
THEUNIVERSITY OF CHICAGO

RESOURCE-AWAREOPTIMIZATIONS FORDATA-INTENSIVE SYSTEMS

ADISSERTATION SUBMITTEDTO

THE FACULTYOF THEDIVISIONOF THE PHYSICAL SCIENCES

IN CANDIDACY FORTHEDEGREEOF

DOCTOROF PHILOSOPHY

DEPARTMENTOF COMPUTER SCIENCE

BY

RUI LIU

CHICAGO, ILLINOIS

DECEMBER 2023



Copyright © 2023 by Rui Liu

All Rights Reserved



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Primitive 1: Resource UtilizationMaximization . . . . . . . . . . . . . . . . . . . . 3
1.2 Primitive 2: Resource Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Primitive 3: Resource Suspension and Resumption . . . . . . . . . . . . . . . . . . . 5
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 REPACK:UNDERSTANDINGANDOPTIMIZINGREPACKEDNEURALNETWORK
TRAINING FORHYPER-PARAMETER TUNING . . . . . . . . . . . . . . . . . . . 10
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Basic Framework API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Misaligned Batch Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Misaligned Step Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Eliminating Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Profiling Model Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Profiling Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Profiling Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.4 Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.5 Switching Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.6 Pack vs CUDA Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.7 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Pack-Aware Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Hyperband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Pack-aware Hyperband . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Evaluation for Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . 29

2.5 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.1 Systems for Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . 31
2.5.2 Systems for Multi-tenancy . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iii



3 ROTARY: A RESOURCE ARBITRATION FRAMEWORK FOR PROGRESSIVE ITER-
ATIVE ANALYTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Scheduling for AQP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.2 Scheduling for Machine Learning . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.3 Multi-tenant Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Resource Arbitration Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Terminology and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 User-defined Completion Criteria . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 Framework Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.4 Resource Arbitration Problem Statement . . . . . . . . . . . . . . . . . . . 46
3.2.5 Resource Arbitration Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Rotary-AQP Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2 Rotary-DLT Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.1 Rotary-AQP Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.2 Rotary-DLT Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 RIVETER:ADAPTIVEQUERYSUSPENSIONANDRESUMPTIONFRAMEWORKFOR
CLOUDNATIVEDATABASES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Query Suspension and Resumption . . . . . . . . . . . . . . . . . . . . . . 69
4.1.2 Motivational Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Riveter Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.1 Pipeline-level Suspension and Resumption . . . . . . . . . . . . . . . . . . . 73
4.2.2 Process-level Suspension and Resumption . . . . . . . . . . . . . . . . . . . 74
4.2.3 Resource-adaptive Query Execution . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.1 Impact of Intermediate Data Persistence during Suspension . . . . . . . . . . 82
4.3.2 Analysis of Suspension and Resumption Strategy Selection . . . . . . . . . . 87
4.3.3 Accuracy Estimation and Runtime of Cost Model . . . . . . . . . . . . . . . 90

4.4 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.1 Database Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.2 Recovery, Checkpoint, and Suspension . . . . . . . . . . . . . . . . . . . . . 93
4.4.3 Query Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

iv



LIST OF FIGURES

1.1 Iterative and progressive queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 The dataflow of a training step in the single mode v.s. the packed mode. The training data
resides inmainmemory and is copied over to the device in batches during each training step,
resulting in a backpropagation computation and then aparameter update. By synchronizing
the dataflow, the packed mode can reuse work when possible. . . . . . . . . . . . . . . . . 13

2.2 All the models share the batch input stream, each batch is padded and sliced for training the
packed model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Early finished model is freed and checkpointed, and a new model is packed with the others
for further training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Improvement of packing models when increasing the number of models and batch size on
GPU. The Y-axis indicates the reduction in training time compared to sequential execution
(as defined in Equation 2.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 GPUmemory peak of different models . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Ts(Seq) vs. Ts(Pack) (milliseconds) when packing two models on a GPU . . . . . . . . 26

3.1 Progress curves of AQP and DLT jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Work Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Templates of user-defined completion criteria . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Examples of user-defined completion criteria . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Framework architecture of Rotary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Evaluation of Rotary-AQP and four baselines (Round-robin, EDF, LAF, ReLAQS) on the

synthetic AQP workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7 False attainment and waiting time of Rotary-AQP . . . . . . . . . . . . . . . . . . . . . 58
3.8 Attained jobs in the various workloads (30 jobs) . . . . . . . . . . . . . . . . . . . . . . 59
3.9 Impact of progress estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.10 Evaluation of Rotary-DLT variants and three baselines on the synthetic DLT workload . . 63
3.11 Job placements under efficiency Rotary-DLT. . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Riveter architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Workflow of pipeline-level query suspension and resumption strategy . . . . . . . . . . . 73
4.3 Pipeline-level suspension and resumption strategy for common operators in Riveter . . . . 75
4.4 Workflow of process-level query suspension and resumption . . . . . . . . . . . . . . . . 76
4.5 Illustrative example of query suspension and resumption algorithm . . . . . . . . . . . . 81
4.6 Persisted intermediate data size of queries in TPC-Hwhen suspending them at around 50%

execution time using the process-level strategy on SF-10, SF-50, SF-100 datasets . . . . . . 83
4.7 Persisted intermediate data size of queries (Q1, Q3, Q17, Q21) in TPC-Hwhen suspending

them at around 30%, 60%, and 90% execution time using process-level strategy on SF-100
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8 Persisted intermediate data size of queries in TPC-Hwhen suspending them at around 50%
execution time using the pipeline-level strategy on SF-10, SF-50, SF-100 datasets . . . . . . 85

4.9 Time lag incurred when suspensions are requested under the pipeline-level strategy . . . . 86
4.10 Analysis of strategy selection for Q1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

v



4.11 Analysis of strategy selection for Q3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.12 Analysis of strategy selection for Q17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.13 Analysis of strategy selection for Q21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

vi



LIST OF TABLES

1.1 Analysis of suspension & resumption strategies . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 SwOH of training two models sequentially . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Model configurations for ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Hyperparameter configurations for evaluation . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Performance of pack-aware Hyperband . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Synthetic AQPworkload. The selection of query type, accuracy threshold, and deadline are
all random and based on a uniform distribution. Job arrival is based on a Poisson distribution. 57

3.2 Synthetic DLT workload. The selection of model architecture and proportion of jobs with
various completion criteria distribution is based on the responses to our survey, and the se-
lection of other hyperparameters and the parameters about completion criteria follow the
uniform distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 The overall process time and overhead in Rotary . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Representative suspension & resumption strategies . . . . . . . . . . . . . . . . . . . . . 71
4.2 Selected queries in TPC-H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Estimation analysis of cost model when queries are suspended at around 50% using process-

level strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4 Running time of cost model in Riveter based on the queries using SF-100 dataset . . . . . 91

vii



ACKNOWLEDGMENTS

Words cannot truly convey my appreciation, but to everyone in my Ph.D. journey, this is for you:

I first want to expressmy deepest gratitude to Prof. Aaron J. Elmore. I have not only learned the intri-

cacies of becoming a proficient and independent researcher but have also developed a research-oriented

mindset. Your methodical guidance and invaluable insights consistently illuminated my path whenever

I encountered challenges in my academic journey. In retrospect, I still marvel at how I managed to pass

your Ph.D. interview, as I struggled to grasp your questions at that time. Fast forward six years, and I

find myself composing this dissertation, a testament to the remarkable transformation I have undergone

as your Ph.D. student.

Prof. Michael J. Franklin, I still felt audacious when I approached you to be my Ph.D. advisor, and

I couldn’t be more grateful for that initial bold step. Throughout my Ph.D. studying, your guidance

has been nothing short of exceptional, consistently providing me with high-level and insightful advice. I

vividly remember your counsel about the importance of aspiring to be known as an author or inventor of

something truly groundbreaking rather thanmerely being recognized for authoring amultitude of papers

by the end of my Ph.D. program. Your words have lingered in my thoughts, prompting deep reflection

on the path I have chosen.

Prof. Sanjay Krishnan, I have always regarded you as my “unofficial” third advisor, given the wealth

of insightful suggestions and guidance you’ve generously provided. Your research insights have played a

pivotal role in kindlingmypassion formachine learning and artificial intelligence. I amgenuinely awedby

themultitude of research ideas youpossess and the unwavering rigor in your approach. I oftenfindmyself

aspiring to emulate your depth of research thinking. One unforgettablememory is how you transformed

my initial paper into an entirely new creation. I am grateful that you maintained a consistent level of

support throughout my Ph.D. journey but gradually introduced less extensive revision to my research

paper, which, I believe, served as a confirmation of my Ph.D. progress.

Prof. Raul Castro Fernandez, among the faculty members in ChiData, you are the only one I didn’t

have the opportunity to collaborate with on a research project, or a better way to think of this is, you are

viii



the only faculty member I didn’t find a chance to bother. Feel free to ask Aaron, Mike, and Sanjay, and

you will know how lucky you are. Nevertheless, our interactions weren’t solely professional; we shared

moments over drinks, and I often invited you to join me, sometimes even for a bottom-up drinking.

While I sense that this might not have been your favorite pastime, I want to extend my sincere apologies

if I may have overdone it, even if I probably will keep doing this in the future.

My academic siblings in ChiData group, I treasure our joyous moments and connections: Chunwei

Liu, Xi Liang,Hao Jiang, Ted Shao, Jinjin Zhao,Will Brackenbury, Bruno Barbarioli, GabeMersy, Dixin

Tang, Stavros Sintos, Suhail Rehman, Jun Hyuk Chang, Zhe Heng Eng, Riki Otaki, Yue Gong, Zhiru

Zhu, Chris Zhu, Tapan Srivastava, Zechao Shang, Steven Xia. For the past, current, and future members

whom I cannot enumerate, you are not strangers tome; as long as we all have the ChiData brand, you are

my friends.

Moyao Liu, Wenbo Tang, Guanglu Xue, Jiaxin Sun, Rongtai Lu, Song Xue, Xiao Liu, Tao Li, my

dear friends, your every presence brightens my days.

A special thanks to my wife, Tengteng Ma, who makes me home when I escape from research. I am

proud that you got a Ph.D. degree sooner than me.

Mother and Father, your endless love and care throughout my life. No matter how far away, you are

always my biggest and best supporters. I love you and miss you, though I never say it.

ix



ABSTRACT

In modern cloud computing environments, characterized as resource-dynamic with new developments,

ephemeral cloud resources are becoming increasingly prevalent. Ephemeral resources exhibit two dis-

tinct characteristics: (1) they can be terminated either predictably or unexpectedly by resource providers

during utilization, and (2) their prices, while oftenmore cost-effective than reserved or on-demand cloud

resources, canfluctuate over time. Deployingdata-intensive systemson ephemeral cloud resources topro-

cess jobs for multi-tenants presents two challenges. First, the availability of resources can be significantly

lower than the number of jobs when resources are inaccessible due to their ephemeral nature or rendered

impractical due to exorbitant price fluctuations. Second, when resources are terminated or experience

unreasonably high price fluctuations, the necessity to terminate jobs results in the forfeiture of ongo-

ing progress. To address the aforementioned challenges, we present three optimizations: maximizing re-

source utilization for data-intensive jobs when resources are available, preempting and reallocating scarce

resources to the most appropriate jobs, and suspending the jobs when necessary or advantageous and re-

suming them later to skip resource termination or unavailability without losing substantial progress. In

this dissertation, we develop various prototype systems to realize the optimizations.

Firstly, we propose and implementRepack for deep learning training to share common I/O and com-

puting processes among models on the same computing device. We further present a comprehensive

empirical study and end-to-end experiments that suggest significant improvements for hyperparameter

tuning. The results suggest: (1) packing twomodels can bring up to 40%performance improvement over

unpacked setups for a single training step, and the improvement increases when packing more models;

(2) the benefit of the pack primitive largely depends on a number of factors including memory capacity,

chip architecture, neural network structure, and batch size; (3) there exists a trade-off between packing

and unpacking when training multiple neural network models on limited resources; (4) a pack-aware

Hyperband is up to 2.7× faster than the original Hyperband, with this improvement growing as mem-

ory size increases and subsequently the density of models packed.

Secondly, we propose and design a resource arbitration framework, Rotary, to continuously priori-

x



tize the progressive iterative analytics and determine if/when to reallocate and preempt the resources for

them. In comparison to classic computing applications that only return the results after processing all

the input data, progressive iterative analytics keep providing approximate or partial results to users by

performing computations on a subset of the entire dataset until either the users are satisfied with the re-

sults, or the predefined completion criteria are achieved. Typically, progressive iterative analytic jobs have

various completion criteria, produce diminishing returns, and process data at different rates. Within Ro-

tary, we consider two prevalent cases: approximate query processing (AQP) and deep learning training

(DLT). Based onRotary, we implement two resource arbitration systems, Rotary-AQP andRotary-DLT,

for approximate query processing and deep learning training. We build a TPC-H based AQP workload

and a survey-based DLT workload to evaluate the two systems. The evaluation results demonstrate that

Rotary-AQP and Rotary-DLT outperform the state-of-the-art systems and confirm the generality and

practicality of the proposed resource arbitration framework.

Finally, we present an adaptive query suspension and resumption framework, Riveter, for deploying

cloud-native databases in scenarioswhere resource availability becomes ephemeral and resourcemonetary

costs fluctuate. Riveter can suspend queries when the resources are limited, or the costs are unexpectedly

high, then resume them when the resources become available and cost-effective. Within Riveter, we im-

plement various strategies, including (1) a redo strategy that terminates queries and subsequently re-runs

them, (2) a pipeline-level strategy that suspends a query once one of its pipelines has completed, thereby

reducing the storage requirements for intermediate data, (3) and a process-level strategy that enables the

suspension of query execution processes at any givenmoment but generates a substantial volume of inter-

mediate data for query resumption. We also devise a cost model to determine the query suspension and

resumption strategy that causes minimum latency for various queries. To demonstrate the effectiveness

of Riveter, we conducted a performance study, an end-to-end analysis, and a cost model evaluation using

the TPC-Hbenchmark. Our results present the difference among the suspension and resumption strate-

gies of Riveter in terms of the size of persisted intermediate data and confirm the adaptive and efficient

query suspension and resumption delivered by Riveter.

xi



CHAPTER 1

INTRODUCTION

Data-intensive systems are migrating towards cloud-native architectures that offer low-latency, consis-

tent, and pay-as-you-go query answering [85]. This is not just a deployment trend but an important

point to reconsider the core architectural decisions that underpin these systems.

In modern cloud environments, resources that are dynamic in availability and monetary cost are be-

coming prevalent. First, there is an increase in ephemeral cloud resources. Spot instances, offering short-

lived computing infrastructure, have beenprevalent for awhile [6, 177, 29]. However, newdevelopments

are amplifying the bursty capacity. For instance, serverless platforms offer applications the convenience

of employing lightweight Virtual Machines (VMs) that have limited run-time, memory capacity, and

addressable addresses [67]. Recent efforts from the database community have shown how to develop a

query processing framework on top of a serverless platform [126]. Another emerging cloud paradigm

is “zero-carbon clouds” [28], where data centers can be completely ephemeral as they are largely pow-

ered by renewable sources that fluctuate. Second, the prices of cloud resources can be significantly dy-

namic as well. Their prices during peak demand can reportedly skyrocket to 200 to 400 times the normal

rate [140]. Thus, although users expect low latency, there is an increased demand for economically viable

solutions, provided they do not significantly compromise performance. A growing number of users are

beginning to favor cost-conscious options that may result in slightly increased latency or stale results [4].

Such dynamic resources pose a new opportunity for systems designers to reduce the operational costs of

database systems. However, the ephemeral and fluctuating nature of such resources is often incompati-

ble with current database designs andworkloads. The convention of data-intensive systems pre-reserving

what are assumed to be stable cloud resources tomaintain low latency has become less applicable in these

resource-dynamic environments. Deploying data-intensive systems on ephemeral and fluctuating cloud

resources poses two distinct challenges from the perspective of cloud resources managers or providers:

1. The availability of resources can be significantly lower than the number of jobs when resources are

1



inaccessible due to their ephemeral nature or rendered impractical due to exorbitant price fluctu-

ations.

2. When resources are terminated or experience unreasonably high price fluctuations, the necessity

to terminate jobs results in the forfeiture of ongoing progress.

We believe that a novel data-intensive system is necessary to address the challenges. This requires

rethinking the design principles of data-intensive systems and necessitates the following primitives:

Primitive 1: Resource Utilization Maximization. In light of the ephemeral and fluctuating nature of

resources in availability and costs, it is imperative to optimize resource utilization during periods when

they are accessible or economically feasible to employ. Consequently, a fine-grained resource-sharing

mechanism becomes vital. This mechanism not only facilitates resource sharing and allocation among

users for short-term purposes but also ensures efficient resource utilization.

Primitive 2: Resource Arbitration. Given the ephemeral and fluctuating resources, ”how many re-

sources does a query need?”, a question answered by existing resource reservation approaches, no longer

holds substantial value. Instead, the emergent question prompted by this primitive is: ”Is it worth allo-

cating resources to a particular query?”. Answering this question necessitates a sophisticated mechanism

that can adaptively determine if, when, how much, and for how long a query should be allocated re-

sources. This decision should consider multiple factors, such as user needs, available resources, and the

progress of each query at various times.

Primitive 3: Resource Suspension and Resumption. The feasibility of permitting queries to utilize

ephemeral cloud resources constantly is limited because (1) the resources are dynamic in availability and

cost, making long-term reservation and sustainability unfeasible, (2) the continuous allocation of con-

strained resources to long-runningqueries, particularlywhen they yielddiminishing returns, canbe coun-

terproductive. Thus, such queries ought to be pausedwhennecessary or beneficial. This primitive fosters

more efficient and flexible query execution by transforming a single long-running query into a sequence

of shorter ones.

2



1.1 Primitive 1: Resource Utilization Maximization

A data-intensive system focused on maximizing resource utilization can enhance the granularity of re-

source sharing and utilization for users. However, previous data-intensive systems have been inefficient

in terms of resource sharing. One of the central issues contributing to this inefficiency is the fact that

their design and implementation often overlook the specific characteristics of resources and workloads.

These systems tend to treat modern data-intensive jobsmuch like traditional data processing jobs, failing

to recognize the unique demands of the resources and jobs at hand. For instance, deep learning training

jobs heavily rely on specialized hardware, such as GPUs. For example, deep learning training jobs rely

on specialized hardware such as GPUs, whichmakes fine-grained resource sharing (i.e., training multiple

networks on the same device) significantly harder than the classic CPU-based computation job.

The ephemeral and fluctuating resources exacerbate the inefficiency of resource sharing. Since these

resources are not consistently accessible, they often result in sub-optimal resource utilization. To achieve

efficient resource sharing for data-intensive systems, we argue that it is necessary to leverage resource traits

and exploit the characteristics of data-intensive jobs. For instance, consider the case of deep learning train-

ing jobs, which are typically executed in an iterative fashion. This iterative nature provides an opportu-

nity to break down a long-running deep learning training job into multiple shorter, more manageable

training tasks. Moreover, these training processes often occur on GPUs, where it is possible to accom-

modate and run multiple small, short-running jobs simultaneously for brief intervals. This fine-grained

resource-sharing approach effectively addresses the challenge of optimizing resource utilization, which is

particularly pertinent in the context of ephemeral and fluctuating resources.

1.2 Primitive 2: Resource Arbitration

Resource arbitration is a novel adaptive scheduling paradigm that can continuously reallocate and pre-

empt resources. It is critical since resource preemption is only worthwhile if the benefits of reallocat-

ing the preempted resources exceed the overhead of preemption and the loss associated with the pre-

empted data-intensive jobs, which is analogous to context switching. In comparison to classic scheduling
3



methods, it needs to consider various factors, such as cloud resources availability, characteristics of dif-

ferent queries (e.g., job completion criteria), the progress of each job, and specified users’ needs. Specifi-

cally, with the recent proliferation of data-driven applications,many organizations have increasingly com-

plex and heterogeneous workloads, including both long-running and short-running data-intensive jobs

[100, 44]. Long-running jobs may occupy resources for extended periods and are not readily suited for

dynamic resources. This can lead to significant delays for shorter-running jobs thatmight have otherwise

been completed promptly with sufficient resources. Many of these long-running data-intensive jobs can

often be progressive, where an iterative loop repeatedly refines a result until the desired completion cri-

terion is met – these are the so-called iterative and progressive jobs [96]. To keep allocating limited and

dynamic resources to jobs that have already achieved significant progress may, under certain conditions,

curtail the efficient utilization of these resources.

Due to the ephemeral availability and fluctuating prices of cloud resources, resource arbitration for

queries happens in an iterative way, resulting in the queries being processed iteratively either by design

or inherently, as illustrated in Figure 1.1(a). Specifically, a novel data-intensive system can evaluate on-

going and preempted queries at each iteration and then reallocate the resources to the most promising

queries, for example. the ones that can achieve the jobs quickly if the resources are granted. A novel

data-intensive system that supports resource arbitration is also designed to handle complex and hetero-

geneous workloads. For instance, one feature of resource arbitration is the capability to manage queries

that allow early termination (e.g., approximation) and demonstrate diminishing returns. As depicted in

Figure 1.1(b), the job progress improvement between starting and ending points is not linear. Thus, in

certain scenarios, it may be beneficial to suspend queries exhibiting diminishing returns and reallocate

resources to queries that promise more significant progress in a shorter timeframe. However, in other

scenarios, it is valuable to keep refining the results of data-intensive jobs by allocating sufficient resources

continuously.

4



Time

Iterative

Ac
cu

ra
cy

Diminishing Return

Time

Ac
cu

ra
cy

(a) (b)

Figure 1.1: Iterative and progressive queries

1.3 Primitive 3: Resource Suspension and Resumption

Resource suspension and resumption entail the ability to pause a running data-intensive job in a partially

complete statewhen the resources are not available or practical to exploit. The paused job can be resumed

later when its continuation is considered feasible or beneficial. To achieve this primitive, we focus on a

potential solution that holds promise: adaptive query suspension and resumption, amechanism that can

significantly enhance the flexibility and efficiency of cloud-native databases.

The original query suspension and resumption is proposed to create a query suspension plan for a

pull-basedmodel without updates, andminimize the overhead of serialization to disk during suspension

[24]. This method presents certain constraints, such as both the suspended and resumed query require

the same resources and database state, and a query plan is executed as a single thread. We revisit this con-

cept and believe that a novel solution is necessary to accommodate the new trends and realize the identified

primitives in cloud-native databases. Therefore, we take an initial step by designing a novel adaptive query

suspension and resumption by integrating more strategies at various granularities. A vanilla strategy is to

redo the query, which is rooted in recoverymechanisms [113, 106]. Another strategy performs at the level

of data batch and places checkpoints between data batches during runtime, analogous to the established

checkpoint mechanism in streaming-style systems [11]. These checkpoints serve as resumption points

in cases of unexpected termination. Further advancements also ushered in suspension and resumption

strategies during query execution. The original query suspension and resumption is an early instance

performed at the operator level for pull-based execution [24]. There are two alternative strategies that

5



facilitate suspending and resuming queries at the pipeline and process levels. The pipeline-level strategy

enables the query suspension and resumption formulti-threads pipeline-driven query execution and pro-

vides more flexibility (e.g., different resource configurations) when resuming queries. The process-level

strategy operates within the context of a process, allowing a query within a process to be suspended and

resumed at any given time by capturing and persisting all the intermediate data. We further detail these

approaches later in this section.

Each aforementioned suspension and resumption strategy possesses distinct characteristics, and we

proposed five metrics for a clear portrait from various perspectives:

• Agility is the speed at which the suspension can be initiated.

• Capacitymeasures the amount of intermediate data needed to be persisted during query suspension.

• Adaptivity designates whether the strategy can utilize available resources for query resumption.

• Complexity evaluates the development efforts to achieve such a strategy, e.g., is the data systemmodifi-

cation needed.

• Preservability indicates the progress a strategy can preserve when a suspension or termination happens.

We conduct an analysis of different strategies in Table 1.1. For example, the redo strategy permits

the termination of a query at any time without persisting any intermediate state for query resumption. It

re-runs the query using currently available resources; thus, additional development or changes are unnec-

essary. Meanwhile, the process-level suspension and resumption strategy, typically relying on third-party

tools, allows the suspension of queries at any given moment as well. This strategy preserves the current

progress of the process as it keeps all intermediate data and context states. However, the practice of ”stor-

ing everything” presents two significant downsides. First, the volume of persisted data can be exceedingly

large. Second, it restricts the resumption of processes and queries to the same resource configurations

(such as the number of hardware threads and the allocated memory size) that were in use at the time of

suspension. The pipeline-level strategy offers a different approach by preserving the intermediate data

6



of each pipeline in the query plan for resumption, which implies that suspension and data persistence

can only occur once certain pipelines have concluded. This approach can drastically reduce the volume

of data that needs to be stored but only suspend queries at specific points. Furthermore, this strategy

demands data systems alterations, as it modifies the way queries are executed.

Agility Capacity Adaptivity Complexity Preservability

Redo
Terminate at
anytime

No intermediate
data & state

Redo queries with
available resources

No additional
efforts

Lost all progress

Pipeline-Level
Suspend & Resume

Suspend until
some pipeline
complete

Persisted
intermediate data
& state of pipeline

Resumption with
available resources

Modified data
systems

Lost progress
since last persisted

pipeline

Process-Level
Suspend & Resume

Suspend anytime
at process level

Persisted
intermediate data
& state of process

Resumption needs
same resources as

suspension

Import additional
toolkit

Preserved all
progress

Table 1.1: Analysis of suspension & resumption strategies

Therefore, it is essential to adaptively suspend and resume queries at different granularities, particu-

larlywhendealingwith complex andheterogeneousworkloads in resource-dynamic cloud environments.

1.4 Contribution

We design and implement resource-aware optimizations for data-intensive systems and provide a high-

level overview for each work as follows.

Repack: As neural networks are increasingly employed in machine learning practice, how to effi-

ciently share limited training resources among a diverse set ofmodel training tasks becomes a crucial issue.

To achieve better utilization of the shared resources, we explore the idea of jointly trainingmultiple neural

networkmodels on a single GPU in this paper. We realize this idea by proposing a primitive, called pack.

We further present a comprehensive empirical study and end-to-end experiments that suggest significant

improvements for hyperparameter tuning. The results suggest: (1) packing two models can bring up to

40% performance improvement over unpacked setups for a single training step, and the improvement

7



increases when packing more models; (2) the benefit of the pack primitive largely depends on a number

of factors including memory capacity, chip architecture, neural network structure, and batch size; (3)

there exists a trade-off between packing and unpacking when training multiple neural network models

on limited resources; (4) a pack-awareHyperband is up to 2.7× faster than the originalHyperband, with

this improvement growing as memory size increases and subsequently the density of models packed.

Rotary: Increasinglymodern computational applications employ progressive iterative analytics. In

comparison to classic computation applications that only return the results after processing all the input

data, progressive iterative analytics keep providing approximate or partial results to users by perform-

ing computations on a subset of the entire dataset until either the users are satisfied with the results, or

the predefined completion criteria are achieved. Typically, progressive iterative analytic jobs have diverse

completion criteria, produce diminishing returns, and process data at a different rate, which necessitates

a novel resource arbitration that can continuously prioritize the progressive iterative analytic jobs and de-

termine if/when to reallocate and preempt the resources for them. We propose and design a resource

arbitration framework, Rotary, and we implement two resource arbitration systems, Rotary-AQP and

Rotary-DLT, for approximate query processing and deep learning training. We build a TPC-H based

AQP workload and a survey-based DLT workload to evaluate the two systems respectively. The eval-

uation results demonstrate that Rotary-AQP and Rotary-DLT outperform the state-of-the-art systems

and heuristic baselines and confirm the generality and practicality of the proposed resource arbitration

framework.

Riveter: In modern cloud environments, it is prevalent that resource availability and cost become

ever-changing and resource fluctuating. Such a dynamic nature brings a novel challenge to the applica-

tions deployed in the cloud environments. For cloud-native databases, it is becoming increasingly sig-

nificant to facilitate resource-adaptive query execution, namely suspending queries when the resources

are limited, or the costs are unexpectedly high, then resuming them when the resources are available and

acceptable to use. This novel and challenging task requires redesigning the classic query execution and

devising a mechanism to adaptively determine if, when, and how to suspend queries. To address this

8



challenge, we present Riveter, a resource-adaptive query suspension and resumption framework that can

pause ongoing queries and persist all the necessary intermediate states for potential query resumption in

the future whenever such resumption is deemed feasible or beneficial. Within Riveter, we implement

two query suspension and resumption strategies: (1) a pipeline-level strategy that suspends a query once

one of its pipelines has completed, thereby reducing the storage requirements for intermediate states, (2)

and a process-level strategy that enables the suspension of query execution processes at any givenmoment

but generate a substantial volume of intermediate states for query resumption. We also devise a resource-

oriented cost model in Riveter to determine query suspension and resumption. We evaluate Riveter

based on the TCP-H benchmark, and the results show that Riveter can efficiently suspend and resume

queries in scenarios where resources are ephemeral by minimizing the latency caused by suspension and

resumption.

9



CHAPTER 2

REPACK: UNDERSTANDING ANDOPTIMIZING REPACKEDNEURAL

NETWORK TRAINING FORHYPER-PARAMETER TUNING

The successes of AI are in part due to the adoption of neural network models which can place immense

demand on computing infrastructure. It is increasingly the case that a diverse set of model training tasks

share limited training resources. The long-running nature of these tasks and the large variation in their

size and complexity make efficient resource sharing a crucial concern. The concerns are compounded

by an extensive trial-and-error development process where parameters are tuned and architectures have

tweaked that result in a large number of trial models to train. Beyond the monetary and resource costs,

there are long-term questions of economic and environmental sustainability [145, 137].

Efficiently sharing the same infrastructure among multiple training tasks, or multi-tenant training,

is proposed to address the issue [168, 75, 120, 107]. The role of a multi-tenancy framework is to stipu-

late policies and constraints on how contended resources are partitioned and tasks are placed on physical

hardware. Most existing approaches divide resources at the granularity of full devices (e.g., an entire

GPU) [65]. Such a policy can result in low resource utilization due to its coarse granularity. For example,

models may greatly vary in size, where the largest computer vision models require multiple GBs of GPU

memory [20] but mobile-optimized networks use a significantly smaller space [135]. Given that GPUs

today have significantly more on-board memory than in the past (e.g., up to 32 GB in commercial offer-

ings), if a training workload consists of a large number of small neural networks, allocating entire devices

to these training tasks is wasteful and significantly delays any large model training.

Furthermore, the reliance on specialized hardware such as GPUsmakes fine-grained resource sharing

(i.e., training multiple networks on the same device) significantly harder than the typical examples in

cloud systems. Unlike CPUs, the full virtualization of GPU resources is nascent [124]. While modern

GPU libraries support running multiple execution kernels in parallel, sharing resources using isolated

kernels is not a mature solution in this setting. Many deep learning workloads are highly redundant,

for example, the typical parameter tuning process trains the same model on the same data with small
10



tweaks in hyperparameters or network architectures. In this setting, those parallel kernels would transfer

and store multiple copies of the same training data on the device. This is analogous to the redundancy

problems faced with conventional hypervisors running many copies of the same operating system on a

single server [162].

To avoid these pitfalls and provide efficient sharing, we need an approach that is aware of common

I/O and computing processes amongmodels that share a device. We consider a scheme, packing models,

where multiple static neural network architectures (e.g., ones that are typically used in computer vision)

can be rewritten as a single concatenated network that preserves the input, output, and backpropagation

semantics through a pack primitive. Not only do such concatenations facilitate the partitioning of a

single device they also allow us to synchronize data processing on GPUs and collapse common variables

in the computation graph. It is often the case during hyperparameter tuning that the same model with

various hyperparameter configurations are trained, and pack can feed a single I/O stream of training

features to all variants of the model. In contrast, an isolated sharing way (e.g., training models isolatedly

in sequence) may lead to duplicated work and wasted resources.

One of the surprising conclusions of this paper is that packing models together is not strictly ben-

eficial. Counter-intuitively, certain packing policies can perform significantly worse than whole-device

baselines–in other words, training a packed model can be slower than the sum of its parts (i.e., training

these ”parts” one by one). This paper studies the range of possible improvements (and/or overheads) for

using pack. Further, we deploy pack to hyperparameter tuning and demonstrate that it can greatly im-

prove the performance of hyperparameter tuning in terms of the time needed to find the best or themost

promising model.

Our experimental results suggest: (1) There is a range of performance impact, spanning from 40%

faster execution to 10% slower execution on a single GPU for packing two models over unpacking them

for a single training step, and the improvement is scalable when packingmoremodels. (2) The benefits of

the pack primitive largely depend on a number of factors including memory capacity, chip architecture,

neural network structure, batch size, and data preprocessing overlap. (3) There exists a trade-off between

11



packing and unpacking when training multiple neural network models on limited resources. This trade-

off is further complicated by architectural properties that might make a single training step bounded by

computation (e.g., backpropagation is expensive) or data transferring (e.g., transferring training batches

to GPUmemory). (4) The pack primitive can speedup hyperparameter tuning by up to 2.7×.

2.1 Background

2.1.1 Motivation

Figure 2.1 demonstrates the typical data flow in neural network model training with stochastic gradient

descent (or related optimization algorithms). We use the term host to describeCPU/Main-Memory/Disk

hierarchy and device to refer to the GPU/DeviceMemory. In this setup, all of the training data resides on

the host. Considering the typical training setup on the left side, a batch of data is taken from the host and

copied to the device. Additionally, it is common in machine learning (especially in Computer Vision)

that this data is preprocessed before it is transferred. Then, on the device, the execution framework cal-

culates a gradient using backpropagation. Finally, using the results from the backpropagation, themodel

is updated.

In the typical ”multiple-tasks-single-device” mode, resource sharing is often temporal–where one

training task uses the whole GPU first and then switches full control to another task. Resource shar-

ing in single mode is wasteful if the models are small and there is sufficient GPU memory to fit both

models on the device simultaneously.

The right side of Figure 2.1motivates a different solution. It allowsmultiplemodels to be placed on a

single GPU. This packedmode could bring some potential benefits. Suppose we are training twomodels

on the same dataset to test if a small tweak in neural network architecture will improve performance. The

same data would have to be copied and transferred twice for training. If the system could pack together

models when compatible in size, then these redundant data streams can be fused together to improve

performance.

12



Training DataTraining Data

(4) backpropagation

(5) update

(4) backpropagation

(5) update

(1) batch

(2) preprocess

(3) transfer

(1) batch

Single Mode Packed Mode

(2) preprocess

(3) transfer

CPU
Main Memory

GPU
Device Memory

Potential 
Sharing

Figure 2.1: The dataflow of a training step in the single mode v.s. the packed mode. The training data
resides inmainmemory and is copied over to the device in batches during each training step, resulting in a
backpropagation computation and then a parameter update. By synchronizing the dataflow, the packed
mode can reuse work when possible.

2.1.2 Basic Framework API

We desire a framework that can pack models together and jointly optimize their respective computation

graphs when possible to reduce redundant work. We assume that we have access to a full neural network

description, as well as theweights of the network. Each training task is characterized by four key traits: (a)

Model. Acomputation graph architecture of themodelwithpointers to the input andoutput, equipping

with some training hyperparameters (e.g., learning rate, optimizer, etc.) and assigning to a logical name

that is uniquely identified. (b)Device. The target device to be used for placing and training models. (c)

Batch Size. The batch size used in the training process, where each batch refers to the size of input data

used in a single training step. (d) Training Step. The number of steps to train the model is also relevant

to the number of epochs since one epoch typically consists of numerous steps.

Our objective is the following isolation guarantee: given these four traits, our frameworkwill train the

models in a fine-grained way but preserve the accuracy as if the training tasks were trained isolatedly and

sequentially on a dedicated device. No action that the framework takes should affect training accuracy.

13



Such a framework requires three basic primitives: load, free, andpack. Users should be able to interact

withour frameworkwithoutworrying about exactly how the resources are allocated andonwhichdevices

the models are placed.

Theprimitivesload andfree can ”copy in” and ”copyout”models. Given a device name andmodel,

load places the model on the device:

load(model, device)

Given a device name andmodel, free retrieves themodel and frees the resources taken by themodel:

checkpt = free(model, device)

State-of-the-art neural network training algorithms have additional states as a part of the optimizer.

This state is stored with the model (see our experiments on computer vision models with optimizers

in Section 2.3). Then, the API provides the primitive pack for packing. Suppose we have two neural

network models:

output1 = nn1(input1)

output2 = nn2(input2)

The pack primitive combines both models into a new neural network by concatenating the output

layers:

[output1 output2] = packed_nn([input1 input2])

This packing operation is fully differentiable and preserves the correctness semantics of the two orig-

inal networks. Crucially, this allows the execution layer to process inputs simultaneously.

Thus, the models can be jointly trained using pack. The training steps have to be synchronized in

the sense that themodels are differentiated and updated at the same time. This synchronization leads to a

complex performance trade-off, if themodels are too different, the devicemaywaste effort stalling on one

modelwhile either updating or differentiating on the other. Thismeans that training a packedmodelmay
14



be significantly slower than sequentially training each constituent model in it. However, the overheads

from stalling may be counteracted by the benefits of reducing redundant computation. Navigating this

complex trade-off space is themotivation for this study, andwe seek to understandunderwhat conditions

pack beneficial.

2.2 Implementation

Webuild a prototype systemon top ofTensorFlow to implement the above frameworkAPIs and take im-

age classification as our motivating application in our implementation, but the idea of pack is generally

compatible with other platforms and applications.

2.2.1 Packing

Pack is a lossless operation that concatenates the outputs of two or more neural network models. Since

it is lossless, it preserves the forward and backward pass semantics of the model. The basic operation can

be written as packing multiple output variables, as illustrated in the following example:

mlp_out = #reference to mlp output

resnet_out = #reference to resnet output

densenet_out = #reference to densenet output

packed_out = pack([mlp_out resnet_out densenet_out])

This packed_out can be thought of as a new neural network model that takes in all input streams

(even possibly different input data types) and outputs a joint prediction. Thus, we can do everything to

a packedmodel that we could do to a single neural network. The packedmodel can be differentiated and

the model parameters can be updated iteratively. The model can be placed on a device, such as a GPU or

TPU, as a single unit.

While this gives us scheduling flexibility, there is a major caveat. By packing the models together, we

create an artificial synchronization barrier. If one of the models is significantly more complex than the

15



others, it will block progress. Likewise, if one of the operations saturates the available compute cores,

progress will stall as well. Naive packing leads to a further issue where the input batch has to be syn-

chronized in dimension as well (each model is differentiated or evaluated the same number of times).

Therefore, without further thought, the scope of pack is very narrow.

2.2.2 Misaligned Batch Sizes

Requiring that all packed models have the same batch size is highly restrictive, but we can relax this re-

quirement. Our method is to rewrite the packed model to include a dummy operation that pads models

with the smaller batch size tomatch the larger ones in dimension. Thepadprimitive is exploited for pack-

ingmodels with different batch sizes. The originalmodels are packed and trained based on the batchwith

the largest size, but the batches for the models with smaller batch sizes will be padded. During training

and inference, the padding is sliced.

...

Model 1 Model 2 Model NModel 3

Batch: 100 

Batch 2:
50/100 

Batch 1:
100/100 

Batch 3:
80/100 

Batch N:
20/100 

Used for 
current epoch

Padded and recorded 
for future epoch

Figure 2.2: All the models share the batch input stream, each batch is padded and sliced for training the
packed model.

As depicted in Figure 2.2, there is a set of original models with various batch sizes, and the largest

training batch size (i.e., 100) is selected and fed to the packedmodel for a single training step accordingly.

Then, the batchwill be replicated forn originalmodels in the packedmodel. Themodel 1 takes the entire

batch, whereas the replicated batches 2, · · · , N are sliced to match the models’ requirement. Thus, all

the models can be trained together.

Simply slicing may result in statistical inefficiency since only a fraction of the entire dataset is used

16



during each epoch for the models with smaller batch sizes. To address this issue, we track the progress

of each model individually to ensure that there is no loss in training datasets. Assuming we train the

packed model in Figure 2.2 for one epoch. When model 1 finishes training and is unloaded, model 2

achieves 50% progress and uses 50% of the training dataset, model 3 has been training using 80% dataset,

and so do the other models (dataset usage is recorded for all models). Then, the packed model takes the

current largest batch size (i.e., 80 frommodel 3) and uses the rest training dataset of model 3 to train the

packed model. Due to slicing, it is obvious that the unused training datasets of model 3 are included in

the unused datasets of other models. The process continues until all models are trained completely and

thus no training data is missing.

2.2.3 Misaligned Step Counts

Another issuewith synchronization is that differentmodelsmay need to be trained for a different number

of steps. Even if all of the models are the same, this can happen if the user is trying out different batch

sizes.

We use load and free to address this issue. As demonstrated in Figure 2.3, we train three models

with batch size 20, 50, and 100 for one epoch using 10, 000 images and labels, and they require 500 steps,

200 steps, and 100 steps. We pack them for training, and when the model with 100 steps is finished, it

is freed and checkpointed. Then, a new model can be loaded and packed with the incomplete models to

continue training. This mechanism may bring an overhead of loading models but can support training

models with a different number of steps.

2.2.4 Eliminating Redundancy

Pack forces synchronization, which means that dimensional differences between the models or training

differences between themodels can lead towastedwork. However,Pack can allow the system to eliminate

redundant computations and data transfers. Consider a hyperparameter tuning use case where we are

training the same network with a small configuration tweak on the same dataset:

17



0/500

0/200

0/100batch size: 100

10000 imgs/epoch

100/500

100/200

100/100

100/500

free and checkpoint

…

0/400

batch size: 50

batch size: 20

load new model and pack

Pack batch size: 100 Pack batch size: 100 Pack batch size: 100-->50

100/200…

… …

…

…

load and pack

Figure 2.3: Early finished model is freed and checkpointed, and a new model is packed with the others
for further training.

nn_conf1_out = nn_conf1(input1)

nn_conf2_out = nn_conf2(input2)

In this case, input1 and input2 refer to the same dataset. We can avoid transferring the batch mul-

tiple times by symbolically rewriting the network description to refer to the same input:

nn_packed_out = pack([nn_conf1_out nn_conf2_out])

[output1 output2] = nn_packed_out(input)

The potential upside is significant as it reduces the amount of data transferred along a slower I/Obus.

Furthermore, eliminating redundant computation goes beyond identifying common inputs. Preprocess-

ing is a common practice for machine learning training tasks. The preprocessing operations (e.g., data

augmentation, image decoding) happen before training and can actually dominate the total execution

time of some models. When packing models that take the same preprocessing, the pack primitive can

fuse the steam processing and eliminate redundant tasks. This idea can be extended if multiple models

have fixed featurization techniques or leverage the same pre-trained building blocks.

18



2.3 Profiling Model Packing

As it stands, model packing leads to the following trade-offs. Potential performance improvements in-

clude: (1) eliminating redundant data transfers whenmodels are trained on the same dataset, (2) combin-

ing redundant computations including preprocessing, and (3) performing computations (forward and

back propagation) in parallel if and when possible. On the other hand, the potential overheads include

(a) models that dominate the device resources and block the progress of the others, (b) overhead due to

misaligned batch sizes, and (c) overhead due to loading and unloading models with a differing number

of training steps.

This section describes a series of experiments that illustrate when (what architectures and settings)

packing is most beneficial.

2.3.1 Profiling Setup

Our server is 48-cores IntelXeonSilver 4116@2.10GHzwith192GBRAM, runningUbuntu18.04. The

GPU is NVIDIA Quadro P5000. Our evaluation uses four models: Multilayer Perceptron with three

hidden layers (MLP-3), MobileNet [135], ResNet-50 [55], and DenseNet-121 [61] – with all models

implemented in TensorFlow 1.15. The default training dataset is 10, 000 images from ImageNet [133],

and the required input image size of each batch is 224× 224, which is commonly used. Batch sizes start

from 32 and go up to 100 in the experiments [15].

In our experimentalmethodology, the first training step is always omitted formeasurement due to the

CUDAwarm-up issue, and the measurement of the single step excluded loading time. We only measure

the loading cost to investigate whether it dominates the performance (middle column in Figure 2.6). So,

this measurement is orthogonal to any pipelining that might happen at a different level of abstraction.

The results in the paper are averaged over 5 independent runs.

2.3.2 ProfilingMetrics

We evaluate the pack primitive against three performance metrics defined as follows.
19



Improvement: We measure the time of a single training step of the packed model. Since one training

epoch can be treated as a series of repeating training steps and a complete training process is made with

multiple epochs, the single training step measurement can be used to estimate the overall training time.

We denote the step time as Ts and assume that there arenmodels (model 1, · · · , n), andwe compare the

time of a single training step in packed and sequential mode. We first train models 1, · · · , n isolatedly

and sequentially and measure the time of a single training step:

Ts(Seq) = Ts(Model 1) + · · ·+ Ts(Model n) (2.1)

Then, we pack these models for training andmeasure the single training step, which is defined as follows:

Ts(Pack) = Ts(Pack(Model 1, · · · , n)) (2.2)

Thus, we define the improvement metric as follows:

IMPV =
Ts(Seq)− Ts(Pack)

Ts(Seq)
(2.3)

The improvement metric can quantify the benefits brought by pack primitive, and comparing IMPV

of various training setups can identify performance bottlenecks.

Memory: Fine-grained resource sharing (e.g., training multiple models together on a single device) re-

quires sufficient device memory; thus, measuring the memory usage of the packed model can provide

insights for scheduling different models given a specific device memory capacity. We evaluate the peak

of memory usage over the training epoch. This is because if the usage peak exceeds the GPU memory

capacity, the training process will be terminated due to a GPUmemory error. We measure the allocated

memory and not the active memory used.

Switching Overhead: Training the models isolatedly and sequentially on a single device can bring an

additional switching overhead. For example, the GPU has to unload the old model and the associated

20



context and then load the newmodels and prepare the context. Pack significantly reduces such overhead

since packing models suffer from model switching less often (multiple models can be trained together

given enough GPU memory so that loading and unloading operations can be avoided). The switching

overhead is measured through the following method: We train nmodels isolatedly and sequentially for

one epoch and capture the training time, which is denoted as Te(Seq). Then, we train n models indi-

vidually and denote Te(Model) as the training time of one epoch for each model. Thus, the switching

overhead of training nmodels is defined as:

SwOH(n) = Te(Seq)− Te(Model 1) · · · − Te(Model n) (2.4)

However, we hypothesize that the overhead amortizes over an entire training procedure. This is because

SwOH depends on the number of models instead of the number of training steps and epochs. Since

training a model usually involves numerous training steps and many training epochs, compared with

much longer training time, the switching overhead is minor (section 2.3.5).

2.3.3 Improvement

We evaluate packing performance as a function of batch size and the number of models. Figure 2.4a

shows that as the number of packed models increases, so do the relative benefits until the resources are

saturated. The line of DenseNet-121 ends early because packing four DenseNet-121 takes too much

GPU memory and results in an Out-Of-Memory (OOM) issue. However, the potential for resource

savings is significant. If one is training multiple MLP models, there can be up to an 80% reduction in

training time. In short, it is wasteful to allocate entire devices to small models.

Figure 2.4b illustrates the relationship between batch size and relative improvement when packing

twomodels. The lines of ResNet-50 and DenseNet-121 both end early because the OOM issue emerges

when the batch size goes to 80 and 64, respectively. These models are mostly GPU-compute bound.

Increasing the batch size has a negligible improvement in time, even if the packing setup can combine the

data transfer. We will see that this story gets more complicated when considering preprocessing.
21



1 2 3 4
Number of Packed Models

0%
20%
40%
60%
80%

100%
Im

pr
ov

em
en

t MLP-3
MobileNet
ResNet-50
DenseNet-121

(a) Improvement on various numbers of packed
models

32 40 48 56 64 72 80
Batch Size

0%
20%
40%
60%
80%

100%

Im
pr

ov
em

en
t o

f P
ac

ki
ng

MLP-3
MobileNet
ResNet-50
DenseNet-121

(b) Improvement on various batch sizes

Figure 2.4: Improvement of packing models when increasing the number of models and batch size on
GPU. The Y-axis indicates the reduction in training time compared to sequential execution (as defined
in Equation 2.3).

2.3.4 Memory Usage

We track the GPUmemory usage of training individual models and packed models with different batch

sizes for one epoch. We particularly care about the memory peak and whether it is beyond the memory

capacity.

Figure 2.5: GPUmemory peak of different models

As depicted in Figure 2.5, for convolutional neural networks like ResNet, MobileNet, and

DenseNet, the GPU memory usage is proportional to the batch size as more intermediate results will

be stored as batch size increases. Similarly, when packing two models, the GPU memory usage is the

sum ofmemory usage. However, the GPUmemory usage peak ofMLP-3model remains the same as the
22



batch size goes up. This is mainly due to two reasons: (1) we find that for simple models, TensorFlow’s

greedymemory allocation policy over-allocates more GPU’smemory when the actual usage is lower than

a specific threshold; (2) themajority of computations forMLP-3 are dot products and are placed onCPU

by TensorFlow and do not occupy much GPUmemory. More specifically, without any annotations, TF

automatically decides whether to use the GPU or CPU for an operation [152] (we also used the TF pro-

filer to trace the training process and found themajority of operations inMLP-3 are placed on theCPU).

Thus, GPUmemory usage of a single MLP-3 remains the same due to the pre-allocation.

2.3.5 Switching Overheads

We profile the switching overhead of twomodels to illustrate howmuch the overhead can accumulate as

more models are trained (the time pack can save).

Model Te(Seq) Te(Model) SwOH(2)

GPU

MLP-3 133s 61s 11s
MobileNet 227s 107s 13s
ResNet-50 274s 130s 14s

DenseNet-121 305s 144s 17s

Table 2.1: SwOH of training two models sequentially

As shown in the Table 2.1, albeit the accumulation, the switching overhead (using Equation 2.4) is

minor compared to the overall training time, and it is even negligible whenmore epochs are involved in a

training process. This also confirms our hypothesis of the switching overhead.

2.3.6 Pack vs CUDA Parallelism

Current NVIDIA GPUs support executing multiple CUDA kernels in parallel at the application level.

Thus, we conduct an experiment under the same environment as we used in the paper to train models

in parallel at the CUDAGPU kernel. We run multiple simultaneous training processes on TensorFlow.

We evaluate this method in the experiments where two processes are boosted at the same time to train

23



the same models (MLP, MobileNet, ResNet, DenseNet) with the same optimizer and same batch size

(ranging from 32 to 100).

AlthoughCUDA supports it, our results show that it is not an efficient technique. When themodels

train on the same data, parallel training in isolated kernels leads to duplicated I/O and duplicated data in

memory. In the image processing tasks that we consider, the training data batch takes up a substantial

amount of memory. We find that in all but the simplest cases leads to an OOM error: ”failed to allocate

XXX from device: CUDA_ERROR_OUT_OF_MEMORY”. We find similar results when the models train on

different data—as there is duplicated TensorFlow context information in each of the execution kernels.

This error happens in all the above experiments except packing the MLP model (due to its lightweight

size).

Evenwith theMLPmodel, the pack primitive shows benefits at scale. For instance, the training time

of a single step based on CUDA parallelism is 184ms for both two processes, and the packing method

takes 200ms. However, as the batch size is increased to 100, the former one takes 1660ms, while the latter

one costs 1500ms. We interpret these numbers as an indication that the pack primitive incurs smaller

context overhead over the native CUDA parallelism at the application level.

2.3.7 Ablation Study

To further evaluate the performance of packingmodels onGPU, we test more cases based on the five fac-

tors: (1) whether the models have the same architecture; (2) whether the models share the same training

data; (3) whether the models take the preprocessed data or raw data for training, i.e., if the preprocessing

is included in training; (4) whether the models use the same optimizer; and (5) whether the models have

the same training batch size. In this ablation study, we follow the configurations illustrated in Table 2.2

and evaluate the pack primitive. Without loss of generality, we focus on packing two models to under-

stand the relationship between the training time and the above factors, packing more models follows the

trends as demonstrated in Figure 2.4.

Figure 2.6 presents the results of the ablation study. In the figure, the data points in each sub-

24



Factor Config Description

Model
Same Packing two same models

Different
Packing two different models. We evaluated MLP-3 vs. MobileNet, MobileNet
vs. DenseNet-121, ResNet-50 vs. MobileNet, andDenseNet-121 vs. ResNet-50.

Training Data
Same All packing models take the same training batch data

Different All packing models take the different training batch data.

Preprocess
Yes

Preprocessing is included in each training step. Training batches are raw images
(e.g., JPEG) transferred from disk to GPU.

No
Preprocessing is excluded in each training step. Training batches are preprocessed
and formatted before transferring to GPU.

Optimizer
Same All packing models use the same optimizer.

Different All packing models use different optimizers.

Batch Size
Same All packing models take the same batch size.

Different
The packing models may take the different batch sizes for a single training step,
e.g., one is 32 batch size, the other is 50 batch size.

Table 2.2: Model configurations for ablation study

figure represent the Ts(Seq) and Ts(Pack) of various configurations with fixed one configuration (e.g.,

same batch size or same model). The red point (triangle pointed down) indicates that packing two

models brings more overhead compared with training them sequentially with this configuration, i.e.,

Ts(Pack) > Ts(Seq), while the green point (triangle pointed up) means the opposite. The further

from the line, the more significant the performance difference.

As we can see from Figure 2.6, the best scenarios are where the same training data and the same batch

size are used. Through all the configurations, the pack primitive always brings benefits when we train

models with the same data since it will reduce the data transfer. Similar benefits happen with the same

batch size configuration. This is important to note because even when the same models are trained but

with different data inputs and batch sizes, there can be significant downsides to packing. It is not simply

a matter of looking at the neural network architecture, but the actual training procedure factors into the

decision of packing.

25



0 200 400 600 800
Ts(Seq)

0

200

400

600

800
T s

(P
ac

k)
20%

+20%

Same Model (MLP-3)

0 300 600 900 1200
Ts(Seq)

0

300

600

900

1200

T s
(P

ac
k)

20%

+20%

Same Model (MobileNet)

0 300 600 900 1200
Ts(Seq)

0

300

600

900

1200

T s
(P

ac
k)

20%

+20%

Same Model (ResNet-50)

0 300 600 900 1200
Ts(Seq)

0

300

600

900

1200

T s
(P

ac
k)

20%

+20%

Same Model (DenseNet-121)

0 200 400 600 800
Ts(Seq)

0

200

400

600

800

T s
(P

ac
k)

20%

+20%

Same Training Data (MLP-3)

0 300 600 900 1200
Ts(Seq)

0

300

600

900

1200

T s
(P

ac
k)

20%

+20%

Same Training Data (MobileNet)

0 300 600 900 1200
Ts(Seq)

0

300

600

900

1200

T s
(P

ac
k)

20%

+20%

Same Training Data (ResNet-50)

0 300 600 900 1200
Ts(Seq)

0

300

600

900

1200

T s
(P

ac
k)

20%

+20%

Same Training Data (DenseNet-121)

0 200 400 600 800
Ts(Seq)

0

200

400

600

800

T s
(P

ac
k)

20%

+20%

Preprocessing (MLP-3)

0 300 600 900 1200
Ts(Seq)

0

300

600

900

1200

T s
(P

ac
k)

20%

+20%

Preprocessing (MobileNet)

0 300 600 900 1200
Ts(Seq)

0

300

600

900

1200

T s
(P

ac
k)

20%

+20%

Preprocessing (ResNet-50)

0 300 600 900 1200
Ts(Seq)

0

300

600

900

1200

T s
(P

ac
k)

20%

+20%

Preprocessing (DenseNet-121)

0 200 400 600 800
Ts(Seq)

0

200

400

600

800

T s
(P

ac
k)

20%

+20%

Same Optimizer (MLP-3)

0 300 600 900 1200
Ts(Seq)

0

300

600

900

1200

T s
(P

ac
k)

20%

+20%

Same Optimizer (MobileNet)

0 300 600 900 1200
Ts(Seq)

0

300

600

900

1200

T s
(P

ac
k)

20%

+20%

Same Optimizer (ResNet-50)

0 300 600 900 1200
Ts(Seq)

0

300

600

900

1200

T s
(P

ac
k)

20%

+20%

Same Optimizer (DenseNet-121)

0 200 400 600 800
Ts(Seq)

0

200

400

600

800

T s
(P

ac
k)

20%

+20%

Same Batch Size (MLP-3)

0 300 600 900 1200
Ts(Seq)

0

300

600

900

1200

T s
(P

ac
k)

20%

+20%

Same Batch Size (MobileNet)

0 300 600 900 1200
Ts(Seq)

0

300

600

900

1200

T s
(P

ac
k)

20%

+20%

Same Batch Size (ResNet-50)

0 300 600 900 1200
Ts(Seq)

0

300

600

900

1200
T s

(P
ac

k)
20%

+20%

Same Batch Size (DenseNet-121)

Figure 2.6: Ts(Seq) vs. Ts(Pack) (milliseconds) when packing two models on a GPU

2.4 Pack-Aware Hyperparameter Tuning

We demonstrate how pack benefits hyperparameter tuning in this section. As we show in the previous

section, pack brings the biggest improvement when the models trained are similar and train on the same

input data. Such a scenario naturally arises in hyperparameter tuning. Developers have to search over

adjustable parameters such as batch sizes, learning rates, optimizers, etc. Tuning such hyperparameters is

crucial to finding models that generalize to unseen data and achieve promising accuracy.

There are a number of real-world scenarios where multiple models are trained on the same data, and

26



we demonstrate hyperparameter tuning as a representative application. Furthermore, pack is a simple

but practicalmechanism that can be implemented at the application level, which allows for a wide variety

of deployment scenarios.

2.4.1 Hyperband

We explore extending a state-of-the-art hyperparameter tuning algorithm, Hyperband [89], to better

share GPU resources. Hyperband works by repeatedly sampling random parameter configurations, par-

tially training models with those configurations and discarding those configurations that do not seem

promising. Prior work suggests that Hyperband is effective for parallel hyperparameter search in com-

parison to sequential algorithms such as Bayesian Optimization [87].

Hyperband poses the search as an online resource allocation problem. GivenN discrete model con-

figurations to test, it partially trains each configuration and discards those that do not seem promising

based on a technique called successive halving. The search routine follows the structure of Algorithm 1.

Algorithm 1:Hyperband
input :R, η
output:Conf with the smallest intermediate loss so far
for r ← 0 to blogη(R)c do

Randomly sample T fromN confs without replacement;
for i← 0 to r do

Train conf i for multiple epochs;
Calculate the intermediate loss of confs i;
Keep a fraction of the best confs for the next iteration;

Intuitively, Hyperband only allocates resources to the most promising configurations. At the max-

imum iteration, the most promising configurations are trained for the longest. This basic loop can be

trivially distributed as a random partition ofN configurations. AlthoughHyperband is able to optimize

the process of hyperparameter tuning, the algorithm is long-running since it consists of a large number of

trial hyperparameter configurations to run, and each of them usually occupies the entire GPU resource

when running.

27



2.4.2 Pack-aware Hyperband

Our pack primitive allows Hyperband to jointly train configurations when possible, thereby reducing

the overall training time. We propose a pack-aware Hyperband that leverages model packing to improve

its performance when there are more models to evaluate than available GPU devices. The challenge is to

determine which configurations to train jointly and which to train sequentially.

For each iteration, our pack-aware Hyperband will partition sampled T models to multiple packed

groups that can fit on a single device (the size of a packed group does not exceed the amount ofmemory of

the GPU). Then, the optimization problem is to search over all packable groups to find the best possible

configuration (one that maximizes the overall run time). Note that singleton partitioning (every single

model forms a group) is always a viable solution and potentially even an optimal solution in some cases.

We call this primitive pack_opt, which solves the search problem by producing feasible packing groups

and identifying the most promising configuration. Accordingly, we can run amodifiedHyperband loop

that packs models when beneficial, as shown in Algorithm 2.

There are two challenges inpack_opt: (C1)developing an accurate costmodel to evaluate the cost of

a packed plan, and (C2) a search algorithm that can effectively scale with T . Of course, the combinatorial

nature of this problem makes both (C1) and (C2) hard to accomplish optimally and we need a heuristic

to address this problem. Recognizing that similar models could be packed well together, we design a

nearest-neighbor-based heuristic.

The method randomly selects a single configuration (out of T for each round) as the centroid and

packs all other configurations similar to it until the device runs out of memory. This process is repeated

until all models are packed or determined that the best choice is to run them sequentially. For calculating

the similarity, we map hyperparameter configurations to multi-dimensional feature space and measure

the pairwise Euclid distance among all the configurations. A user-tuned similarity threshold decides how

aggressively the systemwill pack models. For example, considering the sampled hyperparameter configu-

rations shown in theTable 2.3, we take the standard distance unit as 1, and compute the distance between

any two configurations. For categorical hyperparameters like optimizer and activation, the distance is 0

28



if same and 1 if different, for numeric hyperparameters, we use the index to compute distance. So, the

distance between configuration A [batch size:20, optimizer: SGD, learning rate:0.01, activation: ReLu]

and configuration B [batch size:40, optimizer: Adagrad, learning rate:0.01, activation: ReLu] is 5.

Algorithm 2: Pack-aware Hyperband
input :R, η
output:Conf with the smallest intermediate loss so far
for s← 0 to blogη(R)c do

Randomly sample T fromN confs without replacement;
packed_group← pack_opt(T);
for g ← 0 to packed_group do

Train packed_conf g for multiple epochs;
Calculate the intermediate loss of packed_conf g;
Keep a fraction of the best confs for the next iteration;

Despite being imperfect, Euclid distance has been proven to be a practical metric. We also applied a

pairwise Training Time-based distance that reflects the importance of all features using the training time

metric. Specifically, we train two configurations in a packed way and a sequential way for a single step,

respectively, measuring the training time and calculating the difference with normalization. We take the

difference as the distance and deploy it to the pack-ware hyperband. Our empirical experiments show

that the Euclid distance method is still faster than the training time-based distance method up to 18%.

Note that since the main benefit of pack comes from sharing and padding the input, packing differ-

entmodels can still improve the performance. So, pack is performant in the exploration phase of various

hyperparameter tuning methods. Taking Bayesian Optimization as an example, in its exploration phase,

the hyperparameter configurations are sampled and evaluated for some predefined objective functions.

Thus, the sampled configurations can be packed during the exploration for acceleration.

2.4.3 Evaluation for Hyperparameter Tuning

The goals of our evaluation are two-fold: first to demonstrate that pack can significantly improve hy-

perparameter tuning performance and second to evaluate our pack-aware Hyperband. We conduct the

experiments based on the same hardware environment as illustrated in section 2.3.1. We examine theHy-
29



perband variants on CIFAR-10 [76] which consists of 60000 color 32× 32 images in 10 classes (50000

for training dataset, 10000 for testing dataset). The system’s goal is to find the best configuration of those

described in Table 2.3, thus all hyperparameter configurations are from the combination of all hyperpa-

rameters which has 1056 configurations in total. The input, R and η, are set to 81 and 3, according to

the original Hyperband paper [89].

Hyperparameter Value
Batch size 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70
Optimizer Adam, SGD, Adagrad, Momentum

Learning Rate 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1
Activation Sigmoid, Leaky ReLu, Tanh, ReLu

Table 2.3: Hyperparameter configurations for evaluation

We also compare our pack-aware Hyperband against two other heuristics:

Random Pack Hyperband: After sampling hyperparameter configurations, the method randomly se-

lectsm configurations to pack and evaluates them together, then it keeps the best n configurations and

discards the rest as the original Hyperband does.

Batch-size Pack Hyperband: Rather than randomly selecting, Batch-size Pack Hyperband only packs

the models with the same batch size. Although the number of packed models is confined by GPUmem-

ory size, a greedy method is employed (i.e., packing as many models as possible until full usage of GPU

memory).

We evaluate the overall running time of Hyperband with the different pack_opt algorithms. As

presented in the Table 2.4, all the pack-aware Hyperband variants can reduce the running time w.r.t the

original Hyperband algorithm for all scenarios. Our proposal, kNN Pack Hyperband, achieves the best

performance since it takes advantage of our findings from the previous section where packing the most

similar models leads to the biggest improvements. The conclusion is that such an approach can save time

(and consequentlymoney) in real end-to-end tasks. A simpler heuristic,Batch-sizePackHyperband, is not

as effective because it under-utilizes the available GPU resources by missing packing opportunities with

30



models with slightly different batch sizes. To emphasize this point, a Random Pack Hyperband can save

more time than Batch-size Pack Hyperband since it achieves better GPU resource utilization. Our kNN

strategy gets the best of both worlds: it finds the most beneficial packing opportunities while completely

utilizing the available resources, and benefits are scalable when deployed in an environment with a larger

GPU resource.

Original Batch-size Random kNN Speedup
MLP-3 9236s 5260s 3682s 3491s ∼ 2.7×

MobileNet 52092s 45787s 36973s 30182s ∼ 1.7×
ResNet-50 98067s 89162s 75436s 70047s ∼ 1.4×

DenseNet-121 131494s 126437s 117405s 108673s ∼ 1.2×

Table 2.4: Performance of pack-aware Hyperband

2.5 Related Work

There are a number of systems that attempt to control resource usage in machine learning, specifically

memory optimization [121, 164, 176, 80, 66, 138, 172, 18], but we see this problem as complementary.

For example, pack is similar inmechanism to a recent proposal, HiveMind [121], wheremultiplemodels

are fused into a single computational graph during training. However, we additionally contribute: (1) a

cost model and optimizer that decides when this fusion is most beneficial, (2) integration with a hyper-

parameter tuning algorithm to demonstrate end-to-end improvements over a training workload, and (3)

a data batching scheme that allows packing models with different batch sizes without hurting statistical

efficiency. These contributions are noted as existing limitations inHiveMind. We also discuss the related

works that study hyperparameter tuning systems and multi-tenancy systems in machine learning.

2.5.1 Systems for Hyperparameter Tuning

Since hyperparameter tuning is a crucial part of the machine learning development process, a number of

systems have been proposed to scale up such search routines. For example, Google Vizier [45] exposes

31



hyperparameter searching as a service to its organization’s data scientists. Aggressive ”scale-out” has been

the main design principle of Vizier and similar systems [92, 87, 89].

Recently, there has been a trend toward more controlled resource usage during hyperparameter tun-

ing. Cerebro borrows the idea ofmulti-query optimization in database systems to raise resource efficiency

[117]. HyperSched proposes a scheduling framework for hyperparameter tuning tasks when there are

contended specialized resources [91]. And, somework has been done on resourcemanagement [143] and

pipeline re-use [88] in the non-deep learning setting. We believe that pack and pack_opt are two prim-

itives that are useful in hyperparameter tuning when specialized hardware such as GPUs and TPUs are

limited in usage. Also, although our experiments focus on hyperparameter tuning, pack and pack_opt

primitives can be easily extended to other scenarios.

2.5.2 Systems forMulti-tenancy

Most current projects about building multi-tenant systems for machine learning deployment are based

on device-level placement, i.e., dividing resources at the granularity of full devices (e.g., an entire server

or GPU). Here, the scheduler partitions a cluster of servers where each server has one or more GPUs

for various model training tasks and seeks to reduce the overall training time by intelligent placement.

Other scheduling methods have followed, such as Tiresias [48] and Optimus [125]. Several extensions

have been proposed to this basic line of work, including fairness [107], preemption [171], and perfor-

mance prediction [180]. Gandiva is a cluster scheduling framework for deep learning jobs that provides

primitives such as time-slicing and migration to schedule different jobs. CROSSBOW is a system that

enables users to select a small batch and scale to multiple GPUs for training deep learning models [74].

PipeDream is a deep neural network training system for GPUs that parallelizes computation by pipelin-

ing execution acrossmultiplemachines that partitions and pipelines training jobs acrossworkermachines

[120]. Ease.ml is a declarativemachine learning service platform that focuses on a cost-awaremodel selec-

tion problem in amulti-tenant system. [90]. Some recent works also exploit data parallelism to accelerate

the training process. MotherNets can ensemble different models and accelerate the training process by

32



reducing the number of epochs needed to train an ensemble [165]. FLEET theoretically proves that op-

timal resource allocation in deep learning training isNP-hard and proposes a greedy algorithm to allocate

resources [49].

Compared with these previous works, our prototype implements a method to pack diverse models

with different batch sizes. We also conduct a comprehensive evaluation that differentiates performance

wins from variable elimination v.s. improved utilization, and highlights the potential for packed models

to train slower than the sum of their parts, which is only apparent with modern architectures. Taking

these inspirations, we further deploy our primitives to hyperparameter tuning and show performance

improvement.

2.6 Discussion

Our core contribution is demonstrating thepotential benefits (andoverheads) of combining similarmod-

els into a single computational graph, and thus collapsing commondata inputs during training iterations.

This was the reasonwhywe chose not to optimize this process at a lower level (e.g.,MPS/Hyper-Q [19]),

where we found that the majority of benefits could be attributed to simply sharing common inputs and

context variables. Thus, the key goal of our proposed optimizer is to decide whether two models share

enough to see a potential benefit and control the exact execution order of the computation is orthogonal

to our contribution.

Our long-term goal is to build a system for multi-tenant deep learning deployment, and we believe

the packwill be one of the core parts of multi-tenancy systems for machine learning. In hyperparameter

tuning there is a single user and a clear SLO (find the best model configuration overall), then to extend to

more general multi-tenancy settings where concurrent models are trained, we will reason about multiple

users, priorities, and user-specified objectives. For this, we decide to first make a deep investigation on a

single GPU so that we will know how to optimize when there are multiple GPUs. Thus, any distributed

training and regarding optimization is out of the scope of the paper.

We implemented pack onTensorFlow to conduct a comprehensive evaluation and highlight its ben-

33



efits in hyperparameter tuning. Although we believe that a custom execution platform could improve

performance, pack doesn’t require the modification of any specific framework and can be implemented

across frameworks. We focus pack as a higher-level primitive due to (1) the optimizations will be more

transferable acrossMLexecution frameworks and thus increase the impact or applicability of our insights,

and (2)many low-level libraries are highly optimized and introduce these changes (e.g., supporting jagged

arrays) we believe are interesting research questions on their own.

34



CHAPTER 3

ROTARY: A RESOURCE ARBITRATION FRAMEWORK FOR

PROGRESSIVE ITERATIVE ANALYTICS

A growing concern for organizations is high resource usage in data analytics [75, 146, 33, 141]. The

concerns have become particularly acute over the last two years where a confluence of factors, including

supply chain shortages and a waning Moore’s law, have discouraged organizations from simply scaling

out to copewith the ever-increasing analytics demands. In this resource-limitedworld, every organization

needs to determine how to partition and share computing infrastructure to adequately support all of its

analytics users [5, 53, 4, 43, 110]. Despite this importance, existing scheduling and resource allocation

approaches do not adequately support modern data analytics workloads.

From aggregate statistics tomachine learning, modern data analytic jobs embrace approximation and

uncertainty. They are often progressive, where an iterative loop repeatedly refines an answer until the

desired completion criterion is met. In this setting, job completion is a matter of user opinion, where a

user-defined rule has to be used to terminate the job when the answer is deemed sufficiently accurate or

unchanged.

A traditional job scheduler places an immense level of trust in a user’s ability to decide when to ter-

minate these progressive iterative analytic jobs appropriately, which may bring disastrous consequences.

For example, consider a user training a convolutional neural network for a fixed time of 500 epochs. Sup-

pose the model actually converges in accuracy after only 100 epochs; then 80% of this model’s training

time is a wasteful block on system resources. Similarly, the same problem can occur in approximate query

processing systems. Suppose a user has been given a time budget of threeminutes to complete a reporting

query over a data warehouse, but the query result is precise enough for the application after one minute.

For these progressive iterative analytic jobs, overly ambitious completion criteria can block key resources

from other users for an extended amount of time.

An ideal scheduler for progressive iterative analytic jobs needs introspection into the convergence

progress of each job in the queue to be able to detect and preempt such anomalies adaptively. These de-
35



cisions need to consider a job’s prioritization, specified completion criteria, the available resources, and

other jobs waiting for the resources — a problem we call resource arbitration, which is a novel adaptive

and completion criteria-aware scheduling paradigm. We identify twowidely used applications that fit this

resource arbitration paradigm: approximate query processing (AQP) and deep learning training (DLT).

In AQP, one executes queries on a subset of the overall dataset or a data stream to return an approximate

answer within a user-specified error. In DLT, one updates the parameters of the neural network-based

model with a variant of gradient descent repeatedly until the desired objective (e.g., accuracy or conver-

gence) is reached. In both of these scenarios, one needs a resource arbitration system that can pause a

running job at the risk of dequeuing it in a partially complete state in favor of jobs that could better use the

same resources, especially in resource-constrained environments.

This strategy is only useful in a setting where an intermediate result has significant utility to a user,

as is the case in progressive iterative analytic jobs. We plot the progress curve of sample AQP and DLT

jobs in Figure 3.1 to demonstrate this trait. As the job progresses (and consumes more resources), the

incremental utility of each additional processing-second spent decreases. These diminishing returns have

to be factored into the scheduling algorithm, especially if there is another job in the queue that could

make more significant progress if allocated those same resources.

Motivated by the unique traits of progressive iterative analytic jobs, we propose a resource arbitra-

tion framework that adaptively prioritizes and schedules progressive iterative analytic jobs in a resource-

limited environment. The framework can interrupt (or preempt) a currently running job in favor of

another based on progress introspection and estimation. For instance, for some short-running jobs ex-

pected to achieve substantial progress and be completed quickly, Rotary can preempt resources to process

them instead of some long-running jobs. The need for a resource arbitration framework arises for two rea-

sons: (1) from the perspective of single jobs, it is reasonable to sacrifice precision for a quicker result; (2) from

the perspective of the overall workload, it is beneficial to dynamically allocate and preempt resources to dif-

ferent jobs, for example, giving more resources to more promising jobs and constraining the resources for jobs

stop progressing.

36



(a)Online aggregation progress ofQuery 5, 7, 19 ofTPC-H.The percentage of data processed achieves 100%when
the queries received and processed the entire TPC-H dataset (SF=1) in batches from a data source.

(b) Evaluation accuracy of five well-tuned popular convolutional neural networkmodels on CIFAR-10 with batch
128 and learning rate 0.01.

Figure 3.1: Progress curves of AQP and DLT jobs

We believe that resource arbitration and traditional scheduling systems [159, 34, 156, 57, 125, 168,

48, 65, 179, 161, 129, 101, 98] solve different but complementary problems. Scheduling systems are

generally designed to optimize the execution and placement of the jobs according to the users’ resource

requirements and ensure the jobs can be completed on time. By contrast, resource arbitration systems are

responsible for continuous resource allocation and preemption, determining when to start (or resume)

and stop (or checkpoint) the progressive iterative analytic jobs based on the processing progress, available

real-time resources, and users’ completion criteria. In particular, as shown in Figure 3.2, resource arbitra-

tion must consider a job’s completion criteria and respond adaptively – something no prior scheduling

systemdoes. For example, consider an application scenario of hyperparameter optimization [89] for deep

learning models, where a set of hyperparameter configurations are sampled from a hyperparameter space

and formed a number of training trails that run iteratively and keep returning intermediate training re-

sults. Such a process is executed repeatedly until the best-performed hyperparameter configurations are

37



selected. Thus, resource arbitration could stop the trials that contain unpromising hyperparameter con-

figurations prematurely and allocate more resources to the promising ones so that the best-performing

hyperparameters can be discovered sooner.

Completion Criterion
No Yes

Yes

No

A
da

pt
iv

e

Progress-aware Scheduling: 
ReLAQS [32] 

(accuracy-oriented)

Resource Arbitration:
Rotary

Time-Sharing Scheduling:
Round-robin

Resource-oriented Scheduling:
Rayon[11], TetriSched[12], 
Trident[13], Optimus[14], 
HiveD[18], HaLoop[26]

Dynamic Priority Scheduling:
Earliest-Deadline-First
Least-Accuracy-First

Figure 3.2: Work Positioning

To realize this framework, we implement two prototype systems,Rotary-AQP andRotary-DLT, for

approximate query processing and deep learning training applications. For Rotary-AQP, we first ex-

tend a single-user progressive query processing system based on Apache Spark [10] and modify it to a

multi-tenant AQP system. Then, we build the resource arbitration system on top of the multi-tenant

AQP system. We evaluate Rotary-AQP using the TPC-H benchmark, and the evaluation results show

that Rotary-AQP outperforms the state-of-the-art system and other baselines by allowing more TPC-

H queries to reach their goals within the same amount of time. For Rotary-DLT, we build the system

on top of TensorFlow [151] and conduct an evaluation using the workloads derived from a survey of

30 deep learning researchers across multiple research organizations. The evaluation results demonstrate

that Rotary-DLT is superior to three dynamic priority-based baselines across a variety of optimization

objectives. The two system implementations and their outstanding performance confirm the generality

and practicality of our resource arbitration framework.

To summarize, our primary contributions include: (1) defining resource arbitration as a novel and

specialized scheduling paradigm for progressive iterative analytic applications; (2) proposing a general

resource arbitration framework, Rotary, and a new cost model that leverages the estimation of progress

38



and resource consumption for job prioritization and preemption; (3) implementing two resource arbi-

tration systems for approximate query processing and deep learning training, following the proposed

framework.

3.1 Related Work

To the best of our knowledge, Rotary is the first resource arbitration system for DLT jobs to support

user-defined completion criteria. Thus, we broadly review the related works to position our work.

3.1.1 Scheduling for AQP

Approximate query processing scheduling works are related to our framework since they focus on or-

chestrating the AQP jobs. However, to the best of our knowledge, there is not much work in this area

[86, 26].

iOLAP is one of the representative works [174], which returns intermediate results by processing

the input data a batch at a time rather than running the query on the entire dataset. iOLAP partitions

the input data into mini-batches and schedules the delta update query on each batch and collects query

results. It also can schedule recomputing jobs to recover the query result when a failure is detected. S-

AQP is similar work to iOLAP lies in this area [2]. However, they mainly focus on scheduling query

plans.

For scheduling AQP jobs, ReLAQS [144], which serves as one of the baselines in our experiments, is

the state-of-the-artwork. It is can preempt theAQP jobs according to the estimation and try to helpmore

jobs achieve their objectives. However, our framework has additional contributions: (1) ReLAQS only

schedulesCPUcores, Rotary-AQP further considersmemory consumptionwhenpreempting resources;

(2) Estimation of ReLAQS only uses real-time results to predict the progress of each AQP job for the

next running epoch, the estimators in Rotary-AQP jointly utilize historical and real-time data to make

predicationwhich can overcome some issues such as cold-start or data bias; (3)ComparedwithReLAQS,

Rotary-AQP can support adaptive running cycling for short-running and long-running AQP jobs.

39



3.1.2 Scheduling forMachine Learning

We consider scheduling systems for machine learning as the most relevant works. We first review the

works that define fixed scheduling objectives for DLT jobs. MArk allows users to specify the response

time formachine learningmodel serving and schedules by selecting betweenAWSEC2 andAWSLambda

to support unpredictableworkloadbursts [175]. Someworks likeTiresias [48] andOptimus [125] sched-

ule machine learning jobs with time constraints.

Scheduling systems for machine learning are widely deployed as well. Gandiva is a cluster scheduling

framework that utilizes the cyclic predictability of intra-batch in a DLT job and the feedback of early

training to improve training latency and efficiency in a GPU cluster [168]. Philly analyzes a trace of ma-

chine learning workloads run on a cluster of GPUs in Microsoft and schedules the jobs according to a

trade-off between locality and GPU utilization [65]. HiveD [179] is designed to be a Kubernetes sched-

uler extension for Multi-Tenant GPU clusters, which can guarantee resource reservation for DLT jobs.

PipeDream [120] is a deep learning training system that schedules computation by pipelining execution

across multiple machines to accelerate the training process. AntMan [169] is a large-scale deep learning

multi-tenant infrastructure inAlibaba,whichutilizes the spareGPUresources to co-executemultiple jobs

on a shared GPU and dynamically scales memory and computation. Pollux [129] is a resource-adaptive

deep learning (DL) training and scheduling framework that optimizes inter-dependent factors both at

the per-job level and at the cluster-wide level.

As we emphasized before, scheduling systems and our resource arbitration framework, Rotary, solve

different but complementary problems. The scheduling systems pay more attention to resource reser-

vation and job placement according to jobs’ requirements, however, Rotary addressed the issues about

resource allocation and job preemption.

3.1.3 Multi-tenant Systems

Multi-tenant systems, which don’t focus on job scheduling but also have been deployed for AQP and

DLT applications, should also be mentioned.

40



BlinkDB [3] is an AQP system that is based on Apache Hadoop and devises effective strategies to

select proper samples (offline generated) in distributed clusters to answer newly coming queries. Quickr

[68] is designed for executing ad-hoc queries on big-data clusters that do not need any pre-computing of

the whole dataset spread over the clusters. SnappyData [116] is a platform to support OLTP,OLAP, and

stream analytics based on Apache Spark.

Multi-tenant systems for deep learning are also proposed and deployed recently. FfDL is a deep learn-

ing platform in IBM to support the multi-tenant distributed training of models based on Kubernetes

[64]. Facebook also reveals some design choices for building a datacenter to handle multi-tenant train-

ing and inference, like the importance of co-locating data with computation [53]. Ease.ml is a declarative

machine learning service platform that focuses on a cost-awaremodel selection problem in amulti-tenant

system [110]. CROSSBOW [74] is a system that supports users to select a small batch and scale to mul-

tiple GPUs for deep learning training.

3.2 Resource Arbitration Framework

3.2.1 Terminology and Setup

First, we define a common set of terms to describe progressive iterative analytic jobs. In a progressive

iterative analytic job, data are processed in batches, where each batch is a subset of the entire dataset or a

data stream that is progressively sampled from the overall data, each batch has the (approximately) same

batch size. A progressive iterative analytic job moves one step when it finishes processing a single batch.

After a fixed number of such steps (called an epoch), the job’s performance can be evaluated based on con-

vergence metrics on the returned results. Convergence metrics are usually some proxy for result accuracy.

One progressive iterative analytic job typically runs for multiple epochs until the user is satisfied with its

convergence or reaches some user-defined completion criteria such as running time.

41



Example 1. Approximate Query Processing in SQL

Approximate query processing can provide quick, approximate results to users by running queries on a

subset of the overall dataset or a data stream. One technique to realize AQP is online aggregation [86].

Online aggregation systems process data iteratively using data batches, and each progressive sampling of

the data is a batch and processes roughly the same amount of data, as they are each of approximately

the same size. Online aggregation systems calculate error bounds, such as confidence intervals, after each

batch is processed so that users can decidewhether to continue processing. InAQP, a batch and an epoch

can be synonymous, and the convergence metric is the size of the confidence interval.

Example 2. Deep Learning Training

A typical DLT job consists of a neural network model (e.g., ResNet [54] or Bi-LSTM [47]), a dataset

for training and evaluation, and a set of hyperparameters (e.g., batch size, learning rate, optimizer, etc.).

During the training process, the training dataset is iteratively sampled in batches, and each training step is

one optimization step updating the parameters (or gradients) of the neural network model based on the

batch. In the context of DLT, an epoch normally is a complete pass of the training data. Once the neural

network model has been trained for one epoch, it will be evaluated on the evaluation dataset in terms of

convergence metrics, which can be either training loss or validation set accuracy. This process is applied

repeatedly until the desired convergence target is achieved. As models have become more complex, DLT

largely relies on specialized hardware devices like GPUs and TPUs.

3.2.2 User-defined Completion Criteria

Rotary allows users to define their own completion criteria, and herein we take three types of completion

criteria based on the commonpractice ofDLTandAQPas examples. As presented in Figure 3.3, there are

1 accuracy-oriented completion criteria, 2 convergence-oriented completion criteria, and 3 runtime-

oriented completion criteria. Essentially, such completion criteria are add-ons to the regular query and

training commands and should be orthogonal to the execution of AQP andDLTwithoutmodifying the

42



original command parsers.

Figure 3.3: Templates of user-defined completion criteria

Figure 3.4 shows three completion criteria examples following the templates. The left one illustrates

how to add a completion criterion of achieving at least 95%accuracywithin 3600 seconds, and themiddle

one defines a completion criterion for training a ResNet model until reaching the convergence of 0.001

within 30 epochs, the right onewill train theMobileNetmodel for 2 hours and return the training results

anyway.

Figure 3.4: Examples of user-defined completion criteria

1 Accuracy-oriented completion criteria are widely used and allow users to explicitly specify an ex-

pected accuracy within maximum training epochs. In the above example, we use ACC (i.e., training

accuracy), which is a common metric, but other user-defined metrics, such as F1 score and Perplexity,

are supported as well. Additional error bounds, such as confidence interval, are optional as well. The

deadline could be expressed in epochs or time units.

2 Convergence-oriented completion criteria are also typical, especially for DLT jobs. With these

criteria, a job is considered “complete” once its performance is found to no longer increase. In themiddle

example of Figure 3.4,ACC is used formeasuring convergence, but othermetrics, such asLOSS [46], can

be used for convergence. The convergence-oriented criteria also allow users to specify a deadline, which

means a job will be terminated if it fails to converge until the deadline.

3 Runtime-oriented completion criteria are proposed foruserswhowant to execute their progressive
43



iterative analytic jobs for a while without any explicit objective or threshold. As theWITHIN predicate

we have in the other two completion criteria, the runtime can be the number of epochs or a period of

time, such as training a model for 100 epochs or running a query for 6 hours.

3.2.3 Framework Architecture

We identify three opportunities to address the resource arbitration problem.

First, the diverse completion criteria of progressive iterative analytics bring the opportunity to allocate

various amounts of resources to different jobs while still achieving their objectives. For example, it makes

more sense to give fewer resources to a job that only needs to achieve an effortless objective.

Second, diminishing returns of progressive iterative analytic jobs indicate that the value of two data

batches to a user may be completely different. This makes iterative resource allocation and preemption

practical and valuable. For instance, it may be beneficial in some situations when a data batch that pro-

vides more valuable results to users can be processed completely sooner if more resources are allocated

continuously. This leads to a cost model that should balance the progress improvement (i.e., providing

more valuable results) and resource consumption (the cost to improve the progress or produce the re-

sults). An example of this can be seen in Figure 3.1b, where we show that the earlier training epochs

could improve the deep learning models’ accuracy more significantly than the older ones, and the users

could get a decent trained model more quickly if more resources are given to the jobs with more poten-

tial for improvement; however, the trade-off between performance improvement and the models’ GPU

memory requirements need to be addressed as well.

Third, different data processing rate of progressive iterative analytic jobs rationalizes the adaptive

running epochs; namely, long-running jobs should be allowed to have a longer running epoch after arbi-

trating and allocating resources so that they can return expected intermediate results. This can be exem-

plified by Figure 3.1a, where we present that the process of query 19 increases more expeditiously than

queries 7 and 19when they are all checked every 60 seconds; however, we can observe all the queries will

have a similar pattern of progress improvement if query 5 and query 7 check every 120 and 180 seconds.

44



To exploit these opportunities, we proposed the resource arbitration framework, Rotary. We show

the framework’s architecture and highlight the core components in Figure 3.5. Rotary allows users to

submit their progressive iterative analytic jobs along with the corresponding completion criteria. Once

submitted, Rotary considers these jobs active and is ready to run them. Rotary’s engine is responsible for

resource arbitration. It can estimate howmuch progress a job can achieve in terms of completion criteria

and howmany resources the job will consume for such progress. Rotary can prioritize jobs according to

a costmodel and arbitrate the resources for them. Once the process of resource arbitration is finished, the

selected jobs will be deployed in Rotary execution, where the resource is allocated and preempted to the

jobs so that they can run in an execution platform (e.g., PyTorch or TensorFlow for deep learning, Spark

for query processing). When the jobs complete the current epoch, they can be checkpointed or material-

ized if they are not granted resources for the next running epoch. Furthermore, it is beneficial to store the

progressive iterative analytic jobs and track intermediate processing results since such information can be

used to provide a better estimation.

Rotary ExecutionRotary Engine

Cost model based on 
Completion Criteria & Estimation

Estimation for Progress and 
Resource Consumption

User-define
Completion criteria 

Progressive iterative 
analytic jobs

Job Driver
Job 

Checkpointer

Job Repository

Resource Resource

Resource Resource

...

...

Resource

Resource

Support estimation

ch
ec

kp
o

in
t 

jo
b

s

...

Iteratively update
estimation 

...

Execution Platform

Job Prioritization

Figure 3.5: Framework architecture of Rotary

Rotary can also re-evaluate and schedule the jobs that have been deferred or are currently running

for the next epoch. The advantages of this ability are three-fold. First, it provides the resource arbitra-

tion system with a wider range of running options for progressive iterative analytic jobs compared with

the systems that exclusively consider the current jobs. Second, the deferred jobs can be reconsidered for
45



running when it is beneficial to do so, which can prevent them from waiting for an unexpectedly long

time. Third, the overhead of job interruption, such as checkpointing to disk, can be avoided if a job is

continuously prioritized by Rotary.

3.2.4 Resource Arbitration Problem Statement

Workloads. Consider a workloadW that consists of n progressive iterative analytic jobs {j1, · · · , jn},

each job processes data batch-by-batch and returns the intermediate processing results for every epoch.

Each ith job emits a time-series per-epoch intermediate state {ins(i,0), ins(i,1), ..., ins(i,t),...} which

contains the convergence results and attainment progress ϕ toward its specific user-defined completion

criterion c. Thus, there is a list of criteria C = {c1, · · · , cn} associated with jobs in the workloadW .

Each job in the workload will terminate if c(ins(i,t)) == true. Once a job w reaches its completion

criteria, it is de-queuedW = W \ w.

Resources. These jobs have to be assigned to a particular “computing resource” (e.g., an available GPU

or CPU hardware thread). There areM such resources considered, and they are possibly heterogeneous.

These resources canonly process one job at a time and are not sub-dividable. A jobholds on to aparticular

resource for at least an epoch. Thus, at any given time, the current resource usage can be modeled as a

bipartite assignment where a subset of jobs are mapped to unique resources assign(W,M). As these

assignments change, jobs have to be loaded to the resources and check-pointed accordingly.

Resource Arbitration Policy. A resource arbitration policy is a function that produces assignment deci-

sions (and interrupts previous assignments if necessary) based on the current state of the queueQt, which

is the intermediate state associated with the completion criteria of all the jobs currently in the queue.

π : Qt 7→ assign(W,M) (3.1)

The application of this policy results in a sequence of resource assignment decisions at each time-step.

Objective. At each epoch t, attainment progress ϕtji denotes the progress of job ji toward its completion

46



criteria, At = n − |W | quantifies the number of jobs that reach their completion criteria (i.e., ϕtji =

100%), which is further exploited to denote the workload’s attainment rate ψt = At
n . The objective of

Rotary is to maximize a utility function that can be constrained by fairness and efficiency. If fairness is

the objective, Rotary will maximize minϕji , 1 ≤ i ≤ n and keep allocating resources to the job with

the lowest job attainment progress. If efficiency is prioritized, Rotary will maximize ψ by continuously

selecting the jobs that can achieve higher attainment progress.

3.2.5 Resource Arbitration Algorithm

Wepropose an algorithm sketch for addressing the problem, as presented inAlgorithm3. For each epoch,

the jobs that are selected to runmay achieve different attainment progress toward their completion crite-

ria. Suppose the completeness of each job can be treated as a job priority. In that case, such dynamic ”job

priority” requires Rotary to timely capture the current attainment progress of each job (especially for the

ones with diminishing returns) and adaptively estimate the ”priority” for them in each epoch based on

the current progress, estimated future progress, and their diverse completion criteria, so that the most

appropriate jobs can be selected for next running epoch.

Algorithm 3:Algorithm Sketch for Resource Arbitration
while not all jobs reach completion criteria do

for jobs is active but not attained ji, i← 1 to n do
Estimate the attainment progress ϕ̂ji for next epoch;

Resource arbitration for active jobs based on {ϕ̂ji |∀i = 1..n};
for selected jobs do

Executing the selected job;
Observe the attainment progress for the selected job;

However, the system implementations for various applications may have different algorithms to ad-

dress the problem. Following the algorithm sketch, we design two algorithms for AQP (§3.3.1) andDLT

(§3.3.2).

47



3.3 System Implementation

Following the proposed framework, we illustrate how we implement the resource arbitration prototype

system for approximate query processing (Rotary-AQP) and deep learning training (Rotary-DLT) and

further discuss their similarities and differences.

3.3.1 Rotary-AQP Implementation

To implement Rotary-AQP, we modify a single-user progressive query processing system based on

Apache Spark [10] and make it a multi-tenant environment by adding concurrency control and check-

point mechanisms. This system serves as our execution platform to run the AQP jobs.

Rotary-AQP can take AQP jobs with pre-defined completion criteria. We take accuracy-oriented

completion criteria (a widely-used metric in AQP [174, 144, 3, 141]) as examples. Specifically, each

job is attached with an accuracy threshold and a deadline to reach the threshold, thus the processing

progress in the framework is measured in terms of accuracy in this implementation of AQP. Rotary-

AQP processes AQP jobs and arbitrates the resources for them so that more jobs can reach their accuracy

threshold. Rotary-AQP focuses on online aggregation [56]. The accuracy of aggregation is calculated

as accuracy = αc
αf
, where αc is the current aggregation result, and αf is the final aggregation result.

Considering the aggregation operations are column-oriented, the accuracy of an AQP job that performs

multiple aggregation operations onmultiple columns can be calculated as accuracy = 1
k

∑k
i=0 α

k
c /α

k
f ,

where αkc is the current aggregation result on column k and αkf is the final aggregation result on column

k. This is based on the assumption that all columns are of equal importance (which is applied to our

evaluation). However, Rotary-AQP also allows the users to specify the importance of each column by

assigning weights.

We use a non-parametric confidence interval estimator to assess convergence. The technique is based

on envelope functions from empirical process theory [89]. Rotary-AQP keeps tracking the least and

largest aggregation results within a time window (e.g., t epochs) and uses this gap to determine conver-

48



gence1. Given that the aggregation will eventually converge, the gap between the least aggregation result

(denoted by p) and the largest aggregation result (denoted by q) can be substantial but should be shrunk

gradually over time. Thus, the accuracy progress canbe expressed as pq , which canprovide an approximate

estimate for the accuracy progress of an aggregation operation in the AQP jobs.

Following the architecture in Figure 3.5, Rotary-AQP has two core components for estimating the

accuracy progress and memory consumption. The accuracy progress estimator is used for prioritizing

jobs. It estimates the potential accuracy of a job j for the next epoch if the resources are granted. Its

core idea is to fit a progress-runtime curve leveraging historical and real-time data. The historical data are

from the selected historical jobs that are similar to job j according to query features such as query predi-

cates, query table and column names, and query batch size [25]. The real-time data can be conveniently

obtained since Rotary-AQP tracks the running AQP jobs. We further exploit weighted linear regression

[70] to learn a curve for estimation based on the collected historical and real-time data. Specifically, the

estimator selects top-k similar historical jobs for an AQP job to fit an initial progress-runtime curve that

can be used for the first estimation. Then, when the job is placed and launched, Rotary-AQP records

the real-time intermediate aggregation results and continuously adjusts the fitted curve by adding these

real-time results. Due to the importance of real-time results, each recorded real-time result and the com-

bination of all the historical data will share equal weight when fitting the progress-runtime curve. For

instance, if one recorded real-time result and a number of selected historical data are used to fit a curve,

the real-time result will be granted 0.5weight, and all the historical data as a whole will get the remaining

0.5weight. By extension, when three real-time intermediate results are recorded for fitting the curve, each

result and the combination of all the historical data will share 0.25weight, respectively. This continuous

joint fitting method makes the estimated progress-runtime curve reasonably close to the ground truth

and sufficient for estimating the progress.

The memory consumption estimator canmake sure there will be sufficient memory to support jobs.

It predicts the memory consumption of the AQP jobs based on each batch’s table and column statistics

1. The formal derivation of this estimator has been cut for brevity.

49



Algorithm 4:Resource Arbitration for AQP
Input :WorkloadW = {j1, · · · , jn}, Completion CriteriaC = {c1, · · · , cn}

Total CPU hardware threadsD, Total memoryM
for job ji ∈W that arrives do

Mark job ji as active and place it to the active queueAQ;
whileAQ 6= ∅ do

Initialize priority queue PQ;
for active jobs ji, i← 1 to n do

Estimate the memory consumption m̂ji ;
Assign running epoch eji for job ji;
Estimate the progress ϕ̂ji toward their completion criteria;
Place job ji in PQ due to ϕ̂ji ;

ResourceArbitration(active jobs);
Run active jobs, and mark them as running;
for active jobs ji, i← 1 to n do

if ji finish one epoch eji then
Observe the accuracy progress ϕji for current epoch;
if job ji meets cji then remove fromAQ ;
Mark job ji as active;

Function ResourceArbitration(jobs):
for job jk in jobs do

if m̂jk ≤M then
Allocate 1 hardware thread to job jk;
D = D − 1,M = M − m̂jk ;

else
if job jk in PQ then remove jk from PQ ;

for job jk in PQ&D 6= 0 do
Allocate extra 1 hardware thread to job jk,D = D − 1;

and query plans in the AQP, which has been well-studied. In our implementation, we exploit Apache

Spark’s CBO [31] to obtain memory consumption before running the AQP jobs. Rotary-AQP also

tracks the number of table rows scanned, filtered, and aggregated. The memory consumption estimator

also supports adaptive running epochs by determining the length of the running epoch (e.g., the num-

ber of batches in an epoch). We observe that the AQP jobs that consume larger memory usually take a

(proportionally) longer time to process a batch, and these jobs deserve a longer running epoch accord-

ingly. Thus, Rotary-AQPmakes the length of the running epoch of every AQP job proportionate to the

50



estimated memory consumption.

Rotary-AQPcan arbitrate computing resources for the jobs based on estimated accuracy progress and

memory consumption, as presented in Algorithm 4. During each epoch, Rotary-AQP will first allocate

one hardware thread to each active job that can fit in memory. Rotary-AQP further ranks these active

jobs and allocates extra computing resources to the ones that can achieve higher progress toward their

completion criteria.

3.3.2 Rotary-DLT Implementation

Rotary-DLT follows the architecture in Figure 3.5. Compared to Rotary-AQP, Rotary-DLT has the

following differences: (1) a training epoch estimator (TEE) to predict the number of training epochs

to achieve a specific accuracy, and a training memory estimator (TME) to predict the memory usage of

a deep learning model; (2) a training time recorder (TTR) to measure the time of a training epoch; (3)

GPU resource arbitration for the DLT jobs; and (4) TensorFlow is deployed as the execution platform

to run the DLT jobs. Furthermore, Rotary-DLT stores the information of the historical DLT jobs in a

repository so that the system can provide more accurate estimates for attainment progress and memory

consumption. All the completed jobs’ information are stored, including model architecture, training

hyperparameters, training epochs, and evaluation accuracy.

A key feature of Rotary-DLT is to estimate the number of epochs for training DLT jobs to achieve

specific accuracy, which is accomplished by TEE. Considering that DLT jobs always center on the accu-

racy metric, TEE is beneficial for Rotary-DLT to know whether it should allocate or preempt resources

for the scheduled jobs. When estimating the number of needed epochs for job j to achieve a specific

training accuracy, TEE first selects top-k similar historical DLT jobs to job j in terms of the metadata

of training dataset and training hyperparameters such as learning rate, training batch size, and optimizer

[97], and then extract the data pair (accuracy, epoch) from the historical job. TEE also captures the pair

(accuracy, epoch) during the training process of job j. Similar to the progress estimator of Rotary-AQP,

TEE fits an accuracy-epoch curve by jointly using historical and real-time data using weighted linear re-

51



gression, and every recorded real-time data and the combination of the historical data share equal weight.

TME is another key component and can predict themaximumGPUmemory usage of themodels in

the jobs so that DLT jobs can be launched on a target GPU with sufficient memory. As we mentioned

in §3.2.1, the training batch size remains the same for each training iteration, and it directly decides how

much data will be transferred from the hostmemory toGPUs during each batch. Moreover, all the learn-

able parameters in a deep learning model require space in memory, and these parameters where historic

gradients are being calculated and used also accumulate in memory. Thus, it is viable to estimate the

memory usage of deep learning models if the training batch size and model parameter information are

given. We fit a batch size-memory curve by leveraging the data from historical jobs for TME. When es-

timating the memory usage of a DLT job, TME first retrieves all the data of historical jobs that use the

same training dataset and then computes the similarity between the target job and the historical jobs.

The similarity between the two jobs is defined as similarity(x, y) = 1 − |x−y|
max(x,y)

, where x and y

are the numbers of model parameters (i.e., model size) of the two jobs, respectively. Afterward, TME

picks top-k similar historical jobs to fit the batch size-memory curve. We also exploit the weighted linear

regression to fit the curve but in a different way: the more similar a historical job is, the higher weights

the job will be granted. Furthermore, we pad the estimated memory by an additional offset to minimize

the likelihood of out-of-memory (OOM) issues.

There are two fundamental differences between AQP and DLT, which should be considered for im-

plementing Rotary-DLT. First, DLT jobs can be evaluated every one or multiple epochs using an evalu-

ation dataset; thus, it is unnecessary for Rotary-DLT to have a mechanism like an envelope function in

Rotary-AQP to approximately evaluate the progress of each job. Second, the batch processing time of

AQP jobs can be quite different due to the query predicates and heterogeneous data batch; for example,

a batch may trigger numerous join and aggregation operations, but the others may not. However, DLT

jobs usually have similar batch processing time due to the stable model architecture and the same batch

size. Thus, Rotary-DLT has a side component, TTR, to record the training time of a single step or an

epoch. TTR records the time of a training step or a training epoch for each DLT job on different devices

52



to reduce the recording overhead. Due to a CUDA warm-up issue [97], the very first training step al-

ways takes a longer time, so we always discard the first training step when TTR is running and recording.

Since the deep learning training job is launched in iteration, recording the single training time of each job

is sufficient to measure the overall time of the training process.

Algorithm 5:Adaptive Resource Arbitration for DLT
Input :WorkloadW = {j1, · · · , jn}, Completion CriteriaC = {c1, · · · , cn}

Total GPUD, GPUmemory {M1, · · · ,MD}
for job ji ∈W that arrives do

Place job ji to the active queueAQ
whileAQ 6= ∅ do

if all jobs fromW meet T then
Create a queue PQ that prioritizes highest progress job;

else
Create a queue PQ that prioritizes lowest progress job;

for i← 1 to n do
Estimate the resource consumption m̂ji for job ji;
Estimate the training progress ϕ̂ji for job ji;
Place job ji inAQ according to ϕ̂ji ;

for d← 1 toD do
for job jk inAQ do

if mjk ≤Md then Run job jk on GPU d, Remove job jk from PQ; ;

for job inAQ achieves the completion criteria do
Remove job fromAQ;

Following the problem statement (§3.2.4), we devise a threshold-based resource arbitration algorithm

for DLT (Algorithm 5). As an example to balance fairness and efficiency, this algorithm can prioritize

various jobs by allocating/preempting the available GPU resources according to a threshold T . More

specifically, for each epoch, the algorithm will prioritize the jobs with the lowest attainment progress

until all the jobs either achieve T progress or are considered converged so that no single job will consid-

erably fall behind; then, the algorithm will continuously select the more promising jobs that can achieve

higher progress in a relatively shorter period so thatmore jobs can be completed quickly. Therefore, when

T = 0%, the algorithm is always efficiency-oriented since every job achieves at least 0% progress from the

beginning, so the algorithm aims to achieve a higher attainment rate for a workload. If T = 100%, the

53



algorithm is fairness-oriented since it keeps allocating resources to the jobs with the lowest attainment

progress until all the jobs are finished. By tuning the threshold, the proposed resource arbitration algo-

rithm can tweak fairness and efficiency.

As a core in the resource arbitration algorithm forDLT, the computationof trainingprogressϕdiffers

for various completion criteria. For example, for the jobs with runtime-oriented completion criteria,

calculating ϕ is trivial, which is the ratio of current runtime (e.g., number of epochs) to the runtime

threshold. For the jobs with accuracy-oriented and convergence-oriented completion criteria, ϕ can be

obtained by estimating the current accuracy and comparing it with the target accuracy. We present the

computation of training progress in Algorithm 6.

Algorithm 6: Progress Computation in Rotary-DLT
Input :WorkloadW = {j1, · · · , jn}

Completion CriteriaC = {c1, · · · , cn}
for i← 1 to n do

e∗i ← job running progress (training epochs) of ji;
if ji has runtime-oriented completion criteria then

Obtain expected training epoch ei according to ci;
ϕi =

e∗i
ei
;

else if ji has accuracy-oriented completion criteria then
Obtain maximum training epoch emax

i according to ci;
Estimate the necessary epochs êi according to ci;
if êi > e∗i then ϕi =

e∗i
emax
i

else ϕi = e∗

êi
;

else if ji has convergence-oriented completion criteria then
Obtain maximum training epoch emax

i according to ci;
Obtain expected accuracy acci according to si;
Estimate the necessary epochs êi according to acci;
if êi > e∗i then ϕi =

e∗i
emax
i

else ϕi = e∗

ci
;

3.4 Evaluation

We evaluate our two Rotary prototype systems, Rotary-AQP and Rotary-DLT, respectively.

54



3.4.1 Rotary-AQP Evaluation

Our evaluation for Rotary-AQP addresses the following questions:

• Can resource arbitration improve the number of jobs that attain their performance objective, com-

pared to a state-of-the-art approach and other common baselines? (§3.4.1)

• What is the overhead of resource arbitration? (§3.4.1)

• Howdoes the distribution of job resource requirements impact the performance of Rotary-AQP?

(§3.4.1)

• How does the progress estimation impact the performance of Rotary-AQP? (§3.4.1)

All the experiments are conductedon a serverwith two IntelXeonSilverCPUs (2.10GHz, 12physical

cores) and 192GBmemory, running Ubuntu Server 18.04. For all experiments, we use 20 physical cores

and leave the rest for the OS (Ubuntu 18.04). We use an Apache Kafka [8] cluster on a different machine

with the same hardware configuration as the data source for AQP queries.

We implement four baselines for comparison: ReLAQS [144], EDF (Earliest Deadline First), LAF

(Least Accuracy First), and round-robin. As a vanilla baseline, round-robin allocates one core to each job

in turnuntil there are nomore cores and run them for an epochper timeuntil they reach their completion

criteria (either achieve the accuracy threshold or beyond the deadline). EDF and LAF are two dynamic

priority-based baselines that always prioritize the jobs that have the earliest deadline and least accuracy,

respectively. ReLAQS is the state-of-the-art work, which is a multi-tenant system for AQP that aims

to reduce the average latency of a workload by scheduling CPU cores to jobs with the most potential

for improvement. In ReLAQS, the potential improvement of each job is simply estimated according to

previous processing results. Compared with ReLAQS, Rotary-AQP considers both CPU and memory

for resource arbitration, combines historical and real-time data to estimate the accuracy progress, and

supports adaptive running epochs for short-running and long-running AQP jobs.

55



(a) Round-robin (b) EDF (c) LAF

(d) ReLAQS (e) Rotary-AQP

Figure 3.6: Evaluation of Rotary-AQP and four baselines (Round-robin, EDF, LAF, ReLAQS) on the
synthetic AQP workload

AQPWorkload

We evaluate Rotary-AQP using the TPC-H benchmark. Rotary-AQP supports all 22 queries and runs

them on the TPC-Hdataset. Given the number of concurrent jobs and Spark’s in-memory requirement,

we limit the scale factor to 1. Larger scale factors should not affect the performance of Rotary-AQP but

require more memory to run multiple AQP jobs simultaneously.

Theworkload consists of 30AQP jobs, each ofwhich is a randomquery selected from the 22TPC-H

queries. According to the observed memory consumption of queries, we categorize the TPC-H queries

into three groups: light, medium, and heavy queries. The workload is a mixed collection of jobs for the

queries from the three groups, and the proportions of the jobs in the three groups can be adjusted. In

the workload, each job is attached with an accuracy threshold and deadline, which are both randomly

selected from two parameter spaces. Furthermore, to simulate users submitting approximate queries to

the shared cluster, the job arrives according to a Poisson distribution with a mean arrival time of 160

seconds. The configurations of the workload are elaborated in Table 3.1.

56



Queries
Light q1, q2, q4, q6, q10, q11, q12, q13, q14, q15, q16, q19, q22

Medium q3, q5, q8, q17, q20
Heavy q7, q9, q18, q21

Completion
Criteria

Accuracy 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%

Deadline

Light Queries Deadline (sec):
360, 420, 480, 540, 600, 660, 720, 780, 840, 900
MediumQueries Deadline (sec):
1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160
Heavy Queries Deadline (sec):
1440, 1620, 1800, 1980, 2160, 2340, 2520, 2700, 2880, 3060

Workload
40%AQP jobs with light queries
30%AQP jobs with medium queries
30%AQP jobs with heavy queries

Table 3.1: Synthetic AQP workload. The selection of query type, accuracy threshold, and deadline are
all random and based on a uniform distribution. Job arrival is based on a Poisson distribution.

Attainment for AQPWorkload

Attainment rate serves as the most important benchmark since it measures how many jobs reach their

accuracy threshold; namely, users are satisfiedwith the results. Figure 3.6 shows the overall number of at-

tained jobs (e.g., jobs thatmet their convergence criteria before their deadline) underRotary-AQP,which

exceeds those using the four baselines. Although Rotary-AQP can attain more jobs for light, medium,

and heavy queries, it performs best for jobs with heavy queries. This is mainly due to two reasons. First,

Rotary-AQP can provide better progress estimation by jointly leveraging historical and real-time data

to find the jobs with the most potential for improvement. Second, Rotary-AQP can give the propor-

tional running epochs to various jobs according to their job size (i.e., estimate memory consumption in

the implementation). Thus, heavy jobs, often long-running, can return progressive results and be fairly

compared with short-running jobs during resource arbitration. Therefore, compared with the baselines,

Rotary-AQP allows the heavy jobs to have a higher chance of gaining more resources for running. Such

results confirm the efficiency and effectiveness of Rotary-AQP.

57



False Attainment andWaiting Time

Weuse an envelope function todeterminewhen to stop the jobs, but the envelope function canmakemis-

takes, such as stopping the jobs that are not supposed to be permanently terminated, which we consider

as false attainment. We present the false attainment for Rotary-AQP and the baselines in Figure 3.7a.

The envelope function can provide reliable decisions generally but still make mistakes. This issue can be

mitigated by lengthening the time window of the envelope function.

(a) False Attainment (b) Average Waiting Time

Figure 3.7: False attainment and waiting time of Rotary-AQP

We also tally the average waiting time of the jobs in the workload, as shown in Figure 3.7b. The

waiting time of a single job is calculated as the difference between its running time under Rotary or other

baselines and the time of running it independently and isolated. Our system also outperforms other

baselines due to the adaptive running epochs. More specifically, unlike Rotary-AQP, other baselines are

in favor of short-running jobs, which can achieve higher accuracy progress in a short time, which may

defer the heavy job far into the future and lead to an unexpectedly longwaiting time for the long-running

jobs.

SkewedWorkload

To evaluate Rotary-AQP on a balanced workload, we have 40% jobs with light queries, 30% jobs with

medium queries, and 30% jobs with heavy queries. However, it is also reasonable to fathom the perfor-

mance of Rotary-AQP on the workload with various job distributions. For this, we deploy Rotary-AQP

and the baselines in three “extreme” cases: the workloads only consist of jobs with light jobs, medium

58



jobs, and heavy jobs.

As we can see from Figure 3.8, Rotary-AQP can achieve the best performance for all three skewed

workloads, especially in the workload that only contains heavy jobs. Rotary-AQP and ReLAQS can

defeat other baselines due to progress estimation, whereas Rotary-AQP performs better than ReLAQS

becauseRotary-AQPcan collectmore accurate real-time intermediate results due to the adaptive running

epochs to make more reliable progress estimation for the next epoch.

Figure 3.8: Attained jobs in the various workloads (30 jobs)

Progress Estimation Sensitivity

Since the accuracy progress estimator serves as a core component of Rotary-AQP, we investigate how

much it affects the performance of Rotary-AQP. Thus, we design a new baseline, which is essentially

Rotary-AQP, but their accuracy progress estimator will randomly return the estimated progress follow-

ing a uniformdistribution from 0 to 1. Such artificial progress estimation ismisleading, andRotary-AQP

may make unwise resource arbitration accordingly.

Figure 3.9b displays the number of attained jobs under such artificial estimation, which is slightly

better than round-robin (Figure 3.6a) and almost tied to EDF (Figure 3.6b) and LAF (Figure 3.6c). The

artificial estimation attains fewer light jobs than EDF and LAF but outperforms them according to the

attainment rate of medium and heavy jobs. Such results indicate that (1) the accuracy progress estimator

is vital to Rotary and (2) the adaptive running epochs can help some medium and heavy jobs to attain

their goals.
59



(a) Rotary-AQP (b) Rotary-AQP with estimation

Figure 3.9: Impact of progress estimation

3.4.2 Rotary-DLT Evaluation

We implement Rotary-DLT on top of TensorFlow 1.15 [151]. All the experiments are conducted on a

server with Intel Xeon Silver CPU (2.10GHz), 192GB memory, and 4 GPUs (RTX 2080 8GB graphic

memory), runningUbuntu Server 18.04. All the evaluation results are averaged over 3 independent runs.

Survey-based DLTWorkload

To evaluateRotary-DLT,we surveyed 30 experienced deep learning researchers across the following affili-

ations listed alphabetically: MicrosoftResearch,NationalUniversity of Singapore,NortheasternUniver-

sity, Singapore Management University, University of California-Berkeley, University of Chicago, Uni-

versity of Illinois at Urbana-Champaign, and University of Toronto. According to their responses about

training infrastructure, model architecture, running time, and completion criteria, we synthesize a DLT

workload. The elaborate configurations of the synthetic workload are presented in Table 3.2. We imple-

ment a number of representative deep learningmodels in Computer Vision (CV) andNatural Language

Processing (NLP) with randomized hyperparameters and completion criteria. We use the small batch

sizes to train the CV models due to the empirical study [109] but choose bigger sizes for NLP models

due to common practice [15]. We follow the design in their original paper for other specific hyperparam-

eters of some models (e.g., the growth rate for DenseNet). We also have pre-trained versions of BERT,

VGG, and ResNet since the jobs of fine-tuning pre-trained models are also common.

For the models with multiple variants like ResNet, DenseNet, ShuffleNet, VGG, BERT, we use the

60



shrunk variants (e.g., ResNet-18, ResNet-34, DenseNet-121) to fit them on a single GPU.

Model

Architecture

Inception[147], MobileNet[60], MobileNetV2[135],
SqueezeNet [63], ShuffleNet[178], ShuffleNetV2[103],
ResNet[54], ResNeXt[170], EfficientNet[149], LeNet[81],
VGG[142], AlexNet[77], ZFNet[173], DenseNet[61],
LSTM[58], Bi-LSTM[47], BERT[157]

Batch size
Computer vision models: 2, 4, 8, 16, 32 [109]
Natural language processing models: 32, 64, 128, 256

Optimizer SGD, Adam, Adagrad, Momentum
Learning rate 0.1, 0.01, 0.001, 0.0001, 0.00001

Dataset
Computer vision models: CIFAR-10 [76]
Natural language processing models:
UD Treebank [158], Large Movie Review Dataset [105]

Completion
Criteria

Convergence-oriented criteria
(delta accuracy)

5%, 3%, 1%, 0.5%, 0.3%, 0.1%, 0.05%, 0.03%, 0.01%, 0.005%,
0.003%, 0.001%

Accuracy-oriented criteria
(final accuracy)

70%, 72%, 74%, 76%, 78%, 80%, 82%, 84%, 86%, 88%, 90%, 92%

Runtime-oriented criteria
(epoch)

From scratch 5, 10, 30, 50, 100
Pre-trained (Fine-tuned): 1, 2, 3, 4, 5

Maximum epoch for criteria 1, 5, 10, 15, 20, 25, 30

Workload Synthetic workload
60%DLT jobs with convergence-oriented completion criteria
20%DLT jobs with accuracy-oriented completion criteria
20%DLT jobs with runtime-oriented completion criteria

Table 3.2: Synthetic DLT workload. The selection of model architecture and proportion of jobs with
various completion criteria distribution is based on the responses to our survey, and the selection of other
hyperparameters and the parameters about completion criteria follow the uniform distribution.

Attainment for DLTWorkload

We consider fairness and efficiency as two vital but opposite optimization objectives. Achieving fairness

can guarantee that no single job is stalled due to a myriad of jobs being in front of it or some upfront

jobs taking an unexpectedly long time. Efficiency focuses on completing more jobs in a shorter time if

possible, and this objective can only be achieved by always picking up the jobs that can be finished faster.

61



If we stick with fairness, the jobs that can be completed quickly may have to wait a long time. On the

contrary, concentrating on efficiency can result in zero progress in some jobs (they are never triggered).

We define three metrics of attainment progress for DLT jobs with various completion criteria.

• Accuracy-orientedattainment progress: Similar to attainmentprogressϕ, this shows the completion

percentage of a job with accuracy-oriented completion criteria but from the perspective of accu-

racy, which is defined as current accuracy
completion criteria . For instance, if a job has an accuracy target of 80% and

obtains 56% accuracy after training one epoch. The current attainment progress is 56%80% = 70%.

• Convergence-oriented attainment progress: We measure the attainment progress of jobs with

convergence-oriented completion criteria in terms of epochs. When retrospecting the trainingpro-

cess, if the jobs convergedbefore themax training epochs,wemark the epoch as the convergence-line

when the model converged and define the attainment progress as current epoch
convergence-line . For the jobs that

failed to converge, we use current epoch
max epochs instead.

• Runtime-oriented attainment progress: The runtime-oriented attainment progress is denoted as
current epoch

completion criteria , which is further exemplified by the following case. If a job has a runtime-oriented

completion criterion of 15 epochs, and the attainment progress is 5
15 = 33.3% after training 5

epochs.

We evaluate the Rotary-DLT against three baselines:

(a) ShortestRuntime First (SRF): it always runs the jobswith the shortest runtime completion criteria

first and handles the other jobs following a round-robin strategy.

(b) Biggest Convergence First (BCF): it always runs the jobs with the biggest convergence completion

criteria first and handles the other jobs following a round-robin strategy.

(c) Lowest Accuracy First (LAF): it always runs the jobs with the lowest accuracy completion criteria

first and handles the other jobs following a round-robin strategy.

62



(a) Adaptive Rotary-DLT (T = 50%): Rotary-DLT is pure-fairness from 0 to 120~180minutes and can push the
minimum attainment progress of theworkload. Rotary-DLTbecomesmore aggressive on efficiency and completes
more jobs starting from 180~240minutes since all the jobs either make substantial attainment progress (50%) or
are considered converged.

(b) Fairness Rotary-DLT (T = 100%): Rotary-DLT always picks up the jobs with the lowest ϕ and can maximize
theminimumattainment progress of all jobs in theworkloads considerably faster than other baselines. For example,
Fairness Rotary-DLT and SRF achieve the same minimum attainment progress for all jobs using 120minutes and
300minutes.

(c) Efficiency Rotary-DLT (T = 0%): Rotary-DLT always selects the jobs with the highest ϕ andmakes more jobs
meet their completion criteria (achieving a higher attainment rate) in a relatively short period. Considering the
results at 120minutes, Efficiency Rotary-DLT completes more jobs than the other baselines.

Figure 3.10: Evaluation of Rotary-DLT variants and three baselines on the synthetic DLT workload

Wedemonstrate all the results in Figure 3.10 using violin plots. In Figure 3.10a, Rotary-DLT is adap-

tive, which fuses the fairness and efficiency policy. It starts with the pure-fairness policy that always selects

the jobs with the lowest ϕ. Once all the jobs in the workload either achieve at least 50% progress toward

their completion criteria or are considered converged, adaptive Rotary-DLT switches to an efficiency-

centric policy, which starts to pick up the jobs with the highest ϕ. Figure 3.10b and 3.10c demonstrate

the performance of twoRotary-DLTvariants that optimize fairness and efficiency objectives, respectively.

Rotary-DLT variants outperform the three baselines. The threshold T is predefined in the evaluation

63



to show the performance of Rotary under different scenarios; designing a sophisticated mechanism to

choose T is out of the scope of this paper.

Impact of Training Epoch Estimation

Training epoch estimation is positioned at a vital place in developing and evaluating Rotary, and it is

critical to understand its effect. We conduct a micro-benchmark workload with 8 DLT jobs and track

the job placement under efficiency Rotary-DLT with and without accurate epoch estimation. Among

eight jobs, job4 is for BERT, job 5 is for Bi-LSTM, and job 6 is for LSTM. To evaluate how the epoch

estimation impacts theperformance,we remove all thehistorical jobs aboutNLPmodels in the repository

of Rotary-DLT so that the estimation for jobs 4, 5, and 6 are unreliable and even erroneous (e.g., the

number of epochs formeeting the completion criteria is 2, but an erroneous estimate can be 100 epochs).

0 10 20 30 40 50 60
Wall-time Elapse (mins)

1

2

3

4

GP
U 

De
vi

ce

(a) With Reliable Estimation

0 10 20 30 40 50 60
Wall-time Elapse (mins)

1

2

3

4

GP
U 

De
vi

ce

(b) With Erroneous Estimation

Figure 3.11: Job placements under efficiency Rotary-DLT.

Wedemonstrate the placements for eight jobs in Figure 3.11. Each rectangle denotes a job placement,

and the one with hatches means the job meets the completion criteria. Figure 3.11a presents the job

placement under efficiency Rotary-DLT with the accurate epoch estimation. In light of the accurate

epoch estimate, jobs4, 5, and6 are triggered to run after the trial phase inRotary-DLTandcomplete early.

However, as shown in Figure 3.11b, the epoch estimate is inaccurate, and the placement is inefficient

accordingly. For example, job 4 can reach the complete criteria in 2 epochs, but the inaccurate estimate

for that is 125 epochs, so its progress ϕ is much lower than others and cannot be placed as it should be.
64



Therefore, jobs 4, 5, and 6 are finished later than those under accurate estimation.

Overhead of TTR, TEE, and TME

We investigate the overhead of recording the training epoch time ofDLT jobs, namelymeasuring how the

overhead ofTTRandTEE inRotary-DLT scales when theDLTworkload grows. As shown inTable 3.3,

taking theworkloadswith the sizes of 10, 20, 30, and 40 as examples, the overhead ofTTRandTEE takes

an imperceptible proportion of the whole workload processing time, even for the larger workload.

Workload
Size

Overall Running
Time

Overhead of
TTR

Overhead of
TEE

Overhead of
TME

10 8142s 0.225s 0.74s 0.58s
20 23790s 0.6s 1.31s 1.03s
30 34014s 0.87s 1.98s 1.49s
40 43124s 1.12s 2.56s 2.11s

Table 3.3: The overall process time and overhead in Rotary

3.5 Discussion

We discuss implementation choices and open questions in this section.

Implementation Choices: We faced several design trade-offs when implementing Rotary-AQP and

Rotary-DLT. However, it should be noted that all the trade-offs are implementation-specific and

framework-independent, which could be mitigated by different implementations. We discuss two ex-

amples.

One implementation trade-off is how to persist the AQP jobs that have been paused (i.e., deferred to

future execution) due to resource arbitration. When a job is paused, its intermediate states and results

should be persisted either in memory or disk so that it can be resumed. Persisting AQP jobs in memory

is more efficient from the perspective of performance but may quickly saturate the memory, which is a

relatively scarce resource compared with disk and may lead to an out-of-memory error. Therefore, we

65



checkpoint the AQP jobs in disks. Such a mechanism will bring additional overhead but allow more

jobs to run simultaneously. The same issue happened when we implemented Rotary-DLT; however,

checkpointing DLT jobs in disks is a common practice.

Our second implementation choice assumes theAQP andDLT jobs are executed in a singlemachine,

even though our framework and system implementations support distributed execution. This is because

we decide to first make a deep investigation of a resource arbitration framework and its implementations

so that we can have a better understanding of progressive iterative analytic jobs and verify our framework

design. Our system implementations, Rotary-AQP andRotary-DLT, and the corresponding evaluations

confirm the generality and practicality of the proposed framework. Thus, processing distributed jobs is

out of the scope of this paper.

Materialization for Progressive Iterative Analytic: Progressive iterative analytic jobs need to be per-

sisted. Such a requirement essentially asks for a materialization mechanism as in database systems and

brings a similar trade-off between cost and efficiency [1]. How and when to materialize the progressive

iterative analytic jobs is an interesting and pivotal research question, and we leave the answers for future

work.

Unified Resource Arbitration Framework: While we compare AQP and DLT and treat them as two

alike progressive iterative analytic applications in different areas and implement two systems for both of

them, it is more interesting to have a unified resource arbitration system on a cluster to handle AQP and

DLT jobs together. Such a system can serve more users and enormously improve resource utilization.

66



CHAPTER 4

RIVETER: ADAPTIVE QUERY SUSPENSION ANDRESUMPTION

FRAMEWORK FOR CLOUDNATIVE DATABASES

With the recent advancement in modern hardware and virtualization, an increasing number of data pro-

cessing and analytic workloads are shifting towards database systems deployed on large-scale cloud infras-

tructure [131]. This shift is giving rise to the emergence of cloud-native databases [163]. Nevertheless,

the increasing prevalence of ephemeral cloud resources is prompting a re-thinking of the principles of

cloud-native databases and necessitating a novel query execution. First, ephemeral cloud resources are ever-

changing in availability. Spot instances [6, 177, 29], which provide short-lived computing infrastructure

for short-running jobs. Recent developments in cloud computing are amplifying this transient capacity.

One noteworthy example is the rise of serverless computing [140, 127], which empowers applications to

leverage lightweight cloud resources characterized by constrained runtime, memory capacity, and com-

putation specification. Another emerging trend is ”zero-carbon clouds” [28]. In this cloud paradigm,

data centers are designed to be entirely ephemeral, driven primarily by renewable energy sources, such

as sunlight and wind, which are inherently unstable in availability. Second, the monetary cost of cloud

resources can be fluctuating. The inherent multi-tenancy nature of cloud resources [118] inevitably leads

to price adjustments based on resource supply and demand dynamics. [7]. Reportedly, the prices of

cloud resources can surge to 200 to 400 times the normal rate during peak demand [140]. An increasing

number of users are leaning towards cost-effective choices, even if they entail slightly higher latency or po-

tentially outdated results [4]. Moreover, the recent rise of data science and data-drivenAI has introduced

increasingly complex and heterogeneous workloads, combining both long-running and short-running

queries [100, 44, 96]. This diversity can potentially lead to resource saturation, thereby exacerbating the

fluctuations in pricing.

These two emerging trends challenge the cloud-native databases from two perspectives: (1) the as-

sumption that cloud resources are stable is not applicable, and thus preserving the resources for a rel-

atively long term is not always feasible; (2) the widely-used latency-oriented SLA (Service Level Agree-
67



ment) may not be the best option for all users, particularly for those who prioritize cost-efficiency over

speed. An ideal cloud-native database designed for ephemeral resources needs to perform queries in an

adaptive manner: suspending a query when resource accessibility or cost-efficiency is no longer viable and

subsequently resuming the query when resources become available or cost-effective again while minimizing

the potential overhead caused by the query suspension and resumption.

Motivated by this novel requirement, we proposed Riveter, an adaptive query suspension and re-

sumption framework. Riveter supports various query suspension and resumption strategies, including

the redo, process-level, and pipeline-level strategy. Specifically, the redo strategy allows for terminating

a query at any given moment and subsequently rerunning it when necessary or advantageous. How-

ever, with this strategy, all current progress is forfeited upon termination. In contrast, the process-level

strategy can also suspend a query at any point in time but preserve the current progress by persisting all

intermediate data and context information of the process in which the query is executed. Nevertheless,

it comes with notable drawbacks: the persisted data can be exceedingly large, and the requirement for

resuming processes requires identical resource configurations, such as the number of hardware threads

and allocated memory size, as were in use at the time of suspension. The pipeline-level strategy offers an

alternative approach by persisting the intermediate data of each pipeline in the query plan for potential

resumption. This implies that suspension and persistence of intermediate data only occur after specific

pipelines have completed their execution, but this strategy usually significantly reduces the volume of

data persisted since the intermediate data is typically aggregated upon pipeline completion. Riveter also

employed a costmodel that can estimate the latency of various strategies and thereby adaptively determine

if, when, and how to suspend queries.

For the implementation of Riveter, wemodifyDuckDB [38] to realize the pipeline-level strategy and

develop the process-level strategy building on top ofCRIU (Checkpoint/Restore InUserspace) [32]. We

also devise an adaptive query suspension and resumption algorithm based on the proposed cost model.

We conducted a performance study using the TPC-H benchmark [154] to investigate the effectiveness

of process-level and pipeline-level strategies. For instance, the process-level strategy suspends query 21 at

68



approximately 50% of the execution time and requires 28GB of intermediate data storage, whereas the

pipeline-level strategy only holds 112KB of intermediate data by delaying the suspension and complet-

ing the current pipeline. We also demonstrate how Riveter determines the optimal strategy for selected

queries through an end-to-end analysis, and our results reveal that the optimal strategy introduces negligi-

ble latency for query suspensionwhen applied to SF-100 datasets. Additionally, we validate the efficiency

of our cost model in terms of estimation accuracy and runtime performance through a cost model eval-

uation.

Contributions. The goal of this work is to propose and design an adaptive query execution framework

for the evolving paradigms of cloud-native databases. Our contributions include:

• Characterizing the adaptive query execution based on suspension and resumption and exploring the

opportunities for cloud-native databases (§4.1).

• Designing and implementing an adaptive query execution framework, Riveter, with supporting vari-

ous query suspension and resumption strategies (§4.2.1, §4.2.2).

• Devising a costmodel and an algorithm to adaptively determine the suspension and resumption strate-

gies (§4.2.3).

• Conducting three evaluations for Riveter based on TPC-H benchmark (§4.3.1, §4.3.2, §4.3.3).

4.1 Motivation

In this section, we delve into the concepts of query suspension and resumption and further highlight

the benefit and essential role of adaptive query suspension and resumption, particularly in cloud-native

databases.

4.1.1 Query Suspension and Resumption

The concept of query suspension and resumption is rooted in recovery mechanisms in database systems

[113, 106], and one of the most early work of query suspend and resume is database checkpoint mech-
69



anism which can create a point from which the execution engine can persist the current state of the

database into non-volatile storage [50]. In light of the checkpoint mechanisms, a query suspend and

resume approach is proposed for pull-based query execution [24]. It essentially creates a query suspend

plan that may involve a combination of persisting current state and going back to previous checkpoints.

Within this approach, the potential suspension points are always the ones that have minimized memory

usage, thus mitigating significant overhead during suspension and resumption. Alternatively, instead

of persisting the intermediate data, certain systems suspend queries and retain the intermediate data in

memory during suspension. For instance, Amber [79] converts the operator DAG of the execution plan

to an actor DAG and passes messages of ”suspend” and ”resume” among actors so that the query suspen-

sion or resumption can be triggered without persisting the intermediate data. Nevertheless, maintaining

queryprocessing in a suspended statewithoutpersistence can consume substantialmemory resources and

lead to significant delays for other queries. Moreover, this approach is not suitable for query or database

migration which is not uncommon in cloud-native databases.

We identify three pivotal perspectives of suspension and resumption strategies: (1) suspension flex-

ibility, (2) progress preservation, and (3) intermediate data persistence. The most ideal suspension and

resumption strategy is the one that can suspend a query at any given time and preserve the progress of

the suspending time point with the least intermediate data to persist. Suspension flexibility measures the

granularity of triggering suspension a strategy can support. Within this spectrum, two extremes can be

identified: one where queries can be suspended at any point in their execution, and another where sus-

pension occurs only upon query completion. Progress preservation signifies the extent to which query

processing progress can be retained, whether partially or in its entirety when a suspension is initiated.

The intermediate data persistence specifically refers to the size of persisted intermediate data during sus-

pension, which directly impacts the latency of query suspension.

We describe three strategies according to the above perspectives, as presented in Table 4.1.

Redo strategy allows forquery suspension at any given time through immediate termination. It preserves

no progress of query processing, resulting in no persisted intermediate data.

70



Flexibility Granularity Persistence Granularity Progress Granularity

Redo Strategy Terminate at anytime No intermediate data Lost all progress

Pipeline-Level
Strategy

Suspend at pipeline
completion

Intermediate data of
pipeline

Keep progress of
persisted pipeline

Process-Level
Strategy

Suspend anytime at
process level

Intermediate data of
process Preserved all progress

Table 4.1: Representative suspension & resumption strategies

Pipeline-level strategy only checks if a query can be suspended when a pipeline is completed and pre-

serves progress by persisting the intermediate data at this completion point.

Process-level strategy can suspend a query at any given time and keep the current progress during sus-

pension by persisting all necessary intermediate data.

4.1.2 Motivational Cases

Adaptive query suspension and resumption can play an essential role in the evolving scenarios of cloud-

native databases, considering that cloud resources are becoming increasingly ephemeral in availability and

fluctuating in monetary cost. The rise of spot instances [6, 177, 29] and the emergence of zero-carbon

clouds [28, 148] have provided transient and intermittent computing infrastructures. Meanwhile, the

price of these constrained cloud resources can escalate significantly when a substantial number of users

compete for them during the peak period. In such scenarios, the importance of adaptive query execu-

tion becomes evident, allowing queries to run when resources are available or costs are within acceptable

bounds and suspending them when resources become unavailable or costs become prohibitive.

We describe the followingmotivational cases in cloud-native databases for adaptive query suspension

and resumption:

Case 1: Heterogeneous workloads. Cloud native databases are deployed for multi-tenants and process the

heterogeneous workloads that are mixed by short-running and long-running queries. When the long-

running queries monopolize resources for unexpectedly long periods, they potentially cause resource sat-

71



uration. This can lead to significant delays for shorter-running queries, which otherwise could have been

completed promptly with sufficient resources. Existing methods, such as dynamic query scheduling or

resource reservation, may fall short of expectations as they often treat the queries as indivisible entities,

whereas the proposed adaptive query execution essentially converts a long-running query into a series

of short-running ones by suspending and resuming it for multiple times, thereby allowing more flexible

scheduling for execution.

Case 2: Database migration. Database migration is vital for maintaining elasticity and scalability in

cloud-native databases. The current state-of-the-art approach is live database migration, which strives to

move database services withminimal service disruption and negligible impact on performance. However,

migrating entire database systems remains a non-trivial task and brings substantial overhead. Resource-

adaptive query execution offers a promising solution by enabling the migration of individual queries,

which can significantly reduce the overhead associated with migrating cloud-native databases. Further-

more, in certain circumstances where a single resource-intensive, long-running query dominates the

database, migrating that specific query can free up resources for more efficient utilization.

Case 3: Computation with ephemeral resources. An increasing number of cloud-native databases now

support serverless computing, which leverages lightweight and short-lived resources to enable users to

invoke functions deployed in the cloud and retrieve results locally. Typically, these functions can be

likened to queries or analytical tasks performed on specific datasets. However, users may encounter high

latency when serverless computing resources are unstable or experience elevated costs, especially during

peak usage times. This is attributed to the growing resource costs and unpredictable resource availabil-

ity. The proposed resource-adaptive query execution can mitigate these issues by avoiding periods when

resources are either unavailable or expensive for utilization.

4.2 Riveter Design and Implementation

Inspired by the motivational cases, we propose Riveter, an adaptive query suspension and resumption

framework. Riveter supports three strategies as we identify in §4.1.1 and adaptively select the strategy

72



that is associated with minimized latency based on a cost model. The architecture of Riveter is described

in Figure 4.1.

Cost Model

Query

Process-level 
suspension & resumption 

Execution with potential 
termination 

Pipeline-level 
suspension & resumption 

Query execution based on cost model 

Estimate cost of various strategies

Figure 4.1: Riveter architecture

4.2.1 Pipeline-level Suspension and Resumption

Pipeline-based query execution divides the query plan into a number of pipelines for parallel and efficient

execution. Dividing query plans into pipelines is based on the pipeline breakers that are usually block-

ing operators and collecting sufficient intermediate results for further process. Thus, the pipeline-level

suspension and resumption strategy in Riveter takes the pipeline breakers as the natural suspension and

resumption points.

Query Resume

Query Suspend

Check if 
suspend

A thread finishes 
a batch for a pipeline 

Persist
global state 

Suspend
query

Load & recreate 
global state 

Manage pipeline 
dependency 

Execute next 
pipeline

Check if the pipeline 
is finalized

Database
Ratchet Data

Resume
query

Resources

Figure 4.2: Workflow of pipeline-level query suspension and resumption strategy

To implement the pipeline-level strategy, we modified DuckDB [38] to implement a prototype sys-

tem. The workflow of suspension and resumption is illustrated in Figure 4.2. When a thread completes
73



processing a pipeline with a data batch, Riveter checks whether the query execution has reached the sus-

pension point and determines whether to initiate the suspension process. If affirmative, Riveter proceeds

to verify if the current pipeline is finalized—indicating that all the intermediate results at the thread level

have been merged into the global state. If this is the case, Riveter serializes and persists in the global state

before suspending the query. When resuming a query, Riveter first attempts to identify the persisted

intermediate data (i.e., Ratchet Data in Figure 4.2) and updated resource configurations in order to re-

establish the query execution environment. Subsequently, Ratchet manages pipeline dependencies; for

example, it bypasses pipelines processed prior to suspension and marks successor pipelines as ready for

execution while also reconstructing the global states for future execution. Afterward, Riveter carries out

the query until it reaches the next suspension point or produces the final results.

We illustrate this pipeline-level suspension and resumption strategy for some widely-used query op-

erators in Figure 4.3. Although a pipeline can be executed bymultiple threads, it maintains a global state

for the intermediate data. Taking in-memory hash join as an example, the query plan is split into two

pipelines: one is for building hash tables, and the other is for probing hash tables. Thus, there are two

pipeline breakers at the end of each pipeline for suspension and resumption, and each breaker maintains

a global state. The global state is persisted during suspensions.

Although the implementation of pipeline-level strategy only performs at different pipeline breakers

for query suspension and resumption, the intermediate data are usually processed and aggregated, which

makes the necessary persisted data relatively small. Our implementation brings an extra advantage, run-

ningqueries using adaptive resources. This is becauseRiveter can check and exploit the available resources

when loading and recreating the execution context for resume queries.

4.2.2 Process-level Suspension and Resumption

Riveter also provides the capability to effectively suspend and resume queries at any given point by im-

plementing a process-level query suspension and resumption strategy. This strategy operates within the

context of a process, ensuring the persistence of the complete context and all intermediate data upon ini-

74



Project

Sum

R

Pipeline 1

Ungrouped Aggregation

Scan R

Pipelin
e 1

Pipelin
e 1

Scan R

Pipelin
e 1

Scan R

Global State
[Aggregated Data]

suspend & 
resump point

Local
State

Local
State

Local
State

Project

Groupby
(Sum)

R

Pipeline 1

Grouped Aggregation

Scan R

Pipelin
e 1

Global State
[Hash Tables]

suspend & 
resump point

Pipelin
e 1

Scan R

Pipelin
e 1

Scan R

Local
State

Local
State

Local
State

Project

Sum

R

Pipeline 2

Pipeline 1

Ungrouped Aggregation with Orderby

suspend & 
resump point

Order

Global State
[Aggregated Data]

suspend & 
resump point

Scan R

Pipelin
e 1

Pipelin
e 1

Scan R

Pipelin
e 1

Scan R

Local
State

Local
State

Local
State

Global State
[Sorted Aggregated Data]

Final Results

Pipelin
e 2

Pipelin
e 2

Pipelin
e 2

Local
State

Local
State

Local
State

Pipeline 2

Pipeline 1

HT Build

HT Probe

Final Results

Scan R

Pipeline 2

Scan S

suspend & 
resump point

Scan S

Pi
pe

lin
e 

1

Scan S
Scan R

Pipeline 2

Scan R

Pipeline 2

HashTable Probe

In-memory Hash Join

Local
State Local

State Local
State Has

hT
ab

le 
Bui

ld

suspend & 
resump point

Local
State

Local
State

Local
State

Pipeline 1

HT Build & Spill

Final Results

Scan R

Pipeline 2

suspend & 
resump point

Scan R

Pipeline 2

Scan R

Pipeline 2

HashTable Probe

And Spill 
Local
State Local

State Local
State

suspend & 
resump point

Spill State
[Joined Data]

Spill State
[Built Hash Tables]

External Hash Join

Join

R S

Project

Global State
[Hash Tables]

Global State
[Joined Data]

Select Select

Join

R S

Project

Select Select

Pipeline 2

HT Probe & Spill

Final ResultsFinal Results

Global State
[Joined Data]

Global State
[Hash Tables]

Pi
pe

lin
e 

1

Pi
pe

lin
e 

1

Scan S

Scan S

Pi
pe

lin
e 

1
Scan SHas

hT
ab

le 
Bui

ld

And
 S

pi
ll Local

State

Local
State

Local
State

Pi
pe

lin
e 

1

Pi
pe

lin
e 

1

Figure 4.3: Pipeline-level suspension and resumption strategy for common operators in Riveter

tiation of suspension. Riveter reconstructs the entire process context and execution environment during

the resumption phase, subsequently reloading the intermediary data associated with that process. Con-

sequently, the process-level strategy in Riveter empowers the suspension and resumption of queries at

will, albeit accompanied by a notable overhead due to the necessity of data persistence and loading. This

overhead arises from the persistence of the entire process context and state during the suspension phase,

which is then reinstated upon query resumption. Furthermore, the resumption of queries triggers the

meticulous reconstruction of the process context to precisely match its state during suspension, which

75



also ensures that the resource configuration remains consistent and unaltered between the suspension

and resumption phases.

We implement process-level query suspension and resumption in Riveter on top of CRIU tool [32],

as demonstrated in Figure 4.4. When suspending a query, the entire query execution process will be

dumped as multiple image files, which can be used to restore the process and the query for resumption.

Query ResumeQuery Suspend

Check if should 
suspend queries

Images

CRIU

Dump Restore
Process

Memory

Context

Suspend query Resume query

Check if should 
resume queries

Process

Memory

Context

Figure 4.4: Workflow of process-level query suspension and resumption

4.2.3 Resource-adaptive Query Execution

We realize the adaptive query suspension and resumption in Riveter by supporting redo, pipeline-level,

and process-level strategies and devise an associated cost model.

Cost Model

We devise a cost model to adaptively decide if, when, and how to suspend queries. We formulate the cost

model as follows.

Given. A query q that may encounter a termination within a specific time window T , starting from Ts

to Te. Considering the potential termination, the query must confront a decision point: it can either be

forcefully terminated, resulting in the loss of current progress, or strategically suspended while retaining

all intermediate data. When the query is suspended before the termination, the intermediate data is per-

76



sisted, ensuring the continuity of the ongoing progress. However, persisting intermediate data at query

suspension and reloading them during query resumption may introduce additional latency, denoted as

Ls andLr, which are denominated by the size of intermediate data. In cases where a query cannot be sus-

pendedbefore its intended termination, both the intermediate data and the current progress are forfeited,

which necessitates a complete re-execution from its starting point.

Assumption. A termination can happen within a time window T , determined by a probability PT , 0 ≤

PT ≤ 1. Specifically, PT can be either predefined or decided by a probability distribution π to simulate

the termination in real-world applications. Additionally, the potential termination point π(T ) can differ

each time the query is executed. The available amount of resources, such as CPU threads, memory, and

I/O bandwidth, are known prior to the suspension and resumption of the query, but the availability of

these resources might undergo changes during the suspension and resumption phases, thus, attempting

to resume a query is unviable when the resources available are inadequate for its execution.

Objective. Select the strategy tominimize the overall cost for q. When executing query qwith termination,

the cost is,

Costexecq = P redo
T ∗ Γredo (4.1)

When executing query q with pipeline-level strategy, the cost is,

Cost
ppl
q = L

ppl
s + L

ppl
r + P

ppl
T ∗ Γppl (4.2)

When executing query q with process-level strategy, the cost is,

Cost
proc
q = L

proc
s + L

proc
r + P

proc
T ∗ Γproc (4.3)

Specifically,Costexecq is the execution time before the termination point, which is jointly determined

by the probability of termination P redo
T and the redo cost Γredo under the redo strategy. The cost asso-

ciated with pipeline-level and process-level strategies come from two perspectives: (1) latency caused by

77



persisting intermediate data during suspension and reloading them for query resumption, (2) the redo

cost if the suspension fails to complete before the termination point. Therefore, the cost of pipeline-level

and process-level strategies can be expressed as Costq = (Ls + Lr) + PT ∗ Γ. The latency Ls and Lr

in pipeline-level and process-level strategies can be estimated based on the size of intermediate data and

hardware specification to facilitate prompt decision-making during query execution.

Query Suspension and Resumption Algorithm

In accordance with the cost model, we have devised an algorithm for query suspension and resumption.

Since continuouslymonitoring the status of query execution and performing cost calculations for poten-

tial suspension and resumption can significantly impede regular query execution, our algorithm employs

a proactive approach to support adaptive query execution andmeanwhile reduce the associated overhead.

Algorithm 7:Cost Estimation for Redo Strategy
Input :Query q, Termination time window T [Ts, Te], Probability of termination PT

Tsum = 0,Nppl = 0;
while q reaches a pipeline breaker do

Observe the current timeCt;
Observe the running time of the pipeline Tppl;
Tsum = Tsum + Tppl,Nppl = Nppl + 1;
======== Cost Estimation for Redo Strategy ========
Initialize probability of termination using redo strategies P redo

T ;
if Ct ≥ Ts or Ct +

Tsum
Nppl

≥ Te then
P redo
T = PT ;

else if Ts ≤ Ct +
Tsum
Nppl

< Te then
Overlapped time window To = Ct +

Tsum
Nppl

− Ts;
P redo
T = To

Te−Ts
∗ PT ;

else
P redo
T = 0;

Costredoq = P redo
T ∗ Te;

Riveter estimates the cost of employing the three suspension strategies and makes latency-oriented

decisions when the query execution reaches a pipeline breaker. For the query q, the cost of redo strategy

Costredoq is expressed as P redo
T ∗ Γredo, where P redo

T is calculated in terms of the overlap between ter-

78



mination time window T and the time of completing future pipelines. The completion time of future

pipelines can be estimated based on the average of previous pipelines. The cost estimation for the redo

strategy is illustrated in Algorithm 7.

Algorithm 8:Cost Estimation for Pipeline-level Strategy
Input :Query q, Termination time window T [Ts, Te], Probability of termination PT

Tsum = 0,Nppl = 0;
while q reaches a pipeline breaker do

Observe the current timeCt;
Observe current available memoryM ;
Observe the running time of the pipeline Tppl;
======== Cost Estimation for Pipeline-level Strategy ========
Initialize probability of termination using pipeline-level strategies P ppl

T ;
Obtain the size of intermediate data Sppl of pipeline-level strategy;
if Sppl ≤M then

Estimate the latencyLppl
s andLppl

r based on Sppl;
else

Lppl
s =∞,Lppl

r =∞;
if Ct + Lppl

s ≥ Te then
P ppl
T = PT ;

else if Ts ≤ Ct + Lppl
s < Te then

Overlapped time window To = Ct + Lppl
s − Ts;

P ppl
T = To

Te−Ts
∗ PT ;

else
P ppl
T = 0;

Costpplq = Lppl
s + Lppl

r + P ppl
T ∗ Ct;

For the cost estimation of pipeline-level strategy, we serialize and persist the intermediate data in bi-

nary format, essentially representing a large vector of bytes, which allows us to conveniently determine

its size. Then, the latency Lppls and Lpplr can be estimated based on the size of intermediate data and the

random write/read speed. The P ppl
T is also based on the overlap between the termination time window

T and the estimated time of completing future pipelines, as shown in Algorithm 8.

The cost estimation of process-level strategy, as described in Algorithm 9, requires probing more

future suspension points since the strategy can suspend queries anytime. The suspension point under

a process-level strategy associated with minimum latency can be selected. During the probing process,

79



Algorithm 9:Cost Estimation for Process-level Strategy
Input :Query q, Termination time window T [Ts, Te], Probability of termination PT

Tsum = 0,Nppl = 0;
while q reaches a pipeline breaker do

Observe the current timeCt;
Observe current available memoryM ;
Observe the running time of the pipeline Tppl;
Tsum = Tsum + Tppl,Nppl = Nppl + 1;
======== Cost Estimation for Process-level Strategy ========
Initialize probability of termination using process-level strategies P proc

T ;
for sti, i← Ct toCt +

Tsum
Nppl

do
Estimate the size of intermediate data Sproc

sti
at sti;

if Sproc
sti
≤M then

Estimate the latencyLproc
s,sti

andLproc
r,sti

based on Sproc
sti

;
else

Lproc
s,sti

=∞,Lproc
r,sti

=∞;

if sti + Lproc
s,sti
≥ Te then

P proc
T = PT ;

else if Ts ≤ sti + Lproc
s,sti

< Te then
Overlapped time window To = sti + Lppl

s,sti
− Ts;

P proc
T = To

Te−Ts
∗ PT ;

else
P proc
T = 0;

Costprocq = min{Lproc
s,sti

+ Lproc
r,sti

+ P proc
T ∗ sti}

Riveter employs an iterative approach, advancing suspension time points by each time unit that can

be predefined according to the termination time window to estimate the latency of each potential sus-

pension point in the near future. However, it is non-trivial to estimate the latency Lprocs and Lprocr of

process-level strategy at each potential suspension point since the intermediate data include not only the

processing data but also all the necessary context information. To address this challenge, we exploit a

regression-based approach to estimate the size of intermediate data under the process-level strategy. The

regression-based approach essentially fits a curve based on a number of key factors, such as the size and

the cardinality of the input data, the metadata of the query (e.g., number of join and group-by), and the

suspension point. The above estimations for the latency of pipeline-level and process-level strategies are

practical for efficient decision-making processes in Riveter and can be improved or replaced with more

80



sophisticated methods in the framework.

After estimating the latency of the three strategies, Riveter selects the strategywith the least estimated

latency. We present an illustrative example in Figure 4.5.

Redo Strategy
Cost: P*redo cost

Termination Time Window T
Ts

Starting
point

ppl breaker 1
at time t_1

Te

Process-level Strategy
Cost: min{latency of suspension & resumption + P(proc, s_i)*redo cost}

Pipeline-level Strategy
Cost: latency of suspension & resumption + P(ppl)*redo cost

P(proc, s_1) …

ppl breaker 2
at time t_2

ppl breaker n
at time t_n…

P(proc, s_2) P(proc, s_n)

Termination Probability P

Figure 4.5: Illustrative example of query suspension and resumption algorithm

4.3 Evaluation

We conduct three evaluations for Riveter using TPC-H benchmark:

• Investigating the intermediate data persistence under process-level and pipeline-level strategy (§4.3.1).

• Analyzing the strategy selection based on the cost model (§4.3.2).

• Studying estimation accuracy and runtime of the cost model (§4.3.3).

Riveter is evaluatedon a serverwith two IntelXeonSilverCPUs (2.10GHz, 12physical cores), 192GB

memory, and 60TB hard disk (7200 RPM, SATA 6.0 Gb/s), running Ubuntu Server 18.04. Within the

evaluation, we use the parquet format [9] and assume that raw data have been ingested for query process-

ing. During the evaluation, query executions are initiated usingPython clientAPIs, which are commonly

employed in real-world applications. All the results in the evaluation are averaged over 3 independent

runs.
81



We run all the queries from the TPC-H benchmark to conduct a comprehensive evaluation. Ad-

ditionally, we highlight the queries Q1, Q3, Q17, and Q21, which feature diverse core operators and

varying numbers of input tables. The queries are characterized in Table 4.2.

Query Core Operators Tables
Q1 1 groupby 1 table
Q3 1 groupby, 2 join 3 tables
Q17 1 join, 1 unionall 2 tables
Q21 1 groupby, 4 join, 1 outer join 4 tables

Table 4.2: Selected queries in TPC-H

4.3.1 Impact of Intermediate Data Persistence during Suspension

In this evaluation, we investigate the size of persisted intermediate data of the strategies in Riveter. Since

the redo strategy terminates queries and re-executes them subsequently without persisting any interme-

diate data, this evaluation focuses on the process-level and pipeline-level strategies employed in Riveter.

Process-level Strategy

Weutilize the process-level strategy inRiveter to suspend all the queries fromTPC-Hbenchmark. Specif-

ically, Riveter suspends the queries at approximately 50% of their execution time, persisting all interme-

diate data and process context. As depicted in Figure 4.6a, the sizes of intermediate data for most queries

exhibited a proportional increase with the volume of input datasets. Furthermore, Figure 4.6b provides

a closer look at the selected queries: Q1, Q3, Q17, Q21. For example, whenQ21 is suspended, the size of

persisted data is 3GB for the SF-10 dataset, 14GB for the SF-50 dataset, and 28GB for the SF-100 dataset.

However, there were exceptions noted for queriesQ2, Q11, Q16, andQ22when using the SF-10 dataset.

This deviation can be attributed to the lightweight nature of these four queries, which complete rapidly

when processing smaller datasets such as SF-10. For instance, the execution time of Q2 and Q11 are 0.9

and 0.4 seconds, respectively. Consequently, when Riveter suspends these queries at approximately 50%

82



of their execution time (i.e., around 0.45 and 0.2 seconds, respectively), they were still in the very early

stages of execution, resulting in relatively small sizes of intermediate data.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q2210MB

100MB

1GB

10GB

100GB

In
te

rm
ed

ia
te

 D
at

a 
Si

ze

TPC-H SF10 TPC-H SF50 TPC-H SF100

(a) Persisted intermediate data size of all queries in TPC-H

Q1 Q3 Q17 Q21100MB

1GB

10GB

100GB

In
te

rm
ed

ia
te

 D
at

a 
Si

ze

463M 452M 465M

3.1G
2.3G 2.3G 2.1G

14G

4.3G 4.2G 5G

28G
TPC-H SF10
TPC-H SF50
TPC-H SF100

(b) Q1, Q3, Q17, and Q21 of Figure 4.6a

Figure 4.6: Persisted intermediate data size of queries in TPC-H when suspending them at around 50%
execution time using the process-level strategy on SF-10, SF-50, SF-100 datasets

Following the above argument that queries regarding queries in their early execution stages generate

fewer intermediate data under the process-level strategy, we further investigate how different suspension

points affect the size of intermediate data. Specifically, we measured the intermediate data size when sus-

pendingqueries at approximately30%, 60%, and90%of their executionprogress. Figure 4.7 presents that

the size of persisted intermediate data under the process-level strategy increases as suspension occurs later

in the query execution. This trend is typically due tomemory allocation persistingwithout timely deallo-

cation during query execution. Consequently, intermediate data accumulates until the query execution

83



is completed. This observation underscores the trade-off between suspending a query immediately to

reduce the space required for persistence and delaying suspension tomakemore progress, should it prove

advantageous.

Q1 Q3 Q17 Q211GB

10GB

100GB
In

te
rm

ed
ia

te
 D

at
a 

Si
ze

2.4G 2.7G 2.5G

14G

4.9G 5G 4.2G

29G

6.8G 7.4G 7.7G

46G
Suspension at 30% exuection time
Suspension at 60% exuection time
Suspension at 90% exuection time

Figure 4.7: Persisted intermediate data size of queries (Q1, Q3, Q17, Q21) in TPC-H when suspending
them at around 30%, 60%, and 90% execution time using process-level strategy on SF-100 dataset

Pipeline-level Strategy

For consistency in the performance study,we exploitRiveter to suspendqueries fromTPC-Hbenchmark

at around 50% of their execution time but using pipeline-level strategy. Since the strategy only suspends

a query when one of its pipelines is finalized, the time a suspension is requested is not always the time the

suspension process actually starts.

Figure 4.8a illustrates the size of persisted intermediate data of 22 queries, each exhibiting notable

differences. We also provide specific numbers of selected queries in Figure 4.8b. For example, when sus-

pendingQ1 using the SF-10 dataset, the size of intermediate data is less than 1KB, while the intermediate

data generated by Q8 for the same dataset is approximately 12GB. Furthermore, while the intermediate

data for certain queries (e.g., Q8, Q9, Q12, Q17, and Q18) that undergo suspension tends to grow pro-

portionally with the size of the input datasets (SF-10, SF-50, SF-100), the size of intermediate data for

other queries, such asQ1, Q4-7, Q11, Q14, andQ19-Q22, remains consistent across these datasets. This

84



Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q2210Bytes

100Bytes

1KB

10KB

100KB

1MB

10MB

100MB

1GB

10GB

100GB
In

te
rm

ed
ia

te
 D

at
a 

Si
ze

TPC-H SF10
TPC-H SF50
TPC-H SF100

(a) Persisted intermediate data size of all queries in TPC-H

Q1 Q3 Q17 Q2110Bytes
100Bytes

1KB
10KB

100KB
1MB

10MB
100MB

1GB
10GB

In
te

rm
ed

ia
te

 D
at

a 
Si

ze

685B

53K

36M

79B

689B

53K

180M

79B

689B

53K

360M

79B

TPC-H SF10
TPC-H SF50
TPC-H SF100

(b) Q1, Q3, Q17, and Q21 of Figure 4.8a

Figure 4.8: Persisted intermediate data size of queries in TPC-H when suspending them at around 50%
execution time using the pipeline-level strategy on SF-10, SF-50, SF-100 datasets

behavior is primarily influenced by the specific pipeline in which the query is situated when suspension

is initiated. For instance, queries within hash-join pipelines tend to exhibit increased intermediate data

sizes in tandem with larger input datasets, whereas queries within aggregation pipelines, such as those

involving sum or average operators, tend to produce intermediate data of similar sizes due to the nature

of their aggregated results. Moreover, in the case of certain queries, the pipeline-level strategy results in a

greater volume of intermediate data compared to the process-level strategy. To illustrate, consider Query

Q8: this discrepancy arises from the fact that the pipeline-level strategy defers the persistence of inter-

mediate data until the pipeline engages with a hash-join operator is completed, thereby necessitating the

retention of the entire hash table for the join. However, the process-level strategy exhibits a swifter re-

85



sponse to suspension requests, resulting in the persistence of intermediate data involving only the partial

hash table.

Given the characteristics of the pipeline-level strategy, we measure the time difference between when

the suspension is requested and when it actually occurs (i.e., the moment when the suspension pro-

cess commences), as illustrated in Figure 4.9. Specifically, the Q21 has the minimum delay on different

datasets due to the granularity of its query plan, which can be quantified by the number of pipelines in-

volved. This ismainly becauseQ21hasmanymorepipelines thanQ1,Q3, andQ17,whichprovidesmore

feasible suspension points and thereby allows the query to be suspended closer to the suspension point.

Hence, the performance study quantitatively confirms that when suspension occurs, the pipeline-level

strategy typically generates significantly less intermediate data for persistence compared to the process-

level strategy. This reduced intermediate data can be attributed to the fact that pipeline-level strategy does

not necessitate capturing all state and context data for resumption. However, the pipeline-level strategy

may introduce extra delays in responding to suspension requests, particularly when the query plan com-

prises fewer pipelines or is dominated by a single heavyweight pipeline.

Q1 Q3 Q17 Q21

10s

100s

1000s

3.8

2

4.2 5.2
7

3

5.8 5.3

22.4
13.1

24.8
39.341

23
34

4554.2
34.7

57.9

11298

51
83

168

Time of suspension requested (SF-10)
Time of suspension started (SF-10)

Time of suspension requested (SF-50)
Time of suspension started (SF-50)

Time of suspension requested (SF-100)
Time of suspension started (SF-100)

Figure 4.9: Time lag incurred when suspensions are requested under the pipeline-level strategy

Hence, the performance study quantitatively confirms that when suspension occurs, the pipeline-

level strategy typically generates significantly less intermediate data for persistence compared to the

process-level strategy. This reduced intermediate data can be attributed to the fact that pipeline-level

strategy does not necessitate capturing all state and context data for resumption. However, the pipeline-
86



level strategy may introduce extra delays in responding to suspension requests, particularly when the

query plan comprises fewer pipelines or is dominated by a single heavyweight pipeline.

4.3.2 Analysis of Suspension and Resumption Strategy Selection

We investigate Riveter’s selection of suspension and resumption strategies for Q1, Q3, Q17, and Q21 by

examining scenarios in which termination time windows and termination probabilities are configured

with different settings. Specifically, the termination time window [Ts, Te] with termination probability

P signifies that the query execution has a probability of P for being terminated while the execution is

within the time window [Ts, Te]. Specifically, each termination time point within the time window is

assigned with equal termination probability P . We further compare query execution times under two

conditions: without suspension, and with a single suspension and resumption following the strategy

selected by Riveter. The total query execution time accounts for termination skipping, which can be

achieved by straightforwardly incorporating termination time. We run the queries Q1, Q3, Q17, and

Q21 under SF-100 datasets.

Query 1:

Termination time window with 
30% probability of termination

86s 108s

Execution time without suspension: 108.4s

(a) Termination time window for Q1

0 50 100 150 200 250
Query execution time (sec)

Normal Execution

Pipeline-level Strategy 
 (Riveter selection)

(b) Query execution with Riveter

Figure 4.10: Analysis of strategy selection for Q1

Query Q1 serves as a representative example of queries that heavily rely on one of the few pipelines.

For Q1, we configure a suspension time window [86s, 108s], with a 30% probability of termination, as

87



presented in Figure 4.10a. Once Q1 approaches this time window, Riveter assesses the cost associated

with different suspension strategies. The cost of the redo strategy is notably high in this scenario. This

is primarily because Q1 is nearing the completion of its execution, and any termination at this point

would result in the loss of all progress, necessitating a complete restart. Consequently, this would lead to

a significant increase in latency. Meanwhile, the estimated cost of the process-level strategy is considerably

higher than that of the pipeline-level strategy. This is attributed to the much larger size of intermediate

data that must be persisted during the suspension period. Thus, Riveter recommends the pipeline-level

strategy for query Q1, and the overall execution time under the pipeline-level strategy is approximately

111.4s compared with the normal execution time 108.4s, shown in Figure 4.10b.

Query 3:

Termination time window with 
50% probability of termination

1s 10s

Execution time without suspension: 69.3s

(a) Termination time window for Q3

0 50 100 150 200 250
Query execution time (sec)

Normal Execution

Redo Strategy 
 (Riveter selection)

(b) Query execution with Riveter

Figure 4.11: Analysis of strategy selection for Q3

In the case of Query Q3, as shown in Figure 4.11a, we examine Riveter’s ability to identify the opti-

mal suspension strategy when there is a potential for early termination during query execution. In this

case, the first pipeline of Q3 reaches completion quite early in the process. Riveter, after performing

its calculations, selects the redo strategy for suspension, primarily due to its lower cost compared to the

other two strategies. This choice is bolstered by the fact that the termination time window occurs at the

outset of query execution, resulting in a relatively modest cost for the redo strategy since the cost of the

redo strategy is mainly associated with the query re-execution instead of persisting any intermediate data.

88



Thus, the query execution times under the redo strategy closely resemble those of normal execution.

(Figure 4.11b).

Query 17:

Termination time window with 
70% probability of termination

80s 100s

Execution time without suspension: 115.8s

(a) Termination time window for Q17

0 50 100 150 200 250
Query execution time (sec)

Normal Execution

Process-level Strategy 
 (Riveter selection)

(b) Query execution with Riveter

Figure 4.12: Analysis of strategy selection for Q17

In the case of Query Q17, as illustrated in Figure 4.12a, the probability of query termination is rel-

atively high. Consequently, suspending the query becomes a more reasonable choice than redoing it

entirely. Riveter, taking this into account, opts for the process-level strategy over the pipeline-level strat-

egy. The latter, which involves persisting relatively large amounts of data, introduces additional latency.

Furthermore, Riveter’s estimation suggests that the next pipeline of Q3 will cover the termination time

window, rendering the redo strategy more expensive due to the high termination probability. However,

as depicted in Figure 4.12b, the query execution time under the process-level strategy is longer compared

to execution without suspension. This is primarily because the cost model requires more time for esti-

mation in this case.

Query Q21 is one of the most complex queries in TPC-H benchmark. We configure a termination

time window at the middle phase of query execution, paired with a high termination probability, as il-

lustrated in Figure 4.13a. According to Riveter’s estimates, the size of intermediate data maintained for

persistence during suspension, using a process-level strategy, substantially exceeds that of the pipeline-

level strategy, which can introduce considerable latency into the query execution process. Additionally,

the termination timewindow initiates at 70 seconds. This factor diminishes the attractiveness of employ-
89



Query 21:

Termination time window with 
90% probability of termination

70s 100s

Execution time without suspension: 223.6s

(a) Termination time window for Q21

0 50 100 150 200 250
Query execution time (sec)

Normal Execution

Pipeline-level Strategy 
 (Riveter selection)

(b) Query execution with Riveter

Figure 4.13: Analysis of strategy selection for Q21

ing the redo strategy, given that termination has a 90% probability of occurring, effectively resetting the

progress and significantly extending the overall query execution time. Therefore, Riveter recommends

adopting the pipeline-level strategy, as the execution time with a single suspension and resumption event

introduces only negligible latency (Figure 4.13b).

4.3.3 Accuracy Estimation and Runtime of Cost Model

The cost model plays a crucial role in Riveter framework, aiding in determining the optimal strategy

based on latency estimations for various strategies. As detailed in § 4.2.3, assessing the latency of the

process-level strategy necessitates estimating the size of intermediate data. Consequently, we conduct

an investigation into the accuracy of this estimation within Riveter. Thus, we collect data from 200

query executions and employ a regression-based approach to fit the curve. Subsequently, we leverage this

curve to estimate intermediate data size when applying the process-level strategy in Riveter to suspended

queries. The results of our estimations are presented inTable 4.3, offering valuable insights to inform the

decision-making process in the cost model and to identify the optimal strategy.

The regression-based estimation method demonstrates efficient performance, introducing negligi-

ble additional overhead during query execution. In our implementation of Riveter, the cost model is

90



Query Dataset Estimate Ground-truth Accuracy
Q1 SF-50 2.25GB 2.3GB 97.8%
Q1 SF-100 4.75GB 4.3GB 89.5%
Q3 SF-50 3GB 2.3GB 69.5%
Q3 SF-100 5.2GB 4.2GB 76.2%
Q17 SF-50 2.7GB 2.1GB 71.4%
Q17 SF-100 4.5GB 5GB 90%
Q21 SF-50 11.7GB 14GB 83.6%
Q21 SF-100 24.3GB 28GB 86.8%

Table 4.3: Estimation analysis of cost model when queries are suspended at around 50% using process-
level strategy

launched as a dedicated process and efficiently communicates with the process where the query is exe-

cuted through allocated sharedmemory. Wemeasure the running time of the cost model, including data

ingestion for estimation, latency estimation for the process-level strategy, and evaluation of latency for

other strategies to determine the optimal strategy. Specifically, Riveter runs queryQ1,Q3,Q17, andQ21

on the SF-100 dataset and suspends them at around 50%of their execution time. We capture the running

time of the cost model when it is triggered for optimal strategy selection for this suspension request. As

tabulated in Table 4.4, the running time of the cost model for Q1, Q17, and Q21 is negligible. The cost

model for Q17 brings relatively higher overhead to the query execution, which is due to obtaining the

size of intermediate data for further estimation.

Query
Running Time of
Cost Model

Overall Execution Time
(no suspension)

Q1 0.012s 108.4s
Q3 0.018s 69.3s
Q17 5.85s 115.8s
Q21 0.02s 223.6s

Table 4.4: Running time of cost model in Riveter based on the queries using SF-100 dataset

91



4.4 Related Work

In this section, we identify some key domains where Riveter can effectively contribute, and compare it

with established relevant techniques within those domains.

4.4.1 DatabaseMigration

Database migration is a service that facilitates the transfer of users’ databases and analytics workloads

from one execution environment to another. This process inevitably involves stopping and restarting the

database, akin to suspending and resumingqueries. One state-of-the-artmethod for databasemigration is

known as live databasemigration. This technique, rooted in virtualization [30], aims tomigrate database

services with minimal service interruption and negligible performance impact [37, 167].

Live database migration encompasses two primary approaches: iterative copying [37, 35] and dual

execution [41, 69]. In the iterative copying approach, akin to the methodology employed by Riveter,

active transactions on the source database are temporarily suspended during migration. The migration

process then iteratively transfers both the database cache and the state of ongoing transactions, allowing

the migration destination to initiate with a hot cache [36, 166]. Conversely, dual execution, proposed in

Zephyr [41] and refined in systems likeMgCrab [95] andRemus [69], enables simultaneous execution of

transactions on both the source and destination databases. This simultaneous execution minimizes ser-

vice disruption and systemdowntime, ensuring service disruption and systemdowntime are unobtrusive.

ProRea [136], on the other hand, seeks to amalgamate the strengths of iterative copying and dual execu-

tion. It initiates migration by proactively transferring the database cache and subsequently ensures that

newly arriving transactions are processed concurrently at both the source and destination databases. In

contrast to the aforementioned approaches, Slacker [14] andMadeus [112] represent middleware-based

solutions that avoid direct modification of existing database systems. Slacker utilizes transaction logs to

synchronize the destination database with the source, while Madeus concurrently propagates commit

operations as well as the first read and write operations from the source to the destination during migra-

tion. However, despite their simplicity, these middleware-based methods provide limited performance

92



advantages when compared to solutions integrated into the core of the database management systems

(DBMSs).

State migration plays a pivotal role in streaming databases, particularly in the context of reconfig-

uring stateful operators. One commonly used method is the ”stop-and-restart” approach, which is a

kind of redo strategy. In this method, program execution is temporarily halted, and the state is securely

transferred during this computational pause. Subsequently, the job is restarted once the redistribution

of state is complete, oftenmaking effective use of existing fault-tolerance mechanisms within the systems

[23, 12]. Inmany reconfiguration scenarios, only a small subset of operators requires statemigration. Op-

erators not involved in the migration can continue functioning without disruption, and fault-tolerance

checkpoints can be utilized to facilitate the process of state migration [42, 108]. An optimization to this

method involves subdividing the state and migrating its partitions [59].

Riveter exhibits orthogonality to live or state migration, augmenting their capabilities within

resource-dynamic environments. Riveter facilitates query migration as opposed to full database migra-

tion, employing a pipeline-level suspension and resumption strategy. This approach significantly im-

proves the feasibility of live migration in scenarios where resources are ephemeral or fluctuating. Migrat-

ing queries prove to be considerably less resource-intensive than relocating entire database states, primar-

ily due to the smaller intermediate states required for serialization and transfer.

4.4.2 Recovery, Checkpoint, and Suspension

Recovery, checkpoint, and suspension can be traced from the same lineage in the realm of databases. In

the context of database recovery, a canonical and widely-used algorithm is ARIES [114], which supports

steal and no-force buffer approaches, fine-granularity, write-ahead logging, partial rollbacks, and fuzzy

checkpoint. Some algorithms proposed to extend the original ARIES algorithm [115]. Although many

disk-resident database systems implement ARIES-alike mechanisms for recovery purposes, in-memory

database systems avoid using ARIES-style for performance reasons. Commonly, in-memory databases

access persistent storage only for recovery thus minimizing the I/O overhead is prioritized in most in-

93



memory databases [106].

The checkpoint mechanism plays a crucial role in enhancing recovery processes. This mechanism

establishes a reference point from which the execution engine can persistently capture the current state

of the database. Variations of this checkpoint approach include Transaction Consistent Checkpoint,

Action Consistent Checkpoint, and Fuzzy Checkpoint [50]. In contrast to traditional disk-resident

database systems, main-memory databases employ an asynchronous approach to transmit transaction

updates from the log file to a designated checkpoint archive. This not only serves to expedite recovery

but also frees up valuable log space. The checkpoint operation effectively materializes logical operations

recorded in the log file into the checkpoint archive [134]. Instead of propagating individual log records,

most main-memory databases produce a form of consistent checkpoint often referred to as a snapshot.

These snapshots represent the tangible state of the database at a specific moment in time and are gener-

atedperiodically and asynchronously [132]. The snapshot-based approaches enable in-memorydatabases

[83] and modern disk-resident databases [51] to quickly reload the most recent snapshot in the event of

a system crash.

In light of checkpoint mechanisms, Chandramouli et al. introduced a pull-based query execution

approach that operates at the operator level and focuses on query suspension and resumption. This ap-

proach involves creating a query suspend plan to minimize the overhead associated with suspending and

resuming queries. This plan may entail a combination of preserving the current state and reverting to

previous checkpoints. PROQID [52] is proposed to suspend and resume queries in distributed environ-

ments. A systematic study is conducted to analyze the performance implications of different manage-

ment policies for long-running query workloads, including policies like ”kill and restart” and ”query and

resume.” [78]. Additionally, Graefe et al. and Antonopoulos et al. explored the possibilities of imple-

mentingpause and resume functionality for indexoperations in commercial database systems. In a related

context, Amberwas introduced to support responsive debugging during the execution of a dataflow [79].

It accomplishes this by transforming an operatorDAG (DirectedAcyclicGraph) into an actorDAG.The

concept of query suspension and resumption is applied within the actor DAG, enabling the execution

94



to be paused and resumed by exchanging messages such as ”suspend” and ”resume” among the actors

involved. Similar to query suspension, the query preemption mechanism can pause or checkpoint some

ongoing jobs in favor of others due to specific objectives. SaGe [111] focuses on SPARQL queries and

allows the queries to be suspended by theWeb server after a fixed period and resumedupon client request.

Rotary [96] is a general resource preemption and arbitration framework, but one of its implementations,

Rotary-AQP can checkpoint some long-runningAQP jobs during execution and resume it using the per-

sisted state when it is beneficial to do so.

Riveter shares a similar idea with the line of recovery, checkpoint and suspension in database sys-

tems, yet Riveter is an adaptive framework that can identify optimal solutions to suspend and resume

queries. Furthermore, Riveter can check and exploit available resources dynamically when suspending

and resuming which maximizes scheduling flexibility.

4.4.3 Query Scheduling

Query scheduling plays a vital role in the architecture of data systems deployed within cloud environ-

ments. A prime use case is seen in multi-tenant databases that enable the allocation of limited resources

to servemultiple database tenants simultaneously [40]. Withinmulti-tenant databases, one of the utmost

responsibilities is to guarantee that each tenant receives sufficient resources to handle their requestswithin

a specified timeframe, often referred to as a Service Level Objective (SLO). Various approaches exist to

address this challenge, such as resource isolation [119], which involves setting aside a fixed or minimal

amount of necessary resources for each tenant, as well as intelligent tenant placement [99]. However, as

the prevalence of long-running queries grows, managing this responsibility becomes progressively chal-

lenging. This is primarily because long-running queries have the potential to exhaust the virtualized re-

sources. For instance, current methods for scheduling long-running queries generally follow one of two

strategies: they either attempt to allocate substantial resources to these queries, potentially accelerating

the saturation of resources, or they seek to reposition the queries, which can result in increased query la-

tency. Recent research endeavors have explored the possibility of preempting certain long-running jobs

95



during their execution in favor of prioritizing others [96].

Riveter stands out by acknowledging the dynamic nature of cloud resources, whereas traditional

methods assume resource stability. Riveter improves existing solutions significantly by breaking down

long-running queries into smaller tasks during suspension and resumption, leading to more efficient

query scheduling and resource management.

4.5 Discussion

We discuss implementation choices and open questions for Riveter in this section.

More Suspension and Resumption Strategies. Riveter serves as an adaptable query suspension and

resumption framework capable of accommodating a wide range of strategies. In our implementation,

we have showcased three distinct strategies: redo, pipeline-level, and process-level, in order to demon-

strate Riveter’s functionality and performance. Nevertheless, Riveter is versatile and can readily support

additional strategies while adapting to more complex scenarios. For example, it is valuable to consider

implementing a data-level strategy that can partition input datasets and execute queries in batch mode,

particularly when developing a suspension-oriented query execution engine proves to be complicated.

Alternatively, an operator-level strategy can be implemented to offer finer-grained suspension capabili-

ties for scenarios involving iterator-based query execution.

Multiple Suspensions during Query Execution. While the proposed Riveter framework can be eas-

ily extended to accommodate scenarios with multiple suspension events, our performance evaluation of

Rivetermainly focuses on scenarios that involve a single suspension and resumption event. This choice is

motivated by the fact that each suspension event canbe treated as an independent occurrence, and latency

increases proportionally with the number of suspensions. Therefore, it is both reasonable and practical

for Riveter to assess the current available latency and potential latency when determining the optimal

strategy for handling the current suspension request. As part of our future work, we will also explore

more complex scenarios involving multiple queries, where the individual suspension and resumption of

queries can potentially interact with one another.

96



Suspension-friendly Data Layout. In our implementation and evaluation, we operate under the as-

sumption that the data layout is typically stored in its native format. However, there are cases where

data layouts can be pre-processed. For example, data can be sorted before execution, and Riveter can

leverage this pre-sorted data layout while continuously tracking the watermark during execution. More

specifically, the watermark can serve as intermediate data for suspension and resumption, resulting in a

significant reduction in the size of intermediate data. Furthermore, this approach provides an opportu-

nity to suspend queries at a finer-grained level, such as at the tuple level.

Query Re-optimization during Suspension. Riveter also raises an intriguing question regarding query

re-optimization during suspension. Currently, Riveter always assumes that query plans remain the same

when suspending and resuming queries. However, it presents a challenging yet beneficial avenue to ex-

plore the possibility of altering the query plan during suspension. This leads to the question of how

Riveter should determine the optimal strategy for query suspension and the nature of intermediate data

persistence to maximize the benefits of query re-optimization.

97



CHAPTER 5

CONCLUSION

In modern cloud environments, dynamic and ephemeral resources are rising, exemplified by spot in-

stances and ”zero-carbon clouds”. Such cloud resources can fluctuate in resource availability and mon-

etary cost, which poses significant challenges: resource scarcity and potential job termination due to

resource unavailability or price fluctuations for multi-tenant environments. This dissertation proposes

three optimizations for the challenges: resource utilization maximization, resource arbitration, and re-

source suspension and resumption, and further develops three prototype systems to realize them.

Firstly, to explore resource utilization maximization, we analyze the benefits and limitations of pack-

ing multiple models together to take advantage of available GPU resources for model training. Under

the proper conditions, this packing can bring up to 40% reduction in latency per model packed, com-

pared with training the models sequentially on a GPU.We further demonstrate that pack primitive can

be used to accelerate a state-of-the-art hyperparameter tuning algorithm. Our end-to-end tuning system

demonstrates a 2.7x speedup in terms of time to find the best model by improving GPU utilization. Our

analysis opens many interesting optimization opportunities, such as the training process can be decom-

posed and scheduled for packing to reduce the overall training time or trading off accuracy or training

time to improve overall resource utilization.

Secondly, we argue that resource arbitration is vital but neglected for progressive iterative analytic

applications. We proposed a framework, Rotary, to highlight the core features and components for re-

source arbitration. It allows diverse user-defined completion criteria, prioritizes the jobs for resources,

and supports adaptive running epochs. To realize and validate the framework, we implement two re-

source arbitration systems for AQP and DLT and evaluate them using the TPC-H benchmark and a

survey-based workload, respectively. The evaluation results show that Rotary-AQP and Rotary-DLT

outperform the state-of-the-art and other widely-used baselines and confirm that Rotary is an appeal-

ing solution for efficient resource utilization for iterative applications. Our work also opens interesting

opportunities to explore the connection between research problems in ML and DB, such as balancing

98



accuracy and running time in approximate query processing and deep learning training.

Finally, we argue that ephemeral resources that fluctuate in availability andmonetary cost are increas-

ingly prevalent inmodern cloud infrastructure, which necessitates the development of an adaptive query

execution mechanism for these scenarios, as exemplified by modern cloud-native databases. We present

Riveter, a framework designed for adaptive query suspension and resumption. It offers a spectrum of

strategies for suspending queries at varying levels of granularity and subsequently resuming them when

deemed necessary or advantageous. To determine the optimal strategies for query suspension, we also

design a cost model tailored to the characteristics of these suspension strategies. We conduct a series of

evaluations using the TPC-Hbenchmark, including a performance study of the suspension and resump-

tion strategies implemented in Riveter to present the difference among the strategies in terms of the size

of persisted intermediate data; an in-depth analysis of end-to-end pipelines to confirm the adaptive and

efficient query suspension and resumption provided by Riveter, and a cost model evaluation showcasing

its effectiveness on the estimation accuracy and running time of the cost model.

This dissertation presents resource-aware optimizations to tackle challenges posed by ephemeral re-

sources in multi-tenant environments, and further exploration in this area necessitates a rethinking of

the design and development principles of current data-intensive systems to address the dynamic nature

of cloud resources and empower data-intensive systems to thrive in these ever-changing environments,

ultimately shaping the future of cloud-based data-intensive systems.

99



REFERENCES

[1] Daniel J.Abadi,Daniel S.Myers,David J.DeWitt, and SamuelMadden. Materialization Strategies
in a Column-Oriented DBMS. In IEEE International Conference on Data Engineering (ICDE),
pages 466–475, 2007.

[2] Sameer Agarwal, HenryMilner, Ariel Kleiner, Ameet Talwalkar, Michael I. Jordan, SamuelMad-
den, Barzan Mozafari, and Ion Stoica. Knowing when you’re wrong: building fast and reliable
approximate query processing systems. In ACM International Conference on Management of
Data (SIGMOD), pages 481–492, 2014.

[3] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Ion Sto-
ica. BlinkDB: queries with bounded errors and bounded response times on very large data. In
European Conference on Computer Systems (EuroSys), pages 29–42, 2013.

[4] Ankur Agiwal, Kevin Lai, Gokul Nath BabuManoharan, Indrajit Roy, Jagan Sankaranarayanan,
Hao Zhang, Tao Zou, Jim Chen, Min Chen, Ming Dai, Thanh Do, Haoyu Gao, Haoyan Geng,
Raman Grover, Bo Huang, Yanlai Huang, Adam Li, Jianyi Liang, Tao Lin, Li Liu, Yao Liu,
Xi Mao, MayaMeng, Prashant Mishra, Jay Patel, Rajesh Sr, Vijayshankar Raman, Sourashis Roy,
Mayank Singh Shishodia, Tianhang Sun, Justin Tang, Jun Tatemura, Sagar Trehan, Ramkumar
Vadali, Prasanna Venkatasubramanian, Joey Zhang, Kefei Zhang, Yupu Zhang, Zeleng Zhuang,
Goetz Graefe, Divy Agrawal, Jeffrey F. Naughton, Sujata Kosalge, andHakanHacigümüs. Napa:
Powering Scalable DataWarehousing withRobustQuery Performance at Google. VLDBEndow-
ment, 14(12):2986–2998, 2021.

[5] Ashvin Agrawal, Rony Chatterjee, Carlo Curino, Avrilia Floratou, Neha Godwal, Matteo In-
terlandi, Alekh Jindal, Konstantinos Karanasos, Subru Krishnan, Brian Kroth, Jyoti Leeka,
Kwanghyun Park,Hiren Patel, Olga Poppe, Fotis Psallidas, RaghuRamakrishnan, AbhishekRoy,
Karla Saur, Rathijit Sen, Markus Weimer, Travis Wright, and Yiwen Zhu. Cloudy with high
chance of DBMS: a 10-year prediction for Enterprise-Grade ML. In Conference on Innovative
Data Systems Research (CIDR), 2020.

[6] Amazon EC2 Spot Instances. https://aws.amazon.com/ec2/spot. Accessed: 2023-09-10.

[7] AmazonEC2 Spot Instances Pricing. https://aws.amazon.com/ec2/spot/pricing/. Ac-
cessed: 2023-09-10.

[8] Apache Kafka. https://kafka.apache.org. Accessed: 2023-09-29.

[9] Apache Parquet. https://parquet.incubator.apache.org/. Accessed: 2023-09-29.

[10] Apache Spark. https://spark.apache.org. Accessed: 2023-09-29.

[11] Apache Spark Streaming Checkpointing. https://spark.apache.org/docs/latest/
streaming-programming-guide.html. Accessed: 2023-07-04.

100

https://aws.amazon.com/ec2/spot
https://aws.amazon.com/ec2/spot/pricing/
https://kafka.apache.org
https://parquet.incubator.apache.org/
https://spark.apache.org
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html


[12] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu, Reynold Xin, Ali
Ghodsi, Ion Stoica, and Matei Zaharia. Structured Streaming: A Declarative API for Real-Time
Applications in Apache Spark. InACM International Conference onManagement of Data (SIG-
MOD), pages 601–613, 2018.

[13] Malay Bag, Alekh Jindal, and Hiren Patel. Towards Plan-aware Resource Allocation in Serverless
Query Processing. InUSENIXWorkshop on Hot Topics in Cloud Computing (HotCloud), 2020.

[14] Sean Kenneth Barker, Yun Chi, Hyun Jin Moon, Hakan Hacigümüs, and Prashant J. Shenoy.
”cut me some slack”: latency-aware live migration for databases. In International Conference on
Extending Database Technology (EDBT), pages 432–443, 2012.

[15] Yoshua Bengio. Practical Recommendations for Gradient-Based Training of Deep Architectures.
InNeural Networks: Tricks of the Trade - Second Edition, volume 7700, pages 437–478. Springer,
2012.

[16] James Bergstra, RémiBardenet, YoshuaBengio, andBalázsKégl. Algorithms forHyper-Parameter
Optimization. In Annual Conference on Neural Information Processing Systems (NIPS), pages
2546–2554, 2011.

[17] Philip A. Bernstein, Colin W. Reid, and Sudipto Das. Hyder - A Transactional Record Manager
for Shared Flash. In Conference on Innovative Data Systems Research (CIDR), pages 9–20, 2011.

[18] Matthias Boehm, Iulian Antonov, Sebastian Baunsgaard, Mark Dokter, Robert Ginthör, Kevin
Innerebner, FlorijanKlezin, StefanieN. Lindstaedt, ArnabPhani, BenjaminRath, BertholdRein-
wald, Shafaq Siddiqui, and Sebastian BenjaminWrede. SystemDS: ADeclarativeMachine Learn-
ing System for the End-to-End Data Science Lifecycle. In Conference on Innovative Data Systems
Research (CIDR), 2020.

[19] Thomas Bradley. NVIDIA Hyper-Q Example. http://developer.download.nvidia.
com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf,
2013.

[20] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An Analysis of DeepNeural Network
Models for Practical Applications. CoRR, abs/1605.07678, 2016.

[21] Wei Cao, Feifei Li, Gui Huang, Jianghang Lou, Jianwei Zhao, Dengcheng He, Mengshi Sun,
Yingqiang Zhang, Sheng Wang, Xueqiang Wu, Han Liao, Zilin Chen, Xiaojian Fang, Mo Chen,
Chenghui Liang, Yanxin Luo, Huanming Wang, Songlei Wang, Zhanfeng Ma, Xinjun Yang, Xi-
ang Peng, Yubin Ruan, Yuhui Wang, Jie Zhou, Jianying Wang, Qingda Hu, and Junbin Kang.
PolarDB-X: An Elastic Distributed Relational Database for Cloud-Native Applications. In IEEE
International Conference on Data Engineering (ICDE), pages 2859–2872, 2022.

[22] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu, Xuntao Cheng,
Zongzhi Chen, Zhenjun Liu, Jing Fang, Bo Wang, Yuhui Wang, Haiqing Sun, Ze Yang, Zhushi
Cheng, SenChen, JianWu,WeiHu, Jianwei Zhao, YusongGao, SongluCai, YunyangZhang, and
Jiawang Tong. PolarDB Serverless: A CloudNative Database for Disaggregated Data Centers. In
ACM International Conference onManagement of Data (SIGMOD), pages 2477–2489, 2021.

101

http://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
http://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf


[23] Paris Carbone, StephanEwen,Gyula Fóra, SeifHaridi, StefanRichter, andKostas Tzoumas. State
Management in Apache Flink®: Consistent Stateful Distributed Stream Processing. VLDB En-
dowment, 10(12):1718–1729, 2017.

[24] BadrishChandramouli, ChristopherN. Bond, Shivnath Babu, and Jun Yang. Query suspend and
resume. InACMInternational Conference onManagement ofData (SIGMOD), pages 557–568,
2007.

[25] Surajit Chaudhuri, Gautam Das, and Vivek R. Narasayya. Optimized stratified sampling for ap-
proximate query processing. ACMTransactions on Database Systems, 32(2):9, 2007.

[26] Surajit Chaudhuri, BolinDing, and SrikanthKandula. ApproximateQuery Processing: No Silver
Bullet. In ACM International Conference onManagement of Data (SIGMOD), pages 511–519,
2017.

[27] C. L. PhilipChen andChun-YangZhang. Data-intensive applications, challenges, techniques and
technologies: A survey on Big Data. Information Sciences, 275:314–347, 2014.

[28] Andrew A. Chien. Driving the Cloud to True Zero Carbon. Communications of the ACM,
64(2):5, 2021.

[29] Navraj Chohan, Claris Castillo, Mike Spreitzer, Malgorzata Steinder, Asser N. Tantawi, and
Chandra Krintz. See Spot Run: Using Spot Instances for MapReduce Workflows. In USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud), 2010.

[30] Christopher Clark, Keir Fraser, Steven Hand, Jacob GormHansen, Eric Jul, Christian Limpach,
Ian Pratt, and AndrewWarfield. LiveMigration of VirtualMachines. InUSENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2005.

[31] Cost-based Optimizer. https://docs.databricks.com/en/optimizations/cbo.html.
Accessed: 2023-09-29.

[32] CRIU: A project to implement checkpoint/restore functionality for Linux. https://github.
com/checkpoint-restore/criu. Accessed: 2023-07-04.

[33] Andrew Crotty, Alex Galakatos, Connor Luckett, and Ugur Çetintemel. The Case for In-
Memory OLAP on ”Wimpy” Nodes. In IEEE International Conference on Data Engineering
(ICDE), pages 732–743, 2021.

[34] Carlo Curino, Djellel Eddine Difallah, Chris Douglas, Subru Krishnan, Raghu Ramakrishnan,
and Sriram Rao. Reservation-based Scheduling: If You’re Late Don’t Blame Us! In ACM Sym-
posium on Cloud Computing (SoCC), pages 2:1–2:14, 2014.

[35] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. ElasTraS: An elastic, scalable, and self-
managing transactional database for the cloud. ACMTransactions on Database Systems, 38(1):5,
2013.

102

https://docs.databricks.com/en/optimizations/cbo.html
https://github.com/checkpoint-restore/criu
https://github.com/checkpoint-restore/criu


[36] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. Albatross: Lightweight
Elasticity in Shared Storage Databases for the Cloud using Live Data Migration. VLDB Endow-
ment, 4(8):494–505, 2011.

[37] SudiptoDas, ShojiNishimura, DivyakantAgrawal, andAmrElAbbadi. LiveDatabaseMigration
for Elasticity in a Multitenant Database for Cloud Platforms. UCSB Computer Science Technical
Report, 2010.

[38] DuckDB is an in-process SQL OLAP Database Management System. https://github.com/
duckdb/duckdb. Accessed: 2023-09-05.

[39] Kayhan Dursun, Carsten Binnig, Ugur Çetintemel, Garret Swart, and Weiwei Gong. A
Morsel-Driven Query Execution Engine for Heterogeneous Multi-Cores. VLDB Endowment,
12(12):2218–2229, 2019.

[40] Aaron J. Elmore, Carlo Curino, Divyakant Agrawal, and Amr El Abbadi. Towards Database
Virtualization for Database as a Service. VLDB Endowment, 6(11):1194–1195, 2013.

[41] Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. Zephyr: live migration
in shared nothing databases for elastic cloud platforms. In ACM International Conference on
Management of Data (SIGMOD), pages 301–312, 2011.

[42] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter R. Pietzuch. In-
tegrating scale out and fault tolerance in stream processing using operator state management. In
ACM International Conference onManagement of Data (SIGMOD), pages 725–736, 2013.

[43] Yupeng Fu and Chinmay Soman. Real-time Data Infrastructure at Uber. InACM International
Conference onManagement of Data (SIGMOD), pages 2503–2516, 2021.

[44] Panagiotis Garefalakis, Konstantinos Karanasos, Peter R. Pietzuch, Arun Suresh, and SriramRao.
Medea: scheduling of long running applications in shared production clusters. In European Con-
ference on Computer Systems (EuroSys), pages 4:1–4:13, 2018.

[45] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and D Scul-
ley. Google vizier: A service for black-box optimization. In ACM SIGKDD International Con-
ference on Knowledge Discovery and DataMining (KDD), pages 1487–1495, 2017.

[46] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning. MIT Press, 2016.

[47] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Networks, 18(5-6):602–610, 2005.

[48] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon, Junjie Qian,
HongqiangHarry Liu, and Chuanxiong Guo. Tiresias: AGPUClusterManager for Distributed
Deep Learning. In USENIX Symposium on Networked Systems Design and Implementation
(NSDI), pages 485–500, 2019.

103

https://github.com/duckdb/duckdb
https://github.com/duckdb/duckdb


[49] Hui Guan, Laxmikant Kishor Mokadam, Xipeng Shen, Seung-Hwan Lim, and Robert M. Pat-
ton. FLEET: Flexible Efficient Ensemble Training for Heterogeneous DeepNeural Networks. In
Conference onMachine Learning and Systems (MLSys), 2020.

[50] TheoHärder and Andreas Reuter. Principles of Transaction-OrientedDatabase Recovery. ACM
Computing Survey, 15(4):287–317, 1983.

[51] Michael Haubenschild, Caetano Sauer, Thomas Neumann, and Viktor Leis. Rethinking Log-
ging, Checkpoints, and Recovery for High-Performance Storage Engines. InACM International
Conference onManagement of Data (SIGMOD), pages 877–892, 2020.

[52] JonOlavHauglid andKjetilNørvåg. PROQID: partial restarts of queries in distributed databases.
In ACM Conference on Information and Knowledge Management (CIKM), pages 1251–1260,
2008.

[53] KimM.Hazelwood, SarahBird,DavidM.Brooks, SoumithChintala, UtkuDiril, DmytroDzhul-
gakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law, Kevin Lee, Jason Lu,
Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong, and Xiaodong Wang. Applied Machine
Learning at Facebook: A Datacenter Infrastructure Perspective. In IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), pages 620–629, 2018.

[54] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016.

[55] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European Conference on Computer Vision (ECCV), volume 9908, pages 630–645,
2016.

[56] JosephM. Hellerstein, Peter J. Haas, and Helen J. Wang. Online Aggregation. In ACM Interna-
tional Conference onManagement of Data (SIGMOD), pages 171–182, 1997.

[57] HerodotosHerodotou andElenaKakoulli. Trident: Task Scheduling overTiered Storage Systems
in Big Data Platforms. VLDB Endowment, 14(9):1570–1582, 2021.

[58] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation,
9(8):1735–1780, 1997.

[59] Moritz Hoffmann, Andrea Lattuada, FrankMcSherry, Vasiliki Kalavri, John Liagouris, and Tim-
othyRoscoe. Megaphone: Latency-conscious statemigration for distributed streaming dataflows.
VLDB Endowment, 12(9):1002–1015, 2019.

[60] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications. CoRR, abs/1704.04861, 2017.

104



[61] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely Con-
nected Convolutional Networks. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 2261–2269, 2017.

[62] Xin Sunny Huang, Ang Chen, and T. S. Eugene Ng. Green, Yellow, Yield: End-Host Traffic
Scheduling for Distributed Deep Learning with TensorLights. In IEEE International Parallel
and Distributed Processing SymposiumWorkshops (IPDPSW), pages 430–437, 2019.

[63] ForrestN. Iandola,MatthewW.Moskewicz, KhalidAshraf, SongHan,William J.Dally, andKurt
Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size.
CoRR, abs/1602.07360, 2016.

[64] K. R. Jayaram, Vinod Muthusamy, Parijat Dube, Vatche Ishakian, ChenWang, Benjamin Herta,
Scott Boag, DianaArroyo, AsserN. Tantawi, Archit Verma, Falk Pollok, andRania Khalaf. FfDL:
A FlexibleMulti-tenant Deep Learning Platform. InACM/IFIP InternationalMiddleware Con-
ference (Middleware), pages 82–95, 2019.

[65] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wencong Xiao, and
Fan Yang. Analysis of Large-Scale Multi-Tenant GPUClusters for DNNTrainingWorkloads. In
USENIX Annual Technical Conference (USENIX ATC), pages 947–960, 2019.

[66] Hai Jin, Bo Liu,Wenbin Jiang, YangMa, Xuanhua Shi, BingshengHe, and Shaofeng Zhao. Layer-
CentricMemoryReuse andDataMigration for Extreme-Scale Deep Learning onMany-Core Ar-
chitectures. ACMTransactions on Architecture and Code Optimization, 15(3):37:1–37:26, 2018.

[67] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai, Anurag Khandelwal, Qifan
Pu, Vaishaal Shankar, João Carreira, Karl Krauth, Neeraja Jayant Yadwadkar, Joseph E. Gonza-
lez, Raluca Ada Popa, Ion Stoica, and David A. Patterson. Cloud Programming Simplified: A
Berkeley View on Serverless Computing. CoRR, abs/1902.03383, 2019.

[68] SrikanthKandula,Anil Shanbhag,AleksandarVitorovic,MatthaiosOlma,RobertGrandl, Surajit
Chaudhuri, andBolinDing. Quickr: LazilyApproximatingComplexAdHocQueries in BigData
Clusters. In ACM International Conference on Management of Data (SIGMOD), pages 631–
646, 2016.

[69] JunbinKang, LeCai, Feifei Li, Xingxuan Zhou,Wei Cao, SongluCai, andDaming Shao. Remus:
Efficient Live Migration for Distributed Databases with Snapshot Isolation. In ACM Interna-
tional Conference onManagement of Data (SIGMOD), pages 2232–2245, 2022.

[70] Steven Kay. Fundamentals of statistical signal processing. Prentice Hall PTR, 1993.

[71] Ram Kesavan, David Gay, Daniel Thevessen, Jimit Shah, and C. Mohan. Firestore: The NoSQL
Serverless Database for the Application Developer. In IEEE International Conference on Data
Engineering (ICDE), pages 3376–3388, 2023.

[72] Jingwoong Kim, Minkyu Kim, Heungseok Park, Ernar Kusdavletov, Dongjun Lee, Adrian Kim,
Ji-Hoon Kim, Jung-WooHa, and Nako Sung. CHOPT: Automated Hyperparameter Optimiza-
tion Framework for Cloud-BasedMachine Learning Platforms. CoRR, abs/1810.03527, 2018.

105



[73] Hideaki Kimura. FOEDUS: OLTP Engine for a Thousand Cores andNVRAM. InACM Inter-
national Conference onManagement of Data (SIGMOD), pages 691–706, 2015.

[74] Alexandros Koliousis, Pijika Watcharapichat, Matthias Weidlich, Luo Mai, Paolo Costa, and Pe-
ter R. Pietzuch. Crossbow: ScalingDeep Learning with Small Batch Sizes onMulti-GPU Servers.
VLDB Endowment, 12(11):1399–1413, 2019.

[75] Sanjay Krishnan, Aaron J. Elmore, Michael J. Franklin, John Paparrizos, Zechao Shang, Adam
Dziedzic, andRui Liu. Artificial Intelligence inResource-Constrained and Shared Environments.
ACM SIGOPS Operating Systems Review, 53(1):1–6, 2019.

[76] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Master’s thesis, Department of Computer Science, University of Toronto, 2009.

[77] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with Deep
ConvolutionalNeuralNetworks. InAnnualConference onNeural InformationProcessing Systems
(NIPS), pages 1106–1114, 2012.

[78] Stefan Krompass, Harumi A. Kuno, Janet L. Wiener, Kevin Wilkinson, Umeshwar Dayal, and
Alfons Kemper. Managing long-running queries. In International Conference on Extending
Database Technology (EDBT), volume 360, pages 132–143, 2009.

[79] Avinash Kumar, Zuozhi Wang, Shengquan Ni, and Chen Li. Amber: A Debuggable Dataflow
System Based on the Actor Model. VLDB Endowment, 13(5):740–753, 2020.

[80] TungD. Le, Haruki Imai, Yasushi Negishi, and Kiyokuni Kawachiya. TFLMS: LargeModel Sup-
port in TensorFlow by Graph Rewriting. CoRR, abs/1807.02037, 2018.

[81] Yann LeCun, Léon Bottou, Yoshua Bengio, and PatrickHaffner. Gradient-based learning applied
to document recognition. Proceeding of IEEE, 86(11):2278–2324, 1998.

[82] Yann LeCun and Corinna Cortes. The mnist database of handwritten digits. http://yann.
lecun.com/exdb/mnist. Accessed: 2023-09-29.

[83] Leon Lee, Siphrey Xie, YunusMa, and Shimin Chen. Index Checkpoints for Instant Recovery in
In-Memory Database Systems. VLDB Endowment, 15(8):1671–1683, 2022.

[84] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. Morsel-driven parallelism:
a NUMA-aware query evaluation framework for the many-core age. InACM International Con-
ference onManagement of Data (SIGMOD), pages 743–754, 2014.

[85] Feifei Li. Cloud native database systems at Alibaba: Opportunities and Challenges. VLDB En-
dowment, 12(12):2263–2272, 2019.

[86] Kaiyu Li and Guoliang Li. Approximate Query Processing: What is New andWhere to Go? - A
Survey on Approximate Query Processing. Data Science and Engineering, 3(4):379–397, 2018.

106

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist


[87] LiamLi, KevinG. Jamieson, AfshinRostamizadeh, EkaterinaGonina, JonathanBen-tzur,Moritz
Hardt, Benjamin Recht, and Ameet Talwalkar. A System for Massively Parallel Hyperparameter
Tuning. In Conference onMachine Learning and Systems (MLSys), 2020.

[88] LiamLi, EvanR. Sparks, KevinG. Jamieson, andAmeet Talwalkar. Exploiting Reuse in Pipeline-
Aware Hyperparameter Tuning. CoRR, abs/1903.05176, 2019.

[89] Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-
perband: ANovel Bandit-BasedApproach toHyperparameterOptimization. Journal ofMachine
Learning Research, 18:185:1–185:52, 2017.

[90] Tian Li, Jie Zhong, Ji Liu, Wentao Wu, and Ce Zhang. Ease.ml: Towards multi-tenant resource
sharing for machine learning workloads. VLDB Endowment, 11(5):607–620, 2018.

[91] Richard Liaw, Romil Bhardwaj, Lisa Dunlap, Yitian Zou, Joseph E. Gonzalez, Ion Stoica, and
Alexey Tumanov. HyperSched: Dynamic Resource Reallocation for Model Development on a
Deadline. In ACM Symposium on Cloud Computing (SoCC), pages 61–73, 2019.

[92] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez, and Ion
Stoica. Tune: A Research Platform for Distributed Model Selection and Training. CoRR,
abs/1807.05118, 2018.

[93] Hyeontaek Lim, DavidGAndersen, andMichael Kaminsky. 3lc: Lightweight and effective traffic
compression for distributed machine learning. arXiv preprint arXiv:1802.07389, 2018.

[94] Hyeontaek Lim, David G. Andersen, and Michael Kaminsky. 3LC: Lightweight and Effective
TrafficCompression for DistributedMachine Learning. InConference onMachine Learning and
Systems (MLSys), 2019.

[95] Yu-Shan Lin, Shao-Kan Pi, Meng-Kai Liao, Ching Tsai, Aaron J. Elmore, and Shan-Hung Wu.
MgCrab: Transaction Crabbing for Live Migration in Deterministic Database Systems. VLDB
Endowment, 12(5):597–610, 2019.

[96] Rui Liu, Aaron J. Elmore, Michael J. Franklin, and Sanjay Krishnan. Rotary: A Resource Arbi-
tration Framework for Progressive Iterative Analytics. In IEEE International Conference on Data
Engineering (ICDE), pages 2140–2153, 2023.

[97] Rui Liu, Sanjay Krishnan, Aaron J. Elmore, and Michael J. Franklin. Understanding and opti-
mizing packed neural network training for hyper-parameter tuning. InWorkshop on DataMan-
agement for End-To-EndMachine Learning (DEEM@SIGMOD), pages 3:1–3:11, 2021.

[98] Rui Liu, DavidWong, Dave Lange, Patrik Larsson, Vinay Jethava, and Qing Zheng. Accelerating
container-based deep learning hyperparameter optimization workloads. In Workshop on Data
Management for End-To-EndMachine Learning (DEEM@SIGMOD), pages 6:1–6:10, 2022.

[99] Ziyang Liu, Hakan Hacigümüs, Hyun Jin Moon, Yun Chi, andWang-Pin Hsiung. PMAX: ten-
ant placement in multitenant databases for profit maximization. In International Conference on
Extending Database Technology (EDBT), pages 442–453, 2013.

107



[100] Zhenxiao Luo, Lu Niu, Venki Korukanti, Yutian Sun, Masha Basmanova, Yi He, Beinan Wang,
Devesh Agrawal, Hao Luo, Chunxu Tang, Ashish Singh, Yao Li, Peng Du, Girish Baliga, and
Maosong Fu. From Batch Processing to Real Time Analytics: Running Presto® at Scale. In
IEEE International Conference on Data Engineering (ICDE), pages 1598–1609, 2022.

[101] Chenghao Lyu,Qi Fan, Fei Song, Arnab Sinha, YanleiDiao,WeiChen, LiMa, Yihui Feng, Yaliang
Li, Kai Zeng, and Jingren Zhou. Fine-Grained Modeling and Optimization for Intelligent Re-
source Management in Big Data Processing. VLDB Endowment, 15(11):3098–3111, 2022.

[102] Minghuang Ma, Hadi Pouransari, Daniel Chao, Saurabh Adya, Santiago Akle Serrano, Yi Qin,
Dan Gimnicher, and DominicWalsh. Democratizing Production-Scale Distributed Deep Learn-
ing. CoRR, abs/1811.00143, 2018.

[103] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. ShuffleNet V2: Practical Guide-
lines for Efficient CNN Architecture Design. In European Conference on Computer Vision
(ECCV), volume 11218, pages 122–138, 2018.

[104] Yunus Ma, Siphrey Xie, Henry Zhong, Leon Lee, and King Lv. HiEngine: How to Architect a
Cloud-NativeMemory-OptimizedDatabase Engine. InACMInternational Conference onMan-
agement of Data (SIGMOD), pages 2177–2190, 2022.

[105] AndrewL.Maas, RaymondE.Daly, Peter T. Pham,DanHuang, AndrewY.Ng, andChristopher
Potts. Learning Word Vectors for Sentiment Analysis. In Annual Meeting of the Association for
Computational Linguistics (ACL), pages 142–150, 2011.

[106] ArlinoMagalhães, JoséMariaMonteiro, and Angelo Brayner. MainMemoryDatabase Recovery:
A Survey. ACMComputing Survey, 54(2):46:1–46:36, 2022.

[107] KshiteejMahajan, Arjun Singhvi, Arjun Balasubramanian, Varun Batra, Surya Teja Chavali, Shiv-
aram Venkataraman, Aditya Akella, Amar Phanishayee, and Shuchi Chawla. Themis: Fair and
Efficient GPU Cluster Scheduling for Machine Learning Workloads. CoRR, abs/1907.01484,
2019.

[108] Luo Mai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh, Shivaram Venkataraman, Paolo Costa,
Terry Kim, SaravanamMuthukrishnan, Vamsi Kuppa, Sudheer Dhulipalla, and SriramRao. Chi:
A Scalable and Programmable Control Plane for Distributed Stream Processing Systems. VLDB
Endowment, 11(10):1303–1316, 2018.

[109] DominicMasters and Carlo Luschi. Revisiting Small Batch Training for DeepNeural Networks.
CoRR, abs/1804.07612, 2018.

[110] Leonel Aguilar Melgar, David Dao, Shaoduo Gan, Nezihe M Gürel, Nora Hollenstein, Jiawei
Jiang, Bojan Karlaš, Thomas Lemmin, Tian Li, Yang Li, Susie Rao, Johannes Rausch, Cedric
Renggli, LukaRimanic,MauriceWeber, Shuai Zhang, Zhikuan Zhao, Kevin Schawinski,Wentao
Wu, and Ce Zhang. Ease.ML: A Lifecycle Management System for MLDev and MLOps. In
Conference on Innovative Data Systems Research (CIDR), 2021.

108



[111] Thomas Minier, Hala Skaf-Molli, and Pascal Molli. SaGe: Web Preemption for Public SPARQL
Query Services. In TheWorldWideWeb Conference (WWW), pages 1268–1278, 2019.

[112] Takeshi Mishima and Yasuhiro Fujiwara. Madeus: Database Live Migration Middleware under
Heavy Workloads for Cloud Environment. In ACM International Conference on Management
of Data (SIGMOD), pages 315–329, 2015.

[113] C. Mohan, Don Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter M. Schwarz. ARIES: A
TransactionRecoveryMethod Supporting Fine-Granularity Locking and Partial RollbacksUsing
Write-Ahead Logging. ACMTransactions on Database Systems, 17(1):94–162, 1992.

[114] C.Mohan and Frank E. Levine. ARIES/IM: An Efficient andHigh Concurrency IndexManage-
ment Method Using Write-Ahead Logging. In ACM International Conference on Management
of Data (SIGMOD), pages 371–380, 1992.

[115] C.Mohan and InderpalNarang. ARIES/CSA:AMethod forDatabaseRecovery inClient-Server
Architectures. In ACM International Conference on Management of Data (SIGMOD), pages
55–66, 1994.

[116] BarzanMozafari, Jags Ramnarayan, Sudhir Menon, Yogesh Mahajan, Soubhik Chakraborty, He-
mant Bhanawat, and Kishor Bachhav. SnappyData: A Unified Cluster for Streaming, Transac-
tions and InteracticeAnalytics. InConference on InnovativeData SystemsResearch (CIDR), 2017.

[117] Supun Nakandala, Yuhao Zhang, and Arun Kumar. Cerebro: A Data System for Optimized
Deep LearningModel Selection. VLDB Endowment, 13(11):2159–2173, 2020.

[118] Vivek R. Narasayya and Surajit Chaudhuri. Multi-Tenant Cloud Data Services: State-of-the-
Art, Challenges and Opportunities. In ACM International Conference onManagement of Data
(SIGMOD), pages 2465–2473, 2022.

[119] Vivek R. Narasayya, Sudipto Das, Manoj Syamala, Badrish Chandramouli, and Surajit Chaud-
huri. SQLVM: Performance Isolation inMulti-Tenant Relational Database-as-a-Service. In Con-
ference on Innovative Data Systems Research (CIDR), 2013.

[120] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gre-
gory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. PipeDream: generalized pipeline par-
allelism for DNN training. In ACM Symposium on Operating Systems Principles (SOSP), pages
1–15, 2019.

[121] DeepakNarayanan, Keshav Santhanam,AmarPhanishayee, andMatei Zaharia. Accelerating deep
learning workloads through efficient multi-model execution. In NIPS Workshop on Systems for
Machine Learning, 2018.

[122] Thomas Neumann and Michael J. Freitag. Umbra: A Disk-Based System with In-Memory Per-
formance. In Conference on Innovative Data Systems Research (CIDR), 2020.

[123] NVIDIA System Management Interface. https://developer.nvidia.com/
nvidia-system-management-interface. Accessed: 2023-09-29.

109

https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface


[124] NVIDIA Virtual GPU. https://www.nvidia.com/en-us/data-center/
virtual-solutions. Accessed: 2023-09-29.

[125] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo. Optimus: an effi-
cient dynamic resource scheduler for deep learning clusters. In European Conference on Computer
Systems (EuroSys), pages 3:1–3:14, 2018.

[126] Matthew Perron, Raul Castro Fernandez, David J. DeWitt, and Samuel Madden. Starling: A
Scalable Query Engine on Cloud Functions. In ACM International Conference onManagement
of Data (SIGMOD), pages 131–141, 2020.

[127] Olga Poppe, Qun Guo, Willis Lang, Pankaj Arora, Morgan Oslake, Shize Xu, and Ajay Kalhan.
Moneyball: Proactive Auto-Scaling inMicrosoft Azure SQLDatabase Serverless. VLDB Endow-
ment, 15(6):1279–1287, 2022.

[128] Adam Prout, Szu-Po Wang, Joseph Victor, Zhou Sun, Yongzhu Li, Jack Chen, Evan Bergeron,
Eric N. Hanson, Robert Walzer, Rodrigo Gomes, and Nikita Shamgunov. Cloud-Native Trans-
actions and Analytics in SingleStore. InACM International Conference onManagement of Data
(SIGMOD), pages 2340–2352, 2022.

[129] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie Neiswanger, Qirong Ho,
Hao Zhang, Gregory R. Ganger, and Eric P. Xing. Pollux: Co-adaptive Cluster Scheduling for
Goodput-Optimized Deep Learning. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2021.

[130] MarkRaasveldt andHannesMühleisen. DuckDB: an EmbeddableAnalyticalDatabase. InACM
International Conference onManagement of Data (SIGMOD), pages 1981–1984, 2019.

[131] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and Michael A. Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In ACM Symposium on
Cloud Computing (SoCC), page 7, 2012.

[132] Kun Ren, Thaddeus Diamond, Daniel J. Abadi, and Alexander Thomson. Low-Overhead Asyn-
chronous Checkpointing inMain-MemoryDatabase Systems. InACMInternational Conference
onManagement of Data (SIGMOD), pages 1539–1551, 2016.

[133] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer
Vision, 115(3):211–252, 2015.

[134] Kenneth Salem and Hector Garcia-Molina. Checkpointing Memory-Resident Databases. In
IEEE International Conference on Data Engineering (ICDE), pages 452–462, 1989.

[135] Mark Sandler, AndrewG.Howard,Menglong Zhu, Andrey Zhmoginov, and Liang-ChiehChen.
MobileNetV2: Inverted Residuals and Linear Bottlenecks. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 4510–4520, 2018.

110

https://www.nvidia.com/en-us/data-center/virtual-solutions
https://www.nvidia.com/en-us/data-center/virtual-solutions


[136] Oliver Schiller, Nazario Cipriani, and Bernhard Mitschang. ProRea: live database migration
for multi-tenant RDBMS with snapshot isolation. In International Conference on Extending
Database Technology (EDBT), pages 53–64, 2013.

[137] RoySchwartz, JesseDodge,NoahA. Smith, andOrenEtzioni. GreenAI.CoRR, abs/1907.10597,
2019.

[138] Taro Sekiyama, Takashi Imamichi, Haruki Imai, and Rudy Raymond. Profile-guided memory
optimization for deep neural networks. CoRR, abs/1804.10001, 2018.

[139] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie, Yutian Sun, Nezih
Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and Christopher Berner. Presto: SQL on
Everything. In IEEE International Conference on Data Engineering (ICDE), pages 1802–1813,
2019.

[140] Hossein Shafiei, Ahmad Khonsari, and Payam Mousavi. Serverless Computing: A Survey of
Opportunities, Challenges, and Applications. ACM Computing Survey, 54(11s):239:1–239:32,
2022.

[141] Zechao Shang, Xi Liang, Dixin Tang, Cong Ding, Aaron J. Elmore, Sanjay Krishnan, and
Michael J. Franklin. CrocodileDB: Efficient Database Execution through Intelligent Deferment.
In Conference on Innovative Data Systems Research (CIDR), 2020.

[142] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition. In International Conference on Learning Representations (ICLR), 2015.

[143] Evan R. Sparks, Ameet Talwalkar, Daniel Haas, Michael J. Franklin, Michael I. Jordan, and Tim
Kraska. Automatingmodel search for large scalemachine learning. InACMSymposium onCloud
Computing (SoCC), pages 368–380, 2015.

[144] Logan Stafman, Andrew Or, and Michael J. Freedman. ReLAQS: Reducing Latency for Multi-
Tenant Approximate Queries via Scheduling. In ACM/IFIP International Middleware Confer-
ence (Middleware), pages 280–292, 2019.

[145] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and Policy Considerations
for Deep Learning in NLP. In Annual Meeting of the Association for Computational Linguistics
(ACL), pages 3645–3650, 2019.

[146] Emma Strubell, Ananya Ganesh, and AndrewMcCallum. Energy and Policy Considerations for
Modern Deep Learning Research. In AAAI Conference on Artificial Intelligence (AAAI), pages
13693–13696, 2020.

[147] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, andAndrewRabinovich. Going deeper with convolutions.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9, 2015.

111



[148] Seyed Ali Mohammad Tajalli, Seyede Zahra Tajalli, Maryam Homayounzadeh, and Moham-
mad Hassan Khooban. Zero-Carbon Power-to-Hydrogen Integrated Residential System Over
a Hybrid Cloud Framework. IEEE Transactions on Cloud Computing, 11(3):3099–3110, 2023.

[149] Mingxing Tan andQuoc V. Le. EfficientNet: RethinkingModel Scaling for Convolutional Neu-
ralNetworks. In InternationalConference onMachineLearning (ICML), volume97, pages 6105–
6114, 2019.

[150] Dixin Tang, Zechao Shang, Aaron J. Elmore, Sanjay Krishnan, and Michael J. Franklin. Thrifty
Query Execution via Incrementability. In ACM International Conference on Management of
Data (SIGMOD), pages 1241–1256, 2020.

[151] TensorFlow. https://www.tensorflow.org. Accessed: 2023-09-29.

[152] TensorFlow Basics. https://www.tensorflow.org/tutorials/customization/
basics. Accessed: 2023-09-29.

[153] TPC-DS Benchmark. https://www.tpc.org/tpcds/default5.asp. Accessed: 2023-09-
11.

[154] TPC-H Benchmark. https://www.tpc.org/tpch/default5.asp. Accessed: 2023-09-11.

[155] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. Speedy trans-
actions in multicore in-memory databases. In ACM Symposium on Operating Systems Principles
(SOSP), pages 18–32, 2013.

[156] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A. Kozuch, Mor Harchol-Balter, and
Gregory R. Ganger. TetriSched: global rescheduling with adaptive plan-ahead in dynamic het-
erogeneous clusters. In European Conference on Computer Systems (EuroSys), pages 35:1–35:16,
2016.

[157] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-Read Students Learn
Better: The Impact of Student Initialization onKnowledge Distillation. CoRR, abs/1908.08962,
2019.

[158] Universal dependencies. https://universaldependencies.org. Accessed: 2023-09-29.

[159] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar,
Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo
Curino,OwenO’Malley, SanjayRadia, BenjaminReed, andEricBaldeschwieler. ApacheHadoop
YARN: yet another resource negotiator. InACMSymposium onCloudComputing (SOCC), pages
5:1–5:16, 2013.

[160] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Kamal Gupta,
Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili, and Xiaofeng
Bao. Amazon Aurora: Design Considerations for High Throughput Cloud-Native Relational
Databases. InACMInternational Conference onManagement of Data (SIGMOD), pages 1041–
1052, 2017.

112

https://www.tensorflow.org
https://www.tensorflow.org/tutorials/customization/basics
https://www.tensorflow.org/tutorials/customization/basics
https://www.tpc.org/tpcds/default5.asp
https://www.tpc.org/tpch/default5.asp
https://universaldependencies.org


[161] BenjaminWagner, AndréKohn, andThomasNeumann. Self-TuningQuery Scheduling for Ana-
lyticalWorkloads. InACMInternational Conference onManagement of Data (SIGMOD), pages
1879–1891, 2021.

[162] Carl A Waldspurger. Memory resource management in VMware ESX server. ACM SIGOPS
Operating Systems Review, 36(SI):181–194, 2002.

[163] Jianying Wang, Tongliang Li, Haoze Song, Xinjun Yang, Wenchao Zhou, Feifei Li, Baoyue Yan,
QianqianWu, YukunLiang, ChengjunYing, YujieWang, BaokaiChen,ChangCai, YubinRuan,
Xiaoyi Weng, Shibin Chen, Liang Yin, Chengzhong Yang, Xin Cai, Hongyan Xing, Nanlong
Yu, Xiaofei Chen, Dapeng Huang, and Jianling Sun. PolarDB-IMCI: A Cloud-Native HTAP
Database System at Alibaba. Proceedings of the ACM on Management of Data, 1(2):199:1–
199:25, 2023.

[164] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song, Zenglin Xu,
and Tim Kraska. Superneurons: dynamic GPU memory management for training deep neural
networks. In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), pages 41–53, 2018.

[165] AbdulWasay, BrianHentschel, YuzeLiao, SanyuanChen, andStratos Idreos.MotherNets: Rapid
Deep Ensemble Learning. In Conference onMachine Learning and Systems (MLSys), 2020.

[166] Xingda Wei, Sijie Shen, Rong Chen, and Haibo Chen. Replication-driven Live Reconfiguration
for Fast Distributed Transaction Processing. InUSENIXAnnual Technical Conference (USENIX
ATC), pages 335–347, 2017.

[167] EugeneWu, SamuelMadden, Yang Zhang, Evan Jones, andCarlo Curino. Relational cloud: The
case for a database service. MIT CSAIL Technical Report, 2010.

[168] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu, Nipun Kwatra,
Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang, Fan Yang, and Lidong
Zhou. Gandiva: Introspective Cluster Scheduling for Deep Learning. InUSENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages 595–610, 2018.

[169] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin,
and Yangqing Jia. AntMan: Dynamic Scaling on GPU Clusters for Deep Learning. InUSENIX
Symposium on Operating Systems Design and Implementation (OSDI), pages 533–548, 2020.

[170] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and KaimingHe. Aggregated Residual
Transformations forDeepNeuralNetworks. In IEEEConference onComputerVision andPattern
Recognition (CVPR), pages 5987–5995, 2017.

[171] Hidehito Yabuuchi, Daisuke Taniwaki, and Shingo Omura. Low-latency Job Scheduling with
Preemption for the Development of Deep Learning. InUSENIXConference on OperationalMa-
chine Learning (OpML), pages 27–30, 2019.

[172] Peifeng Yu andMosharaf Chowdhury. Fine-Grained GPU Sharing Primitives for Deep Learning
Applications. In Conference onMachine Learning and Systems (MLSys), 2020.

113



[173] MatthewD. Zeiler andRob Fergus. Visualizing andUnderstanding Convolutional Networks. In
European Conference on Computer Vision (ECCV), volume 8689, pages 818–833, 2014.

[174] Kai Zeng, Sameer Agarwal, and Ion Stoica. iOLAP: Managing Uncertainty for Efficient Incre-
mental OLAP. In ACM International Conference on Management of Data (SIGMOD), pages
1347–1361, 2016.

[175] Chengliang Zhang, Minchen Yu,WeiWang, and Feng Yan. MArk: Exploiting Cloud Services for
Cost-Effective, SLO-Aware Machine Learning Inference Serving. In USENIX Annual Technical
Conference (USENIX ATC), pages 1049–1062, 2019.

[176] Junzhe Zhang, Sai-Ho Yeung, Yao Shu, Bingsheng He, and Wei Wang. Efficient Memory Man-
agement for GPU-based Deep Learning Systems. CoRR, abs/1903.06631, 2019.

[177] Qizhen Zhang, Philip A. Bernstein, Daniel S. Berger, Badrish Chandramouli, Vincent Liu, and
Boon Thau Loo. CompuCache: Remote Computable Caching using Spot VMs. In Conference
on Innovative Data Systems Research (CIDR), 2022.

[178] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6848–6856, 2018.

[179] Hanyu Zhao, ZhenhuaHan, Zhi Yang, Quanlu Zhang, Fan Yang, Lidong Zhou,Mao Yang, Fran-
cis C. M. Lau, YuqiWang, Yifan Xiong, and BinWang. HiveD: Sharing a GPUCluster for Deep
Learning with Guarantees. InUSENIX Symposium on Operating Systems Design and Implemen-
tation OSDI, pages 515–532, 2020.

[180] Haoyue Zheng, Fei Xu, Li Chen, Zhi Zhou, and Fangming Liu. Cynthia: Cost-Efficient Cloud
Resource Provisioning for Predictable Distributed Deep Neural Network Training. In Interna-
tional Conference on Parallel Processing (ICPP), pages 86:1–86:11, 2019.

114


	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	Primitive 1: Resource Utilization Maximization
	Primitive 2: Resource Arbitration
	Primitive 3: Resource Suspension and Resumption
	Contribution

	Repack: Understanding and Optimizing Repacked Neural Network Training for Hyper-Parameter Tuning
	Background
	Motivation
	Basic Framework API

	Implementation
	Packing
	Misaligned Batch Sizes
	Misaligned Step Counts
	Eliminating Redundancy

	Profiling Model Packing
	Profiling Setup
	Profiling Metrics
	Improvement
	Memory Usage
	Switching Overheads
	Pack vs CUDA Parallelism
	Ablation Study

	Pack-Aware Hyperparameter Tuning
	Hyperband
	Pack-aware Hyperband
	Evaluation for Hyperparameter Tuning

	Related Work
	Systems for Hyperparameter Tuning
	Systems for Multi-tenancy

	Discussion

	Rotary: A Resource Arbitration Framework for Progressive Iterative Analytics
	Related Work
	Scheduling for AQP
	Scheduling for Machine Learning
	Multi-tenant Systems

	Resource Arbitration Framework
	Terminology and Setup
	User-defined Completion Criteria
	Framework Architecture
	Resource Arbitration Problem Statement
	Resource Arbitration Algorithm

	System Implementation
	Rotary-AQP Implementation
	Rotary-DLT Implementation

	Evaluation
	Rotary-AQP Evaluation
	Rotary-DLT Evaluation

	Discussion

	Riveter: Adaptive Query Suspension and Resumption Framework for Cloud Native Databases
	Motivation
	Query Suspension and Resumption
	Motivational Cases

	Riveter Design and Implementation
	Pipeline-level Suspension and Resumption
	Process-level Suspension and Resumption
	Resource-adaptive Query Execution

	Evaluation
	Impact of Intermediate Data Persistence during Suspension
	Analysis of Suspension and Resumption Strategy Selection
	Accuracy Estimation and Runtime of Cost Model

	Related Work
	Database Migration
	Recovery, Checkpoint, and Suspension
	Query Scheduling

	Discussion

	Conclusion
	References

