid coupling to the counter-rotating orbitals. The ratio between the tunneling

rate and the loss rate in our cavities is then a measure of how fast the dynamics are compared

to the loss rate, which is an important benchmark for the system that determines how far

the photons move within their lifetimes. In this work, the ratio between tunneling and loss

rates is 18 MHz/50 kHz ≈ 400.

We assemble the Harper-Hofstadter Hamiltonian using the chiral cavity mode which

is ‘dark’ to the field-biased YIG (experiences limited perturbation from coupling and is

not split off, colored salmon in Figure 4.3, and referred to by the px + ipy spatial mode

structure in Figure 4.4). By coupling this mode resonantly to surrounding fundamental λ/4

cavity modes, we realize a Hamiltonian for a tunneling photon that experiences hopping and

localized additional phase winding on these modified sites (Figure 4.5). The introduction of

this phase winding at the proper locations in a 5×5 lattice produces Peierls phases realizing

a uniform synthetic flux.

Because the lattice harnesses the mode which is ‘dark’ to the YIG, we are insensitive to

the precise magnitude of the B-field, its orientation relative to the crystal axis, or coupling

to spin-wave modes. Disorder in couplings between YIG resonances and the ‘bright’ chiral

modes does not map to disorder in the Hamiltonian we realize – the exact form of this

coupling is less important than the fact that this coupling splits these modes away from

resonance, isolating the ‘dark’ modes for use in the lattice Hamiltonian.

Cavity quality factors were measured after machining the lattice, inserting the ferrites

(YIG spheres) to relevant cavities, and applying magnetic fields. After machining but before
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applying any surface treatment, lattice sites had quality factors of ∼ 2 × 106. Introducing

the YIG sphere to the cavity does not degrade the Q, so long as no additional materials are

added to hold the YIG sphere in place. No such additional materials (e.g. adhesive) were

used here.

Figure 4.6: Quality factors of lattice modes from edge and bulk spectra. Internal
(Qi) and coupling (Qc) quality factors are extracted from fits to modes in cryogenically mea-
sured lattice spectra taken between pairs of bulk and edge lattice sites. Expected locations
of bulk bands are highlighted in gray. Lattice modes with higher edge participation display
relatively higher Qi values, consistent with expectations that these modes suffer less loss due
to their smaller relative participation in the lossier bulk sites equipped with YIG spheres.

After applying the magnetic field in the final configuration, cavity quality factors dropped

to ∼ 2×105, suggesting that the limiting loss factor of the cavity modes is the resistive losses

in the normal regions created by the magnetic field piercing the superconductor. Lifetimes of

lattice modes remained stable after long exposure of the lattice to air and potential growth

of a penetrating surface oxide, further supporting this suggestion. In Figure 4.6, we plot

quality factors of lattice modes measured at cryogenic temperatures.

4.1.4 Assembling the chiral lattice

The cavities which serve as lattice sites are evanescently coupled together via holes milled

into the back of the niobium block to form a tight binding model. These holes create coupling

by allowing overlap of the Wannier functions of adjacent sites; as the holes also act as higher-
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frequency resonators themselves, they create additional virtual coupling for virtual photons

through these much higher frequency modes. In some (non-cryogenic) lattices earlier in the

development of this project [7, 138], my predecessors added a screw that could tune the

frequency of the coupler lower, allowing us to achieve greater couplings between lattice sites

(up to 150 MHz).

Figure 4.5: Harper-Hofstadter model
constructed with cavities hosting local
phase winding. We assemble a 5 × 5 cavity
lattice where all sites are connected by tunnel-
ing with rate t (blue lines). We modify some
sites to host a local phase winding and show
the accumulated phase for a photon tunneling
into/out of one such site along different tun-
neling legs. This local modification of cavity
phase windings can be recast as a Peierls phase
on some of the hoppings t to realize a uniform
synthetic gauge field.

The cryogenic lattice realized here saw

the tunneling reduced to t ≈ 2π × 18 MHz,

as in order to preserve lattice mode quality

factor we deployed weaker bias fields that

shrank the amount by which we broke time-

reversal symmetry (∼ 180 MHz). In the con-

text of the qubit-lattice dynamics explored

in this thesis, the slower hopping rate be-

tween sites actually provides an advantage,

as it allows us to carry out qubit operations

several times faster than the round-trip time

of a wavepacket in an edge channel.

It is necessary to control disorder in the

resonant frequencies of lattices to a level

below other energy scales of the system

Hamiltonian (tunneling, magnetic field in-

teractions, eventual particle-particle interac-

tions). To achieve this, we tuned the fre-

quencies of lattice sites by application of

malleable, superconducting indium to the tops of the cavity posts to alter their lengths

without diminishing their quality factors. Three-post YIG-coupled and single-post lattice
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sites change frequency differently as they are cooled to cryogenic temperatures; the former

shift by ∼ 40 MHz, while the latter shift by ∼ 23 MHz. Adjusting for this difference in

cryogenic shift, we tuned and tested the frequencies of lattice sites at room temperature,

achieving disorder less than ±1 MHz for the single-post cavities and ±3 MHz for the three-

post YIG cavities. We tuned the lattice to ωl ≈ 2π×8.9 GHz for the measurements detailed

in the rest of this thesis.

Figure 4.7a shows the square Hofstadter lattice developed for this work. Each square in

the diagram is a lattice site, implemented as a resonator of frequency ω0 ≈ 2π × 9 GHz,

tunnel-coupled to its nearest-neighbors with J = 2π× 18 MHz. Sites with counter-clockwise

red arrows exhibit modes with spatial structure px + ipy, while all other sites have s-like

modes. The phase winding in a px + ipy site causes photons tunneling in/out from different

directions to acquire a phase ϕ equal to the clockwise angle between input and output

directions [138]. This ensures that when photons tunnel around a closed loop in the lattice

enclosing n plaquettes, they pick up an Aharonov-Bohm-like phase ϕloop = nπ
2 .

Once tuned up, the niobium lattice is mounted between sheets of copper (see Figure 4.8)

in order to adequately thermalize the niobium to the mixing chamber plate of the dilution

refrigerator in which it is placed. Dipole antennas are mounted onto the lid of the copper box

so that a single antenna protrudes into each lattice site from the top of the cavity. The length

of the antenna sets the coupling quality factor of each lattice site. For these measurements,

each lattice site is weakly coupled to its antenna so that the total quality factor of the lattice

is maximized.

4.2 Cryogenic setup for lattice spectroscopy and qubit

measurement

The lattice is mounted on the mixing chamber (MXC) plate of a Bluefors LD-250 dilution

refrigerator at ∼31 mK. In order to measure the linear response of the lattice, the weakly-
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Figure 4.7: Elements of chiral cavity quantum electrodynamics. a, The apparatus
consists of a 5 × 5, α = 1

4 Hofstadter lattice of resonators in which microwave photons
propagate as charged particles in a magnetic field, coupled to a single qubit on the edge that
is sensitive to the precise number of photons and their energies. Each site, implemented
as a coaxial resonator milled into a block of niobium [161], exhibits a resonance frequency
ω0 determined by the length of a central post, and a nearest neighbor tunneling rate J
determined by the size of a machined coupling hole. The synthetic magnetic field manifests
as an Aharonov-Bohm flux π/2 when photons hop around minimal closed loops (green),
generated by the spatial structure of the resonator modes: each 2-site by 2-site plaquette
includes one lattice site (red) that exhibits a px + ipy orbital, while the other three sites
exhibit s orbitals [7, 138]. The additional site (blue) on the system edge serves as readout
cavity into which transmons may be inserted. b, px+ipy sites instead contain three posts and
thus support three microwave modes (s, px ± ipy). Because our Hofstadter lattice employs
only the px+ ipy mode, we must isolate it: the s mode is tuned away by the electromagnetic
coupling between posts, while a Yttrium-Iron-Garnet (YIG) ferrimagnet (black) couples
primarily to the px − ipy mode (due to the orientation of the B-field of the red/blue bar
magnet), thereby detuning it in energy and isolating the px+ipy mode. c, A transmon qubit
is inserted into a gap between readout (left) and lattice (right) cavities on a sapphire carrier
(turquoise), and couples to the two cavities with Rabi frequencies gr and gl respectively. An
SMA connector (gold) allows direct microwave probing of this readout cavity and thus the
transmon.
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Figure 4.8: Lattice in box prior to mounting. At left, an array of SMA connectors leads
to an array of antennas weakly coupled to lattice sites on the other side of the copper lattice
lid. We tape over holes in the lid above three-post chiral sites, as antennas will not couple
adequately to their field landscapes without spoiling cavity Q. At right, another copper
sheet backs the lattice; SMA connectors lead to the antennas coupled to readout cavities
for qubits A and B. This whole assembly is eventually mounted on a copper plate that is
thermalized to the underside of the mixing chamber plate of a dilution refrigerator.

coupled antennas on each site are connected to one of a pair of 10-way Radiall R574F32005

cryogenic RF switches mounted to the MXC plate and connected to input and output lines

with circulators, enabling access to 20 sites. By placing an additional antenna on its own

circulator, we are able to perform microwave reflection measurements on all but the 4 three-

post chiral cavities, whose modes are more localized in the bottom of the cavity, making

coupling to them with a dipole antenna without spoiling the cavity quality factor more

difficult.

We measure reflection on each site with an Agilent ENA5071C network analyzer, using

the RF switches to select the relevant site-coupled antennas. We then excite propagating

pulses and measure lattice site response in time. For this measurement, a microwave tone

from a local oscillator is mixed with a pulse generated by an arbitrary waveform generator

(Keysight M8195A, 64 GSa/s) and supplied to an edge-site-coupled antenna. Microwave
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excitation amplitudes of other edge-site-coupled antennas are measured over time: signals

exiting the refrigerator are IQ demodulated using the source local oscillator and are fed to

an oscilloscope for measurement of time-traces. This specific measurement was performed

before I joined the project, and replicated later by me with a different setup.

To make transmission measurements of this lattice after we have coupled a transmon qubit

to its corner, the lattice sites depicted in blue in Figure 4.10 have their antennas connected to

a single 10-way RF switch leading to a circulator, so that these sites can all connect to either

an input line or an output line. Sites in green see their antennas connected to only input

lines and thus can only be excited, not measured. The site (1, 1) is connected separately to

a circulator so that it can be measured and excited independently. The remaining six sites

in the 5× 5 lattice are not connected to a either an input line or output line. The resonator

used to read out the qubit (for single-qubit experiments detailed in the following chapter) is

also connected to a circulator to support drive and readout. Each output line is filtered by

an Eccosorb filter to suppress the incidence of high-frequency photons at base.

A Keysight PNA-X N5242 network analyzer is used to perform lattice spectroscopy for

measurements including those depicted in Figures 4.6 and 4.9. In the spectra in Figure 4.9,

the lower-frequency bulk band gap hosts four distinct edge modes between 8.86 GHz and

8.88 GHz, while the higher-frequency bulk band gap is seen to host only three distinct edge

modes between 2π × 8.92 and 2π × 8.94 GHz. The fourth edge mode associated with this

band gap is predicted to be much closer to the bulk modes; the peak doublet near 2π× 8.94

GHz is likely to be a hybridization of one bulk mode and one edge mode that are pushed

closer in frequency than in the disorder-free model.

This trend of the top band being asymmetrically compressed in comparison to the bottom

band is due to the presence of the opposite-chirality modes in the chiral cavities, explored

further in Section 4.3. These modes are located 2π×140−2π×200 MHz higher in frequency

than the bare lattice frequency and are strongly coupled to the neighboring sites (∼2π× 20
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Figure 4.9: Transmission spectroscopy through the lattice coupled to a qubit. In
a, the blue plot and the light red plot compare the transmission between two bulk cavities
(site (3, 3) and (2, 3)) and two edge cavities (sites (1, 4) and (3, 1)) at high powers so that
the qubit is saturated and the lattice is measured while effectively decoupled from the qubit.
As predicted, two large gaps exist in the bulk-bulk transmission and modes in the edge-edge
transmission reside in these gaps. The dark red plot in b is the edge-edge transmission taken
at lower power so that the modes are shifted by their coupling to the qubit. Both plots show
four edge modes in each band gap, despite spectrum asymmetry.

MHz). The presence of these modes can shift the higher frequency modes of the lattice by

∼ 2π × 4 MHz and compress the upper band gap. Figure 4.9b shows the same edge-edge

transmission as probe power is varied. When the power is lowered, the lattice modes acquire a

dispersive shift from the qubit that is proportional to the lattice corner site’s participation in

each mode. Edge modes of the lattice experience power dependent shifts of 2π×(1−2) MHz

while modes constrained to the bulk of the lattice shift by much less than their linewidths.

4.3 Effect of backwards-chiral cavity modes

In the insets of Figure 4.12d to come below, we trace pulses propagating on the edge of

the lattice when a lattice edge site is excited with a Gaussian pulse with 4σ ≈ 80 ns. The

pulse to drive the higher-frequency excitation is centered at 9.064 GHz, and the pulse to

drive the lower-frequency excitation is centered at 9.004 GHz. Each pulse’s 80 ns 4σ width
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Figure 4.10: Cryogenic setup for single-qubit measurements. The antennas coupled to
some lattice sites (highlighted in blue) are accessible via an input and readout line connected
by a circulator, allowing reflection measurements on individual sites. Other antennas coupled
to lattice sites (highlighted in green) are accessible via input line only.
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corresponds to a 4σ frequency width of ∼ 31.8 MHz, spanning a large portion of the upper

or lower band gaps.

Excitations in the opposite-chirality edge channels propagate at different velocities; both

channels have round-trip times on the order of a few hundred ns, with the faster reaching

∼ 120 ns, much faster than the ∼ 3 us lifetime of lattice excitations. The visually notable

difference in velocities of excitations in the two edge channels results from the differing

frequency locations of edge modes within the upper and lower band gaps, also pictured

in Figure 4.9. In a disorder-free lattice without coupling to the ‘bright’ chiral modes, the

spectrum in Figure 4.9 would be symmetric about its band center. Introducing couplings

to the (detuned) ‘bright’ modes into the model reproduces the asymmetry in the measured

spectrum.

Simulations of excitation propagation in chiral edge channels based on this modified

Hamiltonian (Figure 4.11) reproduce the observed difference in edge channel propagation

velocity. The paired plots at left in this figure show disorder-free simulation of a lattice that

incorporates coupling through detuned ‘bright’ modes, plotted alongside actual data shown

in color. The plots at right reproduce the simpler simulations from Figure 3.16 which do not

incorporate the detuned chiral cavity modes, and show excitation velocities that appear a

bit less accurate to those observed.

4.4 Probing the topological lattice: time-resolved wavepacket

dynamics

Prior to introducing the transmon nonlinearity, we first characterize the mode structure of

the topological lattice itself in the linear regime. Fig. 4.12a shows the anticipated energy

spectrum of a semi-infinite strip α = 1/4 Hofstadter lattice with four bands and topologically

protected edge channels living below the top band and above the bottom band. In a finite

system, these continuum bands and edge channels fragment into individual modes satisfying
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Figure 4.11: Simulated speeds of edge excitations. Coupling to detuned px − ipy
modes on three-post lattice sites explains the asymmetry in the lattice spectrum and the
different propagation speeds of edge excitations in channels of opposite chirality. At left, the
measured spectrum from Figure 4.9b depicts the higher-frequency (red) and lower-frequency
(blue) edge modes. The two most prominent edge modes on the higher-frequency side of
the spectrum have a wider spacing than the two such modes on the lower-frequency side.
A simulated spectrum incorporating coupling to detuned px − ipy modes hosts a similar
wider gap. This greater spacing gives rise to a faster propagation speed for excitations in
the upper chiral edge channel as shown in the upper inset of Figure 4.9d. In leftmost
black-and-white plots, we depict lattice edge sites’ simulated responses when an initial 80 ns
Gaussian excitation is applied to one edge site. The full widths at half-maximum of these
pulses are highlighted in red in the higher-frequency bulk band gap and blue in the lower-
frequency bulk band gap shown in the spectrum at far left. Red and blue plots in the center
panel reproduce data from Figure 4.9d, showing excitation velocities more similar to the
simulation results at left. The rightmost black-and-white plots show excitation propagation
for a lattice that does not incorporate coupling through detuned chiral cavity modes. Color
scales are arbitrary.
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the boundary conditions. Fig. 4.12b shows the measured response of the lattice when probed

spatially both within the bulk (left) and on the edge (right), with the energies aligned to

Fig. 4.12a. It is clear that the bulk spectrum exhibits modes within the bands, while the edge

spectrum exhibits modes within the bandgaps. We further validate that the modes we have

identified as ‘bulk’ and ‘edge’ modes reside in the correct spatial location by exciting modes

identified with arrows in Fig. 4.12b and performing microscopy of their spatial structure in

Fig. 4.12c.

To demonstrate that the excitations of the edge channels are indeed both long-lived

and travel in a chiral (handed) manner, we excite the system at an edge site with a short

pulse (see Fig. 4.11) that populates the modes within each of the two bulk energy gaps in

Fig. 4.12d (see section 4.3 and Figure 3.16). By monitoring the edge-averaged response, we

determine that the high Q of the superconducting cavities enables the excitation to travel

the full lattice perimeter > 20 times prior to decay (see Fig. 4.12d). The back-scatter-

free, unidirectional propagation demonstrates the protection afforded chiral edge channels

by this system’s topology. In the insets to Fig. 4.12d, we probe in both space and time, and

observe that the excitations move in opposite directions in the upper and lower band gaps, as

anticipated from the bulk-boundary correspondence [72]. The difference in group velocities

between upper and lower edge channels arises from second-order tunneling mediated by

virtual occupation of the detuned ‘bright’ px − ipy cavity modes (see section 4.3).

Having demonstrated that the topological lattice hosts distinct ‘bulk’ and ‘edge’ modes

and can support spectrally distinct and long-lived chiral excitations, we next couple a non-

linear emitter to the lattice edge, connecting the chirality of this topological band structure

with nonlinear effects seen in cavity quantum electrodynamics.
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Figure 4.12: A superconducting Chern circuit. The central ingredient of a chiral cavity
QED platform is a long-lived, spectrally-isolated chiral (unidirectional) mode to couple to
a real/synthetic atom. For our experiments this mode lives on the edge of a synthetic Hall
system realized in a α = 1/4 Hofstadter square lattice. The numerically-computed band
structure of this model (as implemented) is depicted in a, for an infinite strip geometry. The
top/bottom bands exhibit a Chern number C = −1, while the middle two bands, which touch
at Dirac points, have a total Chern number C = +2; chiral edge channels exist above/below
the bottom/top bands respectively, as anticipated from the bulk-boundary correspondence.
b shows microwave transmission spectra measured through our actual 5 × 5 lattice, where
both the bulk bands and chiral edges manifest as well-resolved modes due to finite system
size. “Bulk” measurements are performed by exciting/measuring at two distinct sites on the
lattice interior, while “edge” measurements employ two sites on the lattice perimeter. In
c, we measure the spatial structure of the modes identified with arrows in b and observe
that the mode residing predominantly in the interior of the lattice is located energetically
within band, while the one localized to the edge resides within a gap (see section 4.2 for
measurement details). ‘Normalized Response’ represents the reflected power normalized to
the largest measured power at the chosen drive frequency. In d, we excite a single edge site
with a short pulse spectrally centered in the upper/lower (red/blue) gaps, and observe the
response of the resulting traveling excitation as a function of time averaged over the full
perimeter (main panels) and vs. site index around the system edge (inset panels). The
excitations in the top/bottom band gaps are centered at 9.064/9.004 GHz. Each Gaussian
pulse has a 4σ length of 80 ns. The insets in d demonstrate that upper and lower edge
channels have opposite chiralities. The ability of a photon to undergo numerous round trips
prior to decay is equivalent to spectroscopic resolution of the individual edge modes.
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CHAPTER 5

CHIRAL CAVITY QUANTUM ELECTRODYNAMICS

This thesis chapter is based on the conclusion to the first paper of this PhD [139].

In the prior chapters, we explored the construction of a topological metamaterial which

is home to purely linear interactions between photons. We also shared the rich and wide

range of experimental implementations of photonic systems which yield topological band

structures, either with or without time-reversal symmetry breaking. Some are realized in

silicon photonics, others in mirror-based cavities, still others in circuits. This thesis im-

plements a photonic lattice of superconducting microwave cavities in particular because of

the several advantages superconducting cavities offer: the flexible access to engineering cav-

ities, couplings, and added drives/dissipation, and the strength of the coupling achievable

between superconducting qubits, whose Hamiltonians include a Josephson nonlinearity, and

these superconducting cavities.

This strong coupling ensures that we can transfer energy between qubit and cavity res-

onators on timescales faster than the (long!) lifetimes of excitations in the superconducting

cavities, allowing us to spur and probe dynamics. Most importantly to the thrust of this

work, though, this strong coupling also ensures that a transmon qubit, with a nonlinear com-

ponent to its Hamiltonian, hybridizes strongly enough with a coupled cavity mode to lend

that mode some of its nonlinearity. The cavity mode, then, becomes gently anharmonic, and

thus sensitive to photon number, as each further incident photon excites a nondegenerate

transition rather than just shunting the cavity state up some bosonic ladder of evenly-spaced

states. In this way, coupling in nonlinear elements like transmon qubits to linear photonic

landscapes can support interactions between photons at specific sites or modes that are

strongly-enough nonlinear, as each photon ‘knows’ whether another is present there.

Introduction of a nonlinear emitter or an ensemble of nonlinear emitters to a topolog-

ical photonic system [32] mediates interactions between photons, connecting cavity quan-
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tum electrodynamics with topological photonics. This has been realized for optical photons

by coupling them to Rydberg-dressed atoms, providing the first assembly of two-photon

Laughlin states of light [45]. In quantum circuits, a 3-site lattice of parametrically-coupled

transmon qubits enabled observation of chiral orbits of photons/holes [170], and a 1 × 8

lattice of transmons enabled exploration of Mott physics [110, 172, 168]. In nanophotonics,

a topological interface enabled coupling of quantum dots to a topological channel [13] and a

resonator realized by closing such a channel on itself [14].

Taking the synthetic Chern insulator described in the previous chapters, we couple a

single superconducting transmon qubit to its edge, and explore the regime of strong-coupling

cavity quantum electrodynamics for a highly nonlinear emitter interacting with the spectrally

resolved modes of the topological lattice band structure. We detect Rabi oscillations between

the excited transmon and each mode, and measure the synthetic-vacuum-induced Lamb

shift of the transmon. Finally, we demonstrate the ability to employ the transmon to count

individual photons [175] within each mode of the topological band structure. This work

opens the field of experimental chiral quantum optics [102], enabling topological many-

body physics with microwave photons [7, 48] and providing a route to backscatter-resilient

quantum communication.

5.1 Coupling a quantum emitter to the topological lattice

To explore quantum nonlinear dynamics in the topological lattice we couple it to a transmon

qubit which acts as a quantized nonlinear emitter whose properties change with each photon

that it absorbs. Unlike traditional cavity and circuit QED experiments in which a nonlinear

emitter couples to a single mode of an isolated resonator, here the transmon couples to all

modes of the topological lattice. We induce a controlled resonant interaction (see 2.4) be-

tween the transmon and individual lattice modes, investigating the resulting strong-coupling

physics.
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Figure 5.1: Quantum nonlinear dynamics on a chiral lattice. When a transmon qubit
is coupled to the edge of the topological lattice, many of the properties of the (nonlinear)
qubit are transferred to the (linear) lattice modes. In a, we prepare the qubit in its second
excited state |f⟩ (see top inset), and drive it with a classical tone (see Methods), thereby
scanning the energy of resulting dressed excited state |ẽ⟩ through the band structure. The
qubit can then coherently exchange a single photon with individual lattice modes. The
resulting multimode chevron exhibits fast, low-amplitude Rabi oscillations when the qubit
is detuned from the lattice modes, and slower, high-contrast oscillations on resonance with
each mode. The vacuum coupling to each mode is proportional to that mode’s overlap with
the qubit site (see section 5.6.2); as such the edge modes exhibit fast oscillations, while
many bulk modes exhibit slower oscillations. The bottom inset shows the Lamb shift of
the transmon due to the topological lattice vacuum, measured as the frequency differences
between chevrons and linear spectroscopy in Figure 4.12. The chevrons exhibit an additional
overall Stark shift from the classical drive. The gray/white at bottom highlight band/gap
locations. b, When the qubit |ẽ⟩ state approaches resonance with a lattice mode (blue line
in a), vacuum-stimulated Rabi oscillations between qubit and cavity arise, demonstrating
strong-coupling cavity QED where information exchange with a single chiral mode is faster
than all decay processes. c, To count photons in an edge mode, here the highlighted mode
in a, we directly excite that mode with a coherent pulse and detect the number of photons it
contains as a discrete photon-number-dependent shift of the qubit frequency (probed through
its readout cavity, see section 5.3). The multi-Lorentzian fit and individual Lorentzians for
each photon number are shown in gray. Inset, by measuring the qubit excitation spectrum
vs. drive amplitude applied to this edge mode, we observe a transition from vacuum (single
high-frequency resonance) to the expected Poisson distribution (multiple lower-frequency
resonances). Uncertainties are smaller than data points in b and c.
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The |g⟩ ↔ |e⟩ transition of the transmon (ωq ≈ 2π×7.8 GHz) is detuned from the lattice

spectrum (ωlattice ≈ 2π×9 GHz) by ∆ ≈ 2π×1.2 GHz. We bring the transmon controllably

into resonance with individual lattice modes via the dressing scheme in Figure 5.1a inset; this

dressing also gives us complete control over the magnitude of the qubit-lattice site coupling.

In Figure 5.1a we tune the excited transmon into resonance with individual lattice modes

and observe vacuum-stimulated Rabi oscillations of a quantized excitation between the trans-

mon and the mode. Comparing with the predicted band structure shown in Figure 5.1b,

we see that the transmon couples efficiently to both bulk and edge modes of the lattice,

despite being physically located on the edge. This is because the lattice is only 5 sites

across, comparable to the magnetic length lB ∼ 1/α = 4 sites, so the lattice site coupled to

the transmon has substantial participation in both bulk and edge modes; furthermore, the

system is sufficiently small that the number of bulk sites is comparable to the number of

edge sites, so all modes have approximately the same “volume.” The rates of Rabi oscillation

shown in Figure 5.1a reflect the participation of the qubit site in each mode.

To unequivocally demonstrate strong coupling between the transmon and a single lattice

mode, we examine a single frequency slice of Figure 5.1a versus evolution time. Figure 5.1c

shows such a slice and demonstrates high-contrast oscillations that take several Rabi cycles

to damp out, as is required for strong light-matter coupling. For simplicity, we choose our

dressed coupling strength to be less than the lattice mode spacing; stronger dressing to

explore simultaneous coupling to multiple lattice modes opens the realm of super-strong-

coupling physics [118, 93], where the qubit launches wavepackets localized to smaller than

the system size.

When a qubit is tuned towards resonance with a single cavity mode it experiences level

repulsion [57] and then an avoided crossing at degeneracy. The situation is more complex

for a qubit coupled to a full lattice, where one must account for interactions with all lattice

modes, both resonant and non-resonant. In total these couplings produce the resonant
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oscillations observed in Figure 5.1c plus a frequency-dependent shift due to level repulsion

from off-resonant lattice modes, which may be understood as a Lamb shift from coupling to

the structured vacuum [95]. We quantify this Lamb shift by comparing the frequencies of

the modes observed in linear lattice spectroscopy, as in Figure 4.12a but with the transmon

present (see Figure 4.9), to those observed in chevron spectroscopy in Figure 5.1a. These data

are shown in the lower inset to Figure 5.1a. When the qubit is tuned near the low-frequency

edge of the lattice spectrum it experiences a downward shift from all of the modes above it,

and when it is tuned near the upper edge of the lattice, it experiences a corresponding upward

shift. These two extremes smoothly interpolate into one another as modes move from one

side of the qubit to the other. This effect arises from the multimodedness of our qubit/cavity

system, and not the topology explicitly, as the qubit is coupled only to a single site. There

is also a near-constant Stark shift of ∼ 3.5 MHz arising from the classical dressing tone.

To our knowledge, this is the first measurement of the Lamb shift of a qubit in a synthetic

lattice vacuum.

Finally, we demonstrate the ability to count photons within an individual lattice mode.

If the transmon were coupled to a single lattice site and not to the full lattice, each photon

in that site would shift the qubit |g⟩ ↔ |e⟩ transition by 2χ, where χ ≈ g2l
∆ ×

αq
∆+αq

≈ 2π× 5

MHz, and αq is the transmon anharmonicity. This photon-number-dependent shift, and

thus the intra-cavity photon number, can be measured by performing qubit spectroscopy

detected through the readout cavity (see section 5.6.2). When the transmon is coupled to a

lattice rather than an isolated cavity, the χ shift is diluted by the increased volume of the

modes. In Figure 5.1d, we inject a coherent state into the highlighted mode in Fig. 5.1a

and then perform qubit spectroscopy to count the number of photons within the mode. The

observed spectrum corresponds to a coherent state with n̄ ≈ 1.4, with the individual photon

occupancies clearly resolved. Indeed, when we perform this experiment as a function of the

amplitude of the coherent excitation pulse (Fig. 5.1d, inset), we find a continuous evolution
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from vacuum into a Poisson distribution over the first six Fock states.

In this work we have demonstrated a photonic materials platform that combines synthetic

magnetic fields for lattice-trapped photons with a single emitter. This has enabled us to

explore interactions between the individual modes of a topological system and the non-linear

excitation spectrum of the emitter, entering the realm of fully-granular chiral cavity QED

and thus demonstrating the ability to count and manipulate individual photons in each mode

of the lattice. We anticipate that coupling a transmon to a longer edge would enable qubit-

mediated photon-induced deformation of the edge channel (in the “super strong” coupling

limit of the edge channel [118, 187]), as well as universal quantum computation via time-

bin-encoding [149] or blockade engineering [35]. Introduction of a qubit to the bulk of this

system would allow investigation of the shell-structure of a Landau-photon polariton [48],

a precursor to Laughlin states. Addition of a second qubit on the edge would allow chiral,

back-scattering-immune quantum communication between the qubits [102]. Scaling up to

one qubit per site will enable dissipative stabilization [109, 82, 67, 96] of fractional Chern

states of light [7] and thereby provide a clean platform for creating anyons and probing their

statistics.

5.2 Setup used for pulsed measurements

As described in more thorough detail in an as-yet-unpublished doctoral thesis by Gabrielle

Roberts [169], pulsed time-domain measurements that can probe qubit dynamics, used to

generate the data in Figure 5.1, require fast pulse generation and digitization that are not

necessary for the continuous-wave microwave measurements detailed in the last chapter,

where the response of a system to a steady-state tone is the measurement of interest. Here,

it is necessary to shape, on the ns timescale, the pulses used to control the states of super-

conducting qubits, and to achieve the fine frequency control necessary for good measurement

resolution in frequency-space and access to resonant dynamics. Measurements of qubit states
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executed dispersively through readout resonators must also be phase-sensitive and recordable

via digitizer so that many thousands of individual experimental shots can be averaged to

produce a distribution that characterizes the quantum dynamics under study. An accessible

and thorough introduction to the basics of pulsed measurements on superconducting qubits

can also be found in a thesis by Naghiloo [128].

For the qubit measurements described in the section above, a set of room-temperature

electronics handle this signal generation and recording: a Keysight arbitrary waveform gen-

erator (M8195A, 64 GSa/s) is used to synthesize a local oscillator signal near the qubit

frequency, while Berkeley Nucleonics 845-M microwave synthesizers provide separate local

oscillator signals near lattice and dressing frequencies. The local oscillators are then I/Q

modulated by Keysight PXIe AWGs (M3202A, multichannel, 1GS/s) to generate the indi-

vidual qubit drive, qubit readout, and dressing pulses. The qubit drive and readout pulses

are combined outside the fridge and sent to the readout resonator. The reflected readout

signal is routed to the output line via circulators and amplified with a HEMT amplifier at

4 K and additional room temperature amplifiers (Miteq AFS3-00101200-22-10P-4, Minicir-

cuits ZX60-123LN-S+). The signal is then demodulated using an IQ mixer and recorded

using a fast digitizer (Keysight M3102A, 500 MSa/s). A layout of the room-temperature

components of the experimental setup can be found in Figure 5.2.

5.3 Transmon characterization

The transmon chip is clamped in a copper holder that is then mounted on the side of the

niobium lattice (see Figure 4.7). Indium foil is added to the inner surface of the copper

holder, padding the qubit clamp in order to better thermalize the sapphire chip on which

the qubit is printed and secure the qubit in its housing. One measurement port in the

system strongly couples to the readout cavity, allowing both supply of strong drive and

performance of reflection measurements which dispersively read out the qubit state. The
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Figure 5.2: Room-temperature setup for single-qubit measurements. In any given
measurement, one of the three readout lines pictured in Figure 4.10 is selected for use. Drives
on lattice sites, important for some pulsed measurements, are either passed directly into the
refrigerator after IQ modulation or, in the case of strong dressing tones, are filtered by a
tunable bandpass YIG filter with a ∼ 20 MHz bandwidth and amplified before use.
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transmon is fixed-frequency to avoid unnecessary dephasing from sensitivity to the magnetic

fields applied to the YIG spheres.

The Hamiltonian of the 25 lattice sites and a readout resonator coupled to the qubit is:

H

ℏ
=
∑
p=q,r

(
ωpâ
†
pâp −

αp
2
â
†2
p â

2
p

)
− 2χrâ

†
qâqâ

†
râr

+

Nmodes=25∑
l=1

(
ωlâ
†
l âl −

αl
2
â
†2
l â

2
l − 2χlâ

†
l âlâ

†
qâq

)
+
∑
l ̸=m

−2χlmâ
†
l âlâ

†
mâm,

(5.1)

Here ωq = ωge is the g ↔ e transition frequency of the transmon, αq is the transmon

anharmonicity (so ωef = ωq − α), ωr is the bare readout resonator frequency, αr is the

self-Kerr shift of the readout resonator, 2χr is the qubit-readout dispersive shift, ωl are the

lattice mode frequencies, 2χl are the qubit-lattice mode dispersive shifts, αl are the self-Kerr

shifts of the lattice modes, and χlm are the cross-Kerr shifts of the lattice modes.

The transmon qubit is controlled and read out dispersively via drive and readout tones

applied to its readout resonator, shown enclosed in the left side of the blue boxes in Figure 4.7

and enclosed in red in Figure 4.7.

Initial qubit characterization was done with the single lattice site to which the qubit was

coupled tuned to the lattice frequency while the other 24 sites were temporarily blocked off

using screws lowered from the lid of the lattice until they contacted the post of the lattice

site. My predecessor used this configuration to compare qubit lifetimes with and without

magnets present in the chiral lattice; the introduction of the magnets resulted in the lifetime

of the qubit dropping from ∼ 9 to ∼ 3 µs, approximately commensurate with the lifetimes

of the cavity modes.

Removing the detuning screws, we characterize the qubit coupled to the full tuned-up
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lattice including the magnets necessary to realize the synthetic flux. Table 5.1 summarizes

the qubit parameters. The readout frequency and linewidth and single lattice site frequency

are measured and fit via continuous-wave reflection measurements of ther eadout resonator

taken with a network analyzer. The qubit transition frequency ωq/2π is measured through

Ramsey spectroscopy, a measurement especially effective at characterizing small differences

between the frequencies of applied drive pulses and the frequencies of qubit dipole transitions.

χr is measured by π-pulsing the qubit and measuring the associated dispersive shift in the

readout resonator frequency. The χl shifts are measured, for lattice modes strongly-coupled

enough to the qubit for this to be seen, by supplying a few-photon coherent drive to the

lattice corner on-resonance with each lattice eigenmode and measuring the photon-number-

dependent splitting (see section to follow) in the qubit frequency. The self-Kerr αl of the

modes were calculated from the measured dispersive shifts χl and transmon anharmonicity

αq, using the relation 2χl =
√
αqαl [132].

5.4 Structure of pulsed measurements with qubit

To generate number splitting data like that shown in Figure 5.1, a classic demonstration

of strong coupling in circuit quantum electrodynamics in which photon-number-resolved

peaks in the qubit transition spectrum appear when the dispersive shift between cavity and

qubit outstrips the qubit linewidth [175], we populate relevant eigenmodes with photons

by providing long and weak drive tones at these modes’ frequencies through an antenna

weakly coupled to the corner site of the lattice most proximate to, and directly coupled to,

the qubit. This pulse sequence is diagrammed in Figure 5.3. While this weak drive is still

being supplied to the lattice corner site, we try to excite the qubit from its ground state by

supplying its readout resonator with a long Gaussian drive pulse (σ = 1400 ns) that has a

fraction of the amplitude it would take to fully place the qubit in its first excited state. We

then measure the degree to which the qubit is excited from its ground state with a readout
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tone applied at a range of frequencies in the vicinity of the original (zero-lattice-photon)

qubit transition. In this way we can characterize the photon-number-dependent shift of the

qubit resonance, which depends on photonic population in each lattice eigenmode that has

enough edge participation to couple notably to the qubit.

Parameter Hamiltonian 
Notation

Value

Readout frequency !$/2$ 10.5835 GHz

Readout linewidth &$/2$ 500 kHz

Qubit frequency !!/2$ 7.815 GHz

Qubit anharmonicity '/2$ 346 MHz

Bare lattice frequency !%/2$ 8.901 GHz

Readout dispersive shift ($/2$ 113 kHz

Single lattice site dispersive 
shift (&'/2$ 5.3 MHz

Coupled lattice mode 
dispersive shift (mode at 
8.8719 GHz)

(%…)/2$ (0.45 MHz)

Single lattice site self Kerr )&'/2$ 81 kHz

Coupled lattice mode self 
Kerr (mode at 8.8719 GHz) !%…)/2$ (0.6 kHz)

Table 5.1: Parameters of qubit, lat-
tice, and readout resonator. Terms
designated “single lattice site” are mea-
sured when only the lattice site to which
the qubit is directly coupled is tuned to
the lattice frequency while the rest of the
lattice sites are far detuned. The bare lat-
tice frequency is the target frequency to
which each lattice site is tuned before the
couplings to adjacent lattice sites are en-
abled. Values in parentheses are exam-
ple quantities for the lattice mode inves-
tigated in Figures 5.1b and 5.1c.

It’s worth asking how we know what fre-

quency of drive to use to generate a coherent

state in the relevant eigenmodes! We should

expect that coupling between the transmon, a

source of nonlinearity, and the lattice modes with

which it hybridizes should lend some nonlinear-

ity to the lattice modes, realized as a high-power

shift and ‘snap’ upon qubit saturation by a strong

drive in Figure 4.9. Matt Reed’s thesis [166] in-

troduces this high-power behavior of a weakly-

nonlinear superconducting resonator coupled to

a transmon qubit and demonstrates how to use

that high-power shift for measurement of qubit

states. We have, in figure 4.9, lattice trans-

mission spectra taken at low drive power with

a network analyzer that provide a pretty good

guide of where the lattice eigenmodes are located.

To ensure that we’re fully accounting for the

qubit’s effects on lattice modes at drive powers

used for pulsed measurements, we perform lat-

tice spectroscopy via the qubit, supplying long,

weak drive tones to the lattice corner at a range of frequencies and attempting to excite the
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qubit from its ground state. If the qubit is dispersively shifted by the affirmative presence

of photons in a lattice resonance, it will fail to excite at the known resonant frequency; this

effect is used to trace out a lattice spectrum as ‘seen’ by the qubit.

To generate Rabi oscillations between the qubit and lattice eigenmodes (see section 2.4),

we supply a sequential set of π pulses at the qubit transition frequencies ωge and ωef to

prepare the qubit in its |f⟩ state. We then supply a square pulse of varying length (0− 2000

ns) to the qubit’s readout resonator to tune the qubit into resonance with targeted lattice

eigenmodes and drive oscillations between qubit and lattice. We finally supply an additional

π pulse at ωef before reading out the qubit state. This pulse sequence is also diagrammed

in Figure 5.3.

5.5 Dilution of global qubit-lattice g̃ between modes

If all other sites in the 5×5 lattice, besides the site to which the transmon is directly coupled,

are detuned from this single corner resonator, each photon in the corner site induces a shift

of the qubit |g⟩ ↔ |e⟩ transition of 2χ, with χLS ≈
g2l
∆ ×

αq
∆+αq

≈ 2π × 5.3 MHz. When,

after initial qubit characterization, all other lattice sites are tuned back into resonance and

hybridize to form the lattice’s topological band structure, this qubit-site dispersive shift is

diluted between all lattice modes in proportion to their participation on that corner site.

Lattice mode l experiences a dispersive shift 2χl = 2χLS × |⟨ul|LS⟩|2, where |ul⟩ is the

wavefunction of mode l, and |LS⟩ is the wavefunction of a photon localized on the corner

site coupled to the transmon. Note that
∑

l χl = χLS .

The mode employed in Figure 5.1c, exhibits a shift per photon of 2χ7 where χ7 = 2π×0.45

MHz, extracted from the frequency difference between zero- and one-photon resonances of

Figure 5.1c. This mode has a wavefunction overlap with the corner site of |⟨u7|LS⟩|2 = 0.09,

and thus we anticipate a shift of 2χ7 = 2χLS × |⟨u7|LS⟩|2 = 2 × 2π × 5.3 MHz ×0.09 ≈

2 × 2π × 480 kHz, in agreement with the measured χ7 = 2π × 450 kHz. In Figure 5.4 we
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Figure 5.3: Pulse sequences used for Fig-
ure 5.1. In a, locations of qubit drive, read-
out tone, and lattice corner drive are shown in
a schematic cross-section of the lattice edge.
The transmon chip is shown in yellow. b, To
measure the photon-number-dependent shift
in the qubit resonance, we apply a very long
(24.6 µs) weak drive (blue pulse) at lattice
eigenmode frequencies to the lattice corner site
directly coupled to the qubit. After a wait, we
apply a slow weak Gaussian pulse (yellow) at
ωq and then read out (purple pulse) the qubit
absorption after the lattice eigenmode drive
is completed. c, To generate Rabi oscillations
between qubit and a swath of the lattice eigen-
spectrum, we prepare the qubit in its |f⟩ state
with two π pulses at ωq = ωge (yellow) and
ωef (red). We drive dressed vacuum Rabi os-
cillations with a square pulse of varying length
at ωf0↔g1 = (ωge+ωef −ωl), apply a π pulse
at ωef (red) to enable readout on the |g⟩ ↔ |e⟩
transition, and read out (purple).
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Figure 5.4: Mode-dependent dispersive
shift of qubit. Theoretical predictions of the
dispersive shift between the qubit and each lat-
tice eigenmode are compared to measured val-
ues from number splitting data. An example
plot of number splitting due to population of a
particular lattice eigenmode is seen in inset c
of Figure 5.1. Theory is based on the measured
(single-site) χLS scaled by the spectral weight
of each lattice mode at the lattice corner site
which is coupled to the qubit. Only modes
present in the chevron spectrum of the lattice
pictured in Figure 5.1 are included. The sep-
aration between 0- and 1-photon peaks when
mode l is driven is defined as 2χl. Expected re-
gions of the bulk bands, estimated from mode
indices, are highlighted in gray. Error bars are
derived from fits to number splitting data.
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compare, for each mode, the predicted shift based on simulations of eigenmode structure

with the shift extracted from the observed splittings between zero- and one-photon peaks of

additional number splitting measurements.

5.6 Measurement and analysis of four-wave swap

As the transmon is fixed-frequency, we “tune” the transmon to resonance with various lat-

tice modes by dressing through the readout cavity using the four-wave process detailed in

section 2.4: we prepare the transmon in the second excited (|f⟩) state and then provide a

detuned drive on the |f⟩ ↔ |e⟩ transition to create a dressed |ẽ⟩ ≈ |f⟩ − Ω
∆ |e⟩ state at any

energy in the vicinity of the lattice band structure, with a dipole moment for coupling to the

lattice which is rescaled by the ratio of the dressing Rabi frequency to the detuning from the

|f⟩ ↔ |e⟩ transition. The resulting vacuum-stimulated |f, 0⟩ ↔ |g, 1k⟩ Rabi frequency is:

g̃k ≈
√
2

glα

∆(∆ + α)
Ω× ⟨xtransmon|ψk⟩ =

√
2

gkα

∆(∆ + α)
Ω (5.2)

Here α is the qubit anharmonicity, ∆ is the detuning between qubit ωge and the lattice

eigenmode frequency ωk, Ω is the Rabi frequency of the dressing tone on the |f⟩ ↔ |e⟩

transition of the transmon, ⟨xtransmon|ψk⟩ is the participation within mode k of the lattice

site where the transmon resides, and gl is the bare coupling between qubit and the lattice

corner site.

Drawn from Pechal et al. [145], this dressing scheme may alternatively be understood as

a 2-photon Rabi process, where the |f, 0⟩ ← |e, 0⟩ transition is stimulated by the classical

drive, and the |e, 0⟩ ← |g, 1k⟩ transition is stimulated by the vacuum field of mode k. For

the qubit measurements, the the lattice is tuned to a center frequency of 2π × 8.9 GHz,

corresponding to a dressing frequency of 2π × 6.35 GHz ±50 MHz. Note that with the

additional significant figure, the |g⟩ ↔ |e⟩ transition has a frequency of 2π × 7.75 GHz.
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5.6.1 Mode dependence of effective g̃

The stimulated vacuum-Rabi oscillations shown in Figure 5.1 between |g, 0⟩ and |f, 1⟩ display

different rates depending on which lattice eigenmode is being populated. These rates should

be directly proportional to the participation in the eigenmode of the corner lattice site

which couples to the qubit. There is an additional dependence arising from the frequency-

dependence of the dressing amplitude.

Figure 5.5: Mode-dependent |f0⟩ ↔ |g1⟩
coupling. Theoretical predictions of the cou-
pling gk seen in stimulated vacuum-Rabi os-
cillations between dressed |ẽ⟩ of the qubit and
a range of lattice eigenmodes are compared
with empirical gk drawn from measurements
of the swap frequency close to resonance. The-
oretical predictions are derived from rescaling
g̃ =

√
2 gα
∆(∆+α)

Ω by the spectral weight of
each lattice mode at the lattice corner site
which is coupled to the qubit. A small tilt
in the theoretical plot (gray line) can be seen,
with the lower-frequency side slightly elevated
above the higher-frequency side. We omit
characterization of error on the data-based
quantities because we believe these errors are
likely systematic.

In Figure 5.5, we plot couplings g̃k be-

tween the dressed |ẽ⟩ state of the qubit and

each lattice eigenmode for which resonant

swap oscillations are seen. A diagram of this

dressed state and the lattice eigenspectrum

is presented in the inset of Figure 5.1a. Fig-

ure 5.5 compares the above mode-dependent

couplings g̃k to those that would be expected

if we rescaled an effective |f, 0⟩ ↔ |g, 1⟩ cou-

pling g̃ by the spectral weight of each lat-

tice mode at the lattice corner site which is

coupled to the qubit. Figure 5.5 employs a

drive strength Ω chosen to provide the best

fit between theory and data. Ω exhibits an

additional weak frequency dependence not

included in the Figure 5.5 simulation arising

from the frequency-dependent occupation of

the driven corner lattice site in response to

the classical excitation tone.

We measure gk = ωswap,k/2 by fitting exponentially decaying sinusoids to slices of Fig-
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ure 5.1a taken at drive frequencies closest to those that produced resonant oscillations with

each mode. Because these data were taken at a discrete set of drive frequencies, many of these

slices are likely slightly off-resonance, which could contribute to added scatter in gk rates

found from data. Variations in the eigenmode spatial structure caused by lattice disorder,

as well as frequency-dependent attenuation of the RF drive across the almost 100 MHz-wide

band, produce the remaining differences between data and theory shown in Figure 5.5.

5.6.2 Lamb shift from a synthetic vacuum forest

In addition to a variation in qubit-mode couplings gswap observed across the lattice spectrum,

we also note that the lattice modes ‘move’ by different amounts to reach their locations in

the chevron plot in Figure 5.1a. Another way to say this is that the drive frequencies ωd

which provide resonant access to coherent interactions between |f, 0⟩ and |g, 1⟩ states of qubit

and lattice, differ from the bare expected ωd = 2ωq − α − ωk for each mode k. Comparing

the swap-based spectrum in Figure 5.1a to low-power lattice spectra in Figure 4.9, one can

see that the former spectrum is compressed and sees its lower-frequency resonant process

asymmetrically shifted upwards towards band center.

This shift of resonant access to lattice eigenmodes stems from a mixture of Stark shift

on the qubit |f⟩ and |g⟩ levels due to the strong classical swap drive, and the Lamb shift

experienced by the qubit as its dressed excited state is ‘tuned’ near resonance with a 25-item

forest of vacuum modes.

The scale of the measured shift on each mode (frequency in chevron plot minus frequency

in low-power spectrum) is plotted as in inset in Figure 5.1a and here in Figure 5.6. All modes

experience a global Stark shift of ∼ 4 MHz that is largely constant, although mildly diagonal,

across the spectrum due to the strong swap drive. On top of that Stark shift, a curved pattern

with the strongest divergence from baseline around the edge modes traces out the effect of

the global multimode Lamb shift, broadly understandable as:
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∆q,Lamb =
∑

modes k below

g̃2k
∆k,m

+
∑

modes k above

g̃2k
∆k,m

(5.3)

Figure 5.6: Effect of Stark and Lamb
shifts on qubit resonance. We plot the
difference between the frequencies of lattice
eigenmodes accessed via four-wave swap and
the frequencies of those eigenmodes in low-
power transmission spectra. This difference,
with this sign, represents the shift on the
qubit’s |g⟩ ↔ |f⟩ transition due to the combi-
nation of Stark and Lamb shifts it experiences
while being ‘tuned’ near resonance with lattice
eigenmodes using a strong multiphoton drive.

Here g̃k is the dressed effective coupling

rate between the qubit and mode k of the

lattice without an applied drive involved.

∆k,m is the detuning between the frequency

of the lattice eigenmode m targeted for res-

onant swap coupling and the non-m mode

k’s frequency. Here it’s convenient to make

the assumption, which has some merit as

the strong swap drive is applied on the

readout resonator, that the swap drive has

only higher-order and minimal effect on the

lattice eigenmode frequencies, and that all

of the arcane drive-based effects are con-

strained to the heavily dressed qubit tran-

sitions.

Were the lattice spectrum perfectly sym-

metric, when the qubit’s dressed excited state was tuned into resonance with dead-center

(the Dirac mode) of the lattice spectrum, we would expect the collective twelve-mode Lamb

shifts, which scale inversely with detuning, from either side of band center to cancel each

other out. Often when we think of the Lamb shift [95] we conceive of it as between a non-

linearity and a single-mode quantum vacuum; recent work has been done to explore the

broadband Lamb shift of an emitter coupled to a mode continuum [181]. In contrast to both

of the above situations, here the Lamb shift derives from near-resonant coupling between

the qubit and a 25-element vacuum forest. Other work in multimode systems [35] involves
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a larger free spectral range between these individually addressable modes, whereas here the

∼ 5−10 MHz detunings between modes of interest brings elements of this forest much closer

to resonance with the qubit than is seen in some other multimode systems.

5.7 Conclusion

This demonstration of strong coupling between a transmon qubit and a topological lattice

leverages the capacity of circuit quantum electrodynamics platforms to reach high coupling

strengths in order to gain access to exploring strong light-matter interactions in a chiral

system. Measurement of the multimode Lamb shift is particularly intersting because we

probe a regime intermediate between qubit-single mode polariton physics and the physics of

an emitter coupled to a continuum waveguide, a zone that is fundamentally of interest for

researchers hoping to leverage the power of engineered photonic lattices but which is less

explored.
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CHAPTER 6

NON-RECIPROCAL TRANSPORT IN A CHIRAL EDGE

CHANNEL

This chapter is based on the as-yet-unpublished second paper [142] of this thesis.

6.1 Introduction: Chiral transport of photons

Construction of topological metamaterials for photons provides designer access to the topo-

logical phases of fundamental interest in classical [178] and quantum [72, 140] materials

physics. The robustness to disorder of chiral edge channels in topological insulators has

inspired work [140, 155] across silicon photonics [66, 164, 121], optics [173], and microwave

systems [203, 40, 27] to build topological photonic systems which guide backscatter-protected,

directional propagation of classical light.

Incorporating nonlinearity into such topological metamaterials enables interactions be-

tween the otherwise non-interacting photons [32], opening avenues to investigate the funda-

mental nature of interactions between particles modified by topological structure [157, 31,

102, 116]. While limited by the strength of emitter-material couplings [14] and magneto-

optical response [140] in many photonic platforms, introducing nonlinearity, whether system-

wide [170, 28, 45] or spatially local [14, 84], drives work in topological photonics. Topological

bandstructures which incorporate nonlinear interactions have the potential for enhancing and

stabilizing lasing [11, 12, 176], protecting from loss the correlated and fragile multiphoton

quantum states needed for quantum computing [123, 22, 117], stabilizing long-range entan-

gled steady states of light in combination with emitter arrays [184, 148, 102] or (localized

sites of) reservoir engineering [82, 208, 151], and enabling directional state transport to build

quantum networks [69].

The strong light-matter interaction and flexible, controllable emitter-photon coupling
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available in circuit quantum electrodynamics offer a powerful toolbox with which to gener-

ate and capture photons in both continuum [10, 30, 91, 25, 214, 167] and multimode [100] or

band-engineered [84, 212] waveguides. A thread of recent experiments has focused on achiev-

ing on-demand chiral emission of photons [120], in particular from superconducting qubits

strongly coupled to bidirectional waveguides [80, 81, 79, 165], prioritizing combating loss in

order to situate directionally-emitting qubits as nodes in broader quantum networks [42, 85].

These approaches employ interference between coupling points to emit directionally to an

intrinsically bidirectional waveguide; we reverse this paradigm, making the waveguide the

chiral system of interest and locally coupling non-chiral quantum emitters to it.

In the previous chapter of this thesis, we introduced a local nonlinearity to a syn-

thetic Chern insulator, demonstrating strong coupling of a single transmon qubit [139]

to individually-resolved eigenmodes of this superconducting microwave cavity array which

breaks time-reversal symmetry for photons [138]. The sixteen-site edge of this superconduct-

ing topological lattice can admit couplings to many qubits or engineered reservoirs, opening

opportunities for generating non-classical states of light which are specially enabled by the

system topology [39, 131, 208, 151, 184, 82, 148, 143] and are of interest as resources for

continuous-variable quantum information processing [149, 55].

In this chapter, we demonstrate non-reciprocal transport of itinerant photons via edge-

localized wavepackets in a two-dimensional topological photonic metamaterial. We synthe-

size a wavepacket by spurring emission of a single photon from a transmon qubit strongly

coupled to a set of discrete edge modes available in the bulk band gap of this finite-size

Harper-Hofstadter lattice, operating in a regime intermediate between cavity and waveg-

uide quantum electrodynamics. The wavepacket propagates along the chiral edge of the

lattice and is detected by a second edge-coupled transmon, providing a direct observation

of chiral emission. We measure a time delay for a photon launched ‘the long way around’

commensurate with that expected for an edge-propagating excitation. Demonstration of chi-
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ral transport between quantum emitters coupled to an engineered topological lattice offers

opportunities for using such a system to build and probe entangled states of light which gain

structure from [39, 131], or are made accessible by [184, 82, 148, 143, 208, 151], the system

topology, and is a step along the path to exploring topological quantum matter [157].

In Section 6.2 we detail the experimental setup used here, and the work done to charac-

terize the updated lattice platform. In Section 6.2 we characterize the transmons used and

explain protocols related to cooling, measurement, and handling of these anharmonic oscil-

lators. In Section 6.4 we demonstrate detection of a photon launched between two transmon

qubits through individual and multiple edge modes of the topological lattice. In Section 6.5

we use this pair of qubits to demonstrate a time delay in transport through a chiral chan-

nel commensurate with this wavepacket propagating along the chiral lattice edge. And in

Section 6.6 we explore a range of issues and experimental subtleties related to implementing

the multiphoton classical drive used to execute emission and detection of lattice-propagating

photons.

6.2 Experimental setup and lattice characterization

Our Chern insulator platform consists of a the same 5×5 array of reentrant quarter-wave-

post microwave resonators [162] machined in niobium that has been described throughout

this thesis. Their bare frequencies are ωlat/2π = 8.903 GHz and cavity-cavity couplings

J/2π ∼ 18 MHz. Recall that to generate a synthetic magnetic field for photons, we employ

an actual gauge field by introducing magnetic-field-tunable magnon modes to our cavity

array. This results in a local phase modification on specific cavities that introduces topology

to the lattice band structure.

This realization [138, 139] of a quarter-flux Harper-Hofstadter lattice for light hosts two

chiral edge channels of opposite directionality at non-degenerate energies in gaps between

its bulk bands. Because the edge channels of this chiral lattice are sparsely sampled by
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a.

A B

Figure 6.1: Experimental setup for two-qubit measurements. a, A 5 × 5 lattice of
microwave cavity resonators machined in superconducting niobium (photograph inset at top
right) realizes a quarter-flux Harper Hofstadter model for microwave photons. Cavities are
evanescently tunnel-coupled; curved black arrows indicate the four such lattice sites engi-
neered to host an in-cavity phase winding that supplies the lattice topology. We couple two
fixed-frequency superconducting qubits, to corner sites of this lattice as well as to auxiliary
resonators (hashed squares) for readout and control. Undriven, these qubits are more than 1
GHz detuned from the lattice band. A schematic at bottom indicates the four-wave process
which brings a dressed excited state of each qubit (left and right boxes) on resonance with
elements of the lattice eigensystem (center box), enabling coherent transfer of an excitation
between each qubit and the topological lattice.
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discrete edge-localized eigenmodes, generation of a wavepacket in each chiral edge channel

is realizable by exciting a set of these edge modes. As the smallest lattice which hosts a

distinct bulk and edge, a 5× 5 cavity array allows clear distinctions to be drawn between its

25 eigenmodes, and offers access to explore finite-size effects.

We again cool this lattice to ∼ 35 mK, ensuring ∼ 3 µs excitation lifetimes in the

superconducting niobium cavity array. We diagram the experimental setup used to take

lattice spectra and perform qubit measurements in Figure 6.2. Notably, in order to supply

a multiphoton drive strong enough to generate speedy resonant swapping of excitations

between |f, 0⟩ and |g, 1⟩, while not unduly relying on power amplifiers to send a massive

amount of power into the refrigerator, we apply only 40 dB of attenuation (versus the

standard 70 dB) to multiphoton drive input lines. These lines are then bandpass filtered with

hardware thermalized at base, blocking off unwanted radiation except at a target regime of

frequencies near-resonant with the drive. We calculate the blackbody spectrum of a radiating

object at 4K (the plate above at which lines are thermalized) and conclude that a minimal

amount of thermal radiation from this plate will make it through the bandpass filtering

centered around 6.3 GHz. We diagram the room-temperature electronics used to take time-

domain pulsed measurements of qubit and lattice in Figure 6.3.

6.2.1 Characterizing the lattice and its edge channels

To counter any drift accumulated over the several years’ interim between measurements,

we assessed the frequencies of the lattice corner sites to which the qubits are coupled with

screws inserted to spoil coupling to the rest of the lattice, and then re-tuned the frequencies

of single-post sites by adding and removing indium to better match this resonance condition.

Ultimately the room-temperature variation in lattice site frequencies of single-post cav-

ities wass reduced to a maximum of ±5 MHz, with an average of 0.35 MHz (standard

deviation 3.53 MHz) departure from resonance with the chiral sites, against a hopping rate
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Figure 6.2: Diagram of two-qubit setup within the dilution refrigerator. Lattice
sites highlighted in color are reached either by input-only lines or made accessible to reflection
measurements via a 10-way RF switch installed after a circulator. We use antennas coupled
to lattice sites to make transmission measruements of the lattice spectrum. Bottom dashed
line illustrates the boundary of the mixing chamber shield. Filters on input lines used for
multiphoton drives are shown in orange and yellow just above the RF combiners. Note that
circulators used as isolators at output lines have a mix of terminators; those that go directly
to terminator use cryogenic terminators from Quantum Microwave (QMC-CRYOTERM-
0412) while those preceded by an attenuator use Minicircuits MCL-ANNE-50+ terminators
that are not necessarily 50 Ω in a cryogenic setting. To end-run around this we subject any
photons reaching these terminators and returning to the circulators to 60 dB of attenuation.
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Figure 6.3: Schematic of room-temperature measurement setup. Amplification
chains for signals exiting the dilution refrigerator are shown near bottom labeled as ‘Out
A’ and ‘Out B’. These signals are mixed down to DC by using a split-off portion of the
readout tones, and fed to SRS preamplifiers before being digitized. Keysight M3...A cards
are embedded in a Keysight PXIe chassis and triggered from a BNC 645 arbitrary waveform
generator. The 500 Ms/s Keysight AWG triggers fast RF switches at the output of of the
six LOs, which are followed by lowpass filters to eliminate transients from the switching.
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of ∼ 18 − 20 MHz. The hopping rate is the important figure to which one should com-

pare disorder in onsite energies, as this determines when the resonator-resonator coupling is

dominant over any smaller detuning ‘barrier’ that might frustrate transport and localize a

photon. Although the utilty of room-temperature data is limited due to the possibly variable

shifts of lattice cavity resonances upon cooldown, in Figure 6.4 we plot measured departures

of each single-post cavity at room temperature from resonance with the chiral three-post

sites.

Figure 6.4: Map of disorder in lattice site
resonances at room temperature. Chi-
ral sites are presumed to be resonant and
left without retuning due to the challenges of
working with and measuring these sites.

After lattice retuning, the spectrum of

the full tuned-up Harper-Hofstadter lattice

was quite stable relative to the overall spec-

trum width (∼ 120 MHz) and the scale of

the hopping rate; in Figure 6.5 we plot the

‘new’ spectrum over the old. The charac-

ter and stability of the spectrum, along with

wavepacket dynamics in the edge, are the

best test of whether the lattice still has the

topological properties we expect after a wait

time and retuning. Lattice modes, measured

at high power with the qubit saturated out,

have shifted anywhere between 1 and 5 MHz

below their historic frequencies from experi-

ments earlier in this thesis.

Over the interim of several years, which included substantial exposure to air while the

lattice was hanging in a dilution refrigerator open to atmosphere, the lifetimes of excitations

in lattice modes remained around 3 µs. This is despite the understanding that niobium,

unlike the tantalum which is now more commonly used for the pads of superconducting
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Figure 6.5: Edge and bulk lattice spectra and shifts from historical values. At left,
we overplot current linear transmission (S21) spectra taken between pairs of edge and bulk
lattice sites: strong green modes appear in the blue-highlighted edge regions and the pink
bulk spectrum largely lacks associated bulk excitations at the same frequencies, confirming
that these modes are predominantly edge-like. At right, we plot the shift of new modes
relative to their old frequencies during measurements taken in the previous chapters.

transmon qubits, can grow a penetrating oxide that becomes thicker and thicker with sus-

tained exposure to oxygen. The stability of lattice excitation lifetimes, profiled by ringdown

measurement (see Figure 6.7), suggests that the permanent magnetic field used to bias the

YIG spheres is ultimately the limiting factor in lattice photon lifetime. In his thesis [137],

Clai Owens suggested options to improve lattice engineering in order to further localize the

regime of flux penetration necessary to bias the YIG spheres, which could raise lattice photon

lifetimes to be more on par with the at-minimum super-10-µs lifetimes expected of excited

states of even very regular superconducting transmon qubits at this point in time.

To characterize the lifetimes of lattice modes and to probe lattice dynamics in order

to ensure that the ‘chiral’ lattice was still chiral (i.e. hosted non-reciprocal transport of

wavepackets confined, at least somewhat, to the lattice edge – see similar transport mea-

surements in Figure 3.8), we built a room-temperature setup which could perform pulsed

heterodyne measurements on excitations inhabiting the lattice. Standard pulsed measure-
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ments that we perform on qubits’ readout resonators are homodyne measurements – we

supply a square-pulse readout tone gated by upmixing with shaped output of a fast arbi-

trary waveform generator, and downmix the signal exiting the refrigerator with a signal split

off from the same local oscillator which generates the readout pulse, resulting in an analog

DC signal for the readout amplitude that gets amplified, filtered, and fed to a digitizer. This

setup is illustrated in Figure 6.6.

In this situation where we sought to profile fast dynamics of lattice photons, rather than

taking continuous-wave transmission spectra, we needed to use IQ mixers and fast arbitrary

waveform generators (AWGs) to shape the relevant fast pulses. This meant that the resulting

shaped pulses had been mixed up by the IF frequencies from the pulse-shaping AWG tones,

causing the frequencies of emitted pulses to be 1 IF (selected to be 100-200 MHz depending

on the frequency targeted with the same carrier signal) higher than the local oscillator

frequencies. This meant that downmixing with the local oscillator returned the output

signals to 100-200 MHz, rather than to DC, requiring heterodyne measurement of these

outputs. Our fast (1GS/s) digitizers accommodated incoming signals at these frequencies,

and we could elect to either digitally downmix post hoc (see David Schuster’s thesis [174]),

or simply analyze on top of the signal carrier frequencies.

In Figure 6.7, we plot a scan of ‘ringdown’ measurements taken across the lattice spec-

trum: in each case, we supply a long square pulse to inject a stable state of many photons

into one lattice site, and then perform reflection measurements on a second lattice site spa-

tially removed from the first in order to assess the second site’s degree of excitation in time.

Zooming in to several single-frequency slices of the ringdown scan in Figure 6.7, we fit ap-

proximate lifetimes T1 for several relevant lattice eigenmodes. Performing fast pulsed linear

measurements of the lattice in this way provides flexible and broad access to probing lattice

dynamics in the many-photon limit!

We use this same setup to characterize the dynamics of wavepackets prepared in the lattice
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Figure 6.6: Room-temperature setup for heterodyne measurements of lattice dy-
namics. A single continuous signal generator (at top) is split; one portion is shaped via IQ
mixing with shaped IF tones supplied from a Keysight 1 Gs/s arbitrary waveform generator
to produce a square or Gaussian fast pulse needed for measurements. The second portion of
the split-off tone is used to downmix signals exiting the refrigerator, bringing them to the
IF carrier frequency used for pulse mixing, which is then lowpass filtered and digitized.
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Figure 6.7: Ringdown measurement scans. At left, sweeping the IQ mixing frequencies
output by the pulse-shaping AWG, we apply a 25 ns σ Gaussian pulse to the lattice corner
at a range of frequencies and make heterodyne measurements of reflected power on another
lattice edge site. Color scale is arbitrary and linear. Scanning the pulse frequency across the
lattice band reveals oscillations as a wavepacket circles in the two edge channels, bracketed in
black. The central oscillation is from excitation movement in a set of edge-like modes near
the Dirac mode at the lattice center. Moire interference patterns arise from the different
IF frequencies serving as carriers to digitized signals at each scan point; we hold the local
oscillator frequency constant and sweep pulse frequencies by relying on the AWG. At right,
we examine a scan slice on-resonance with the upper edge channel and fit a T1 for excitation
decay of ∼ 3.6µs. Decay is faster in the lower edge channel due to idiosyncrasies of lower-gap
edge-mode quality factors unique to this particular cooldown.

edge: by supplying a fast Gaussian pulse (like that used for measurements in Figure 4.11)

of length 4σ = 100 ns, we synthesize wavepackets in the lattice edge channels by exciting

sets of modes. Due to challenges with the particular refrigerator cooldown when these

data were taken (rolling low-Q background modes spoiled the quality factors of some lattice

eigenmodes), lower-channel wavepackets consist predominantly of excitations in two modes.

Figure 6.8 plots time traces of excitations in three of the lattice corner sites after a

Gaussian pulse is applied to one corner, launching a circulating wavepacket. The Fourier

transforms of onsite reflection show weak Gaussian envelopes centered around the 120/170

MHz heterodyne frequency that represents the central frequency of the applied pulse in

the lower/upper band gap, with sharp spikes in excitation evidencing stronger transmission

through the lattice eigenmodes on top of the low-grade envelope. We see that the round-trip

time for a wavepacket in the lower-frequency, slower-group-velocity edge channel is ∼ 270

ns.
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Figure 6.8: Wavepacket dynamics in the lattice edge. At left, time traces of heterodyne
measurements (without the carrier digitally rotated off) of transmission of a Gaussian pulse
to three lattice corner sites are plotted in green, orange, and blue. After a large initial
spike in transmission due to the applied pulse itself, the wavepacket left propagating in
each lattice edge channel sequentially excites the lattice corner sites in order. We can use
these data to approximate the round-trip time of a wavepacket in each lattice edge. Note
that excitations in the lower and upper gap propagate in opposite directions based on the
ordering of green, blue, and orange peaks. At center, we plot the Fourier transform of this
data centered on the carrier frequencies remaining after each signal is downmixed with its
source local oscillator. A Gaussian envelope in frequency traces the energetic extent of the
initial Gaussian transmission spike, and tall narrow lines evidence more effective transmission
through the lattice modes. Note that these data were taken on a cooldown when the lifetimes
of some lower-gap modes were spoiled, so one can easily perceive the participation of only two
modes in the lower-gap Fourier transform plot. At right, schematic diagrams of the lattice
corners illustrate how the data in the leftmost plots provide evidence of opposite-direction
chiral wavepacket propagation in the two chiral edge channels of this toplogical lattice.
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6.3 Measurements with two qubits

6.3.1 Transmon characterization

Two transmon qubits are coupled to the lattice edge sites separated by one quarter-edge

(depicted in Figure 6.1), using separate niobium resonators for qubit control and readout.

Both fixed-frequency, with niobium capacitive pads and Al / Al2O3 / Al Josephson junctions,

these qubits were fabricated by me in the University of Chicago Pritzker Nanofabrication

Facility using modifications on a standard lab recipe for Manhattan-style junctions (see

Appendix D.3).

Quantity Alice Bob

7.901 GHz 7.846 GHz

-347.0 MHz -350.5 MHz

10.367 GHz 10.824 GHz

8.908 GHz 8.906 GHz

1.750 MHz 1.355 MHz

3.10 MHz 3.95 MHz

110 kHz 178 kHz

ωq/2π

ωr /2π

α/2π

ωl /2π

χr /2π

χLS /2π

KLS /2π

Table 6.1: Parameters of qubits Alice
and Bob, lattice sites, and readout res-
onators. These measurements were taken
with lattice corner sites decoupled from the
rest of the lattice using detuning screws placed
in the adjacent sites, so subscripts LS refer to
each lattice corner site alone.

These qubits’ transition frequencies, ul-

timately ωq/2π ≈ 7.8 GHz, sit far detuned

from resonance with the lattice spectrum

(centered at ≈ 9 GHz) and ∼ 100 MHz de-

tuned from each other. Parameters for the

qubits, labeled ‘Alice’ and ‘Bob’, are shown

in table 6.1 – these were measured in an early

cooldown with lattice corners cut off from

coupling to the rest of the lattice, and shifted

in later cooldowns. Note that χ quoted here

is half of the full-scale 2χ dispersive shift be-

tween qubit and resonator.

The goal of this initial cooldown was to

characterize the bare coupling rate between

each qubit and its associated lattice corner

site, reflected in values of χLS . Once the

lattice is tuned up and each qubit couples to a range of eigenmodes instead of to a single
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cavity mode, this full-scale coupling evades measurement. Its bare value is a figure of core

importance as this sets the scale for expected bare couplings between qubits and individual

lattice modes, and accordingly sets the theoretical upper limits of driven effective coupling

rates g̃ between qubit and lattice spectrum. Much of my nanofabrication iteration was

driven by securing parameters of these fixed-frequency qubits that generated a χLS large

enough to support swap dynamics between qubit and lattice that were fast enough to beat

the round-trip time of an excitation in the chiral lattice edge.

Qubit T1 values were initially 9.5/10 µs in early cooldowns of this system; coupling to

mysterious and idiosyncratic decay channels lowered their ultimate T1 times to around 5 µs

for the measurements taken to conclude this thesis. Alongside this change, the |f⟩ state

of qubit Bob in particular displayed a lower-than expected lifetime, necessitating changes

to simulation parameters in order to best fit swap oscillations between |f, 0⟩ and |g, 1⟩ (see

Section 6.6.4).

It is worth considering, at least for due diligence, what introduction of a nonlinearity

via coupling-in of the transmon might due to the formerly linear cavity modes. We can

calculate [52] the approximate self-Kerr shift (the resonator’s energetic shift in response

to itself being populated with photons) of a single cavity mode populated with n photons

coupled to that qubit:
−αg4

∆3
n2 (6.1)

Here g is the qubit-cavity coupling, ∆ = ωc−ωq is the qubit-cavity detuning, and α is the

absolute value of the qubit anharmonicity. A back-of-the-envelope calculation puts this figure

in the tens of kHz for low photon number, so we can effectively neglect it when considering

measured shifts since our drive pulses span a broader frequency regime (see Appendix A)

and will thus remain resonant with target cavity processes, even if we have same-direction

shifts from two qubits at play.

We can also calculate [52] an approximate cross-Kerr interaction, the energy shift that
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modes mutually experience via coupling through a nonlinearity, between two cavities (e.g.

the readout resonator and some lattice eigenmode, or a set of lattice eigenmodes) coupled

to the same three-level transmon in the dispersive limit:

2g21g
2
2

−α(∆1 +∆2)

∆2
1∆

2
2(∆1 +∆2 − α)

(6.2)

A similar order-of-magnitude calculation suggests that this will remain negligible relative

to other energy scales we care about like drive envelopes and linewidths.

To further explore our shift expectations, we experimentally probe the strength of the

cross-Kerr interactions between a pair of transmons coupled to the lattice by π-pulsing one

to its |e⟩ state and then performing a Ramsey measurement of the frequency ωq of the other

qubit’s first transition. As the undressed qubit resonances are over 1 GHz detuned from

the lattice eigenmodes, we find any frequency shift small enough to be unmeasurable given

system parameters.

6.3.2 Confusion matrix for readout optimization

To improve the readout fidelities of both qubits, we apply a confusion matrix to the results

of any qubit measurement. In a measurement of a single qubit, the core action is deciding

whether the qubit is in state | ↑⟩ or state | ↓⟩. We can choose the nature of | ↑⟩ and | ↓⟩ in the

same way that it’s possible to measure electron spin polarizations along different directions

in the iconic Stern-Gerlach experiment. In single or two-qubit tomography, long sequences of

pulses are run before many rounds of measurement to select a different measurement bases

in order to locate the state of the qubit on the Bloch sphere as opposed to just along an axis

of choice [41].

The confusion matrix is a 2× 2 matrix transformation applied to the vector (a| ↑⟩, b| ↓⟩)

representing the counts of a many-shot measurement in which the qubit state is assigned to

134



states | ↑⟩ and | ↓⟩. To calibrate this matrix, we prepare the qubit in targeted states | ↑⟩

and | ↓⟩ and then, averaging over many experimental runs, calculate how much of the time

we correctly assign the measured qubit state to its known prepared state, and how much of

the time our measurement process gets ‘confused’ by assignment of a measured qubit state

to the incorrect outcome bin. From knowledge about the preparation and measurement, we

can calculate a matrix that characterizes the conversion rates between prepared states and

measured states:

counts | ↓⟩

counts | ↑⟩

 =


prep | ↓⟩ prep | ↑⟩

get | ↓⟩ A B

get | ↑⟩ C D


prep | ↓⟩

prep | ↑⟩

 (6.3)

If the above ‘confusion’ matrix maps between known states and measurement results,

applying its inverse to a set of results (a| ↑⟩, b| ↓⟩) of a more complicated measurement, in

which we do not simply prepare a known state and immediately read it out, ‘de-confuses’

the results of that more complicated measurement by removing the pre-characterized effects

of errors and state overlaps accrued during the post-preparation readout process.

‘real’ | ↓⟩

‘real’ | ↑⟩

 =
1

AD −BC


get | ↓⟩ get | ↑⟩

prep | ↓⟩ D −B

prep | ↑⟩ −C A


a | ↑⟩

b | ↓⟩

 (6.4)

The confusion matrix has no traction on errors or problems accumulated before read-

out, and it’s best to run its calibration alongside every actual measurement in order to

effectively cope with experimental drifts. Application of the confusion matrix to our setup,

which displayed limited readout fidelities due at least in part to antenna coupling issues,

improved readout fidelities for qubits Alice and Bob from ≈ 9 and 20 to ≈ 15 and 40 percent

respectively.
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6.3.3 Sideband cooling

The qubits in our setup were natively very ‘hot’: the thermal population of their excited

states was substantial enough to pose problems. Temperature measurements performed using

the classic method of comparing the amplitudes of |e⟩ ↔ |f⟩ Rabi oscillations measured with

and without exciting the transmon to its |e⟩ state beforehand suggested that qubit Bob saw

a temperature of over 230 mK before interventions were made.

Assuming a two-state system, we can calculate a Boltzmann factor, representing the

proportion of times the qubit is measured its |e⟩ state over an ensemble of runs, from just a

ratio of the averaged populations in |g⟩ and |e⟩ [192]:

P (|e⟩)/P (|g⟩) = e
−h(ωe−ωg)

2πkBT (6.5)

For a multilevel system, it would be necessary to fit populations to a Boltzmann distribu-

tion [62], but we stick with simply two levels.

This thermal population proved to be a substantial impediment to making clean mea-

surements of each qubit’s state; as an example, measurements trying to trace the Stark shift

of the |g⟩ ↔ |e⟩ transition under strong four-wave drive initially produced incomprehensible

results as enough |f⟩ state population was already present that this four-wave drive excited

coherent interactions between lattice and thermal excitations in the qubit. Excess thermal

population in the readout resonators, also, meant that while profiling the qubit transitions

using two-tone continuous-wave spectroscopy [166], these transitions appeared not as sin-

gle lines but as number-split distributions as the qubit transitions dispersively shifted in

response to readout resonator photons.

To address the unhelpful qubit thermal populations, we used Raman sideband cooling

to relocate excess thermal photonic population from the |e⟩ state of the qubit (the first,

and thus most, populated by thermal effects exciting the qubit above its ground state) to
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some of the many conveniently-available lattice eigenmodes. We already had access to a

drive scheme for moving photons from qubit to lattice, deployed throughout this thesis to

intentionally generate single excitations in the lattice by removing excitations from a qubit’s

|f⟩ state. Anticipating that the average thermal photon number n̄ in the qubit did not

surpass 1, we applied an |e⟩ ↔ |f⟩ π pulse to each qubit before applying a strong four-wave

drive calibrated to resonantly swap an excitation into a lattice eigenmode of choice.

Figure 6.9: Effect of sideband cooling. At
top, the probability of qubit Bob’s presence in
an excited state is tracked after the conclusion
of sideband cooling. Excited-state population
saturates at around 20 percent. At bottom,
we test the ultimate qubit temperature after
placing different idle times between different
numbers of rounds of sideband cooling.

Pechal et al. [145], who originated

this all-microwave qubit-cavity coupling ap-

proach for fixed-frequency transmons, used

the same sideband cooling protocol. Several

other all-microwave-drive cooling protocols

exist (see Figure 6.10): Geerlings et al. [61]

introduce a driven reset protocol for trans-

mons coupled to resonators that requires

the cavity linewidth κ > Γup = P (|e⟩)/T1,

where P (|e⟩) is the equilibrium excited state

population of the qubit and T1 is its excited

state lifetime.

In this protocol, two drives are applied

simultaneously, one at frequency ω0ge of the

bare qubit transition and the other at ωgc

chosen to place photons in the cavity if the

qubit is in its ground state. This latter drive

displaces the cavity to |α⟩ and the combined

state to |g, α⟩, prohibiting resonant excitation of the qubit out of its ground state at ω0ge.

Here the qubit only excites spontaneously at rate Γup, whereas the system decays from |e, α⟩

137



(where it would start if |e⟩ was thermally populated and the displacment drive applied) to

|e, 0⟩ at the more rapid rate 1/κ. The aforementioned Rabi drive at ω0ge then pushes the

system |e, 0⟩ to |g, 0⟩. In this way, the system is driven to |g, α⟩ at rate κ; waiting around ten

lifetimes 1/κ for cavity population to decay repeatedly should send the system to a steady

state, the preparation fidelity of which is characterized by κ/Γup.

Figure 6.10: Options for all-microwave-drive sideband cooling of fixed-frequency
transmons. Level diagram calls out states |f, 0⟩ etc. and is represented in the lab frame;
its style is adapted from Pechal et al. [145]. Horizontal state labels are Fock states in cavity
mode k, vertical state labels pertain to the qubit.

Magnard et al. [112] also make use of the |f, 0⟩ ↔ |g, 1⟩ microwave-driven transition to

cool their qubits: their cooling rate is flexible regarding the value of the resonator’s κ, as

it’s possible to compensate with strong multiphoton drives, an interesting advantage of this

approach. These authors supply two simultaneous drives, |f, 0⟩ ↔ |g, 1⟩ and |e, 0⟩ ↔ |f, 0⟩,

creating a λ system that pours photons from |e⟩ out to the environment. To achieve this

they need to account for the Stark shift on the |e, 0⟩ ↔ |f, 0⟩ transition due to application

of the other (much stronger, as it accesses a higher-order process) drive, as well as the Stark

shift on the |f, 0⟩ ↔ |g, 1⟩ transition itself, and supply a tone that resonantly excites this
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transition at a frequency that would ‘normally’ be far off-resonance if the |f, 0⟩ ↔ |g, 1⟩ Rabi

drive were off. For us, calibrating the frequency of the |e, 0⟩ ↔ |f, 0⟩ transition under drive

strong enough to stimulate fast-enough Rabi oscillations between |f, 0⟩ and |g, 1⟩ proved

challenging, so we stuck to preparing |f, 0⟩ with a πef pulse on the qubit and then applying

|f, 0⟩ ↔ |g, 1⟩ drive sequentially.

As depicted in the bottom of Figure 6.9, we find that applying the cooling protocol two to

three times is sufficient to cool each qubit to around 120 mK, near the limit available to us in

making qubit temperature measurements due to measurement noise. A time trace of qubit

population measured in the top plot reveals that we diminish the excited-state population

of the qubit to less than 5 percent after cooling, and we trace out the approximate qubit

T1 by following its return to saturation at a thermal excited-state population of around 20

percent.

6.4 Single- and multi-mode coupling between emitters and the

lattice edge

We launch a directional excitation into a chiral lattice edge channel by applying a multipho-

ton drive. As illustrated in the bottom of Figure 6.1, an applied classical drive, of strength

ξd, ‘tunes’ a dressed excited state of a qubit on resonance with an eigenmode ωmode within

the lattice spectrum, exchanging two photons in a transmon with one photon in the lattice.

The coherent dynamics of swapping excitations between each qubit and lattice eigen-

modes is displayed in Figure 6.11 for qubits A and B, where we apply a multiphoton drive

to sweep each qubit’s dressed excited state across the lattice eigenspectrum. The effective

coupling g̃ between qubit and lattice depends on the strength of the applied microwave drive.

Figure 6.11 illustrates how the measured coherent swap rate of excitations in both qubits to

a particular lattice mode increases with drive power. The qubit A data includes more noise

and artifacts from the digitizer, as A’s lower readout fidelity forced us to average more.
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A Bpower power

Figure 6.11: Multiple emitters strongly coupled to the chiral lattice. Slow Rabi
oscillations demonstrating strong coupling between qubits A, B and lattice eigenmodes. In
both columns, large insets at top are single-frequency slices of the respective bottom plots
at the frequencies indicated by the dashed lines. Smaller insets at top show oscillations with
a higher supplied drive power and thus higher effective Rabi rate between each qubit and
the same lattice mode. Note that the frequencies ωmode of individually identified lattice
modes have shifted asymmetrically upward relative to those seen in an unperturbed lattice
spectrum at low power; this is a result of Stark shifts on qubit transitions from the drive and
Lamb shifts on the qubit as it is drawn near resonance with a forest of synthetic vacuum
modes.
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Because the qubits in this platform couple to the discrete eigenmodes of a 25-site cavity

array, these experiments probe a regime intermediate between cavity quantum electrodynam-

ics – which describes a qubit coupled to a single vacuum mode – and waveguide quantum

electrodynamics, which sees an emitter coupled to a transmission line or photonic material

with a more continuous density of states. To generate an edge-localized wavepacket propa-

gating in an edge channel of this topological lattice, it is necessary to excite a superposition

of edge eigenmodes, rather than emitting to some frequency continuum.

An analog of this form of coupling can be found in work exploring the super-strong

coupling regime [118] of circuit and waveguide QED, in which coupling rates are so extreme,

or the mode spacing so narrow, that a quantum emitter interfaces simultaneously with

multiple discrete modes of an engineered photonic landscape [187, 23, 156, 93, 197, 8, 97].

In our case, the strong coupling is moderated by the applied microwave drive that ramps

up the effective g̃k to specific modes k rather than intrinsic to the bare interaction between

qubit and lattice.

As we increase drive strengths past those which generate the g̃ in Figure 6.11, the ranges of

drive frequency over which the qubits couple resonantly to individual lattice modes broaden

and begin to overlap, so that supplying a drive at one frequency effects resonant coupling

between qubit and multiple lattice modes simultaneously. This strong drive Stark shifts the

qubit levels and a frequency-dependent Lamb shift on the dressed qubit excited state comes

into play (see Section 6.6.1) as it is brought near resonance with elements of the synthetic

multimode lattice vacuum [181, 139]. As our drive-based injection method results in Stark

shifts on the scale of half the lattice bandwidth, we neglect the pulse shaping used in other

work with this injection method to generate maximum swap efficiency (see Section 6.6.5).

The shifts imposed by increasing drive strength result in the resonances between qubit

and the lattice edge modes which form the lower-frequency edge channel drawing closer

together. This effect is illustrated in Figure 6.12b; Figure 6.12a shows the detection of a
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photon released from one qubit into one, two, and three of these lattice edge modes reached

using three different drive powers. The coupling pulse frequencies and times at different

drive powers are indicated by white dashed lines and circles in Figure 6.12b. Qualitatively

different time-dependent retrieval of an excitation traces out the behavior of a photon in the

lattice edge as it is sent through one static mode, a half-edge-localized two-mode pair, or a

three-mode edge wavepacket.

When a photon is passed through one mode, we expect no noticeable time dynamics; the

only fluctuations visible in Preceived appear as a small increase at low time due to the finite

timescale of Rabi dynamics, and a decay stemming from the lifetime of an excitation in that

lattice mode.

When a photon is driven into a superposition of modes, the envelope of the detected

packet is well-modeled by a time-decaying sum of complex oscillations at the known eigen-

mode frequencies ω1, ω2, ω3 with relative phases that encode the phase winding of the edge

channel between coupling sites:

Atot|a1eiω1tei
π
2 + a2e

iω2teiπ + a3e
iω3tei

3π
2 |2e−t/τ + c

To model transport the ‘other way’ around in the same channel, we use a phase 3π
2 to

account for the wavepacket’s transit of three quarters of the lattice edge. Our protocols

inject roughly half of a photon into the lattice in this case, and a 10-15% deviation from the

prescribed relative phases can produce an excellent fit to the data.

In the middle row of Figure 6.12a, when a photon is passed through two edge modes, we

observe a sinusoidal time-dynamics that comes from summing two modes in the equation

above. A 5 × 5 snapshot of a simulated excitation in Figure 6.12a illustrates how a com-

bination of two edge-like eigenmodes will be localized to half the lattice edge, resulting in

sinusoidal time-dynamics for a chirally propagating packet.

At bottom in Figure 6.12a, a more complicated dynamics of asymmetrically-spaced peaks
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1 mode

2 modes

3 modes

a. b.

Figure 6.12: Synthesizing wavepackets in an edge channel. a, We send and receive
single photons through 1, 2, and 3 lattice modes using the strong coupling of both quantum
emitters to the chiral lattice. Trace plots in a show the population retrieved by qubit B
resulting from this process. To couple to > 1 modes, we increase drive strength to both
Stark shift sites of resonant coupling to lattice modes closer together in drive frequency and
enable a higher effective Rabi rate g̃. We capitalize upon the increased Rabi rate to shorten
drive pulses, broadening the frequency range over which we couple to connect with more
eigenmodes. Swapping to more than 1 lattice eigenmode produces a wavepacket with some
localization that propagates in time around the lattice edge. Square plots in a illustrate point-
in-time snapshots of these excitation profiles, the time evolution of which inflects the time-
resolved population in the receiving qubit. In b, we scan the frequency and length of drive
pulses drawing the receiving qubit into resonance with the lattice spectrum. Dashed white
lines and circles indicate pulse parameters used to produce data in a. Moving downward,
as we increase drive strength, we see formerly distinct single-mode resonant processes cross,
blur together, and eventually shift closer together in frequency (bottom plot) as the time for
maximum swap of an excitation between qubit and lattice decreases with the increase in g̃.

143



emerges when a photon is driven into a weighted superposition of three edge modes, as ex-

pected from simulations of even a disorder-free Harper-Hofstadter model (see Section 6.5.2).

Even neglecting reflections from lattice corners and the participation of edge modes in the

bulk of this finite-size lattice, the nonlinear dispersion of wavepackets produced in low-

eigenmode-number Chern lattices like this one is expected [194, 122] to cause a photonic

qubit to effectively time bin itself as the packet splits apart while migrating along an edge

channel.

6.5 Non-reciprocal transport in a chiral channel

Having injected excitations into, and detected excitations propagating in, a superposition

of edge modes of this topological lattice, we use this chiral channel to demonstrate non-

reciprocal transport between an emitting and a receiving qubit.

We use parameters for sending and receiving a photon like those used in the bottom

section of Figure 6.12a. A cartoon of the pulse scheme is shown in Figure 6.13a; the time

coordinate for dynamics is the delay between the starts of 75 ns sending and receiving pulses.

Calibration of swap efficiency indicates that these parameters move ∼ 50% of the population

from qubit A into the edge and similarly transfer ∼ 90% of population from qubit B to the

lattice.

Figure 6.13b illustrates the protocol for demonstrating non-reciprocal transport: in the

edge channel chosen for use, a photon sent from qubit A to B will will have traversed three

quarters of the lattice edge, while a photon sent from B to A will have traversed one quarter.

For an excitation constrained to propagate in an edge-localized chiral channel, we anticipate

that the first peak of the photon sent from A to B will take three times as long to appear

as one sent from B to A. Figure 6.13c shows measurement of this ≈ 3 to 1 ratio in delay of

photonic transmission. This evidence of the expected time delay indicates that the lattice

topology surmounts less dominant issues like incomplete localization of edge wavepackets to
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edge sites, scattering of excitations at lattice corners, and disorder in lattice site frequencies

and couplings to support on-demand directional transport of a photon between emitters.

Send

Receive

B recv.A recv.

a. b.

c.

Figure 6.13: Non-reciprocal transport in a chiral edge. In a we depict the protocol
for sending and receiving excitations through the chiral lattice: after preparing the sending
qubit in its |f⟩ state, we supply a drive pulse to swap a photon into the lattice via the
four-wave process detailed above. At some time delay t thereafter, we begin a drive pulse
to swap a photon out of the lattice and into the receiving qubit. The coordinate t = 0
occurs when both sending and receiving pulses begin simultaneously. b shows a schematic
of transport through a chiral edge channel of the lattice with transport from B to A marked
out in orange and transport from A to B in purple. In c we plot received population in each
qubit following transport from A to B (purple) and B to A (orange). The initial orange peak
appears approximately 3 times as early as the initial purple peak. The packet retrieved by
B (purple trace) fragments in two peaks likely due to the combination of finite-size effects
more apparent in a longer edge transport and the not-entirely-linear dispersion expected for
this few-mode edge channel.
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Figure 6.14: Long-time non-reciprocal transport in a chiral edge. We plot the data
shown in Figure 6.13 out to longer time, showing further revivals in detected populations.

6.5.1 Protocol for Bell state preparation

We sought to prepare a photon traveling in an edge wavepacket in a Bell state, an iconic form

of maximally entangled quantum state, and characterize that state by calculating correlations

in simultaneous measurements of both qubits. While we believe we executed this, our setup

lacked long-term phase coherence between the pulses used to emit and detect said photon,

and we lacked the time to alter the setup. We were thus unable to measure the off-diagonal

elements of the two-qubit density matrix necessary to characterize the full quantum state. For

those seeking to learn more about two-qubit tomography, Jerry Chow’s thesis [41] provides

a helpful introduction.

To attempt to prepare a Bell state, we prepared a qubit in its |f⟩ state and then exe-

cuted half a swap of that excitation between qubit and lattice. After waiting a delay time

commensurate with the known delay for wavepacket transport, we performed a full swap out

of the lattice to the second qubit.
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|g, 0, g⟩ → πge, πef → |f, 0, g⟩ → Half swap in → |g, 1, g⟩+ |f, 0, g⟩√
2

→ Evolution and propagation → Full swap out → |g, 0, f⟩+ |f, 0, g⟩√
2

(6.6)

If we neglect the empty cavity and just consider the state of the qubits after this protocol,

we find them in a Bell state:

|0, 1⟩+ |1, 0⟩√
2

. (6.7)

We were able to perform the pulse sequences of two-qubit tomography, but lacked the

phase coherence between the two swap pulses necessary to retain phase information [26], so

were unable to effectively measure the ultimate quantum state.

6.5.2 Simulating edge channel emission and dynamics

We use the Python package QuTiP to simulate the populations of qubits coupled to a

disorder-free version of the Harper-Hofstadter lattice. We implement a 5 × 5 lattice model

that incorporates both coupling through resonant modes on chiral sites and virtual coupling

through the detuned backwards-chiral modes in thse sites, but keeps ‘perfect’ eigenfrequen-

cies rather than incorporating those measured in the actual lattice spectrum which reflect

lattice disorder. Generating a pair of two-level systems coupled to the lattice corners, we

prepare an excitation in one and then turn on an effective coupling g̃ between that qubit

and its lattice corner site. We shape g̃ with an idealized Gaussian time envelope.

Even with a smooth Gaussian ramp of g̃ between qubit and lattice corner, and even in

this completely disorder-free limit, in which eigenenergies are different than those observed

due to the lack of impact of said disorder, we still rapidly descend into wild-looking dynamics

and some degree of wavepacket fragmentation due simply to the system’s finite size.
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Figure 6.16: Disorder-free simulations of dynamics in the lower-frequency edge
channel. Time axes in all plots are multiples of the hopping rate, here termed J to distin-
guish it from time. FSR refers to the spacing between the two lattice edge modes we wish
to most prominently excite. In the top row, we simulate emission of a photon from qubit
Bob at the center of the lower-frequency lattice edge channel, setting effective g by matching
it to the population we experimentally measure exiting the qubit. The top middle panel
plots the path of the resulting lattice excitation around the lattice edge; a white dashed line
highlights the index (5) of the edge site to which Bob is coupled, while Alice is coupled to site
(1). The top right panel plots populations of edge sites to which the qubits are coupled.
The vertical dashed line locates the maximum of the initially emitted excitation. In the
bottom row, we perform the same set of simulations for emission from qubit Alice, again
setting g by matching it to the measured population lost from the qubit. In the bottom
right panel, a vertical dashed line again locates the maximum of the excitaiton initially
released in the Alice-coupled edge site.
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Figure 6.15: Disorder-free simulation of
qubit populations after detecting lattice
wavepacket. We simulate emitting a qubit
from Alice and detecting it with Bob, and
vice-versa. Dashed vertical lines flag the ini-
tial maxima of excitations on the sites immedi-
ately coupled to the emitting qubit. Calculat-
ing detection delays versus these lines, we de-
tect with Bob an excitation propagating ‘the
long way’ around the lattice edge 2.7 times
later than we detect one propagating ‘the short
way’ with Alice. This delay partly reflects cou-
pling disparities in the simulation.

In this disorder-free simulation, which

does not reflect the actual eigenenergies of

lattice modes as measured, we find that the

lower-edge-channel excitation takes ≈ 3.2

times as long to propagate ‘the long way’

around between lattice corner sites, com-

pared to ‘the short way’ of a quarter lat-

tice edge. As this difference in speed incor-

porates a disparity in effective couplings of

the qubits to their lattice corners, it is likely

an overestimate. Measuring the same delay

using ultimate qubit population after using

a second qubit to detect a photon propa-

gating in the lattice, we find (Figure 6.15)

that the lower-edge-channel excitation takes

≈ 2.7 times as long to propagate ‘the long way’ around the lattice edge. This is likely an

underestimate, as the delay is calculated relative to the time maxima of wavepackets initially

emitted into the lattice, so the quantity is itself inflected by the higher effective g between

the lattice and Bob. If we remove the disparity between qubit-lattice couplings g, eliminating

the above asymmetries, we still see a delay of first peaks, relative to t = 0, that does not

match the expected 3-to-1 ratio; it is not yet clear why this occurs in our simulation.

6.6 Exploration: the multiphoton swap process

Having presented the core result of this final chapter, we further discuss issues and sub-

tleties that arose while attempting to use an all-microwave drive-based process to transfer

excitations between a fixed-frequency qubit and a multimode cavity landscape. The major
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limitations of the experiments we sought to accomplish in the sections above are governed

by the details surrounding the four-wave swap drive that follow.

6.6.1 Stark shifts due to four-wave drive

The strong multiphoton drive which stimulates coherent interactions between qubit and

lattice is applied through an antenna well-coupled to each qubit’s readout resonator; while

this tone is far off-resonance from the readout resonator, the strength of this drive is still

substantial and the many off-resonant photons incident in the vicinity of each qubit can

effectively Stark shift its levels.

We can characterize the Stark shift on a set of qubit levels due to the multiphoton drive by

applying a long drive tone to the readout resonator at a chosen frequency, then supplying a

long, slow π pulse to attempt to excite the qubit between levels with fine frequency resolution

while this drive is still ongoing, and reading out the state of the qubit after both drives

conclude. By sweeping the frequency of the slow π pulse, we can locate the frequency at

which the qubit is ‘excitable’, characterizing the qubit transition’s Stark shift. In Figure 6.17,

we replicate classic-style shift-versus-amplitude plots [174] for qubit Bob, where we expect a

quadratic dependence in the shift of the qubit line with increased drive amplitude.

We follow qubit Bob’s |g⟩ ↔ |e⟩ transition, sketching a parabola of the form x = Cy2 to

show that the line’s shift qualitatively follows the classic quadratic shape. The small second

peak on the left side at top of Figure 6.17 is spaced apart from the first by the qubit-readout

resonator dispersive shift and is thus likely due to photonic population in the resonator. We

also follow Bob’s |e⟩ ↔ |f⟩ transition, by applying a πge pulse before the rest of this protocol

begins. The scan of the |e⟩ ↔ |f⟩ transition departs from a quadratic form at high power,

likely because at high drive this transition (∼ 7.5 GHz) is roughly 100 MHz less detuned

from the 6.265 GHz drive.

This transition also shows a forest of avoided crossings as we pass through sites of resonant
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coupling between the |f⟩ state of the multiphoton-driven qubit and the lattice eigenmodes.

The frequency (6.265 GHz) selected for the multiphoton drive parks the qubit between

sites of resonant interaction with a pair of edge modes in the upper gap. Increasing the

drive power pushes the qubit transition frequencies ωge and ωef lower, so that following

ωmode = 2ωq − α − ωD, we gain on-resonance access to lower- and lower-frequency regimes

of the lattice spectrum. As we go to higher drive power, we see a tighter-spaced regime

of smaller avoided crossings, reflective of passing the dressed qubit through resonance with

less-well-coupled and more-tightly-spaced bulk modes in the center of the lattice spectrum.

We further track the |g⟩ ↔ |e⟩ transition of qubit Alice with four-wave drive amplitude;

this transition displays a dispersive-shifted side-peak indicating photonic population in the

readout resonator, and departs from quadratic behavior at higher drive power. This de-

parture isconsistent with the understanding that the increasing prominence of higher-order

effects causes the drive-dependent Stark shift to behave differently than standard lowest-order

Jaynes-Cummings Stark shifts when this strong multiphoton drive enters the picture [210].

Differences in frequencies relevant to Alice (in particular, the drive is ∼ 200 MHz closer to

the qubit transition) might account for Alice’s greater susceptibility to higher-order effects at

strong drive. Shown in the middle of Figure 6.17, we draw a dotted line at the approximate

drive amplitude used for transport measurements; we calibrated this drive amplitude by

selecting the maximum value at which the effective swap rate g̃ increased predictably with

drive rate, and ended up selecting a drive regime that qualitatively matches the turn-off from

lowest-order behavior.

By comparing the frequencies of lattice modes in low-power linear spectra to the ‘frequen-

cies’ of those same modes in lattice scans taken via four-wave swap drive, we can trace out

what amounts to the Stark shift on the qubit’s |g⟩ ↔ |f⟩ transition under this multiphoton

drive. ωD = 2ωq−α−ωmode is the drive frequency necessary to excite resonant interactions

between qubit and lattice mode; measuring what appear to be frequencies ωmode in chevron
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Figure 6.17: Stark shifts on a pair of qubit
transitions. We profile the Stark shift on
the qubits’ transitions under four-wave swap
drives of increasing amplitude. Color scales
are linear, arbitrary, and profile the degree of
qubit excitation. At top, Bob’s |g⟩ ↔ |e⟩
transition appears quadratic. At middle, Al-
ice’s |g⟩ ↔ |e⟩ transition turns off a quadratic
dependence on drive at higher amplitudes. At
bottom, Bob’s resonant |e⟩ ↔ |f⟩ transition
passes through an array of avoided crossings
with lattice eigenmodes.

Figure 6.18: Stark shifts on qubit Bob
dressed to resonance with edge modes.
Shifts for modes in the lower gap appear more
quadratic with amplitude than those in the up-
per gap, which are more challenging to trace
in chevron spectra. We see that at high-power
drives the lower-gap modes ‘experience’ Stark
shifts of close to 60 MHz. Drive amplitudes
are from an early setup and do not map onto
their values in other measurements in this the-
sis.
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spectra, we can ascribe the effective shift to the qubit instead. This shift, measured at a

range of drive amplitudes, is plotted for lower- and upper-gap edge modes in Figure 6.18.

The observed Stark shift of up to 60 MHz (for the lower gap) is an order of magnitude

higher than the largest shifts addressed in at least one other implementation [76] of this

drive process, and may be higher than shifts seen in broader general use.

The impacts of assorted shifts and what are likely increasingly arcane higher-order drive-

based effects on the qubit at high power can also be seen through looking at chevron spectra

of the whole lattice taken via multiphoton qubit-lattice swap. Some such spectra are shown

in Figure 6.19, which examines three different drive amplitudes, multipliers 0.2, 0.5, and

0.7 of maximum drive amplitude, executed via mixing carrier with shaping tones from an

arbitrary waveform generator. It is worth noting that while these spectra were taken at the

same drive amplitude setting, differences in attentuation, antenna coupling, and resonance

features of each actual drive line mean that these amplitudes are identical in name only.

These spectra can be compared to those pictured in Figure 6.11 which have an effective

drive amplitude of 0.2 in this same scheme, which assigns a number to drive amplitude

based on the fraction of full output voltage used at the arbitrary waveform generator which

executes pulse shaping. At mid-range (0.5) drive amplitudes, we can still resolve many

modes, and regions of resonant access overlap. At higher-range (0.7) drive amplitudes, the

higher-frequency modes accessible to Alice begin to blur out, seemingly beyond what one

expects just from increasing mode widening, likely a more pronounced effect of the strong

drive on this qubit, which sits several hundred MHz closer in frequency to its four-wave drive.

In the non-reciprocal transport data, we work with effective drive amplitudes near 0.7;

at these drive powers, the lower-channel lattice edge modes are shifted tightly together for

easier access with a single-frequency drive, while still maintaining easily identifiable resonant

swap patterns.

Zeytinoğlu et al. [210] model this same four-wave drive process and profile how effective

153



Figure 6.19: Higher-power chevron scans. Chevron plots trace on- and off-resonant four-
wave interactions across the lattice spectrum. Note the frequency scaling on each vertical
axis – all modes are shifted upwards with higher drive strength. Color scales are probability
of each qubit being in its |f⟩ state. Note that Bob has a narrower range of data values due
to a calibration error, and also that different sub-plots have different time axes.
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drive rate g̃/2π falls off from its linear dependence on drive strength Ω/2π at strengths

above 0.2 GHz due to the increasing impact of higher-order effects. This comports with

the above qualitative indications that consistent behavior of the qubit levels at high drive

powers is not a given. A rough calculation of the drive rate for a 5 MHz g̃/2π, a bare

(overestimated) coupling g/2π of 10 MHz between a transmon and some specific lattice

mode, and approximate qubit and lattice mode parameters yields a drive strength Ω/2π

several times this 0.2 GHz limit.

6.6.2 Drive parameter calibration

Figure 6.20: Sweeping emission and de-
tection pulse lengths. We profile the pop-
ulation (scale on colorbar) of the detecting
qubit after attempting to swap an excitation
from one qubit to the lattice with an emission
pulse, waiting some time (horizontal axis), and
attempting to detect it with a second pulse in
the second qubit. Advantageous pulse lengths
are in the range of 70-90 ns. The dark stripe
is data with a digitizer error. Measurements
are performed with qubit Bob.

Given this idiosyncratic and detail-rich

way in which the lattice spectrum, as

‘seen’ through four-wave operations with the

qubit, changes in response to applied drive

power, it is necessary to calibrate the drive

parameters for transport measurements with

an eye to what one hopes to achieve.

Holding the drive frequency fixed at the

frequency used to excite a superposition of

three edge eigenmodes, we perform an emis-

sion/detection experiment, generating a lat-

tice excitation with one qubit and detecting

it with the other after some time delay. If we

vary both this delay and the lengths (iden-

tical for emission and detection) of the drive

pulses, we can assess the regime of pulse

lengths at which we successfully excite three
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eigenmodes. Longer drive pulses are narrower in frequency, and even though we use square

pulses (which Fourier transform to a sinc function with a menagerie of side lobes), drive

pulses that are too long will simply fail to stretch across enough of frequency space to excite

as many modes as shorter pulses. Pulses that are too short, though, will fail to inject the

power necessary to effect emission and detection of excitations.

Figure 6.21: Sweeping frequencies of
emission and detection pulses. Holding
(optimized) pulse lengths steady and one pulse
at its optimal frequency to excite transport
through the lower-frequency chiral edge, we
sweep the frequency of the other pulse and
trace the dynamics of the resulting photonic
population detected at the second qubit.

In Figure 6.20, we scan pulse lengths

across a wide regime from far-too-long

(longer than the ∼ 270 ns round-trip time

of an excitation in this lattice edge channel,

so that oscillations indicating departure and

arrival of excitations at the detecting qubit

simply wash out), through too-long (narrow

enough in frequency that only one or two lat-

tice modes are excited), through correct, to

too-short (we fail to see any change in the

detecting qubit population at all). As the

pulse lengths shrink from too-long to cor-

rect, what were sinusoidal oscillations of the

detecting qubit population, indicative of excitation of a set of 2 lattice modes, migrate to

become asymmetrically spaced in time, a sign that more than 2 modes are being excited

which reflects the bunching we see in data in Figure 6.13.

In Figure 6.21, we sweep the frequencies of emission and detection pulses to find those

optimal for preparing and receiving a wavepacket transported through the lower-frequency

chiral lattice edge. On-resonance with the frequencies that yield high population retrieval

(white lines), a non-sinsuoidal oscillation appears in the photonic population retrieved by

the detecting qubit. Off-resonance, yellow regions indicating retrieval peaks coalesce or
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disappear. Interestingly, the detection pulse is more sensitive than the emission pulse to

detuning, likely an effect of non-ideal changes accumulated by a wavepacket propagating in

a fundamentally time-reversal-symmetry-broken system. These behaviors are richly detailed

and not entirely understood here.

We have shown, through scans of pulse frequency and length at a set of chosen drive

powers, that we can exploit the rich and idiosyncratic physics of the disordered and imperfect

lattice to locate good drive parameters for probing non-reciprocal transport.

6.6.3 Transport through the upper gap

In addition to profiling non-reciprocal transport in the lower-frequency of the two chiral

edge channels of this topological lattice, we seek to profile transport in the upper-frequency,

opposite-direction chiral edge channel. Pulse calibration for these measurements works sim-

ilarly to the methods detailed above. Our attempt to probe chiral transport in the upper-

frequency chiral edge channel is less effective because the wider spacing of resonant interac-

tions (≈ 10 MHz) between the qubit and modes in the upper-frequency edge channel means

that it is more difficult to excite > 2 modes with a single-frequency drive in this channel. In

Figure 6.22 we do manage to profile the dynamics of an excitation placed in a superposition

of at least two of the upper-gap edge modes.

6.6.4 Modeling four-wave swap processes

If we model the levels of a transmon like levels of a bosonic ladder, we expect the decay of

the second excited qubit state (|f⟩) to be twice that of the first (|e⟩). This does not turn out

to be the case for the qubits used in these experiments! In particular, qubit Bob displays

an |e⟩ state T1 around 5µs, but an |f⟩ state T1 near 2µs. To better model oscillations in

qubit population when each qubit is brought on resonance with a lattice eigenmode via

multiphoton drive, we build a simple model of a qubit coupled to an oscillator in QuTiP
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Figure 6.22: Attempt at probing non-reciprocal transport in the upper-frequency
chiral edge. At top, we emit and detect photons using the upper-frequency edge channel
of the chiral lattice. As edge modes are spaced further (≈ 10 MHz) apart in this chan-
nel, and brought together less aggressively by shifts of resonant processes at strong drives,
a single-frequency tone is less effective at exciting multiple modes and generating a local-
ized wavepacket. We see largely sinusoidal behavior consistent with exciting a set of two
lattice eigenmodes. Fits are two-mode versions of those described and carried out earlier
in this chapter for lower-gap edge modes. At bottom, we include similar transport data
from Figure 6.13 using three modes in the slower-dispersion lower-frequency edge channel
for comparison. Lower-gap data are taken with more than three times as many averages,
accounting for the noise difference in the two datasets.
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which accounts for individual decay rates on different levels (see Appendix C).

In Figure 6.23, we produce fits from this model to Rabi oscillations between each resonantly-

coupled qubit dressed excited state and a lattice mode of choice. Note that, at a range of

drive amplitudes, the population present in qubit Bob never quite reaches 0 even on the first

oscillation; this is an effect of the very rapid decay time of Bob’s |f⟩ state, which causes

some population to be lost via decay even on route to the first minimum of Rabi oscillation.

The simulations account for this more rapid decay and succeed in reproducing the nonzero

minimum of Bob’s first oscillation at both high and low drive powers.

Figure 6.23: Fits to resonant four-wave-driven Rabi oscillations. Resonant dynamics
between each qubit and the same mode are measured at two different drive amplitudes, and
thus two different effective coupling rates g̃. We fit dynamics using a model of coupled qubit
and resonator in QuTiP that incorporates non-ideal lifetimes in the |f⟩ states of the qubits.

Irregularities in the shape of oscillations, especially notable in data taken at higher (0.5)

drive amplitude, stem from the overlap between targeted modes and their neighbors that

arises as resonant access to the modes broadens with higher drive power. The tops are cut
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off of some sinusoids due to interference patterns from overlapping access to multiple modes,

visible as ripples in chevron plots.

6.6.5 Effects and challenges of four-wave swap

It is the state of the art [91, 10, 26, 76, 167] to shape the amplitude of the multiphoton drive

when using this four-wave process to couple a dressed excited state of a fixed-frequency qubit

to a cavity mode or transmission line. We have found, however, that the Stark shifts on the

qubit transition are so extreme as to prohibit amplitude modulation and the effective am-

plitude modulation that stems from providing drives at multiple frequencies simultaneously.

This is because, due to the exquisitely sensitive dependence of the qubit transition on

the drive power in the regimes we must access to generate sub-200-ns dynamics, amplitude

modulation of a drive pulse amounts to detuning the qubit by possibly several tens of MHz

from the targeted resonant interaction. In that process of ring-up and ring-down of the full-

scale Stark shift, the dressed excited state of the qubit also is dragged across resonance with

some portion of the lattice band, risking unwanted interactions with un-targeted modes.

In Figure 6.24, we take the same scan of the lattice spectrum via multiphoton-driven

qubit, using, in turn, square pulses, square pulses with 15 ns σ Gaussian edges, and Gaus-

sian pulses. Even with minor modification to a square pulse in the form of rounded edges

with a Gaussian rise and fall, we see the accessed spectrum blur, asymmetrically, demon-

strating striping that sweeps from the lower left up into the main part of the band structure.

When Gaussian pulses are used, this blurring becomes so pronounced that the fine details

of the lattice spectrum are obscured. This seems to be an effect of the qubit ‘dumping’ its

population into unwanted locations en route to the target resonance.

When some shaped tone at a specific frequency is applied to the qubit, the qubit’s

|g⟩ ↔ |f⟩ transition Stark shifts onto resonance with the ultimate lattice frequency we seek

to target. During the interim ring-up time, the qubit transition sits at a higher frequency;
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Figure 6.24: Multiphoton-driven spectra with a range of pulse shapes. We supply a
strong multiphoton drive (amplitude label 0.6) to stimulate swapping of excitations between
qubit Bob and lattice modes. Cartoons of the pulse shapes used sit above each plot. Colorbar
represents population in the lattice-coupled qubit; minimum of 0.2 is due to prep. error.

as we target the lower-frequency edge channel in our transport experiments, the qubit has

the opportunity to lose population as it passes through resonance with most of the lattice

spectrum on route to the target frequency with fully rung-up drive.

Because of this limitation on access to resonant dynamics with shaped pulses, we restrict

ourselves to using square pulses in the work done in this thesis. Others using the same

four-wave process, in regimes with much weaker Stark shifts, have seen success in chirping

the phases of their drive pulses in order to cut back on the scale of the Stark shift [76]: they

modulate the phase ϕf0g1(t) of the drive pulse ap(t) to produce

ac(t) = ap(t)e
iϕf0g1(t) (6.8)

with the phase modulated according to

dϕf0g1(t)

dt
= −∆f0g1(t) (6.9)
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where −∆f0g1(t) is the Stark shift on the qubit due to the drive pulse at instantaneous time

t. We can express this in terms of the coefficient Cch scaling the quadratic dependence of

this Stark shift on the instantaneous pulse amplitude, which we can fit from data, resulting

in chirped pulse:

ac(t) = ap(t)e
−i
∫ t
0 Cch|ap(t′)|2dt′ (6.10)

This method might be helpful to the experiments described in this thesis, opening up the

benefits of pulse shaping for maximizing population and optimizing shape of the wavepacket

released into the chiral edge if the Stark shift can be effectively toned down. Ilves et al. [76]

cancel out a maximum Stark shift ∆f0g1 of 8 MHz; we would need to target ∼ 60 MHz, so

more work would need to be done to ensure that this method remains effective at higher

drives.

6.7 Conclusion

In this work, we strongly couple two transmon qubits to the edge of a topological photonic

lattice and show the capacity to emit a microwave photon into, and detect it traveling in,

a multi-mode chiral edge channel of this synthetic Chern insulator. We use this capacity

to observe non-reciprocal transport between the quantum emitters coupled to the chiral

lattice edge, leveraging strong couplings between emitters and photonic metamaterial to

probe single-photon dynamics.

Immediate future work with this extant platform might employ tomographic measure-

ments to explore the entanglement structure of long-traveling wavepackets that fragment

in the chiral edge. Phase-modulating the swap drive might partially lessen the scale of its

Stark shift on the qubit levels [145, 76], opening broader opportunities (see Section 6.6.5) for

shaping temporal pulse envelopes to optimize photon transfer into the lattice [210, 91, 10].
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Fine control of temporal envelopes of traveling wavepackets, alongside the native time-

binning effect suggested [194, 122] to occur in a few-mode edge channel, would enable explo-

ration, in a directional channel, of dual-rail time bin [76, 92] and multiphoton [10, 25] qubit

encodings tractable with cavity-based tools for error correction. The natural time delay of

directional excitations in the lattice edge also makes this platform an option for generating

cluster states of light [149, 55] of the three-plus dimensions needed to approach fault-tolerant

computation [159], especially since the sixteen-cavity lattice edge provides multiple possible

sites of qubit-waveguide interaction.

The richness of a structure which admits many distinct couplings is a core advantage

of this platform: coupling one additional qubit to the lattice bulk would engender Landau-

photon polaritions [48, 49], opening pathways to explore the polaritonic physics of interest

in photonic systems which combine topology with nonlinearity and gain [87, 11, 12]. Cou-

pling more qubits to the lattice edge would enable attempts at driven-dissipative preparation

of steady entangled states in many-emitter quantum electrodynamics with a chiral waveg-

uide [184, 148, 102]. Introducing local parametric driving or reservoir engineering to (a)

lattice site(s) could support production of long-range entangled states of light which gain

structure from system topology [208, 151].

Scaling up the size of the lattice itself would mitigate issues with edge-state leakage into

the bulk and the significance of scattering from lattice corners, further localizing wavepackets

in chiral lattice edge channels serving as more-multimode topological waveguides. Scaling

up the number of items coupled to this lattice, beyond introduction of a few specific emitters

or sites of reservoir engineering, could affect the system globally, opening avenues to gener-

ation [157] and stabilization [82] of states of matter combining interactions with topology.
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CHAPTER 7

OUTLOOK

The quarter-flux Harper-Hofstadter lattice for microwave photons, strongly coupled to mul-

tiple nonlinearities, which is the focus of this thesis provides a rich landscape of opportunities

to investigate the interplay of topology and interactions. It offers the chance to both ex-

cite and probe single-photon dynamics in an engineered photonic system, a goal which is of

interest nowadays both for quantum information applications and as a route to developing

further techniques in topological photonics. We expand on the conclusion of the previous

chapter and detail some potential next steps.

7.1 Further measurements to be made with this platform

• Chirping of multiphoton drive. As discussed in the previous chapter, chirping the phase

of multiphoton swap-drive pulses could possibly diminish the substantial Stark shifts

on qubit |g⟩ ↔ |f⟩ transitions enough to enable the use of pulse shaping.

The most obvious initial application of pulse shaping would be to permit multi-frequency

drives, which inherently have some variable amplitude envelope due to the phase dif-

ferences between the tones involved. Gaining access to resonant driving of multiple

qubit-lattice mode interactions simultaneously would enable us to more effectively ex-

cite multiple ∼ 10 MHz spaced edge modes in the higher-frequency edge channel of

the lattice, permitting synthesis of a genuinely multimode wavepacket propagating in

the upper edge channel.

There exists a wealth of work on optimizing pulse shaping, from the early days of flying

qubits with photons in transmission lines [129, 10, 25]; others, working with continuum

mode landscapes in waveguides, have calculated the exact pulse shape that is necessary

in that context to generate Gaussian-envelope single-photon wavepackets.
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As the work in this thesis probes a regime intermediate between continuum-waveguide

and single-cavity-mode coupling, calculation of an optimized pulse shape would be more

idiosyncratically dependent on the details of the exact lattice and its eigenspectrum.

The finite-size effects present in this 5 × 5 lattice, notably wavepackets’ tendency to

bounce off of corners, would further complicate pulse shaping but would be tractable via

simulation. It should be possible to model, for a disorder-free lattice, the perfect shape

of pulse to optimize transfer efficiency of a photon into the lattice, circumventing the

maximum 30 percent recovery rate of photons we observed after passage through the

chiral edge. It should even be possible to model wavepacket decoherence by relying on

known lattice mode frequencies and perhaps time-resolved measurements of excitations

propagating along the edge; in that way, even if the emission and detection pulses are

made asymmetric by lattice disorder, one could optimize for photon retrieval.

• Two-qubit tomography. In Section 6.5.1 we detailed the protocol to prepare the qubits

in a Bell state via lattice edge wavepacket; we attempted this preparation, but were

unable to measure its effectiveness. With limited time, we did not have access to

the phase coherence between emission and detection pulses necessary to attain phase

information on states in two-qubit tomography.

Deploying phase-coherent emission and detection drives would be a fairly simple hard-

ware modification, feasible by splitting both drives off of the same local oscillator

with upmixing afterwards (emission and detection drives should be a maximum of

100-200 MHz detuned). Gaining access to two-qubit tomography would open avenues

to explore the entanglement structure of traveling lattice wavepackets, which several

authors [122, 194] suggest are functionally time-binned due to wavepacket bunching

in a few-discrete-mode waveguide. While the imperfect and detailed nature of lattice

edge transmission makes this platform a suboptimal venue to explore dual-rail time-bin

qubit encoding on its own, this is an active subject of research interest in the circuit
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QED community [92, 76].

• Channel-channel scattering. Each of the transmons Alice and Bob is coupled to both

lattice edge channels; supplying a pair of detuned drives simultaneously could cause

one such transmon to absorb a photon tunneling in one edge channel and emit it to the

other. Probing mode-mode and channel-channel scattering through a qubit would be

intrinsically entertaining, but might also be useful to construct an added (synthetic)

dimension in the lattice, potentially altering the dimensionality of the effective lattice

or of a photonic cluster state prepared in it. We discuss cluster states later in this

chapter, but it’s important to note that a single feedback event with one qubit is

enough to generate a two-dimensional cluster state [149, 55], an outcome which this

platform is very hypothetically already equipped to seek.

7.2 Improvements to the platform

• Flux-tunable qubits. If the above item regarding pulse chirping is ineffective at toning

down the extreme scale of the Stark shift associated with the four-wave swap drive, it

will become difficult to add further fixed-frequency qubits coupled to the lattice, due

to the already-idiosyncratic nature of calibration needed to track mode-resonant drive

frequencies that are equisitely sensitive to small changes in the drive. Recent work has

been done at Yale to realize fast-flux delivery to circuits embedded in cavities [104],

addressing the physical challenge of routing this flux to 3D transmon qubits embedded

in chunks of superconducting material which works to screen changes in current.

Flux tuning could be particularly exciting because of the potential for parametric

modulation to bring the qubits on resonance with lattice modes; this would be a flexible

method of gaining, and shutting off, access to coherent processes. Any increased speed

of swap operations would help to generate excitations in the lattice on timescales much
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faster than the chiral edge round-trip, as opposed to only a few times faster. We could

then more easily separate state preparation/detection from dynamics.

Dynamic control of flux bias within this platform, alongside associated circuit modifi-

cations, could also provide opportunity to access three-wave mixing [58, 59], avoiding

the ϕ4 term in the Josephson Hamiltonian by using a three-wave process to produce

lattice photons. This might support evasion of the giant Stark shift problem associated

with our higher-order four-wave drive.

• Scale the system up, on-chip. Reaching larger lattice sizes would provide a more finely-

populated set of discrete eigenmodes useful to synthesize wavepackets in each edge

channel. At larger size, finite-size effects in the lattice, particularly the overlap of each

edge eigenmode with the bulk, would be less prominent. While it is perhaps possible

to scale up in the 3D architecture, there is limited room to grow before the experiment

becomes curtailed by the size of a mixing chamber plate.

Beyond increasing the size of a quarter-flux Harper-Hofstadter lattice, it might be

interesting to explore other lattice dimensionalities and connectivities (the Kagome

lattice? Synthetic gauge fields in higher dimensions, including synthetic ones?), taking

advantage of the flexibility of engineering available to circuit QED systems. If executed

in 3D, this would have to be done with attention to the size, shape, and spacing of

milled cavities. Site-site couplings, which derive from evanescent overlap of adjacent

cavity mode profiles, would be particularly hard to maintain. It might be preferable

to realize a topological lattice in 2D on-chip – here the challenge of more complicated

connectivities could still be difficult to execute, but access to vias and flip-chip ar-

chitectures courtesy of superconducting bump-bonding between layers might provide

more feasibly attainable flexibility in dimensions and connections.

The challenge in moving to 2D would be in maintaining the synthetic gauge field with-

out the convenience of YIG spheres, and this would likely need to be carried out via
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coupling modulation, as was the case in prior work showing chiral transport in a 2D

qubit ring [170]. With the introduction of (somewhat narrow-band) 2D on-chip circu-

lators [36, 15, 130] and other more inventive forms of generating non-reciprocity [202],

though, it is possible that we might ‘plug in’ these pre-generated ideas to again engineer

a topological lattice that sites its gauge field in local phase windings.

Overall, a larger topological lattice might be of interest for studying transport of polari-

tonic states in a broadly nonlinear lattice bulk, which requires multiple bulk nonlinear-

ities in its proposal [49], or approaching the regime of investigating state localization

and thermalization in a many-body quantum system. The ways in which topology,

with its affordance of global structure and access to system-wide entanglement, might

add subtlety to this study of many-body interacting systems are worth further consid-

eration.

The advantage of moving to a 2D transmon lattice is that, rather than hoping to

successfully introduce a 3D qubit coupled to each of many lattice cavities, we might

instead design a circuit and immediately attain nonlinearity on each site, putting the

platform in reach of exploring many-body physics in a topological landscape.

7.3 More qubits coupled to the lattice

• 2 and higher dimensional cluster states. Other work, in particular using a slow-light

waveguide with a ‘mirror’ at one end [55], has already realized two-dimensional pho-

tonic states in a circuit QED platform. However, given the interest of photonic cluster

states to folks studying quantum communication [85], measurement-based quantum

computing [160, 159], and entangled states of light in general, they are worth ex-

ploring further; the general formula of itinerant photon plus some set of light-matter

interactions arrayed along a waveguide is an attractive one for thinking about both

making quantum states of light and moving quantum information with those states.
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Figure 7.1: Schematic of 2D cluster state. Adapted from [55], this schematic depicts
a two-dimensional cluster state formed from subsequent re-entangling events of photons
propagating with some delay in a slow-light waveguide. A three-dimensional version of this
graph state, constructed with more nodes of entanglement, to three dimensions is argued
to be sufficient to produce a resource state for fault-tolerant measurement-based quantum
computation [149, 159].

Raussendorf [159] argues that a three-dimensional photonic cluster state is sufficient

to produce fault-tolerant quantum computation with a one-way quantum computer.

The extant platform already has, in theory, a slow-light waveguide in the form of

the lattice edge coupled to multiple qubits. We have a round-trip time in the slow-

propagating edge channel of 270 ns, compared to ∼75 ns dynamics timescales. We

could, in theory, construct at least 3-dimensional cluster states with the platform as

it exists presently: more than 2 re-entangling operations with a set of 2 qubits would

suffice, which we might achieve by waiting multiple lattice round trips between opera-

tions.

The issue with this option is that the wavepackets in the chiral lattice on this scale

have such wild behavior that tracing where, exactly, wavepackets are in the long term

can prove a challenge. Increasing the lattice size, even if by just a few sites in each

dimension, might help to constrain this wild behavior and make the chiral edge more

useful for transport of actual local wavepackets.

Coupling even more qubits to the lattice edge would offer even more opportunities to

entangle qubits with photons passing by in the edge channel, increasing capacities for
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generating multidimensional graph states of light. Having qubits on hand to help char-

acterize these states would be helpful in doing proof-of-concept experiments realizing

these states. But the ultimate lack of scalability of this 3D cavity lattice platform

would prevent broader applicability.

Figure 7.2: Chiral waveguide QED with multiple qubits coupled to the chiral
lattice edge. We depict a set of further transmon qubits coupled at arbitrary sites along
the edge of the 5 × 5 microwave Chern insulator. By siting transmons specifically on the
edge, we can gain access to control and readout of these cavities via auxiliary cavities, also
pictured.

• Chiral waveguide QED with a bunch of emitters. The chiral lattice edge, particularly

in an expanded lattice, would provide an interesting playground to explore multi-

emitter chiral quantum optics (see Figure 7.2 and the treatment of chiral waveguide

quantum electrodynamics in Chapter 1). This is one of the most interesting and feasible

directions of development for the chiral lattice platform – coupling qubits to bulk sites

could prove challenging (see section to follow), but the lattice edge sites are much more

accessible to introduction of further qubits, limited by capacities for qubit tuning and

control that might be mitigated by the above-discussed introduction of fast flux bias.
170



A range of theoretical and experimental works in chiral quantum optics interrogate

the physics of waveguide-mediated many-emitter interaction in situations where either

the coupling structure [148, 102, 182, 81, 79] or the waveguide itself [158, 153, 29, 179]

is chiral. Collective multi-emitter states mediated by a chiral waveguide, correlated

photonic states propagating directionally through a landscape of super-wavelength-

spaced strongly-coupled nonlinearities, and the driven-dissipative stabilization of large

entangled states of light would be interesting to probe in the chiral edge alone while

en route to the fractional quantum Hall limit. The fact that the chiral lattice platform

sits in between a single-mode cavity and a continuum waveguide might add interest to

this direction of exploration.

• Couple qubit to the lattice bulk. Coupling a transmon to one of the lattice sites located

in the bulk (see Figure 7.3) could be accomplished by bringing the sapphire wafer

upon which it sits through the underside of the lattice. The sites are purposefully

designed to be tall enough that each cavity mode sees its electric field amplitude fall

off exponentially towards the cavity top, making it infeasible to couple in a transmon

from the lattice roof without pushing it far enough into the cavity to spoil its quality

factor. As side-coupling locations of each bulk lattice site are consumed with nearest-

neighbor tunnel couplings, we would need to access the cavity from its bottom, likely

through the center of the quarter-wave post to preserve rotational symmetry, in order

to introduce a bulk qubit.

Were we to do this, we might generate and probe the behavior of a Landau-photon

polariton in the Chern lattice [48, 49]; such a hybrid qubit-photon state, trapped by

the strong synthetic gauge field, would be confined to localization in the bulk. This

experiment would provide an accessible probe of single-polaritonic physics, which can

be put in conversation with other work combining nonlinear materials with engineered

photonic systems [31, 87], the continuum version of the multi-emitter physics described
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Figure 7.3: Landau-photon polariton from coupling a qubit to the microwave
Chern insulator bulk. Adapted from [48], we depict the polariton (in purple), a quasi-
particle formed by hybridization of a nonlinear transmon qubit and a photon confined to a
Landau level in the bulk of the microwave Chern insulator. Using multiple emitters to gen-
erate multiple of these quasiparticles in the bulk, most feasible if the lattice were scaled up,
might open up a rich landscape of non-nearest-neighbor interactions [48] and in combination
with a synthetic electric field – a potential gradient – might also open the possibility of effi-
cient emission, absorption, and directional bulk transport of excitations between qubits [49].

in the bullet point above. To execute this it would be necessary to develop good strate-

gies for reading out states with the same qubit one used to do state preparation, unless

one was willing to add further nonlinearities to the lattice bulk. Some theoretical pro-

posals argue that the polaritonic states accessible when multiple emitters are coupled

to the lattice bulk might host interesting behavior [17], including efficient state trans-

port between emitters [49], but we would benefit from a larger lattice and larger lattice

bulk to address this limit, as bulk sites one off the edge have some measurable edge-like

mode participation.

• Lend nonlinearity to all sites, approaching the fractional quantum Hall limit. The initial
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motivation of the microwave Chern insulator studied throughout this thesis was as a

superconducting-qubit-compatible photonic metamaterial which would admit coupling

of qubits to enough lattice sites to accomplish substantial nonlinearity throughout the

lattice. In this case, the Harper-Hofstadter lattice would host photon-photon interac-

tions, opening up the chance to study the transport and interaction of excitations in

a system that mimics the mechanism of the fractional quantum Hall effect. Measure-

ments performed with this analog quantum simulator were intended to provide access

to measurements of anyons, in particular the then as-yet-unseen non-Abelian anyons

of interest for those working towards fault-tolerant quantum computation. Since that

time, an analog simulation of fractional quantum Hall physics has been realized in cold

atoms [108] and it has become apparent that coupling enough 3D transmon qubits to

lattice sites to achieve the fractional quantum Hall limit, and then controlling them, is

a likely prohibitive amount of effort. It seems like the routes immediately above and

below this item leverage the special aspects of this circuit QED platform to greater

effect.

7.4 Some futures in reservoir engineering

• Single site of reservoir engineering or dissipative pairing. The flexibility of this many-

edge-site lattice with easy antenna access to be hooked up to various drives and circuits

is probably the most interesting aspect of this particular topological photonic platform.

The discussion of chiral waveguide quantum electrodynamics above brings up the ex-

pectation that, with a set of quantum emitters coupled to a shared chiral waveguide,

it should be possible to dissipatively stabilize some entangled steady state of the whole

system.

A pair of recent papers offers a set of options for supplying a particular intervention

at a specific location in a Chern lattice, which should be sufficient to achieve a global
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Figure 7.4: Coupling of lattice site to a squeezed reservoir. We depict, at top in pink,
a reservoir of squeezed light coupled to a single site of the lattice edge. Yanay and Clerk [208]
argue that this intervention in reservoir engineering could help to stabilize long-range en-
tangled states of light in the Chern lattice that gain their structure from the metamaterial’s
topology.

response thanks to the system topology: Pocklington et al. [151] propose introduction

of a (non-Hermitian) dissipative pairing operation to one pair of lattice sites, which

at low power should stabilize an exponentially edge-localized steady state with the

edge sites highly entangled, and at high power should introduce a novel instability.

Yanay and Clerk [208] propose introduction of a squeezed reservoir coupled to a single

lattice site; due to the symmetry of the Chern insulator Hamiltonian, this reservoir

will stabilize a steady state, in which the correlation structure across the whole lattice

will depend on the reservoir-engineering location chosen.

In both cases, introduction of a local interaction/reservoir, plus the symmetry of the

Chern insulator, result in steady-state global correlations structured by that symmetry.

This is illustrative of the close connection between topology and long-range entangle-

ment [39], and investigating the entanglement structures accessible in a photonic Chern

insulator via parsimonious driving or reservoir engineering might be of meaningful in-
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terest to future researchers seeking to manipulate and understand quantum light in

topological photonic systems.

Topological protection of correlated photons. In extension of the section above, the sup-

port system lattice topology yields for correlated states can also be used to stabilize

pre-squeezed states of light injected into some site of the lattice (e.g. from a Josephson

parametric amplifier) purely in order to preserve those correlated states of light them-

selves. Past work has investigated the capacity of topological insulator edge states to

protect correlated pairs of photons above the results that would be achievable without

topological structure [123, 22, 200]. As the utility of this work seems to be rooted in

scalability for quantum information handling, and the chiral lattice, as it stands, is

eminently difficult to scale, this route is not the most valuable for future experimental

work.

• Interface with non-Hermitian processes. This thesis has largely evaded discussing the

combination of non-Hermitian physics with non-reciprocity, which is a rapidly expand-

ing zone of interest, but it will now mention that a flowering of recent work [136, 155]

has focused on combining topology with the non-Hermitian processes of gain and loss.

Some experiments explore polaritonic physics [87] and lasing [11, 12] in topological

systems made of nonlinear materials, while others build platforms from the ground up

to work towards simulating a many-body non-Hermitian system [27]. Further work

applies parametric driving to systems with topological edge modes, spurring ampli-

fication than can be harnessed for experimental use [144, 204]. This requires more

thought, but it might be of interest to use the chiral lattice platform to support and

explore topological amplification of light under drive.
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APPENDIX A

REMINDER SHEET FOR FREQUENCY-TIME CONVERSION

The subbasement of the Schuster lab at the University of Chicago had a piece of paper taped

to the wall which reminded readers of where the factor of 2π went in the conversion between

widths σ of Gaussian pulse shapes in frequency and time. It became tiresome to rederive

every time I was on a different floor and forgot, so I provide a reminder here:

σfσt =
1

2π
(A.1)

We retrieve this from the Fourier transform of a generic Gaussian function in some

dimension x which Fourier transforms to k [206]:

f(x) = e−ax
2

FT −→ F (k) =

∫ ∞
−∞

e−ax
2
e−i2πkxdx =

√
π

a
e
−π2k2

a (A.2)

We can express a Gaussian function of time of unit height centered at zero as:

f(t) = e
−1

2
x2

σ2t FT −→ F (f) ∝ e−π
2f22σ2t = e−

1
2f

2(4π2σ2t ) = e
−1

2
f2

σ2
f (A.3)

We note that ω = 2πf and arrange the contents of the exponent on the right side of

Equation A.3 to yield a σf . We expect that we should be able to express our result Gaussian

in the same form as we started with, given that all we’re specifying is a coordinate and a σ

in the exponent. Therefore,

σ2f =
1

4π2σ2t
−→ σfσt =

1

2π
(A.4)
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APPENDIX B

CODE TO SIMULATE THE HARPER-HOFSTADTER LATTICE

B.1 5 × 5 lattice, without backwards modes

Here we realize, in Mathematica, a 5 × 5 quarter-flux Harper-Hofstadter lattice. We keep

the phase windings local to the chiral sites, modifying specifically the hoppings onto and off

of the four lattice sites which host a YIG sphere.

(* Input specific Hamiltonian parameters! *)

J = 19.3*2 \[Pi]*10^6; (* Approximate hopping rate t *)

\[Phi] = 1/4*2 \[Pi]; (* Quarter-flux *)

\[Kappa] = 0; (* No decay here *)

\[Omega]0 = 9.03699*2 \[Pi]*10^9; (* Pick a lattice band center *)

(* List of coordinates of lattice sites *)

Size = 5;

siteindices = Flatten[Table[{ii, jj}, {ii, 1, Size}, {jj, 1, Size}], 1];

yigsiteindices = {{2, 2}, {2, 4}, {4, 2}, {4, 4}};

nInd = Length[siteindices];

(* Converts two-element lattice coordinate to single numerical index *)

getsiteindex[ii_, jj_] :=

If[Length[#] > 0, #[[1, 1]], 0] &[Position[siteindices, {ii, jj}]];

(* Add diagonal elements to 25x25 Hamiltonian*)

HmatAnewgauge2 = Table[0, {nInd}, {nInd}];

For[ii = 1, ii <= Size, ii++,
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For[jj = 1, jj <= Size, jj++,

curind = getsiteindex[ii, jj];

HmatAnewgauge2[[curind, curind]] += \[Omega]0;]]

(* Add all site-site coupling amplitudes for 25x25*)

(* Horizontal hopping in odd-i rows, even-i rows *)

For[jj = 1, jj <= Size - 1,

jj++,

For[ii = 1, ii <= (Size + 1)/2, ii++,

HmatAnewgauge2[[getsiteindex[2 ii - 1, jj],

getsiteindex[2 ii - 1, jj + 1]]] += -J ;

HmatAnewgauge2[[getsiteindex[2 ii - 1, jj + 1],

getsiteindex[2 ii - 1, jj]]] += -J;

];

For[ii = 1, ii <= (Size - 1)/2, ii++,

HmatAnewgauge2[[getsiteindex[2 ii, jj],

getsiteindex[2 ii, jj + 1]]] += -J ;

HmatAnewgauge2[[getsiteindex[2 ii, jj + 1],

getsiteindex[2 ii, jj]]] += -J;

]

]

(* Vertical hopping *)

For[jj = 1, jj <= (Size + 1)/2, jj++,

For[ii = 1, ii <= Size - 1, ii++,

HmatAnewgauge2[[getsiteindex[ii, 2 jj - 1],
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getsiteindex[ii + 1, 2 jj - 1]]] += -J;

HmatAnewgauge2[[getsiteindex[ii + 1, 2 jj - 1],

getsiteindex[ii, 2 jj - 1]]] += -J;

]

]

(* Vertical hopping *)

For[jj = 1, jj <= (Size - 1)/2, jj++,

For[ii = 1, ii <= (Size - 1)/2, ii++,

HmatAnewgauge2[[getsiteindex[2 ii - 1, 2 jj],

getsiteindex[2 ii, 2 jj]]] += -J;

HmatAnewgauge2[[getsiteindex[2 ii, 2 jj],

getsiteindex[2 ii - 1, 2 jj]]] += -J;

];

For[ii = 1, ii <= (Size - 1)/2, ii++,

HmatAnewgauge2[[getsiteindex[2 ii, 2 jj],

getsiteindex[2 ii + 1, 2 jj]]] += -J;

HmatAnewgauge2[[getsiteindex[2 ii + 1, 2 jj],

getsiteindex[2 ii, 2 jj]]] += -J;

]

];

(* Multiply on complex phase from hoppings to/from YIG sites *)

For[mm = 1, mm <= Length[yigsiteindices], mm++,

ii = yigsiteindices[[mm]][[1]];

jj = yigsiteindices[[mm]][[2]];
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(* Up tunneling, and conjugate*)

HmatAnewgauge2[[getsiteindex[ii, jj], getsiteindex[ii + 1, jj]]] *=

Exp[I*2*\[Phi]];

HmatAnewgauge2[[getsiteindex[ii + 1, jj], getsiteindex[ii, jj]]] *=

Exp[-I*2*\[Phi]];

(* Down tunneling, and conjugate*)

HmatAnewgauge2[[getsiteindex[ii, jj], getsiteindex[ii - 1, jj]]] *=

Exp[I*0*\[Phi]];

HmatAnewgauge2[[getsiteindex[ii - 1, jj], getsiteindex[ii, jj]]] *=

Exp[-I*0*\[Phi]];

(* Vertical tunneling top, boring and just for thoroughness*)

HmatAnewgauge2[[getsiteindex[ii, jj], getsiteindex[ii, jj + 1]]] *=

Exp[I*\[Phi]];

HmatAnewgauge2[[getsiteindex[ii, jj + 1], getsiteindex[ii, jj]]] *=

Exp[-I*\[Phi]];

(* Vertical tunneling bottom, conjugate also for thoroughness *)

HmatAnewgauge2[[getsiteindex[ii, jj], getsiteindex[ii, jj - 1]]] *=

Exp[I*3*\[Phi]] ;

HmatAnewgauge2[[getsiteindex[ii, jj - 1], getsiteindex[ii, jj]]] *=

Exp[-I*3*\[Phi]];

]
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eigenvalsAnewgauge2 = Reverse[Eigenvalues[HmatAnewgauge2]]

eigenvecsAnewgauge2 = Reverse[Eigenvectors[HmatAnewgauge2]];

B.2 Numerical dynamics of wavepacket in perfect lattice

Here we can select a drive frequency ωD and a one-sigma width, τ , of a Gaussian drive pulse

in time in order to prepare circulating wavepackets in the lattice. We include code for the

high-frequency wavepacket, but one only needs to change ωD to model the low-frequency

wavepacket. If we change the variable nInd to 29, we can also use this code to simulate

dynamics in the modified lattice detailed in the following section.

nInd = 25;

MakeVariableList[preF_, sufF_, NN_] :=

Table[ToExpression[preF <> ToString[j] <> sufF], {j, NN}];

\[Psi]s = MakeVariableList["\[Psi]", "[t]", nInd];

d\[Psi]s = MakeVariableList["\[Psi]", "’[t]", nInd];

(* Initial condition is just... nothing *)

\[Psi]init = ConstantArray[0, nInd];

ICs = Thread[(\[Psi]s /. t -> 0) == \[Psi]init];

(* Drive on site 1, which should be {1,1}*)

\[Psi]drive = ConstantArray[0, nInd];

\[Psi]drive[[1]] = 1;

Print["\[Psi]drive=" <> ToString[\[Psi]drive]]
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tmax = 1000/(10^9)

(* Drive freqs are 9.004, 9.064 GHz in lower and upper gap*)

\[Omega]D = -\[Omega]0 - 1.4 J ;

(* Time-sigma and center frequency of the drive envelope *)

\[Tau] = 2.42531/J;

drivefn = Exp[-((t - 3 \[Tau])^2)/(2 \[Tau]^2)];

EOMs = Thread[

I d\[Psi]s == (HmatAnewgauge2 . \[Psi]s +

10^10. \[Psi]drive *Exp[I \[Omega]D*t]*drivefn)];

EQNs = Join[EOMs, ICs];

(* Solve! *)

solns = NDSolve[EQNs, \[Psi]s, {t, 0, tmax}][[1]];

edgeindices2 = {1, 6, 11, 16, 21, 22, 23, 24, 25, 20, 15, 10, 5, 4, 3, 2};

\[Psi]sedge1 =

Table[(Abs[\[Psi]s[[edgeindices2[[iii]]]] /. solns]^2), {iii , 1,

Length[edgeindices2]}];

timetable1 =

Table[((\[Psi]sedge1) /. t -> tt), {tt, 0, tmax, tmax/100}];

runaroundhi =

Graphics[Raster[timetable1/Max[Max[timetable1]]], Frame -> True,
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Background -> White, AspectRatio -> 3/2,

FrameStyle -> Thickness[0.0065],

FrameTicks -> {{{{0, "0"}, {40, "400"}, {80, "800"} }, None}, {None,

None}},

FrameLabel -> {"Edge Site Index", "Time (ns)"},

LabelStyle -> {Black, FontSize -> 22, FontFamily -> "Arial"}]

B.3 Incorporating backwards chiral modes

To include coupling through more-detuned YIG site modes of opposite chirality, we increase

the size of our Hamiltonian matrix to 29 × 29, and include an auxiliary set of 4 YIG sites

that share the same coupling structure and rate to neighboring sites as the first 4, but are

detuned in frequency.

AddExtraSites[\[Delta]_, \[Kappa]2_, HMat_] :=

Module[{cs, blanktable, biggerHmat, couplingsHmat},

cs = J;

blanktable = Table[0, 4, {nInd + 4}];

For[ii = nInd + 1, ii <= nInd + 4, ii++,

blanktable[[ii - nInd, ii]] += \[Omega]0 + \[Delta] +

I \[Kappa]2/2];

(* Add four columns of zeros to the right side of Hmat, verbosely *)

biggerHmat =

Transpose[Insert[Transpose[HMat], ConstantArray[0, 25], nInd + 1]];

biggerHmat =

Transpose[Insert[Transpose[biggerHmat], ConstantArray[0, 25], nInd + 1]];

biggerHmat =
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Transpose[Insert[Transpose[biggerHmat], ConstantArray[0, 25], nInd + 1]];

biggerHmat =

Transpose[Insert[Transpose[biggerHmat], ConstantArray[0, 25], nInd + 1]];

(* Now stick four fows of zeros on the bottom with the onsite

energies included on the global matrix diagonal*)

For[ii = 1, ii <= 4, ii++,

biggerHmat = AppendTo[biggerHmat, blanktable[[ii]]]];

(* Instantiate couplingsHmat before you start actually putting the

couplings into it *)

couplingsHmat = biggerHmat;

For[mm = 1, mm <= 4, mm++,

ii = yigsiteindices[[mm]][[1]];

jj = yigsiteindices[[mm]][[2]];

(* Up tunneling, and conjugate*)

couplingsHmat[[25 + mm, getsiteindex[ii + 1, jj]]] += -J*

Exp[I*2*\[Phi]];

couplingsHmat[[getsiteindex[ii + 1, jj], 25 + mm]] += -J*

Exp[-I*2*\[Phi]];

(* Down tunneling, and conjugate*)

couplingsHmat[[25 + mm, getsiteindex[ii - 1, jj]]] += -J*
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Exp[I*0*\[Phi]];

couplingsHmat[[getsiteindex[ii - 1, jj], 25 + mm]] += -J*

Exp[-I*0*\[Phi]];

(* Vertical tunneling top, boring and just for thoroughness*)

couplingsHmat[[25 + mm, getsiteindex[ii, jj + 1]]] += -J*

Exp[I*3*\[Phi]];

couplingsHmat[[getsiteindex[ii, jj + 1], 25 + mm]] += -J*

Exp[-I*3*\[Phi]];

(* Vertical tunneling bottom, conjugate also for thoroughness *)

couplingsHmat[[25 + mm, getsiteindex[ii, jj - 1]]] += -J*

Exp[I*\[Phi]] ;

couplingsHmat[[getsiteindex[ii, jj - 1], 25 + mm]] += -J*

Exp[-I*\[Phi]];

];

couplingsHmat]

(* Put backwards sites in 200 MHz detuned *)

bothHmatAnewgauge2 = AddExtraSites[200*2*Pi*10^6, 0, HmatAnewgauge2];

eigenvalsBothAnewgauge2 = Reverse[Eigenvalues[bothHmatAnewgauge2]]

eigenvecsBothAnewgauge2 = Reverse[Eigenvectors[bothHmatAnewgauge2]];
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APPENDIX C

CODE TO SIMULATE MULTILEVEL SWAPS IN QUTIP

We found that due to the rapid |f⟩ state decay of qubit Bob in particular, more rapid

than would be expected from treating transmon levels basically like harmonic oscillator

levels, we needed to simulate the |f, 0⟩ ↔ |g, 1⟩ swapping between qubit and lattice mode

in a way that accounted for the idiosyncratic decay rate of each transmon level. We wrote

our own operators for each level transition, inspired by the treatment of operators here:

https://gist.github.com/AhmedSalaha/04eef0060068cd484fff2da06d2995de.

# Bringing in t, Plist1 from data (t_evol, state_cor) taken in experiment

t = np.asarray(t_evol)

Plist1 = np.asarray(np.round(state_cor, 5))

# Parameters (MHz)

omega_c1 = (8921.3) * 2 * pi # chiral mode 1

omega_q = 7764.2 * 2*pi # frequency of chosen qubit

U = -351.4 * 2*pi # anharmonicity of chosen qubit

kappa1 = 1/5.3 * 2 * pi # cavity dissipation rate

# 1 is 1/kappa, the radial decay

gammaf = (1/1.4) # qubit f dissipation rate

# The 2 is implied in the measurement

gammae = (1/4.9) # qubit e dissipation rate

g1 = 0.708 * 2 * pi # effective sideband coupling strength

omega_d = 2*omega_q + U - omega_c1 # sideband drive with mode 1
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# Cavity field operators

N = 3 # number of cav. Fock states

a = tensor(destroy(N), qeye(3)) # composite operator

vacuum = tensor(basis(N,0), basis(3,0)) # cavity and qubit vacuum

# Qubit operators

sm = tensor(qeye(N), destroy(3)) # sigma minus on qubit

# Outer products

s00 = tensor(qeye(N), basis(3,0)*basis(3,0).dag()) # |0><0| in qubit

s01 = tensor(qeye(N), basis(3,0)*basis(3,1).dag()) # |0><1|

s12 = tensor(qeye(N), basis(3,1)*basis(3,2).dag()) # |1><2|

s11 = tensor(qeye(N), basis(3,1)*basis(3,1).dag()) # |1><1|

s22 = tensor(qeye(N), basis(3,2)*basis(3,2).dag()) # |2><2|

# Hamiltonian

# I’m not using ladder operators, but the bosonic-ladder factors of

# sqrt(2) get taken care of by measured T1.

# Rotating with drive

# wg |0><0| + we |1><1| + wf |2><2|

# Schrieffer-Wolff; see Lev Bishop thesis transformation to rotating frame,

# takes factor of state number on wd

HQ0 = (0 - 0*omega_d) * s00 + (omega_q - omega_d) * s11

+ (2*omega_q + U - 2*omega_d) * s22

HC0 = (omega_c1 - omega_d) * a.dag() * a
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# g_eff a |2><1|1><0| + h.c.

Hswap = g1*a*s12.dag()*s01.dag() + g1*(a*s12.dag()*s01.dag()).dag()

# Do we still want to include the Kerr nonlinearity? I think we already

# include with the anharm terms, so no

# 0.5 U |2><1|1><0| |0><1|1><2| ???

HKerr = 0.5*U*(s12.dag() * s01.dag())*(s12.dag() * s01.dag()).dag()

H = HQ0 + HC0 + Hswap #+ HKerr

# Collapse operators

c_ops_list = [];

c_ops_list.append(np.sqrt(kappa1) * a) # Cavity decay

c_ops_list.append(np.sqrt(gammaf) * s12) # Decay |e><f|

c_ops_list.append(np.sqrt(gammae) * s01) # Decay |g><e|

# Observables

Ncav1 = a.dag() * a

Nq = sm.dag() * sm

Pg = vacuum*vacuum.dag()

Pe = s01.dag() * vacuum * (s01.dag() * vacuum).dag()

Pf = (s12.dag()*s01.dag()*vacuum * (s12.dag()*s01.dag()*vacuum).dag())

exp_list = [Pg, Pe, Pf, Nq, Ncav1]
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# ME dynamics: single drive freq

tlist = np.linspace(0, 1.8, 1001)

psi0 = s12.dag() * s01.dag() * vacuum # start in the f-state

output = mesolve(H, psi0, tlist, c_ops_list, exp_list, options=opts,

progress_bar=True)

pg = output.expect[0]

pe = output.expect[1]

pf = output.expect[2]

nq = output.expect[3]

n1 = output.expect[4]

# In plotting, use calibration data to assess how much of P(e) overlaps P(f)

# Adjust plotted V accordingly. As an example,

V = (pf + 1.208*pe)
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APPENDIX D

TRANSMON NANOFABRICATION RECIPE

D.1 Steps to fabricate a niobium optical layer

Fabrication was performed on 430 µm thick, 2 inch sapphire wafers, annealed prior to use.

Deposition of niobium occurred in the same Plassys angled electron-beam evaporator used

later for junction deposition. Optical lithography was carried out in a Heidelberg maskless

laser writer.

Table D.1

Process step: approximate time Sequential details

Wafer clean: 45 min Toluene: Sonicate 2/2/2 min at increasing speeds

Acetone: Sonicate 2/2/2 min at increasing speeds

Methanol: Sonicate 2/2/2 min at incr. speeds

IPA: Sonicate 2/2/2 min at increasing speeds

Spin dry

Inspect in microscope

Deposit Nb: 5 + 1 hours Place wafer in Plassys load-lock chamber

Bake @ 200 C for 1 hour, gate valve closed

Open gate valve when load-lock cools

Pump down load-lock with deposition chamber

Total > 4 hrs bake and pumpdown

Deposit 75 nm Nb with wafer rotation

Spin photoresist: 10 min AZ703, 3500 RPM, 1000 RPM/sec ramp, 45 sec

Soft bake: 1 min Place on 95 C hot plate for 1 min

Prep Fl etch: 30 min (concurrent) Start 2-step O2 clean in ICP etch machine

213



Continuation of Table D.1

Precondition chamber with etch recipe, 1 min

Expose in Heidelberg: 10 min Expose optical layer pattern

375 nm laser, dose 140

Hard bake: 2 min 95 C, 1:15 min

Develop: 5 min AZ MIF 300, 1 min

DI quench, 10 sec

DI rinse, 2 min

Spin dry

Inspect in microscope to check develop

Fluorine etch: 30 min Get new carrier wafer

Mount wafer on carrier with Fomblin oil

Run etch recipe, 3 min

Remove wafer from carrier and A+I clean carrier

Inspect etch in microscope

Strip photoresist: 1+ hour Skip descum because omitting BHF here

Place in NMP

Warm with 80 C hot plate for > 40 mins

Clean wafer: 25 min Sonicate in NMP in hot bath 5/5/5 min

Acetone: Sonicate 2/2, marinate 2 min

IPA: Sonicate 2/2, marinate 2 min

Vent vacuum bake oven

DI water rinse 2 min

Spin dry

Look in microscope; you’re stuck with results!
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D.2 Steps to fabricate Manhattan-style Al/Al2O3/Al junctions

Lithography was performed in a 100 kV Raith electron beam lithography system. Evapora-

tion of junctions was performed in a Plassys angled electron-beam evaporator. An Angstrom

Nexdep thermal evaporator was used to lay down a gold conduction layer prior to electron

beam lithography, as the sapphire substrate used is not very conductive.

Table D.2

Process step: approximate time Sequential details

Vacuum bake: 15 min Bake in vacuum oven used for HMDS prime

Include N2 vent at end of recipe

Cool on bench in quartz holder 1-2 min

Clean spinner chuck: 5 min Do this every time

(concurrent) Remove plastic o-ring using tweezers

Spray and scrub chuck with acetone

Spray and scrub chuck with IPA

Blow dry

Re-mount o-ring

Spin e-beam resist: 25 min Check or write your own spin recipe (see notes)

Rest resist bottles from cabinet near the spinner

Prepare 2 pipettes prior to proceeding

Cover 2/3 wafer in MMA EL11

Spin @ 4000 RPM, 500 RPM/sec, 45 sec

Bake @ 180C for 5 min

Cool on cleaned bench for > 20 sec

Cover 2/3 wafer in PMMA 950 A7

Spin 4000 RPM, 500 RPM/sec, 45 sec
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Continuation of Table D.2

Bake @ 180C for 5 min

Prep thermal evaporator: 5 min Vent thermal evaporator during a bake

(concurrent) Load gold in evaporator during next bake

Evaporate conductive layer: 45 min Depost 10 nm gold at 10 rpm

For smaller tungsten boat, try 0.5 Å per second

Electron beam lithography: 1.5 hrs Wait to start prepping developer

Convert dxfs to gpfs using Beamer

Check dose multiplier and proximity effect file

Load and clamp wafer into its e-beam cassette

Do height check, θ correction of wafer

Write down marker coords. rel. Faraday cup

Double check that all clamps are screwed down

Load cassette into 100 kV Raith e-beam writer

Pump down

Marker alignment using relative coords.

Expose, dose 125-145×10, 3 nA beam

Prep e-beam developer: 5 min Begin cooling during e-beam write

(concurrent) 3:1 IPA:DI water in foil-covered beaker

Chill on hot plate set to 6 C

Maintain 45 mins from this to developing

Remove sample: 15 min Vent Raith

Remove sample from e-beam cassette

Make sure that all clamps are screwed down

Inspect exposure sites in microscope

If bad, strip resist with NMP and go again
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Continuation of Table D.2

Gold etch: 30 min Gold etch 45 sec, a bit overkill given etch rates

DI water quench 10 sec

DI water rinse 2 min

Blow dry

Develop e-beam resist: 10 min Place in chilled developer, 1.5 min, no agitation

100% IPA quench, 10 sec, do not spray water

Blow dry with alacrity

Inspect results of develop in microscope

Move quickly to load into Plassys

Deposit junctions: > 7 hours Align wafer on carrier (see notes)

Pump down to chamber pressure ≤ mid e-7 mbar

Ensure pumpdown ≥ 3.5 hrs

Highest usable pressure ≤ high e-7 mbar

Junction deposition: 2 + 1 hours Ar + dynamic O2 plasma etch

Etch turns off Penning gauge; restart script here

Ti evaporation, 4 min @ 0.2 nm/s to clean O2

Triple angle ion mill with Ar

Ti evaporation, 4 min @ 0.2 nm/s

Al evap., 45◦ tilt, 90◦ rotation, 45 nm @ 1 nm/s

Static oxidation: 50 mbar for 15 min

Pump down chamber for 13 min

Ti evaporation, 4 min @ 0.2 nm/s to clean O2

Al evap., 45◦ tilt, 90 + 90◦ rot., 115 nm @ 1 nm/s

Static oxidation: 3 mbar for 5 min

Leave junctions under vacuum for 20 min - 1 hr
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Continuation of Table D.2

Spin dicing resist: 10 min AZ703, 3500 RPM for 45 sec

Bake @ 95 C for 1 min

Can keep wafer for later dicing here

If wait is longer than a day, spin more resist

Dice: 1 hour Point ionizing fan (on) at mounting plate

Mount wafer on dicing tape and ring @ 40 C

Make sure the blade is really 8A for sapphire

Make sure dicing saw water flow is properly set

Keep light on low power to avoid exposing resist

Run dicing recipe

De-mount ring+tape from saw under ionizing fan

Blow sample dry under ionizing fan

120 sec UV exposure to weaken grip of tape

Take ring, tape, and chips to solvent bay

De-mount chips from ring: 15 min Place dicing ring on fabric wipe in solvent hood

Pour PG remover into a beaker nearby

Gently scoop under each chip with tweezer

Hold tweezer open with thumb, use bottom half

Depress tape into fabric wipe vs. peeling chip off

Place each chip into PG remover, stagger edges

Liftoff: 1-3 hours Cover PG remover beaker

Place on 80 C hot plate for 1-3 hours

Avoid heated bath as water + NMP eat junctions

Do not lift off overnight

Clean chips: 45 min Sonicate 40 sec on low in PG remover, 80 C bath
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Continuation of Table D.2

Spray with IPA while moving to acetone beaker

Acetone: sonicate 40 sec on low in cold bath

Spray with IPA while moving to IPA beaker

IPA: sonicate 40 sec on low in cold bath

Spray with IPA + move to second IPA beaker

Blow dry each chip with N2 10 sec after removing

Store chips Use prepared polyethylene carrier from MTI

Pre-clean carrier with IPA, blow dry

Wrap chip holder in aluminum foil

Wait 12-24 hours after liftoff before measuring

Notes for spinning e-beam resist:

• Test spin recipe with bare wafer for evenness – mount the wafer on the chuck, turn the

vacuum on, and run your pre-checked recipe. Readjust as necessary to make sure that

the spin runs flat. The spin-up of the wafer should look smooth and even, not wobbly.

• Prior to picking up resist, use N2 gun to spray out insides and outside of pipette,

aiming towards handle and away from tip. You may also spray off the wafer top, from

an angle, making sure not to hold the (dirty) N2 gun above the wafer itself.

• When applying resist, do so at the center of the wafer, avoiding bubbles. Once you

start dripping resist, keep it up in a steady stream. Cover 1/2 to 2/3 of the wafer

radius.

• The second spin is liable to get some PMMA on the back of your wafer. This is alright

as long as the flecks are not big and lumpy. If too large, these might introduce too

much unevenness when you seek to mount your wafer flat in the e-beam cassette.
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• If you are worried about PMMA on the wafer back, before baking you can use cleanroom

q-tips saturated in acetone, and then IPA, to try to scrub the un-baked resist off of

the wafer back. Do this carefully, as it may introduce more harm than good.

Notes for performing wafer alignment in the Plassys:

• Align wafer flat to grid on the mounting cassette, and arrange the cassette so that the

wafer flat is perpendicular to the mounting arm’s axis of rotation.

• To accomplish this, it may be necessary to manually rotate the cassette in the user

interface to get the flat fully perpendicular to this arm. ‘Home’ the stage thereafter to

get rid of this rotation offset.

• After executing ‘home’ command, return to ‘load’ position and check that wafer flat

is in the right place with planetary angle set to zero. This whole process may require

some iteration but balance good alignment against the need to get the sample pumped

down while the recently-exposed sample is fairly clean.

• You have a bit of wiggle room on alignment, courtesy of undercuts, as long as angled

evaporation still fills your junction arm channels.

• If for some reason your e-beam exposure went wrong, if the area targeted for junctions

is still covered and unexposed, it’s possible to use the MMA/PMMA baked resist stack

to protect the optical layer for some time. I have kept wafers covered with resist

and gold, but un-exposed, for up to a week in the cleanroom without seeing an issue

exposing ∼150 nm features nicely.

After making these transmon qubits on sapphire chips, one can measure the resistances

across the junctions at room temperature, using the Ambegaokar-Baratoff relation [174]

to draw a connection between room-temperature junction resistance and junction critical

current. One may then draw a further connection between critical current and the Josephson
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energy EJ that, when other system parameters are fixed, sets the qubit’s transition frequency

ωge and contributes to anharmonicity α. As the size of the superconducting gap, ∆, in the

Ambegaokar-Baratoff relation is a bit of an empirical parameter that relates to materials

properties, it is wise to calibrate a conversion factor between room-temperature junction

resistance and ωge by testing fabricated transmons in a cooldown.

D.3 Speculations regarding static

Nanofabrication involves sweeping such a large parameter space of process alterations, and

navigating such a wide range of possible factors contributing to process drift, that it can be

difficult to feel as though one is systematically troubleshooting specific problems.

I experienced pronounced issues with Josephson junctions shorting during my time in

the cleanroom; my process was subtly different from others, as I did not perform any acid

cleaning of the wafers and also used transmon designs with capacitive pads smaller than

any others being fabricated in the lab at the time. Whatever the reason, the Josephson

junctions that I fabricated seemed particularly sensitive to shorting, likely due to shock from

electrostatic discharge. I made a pair of interventions simultaneously, one or both of which

dramatically decreased the fraction of junctions which arrived shorted when their resistances

were tested at room temperature: I operated an ionizing fan while mounting and de-mounting

wafer and chips from the sticky tape used for dicing and switched to storing finished chips in

polyethylene wafer holders rather than in a sticky holder that, while made with conductive

gel, might have become less conductive upon continued exposure to atmosphere.
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