
THE UNIVERSITY OF CHICAGO

DESIGN AND ANALYSIS OF FLEXIBLE SERVER SYSTEMS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE UNIVERSITY OF CHICAGO

BOOTH SCHOOL OF BUSINESS

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

BY

GORKEM UNLU

CHICAGO, ILLINOIS

DECEMBER 2023

Copyright © 2023 by Gorkem Unlu

All Rights Reserved

To Eren.

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . vii

ACKNOWLEDGMENTS . viii

ABSTRACT . ix

1 INTRODUCTION . 1

2 STABILITY AND INSTABILITY OF PARAMETER AGNOSTIC POLICIES IN
PARALLEL SERVER SYSTEMS . 3
2.1 Introduction . 3

2.1.1 Discussion of MaxWeight and Other Related Works 6
2.1.2 Definitions and Notation . 10

2.2 Intersecting Switching Curves . 12
2.2.1 Lack of Stationary Distribution for a Markov Chain with One Dimen-

sional State Space . 13
2.2.2 Coupling of the X-Model with the One Dimensional Markov Chain . 16

2.3 Non-Intersecting Switching Curves . 22
2.3.1 Instability Result . 22
2.3.2 Stability Result . 32

2.4 One Switching Curve for Both Servers . 38
2.5 Discussion and Conclusion . 40

3 PROCESS FLEXIBILITY DESIGN FOR PARALLEL SERVER SYSTEMS WITH
GENERAL PROCESSING RATES . 42
3.1 Introduction . 42

3.1.1 Literature Review . 48
3.2 Model, Definitions and Notations . 52
3.3 Static Planning Problem and Its Dual . 55
3.4 Sparse Design of the Flexibility Graph . 69
3.5 Numerical Experiments . 81
3.6 Discussion and Conclusion . 88

4 EXTENSIONS AND RELATED TOPICS . 92
4.1 Instability Results for Non-Switching Curve Parameter Agnostic Policies . . 92
4.2 Connection between the Static Planning Problem and the Transportation

Problems . 97
4.2.1 Application of Algorithm 2 in Product Form Systems 102
4.2.2 Uniqueness of Solutions in SPP(F) 107

iv

REFERENCES . 112

v

LIST OF FIGURES

2.1 Graph of the X-model . 5
2.2 Capacity Region of the X-model where µ11 > µ12 and µ22 > µ21 12
2.3 Constructed One Dimensional CTMC . 14
2.4 Partitioning of the State Space of (Q(t))t≥0 . 17
2.5 The Instability Region for Non-Intersecting Switching Curves According to Propo-

sition 2 . 27
2.6 Comparison of Sufficient Conditions for Instability from Corollary 2 and Propo-

sition 2 . 32

3.1 Examples of Flexibility Structures . 43
3.2 Processing Rates and Demand Rates on Fully Flexible Graph 46
3.3 Greedy Max-Flow Solutions on Fully Flexible Graph 46
3.4 Graphs for simulated system 1 . 84
3.5 Long-run Average Costs for Simulated System 1 85
3.6 Relative Difference of Costs of S and F for Simulated System 1 86
3.7 Graphs for simulated system 2 . 87
3.8 Long-run Average Costs for Simulated System 2 88
3.9 Relative Difference of Costs of S and F for Simulated System 2 89

4.1 Partitioning of the State Space of (Q(t))t≥0 . 95

vi

LIST OF TABLES

3.1 Service and heavy traffic arrival rates for simulated system 1 83
3.2 Service and heavy traffic arrival rates for simulated system 2 87

vii

ACKNOWLEDGMENTS

I am deeply grateful to my advisor, Yuan Zhong, for being a profound researcher and teach-

ing me the fundamentals of high-quality research: identifying important questions, valuing

simplicity, intuition, and rigor. It goes without saying that this thesis would not have been

possible without his enormous support and guidance.

I wish to express my sincere thanks to Rene Caldentey, Amy Ward, and Yehua Wei

for graciously agreeing to serve on my committee and for providing astute insights and

constructive feedback. They helped me remain mindful of the rooted philosophical questions

on top of which this work was built.

I am grateful to Dan Adelman, for teaching me how empirical and theoretical work can

complement each other and for equipping me with multidisciplinary skills.

To my cherished friends - Berkin, Mehmet, Gokcem, Aysu, Erdem, Naz, Cagla, and

Yueyang - many of whom have been by my side since high school, I offer my gratitude for

being the steadfast pillars of sanity throughout this journey.

I am indebted forever to my beloved family - my parents Hatice and Mehmet, as well

as my aunts, cousins and grandparents. Their consistent support, spanning eight-hour time

zone differences, has carried me to where I am today. From lifting my spirits during gloomy

moments through video calls to wholeheartedly celebrating every small triumph, their pres-

ence has been my constant motivation.

My deepest gratitude is to my husband, Eren. His role as my sounding board, earnest

supporter, and empathetic listener has been indispensable. From being a source of strength

during challenging times to joining me in every minor celebration, I owe this thesis to his

unwavering presence.

viii

ABSTRACT

We consider problems related to design and analysis of flexible server systems. On the

analysis side, we study the stability properties of the X-model under parameter agnostic

policies. The X-model is a special case of flexible server systems that carries insights into

larger flexible server systems. It consists of two servers and two queues where both servers

are capable of serving either queue. It is the smallest flexible server system that contains a

cycle, for which the stability question has not been fully answered. We consider this model

under parameter agnostic policies, which dictate what queue an idle server will serve. These

policies are appealing in real-world scenarios as they solely rely on queue size information,

and eliminate the need for knowledge about system parameters. We show that, despite

being desirable, such policies can result in instability. Our analysis focuses on parameter

agnostic switching curve policies, wherein each server’s service decision is determined by a

non-decreasing function of queue sizes. We demonstrate that even at relatively low system

loads, these policies can lead to instability. We explore various classes of parameter agnostic

policies and characterize sufficient conditions for instability.

We then focus on the design problem on flexible server systems, where the goal is to

construct a sparse server-buffer compatibility graph without compromising performance.

Researchers have proposed various flexibility structures to tackle the design problem, and

validated the proposed designs by theoretical justifications. However, these structures typi-

cally rely on a restrictive flow conservation assumption, where exactly one unit of processing

capacity is required for one unit of a job. We, on the other hand, relax the flow conserva-

tion assumption and allow that arbitrary processing capacities may be required to process

one unit of a job. We show that in systems with general processing rates, there exists a

sparse flexibility structure with O(m+ n) arcs that can achieve good performance in heavy

traffic, where m is the number of servers and n is the number of buffers; and we introduce

an algorithm that constructs the said flexibility structure. We justify the performance of

ix

our proposed design via numerical experiments. We highlight the critical differences in the

analysis of such systems compared to systems where flow conservation assumption holds, and

we discuss the connection between the flexibility structure design problem and the trans-

portation problems.

x

CHAPTER 1

INTRODUCTION

Flexible server systems, also known as parallel server systems, are used to model settings

where the servers have varying degrees of flexibility in processing jobs. They consist of

multiple non-identical servers working in parallel to process different classes of jobs. Even

though these systems are central to the operations of many companies, they are not fully

understood. Both the design and analysis problems on flexible server systems have drawn

considerable attention over the years. Design problem is typically concerned with construct-

ing an effective compatibility graph between the servers and and buffers. The goal in this

stream of research is to achieve system performance akin to a scenario where all servers can

cater to all buffers, while employing considerably fewer connections within the compatibility

graph. Analysis problem, on the other hand, is concerned with assessing the performance of

flexible server systems, where the compatibility graph is given. Assessing the performance

is considered under numerous policies and many different system designs. In this thesis, we

address the design and analysis problems in certain settings.

In Chapter 2, we focus on the analysis of parallel server systems. Given a special design,

the so-called X-model, we determine whether this model is maximally stable under parameter

agnostic policies. Parameter agnostic policies designate which queue an idle server will serve

without depending on any of the system parameters like arrival and service rates, which make

them desirable in practice. If they are to be used in practice, their performance measures

like queue lengths, wait times or certain holding costs become of interest. However, stability

is a strict prerequisite for all these performance measures. If the system is not stable, all

these performance measures diverge to infinity. Therefore, it is worthwhile and necessary

to understand stability properties of any policy prior to conducting performance analysis.

Here, we address the stability question for parameter agnostic policies and show that they

are not maximally stable, i.e., they cannot stabilize all underloaded parallel server systems.

1

Because parameter agnostic policies are particularly attractive when system parameters are

unknown, our instability results suggest that even though they are practically desirable,

parameter agnostic policies might bring about unsatisfactory results. Insights generated

from our analysis carry on to bigger parallel server systems and helps understand parameter

agnostic policies in broader systems. In Chapter 4, we extend some of the instability results

to less strictly defined policies.

In Chapter 3, we focus on the design of parallel server systems. Given system param-

eters, we show that a sparse compatibility graph can be constructed that achieves good

performance under certain conditions. This problem has previously been addressed under

a restrictive assumption: the system has flow conservation. That is, one unit of processing

capacity is required for one unit of job. We relax this assumption and allow that arbitrary

units of processing capacities may be required to process one unit of a job. This relax-

ation is of practical interest, as flow conservation may not hold in reality. For instance, in

logistical systems, due to physical constraints, various units may be delivered to different

destinations from the same origin. Similarly, in service systems, different classes of customers

may be served by different servers with different service rates. In production systems, jobs

may be competing for machines that can serve their purposes more efficiently. Therefore,

addressing the question of what type of compatibility graphs should be built for systems

with general processing rates has substantial practical implications. We take the first step in

understanding the design principles in such systems. Additionally, in Chapter 4, we present

connections between the design problem and the transportation problems, which provides

further noteworthy insights into process flexibility design problem.

2

CHAPTER 2

STABILITY AND INSTABILITY OF PARAMETER AGNOSTIC

POLICIES IN PARALLEL SERVER SYSTEMS

2.1 Introduction

In many practical systems that can be modeled as stochastic processing networks, like data

centers, hospitals, call centers or manufacturing systems, obtaining accurate information

about system parameters such as job arrival and service rates is a non-trivial task. This

information is typically deemed necessary because certain control decisions, such as the

allocation of resources to jobs (also known as the scheduling policy), must be made. Un-

fortunately, obtaining precise system parameter information is not always feasible, and the

estimates can quickly become outdated if the parameters change.

For instance, in data centers where human involvement is minimal, system parameter

estimates can be obtained by investing time and resources into the learning process. Never-

theless, any alterations in the parameters could render those estimates obsolete, necessitating

constant monitoring and adjustment.

Similarly, service systems such as call centers also face challenges in acquiring accurate

system parameter information. Conducting detailed time studies may be necessary to esti-

mate the service rates of agents, but even then, the estimates might lose relevance if new

agents are hired or other factors change.

These examples highlight the need for simple scheduling policies that do not rely on

explicit knowledge of the system parameters. We refer to such policies as parameter agnostic

policies. Some well known scheduling policies fall into this class of policies: longest queue

first (LQF) only compares the queue sizes without considering specific parameters. Similarly,

static priority policy uses only queue size information. Unlike estimating system parameters,

obtaining queue size information is generally easier, faster and more accurate. If a parameter

3

agnostic policy is adopted, even when system parameters are unknown, imprecise or non-

stationary over time, the system would continue to rely on only the queue length information.

In this chapter, we consider parameter agnostic policies in the context of parallel server

systems. Parallel server systems consist of servers working in parallel to serve different classes

of jobs that are generated externally. The applications described above- data centers and

call centers, can be modeled as parallel server systems. We attempt to answer the first order

question about parameter agnostic policies in parallel server systems: is the policy maximally

stable? In other words, can a parameter agnostic policy stabilize all parallel server systems

that can be stabilized?

Stability property is usually a prerequisite for analyzing the performance of a scheduling

policy. There is no universal result that establishes or disproves stability for a given schedul-

ing policy, and the characteristics of the underlying system need to be exploited to answer

this question. For instance, Gamarnik and Katz (2009) show that characterizing stable

queueing networks is an algorithmically undecidable problem for the case of non-preemptive

static buffer priority scheduling policies.

Even though parameter agnostic policies are desirable for practical purposes, we show

that they can be unstable for even low system loads. We focus on the X-model, a special

parallel server system that consists of two servers working in parallel, and two queues with

external arrivals. Both servers can serve both queues, but only one at a time. An illustration

of this model is given in Figure 2.1, detailed description of the model is given in Section 3.2.

Previously, Baharian and Tezcan (2011) had shown that when the underlying graph of

a parallel server system is cycle-free, the LQF policy is maximally stable. Therefore, the

X-model is a natural model to consider for the stability question, because it is the smallest

parallel server system that contains a cycle. The instability results for the X-model naturally

generalize to bigger parallel server systems that contain cycles. This system is also quite

intuitive, because a parameter agnostic policy is essentially a function on the two dimensional

4

graph of queue lengths.

Figure 2.1: Graph of the X-model

A parameter agnostic policy can be an arbitrary function on the two dimensional graph of

queue lengths for the X-model. However, in practical systems, there is a preference for more

structured policies that prioritize longer queues. This preference stems from the desire to

simplify the decision-making process and reduce the length of queues. Accordingly, we focus

on parameter agnostic switching curve policies, where each server works according to their

own function on the graph of queue lengths, called the switching curve. A formal definition

of parameter agnostic switching curve policies for the X-model is given below.

Definition 1. Let Q(t) = (Q1(t), Q2(t)) ∈ Z2
+ denote the queue sizes at time t ≥ 0. For

j ∈ {1, 2}, let φj : Z+ → R+ be non-decreasing functions. A policy is called a switching

curve policy if the following conditions hold.

• If Q(t) is such that φj(Q1(t)) > Q2(t), server j serves queue 1.

• If φj(Q1(t)) < Q2(t), server j serves queue 2.

• If φj(Q1(t)) = Q2(t), the tie is broken arbitrarily, server j can serve either queue.

5

As a shorthand, we will refer to parameter agnostic switching curve policies as switching

curve policies. If the switching curve policy in consideration is not parameter agnostic, we

will make the distinction clear.

Informally, there are four different feasible service configurations at any time in the X-

model: server j serving queue i where i, j ∈ {1, 2}. A switching curve policy determines

which service configuration will be used depending on the system state and the functions

φj , j ∈ {1, 2}.

Even though we show our results for non-decreasing φj , many of them generalize to less

structured parameter agnostic policies. For instance, the monotonicity assumption can be

relaxed for the majority of our results. For some of our results, the switching curve policy

can be relaxed to any parameter agnostic policy that uses the same service configurations

as the discussed switching curve policy. We defer the discussion of such generalizations to

Chapter 4, where we consider broader classes of parameter agnostic policies.

2.1.1 Discussion of MaxWeight and Other Related Works

Stability of queueing systems has been studied extensively over several decades. Here, we

discuss the most relevant works. Perhaps the most relevant result of all, the well known

MaxWeight policy is proven to be maximally stable for parallel server systems (Tassiulas

and Ephremides 1990, Stolyar et al. 2004, Dai and Lin 2005). However, MaxWeight assigns

a queue to server j according to

argmax
i∈I

µijQi(t),

where I is the set of queues, Qi(t) is the length of queue i at time t ≥ 0, and µij is the

service rate of server j to queue i. Since MaxWeight relies on service rate information, it

cannot be considered parameter agnostic. Consequently, it becomes susceptible to potential

issues that may arise from inaccuracies in the service rate information.

Stability of MaxWeight for parallel server systems is remarkably relevant to the work we

6

present in this chapter. Though not parameter agnostic, MaxWeight consists of switching

curves. In the X-model, MaxWeight assigns a queue to server 1 according to

argmax{µ11Q1(t), µ21Q2(t)}.

Therefore, the switching curve of server 1 under MaxWeight is

φMW
1 (q1) =

µ11
µ21

q1.

Similarly, the switching curve of server 2 under MaxWeight is

φMW
2 (q1) =

µ12
µ22

q1.

This also implies that MaxWeight uses only three of the four feasible service configurations.

Both servers serve queue 1 if Q(t) is below both of the switching curves. Both servers serve

queue 2 if Q(t) is above both of the switching curves. When Q(t) is between the switching

curves, one of the other two service configurations are used. For example, if

µ11
µ21

>
µ12
µ22

,

then φMW
1 > φMW

2 . In that case, when φMW
1 (Q1(t)) > Q2(t) > φMW

2 (Q1(t)), server 1

serves queue 1 and server 2 serves queue 2.

Even though MaxWeight is maximally stable for parallel server systems, it is shown to

result in instability for switched networks with subcritical system loads. Andrews and Zhang

(2003) show that the underlying fluid model of a variant of MaxWeight is not maximally

stable for a network of input-queued switches. Bramson et al. (2021) disprove maximal

stability of MaxWeight in multihop single class switched networks.

In practice, the system designer could use MaxWeight if she wants to ensure maximal

7

stability. However, knowledge of service rates would be required in such a case, which

is not always easy to obtain. For instance, in data centers, the conditions of processing

resources (and accordingly the service rates) can vary over time (Kandula et al. 2009). Then

the system designer can either consider adopting parameter agnostic policies, or she can

dedicate resources to learn the system parameters.

There are several papers in the literature that consider parameter agnostic policies in

parallel server systems. Dimakis and Walrand (2006) study the longest queue first (LQF)

policy, and establish sufficient conditions for maximal stability of LQF. For the X-model,

Baharian and Tezcan (2011) prove necessary and sufficient conditions for the stability of LQF,

and they show that LQF can result in instability for subcritical system loads. Pedarsani and

Walrand (2016) study LQF and a related scheduling policy and show maximal stability for

a multiclass queueing network with two groups of two queues. Our definition of switching

curve policies cover LQF, since LQF essentially asserts in the X-model that both servers

have their switching curves φ1(q1) = φ2(q1) = q1. When we present instability results for

switching curve policies, they would naturally hold for LQF.

Tezcan (2013) shows that static priority policy is not maximally stable in the N-model,

which is another simple two-by-two parallel server system. While static priority policy is

not a switching curve policy, it has synchronized servers in the context of X-model; that is,

both servers serve the same queue at the same time. Generalization of one of our instability

results cover synchronized server policies. In other words, our result can be extended to

show that static priority policy is not maximally stable in the X-model, which has more

overlapping server capabilities than the N-model.

Pedarsani et al. (2017) focus on designing parameter agnostic scheduling policies. They

illustrate with the X-model that their proposed policies are not maximally stable. This is in

line with our results, we show that parameter agnostic policies are in general not maximally

stable.

8

A more recent branch of the operations research literature focuses on learning the sys-

tem parameters or policies under unknown system parameters. Krishnasamy et al. (2021),

Stahlbuhk et al. (2021) and Choudhury et al. (2021) study the learning problem in a multi

armed bandit (MAB) framework. These papers propose algorithms that balance stabilizing

the system (exploitation) and learning the service rates (exploration) while minimizing the

so-called queue length regret. They all assume that the service rates are stationary over

time.

Zhong et al. (2022) consider the learning problem in a multi-class queueing system with

abandonments. Although time-varying arrivals are permitted in their model, the customer

abandonment assumptions provide natural stabilizing properties. This allows them to alle-

viate concerns about system stability, as opposed to previous papers whose algorithms need

to stabilize the system.

Hsu et al. (2018) study a matching problem using MAB framework, which can be inter-

preted as the allocation of resources to jobs. They assume arrival rates, service rates and

payoff from job completions are all unknown, and show bounds on the payoff gap between

their proposed algorithm and the payoff of an oracle who knew all the unknowns.

Adler et al. (2022) consider an M/M/k/k system, also known as Erlang-B, where the

service rates are unknown, and unobserved by the dispatcher. They propose a dispatching

algorithm that maximizes the long run average reward upon job completion using a maximum

likelihood estimation approach.

All the works related to learning accentuate the importance of understanding parameter

agnostic policies. Learning is a tedious task, and not lenient in the face of non-stationary

system parameters; whereas parameter agnostic policies are robust to parameter changes by

design. In this chapter, we attempt to understand parameter agnostic policies in their most

fundamental property of stability.

9

2.1.2 Definitions and Notation

We consider the X-model shown in Figure 2.1. The system consists of two queues with

infinite capacity, and two servers that can serve both queues. The external arrival rate to

queue i is λi ≥ 0 for i ∈ {1, 2}. Server j serves queue i with rate µij > 0, where i, j ∈ {1, 2}.

We denote λ = (λ1, λ2) and µ = (µ11, µ12, µ21, µ22).

It is important to note that even though the system designer does not know the system

parameters, we assume that she knows that both servers are capable of serving both queues,

i.e., µij > 0.

We assume that the inter-arrival times to queues and the service times are independent

and identically distributed and they follow exponential distribution. Then the system evo-

lution can be represented by a continuous time Markov Chain (Q(t))t≥0. The state of the

Markov Chain at time t ≥ 0 is a two dimensional vector Q(t) = (Q1(t), Q2(t)) ∈ Z2
+, where

Qi(t) is the size of queue i at time t.

A scheduling policy dictates which queue a server will serve when it becomes idle. We

focus on switching curve policies (see Definition 1), where the scheduling policy relies solely

on a function of system state Q(t) and not on the system parameters λ,µ. Such a policy

is said to stabilize the system if the Markov Chain (Q(t))t≥0 is positive recurrent under the

policy. The system is unstable if it is not stable.

10

The system load ρ is a solution to the static planning problem (SPP):

minimize ρ

subject to µ11x11 + µ12x12 = λ1

µ21x21 + µ22x22 = λ2

x11 + x21 ≤ ρ

x12 + x22 ≤ ρ

xij , ρ ≥ 0 ∀i, j ∈ {1, 2}.

Intuitively, xij represents the allocation of server j’s time to queue i. The system is subcrit-

ically loaded or underloaded when ρ < 1. Then for given µ, the set of all λ where a solution

to SPP with ρ < 1 exists can be written as the capacity region.

Definition 2. For given µ, capacity region for the X-model is defined as

Λ(µ) =
{
λ ∈ R2

+ : ∃p, q ∈ (0, 1) such that

λ1 < pµ11 + qµ12,

λ2 < (1− p)µ21 + (1− q)µ22
}
.

One of the perks of the X-model is that capacity region can easily be plotted on R2
+. For

instance, if µ11 > µ12 and µ22 > µ21, the capacity region would be as in Figure 2.2. For

given µ, λ being in the capacity region is a well known necessary condition for stability, but

it is not always a sufficient condition. We will show that for certain switching curve policies,

there exist λ,µ with λ ∈ Λ(µ) such that the system is unstable. In other words, we show

that switching curve policies are not maximally stable.

We tackle the problem of stability for switching curve policies case by case. First, in
11

Figure 2.2: Capacity Region of the X-model where µ11 > µ12 and µ22 > µ21

section 2.2, we consider the most general setting, where the switching curves intersect in-

finitely often as the queue sizes grow. We show the existence of parameters in the capacity

region under which the system is unstable. Then in Section 2.3, we impose more structure

on the switching curves and assume that the curves do not intersect after a finite q∗1. For

this case, we show an instability and a stability result. In section 2.4, we further specialize

the switching curves and assume that the curves are identical for both servers. We show a

sufficient condition for instability, and discuss how the capacity region is restricted under

this condition. In section 2.5, we discuss some implications of our results and provide our

concluding remarks.

2.2 Intersecting Switching Curves

Let φ1(q1) and φ2(q1) be the switching curves of server 1 and 2, respectively. In this section,

we assume that there does not exist q∗1 ∈ Z+ such that φi(q1) > φj(q1) for all q1 > q∗1, where

i, j ∈ {1, 2} with i ̸= j. That is, the switching curves φ1(q1) and φ2(q1) intersect infinitely

often as q1 grows.

Here, we introduce our most general result where the switching curves are intersecting

infinitely often. This is the most complicated result of the paper, and uses a coupling

12

argument to show instability in such switching curve policies. The methodology that is

introduced in this section partially recovers the instability results we obtain in sections 2.3

and 2.4. We will show an application of this methodology to non-intersecting switching

curves in section 2.3, and highlight the differences in the sufficient conditions obtained in

both cases.

When the intersecting switching curves intersect infinitely often, we show that for some

µ, there exists λ ∈ Λ(µ) such that the system is unstable. The course of the argument

is as follows. We first show a sufficient condition for a single dimensional continuous time

Markov Chain to be either null recurrent or transient (i.e. not positive recurrent). We then

show that the evolution of (Q(t))t≥0 couples with the single dimensional continuous time

Markov Chain, and the state of the single dimensional Markov Chain is a lower bound on

Q1(t) +Q2(t) for all t ≥ 0.

In section 2.2.1, we show the lack of stationary distribution for a single dimensional

Markov Chain. In section 2.2.2, we show that (Q(t))t≥0 couples with (X(t))t≥0, and conclude

that it cannot have a stationary distribution.

2.2.1 Lack of Stationary Distribution for a Markov Chain with One

Dimensional State Space

Let (X(t))t≥0 be a continuous time Markov Chain with state space Z+. Let (ck)k∈Z+
be

an increasing sequence in the state space Z+, with c0 = 0. The state space can then be

partitioned by the sets

Ik = {s ∈ Z+ : c2k−2 ≤ s < c2k−1}

Jk = {s ∈ Z+ : c2k−1 ≤ s < c2k}

13

for all k ∈ Z++. For s ∈ Z+, let the transition rates of the Markov Chain (X(t))t≥0 be

qs,s+1 = α,

qs,s−1 = β1 if s ∈ Ik,

qs,s−1 = β2 if s ∈ Jk

for any k ∈ Z++, where α, β1, β2 ∈ R+. Let β1 < α < β2.

Figure 2.3: Constructed One Dimensional CTMC

Note that (X(t))t≥0 is a generalized birth and death process (representation given in

Figure 2.3). If a stationary distribution exists, the process is time reversible, then the

detailed balance equations,

πsqs,r = πrqr,s,

must be satisfied for all states s, r ∈ Z+, where πs is the steady state probability of being

in state s. We will use this property to find a sufficient condition for (X(t))t≥0 to not be

positive recurrent in the following proposition.

14

Proposition 1. (X(t))t≥0 is not positive recurrent if

lim
n→∞

(
α

β1

)∑n
k=1 |Ik|/n(α

β2

)∑n
k=1 |Jk|/n

> 1.

Proof. Assume to the contrary that (Xt)t≥0 is positive recurrent. Then a stationary distri-

bution π exists and the detailed balance equations are satisfied.

π0α = π1β1

π1α = π2β1

...

πc1−1α = πc1β2

πc1α = πc1+1β2

...

πc2−1α = πc2β1

πc2α = πc2+1β1

...

Because π is a probability distribution,
∑∞

s=0 πs = 1. For ease of notation, let a := α
β1

and

b := α
β2

. Using c2k−1−c2k−2 = |Ik| and c2k−c2k−1 = |Jk|, where | · | denotes the cardinality

of the set. Expanding the summation,

π0

[
− 1

a− 1
+
(1

a− 1
+

1

1− b

)(
a|I1| + a|I1|b|J1|(a|I2| − 1)

+ a|I1|+|I2|b|J1|+|J2|(a|I3| − 1) + . . .

)]
= 1.

15

Note that a > 1 and b < 1. We had assumed

lim
n→∞

a
∑n

k=1 |Ik|/nb
∑n

k=1 |Jk|/n > 1,

which is a sufficient condition for the infinite sum above to diverge. Then stationary distri-

bution π cannot exist, contradicting positive recurrence of (X(t))t≥0.

2.2.2 Coupling of the X-Model with the One Dimensional Markov

Chain

Let the intersection points of φ1 and φ2 have coordinates (xk, yk)k∈Z+
. Then state space of

(Q(t))t≥0 can be partitioned into subsets

Uk = {(q1, q2) ∈ Z2
+ : x2k−2 + y2k−2 ≤ q1 + q2 < x2k−1 + y2k−1, φ1(q1) ≤ φ2(q1)},

Vk = {(q1, q2) ∈ Z2
+ : x2k−1 + y2k−1 ≤ q1 + q2 < x2k + y2k, φ2(q1) ≤ φ1(q1)}

where (x0, y0) = (0, 0). This partitioning of the state space distinguishes where φ1 lies above

φ2 and visa versa. An illustration of this partitioning is given in Figure 2.4. When λ,µ

and the sequence (ck)k∈Z+
are appropriately chosen, the process Q1(t)+Q2(t) couples with

X(t), implying the instability of (Q(t))t≥0.

More specifically, let ck = ⌈xk + yk⌉ for all k ∈ Z+. Then for any k, (q1, q2) ∈ Uk if and

only if q1 + q2 ∈ Ik. Similarly, (q1, q2) ∈ Vk if and only if q1 + q2 ∈ Jk.

Theorem 1. If φ1(q1) and φ2(q1) are non-decreasing switching curves with intersection

points (xk, yk)k∈Z+
, and

lim
n→∞

∑n
k=1 |Ik|∑n
k=1 |Jk|

∈ [0,∞],

16

Figure 2.4: Partitioning of the State Space of (Q(t))t≥0

where ck = ⌈xk + yk⌉ for all k ∈ Z+, then there exists µ and λ with λ ∈ Λ(µ) such that the

system is unstable.

Proof. We will prove the theorem for limn→∞
∑n

k=1 |Ik|∑n
k=1 |Jk|

≥ 1, the other case can be proven

in a similar way with symmetrical modifications.

Let

lim
n→∞

∑n
k=1 |Ik|∑n
k=1 |Jk|

≥ 1,

and λ1 = λ2 := λ, µ11 = µ22 := µ, µ12 = µ21 := µ′, where µ > λ > µ′. It can be seen that

λ ∈ Λ(µ), and the system is underloaded.

We consider the uniformized discrete time Markov Chain underlying the continuous time

Markov Chain (Q(t))t≥0 with the uniformization constant P := 2λ + 2µ + 2µ′. With a

slight abuse of notation, we denote the uniformized Markov Chain again with Q(t) for

t ∈ {0, 1, . . .}.

For each t ≥ 0, let Z(t) be independent and identically distributed uniform random

variables between 0 and 1. Then for Q1(t) > 0 and Q2(t) > 0, one step transition of the

17

system state (Q1(t), Q2(t)) would result in

Q(t+ 1)−Q(t) =



(1, 0) if Z(t) ∈
[
0, λP

)
(0, 1) if Z(t) ∈

[
λ
P , 2λP

)
(−1, 0) if Z(t) ∈

[
2λ
P , 2λ+s1

P

)
(0,−1) if Z(t) ∈

[
2λ+s1

P , 2λ+s1+s2
P

)
(0, 0) if Z(t) ∈

[
2λ+s1+s2

P , 1
)

where s1 and s2 are the service rates that queue 1 and queue 2 receive at time t, respectively.

According to the partitioning of the state space to subsets Uk and Vk, the scheduling policy

dictates that in sets Uk, either s1+ s2 = µ+µ′ or s1+ s2 = 2µ′. Similarly, in sets Vk, either

s1 + s2 = 2µ or s1 + s2 = µ+ µ′. Note that 2µ > µ+ µ′ > 2µ′.

Now consider the continuous time Markov Chain (X(t))t≥0 described in Section 2.2.1,

with the newly assigned transition rates

qs,s+1 = 2λ,

qs,s−1 = µ+ µ′ if s ∈ Ik,

qs,s−1 = 2µ if s ∈ Jk.

(X(t))t≥0 can be similarly uniformized with the uniformization constant P = 2λ+2µ+2µ′.

Then, if X(t) ∈ Ik for any k, one step transition of X(t) would result in

X(t+ 1)−X(t) =


1, if Z(t) ∈

[
0, 2λP

)
−1, if Z(t) ∈

[
2λ
P , 2λ+µ+µ′

P

)
0, if Z(t) ∈

[
2λ+µ+µ′

P , 1
) .

18

If X(t) ∈ Jk for any k, one step transition of X(t) would result in

X(t+ 1)−X(t) =


1, if Z(t) ∈

[
0, 2λP

)
−1, if Z(t) ∈

[
2λ
P , 2λ+2µ

P

)
0, if Z(t) ∈

[
2λ+2µ

P , 1
) .

We will show that if X(0) = Q1(0) + Q2(0), then we have X(t) ≤ Q1(t) + Q2(t) for all

t ≥ 0.

To show this by induction, we assume that X(t) ≤ Q1(t) + Q2(t) and we will show

X(t + 1) ≤ Q1(t + 1) + Q2(t + 1). We need to consider this case by case according to the

service configuration that (Q1(t), Q2(t)) will trigger depending on the scheduling policy.

• If Q(t) ∈ Uk and s1 + s2 = µ + µ′, then Q1(t) + Q2(t) will evolve according to Z(t)

exactly as X(t) does, ensuring that X(t+ 1) ≤ Q1(t+ 1) +Q2(t+ 1).

• If Q(t) ∈ Uk and s1 + s2 = 2µ′,

– If

Z(t) ∈
[
2λ+ 2µ′

P
,
2λ+ µ+ µ′

P

)
,

then

Q1(t+ 1) +Q2(t+ 1)−Q1(t)−Q2(t) = 0,

X(t+ 1)−X(t) = −1,

ensuring X(t+ 1) ≤ Q1(t+ 1) +Q2(t+ 1).

– If

Z(t) /∈
[
2λ+ 2µ′

P
,
2λ+ µ+ µ′

P

)
,

19

then Q1(t)+Q2(t) will evolve according to Z(t) exactly as X(t), so that X(t+1) ≤

Q1(t+ 1) +Q2(t+ 1).

• If (Q1(t), Q2(t)) ∈ Vk and s1 + s2 = 2µ, then Q1(t) + Q2(t) will evolve according to

Z(t) exactly as X(t), so that X(t+ 1) ≤ Q1(t+ 1) +Q2(t+ 1).

• If (Q1(t), Q2(t)) ∈ Vk and s1 + s2 = µ+ µ′,

– If

Z(t) ∈
[
2λ+ µ+ µ′

P
,
2λ+ 2µ

P

)
,

then

Q1(t+ 1) +Q2(t+ 1)−Q1(t)−Q2(t) = 0,

X(t+ 1)−X(t) = −1,

ensuring X(t+ 1) ≤ Q1(t+ 1) +Q2(t+ 1).

– If

Z(t) /∈
[
2λ+ µ+ µ′

P
,
2λ+ 2µ

P

)
,

then Q1(t) + Q2(t) will evolve according to Z(t) exactly as X(t) does, ensuring

X(t+ 1) ≤ Q1(t+ 1) +Q2(t+ 1).

So far, we have assumed Q1(t) > 0 and Q2(t) > 0. The boundary cases where either

Q1(t) = 0 or Q2(t) = 0 should also be considered. When Q1(t) > 0 and Q2(t) = 0, both

servers serve the first queue, coinciding with the cases where s1 + s2 = µ + µ′. Similarly,

when Q1(t) = 0 and Q2(t) > 0, both servers serve the second queue, coinciding with the

cases where s1 + s2 = µ + µ′. When Q1(t) = 0 and Q2(t) = 0, the analysis remains very

similar, except the transition probabilities from Q(t) to Q(t+ 1) are different. In that case,

20

one step transition would result in

Q(t+ 1)−Q(t) =


(1, 0) if Z(t) ∈

[
0, λP

)
,

(0, 1) if Z(t) ∈
[
λ
P , 2λP

)
(0, 0) if Z(t) ∈

[
2λ
P , 1

) .

In this case, X(t) ≤ Q1(t) + Q2(t) still holds. Therefore, (Q(t))t≥0 couples with the one

dimensional Markov Chain (X(t))t≥0.

The assumption

lim
n→∞

∑n
k=1 |Ik|∑n
k=1 |Jk|

≥ 1

implies that

lim
n→∞

(
2λ

µ+ µ′

)∑n
k=1 |Ik|/n(2λ

2µ

)∑n
k=1 |Jk|/n

> 1.

In Proposition 1, this coincides with α = 2λ, β1 = µ+µ′, β2 = 2µ. Therefore, by Proposition

1, X(t) is not positive reccurrent. Since for all t, X(t) ≤ Q1(t) +Q2(t), then Q1(t) +Q2(t)

cannot have a stationary distribution, implying instability of the system.

This is our only result where the monotonicity assumption on the switching curves φj

cannot be naturally relaxed. This is because the coupling result relies on the fact that only

three of the four feasible service configurations can be used in sets Uk and Vk. We can relax

the monotonicity assumption if it is still true that only three of the four feasible service

configurations can be used in sets Uk and Vk. Then the instability result would still be valid.

Note that MaxWeight also employs three of the four feasible service configurations. Both

servers serving queue 1 and both servers serving queue 2 are the configurations that are

always included in MaxWeight, similar to the switching curves. In MaxWeight, depending

on the ratios of service rates µ11/µ21 and µ12/µ22, either server j serving queue i = j or

21

server j serving queue i ̸= j is employed. Let us informally call this “the service configuration

that result in stability”. Then intuitively, the limit condition in Theorem 1 suggests that on

average, the service configuration that results in stability according to MaxWeight is used

in a smaller subset of the state space compared to the service configuration that results in

instability.

2.3 Non-Intersecting Switching Curves

Imposing more structure on the policy, we now assume that there are two switching curves

φ1 and φ2 such that there exists q∗1 ∈ Z+ such that for all q1 > q∗1, φ2(q1) > φ1(q1). That

is, after a finite point in the state space Z2
+, the switching curves φ1 and φ2 do not intersect.

The assumption φ2(q1) > φ1(q1) is without loss of generality, the results would hold with

minor and symmetrical modifications if the direction of the inequality is reversed.

In this section, we first present an instability result, and then a stability result. Even

though the stability result is proven for switching lines instead of switching curves, our

intuition tells us the result would hold under mild conditions, such as the existence of a fluid

model limit, with switching curves.

2.3.1 Instability Result

Proposition 2. If there exists q∗1 ∈ Z+ such that for all q1 > q∗1, φ2(q1) > φ1(q1), then

there exist λ,µ with λ ∈ Λ(µ) such that the system is unstable.

Proof of Proposition 2. By Theorem 4.1 in Dai (1995), a fluid limit for the parallel server

system exists and satisfies the fluid model equations. Let Q̄i(t) ≥ 0 be the amount of fluid

in queue i at time t, T̄ij(t) ∈ [0, t] be the total amount of time up to t that server j serves

queue i. Let Īj(t) ∈ [0, t] be the total idle time of server j up to time t. The fluid model

22

equations are

Q̄i(t) = Q̄i(0) + λit− µi1T̄i1(t)− µi2T̄i2(t), for i ∈ {1, 2}, (2.1)

T̄ij(t) starts from zero and is non-decreasing in t, for i, j ∈ {1, 2}, (2.2)

Īj(t) = t− T̄1j(t)− T̄2j is non-decreasing, for j ∈ {1, 2}, (2.3)∫ ∞
0

(Q̄1(t) + Q̄2(t))dĪj(t) = 0, for j ∈ {1, 2}. (2.4)

In addition, the following policy specific fluid model equations hold:

˙̄T11(t) = 1 and ˙̄T21(t) = 0 if φ1(Q̄1(t)) > Q̄2(t)), (2.5)

˙̄T21(t) = 1 and ˙̄T11(t) = 0 if φ1(Q̄1(t)) < Q̄2(t)),

˙̄T12(t) = 1 and ˙̄T22(t) = 0 if φ2(Q̄1(t)) > Q̄2(t)),

˙̄T22(t) = 1 and ˙̄T12(t) = 0 if φ2(Q̄1(t)) < Q̄2(t)), (2.6)

where ˙̄Tij(t) =
d
dt T̄ij(t). The ties are broken arbitrarily, meaning that if φ1(Q̄1(t)) = Q̄2(t)),

server 1 can serve either queue and if φ2(Q̄1(t)) = Q̄2(t)), server 2 can serve either queue.

We note that equations 2.5 and 2.6 cannot hold at the same time, because we assume

φ2(q1) > φ1(q1).

Let ||Q̄(t)|| = w1Q̄1(t) + w2Q̄2(t) where w1, w2 ∈ R++. Then we can decompose the

defined norm using the fluid model equations,

||Q̄(t)|| =w1Q̄1(0) + w2Q̄2(0) + (w1λ1 + w2λ2)t

− [w1(µ11 + µ12)tA(t) + (w1µ12 + w2µ21)tB(t) + w2(µ21 + µ22)tC(t)], (2.7)

where tA(t), tB(t) and tC(t) are the total amount of time until t spent with service config-

urations where both servers serve queue 1; server 1 serves queue 2, server 2 serves queue 1;

23

and both servers serve queue 2, respectively. That is,

tA(t) :=

∫ t

0

˙̄T11(t)
˙̄T12(t)dt,

tB(t) :=

∫ t

0

˙̄T12(t)
˙̄T21(t)dt,

tC(t) :=

∫ t

0

˙̄T21(t)
˙̄T22(t)dt.

In addition, we assume that the initial condition Q̄(0) is large enough such that Īj(t) = 0

for j ∈ {1, 2}. Then we have t = tA(t)+ tB(t)+ tC(t). According to the service regimes that

contribute to tA(t), tB(t) and tC(t), expression 2.7 can be decomposed as

DA(tA(t)) := (w1λ1 + w2λ2)tA(t)− w1(µ11 + µ12)tA(t),

DB(tB(t)) := (w1λ1 + w2λ2)tB(t)− (w1µ12 + w2µ21)tB(t),

DC(tC(t)) := (w1λ1 + w2λ2)tC(t)− w2(µ21 + µ22)tC(t),

and we can write

||Q̄(t)|| = w1Q̄1(0) + w2Q̄2(0) +DA(tA(t)) +DB(tB(t)) +DC(tC(t)).

We will now establish that there exist w1, w2 > 0 such that

DA(tA(t)) > δAtA(t),

DB(tB(t)) > δBtB(t),

DC(tC(t)) > δCtC(t)

for some λ,µ with λ ∈ Λ(µ), where δA, δB , δC > 0. That would imply by Theorem 3.2 in

Meyn et al. (1995) that the Markov Chain (Q(t))t≥0 is transient.

24

Such w1 and w2 would lie in the intersection of the conditions derived separately for

regions A, B and C. We suppress the dependence on t and denote tA(t) = tA, tB(t) = tB ,

tC(t) = tC for convenience.

• Region A: both servers serve queue 1. We have DA(tA) > δAtA if

w1

w2
<

λ2
µ11 + µ12 − λ1

. (2.8)

To see this, we directly use the definition of DA(tA).

DA(tA) = (w1λ1 + w2λ2)tA − w1(µ11 + µ12)tA

= [w1(λ1 − µ11 − µ12) + w2λ2]tA

= δAtA,

where δA > 0 if w2λ2 > w1(µ11 + µ12 − λ1).

• Region B: server 1 serves queue 2 and server 2 serves queue 1. We have DB(tB) > δBtB

if

w1(λ1 − µ12) + w2(λ2 − µ21) > 0. (2.9)

To see this, we use the definition of DB(tB).

DB(tB) = (w1λ1 + w2λ2)tB − (w1µ12 + w2µ21)tB

= [w1(λ1 − µ12) + w2(λ2 − µ21)]tB

= δBtB ,

where δB > 0 if w1(λ1 − µ12) + w2(λ2 − µ21) > 0.

25

• Region C: both servers serve queue 2. We have DC(tC) > δCtC if

w1

w2
>

µ21 + µ22 − λ2
λ1

. (2.10)

To see this, we use the definition of DC(tC).

DC(tC) = (w1λ1 + w2λ2)tC − w2(µ21 + µ22)tC

= [w1λ1 + w2(λ2 − µ21 − µ22)]tC

= δCtC ,

where δC > 0 if w1λ1 > w2(µ21 + µ22 − λ2).

System parameters in the capacity region that also satisfy conditions 2.8, 2.9 and 2.10 can

be found. For example, let λ1 = 6.65, λ2 = 8, µ11 = 10, µ12 = 1, µ21 = 3, µ22 = 7.

These parameters are in the stability region and satisfy 2.8, 2.9 and 2.10 with w1 = 0.1376,

w2 = 0.1839. Therefore, there exist λ,µ with λ ∈ Λ(µ) such that the system is unstable.

A parameter agnostic policy with non-intersecting switching curves is not maximally stable.

□

A complete characterization of the conditions on λ, µ can also be derived based on

inequalities 2.8, 2.9 and 2.10. For example, let µ11 > µ12 and µ22 > µ21. Then w1, w2 > 0

exist if λ1 > µ12, λ2 > µ21 and (µ11+µ12)(µ21+µ22)− λ1(µ21+µ22)− λ2(µ11+µ12) < 0.

Repeating the same exercise for cases where λ1 > µ12, λ2 < µ21 and λ1 < µ12, λ2 > µ21,

we can see that the shaded part of the capacity region in Figure 2.5 results in instability.

A sufficient condition for instability can also be derived using the methodology introduced

in Section 2.2 for intersecting switching curves. The sufficient condition is different than

Proposition 2, because the methodology in Section 2.2 tracks the evolution of Q1(t) +Q2(t)

26

Figure 2.5: The Instability Region for Non-Intersecting Switching Curves According to
Proposition 2

whereas the proof of Proposition 2 tracks w1Q̄1(t) + w2Q̄2(t). In Corollaries 1 and 2, we

apply the methodologies in Proposition 1 and Theorem 1 to the case of non intersecting

switching curves.

Corollary 1 (of Proposition 1). Let (X(t))t≥0 be a special case of the constructed continuous

time Markov Chain with β1 = β2 = β. (X(t))t≥0 is not positive recurrent if

α

β
≥ 1.

Proof. (X(t))t≥0 is a birth-death process with forward rates α and backward rates β. Assume

to the contrary that (X(t))t≥0 is positive recurrent. Then the process is time reversible and

the detailed balance equations must be satisfied. That is,

π0α = π1β

π1α = π2β

...

27

Because π is a probability distribution,
∑∞

s=0 πs = 1. Then we must have

π0

∞∑
n=0

(
α

β

)n

= 1.

But we assumed that
α

β
≥ 1.

Then the infinite sum diverges, and (X(t))t≥0 cannot be positive recurrent.

Then following the steps in the proof of Theorem 1, we can find the instability condition

for the non-intersecting switching curves.

Corollary 2 (of Theorem 1). Let φ2(q1) > φ1(q1) for all q1 ∈ Z+. Then the X-model is

unstable for λ ∈ Λ(µ) if

λ1 + λ2
max{µ11 + µ12, µ12 + µ21, µ21 + µ22}

≥ 1.

Proof. We consider the uniformized discrete time Markov Chain underlying the continuous

time Markov Chain (Q(t))t≥0 with the uniformization constant P := λ1 + λ2 + µ11 + µ21 +

µ12 + µ22. With a slight abuse of notation, we denote the uniformized Markov Chain again

with Q(t) for t ∈ {0, 1, . . .}.

For each t ≥ 0, let Z(t) be i.i.d. uniform random variables between 0 and 1. Then for

Q1(t) > 0 and Q2(t) > 0, one step transition of the system state (Q1(t), Q2(t)) would result

28

in

Q(t+ 1)−Q(t) =



(1, 0) if Z(t) ∈
[
0, λ1P

)
(0, 1) if Z(t) ∈

[
λ1
P , λ1+λ2

P

)
(−1, 0) if Z(t) ∈

[
λ1+λ2

P , λ1+λ2+s1
P

)
(0,−1) if Z(t) ∈

[
λ1+λ2+s1

P , λ1+λ2+s1+s2
P

)
(0, 0) if Z(t) ∈

[
λ1+λ2+s1+s2

P , 1
)

where s1 and s2 are the service rates that queue 1 and queue 2 receive at time t, respectively.

When φ2(q1) > φ1(q1), s1+s2 can take three values. If both servers serve queue 1, s1+s2 =

µ11 + µ12; if both servers serve queue 2, s1 + s2 = µ21 + µ22; if server 1 serves queue 2 and

server 2 serves queue 1, s1 + s2 = µ12 + µ21.

Now consider the birth-death process (X(t))t≥0 described in Corollary 1, with the tran-

sition rates

qs,s+1 = λ1 + λ2,

qs,s−1 = max{µ11 + µ12, µ12 + µ21, µ21 + µ22} := M.

(X(t))t≥0 can be similarly uniformized with the uniformization constant

P := λ1 + λ2 + µ11 + µ21 + µ12 + µ22.

29

Then one step transition of X(t) would result in

X(t+ 1)−X(t) =


1, if Z(t) ∈

[
0, λ1+λ2

P

)
−1, if Z(t) ∈

[
λ1+λ2

P , λ1+λ2+M
P

)
0, if Z(t) ∈

[
λ1+λ2+M

P , 1
) .

If X(0) = Q1(0) + Q2(0), we have X(t) ≤ Q1(t) + Q2(t) for all t ≥ 0. To see this, assume

that X(t) ≤ Q1(t) +Q2(t) and we will show that X(t+ 1) ≤ Q1(t+ 1) +Q2(t+ 1).

In all available service options, we have s1 + s2 ≤ M by the definition of M . Then at

time t ≥ 0,

• If

Z(t) ∈
[
λ1 + λ2 + s1 + s2

P
,
λ1 + λ2 +M

P

)
,

then

Q1(t+ 1) +Q2(t+ 1)−Q1(t)−Q2(t) = 0

X(t+ 1)−X(t) = −1 if s1 + s2 < M,

X(t+ 1)−X(t) = 0 if s1 + s2 = M,

ensuring that X(t+ 1) ≤ Q1(t+ 1) +Q2(t+ 1).

• If

Z(t) /∈
[
λ1 + λ2 + s1 + s2

P
,
λ1 + λ2 +M

P

)
,

then Q1(t) + Q2(t) evolves according to Z(t) exactly as X(t), so that X(t + 1) ≤

Q1(t+ 1) +Q2(t+ 1).

Since X(t) is not positive recurrent, Q1(t) +Q2(t) is transient.

30

Then, the sufficient condition for instability is

λ1 + λ2
max{µ11 + µ12, µ12 + µ21, µ21 + µ22}

≥ 1.

To see that there exists µ and λ with λ ∈ Λ(µ) that satisfy this condition, assume that

µ11 = λ1 + ϵ1 and µ22 = λ2 + ϵ2 for ϵ1, ϵ2 > 0. Then clearly λ ∈ Λ(µ). If, in addition,

µ22 ≥ µ12 + ϵ1 + ϵ2 and µ11 ≥ µ21 + ϵ1 + ϵ2, we have

µ11 + µ22 > λ1 + λ2,

λ1 + λ2 = µ11 + µ22 − ϵ1 − ϵ2

≥ max{µ11 + µ12, µ12 + µ21, µ21 + µ22}.

The boundary cases where Q1(t) or Q2(t) is equal to zero can be handled similar to the

proof of Theorem 1.

The sufficient conditions in Proposition 2 and Corollary 2 being different indicates that

these conditions may not be tight and there might exist other parameters for which the

system is unstable. The characterization for the instability region according to Corollary 2

compared to Proposition 2 is given in Figure 2.6 in the case where µ11 + µ12 > µ21 + µ22.

The dark shaded region corresponds to the instability condition from Corollary 2 when

µ11 + µ12 > µ21 + µ22, and the red shaded region corresponds to the instability condition

from Proposition 2. Depending on what function of the system trajectory we track (here,

either w1Q̄1(t) + w2Q̄2(t) or Q1(t) +Q2(t)), we might get different sufficient conditions for

instability.

31

Figure 2.6: Comparison of Sufficient Conditions for Instability from Corollary 2 and Propo-
sition 2

2.3.2 Stability Result

When the switching curves are not intersecting, one of them necessarily lies above the other

after some q∗1 ∈ Z+. This is similar with MaxWeight, whose switching curves are actually

switching lines of the form

φMW
1 (q1) =

µ11
µ21

q1

and

φMW
2 (q1) =

µ21
µ22

q1.

If the service rates are such that µ11/µ21 > µ21/µ22, then φMW
1 > φMW

2 . Our stability

result shows that if φ1 > φ2 where MaxWeight also suggests the same direction of the

inequality, φMW
1 > φMW

2 , then the system is stable.

Theorem 2. Let φ1(q1) = m1q1 and φ2(q1) = m2q1 for some m1,m2 > 0. If either

1. m1 > m2 and µ11
µ21

> µ12
µ22

, or

2. m1 < m2 and µ11
µ21

< µ12
µ22

,

the system is stable for all λ ∈ Λ(µ).

32

Proof. We will prove case (1), as the proof for case (2) will follow by replicating the steps

symmetrically.

Similar to Proposition 2, a fluid limit exists and satisfies the fluid model equations 2.1-2.4.

In addition, the policy specific fluid model equations hold.

˙̄T11(t) = 1 and ˙̄T21(t) = 0 if m1Q̄1(t) > Q̄2(t),

˙̄T21(t) = 1 and ˙̄T11(t) = 0 if m1Q̄1(t) < Q̄2(t), (2.11)

˙̄T12(t) = 1 and ˙̄T22(t) = 0 if m2Q̄1(t) > Q̄2(t), (2.12)

˙̄T22(t) = 1 and ˙̄T12(t) = 0 if m2Q̄1(t) < Q̄2(t).

The ties are broken arbitrarily. Note that 2.11 and 2.12 cannot hold at the same time because

we assume m1 > m2.

We will utilize the fluid model to prove state space collapse in Lemma 1, then we’ll use

a Lyapunov function to show negative drift in the smaller state space in Lemma 2.

For the rest of the proof, assume λ1 < µ11 and λ2 > µ22. We will demonstrate how

Lemmas 1 and 2 can be modified when this assumption is relaxed.

Lemma 1. Let the distance of Q̄(t) to the switching line φ1(q1) = m1q1 be

f(Q̄(t)) =
|m1Q̄1(t)− Q̄2(t)|√

m2
1 + 1

.

For any Q̄(0), f(Q̄(t)) decreases monotonically to zero in a finite time τ0 = inf{t ≥ 0 :

f(Q̄(t)) = 0} and f(Q̄(T)) = 0 for any T ≥ τ0.

Proof of Lemma 1. For any fluid model solution, Q̄i(t) are Lipschitz continuous in t, then

the distance function f(Q̄(t)) is also Lipschitz continuous in t.

Therefore, f(Q̄(t)) is absolutely continuous, then differentiable almost everywhere. For

33

any regular point t, we have

d

dt
f(Q̄(t)) =

1√
m2

1 + 1

m1Q̄1(t)− Q̄2(t)

|m1Q̄1(t)− Q̄2(t)|

(
m1

˙̄Q1(t)− ˙̄Q2(t)
)
. (2.13)

According to the policy specific fluid model equations, at any time t, one of the following

three cases hold:

(i) ˙̄T11(t) = 1, ˙̄T21(t) = 0, ˙̄T12(t) = 1, ˙̄T22(t) = 0,

(ii) ˙̄T11(t) = 1, ˙̄T21(t) = 0, ˙̄T22(t) = 1, ˙̄T12(t) = 0,

(iii) ˙̄T21(t) = 1, ˙̄T11(t) = 0, ˙̄T22(t) = 1, ˙̄T12(t) = 0.

Then for each of the conditions above, equation 2.13 becomes

(i)
d

dt
f(Q̄(t)) =

1√
m2

1 + 1
(m1(λ1 − µ11 − µ12)− λ2) < 0,

(ii)
d

dt
f(Q̄(t)) =

1√
m2

1 + 1
(m1(λ1 − µ11)− (λ2 − µ22)) < 0,

(iii)
d

dt
f(Q̄(t)) =

−1√
m2

1 + 1
(m1λ1 − (λ2 − µ21 − µ22)) < 0.

Therefore, the time derivative of the distance to the switching line is always a negative

constant. Then the fluid trajectory collapses onto the switching line φ1(q1) = m1q1 in a

finite time τ0 = {t ≥ 0 : f(Q̄(t)) = 0}. Since f(Q̄(t)) is absolutely continuous, for any

T ≥ τ0,

f(Q̄(T))− f(Q̄(τ0)) =

∫ T

τ0

d

dt
f(Q̄(t))dt.

34

Because distance is always non-negative, we have

0 ≤ f(Q̄(T)) ≤ f(Q̄(τ0)) +

∫ T

τ0

d

dt
f(Q̄(t))dt ≤ 0,

implying that for any T ≥ τ0, f(Q̄(T)) = 0. □

Lemma 2. The fluid limit model is stable when f(Q̄(t)) = 0 for t ≥ τ0.

Proof of Lemma 2. For all t ≥ 0, let the candidate Lyapunov function be

V (Q̄(t)) := Q̄1(t) + w2Q̄2(t), where

w2 ∈ I :=

(
λ1

µ21 + µ22 − λ2
,
µ11 − λ1
λ2 − µ22

)
.

The interval I is non-empty. To see this, assume to the contrary that λ1/(µ21 + µ22 − λ2) ≥

(µ11 − λ1)/(λ2 − µ22). Then

λ1
µ21 + µ22 − λ2

≥ µ11 − λ1
λ2 − µ22

,

λ1 ≥ (µ21 + µ22)
µ11
µ21
− λ2

µ11
µ21

.

By the capacity region definition, for some p, q ∈ [0, 1], the inequalities λ1 < pµ11 + qµ12

and λ2 < (1− p)µ21 + (1− q)µ22 hold. Using the latter inequality, the expression becomes

λ1 > (µ21 + µ22)
µ11
µ21
− [(1− p)µ21 + (1− q)µ22]

µ11
µ21

,

= pµ11 + q
µ11µ22
µ21

,

> pµ11 + qµ12,

which is a contradiction with λ1 < pµ11 + qµ12. Here, the last inequality follows from

the assumption µ11/µ21 > µ12/µ22. Therefore, we must have λ1/(µ21 + µ22 − λ2) <

35

(µ11 − λ1)(λ2 − µ22), implying that I is non-empty.

It is clear that V (Q̄(t)) ̸= 0 when Q̄(t) ̸= 0. We will show d
dtV (Q̄(t)) < 0 for t ≥ τ0.

d

dt
V (Q̄(t)) = λ1 − µ11

˙̄T11(t)− µ12
˙̄T12(t) + w2

(
λ2 − µ21

˙̄T21(t)− µ22
˙̄T22(t)

)
.

For t ≥ τ0, the trajectory is on the switching line φ1(Q̄1(t)) = Q̄2(t). Then ˙̄T12(t) = 0 and

˙̄T22(t) = 1. Thus, we have

d

dt
V (Q̄(t)) = λ1 + w2(λ2 − µ22)−

(
µ11

˙̄T11(t) + w2µ21
˙̄T21(t)

)
.

Note that ˙̄T11(t) +
˙̄T21(t) = 1 due to the non-idling assumption of the fluid model. Then

(µ11
˙̄T11(t)+w2µ21

˙̄T21(t)) is a convex combination of µ11 and w2µ21, therefore takes a value

between these terms. For w2 ∈ I,

λ1 + w2(λ2 − µ22)− µ11 < 0,

λ1 + w2(λ2 − µ22)− w2µ21 < 0,

implying that we have d
dtV (Q̄(t)) < 0. Hence, the fluid limit model is stable. □

We assumed for Lemmas 1 and 2 that λ1 < µ11 and λ2 > µ22. Note that the analysis

still valid if either λ1 = µ11 and λ2 > µ22, or λ1 < µ11 and λ2 = µ22. Only one of the

inequalities must be strict.

For λ1 > µ11 and λ2 < µ22, the trajectory Q̄(t) approaches the switching line φ2(q1) =

m2q1 and stays there. The same Lyapunov function V (Q̄(t)) = Q̄1(t) + w2Q̄2(t) with

appropriately chosen w2 has negative drift on the line φ2(Q̄1(t)) = Q̄2(t), proving the

stability of the fluid limit model.

The case λ1 ≥ µ11 and λ2 ≥ µ22 does not need to be considered, because there does

not exist such λ ∈ Λ(µ) that also satisfy the assumption µ11/µ21 > µ12/µ22. Indeed, the

36

capacity region inequalities and λ1 ≥ µ11 and λ2 ≥ µ22 imply that

µ11 ≤ λ1 < pµ11 + qµ12 =⇒ µ11
µ12

<
q

1− p
,

µ22 ≤ λ2 < (1− p)µ21 + (1− q)µ22 =⇒ q

1− p
<

µ21
µ22

,

contradicting µ11/µ21 > µ12/µ22.

The only other case that needs to be considered is λ1 < µ11 and λ2 < µ22. It can be

shown that the Lyapunov function V (Q̄(t)) = Q̄1(t) + w2Q̄2(t) with

w2 ∈ J := (λ1/(µ21 − µ22 − λ2), (µ11 + µ12 − λ1)/λ2)

has negative drift at every regular point, following the same steps in Lemma 2.

By Theorem 4.2 in Dai (1995), the stability of the fluid limit model implies the positive

recurrence of the Markov chain describing the dynamics of the X-model.

Theorem 2 eliminates the need for precision when learning service rates µij . If it can

be reasonably estimated whether µ11/µ21 > µ12/µ22, then a switching line policy can be

designed with m1 > m2 to achieve maximal stability.

This theorem has an interesting practical implication as well. Imagine that the system

designer has the intention of building a dedicated system with a little flexibility. That is,

the intention is to have server 1 serve queue 1 efficiently, with the ability to serve queue 2

less efficiently. Similarly, server 2 can be designed to serve queue 2 efficiently and queue 1

less efficiently. Theorem 2 then implies that a parameter agnostic switching line policy with

m1 > m2 is maximally stable.

37

2.4 One Switching Curve for Both Servers

If φ1(q1) = φ2(q1) for all q1 ∈ Z+, then there is essentially one switching curve that dictates

the scheduling decision. Such a policy implies that the servers are synchronized, they serve

the same queue at the same time.

Proposition 3. Let φ1(q1) = φ2(q1) for all q1 ∈ Z+. For λ ∈ Λ(µ), if

λ1
µ11 + µ12

+
λ2

µ21 + µ22
> 1,

then the system is unstable.

Proof of Proposition 3. Similar to Proposition 2, a fluid limit exists and satisfies the

fluid model equations 2.1-2.4. In addition, the following policy specific fluid model equations

hold.

T̄11(t) = T̄12(t),

T̄21(t) = T̄22(t).

Then, according to the fluid model equations, we have

T̄11(t) + T̄21 ≤ t, (2.14)

T̄12(t) + T̄22 ≤ t. (2.15)

Let p̄(t) denote the total fraction of time up to t that the servers serve queue 1. That is,

p̄(t) :=
T̄11(t)

t
=

T̄12(t)

t
,

38

which implies by equations 2.14 and 2.15 that

T̄21(t)

t
=

T̄22(t)

t
≤ 1− p̄(t).

Note that p̄(t) ∈ [0, 1]. Then we can write the first fluid model equation, Equation 2.1 as

Q̄1(t) = Q̄1(0) + λ1t− p̄(t)tµ11 − p̄(t)tµ12,

Q̄2(t) ≥ Q̄2(0) + λ2t− (1− p̄(t))tµ21 − (1− p̄(t))tµ22.

To use Theorem 3.2 in Meyn et al. (1995), we define the norm ||Q̄(t)|| = Q̄1(t) + Q̄2(t). For

any t, if p̄(t) < λ1
µ11+µ12

, we have

||Q̄(t)|| = Q̄1(0) + t(λ1 − p̄(t)(µ11 + µ12)) + Q̄2(t) ≥ δ1t,

where δ1 = λ1 − p̄(t)(µ11 + µ12) > 0.

If p̄(t) > 1− λ2
µ21+µ2

, we have

||Q̄(t)|| ≥ Q̄1(t) + Q̄2(0) + t(λ2 − (1− p̄(t))(µ21 + µ22)) ≥ δ2t,

where δ2 = λ2 − (1− p̄(t))(µ21 + µ22) > 0.

We had assumed

λ1
µ11 + µ12

+
λ2

µ21 + µ22
> 1,

implying that for all p̄(t) ∈ [0, 1], the norm can be lower bounded as ||Q̄(t)|| ≥ min{δ1, δ2}t.

Then by Theorem 3.2 in Meyn et al. (1995), the Markov Chain (Q(t))t≥0 is transient. □

39

2.5 Discussion and Conclusion

We have considered parameter agnostic policies in the context of parallel server systems. We

have shown that in general, parameter agnostic policies are not maximally stable.

When the policy consists of intersecting switching curves, we have shown in Theorem

1 that the X-model couples with a single dimensional Markov Chain. Under the condition

that the service rate smaller than the arrival rate is used more often than the service rate

greater than the arrival rate on average, this single dimensional Markov Chain cannot be

positive recurrent. Because the X-model couples with the single dimensional Markov Chain,

it cannot have a stationary distribution either. This result indicates that the three service

regimes that MaxWeight uses are critical. If the fourth service regime is introduced and

used more frequently than the “correct one” according to MaxWeight, the system becomes

unstable. In a sense, MaxWeight is tight in achieving maximal stability while requiring

minimal information on system parameters.

Even though MaxWeight is maximally stable itself, using the slopes implied by it, µ11
µ21

and µ12
µ22

, is not strictly necessary for maximal stability. If the system designer only knows

the service configuration implied by the MaxWeight slopes, she can devise a switching line

policy with slopes m1,m2 that implies the same service configuration with MaxWeight slopes,

and achieve maximal stability. We show this in Theorem 2 by proving state space collapse

to one of the switching lines, then showing negative drift of the fluid model. This result is

especially insightful for systems where each server is trained specifically to serve a single class

of jobs with the capability of handling the other when necessary. In such cases, if the system

designer is reasonably confident that the servers serve their intended class more efficiently,

µ11/µ21 > µ12/µ22 naturally holds. Then a parameter agnostic policy with m1 > m2 is

maximally stable. Our intuition tells us that the stability result would hold for switching

curves under mild conditions such as the existence of a fluid limit.

Imposing more conditions on the switching curves and assuming that the curves do not

40

intersect, we are able to obtain instability with easier arguments. We show in Proposition 2

that w1Q̄1(t)+w2Q̄2(t) increases linearly in time for appropriately chosen weights w1, w2 > 0.

If both servers have the same switching curve, such as LQF where the switching curves

are φ1(q1) = φ2(q1) = q1, the system is again not maximally stable. We show in Proposition

3 that Q̄1(t) + Q̄2(t) grows linearly in t.

In general, even though parameter agnostic policies are attractive in practice, a system

designer should not implement them without any knowledge of the system itself, qualitative

or quantitative. This is because these policies can become unstable if the system parameters

turn out to satisfy certain sufficient conditions. Even a little knowledge of the system, such

as whether the servers are specifically trained to handle one job class with the capability to

help the other when necessary, closes this gap significantly and enables the system designer

to adopt a maximally stable parameter agnostic policy.

There are natural future research directions that can follow our results. For instance,

generalizing the stability result to bigger parallel server systems would provide insights into

what kinds of knowledge on system parameters would suffice in ensuring stability. Another

more challenging direction would be to remove all assumptions on structure of the policy,

and disproving maximal stability for arbitrary parameter agnostic policies.

We believe wholly understanding parameter agnostic policies, not only in terms of sta-

bility but also in other performance metrics, will allow system designers to make informed

decisions on whether they want to dedicate resources to learning the system parameters.

41

CHAPTER 3

PROCESS FLEXIBILITY DESIGN FOR PARALLEL SERVER

SYSTEMS WITH GENERAL PROCESSING RATES

3.1 Introduction

Companies nowadays are increasingly expected to expand their product portfolios. This

entails offering customers a wider range of choices in order to maintain a competitive edge.

Efficient management of a wider product range requires meticulous operational planning,

including strategies to mitigate the impact of unforeseen disruptions to the supply chain.

The need to respond adeptly to external shocks is not limited to physical goods alone;

it extends to service-oriented systems as well. Service providers must maintain high-quality

service even in the face of unexpected fluctuations in labor availability or service demand.

Similarly, computing environments, such as cloud platforms, are expected to handle surges

in job requests efficiently and without delays.

To tackle this challenge, one effective approach is to integrate process flexibility into the

underlying networks of these operations. By embracing process flexibility, companies can

pool resources and swiftly adapt to unforeseen changes without compromising service levels.

Typically, the most desired form of process flexibility is full flexibility, where every server,

agent or plant in the network can handle any job, customer, or product type. However, em-

bedding such a high degree of process flexibility is usually costly. Additionally, majority of

the resource pooling benefits of full flexibility have been observed in systems with signifi-

cantly less degree of process flexibility, implying that constructing full flexibility may not

be necessary at all. Jordan and Graves (1995) led research in this area by observing that

a simple sparse design called the long chain achieves most of the benefits of an equivalent

fully flexible system. This indicates that by adopting a systematic approach, we can almost

attain the pooling benefits of a fully flexible system with a sparser flexibility design.

42

Figure 3.1: Examples of Flexibility Structures

Indeed, extensive research, both theoretical and empirical, has delved into studying vari-

ous flexibility designs (e.g., Chou et al. (2011), Simchi-Levi and Wei (2012), Wang and Zhang

(2015), Désir et al. (2016), Shi et al. (2019)). Figure 3.1 shows graph representations of some

well known flexibility structures, including the long chain. The central goal of the research

in this area has mostly been to design flexibility structures with performance close to that

of the full flexibility structure. Similarly, analysis of given flexibility structures focuses on

comparing the performance of a given flexibility structure to that of the full flexibility struc-

ture. In this chapter, we address the problem of designing a sparse flexibility structure that

has performance close to that of the full flexibility structure. Our model allows for jobs to

wait in their queues until they get served, so that we consider multi-period settings, which

distinguishes this work from most of the papers in the literature that focus on a single-

period setting (Chou et al. 2010, 2011, Simchi-Levi and Wei 2012, Chen et al. 2015, Wang

and Zhang 2015, Désir et al. 2016). There are recent papers in the literature that explore

the problem in a multi-period setting (e.g., Shi et al. (2019), Asadpour et al. (2020), Varma

and Maguluri (2021)). However, our work follows a fundamentally different approach than

these. In particular, this is the first attempt to address the design problem while relaxing

the widely-adopted flow conservation assumption put forth by Jordan and Graves (1995).

The critical flow conservation assumption that all previous papers in this area rely on was

introduced in the context of the long chain, suggested first by Jordan and Graves (1995). All

43

theoretical and empirical analysis of the long chain has been conducted under the assumption

that one unit of server capacity is required to process one unit of a compatible job. This

assumption is not unique to the analysis of long chain. Any flexibility structure that has been

studied thereafter was studied under the assumption that the servers have a fixed capacity,

one unit of which can process one unit of a compatible job.

Relaxing this crucial assumption, we consider servers with general processing rates. In

other words, one unit of server capacity may process more or less than one unit of a compat-

ible job. The exact rate at which one unit of capacity processes a compatible job depends

on the server-buffer pair. This is an important relaxation of the longstanding assumption,

because flow conservation might not be observed in practice. In production systems, certain

plants may deliver fewer units of a certain product per unit time, potentially due to physical

or logistical constraints. Similar limitations can arise in service systems. For example, call

center agents may possess the capability to assist various customer types, but at varying

speeds. It might be the case in a service system that service agents primarily focus on

one type of service request, but they can handle other types if necessary, albeit at reduced

processing rates. Due to all these possibilities, study of flexibility designs in systems with

general processing rates holds significant importance.

Relaxation of the flow conservation assumption results in substantial difficulties in the

design and analysis of flexibility graphs. While it is algorithmically easy to obtain a feasible

processing plan in systems with flow conservation, obtaining a feasible solution becomes a

non-trivial concern in systems with general processing rates. In particular, greedily solving a

maximum flow problem on the fully flexible system always yields a feasible sparse subgraph

of the fully flexible system when the system has flow conservation (see, e.g., Shi et al. (2019)).

On the other hand, when processing rates are general, each server is associated with multiple

service rates, so that greedily solving a maximum flow problem on the fully flexible system

would not always result in a feasible sparse subgraph. We would encounter supply or demand

44

deficiencies as the greedy algorithm moves towards the ending nodes of the graph.

For example, consider the system given in Figure 3.2. In Figure 3.2a, the first plant

serves both products with a rate of 6, and the second plant serves both products with a rate

of 5. The first product has a demand rate of 8, and the second product has a total demand

rate of 3. Total service rate of the plants is 11, which is equal to the total demand rate. A

greedy solution to the max-flow problem on the fully flexible model is feasible, as given in

Figure 3.3a. The first plant sends 6 units of product to the first demand node. The second

plant dedicates 0.4 of its capacity to the first demand node, i.e., sends 2 units to the first

demand node. It dedicates the remaining 0.6 of its capacity to the second plant node, i.e.,

sends 3 units to the second plant node. This results in a remaining demand (or imbalance)

of zero units in both demand nodes. Because there is no imbalance at any of the nodes, the

design implied by the greedy solution is feasible.

On the other hand, Figure 3.2b demonstrates almost the same problem, but with general

processing rates. Now, the first plant serves the first product with a rate of 4, and serves the

second product with a rate of 6. Similarly, the second plant serves the first product with a

rate of 6, and the second product with a rate of 4. The demand rates are the same as the

previous case. It can be seen that there exists a feasible solution that results in no imbalance

at any of the nodes. If the first server dedicates 0.5 of its capacity to the first product and

the remaining 0.5 of its capacity to the second product; and the second server dedicates all

of its capacity to the first product, there would be no imbalance at any of the nodes and the

system would be feasible. However, if we wanted to greedily solve a max-flow problem, the

second demand node would have a deficiency of 5/3 units, as Figure 3.3b demonstrates.

This simple example showcases the aforementioned difficulty in systems with general

processing rates: feasibility is not straightforward to attain. Another difficulty we encounter

with general processing rates stems from the inherent limitations of these systems. For a

given flexibility graph, a flexible server system that operates across multiple periods can

45

(a) Server Dependent Rates (b) General Processing Rates

Figure 3.2: Processing Rates and Demand Rates on Fully Flexible Graph

(a) Server Dependent Rates (b) General Processing Rates

Figure 3.3: Greedy Max-Flow Solutions on Fully Flexible Graph

be modeled as a discrete-time parallel server system (see, e.g., Harrison and López (1999),

Mandelbaum and Stolyar (2004), Stolyar et al. (2004), Gurvich and Whitt (2009)). If the so-

called complete resource pooling (CRP) condition holds for parallel server systems operating

under heavy traffic, it is expected that numerous scheduling policies should achieve good

performance. CRP is interpreted as the system behaving as if the servers form a single

resource pool in heavy traffic.

While CRP condition always holds in fully flexible systems with flow conservation, it

may not always hold in fully flexible systems with general processing rates. In the context of

parallel server systems, the flow conservation assumption can be interpreted as servers having

server dependent service rates. That is, each server can serve all compatible queues with

the same processing rate. When service rates are server dependent, parallel server systems

always achieve a single resource pool in heavy traffic, i.e., CRP. Then the goal becomes

achieving CRP with a sparser design. On the other hand, in the case of general processing

rates, a fully flexible system may not achieve CRP for certain system parameters under

46

heavy traffic. Consequently, any sparse design cannot achieve a single resource pool. This

limitation is intrinsic to systems with general processing rates. Recognizing this distinction

is crucial when designing a sparse flexibility system with good performance, as heavy traffic

analyses of control policies in queueing systems heavily rely on it.

In this chapter, we show the existence of a sparse flexibility structure with O(m + n)

connections that achieves a single resource pool in heavy traffic, where a single resource

pool is achievable in the fully flexible system. Here, m is the number of servers and n is

the number of buffers. The difficulties described above results in our methodology being

significantly different than the existing literature. In particular, we heavily utilize a well-

known linear program (LP), the static planning problem (SPP). We show that if a single

resource pool is attainable in the fully flexible system, then the SPP has a non-denegerate

optimal solution. We start with an optimal basic solution of the SPP, and augment it with

alternative solutions of the SPP until a non-degenerate (possibly non-basic) optimal solution

is attained. The resulting solution translates to a connected feasible subgraph of the fully

flexible system, which achieves a single resource pool in heavy traffic and has O(m + n)

arcs. This approach not only provides valuable insights into the design and analysis of

flexibility structures, but also marks the first step in addressing the challenges posed by

general processing rates.

The rest of the chapter is organized as follows. In Section 3.1.1, we provide a brief

literature review on process flexibility, and performance of different control policies in parallel

server systems. In Section 3.2, we outline our model, notation and relevant definitions. In

Section 3.3, we introduce the SPP and its dual, and discuss important distinctions regarding

uniqueness and multiplicity of the solutions. We also derive useful properties of the two

problems. In Section 3.4, we introduce our main result, that there exists a sparse design

that achieves CRP in heavy traffic. We present an algorithm that achieves that design. In

Section 3.5, we numerically demonstrate the performance of our proposed design compared

47

to various flexibility designs under MaxWeight. Finally, we discuss future research directions

and conclude in Section 3.6.

3.1.1 Literature Review

3.1.1.1 Process Flexibility

Design and analysis of process flexibility structures started with the seminal paper of Jordan

and Graves (1995), in which they introduced the long chain. Since then, the performance

of the long chain has been theoretically justified. Chou et al. (2010) derived the ratio of

the performance of the long chain and the performance of the fully flexible system as the

system size grows. They showed that when the demand follows certain distributions like

the uniform and the normal distributions, this ratio approaches 1. Simchi-Levi and Wei

(2012) demonstrated that when building a long chain from a dedicated system, the biggest

benefit is achieved by the arc that closes the chain. They also showed that the performance

of the long chain relative to the fully flexible system decreases with the size of the system.

Wang and Zhang (2015) developed a model to analyze the performance of any bipartite

network compared with the full flexibility system under a distributionally robust setting.

They obtained a bound on the performance of the long chain that depends only on the first

two moments of the demand distribution, implying that the performance of the long chain

becomes worse when the demand has more variability. Désir et al. (2016) proved that the

long chain is optimal among all designs that use 2n arcs, where 2n is the total number of

nodes on the graph.

Flexibility designs other than the long chain have been proposed and studied as well.

Chou et al. (2011) showed that under the assumption that the demand distribution has a

bounded variation of 1, the class of graph expanders (a class of sparse but highly connected

graphs) perform well compared to the fully flexible system. They show that there exists

a class of expanders with O(n/ϵ) arcs that achieves (1 − ϵ)-optimality in the worst case.
48

Chen et al. (2015) improved this using probabilistic graph expanders, achieving the same

performance with a sparser graph with O(1/ϵ) arcs in balanced and symmetrical systems.

Later on, the authors generalized this result to unbalanced and asymmetric systems (Chen

et al. 2019). Simchi-Levi and Wei (2015) study the design problem under a worst-case metric,

and propose a simple and implementable class of heuristic algorithms to design flexibility

graphs.

Most of these works were studied under the model of Jordan and Graves (1995), which

considers a single period setting. The problem remains relatively unexplored for multi-period

systems. Shi et al. (2019) studied a multi-period system, and showed that m+n are necessary

to ensure that a sparse design can asymptotically attain the performance of a fully flexible

system. They introduced the concept of generalized chaining gap (GCG), which can be

thought of as the minimum excess capacity in the system. GCG being positive is equivalent

to the CRP condition. Following up from Shi et al. (2019), Varma and Maguluri (2021)

characterized exactly when m+ n arcs are necessary and when m+ n− 1 arcs are sufficient

to ensure satisfactory performance. They utilized the connection between parallel server

systems and the transportation problem, and explored the design problem when CRP does

not necessarily hold. Independently, Asadpour et al. (2020) derived what they call the ξ-hall

condition for balanced systems, which is equivalent to CRP condition when the system is

under heavy traffic. Their model is such that resource capacities are depleted over time. Xu

et al. (2020) generalized their policy and improved the upper bound on expected total lost

sales.

On the analysis side of multi-period systems, Iravani et al. (2007) propose a new metric

of evaluating and comparing the performance of two arbitrarty flexible server systems and

show through extensive simulations that this method can be used to distinguish which of the

two designs is better. Tsitsiklis and Xu (2017) prove that a family of expander-graph-based

flexibility designs achive diminishing queue delays as the system size grows to infinity.

49

A more in-depth treatment of these topics is presented in Wang et al. (2021), where the

authors conduct an extensive recent review of the literature on process flexibility design and

analysis.

Here, similar to Shi et al. (2019), Asadpour et al. (2020), Varma and Maguluri (2021), we

consider a multi-period setting, where the system can be modeled as a discrete time parallel

server system. Our approach is distinguished from the literature because we are the first to

address the flexibility design problem while relaxing the flow conservation assumption that

is adopted in the previous works. This approach results in our design method being funda-

mentally different than the literature, which contributes to the theoretical understanding of

flexibility designs, the structural properties of the SPP for parallel server systems, and the

relationship between parallel server systems and generalized transportation problems.

3.1.1.2 Performance of Control Policies

Given a flexibility design, the performance of a discrete time parallel server system is deter-

mined by the scheduling policy, which dictates which compatible queue a server will serve

when it becomes idle. Given the flexibility design and the scheduling policy, the performance

of the system is usually measured by a weighted sum of queue lengths, called the cost func-

tion. This type of analysis is typically done in heavy traffic and the asymptotic optimality of

such policies has been the main interest, since the pre-limit formulation is often intractable.

An additional assumption that greatly simplifies the analysis is CRP, which asserts that the

system achieves a single resource pool in heavy traffic. That is, servers behave like a single

super-server in serving the jobs in heavy traffic.

Traditionally, the heavy traffic assumption asserts that the SPP associated with the given

system has a unique solution. Under the traditional heavy traffic assumption and the CRP

condition, Stolyar et al. (2004) showed that the MaxWeight policy is asymptotically optimal

in minimizing the long run average of a specifically weighted sum of queue lengths. Under

50

the same assumptions, Mandelbaum and Stolyar (2004) showed that a generalized cµ-rule is

asymptotically optimal in minimizing a strictly convex cost function of queue lengths. Again,

under traditional heavy traffic and CRP assumptions, Bell and Williams (2005) showed that

an intricate threshold policy is asymptotically optimal in minimizing the long run discounted

sum of arbitrarily weighted sum of queue lengths.

In general, there is no reason to assume that the SPP has a unique solution. However, not

much has been theoretically shown when the SPP has multiple solutions, and the technical

difficulties for this case have been acknowledged (Harrison and López 1999, Mandelbaum and

Stolyar 2004). Eryilmaz and Srikant (2012) has shown that MaxWeight is asymptotically

optimal under heavy traffic and CRP, without imposing the condition that the SPP has

a unique solution. However, the optimality of MaxWeight holds in that case under the

condition that the service times of the servers are deterministic. Atar et al. (2022) has

started exploring the problem of asymptotic optimality of scheduling policies when the SPP

has multiple solutions.

The design problem is tightly connected to performance analysis problem. When the

SPP for the fully flexible system has a unique solution, results of Harrison and López (1999)

has implications for a reasonable design. Specifically, if the unique solution to the SPP for

the fully flexible system is non-degenerate, then the dual of the SPP for the implied sparse

design has a unique solution. Then the CRP condition holds for the implied design, and

the traditional performance analysis results hold. That is, the design implied by the unique

solution would be a reasonable design.

On the other hand, if the SPP for the fully flexible system has multiple solutions, the

design implied by a solution to that SPP might not necessarily result in a unique solution to

the dual of the SPP for the implied design. In such a case, CRP fails for the implied design.

Then the system cannot achieve a single resource pool, even if a single resource pool was

achievable with the fully flexible system. As a result, the implied design, which has multiple

51

resource pools, would have significantly worse performance than the full flexibility design,

which achieves a single resource pool. The central goal of the flexibility design literature,

finding a sparse design with performance close to that of a fully flexible system, would fail.

Precisely in this case, we want to find a solution to the SPP for the fully flexible system, such

that the design implied by that solution is sparse and has a unique solution for its associated

dual SPP. In that case, our sparse design will satisfy CRP and we expect good performance

from various scheduling policies.

Even though we know that MaxWeight is asymptotically optimal under deterministic

service times when the SPP has multiple solutions and CRP holds, the performance analysis

of alternative scheduling policies for alternative cost functions remains an open problem.

Here, we address the problem of effectively designing a sparse flexibility graph with good

properties. Even though we numerically justify the performance of our design compared to

the full flexibility system under MaxWeight, we leave the theoretical performance analysis

of alternative scheduling policies as future research directions.

3.2 Model, Definitions and Notations

The convention we adopt in this paper is to denote real numbers by R, and non-negative real

numbers by R+. Integers and non-negative integers are denoted by Z and Z+, respectively.

The vectors of all ones and all zeros are denoted by 1 and 0, respectively. Boldface letters

denote vectors and unbold letters denote scalars.

We consider a discrete time parallel server system with m ≥ 1 servers and n ≥ 1 queues

where time periods are denoted by t ∈ Z+. At the beginning of each time period t, each

queue i ∈ I := {1, . . . , n} observes a random number of arrivals denoted by Ai(t). For

each i ∈ I, Ai(t) is distributed independently and identically across time periods. Then Ai

denotes the arrival distribution to queue i for every t ∈ Z+. We assume that E[Ai] = λi > 0,

V ar(Ai) = σ2i , and there exists u > 0 such that P (0 ≤ Ai ≤ u) = 1.

52

After observing arrivals, each server j ∈ J := {1, . . . ,m} serves a compatible queue

i with a rate of µij > 0, deterministically. The deterministic service assumption might

seem restrictive. However, in certain practical systems, this may not be unreasonable. In

production systems, for instance, jobs may be processed in batches, in which case service

resembles a deterministic process.

The compatibility of servers and queues is determined by the system’s flexibility structure,

denoted by S. Server j ∈ J can serve queue i ∈ I only if (i, j) ∈ S. That is, the flexibility

structure S is the arc set of a bipartite graph whose node partition is I and J . If all

servers can serve all queues, we call this special system the fully flexible system, denoted by

F := I × J .

The neighborhood function on S is the mapping that returns the set of nodes adjacent

to each other in S. That is,

NS(i) = {j ∈ J : (i, j) ∈ S} ∀i ∈ I,

NS(j) = {i ∈ I : (i, j) ∈ S} ∀j ∈ J .

We note that in the fully flexible structure F , we have NF (i) = J for all i ∈ I, NF (j) = I

for all j ∈ J .

For an arbitrary subgraph H ⊆ F , I(H) denotes the set of queues that are adjacent to

any arc in this subgraph. In other words, I(H) is the queue set of the subgraph H. Similarly,

J(H) denotes the set of servers that are adjacent to any arc in this subgraph, i.e., the server

set of subgraph H.

A given flexibility structure S is the arc set of the bipartite graph whose node partition

is I and J . This bipartite graph may contain paths. Let P (d1, d2) be a path from node d1

to node d2 in S, if it exists. Generally, d1 and d2 may be servers or queues. If d1 is a server

53

and d2 is a queue,

P (d1, d2) = {(d1, i1), (i1, j2), (j2, i2), . . . , (jk, d2)}

denotes a path between d1 and d2. In this path, arcs of the form (jr, ir) are forward arcs,

and arcs of the form (ir, jr+1) are backward arcs. Forward arcs in the path are denoted by

P (d1, d2), and backward arcs are denoted by P (d1, d2).

This bipartite graph may also contain cycles consisting of equal number of forward and

backward arcs. Without loss of generality, we will adopt the convention that cycles start

with a server node, j1. Let

W = {(j1, i1), (i1, j2), (j2, i2), . . . , (jk, ik), (ik, j1)}

be an arbitrary cycle in S, if it exists. Arcs of the form (jr, ir) for r ∈ {1, . . . , k} are forward

arcs in this cycle. Let the set of forward arcs of W be denoted by W . Similarly, arcs of the

form (ir, jr+1) for r ∈ {1, . . . , k} are backward arcs in W . Let the set of backward arcs of

W be denoted by W .

Definition 3. (Path/Cycle Multiplier) For a path P (d1, d2), the path multiplier γ(P (d1, d2))

is defined as

γ(P (d1, d2)) =

∏
(i′,j′)∈P (d1,d2)

µi′j′∏
(i′,j′)∈P (d1,d2)

µi′j′
.

For a cycle W , the cycle multiplier γ(W) is defined similarly as

γ(W) =

∏
(i′,j′)∈W µi′j′∏
(i′,j′)∈W µi′j′

.

We say that if γ(W) = 1, W is a breakeven cycle. An in-depth treatment of cycles with

multipliers is given in Chapter 15 of Ahuja et al. (1988). Intuitively, when a flow of δ is
54

pushed from j1 of the cycle W , this flow traverses the cycle and returns to j1 as δγ(W) units

of flow. Then, a breakeven cycle conserves the amount of flow pushed from the initial node,

since if δ is pushed from j1, δ returns to j1. In general, there is no reason to believe that an

arbitrary cycle W is breakeven. However, as we discuss in Section 3.3, the special structure

of the static planning problem will imply that if we use any cycle in the design of S, they

must be breakeven cycles.

3.3 Static Planning Problem and Its Dual

Traditionally, the analysis of control policies in parallel server systems has primarily been

conducted under heavy traffic assumptions. This is due to the inherent complexity of the pre-

limit stochastic control problem, which is usually many-dimensional. To be able to detach the

design problem from performance-related concerns, we make the assumption that the flexible

server system operates in heavy traffic. By doing so, we can concentrate on constructing

a sparse flexibility structure; knowing that if we design the flexibility structure carefully,

there are control policies studied in heavy traffic that are expected to yield comparable

performance to a full flexibility system.

Heavy traffic conditions can be characterized by the static planning problem (SPP). This

is a deterministic linear program that establishes an optimal resource allocation if the system

was static, i.e., running under fluid scale. The SPP yields an optimal processing plan vector,

which consists of long run average fractions of time that servers should dedicate to each

activity. The long run average fraction of time server j dedicates to activity (i, j) is denoted

by the decision variable xij ≥ 0, for each (i, j) ∈ S. The SPP minimizes ρ, which denotes

the long run utilization level of the busiest server in the system, by choosing an optimal

processing plan vector x.

Before formally stating the SPP, we would like to point out that the problem statement

is heavily dependent on the flexibility structure S, since S determines admissible activities.

55

Below, we state the SPP and its dual for the full flexibility structure F .

In SPP(F), x is a vector of size mn. Without loss of generality, we order xij first by j,

then i. Adopting the notation in Harrison and López (1999), input-output matrix R and the

resource consumption matrix A are given by

R =



µ11 0 · · · 0 µ12 0 · · · 0 · · · µ1m · · · 0

0 µ21 · · · 0 0 µ22 · · · 0 · · · 0 · · · 0

...
...

...
...

0 0 · · · µn1 0 0 · · · µn2 · · · 0 · · · µnm


,

and

A =



11×n 01×n · · · 01×n

01×n 11×n · · · 01×n
...

...

01×n 01×n · · · 11×n


.

R is of size n×mn, and A is of size m×mn. For activity (i, j), Rij represents the departure

rate of the jobs from queue i due to service from server j, and Aij represents the consumption

rate of the capacity of server j by activity (i, j). Then the SPP(F) can be written formally

as

SPP(F) min
x,ρ

ρ

s.t. Rx = λ

Ax ≤ ρ1

x ≥ 0

ρ ≥ 0,

56

and its dual, DSPP(F) can be stated as

DSPP(F) max
y,z

yTλ

s.t. yTR− zTA ≤ 0

zT1 ≤ 1

z ≥ 0.

For an arbitrary flexibility structure S, SPP(S) and DSPP(S) are defined similarly. The

difference is that the columns of the coefficient matrices, RS and AS , are subsets of columns

of R and A that include only the activities in S, respectively.

We assume that heavy traffic and CRP conditions hold for F . That is, we assume:

Assumption. A1. SPP(F) has at least one solution.

A2. All solutions (x∗, ρ∗) to SPP(F) satisfy ρ∗ = 1 and Ax∗ = ρ∗ = 1.

A3. DSPP(F) has a unique solution.

Assumptions A1. and A2. are heavy traffic conditions. A1. only requires that SPP(F)

is feasible. A2. states that all servers are critically loaded. This can be interpreted as we

are limiting our attention to a bottleneck subsystem.

Assumption A3. is the CRP assumption. This is equivalent to the existence of a con-

nected solution to SPP(F) under heavy traffic. Assumption A3. is the same as Condition

1 in Shi et al. (2019), or Assumption 2.4 in Gurvich and Whitt (2009).

The coefficient matrix of SPP(F),

R 0

A −1

 , (3.1)

57

has m+n linearly independent rows and mn+1 columns. Then any optimal basis will have

m + n rows and m + n columns. Moreover, any optimal basic feasible solution (BFS) to

SPP(F) will have at most m+ n positive variables among (x, ρ). In any non-trivial system,

ρ > 0. Then, at most m+ n− 1 elements of x will be positive in an optimal BFS.

If exactly m + n − 1 elements among x are positive in an optimal BFS, we call that a

non-degenerate optimal BFS and the associated basis a non-degenerate basis.

If less than m + n − 1 elements of x are positive in an optimal BFS, we call that a

degenerate optimal BFS. A degenerate optimal BFS can be represented by many different

bases by changing the basis elements that correspond to zero entries in the solution. If we

have a degenerate optimal BFS, we call all its associated bases degenerate bases.

If a linear program has a unique optimal solution, it is necessarily a BFS. However, if a

linear program has multiple solutions, it has optimal BFSs and optimal non-basic solutions.

We extend the definition of non-degeneracy to non-basic solutions as well: if any optimal

solution of SPP(F) has at least m+n−1 elements of x positive, we call that a non-degenerate

optimal solution. Note that degenerate solutions are always basic: they can be appended by

arbitrary (i, j) with xij = 0 until the basis size (including ρ) reaches m+ n.

We assume that DSPP(F) has a unique solution, but would like to make the distinction

between DSPP(F), which is defined for a fully flexible system, and the dual of the SPP

for an arbitrary sparse graph S. Intuitively, we want to prune a fully flexible graph, whose

SPP(F) satisfies Assumptions A1.-A3., and obtain a sparse graph S whose SPP(S) still

satisfies Assumptions A1.-A3.. Then A3. for S would imply that the sparse S can achieve

a single resource pool in heavy traffic, i.e., CRP holds for S. Under CRP, it is expected

that there exist asymptotically optimal scheduling policies in heavy traffic for S that attain

performance close to that of F , i.e., the sparse design S has good performance.

Let SPP(F) have κ optimal bases. Let Bk, k ∈ {1, . . . , κ} denote the optimal bases to

SPP(F). Each Bk consists of basic variables (xk
∗
, ρ∗). However, we will sometimes abuse

58

notation and use Bk to denote the set of arcs corresponding to basic variables of Bk, rather

than the basic variables themselves. Then each Bk ⊂ F is a flexibility design itself, for which

we can write SPP(Bk). If Bk is a non-degenerate optimal basis, all xk
∗

ij > 0 for (i, j) ∈ Bk.

The next lemma, which is an application of Proposition 3 in Harrison and López (1999),

suggests that in that case, Bk itself is a sparse design with m + n − 1 arcs that achieves a

single resource pool in heavy trafffic.

Lemma 3. Let B be a non-degenerate optimal basis to SPP(F). Then SPP(B) has a unique

non-degenerate solution, and DSPP(B) has a unique solution.

Proof. Let B be a basis to SPP(F) under Assumptions A1.-A3.. Then the following system

has a unique solution with ρ∗ = 1:

RB 0

AB −1


xB

ρ

 =

λ
0

 ,

where RB and AB are matrices that denote the columns of R and A that correspond to the

basis B. The unique solution of this system is feasible for SPP(B). It suffices to show that

in SPP(B), ρ∗ is never strictly less than one. Indeed, if there exists a solution with ρ̃ < 1

to SPP(B), it is feasible to SPP(F). But then Assumption A2. is violated, so ρ̃ < 1 is not

possible.

Then SPP(B) has a unique non-degenerate solution. By Proposition 3 in Harrison and

López (1999), DSPP(B) has a unique solution, and B is a connected graph.

This result also suggests that if there exists a non-degenerate optimal basis to SPP(F),

that would be a sparse design with m+n−1 arcs and good performance. However, existence of

a non-degenerate optimal basis is not a computationally easy property to establish if SPP(F)

has multiple solutions. Existence of a non-degenerate solution (not necessarily basic) in an

LP was established in Corollary 1 of Tijssen and Sierksma (1998). With some modifications

59

for our problem, the corollary states

A dual LP-model has a unique and degenerate optimal solution, if and only

if the corresponding primal LP-model has multiple optimal solutions of which at

least one is non-degenerate.

This result would imply that if we could show that the unique solution to DSPP(F) is de-

generate, then SPP(F) has a non-degenerate solution. However, since this non-degenerate

solution is not necessarily basic, it may not be sparse at all. Unfortunately, this characteri-

zation does not extend to basic solutions. That is, the characterization is incomplete when

only basic solutions are considered; if the dual LP has a unique and degenerate optimal BFS,

then it can only be concluded that the primal LP has multiple solutions. (see Theorem 5.6.1

in Sierksma and Zwols (2015)).

To establish the existence of a non-degenerate basis, one could enumerate all optimal

BFS and check whether there exists a non-degenerate one, but the number of extreme points

of the feasible set grows exponentially as m and n grow. Even starting at an optimal BFS, if

it is degenerate, it has O(mn) neighboring basic solutions to check, none of them guaranteed

to be non-degenerate. Therefore, in practice, we need a computationally better method to

build a sparse graph with good performance.

To that end, first, we extend the result in Lemma 3 to non-basic non-degenerate solutions.

Lemma 4. Let S ⊆ F be a connected graph. If there exists non-degenerate optimal solution

to SPP(S) that uses the entire graph S then DSPP(S) has a unique optimal solution (y∗, z∗)

where y∗ > 0 and z∗ > 0, componentwise.

Proof. If there exists a non-degenerate optimal solution x to SPP(S) that uses the entire

graph, we have xij > 0 for all (i, j) ∈ S. Then, complementary slackness implies that any

60

feasible solution of the dual is optimal if

yTRS − zTAS = 0,

zT e = 1.
(3.2)

Rewritten in matrix form, the system is

[
yT zT

] RS 0n×1

−AS -1m×1

 =

0|S|×1
1

 .

Consider the coefficient matrix of this system. Because S is connected, it has at least m+n−1

arcs. Moreover, the columns of this matrix are a subset of the rows of the coefficient matrix

3.1, which are linearly independent. Then this coefficient matrix has rank m + n, which is

equal to the number of unknowns in system 3.2. Then, system 3.2 has a unique solution,

implying that DSPP(S) has a unique optimal solution. By Lemma 2.3 in Atar et al. (2022),

y∗ > 0 and z∗ > 0, componentwise.

This extension enables us to conclude that DSPP(S) has a unique solution if we can find

a solution to SPP(S) that uses all the arcs in a connected sparse S. To be able to construct

such a solution to SPP(S), we need to choose S carefully. Because S ⊆ F , any solution to

SPP(S) that uses all the arcs in S will be a solution to SPP(F). Then to choose S, we can

safely remove the arcs in F that are never used in any solution.

As an intermediary tool, we define the set of arcs that are used in some BFS of SPP(F)

as

G =
{
(i, j) ∈ F : ∃Bk, k ∈ {1, . . . , κ} s.t. xk

∗
ij > 0

}
.

In other words, G is the support graph of all BFS to SPP(F). We would like to note that

G is not necessarily sparse. In the worst case, G = F since all arcs may be used in some

61

solution to SPP(F).

In practice, G may be obtained by solving a series of the linear programs. Algorithm 1

suggests a procedure for obtaining G.

Algorithm 1: Construction of G
Input : F

1 Set R = F , G′ = ∅.

2 while R ≠ ∅ do

3 Fix (i′, j′) ∈ R.

4 Solve the linear program

max
x
{xi′j′ : Rx = λ, Ax = 1, x ≥ 0}

and obtain an optimal solution x∗.

5 Update G′ = G′ ∪ {(i, j) ∈ F : x∗ij > 0}.

6 Update R = R \ (G′ ∪ {(i′, j′)}).

7 end while

8 Set G = G′.

Return: G

It can be seen that because (i′, j′) is removed from R in each iteration, the algorithm

terminates. If

max
x
{xi′j′ : Rx = λ, Ax = 1, x ≥ 0} = 0

for some (i′, j′), then (i′, j′) /∈ G and xi′j′ = 0 in all iterations. Such (i′, j′) are never included

in G′.

62

On the other hand, if

max
x
{xi′j′ : Rx = λ, Ax = 1, x ≥ 0} > 0

for some (i′, j′), then (i′, j′) ∈ G and (i′, j′) ∈ G′ for that iteration.

Therefore, Algorithm 1 constructs G by solving fewer than mn simple linear programs.

Under Assumption A3., we have the following useful properties for G.

Lemma 5. (Properties of G)

1. There exists a solution x to SPP(F) with xij > 0 for all (i, j) ∈ G.

2. G is connected.

3. All cycles in G are breakeven.

Proof. 1. By definition, for any (i, j) ∈ G, there exists a solution x(i,j) to SPP(F) where

x
(i,j)
ij > 0. Convex combinations of solutions to a linear program are solutions to the

linear program. Then, taking the convex combination of solutions x(i,j),

x∗ =
∑

(i,j)∈G
α(i,j)x(i,j),

∑
(i,j)∈G

α(i,j) = 1, α(i,j) > 0,

we obtain a solution x∗ to SPP where all arcs in G are used.

2. Assume to the contrary that G is not connected. Then G has at least two components.

We will show that DSPP(F) has multiple solutions when G has two components, in

order to avoid notational burden. The same idea works when G has arbitrary number

of components by picking an arbitrary couple of the components.

63

Let C1 and C2 be the two components of G. By complementary slackness,

µijyi = zj , i ∈ I(C1), j ∈ J(C1)

µi′j′yi′ = zj′ , i′ ∈ I(C2), j
′ ∈ J(C2)∑

j∈J(C1)

zj +
∑

j′∈J(C2)

zj′ = 1,

∑
i∈I(C1)

λiyi +
∑

i′∈I(C2)

λi′yi′ = 1.

We will perturb y and z and obtain another optimal solution to DSPP(F). Fix i∗ ∈

I(C1), and fix i∗′ ∈ I(C2). Let

ȳi∗ = yi∗ + ϵ,

where ϵ > 0. Then to preserve feasibility, we perturb the rest of yi, zj in component

C1 such that

ȳi = yi +
yi
yi∗

ϵ ∀i ∈ I(C1),

z̄j = zj +
zj
yi∗

ϵ ∀j ∈ J(C1).

This new solution satisfies µij ȳi = z̄j for i ∈ I(C1), j ∈ J(C1) by construction.

Similarly, let

ȳi′ = yi′ −
yi′

yi∗′
δ ∀i′ ∈ I(C2),

z̄j′ = zj′ −
zj′

yi∗′
δ ∀j′ ∈ J(C2).

64

Now we need to show that ϵ, δ > 0 exist such that

∑
j∈J(C1)

z̄j +
∑

j′∈J(C2)

z̄j′ = 1,

∑
i∈I(C1)

λiȳi +
∑

i′∈I(C2)

λi′ ȳi′ = 1.

These equalities are satisfied if

∑
j∈J(C1)

zj
yi∗

ϵ−
∑

j′∈J(C2)

zj′

yi∗′
δ = 0,

∑
i∈I(C1)

λi
yi
y∗i

ϵ−
∑

i′∈I(C2)

λi′
yi′

yi∗′
δ = 0.

But this system is consistent for some ϵ, δ > 0 since

∑
i∈I(C1)

λi
yi
y∗i

=
∑

i∈I(C1)

 ∑
j∈J(C1)

µijxij

 yi
yi∗

=
1

yi∗

∑
i∈I(C1)

∑
j∈J(C1)

µijxijyi

=
1

yi∗

∑
i∈I(C1)

∑
j∈J(C1)

xijzj

=
1

yi∗

∑
j∈J(C1)

zj
∑

i∈I(C1)

xij

=
∑

j∈J(C1)

zj
y∗i

,

where x is an optimal solution to the primal problem. Similarly,

∑
i′∈I(C2)

λi′
yi′

yi∗′
=

∑
j′∈J(C2)

zj′

yi∗′
.

65

Then we choose ϵ, δ > 0 such that

ϵ

δ
=

∑
j∈J(C1)

zj
y∗i∑

j′∈J(C2)
zj′
yi∗′

,

δ < yi∗′ .

Then the solution ȳ, z̄ is optimal for DSPP(F), contradicting the uniqueness of the

solution. Then G must be connected.

3. Let W ⊆ G be a cycle of G, where

W = {(j1, i1), (i1, j2), (j2, i2), . . . , (jk, ik), (ik, j1)}.

Because DSPP(F) has a unique solution and there exists a solution to SPP(F) that

uses the entire G, complementary slackness implies that for any (i, j) ∈ G, we have

yi = zj/µij . Consider the cycle W .

yi1 =
zj1
µi1j1

=
zj2
µi1j2

yi2 =
zj2
µi2j2

=
zj3
µi2j3

...

yik =
zjk
µikjk

=
zj1
µikj1

.

66

Then,

zj1 = zj2
µi1j1
µi1j2

= zj3
µi2j2µi1j1
µi2j3µi1j2

= · · · = zjk
µik−1jk−1

. . . µi2j2µi1j1
µik−1jk . . . µi2j3µi1j2

= zj1
µikjkµik−1jk−1

. . . µi2j2µi1j1
µikj1µik−1jk . . . µi2j3µi1j2

,

implying that the cycle multiplier γ(W) satisfies

γ(W) =
µikjk . . . µi2j2µi1j1
µikj1 . . . µi2j3µi1j2

= 1.

Then W is a breakeven cycle.

Next, we show that any basis B is a forest. In other words, any BFS to SPP(F) will

either be a tree, or contain several disconnected trees.

Lemma 6. Support graph of any basis B to SPP(F) is cycle free. That is, any basis B is a

forest.

Proof. Assume to the contrary that support of B contains a cycle

W = {(j1, i1), (i1, j2), (j2, i2), . . . , (jk, ik), (ik, j1)}.

67

Let x denote the unique solution determined by B. By feasibility,

∑
j:(i,j)∈W

µijxij +
∑

j:(i,j)∈W c

µijxij = λi, ∀i ∈ {1, . . . , n}

∑
i:(i,j)∈W

xij +
∑

i:(i,j)∈W c

xij = 1, ∀j ∈ {1, . . . ,m}.

Note that W ⊆ G. By Lemma 5, W is a breakeven cycle. Then we can perturb x on W

and remain feasible. Let P (j1, k) ⊆ W denote the path from node j1 to any other node k in

the cycle W . Let P (j1, k) denote the forward arcs on this path, and let P (j1, k) denote the

backward arcs. For all arcs (i, j) ∈ W , the perturbed solution is

x̄ij =


xij + γ(P (j1, j))ϵ, if (i, j) ∈ P (j1, j)

xij − γ(P (j1, j))ϵ, if (i, j) ∈ P (j1, j)

for some ϵ > 0. We now show that the perturbed solution is feasible. All nodes in cycle W

appear in exactly one forward and one backward arc through the cycle. Then for each ir

and jr ̸= j1 in the cycle,

x̄irjr−1
+ x̄irjr = xirjr−1

+ xirjr

µirjr x̄irjr + µir+1jr x̄ir+1jr = µirjrxirjr + µir+1jrxir+1jr ,

maintaining feasibility. For j1,

x̄i1j1 + x̄ikj1 = xi1j1 + ϵ+ xikj1 − γ(W)ϵ = xi1j1 + xikj1 ,

since γ(W) = 1. Then x and x̄ are both solutions determined by B, contradicting the

uniqueness of x. Then B cannot contain a cycle.

68

Lemma 5 and Lemma 6 carry essential insights for our main result. Firstly, there exists

a potentially non-basic solution to SPP(F) that uses all arcs in G. Then, xij from any other

feasible solution that uses a subgraph of G can be propagated to the entirety of G. Carefully

doing so might enable us to move from a sparse graph with undesirable properties (such as

multiple solutions to the dual SPP) to a still-sparse graph that uses additional arcs from G

that satisfies Assumptions A1.- A3.. Secondly, connectivity of G is essential to use Lemma

4. If G was not connected, there would be no chance of constructing a connected sparse

graph and utilize Lemma 4 to conclude that the sparse graph has a unique solution for the

associated DSPP. Thirdly, all cycles being breakeven implies that all cycles conserve flow.

In other words, during the propagation of an existing solution x to another solution on G,

cycles may be used to preserve feasibility, but they cannot discharge any supply or demand

imbalance that occur at nodes.

Finally, Lemma 6 implies that a degenerate basis B with τ components contains exactly

m+n− τ arcs. Lemmas 5 and 6 equip us for the main result, presented in the next section.

3.4 Sparse Design of the Flexibility Graph

Up to this point, we have seen that we can solve SPP(F) and obtain a BFS x∗. If x∗ is a

non-degenerate BFS, associated optimal basis B is a sparse design with a unique solution

to DSPP(B) (Lemma 3). If x∗ is a degenerate optimal BFS, DSPP(B) may have multiple

solutions. But if there exists a connected non-degenerate (potentially non-basic) solution to

SPP(F), then for associated S, DSPP(S) has a unique solution (Lemma 4).

If x∗ is a degenerate optimal BFS, it has fewer than m + n − 1 entries so that it is

disconnected. We can use G and augment the basis of x∗ to obtain a sparse graph S on

which there exists a non-degenerate non-basic solution to SPP(F). In the next proposition

we show that any component of a disconnected optimal solution of SPP(F) has at least one

incoming and one outgoing arc in G. In this context, a disconnected component C is a strict

69

subgraph of F , and I(C) ⊂ I, J(C) ⊂ J . After establishing that C is actually connected

to the rest of the graph in G, with at least one incoming and one outgoing arc, we propose

to append any initial disconnected solution using those incoming and outgoing arcs for each

component in G. Our main result is an application of the proposition, which states that this

procedure results in a sparse S with a unique solution to DSPP(S).

Proposition 4. Let C be a component of a disconnected optimal solution to SPP(F). There

exists (i∗, j†) ∈ G where i∗ ∈ I(C) and j† ∈ J(Cc), and (i†, j∗) ∈ G where j∗ ∈ J(C) and

i† ∈ I(Cc).

Proof. Because C is a component in a disconnected optimal solution x∗ to SPP(F), we have

RCx∗C = λC

ACx∗C = 1

where elements of x∗C correspond to (i, j) ∈ C, rows of RC and elements of λC correspond

to queues in I(C) and rows of AC correspond to servers in J(C). Consider the SPP and the

DSPP restricted to this component.

SPP (C) min
xC ,ρC

ρC

s.t. RCxC = λC

ACxC ≤ ρC1

xC ≥ 0

ρC ≥ 0.

70

DSPP (C) max
yC ,zC

yTCλC

s.t. yTCRC − zTCAC ≤ 0

zTC1 ≤ 1

zC ≥ 0.

We claim that in this restricted system,

1. The optimal objective value of SPP(C) is ρ∗C = 1 in all solutions (ρ∗C ,x
∗
C). Indeed,

assume to the contrary that ρ∗C < 1. Then we would have ACx∗C < 1 in all solutions

to SPP(C). Because C is a component implied by a disconnected optimal solution of

SPP(F), any solution that satisfies ACx∗C < 1 is part of a feasible solution to SPP(F).

Then (x∗C ,x
∗
Cc) is a feasible solution to SPP(F), where x∗Cc corresponds to elements

of x∗ not associated with C, contradicting assumption A1..

2. In all optimal solutions, ACx∗C = 1. Otherwise, because x∗C is part of a feasible solution

to SPP(F), we contradict heavy traffic assumptions for SPP(F).

3. C is connected, so DSPP(C) has a unique solution (y∗C , z
∗
C) where y∗C > 0 and z∗C > 0

componentwise. This is true by Lemma 4.

By Lemma 5, there exists an optimal solution x̃ on G where x̃ij > 0 for all (i, j) ∈ G. Also

by Lemma 5, G is connected. Hence, either (i∗, j†) where i∗ ∈ I(C), j† ∈ J(CcC) or (i†, j∗)

where i† ∈ I(Cc), j∗ ∈ J(C) exists in G.

Case 1: Let (i†, j∗) ∈ G. We will show that (i∗, j†) ∈ G exists. Because (i†, j∗) ∈ G, we

have x̃i†,j∗ > 0. Then the vector

w =

 ∑
i∈I(Cc)

x̃ij


j∈J(C)

71

has all non-negative, and at least one strictly positive component. Specifically, wj∗ > 0.

Note that by construction, servers in J(C) dedicate their remaining capacity 1-w to queues

in I(C).

We want to show that (i∗, j†) ∈ G exists. Assume to the contrary that such incoming arc

does not exist. Then the demand of all i ∈ I(C) are satisfied by j ∈ J(C) and x̃ satisfies

RC x̃C = λC

AC x̃C = 1−w,

where x̃C consists of elements of x̃ corresponding to arcs in C. By strong duality,

y∗C
TRC x̃C = y∗C

TλC = 1. (3.3)

But by complementary slackness,

y∗C
TRC x̃C = z∗C

TAC x̃C

= z∗C
T (1−w)

= 1− z∗C
Tw

< 1,

where the last inequality follows from z∗C > 0. Then this is a contradiction with Equation

3.3, there must exist (i∗, j†) ∈ G.

Case 2: Let (i∗, j†) ∈ G. We will show that (i†, j∗) ∈ G exists. Because (i∗, j†) ∈ G, we

have x̃i∗,j† > 0. Then the vector

w =

 ∑
j∈J(Cc)

µij x̃ij


i∈I(C)

72

has all non-negative, and at least one strictly positive component. Specifically, we have

wi∗ > 0. Note that by construction, queues in I(C) receive their remaining demand λC −w

from servers in J(C).

We want to show that (i†, j∗) ∈ G exists. Assume to the contrary that such incoming arc

does not exist. Then x̃ satisfies

RC x̃C = λC −w

AC x̃C = 1,

where x̃C consists of elements of x̃ corresponding to arcs in C. By complementary slackness,

y∗C
TRC x̃C = z∗C

TAC x̃C

= z∗C
T1

= 1. (3.4)

But by strong duality,

y∗C
TRC x̃C = y∗C

T (λC −w)

= 1− y∗C
Tw

< 1,

where the last inequality follows from y∗C > 0. Then this is a contradiction with Equation

3.4, there must exist (i†, j∗) ∈ G.

Using the idea that each component has an incoming and and outgoing arc in G, we

introduce Algorithm 2 that performs the connection and returns the sparse design S.

Algorithm 2 works as follows. We start with a degenerate basic solution B. By Lemma

73

6, it is a forest, so that it consists of τ trees. We initialize the collection of components C to

consist of these trees.

Unless we have only one component on hand, we pick an arbitrary component C0 from

the collection C. The idea is to pick an outgoing arc until we create a cycle. That is, we

move to another component by picking an outgoing arc. Because there exists an incoming

and an outgoing arc for each component, we can continue until the ending queue is in one

of the components already visited. If we return to one of the components we visited in this

iteration, it means we have completed a cycle. We merge the components in the cycle, which

reduces the cardinality of the collection C. Then we proceed to picking an outgoing arc

again.

When we start with an arbitrary component C0 and connect until we have a cycle, the

we obtain either an intermediate cycle or a self-contained cycle. An intermediate cycle

is created if the cycle does not return to the initial component C0 but returns to one of

the intermediate components visited. In this case, C0 does not receive an incoming arc.

We merge the components making up the cycle, and continue connecting this with other

components. Eventually, because the number of components keep reducing and there exists

an outgoing arc for each component, there will be an outgoing arc that will be the incoming

arc to C0. With that incoming arc to C0, we complete a self-contained cycle and we can

start the iteration again by picking another arbitrary starting component if |C| > 1.

Because each introduced cycle is part of G, they are breakeven cycles. Therefore, intro-

ducing these cycles preserves flow conservation at each node. This procedure results in a

connected sparse graph S on which there exists an optimal solution to SPP(S) that uses

the entire S. In the next Lemma, we show that each introduced cycle results in another

optimal solution to SPP(F). Then we show that this procedure terminates in finite time.

The following Theorem after that is our main result.

Lemma 7. Let C = C1, . . . , Ck be components of a disconnected optimal solution x∗ to

74

SPP(F). Let the set of arcs Y = {(jC1
, iC2

), (jC2
, iC3

), . . . (jCk
, iC1

)} ∈ G introduce a cycle

that connects these components, where iCr
is a queue in component Cr and jCr

is a server

in component Cr.

Then, there exists x̃∗ij > 0 for (i, j) ∈ C ∪ Y such that (x̃∗, x∗Cc) is an optimal solution to

SPP(F), where x∗Cc refers to the part of x∗ not associated with C.

Proof. Let PCr(iCr
, jCr

) denote a path from node iCr
to jCr

in component Cr. Such a path

always exists, because Cr is connected. We will propagate some flow on these paths through

the introduced cycle. Let

W = {(jC1
, iC2

), PC2(iC2
, jC2

), (jC2
, iC3

), PC3(iC3
, jC3

), . . . (jCk
, iC1

), PC1(iC1
, jC1

)}

denote the cycle that arcs in Y introduce. Let P (jC1
, k) ⊆ W denote the path from jC1

to

any other node in this cycle. Note that arcs of the form (jCr
, iCr

) are forward arcs. The

set of forward arcs in path P (jC1
, k) is denoted by P (jC1

, k). Similarly, arcs of the form

(iCr
, jCr

) are backward arcs and the set of backward arcs in path P (jC1
, k) is denoted by

P (jC1
, k).

We choose the propagation amount δ such that

δ < x∗ij
1

γ(P (jC1
, j))

∀(i, j) ∈ P (jC1
, jC1

).

This ensures that the updated flow will be positive on all arcs in W . The updated flow is

x̃∗ij = x∗ij + γ(P (jC1
, j))δ, if (i, j) ∈ W,

x̃∗ij = x∗ij − γ(P (jC1
, j))δ, if (i, j) ∈ W

Because W ∈ G, it is a breakeven cycle, so that γ(P (W)) = 1. Then if δ amount of flow is

pushed from node jC1
, γ(P (jC1

, jC1
))δ = γ(W)δ = δ is received at node jC1

. Then for each

75

server node, we have

∑
i∈
⋃k

r=1 I(Cr)

x̃∗ij = 1 ∀j ∈
k⋃

r=1

J(Cr). (3.5)

Each queue node is adjacent to a forward arc and a backward arc in the cycle W . For each

queue node, the forward arc is traversed before the backward arc in the cycle. If j′ leads the

forward arc to queue i in cycle W , and j′′ leads the backward arc from queue i in cycle W ,

µij′x̃
∗
ij′ = µij′x

∗
ij′ + µij′γ(P (jC1

, j′))δ

µij′′x̃
∗
ij′′ = µij′′x

∗
ij′′ − µij′′γ(P (jC1

, j′′))δ.

But j′ and j′′ have only two arcs between them in the cycle: (j′, i) and (i, j′′). Then

γ(P (jC1
, j′′)) =

µij′γ(P (jC1
, j′))

µij′′
.

Then for queue i, we have

µij′x̃
∗
ij′ + µij′′x̃

∗
ij′′ = µij′x

∗
ij′ + µij′′x

∗
ij′′ ,

so that feasibility is preserved. Then more generally, we have

∑
j∈
⋃k

r=1 J(Cr)

µij x̃
∗
ij = λi ∀i ∈

k⋃
r=1

I(Cr). (3.6)

Hence, equations 3.5 and 3.6 imply that x̃∗ preserves feasibility in the collection of com-

ponents C1, . . . Ck. The rest of the network is not affected. Then (x̃∗,x∗Cc) is an optimal

solution to SPP(F).

76

Algorithm 2: Sparse Flexibility Design
Input : Optimal basis B, support graph G

1 Collection of components: C := B.
2 S ′ := B.
3 while |C| > 1 do
4 Pick an arbitrary C0 ∈ C.
5 Initialize component counter k = 0, ik+1 = ∅.
6 while ik+1 /∈ C0 do
7 Pick outgoing arc (ik+1, jk) ∈ G from Ck to some Ck+1 ∈ C.
8 if ∃ k∗ ∈ {1, . . . , k} s.t. ik+1 ∈ I(Ck∗) then
9 Add cycle inducing arcs to the design

S ′ ← S ′ ∪ {(ik∗+1, jk∗), (ik∗+2, jk∗+1) . . . (ik, jk−1), (ik∗ , jk)}.
10 Merge the components in this cycle:

Ck∗ ←
{⋃k

t=k∗ Ct ∪ {(ik∗+1, jk∗), (ik∗+2, jk∗+1) . . . (ik, jk−1), (ik∗ , jk)}
}

11 Remove merged components from the collection: C ←
(
C \
⋃k

t=k∗+1Ct

)
12 k ← k∗

13 else
14 k ← k + 1
15 end if
16 end while
17 Add cycle inducing arcs to the design

S ′ ← S ′ ∪ {(i1, j0), (i2, j1) . . . (ik, jk−1), (i0, jk)}.
18 Merge the components in this cycle:

C0 ←
{⋃k

t=0Ct ∪ {(i1, j0), (i2, j1) . . . (ik, jk−1), (i0, jk)}
}

.

19 Remove merged components from the collection C ←
(
C \
⋃k
t=1Ct

)
.

20 end while
Return: S := S ′

Lemma 8. Algorithm 2 terminates in a finite number of iterations.

Proof. We will show this by induction. Let |C| denote the number of components in C at the

start of the algorithm.

• Base Case: The outer loop starts with |C| = 1 component. The algorithm directly

terminates.

• Induction Hypothesis: The outer loop stars with |C| ≤ κ components, where 1 < κ < τ .

Assume that the algorithm terminates.
77

• Next Case: The outer loop stars with |C| = κ+1 components. An arbirary component

C0 ∈ |C| is picked. By Proposition 4, an outgoing arc (i1, j0) exists, where j0 ∈ J(C0)

and i1 ∈ I(C1) for some C1 ∈ C. Then (i1, j0) is an incoming arc to component C1.

By Proposition 4, an outgoing arc (i2, j1) exists, where j1 ∈ J(C1) and i2 ∈ I(C2) for

some C2 ∈ C.

– If C2 = C0, a cycle is completed. The algorithm merges C0, C1. The number of

components is reduced by one, so that the ending number of components |C| = κ.

By induction hypothesis, the algorithm terminates.

– If C2 ̸= C0, by Proposition 4, an outgoing arc (i3, j2) exists, where j2 ∈ J(C2)

and i3 ∈ I(C3) for some C3 ∈ C.

∗ If C3 ∈ {C0, C1} a cycle is completed. Components in the cycle are merged,

that corresponds to either two or three components being merged, so that

the ending number of components |C| ∈ {κ, κ− 1}. By induction hypothesis,

the algorithm terminates.

– If a cycle is not completed until Cκ−1, all the other components are already visited.

By Proposition 4, its outgoing arc must be towards one of the visited components,

resulting in a cycle being completed. Then the components in the cycle are merged

and |C| ∈ {κ, κ− 1, . . . , 1}. By induction hypothesis, the algorithm terminates.

With each cycle completion, the number of components is reduced by at least one. The

algorithm terminates when the number of components reaches one. Then the algorithm

terminates in finite number of operations.

Theorem 3. There exists a sparse flexibility design S with

|S| ≤ m+ n+min{m,n} − 2

78

such that DSPP(S) has a unique solution.

Proof. Let x∗ denote the initial basic solution to SPP(F). Consider Algorithm 2. We will

show that there exists an optimal solution x̃∗ on to SPP(S) that uses the entire graph. In

particular, we will show by induction that at each iteration, Algorithm 2 yields an optimal

solution to SPP(F). Then the ending S will have a solution to SPP(S) that uses the entire

S. Moreover, this proof implies that the Algorithm does not remove arcs from S, but

monotonically adds cycles.

By Lemma 8, the algorithm terminates. Let the algorithm terminate in L iterations. At

each iteration l, a cycle is introduced. Let rl denote the number of components merged in

iteration l. This also denotes the number of arcs added to S ′ in iteration l.

• Base Case: l = 1. The algorithm starts with |C| = τ components. At l = 1, we merge

2 ≤ rl ≤ τ components with a cycle W1. By Lemma 7, we can push δ1 > 0 flow on

this cycle, and there exists an optimal solution x̃∗1 to SPP(F) such that

[x̃∗1]ij > 0 for (i, j) ∈
{
(i, j) : x∗ij > 0

}
∪ {(i, j) ∈ W1}

Then optimality is preserved.

• Induction Hypothesis: Assume that at iteration l = ℓ, merge rℓ components by intro-

ducing cycle Wℓ, and there exists an optimal solution x̃∗ℓ to SPP(F) such that

[x̃∗ℓ]ij > 0 for (i, j) ∈
{
(i, j) : [x̃∗ℓ]ij > 0

}
∪ {(i, j) ∈ Wℓ} ,

so that optimality is preserved.

• Next Case: At iteration l = ℓ+1, we merge rℓ components by introducing cycle Wℓ+1.

By Lemma 7, we can push δℓ+1 > 0 flow on this cycle and there exists an optimal

79

solution x̃∗ℓ+1 to SPP(F such that

[x̃∗ℓ+1]ij > 0 for (i, j) ∈
{
(i, j) : [x̃∗ℓ+1]ij > 0

}
∪ {(i, j) ∈ Wℓ+1} ,

so that optimality is preserved.

Therefore, the algorithm preserves optimality in SPP(F) in each iteration. At the end, there

is only one component left and none of the added cycles are removed, implying that S is

connected. Restricting the static planning problem to S, by Lemma 4, DSPP(S) has a

unique solution.

Now we will show that |S| ≤ m + n + min{m,n} − 2. Let B be the starting optimal

degenerate basis to SPP(F) with τ trees. Then B consists of m+n−τ arcs. Let v(τ) denote

the number of arcs introduced to basis B by Algorithm 2. At iteration l, the algorithm

connects rl ≥ 2 components by introducing rl arcs to |S|, which reduces the number of

components by rl − 1. Then v(τ) = r1 + r2 + . . .+ rL. The algorithm terminates when the

number of components reaches one.

τ − (r1 − 1)− (r2 − 1)− . . .− (rL − 1) = 1,

r1 + r2 + . . .+ rL = τ + L− 1.

We have L ≤ τ − 1, the equality is realized if we reduce the components one by one. Then

v(τ) ≤ τ + (τ − 1) − 1 = 2(τ − 1). Because B is a forest, it can have at most min{m,n}

80

components. Then

|S| = m+ n− τ + v(τ)

≤ m+ n− τ + 2(τ − 1)

= m+ n+ τ − 2

≤ m+ n+min{m,n} − 2.

We have shown that by systematically introducing cycles to an initial degenerate basis,

we can obtain a sparse design S such that the heavy traffic and CRP assumptions hold

for S. When these assumptions hold for the system’s flexibility structure, performance

reasonably close to that of F is expected from control policies. In the next section, we

numerically demonstrate that indeed, S gets close to F in terms of performance. Moreover,

we demonstrate that haphazardly connected graphs starting from an initial basis B do not

necessarily perform better than B. Algorithm 2 provides a systematic way of connecting the

initial disconnected graph so as to obtain the CRP property.

3.5 Numerical Experiments

So far, we have assumed that Assumptions A1.-A3. hold for F , then constructed sparse S

ensuring Assumptions A1.-A3. still hold for S. We have argued that when these assump-

tions hold, S should have performance close to that of F . In this section, we numerically

justify that discussion. We compare the performance of S to that of F in different pre-limit

settings.

Our model is a discrete time parallel server system, and we adopt the MaxWeight policy

to schedule the system (Tassiulas and Ephremides 1990, Stolyar et al. 2004). We adapt the

description of MaxWeight given in Shi et al. (2019) to our setting. System dynamics are
81

as follows. Qi(t) denotes the length of queue i at the end of period t. At the beginning of

each time unit t ≥ 0, queue i sees a random number of arrivals denoted by Ai(t). For each

i, Ai(t) is distributed according to a truncated normal distribution, independently across

queues and periods. The distribution has mean λi, and is truncated below at zero and above

at 2λi. The distribution has coefficient of variation of 0.3.

After observing arrivals, each server j serves queue i at a rate of µij , deterministically.

When assumptions A1.-A3. hold and the service is deterministic, MaxWeight asymptoti-

cally minimizes

lim sup
T→∞

L(T)

where

L(T) =
1

T

T∑
t=1

∑
i∈I

E [y∗iQi(t)] ,

and y∗ is the unique solution of the associated DSPP (Eryilmaz and Srikant 2012). However,

when the DSPP associated with the system does not have a unique solution, MaxWeight has

no optimality guarantees.

In our system, MaxWeight works as follows. At each time unit t, the policy chooses a

82

processing schedule g(t) ∈ Rn
+ according to the linear program below.

(MW) max
g(t),x

∑
i∈I

(Qi(t− 1) + Ai(t))gi(t)

s.t. gi(t) ≤ Qi(t− 1) + Ai(t) ∀i ∈ I∑
j∈J :
(i,j)∈S

µijxij = gi(t) ∀i ∈ I

∑
i∈I:

(i,j)∈S

xij ≤ 1 ∀j ∈ J

g(t) ≥ 0

We consider two different systems, and compare F , the starting basis used as a flexibility

design B, an intermediate design with arcs added from the support graph to the starting

basis denoted by P , and our proposed design S.

The first system consists of m = 3 and n = 3, and Table 3.1 contains the service rate

and heavy traffic arrival rate information. SPP(F) has multiple solutions, and DSPP(F)

has a unique solution. To test the uniqueness of solutions in these LPs, we use the PUFAS

algorithm suggested in Appa (2002). We obtain G according to Algorithm 1.

Queues
λi = 10 10 12

Se
rv

er
s µi1 = 10 10 6
µi2 = 15 15 9
µi3 = 15 6 9

Table 3.1: Service and heavy traffic arrival rates for simulated system 1

F , B, P and S for the first system are given in Figure 3.4. In F , all arcs except the blue

highlighted one are also present in the support graph G.

To test the performance in pre-limit settings, we scale down the heavy traffic arrival rates

given in Table 3.1 by [0.9, 0.95, 0.99]. We run the system for 1000 time units for ρ = 0.9 and

83

(a) F (b) B (c) P (d) S

Figure 3.4: Graphs for simulated system 1

ρ = 0.95, and for 10,000 time units for ρ = 0.99. We calculate the long run average weighted

cost by taking the average values of 50 sample paths in each setting. We report the long-run

average costs in in Figure 3.5, and ratio of costs of F and S in Figure 3.6. The ratio of costs

of F and S at time T is defined as

D(T) = LS(T)
LF (T)

,

where LS(T) and LF (T) denote L(T) under designs S and F , respectively. For D(T), we

report the values starting at time 200 in order to allow the system to somewhat converge to

its steady state.

As can be seen in the figures, S significantly outperforms B and P , and performs very

close to F in all settings. As system load increases, performance of S gets closer to F .

The second system we consider consists of m = 6 servers and n = 9 queues, and Table

3.2 contains the service rate and heavy-traffic arrival rate information. Again, SPP(F) has

multiple solutions, and DSPP(F) has a unique solution, verified by PUFAS algorithm (Appa

2002). G is obtained using Algorithm 1.

F , B, P and S for the second system are given in Figure 3.7. In F , all arcs except the

blue highlighted ones are also present in the support graph G.

Similar to the first system, we scale down the heavy-traffic arrival rates given in Table

3.2 by [0.9, 0.95, 0.99]. We run the system for 1000 time units for loads 0.9 and 0.95, and for

84

(a) L(T) with load ρ = 0.9 (b) L(T) with load ρ = 0.95

(c) L(T) with load ρ = 0.99

Figure 3.5: Long-run Average Costs for Simulated System 1

85

(a) D(T) where ρ = 0.9 (b) D(T) where ρ = 0.95

(c) D(T) where ρ = 0.99

Figure 3.6: Relative Difference of Costs of S and F for Simulated System 1

86

Queues
λi = 16 25 36 1 36 25 81 144 9

Se
rv

er
s

µi1 = 28 35 1 7 1 1 1 1 21
µi2 = 1 40 48 8 1 1 1 1 1
µi3 = 20 1 30 5 30 1 1 60 1
µi4 = 1 1 1 1 96 80 144 192 1
µi5 = 1 1 1 1 1 1 63 84 1
µi6 = 1 1 1 1 1 1 72 96 24

Table 3.2: Service and heavy traffic arrival rates for simulated system 2

(a) F (b) B (c) P (d) S

Figure 3.7: Graphs for simulated system 2

10,000 time units for load 0.99. We calculate the long run average weighted cost by taking

the average values of 50 sample paths in each case. In Figure 3.8 we report the long-run

average costs, and in Figure 3.9, we report the ratio of costs of F and S.

We see that as the system load ρ gets closer to one, S gets closer to the performance of

F . Moreover, for the same pre-limit loads, the gap between the performance of S and F

is smaller for the first system. This implies that S has asymptotic performance closer to F

when the system is smaller, and the system load is closer to one; all consistent results with

the flexibility design literature. This example also highlights the importance of adding the

final two arcs, comparing P and S. Where P performs close to the disconnected solution B,

87

(a) L(T) with load ρ = 0.9 (b) L(T) with load ρ = 0.95

(c) L(T) with load ρ = 0.99

Figure 3.8: Long-run Average Costs for Simulated System 2

just by adding two arcs, S performs close to F .

3.6 Discussion and Conclusion

We considered the flexibility structure design problem in systems where the processing rates

are general. To our knowledge, this is the first work that addresses the design problem with

general processing rates.

We assumed that the full flexibility structure F satisfies the heavy traffic and CRP

88

(a) D(T) where ρ = 0.9 (b) D(T) where ρ = 0.95

(c) D(T) where ρ = 0.99

Figure 3.9: Relative Difference of Costs of S and F for Simulated System 2

89

assumptions, but allowed that SPP(F) can have multiple solutions. We showed that there

exists a sparse flexibility structure S with O(m+n) arcs that satisfies the same heavy traffic

and CRP assumptions, with the expectation that CRP would ensure performance close to

that of F .

We presented an algorithm that constructs the sparse design S, and numerically justified

our proposed design. We demonstrated that as expected, CRP property of S enables the

sparse design to achieve performance close to that of F . Our construction method that

builds instances to test our design indicates that degeneracy is actually not an uncommon

problem in the SPP.

It is important to note here that our design methodology only guarantees that CRP holds

for the sparse design S. In the terminology of Shi et al. (2019), our algorithm guarantees that

GCG > 0, as opposed to GCG > η where η does not depend on the solution to SPP(S). An

interesting future research direction is to consider the design problem for general processing

rates, but trying to ensure GCG > η. If we can do that, intuitively, we expect that the

performance gap between S and F would get smaller for pre-limit systems such as the

simulated system 2 in Section 3.5.

Another immediate future research direction is to theoretically show that S achieves

performance close to F with policies other than MaxWeight, and possibly under random

service realizations. MaxWeight minimizes a specifically weighted linear cost of keeping

backlog, but arbitrary linear costs are also interesting. We suspect that threshold-type

policies similar to Bell and Williams (2005) might be promising for arbitrary linear holding

costs.

We could also consider pre-limit systems approaching heavy-traffic. In the existing liter-

ature, projection of such systems to the boundary of the capacity region is a more straight-

forward task because the capacity region has one “smooth” face. The same task becomes a

non-trivial when processing rates are general, because the capacity region might have several

90

faces with “kink” points in between. In such cases, it is unclear which point on the boundary

of the capacity region best captures the behavior of a pre-limit system.

A more ambitious goal would be to address the design problem when F has multiple

resource pools in heavy traffic. Varma and Maguluri (2021) address this problem when the

system has flow conservation, but the problem remains open when the processing rates are

general.

Since flow conservation might not be observed in practice, we believe understanding

systems with general processing rates more deeply holds significant practical importance.

91

CHAPTER 4

EXTENSIONS AND RELATED TOPICS

In this chapter, we address several additional topics related to the first two chapters. In

Section 4.1, we explore parameter agnostic policies that are not switching curve policies.

Some of the results in Chapter 2 naturally extend to more general policies, and we also

show a new instability result for one of the cases where previous results do not extend. In

Section 4.2, we highlight an interesting connection between the flexibility problem addressed

in Chapter 3 and the so-called generalized transportation problem. Using this connection,

we present an application of Algorithm 2 to a special setting. The same connection also

allows us to derive a new characterization of the uniqueness of the solution of the static

planning problem in Section 4.2.2.

4.1 Instability Results for Non-Switching Curve Parameter Agnos-

tic Policies

In Chapter 2, we derived sufficient conditions for instability for various cases of switching

curve policies. Many of these structures that we imposed on the parameter agnostic policies

can actually be relaxed, and the instability results continue to hold.

In Section 2.3, we showed a sufficient condition for instability using a test function

w1Q̄1(t) + w2Q̄2(t). We showed that this test function has positive drift everywhere in

the state space. Our proof did not make use of the fact that service decision was made

according to a switching curve policy. The only critical assumption related to the policy was

that in the entire state space, only three of the four possible service configurations was used.

Therefore, the instability condition in 2 naturally still holds if the parameter agnostic policy

is an arbitrary one that only uses three of the four available service configurations.

Similarly, in Section 2.4, we derived a sufficient condition for instability using a test

92

function that utilizes the fluid model, and we showed that the test function has positive drift

everywhere. Then this result naturally extends to all parameter agnostic policies where the

servers are synchronized. That is, as long as both servers serve the same queue at the same

time, the sufficient condition for instability in Proposition 3 is still valid.

The instability result for intersecting switching curves cannot be similarly extended nat-

urally. Intuitively, this is due to these policies utilizing a service configuration that is also

used in maximally stable policies, providing stabilizing properties to the policy. However,

we are able to extend the instability result for intersecting switching curves to cases where

the policy has a “free corridor”. More specifically, let the policy be such that for some C > 0,

• when Q2(t) ≥ Q1(t) + C, both servers serve queue 2,

• when Q2(t) ≤ Q1(t)− C, both servers serve queue 1,

• when Q1(t)−C < Q2(t) < Q1(t)+C, the policy is arbitrary, it may use all four service

configurations in this free corridor.

Proposition 5. If the policy has a “free corridor” of the form q1 ± C for some C > 0,

and both servers serve queue 2 above the corridor, and both servers serve queue 1 below the

corridor, there exist λ ∈ Λ(µ) such that the system is unstable.

Proof. Consider a symmetrical parameter setting where λ1 = λ2 := λ, µ11 = µ22 := µ and

µ12 = µ21 = µ′ with λ ∈ Λ(µ). We will consider the uniformized discrete time Markov chain

underlying the continuous time Markov chain (Q(t))t≥0, with the uniformization constant

P = 2λ+ 2µ+ 2µ′. Let s1 ≥ 0 and s2 ≥ 0 denote the service rates to queue 1 and queue 2

determined by the scheduling policy.

We will show that there exists a test function V : Z2
+ → R+ such that for a finite set

E0 ⊂ Z2
+,

1. For all q /∈ E0, ∆V (q) ≥ 0,

93

2. There exists some q∗ /∈ E0 such that for all q ∈ E0, V (q∗) > V (q),

3. V (q) is bounded below and for all q ∈ E0, ∆V (q) < A for some A <∞.

The drift operator ∆V (q) is defined as

∆V (q) := E[V (q(1))− V (q(0)) | q(0) = q].

These conditions will imply that (Q(t))t≥0 cannot be positive recurrent (Meyn and Tweedie

2012). For some M > 0 whose value will be discussed later, let the proposed test function

V (q) = q1 + q2 +M

(C + 1)|q1 − q2|+
C∑
i=1

||q1 − q2| − i|

 .

This test function was initially suggested by Farias et al. (2005) for a simple parallel server

system setting where service rates are identical, and the jobs generate penalties if they decide

to migrate to the dedicated queue of another server.

For the proposed V , the last two conditions hold. We will show that condition 1 holds.

To do that, we define the following sets to distinguish where the scheduling policy employs

different service configurations.

A1 = {(q1, q2) ∈ Z2
+ : q2 ≤ q1 − C, s1 = µ+ µ′, s2 = 0},

A2 = {(q1, q2) ∈ Z2
+ : q2 ≥ q1 + C, s1 = 0, s2 = µ+ µ′},

B1 = {(q1, q2) ∈ Z2
+ : q1 − C < q2 < q1 + C, s1 = µ, s2 = µ},

B2 = {(q1, q2) ∈ Z2
+ : q1 − C < q2 < q1 + C, s1 = µ′, s2 = µ′},

B3 = {(q1, q2) ∈ Z2
+ : q1 − C < q2 < q1 + C, s1 = µ+ µ′, s2 = 0},

B4 = {(q1, q2) ∈ Z2
+ : q1 − C < q2 < q1 + C, s1 = 0, s2 = µ+ µ′}.

Figure 4.1 illustrates how the state space is partitioned into these sets.

94

Figure 4.1: Partitioning of the State Space of (Q(t))t≥0

In each of these sets, V must have non-negative drift. We will consider each set separately.

Let ∆VS(q) denote the drift in set S ∈ {A1, A2, B1, B2, B3, B4}. Because of the symmetries

in the parameter setting, some of these sets have the same drift expression with the proposed

V .

∆VA1
(q) = ∆VA2

(q) =
2λ− µ− µ′

P
+M

[
(2C + 1)

(−µ− µ′)
P

]
(4.1)

∆VB1
(q) =

2λ− 2µ

P
+M

[
2λ+ 2µ

P

]
(4.2)

∆VB2
(q) =

2λ− 2µ′

P
+M

[
2λ+ 2µ′

P

]
(4.3)

For sets B3 and B4, two additional cases should be considered. Let ℓ := |q1 − q2|, and note

that in B3 and B4, 0 ≤ ℓ < C. Again due to symmetries in the assumed parameter setting,

the drift conditions for some these cases are the same.

95

• If ℓ = |q1 − q2| = q1 − q2 ≥ 0,

∆VB3
(q) =

2λ− µ− µ′

P
+M

[
2ℓ

(−µ− µ′)
P

+
2λ+ µ+ µ′

P

]
≥ 2λ− µ− µ′

P
+M

[
2C

(−µ− µ′)
P

+
2λ+ µ+ µ′

P

]
, (4.4)

∆VB4
(q) =

2λ− µ− µ′

P
+M

[
2ℓ

(µ+ µ′)
P

+
2λ+ µ+ µ′

P

]
≥ 2λ− µ− µ′

P
+M

[
2λ+ µ+ µ′

P

]
. (4.5)

• If ℓ = |q1 − q2| = q2 − q1 > 0,

∆VB3
(q) =

2λ− µ− µ′

P
+M

[
2ℓ

(µ+ µ′)
P

+
2λ+ µ+ µ′

P

]
≥ 2λ− µ− µ′

P
+M

[
2λ+ µ+ µ′

P

]
, (4.6)

∆VB4
(q) =

2λ− µ− µ′

P
+M

[
2ℓ

(−µ− µ′)
P

+
2λ+ µ+ µ′

P

]
≥ 2λ− µ− µ′

P
+M

[
2C

(−µ− µ′)
P

+
2λ+ µ+ µ′

P

]
. (4.7)

For V to have non-negative drift everywhere, 4.1-4.7 being simultaneously non-negative is

a sufficient condition. These seemingly numerous conditions can be significantly reduced.

Note that equations 4.4 and 4.7 are the same as are 4.5 and 4.6. In addition, 4.1 is a lower

bound on both 4.4 and 4.5. Then the set sufficient conditions λ, µ and µ′ must satisfy for

V to have non-negative drift everywhere are

2λ− µ− µ′ +M [(2C + 1)(−µ− µ′)] ≥ 0,

2λ− 2µ+M [2λ+ 2µ] ≥ 0,

2λ− 2µ′ +M [2λ+ 2µ′] ≥ 0,

96

which imply that there must exist M > 0 with

max

{
µ′ − λ

µ′ + λ
,
µ− λ

µ+ λ

}
≤M <

2λ− µ− µ′

(2C + 1)(µ+ µ′)
.

Note that as C gets larger, the parameters λ∗, µ∗, µ′ can be chosen accordingly large. Let

C = 50, λ = 525.0841, µ = 527.3004, µ′ = 249.5696. Then we have 0.0021 ≤ M ≤

0.0036.

This type of a scheduling policy can be considered as an extension of LQF, which can

be interpreted as the aforementioned policy with C = 0. Here, the tie breaking set of LQF

(q1 = q2) is enlarged to include a bigger set between q2 = q1 + C and q2 = q1 − C. Then

we can infer that this simple extension is not sufficient in moving from LQF to maximal

stability.

Similarly, we can compare this policy to MaxWeight. Suppose the service configuration

that results in stability according to MaxWeight is used in the free corridor. Proof of Propo-

sition 5 still suggests that the policy is not maximally stable. Then the slopes of the two

switching lines, µ11/µ21 and µ12/µ22, are essential for maximal stability, and the switching

lines cannot be simply replaced by q1 ± C to simplify the policy while ensuring maximal

stability.

4.2 Connection between the Static Planning Problem and the Trans-

portation Problems

In this section, we present the connection between SPP(F) (introduced in Section 3.3) and

the generalized transportation problem. This connection allows us to consider some special

cases of parallel server systems in more depth. In Section 4.2.1, we demonstrate how our

design algorithm can be used in so-called product form systems to obtain exactly m+n arcs in

S. In Section 4.2.2, using the connection between SPP(F) and the generalized transportation

97

problem, we establish a new characterization of the uniqueness of the solutions to SPP(F).

This characterization also acts as an intuitive construction principle which we use to build

systems for our numerical experiments in Section 3.5.

Transportation problems are a special case of network flow problems (Ahuja et al. 1988),

where the goal is to find a feasible flow on an arbitrary graph to usually minimize the total

cost of carrying the flow, or to maximize the total flow received at a sink node. Usually,

transportation problems are concerned with finding a minimum cost flow to carry supply

from m supply nodes to n demand nodes on a bipartite graph (for a detailed treatment of

the topic, see Chapter 9 of Hadley (1961)).

The most well-known version of the transportation problem is called the pure transporta-

tion problem, where one unit of flow sent from a supply node j on arc (i, j) arrives at the

destination i unchanged, as one unit of flow. That is, in a pure transportation problem, flow

is conserved on each arc. In contrast, in the generalized transportation problem, one unit of

flow sent from a supply node j on arc (i, j) arrives at the destination i as µij units of flow.

These types of networks are also called gainy or lossy networks, as flow is not conserved.

If µij = 1 for all (i, j) ∈ F , the generalized transportation problem is reduced to the pure

transportation problem. The same definitions extend to more general network flow prob-

lems, if flow is conserved on each arc, the problem is called a pure network flow problem,

otherwise the problem is called a generalized network flow problem.

Let fij ≥ 0 be the total flow carried on arc (i, j) ∈ F , hij ≥ 0 denote the cost of carrying

one unit of flow on arc (i, j) ∈ F , Di ≥ 0 be the total demand of node i ∈ I, and Cj ≥ 0

denote the total capacity of supply node j ∈ J . Then the pure transportation problem

98

(PTP) can be written as

(PTP) min
f

∑
(i,j)∈F

hijfij

s.t.
∑
j∈J

fij = Di ∀i ∈ I

∑
i∈I

fij = Cj ∀j ∈ J

f ≥ 0

Similarly, when flow conservation assumption is relaxed and one unit of flow from server j

arrives as µij units in queue i, the generalized transportation problem (GTP) can be written

as

(GTP) min
f

∑
(i,j)∈F

hijfij

s.t.
∑
j∈J

µijfij = Di ∀i ∈ I

∑
i∈I

fij = Cj ∀j ∈ J

f ≥ 0

A well known necessary and sufficient condition for the feasibility of the pure transportation

problem is

∑
i∈I

Di =
∑
j∈J

Cj .

This condition is not well defined for the generalized transportation problem. In general,

there is no equivalent simple condition for the feasibility of the generalized transportation

99

problem (Hadley 1961).

SPP(F) can be interpreted in the framework of transportation problems. Each of the m

servers in a flexible server system correspond to a supply node in a transportation problem,

and each of the n queues in the flexible server system correspond to a demand node in the

transportation problem. Under Assumption A2. in Section 3.3, each server (supply node)

has a total supply of 1 available. Total supply of 1 can be interpreted as the total fraction of

time a server has available. Then xij is the supply sent on arc (i, j), or the average fraction

of time spent on activity (i, j). Similarly, each queue i (demand node i) has a total demand

of λi.

In SPP(F), under Assumption A2., we assume our optimal objective value is fixed at

one. Then our goal is equivalent to finding a feasible flow in the analogous transportation

problem. With this perception, we see that the feasible region of SPP(F) is very similar to

the feasible region of the generalized transportation problem.

In the context of our problem in Chapter 3, when the service rates are server dependent

(that is, µij = µj for all j ∈ J), SPP(F) can be scaled such that the constraint set is

equivalent to the constraint set of a pure transportation problem. Let fij := µjxij for all

(i, j) ∈ F , and consider the constraints of SPP(F) under Assumption A2..

∑
j∈J

µjxij = λi ∀i ∈ I, (4.8)

∑
i∈I

xij = 1 ∀j ∈ J . (4.9)

Applying the transformation fij = µjxij ,

∑
j∈J

µjxij =
∑
j∈J

fij = λi ∀i ∈ I,

∑
i∈I

xij =
∑
i∈I

fij
µj

= 1 ∀j ∈ J .

100

Equivalently,

∑
j∈J

fij = λi ∀i ∈ I, (4.10)

∑
i∈I

fij = µj ∀j ∈ J . (4.11)

Indeed, 4.10-4.11 are the constraints of the pure transportation problem. Then one could

find a feasible solution the pure transportation problem and obtain f, then reverse the trans-

formation and obtain an optimal solution x∗ij = fij/µj to SPP(F) under Assumption A2..

This procedure essentially reduces the generalized transportation problem to the pure

transportation problem. Such a reduction is not always possible. The necessary and suf-

ficient conditions for the reducibility of a generalized network problem (not necessarily a

transportation problem) to a pure network problem were given by Truemper (1976). Theo-

rem 4 states this result in less generality than given in the original paper.

Theorem 4. (Theorem 1, Truemper (1976)) The following are equivalent:

1. A generalized transportation problem on graph S can be reduced to a pure transportation

problem on S.

2. There exists αi > 0, βj > 0 such that µij = αiβj for all (i, j) ∈ S.

3.

rank


RS
AS


 = m+ n− 1.

If there exist αi, βj such that µij = αiβj , µij are called product form. Such special

systems are also practically interesting, as service can be thought as having a server de-

pendent component and a queue dependent component. Similar to the reduction of the

101

server dependent case to the pure transportation problem, we can apply the transformation

λ̃i = λi/αi and fij = xijβj and reduce feasible region of the product form SPP(F) to a pure

transportation polytope:

∑
j∈J

µijxij = λi ⇐⇒
∑
j∈J

αiβjxij = λi

⇐⇒
∑
j∈J

βjxij =
λi
αi
⇐⇒

∑
j∈J

fij = λ̃i ∀i ∈ I,

and

∑
i∈I

xij = 1 ⇐⇒
∑
i∈I

fij
βj

= 1

⇐⇒
∑
i∈I

fij = βj ∀j ∈ J .

It is important to note that a server dependent system is essentially a product form

system with αi = 1 for all i ∈ I. Similarly, a product form system can be interpreted as

a server dependent system with a simple scaling of the demand, λ̃i = λi/αi. Thus, in the

forthcoming discussion we do not distinguish between product form and server dependent

systems. In any case, since these systems are reducible to pure transportation problems

where flow conservation holds, all existing methods in the literature addressing the design

problem can be used to obtain a sparse design S.

4.2.1 Application of Algorithm 2 in Product Form Systems

When µij are product form, our design Algorithm 2 can be used to obtain an efficient design

with exactly m+ n arcs, similar to Shi et al. (2019). However, unlike their work, our design

can only guarantee that the GCG is strictly positive. Our design does not necessarily result

in a flexibility graph with a GCG lower bounded away from zero. Below, we present the

102

application of our algorithm to product form systems: we first establish that the support

graph is F , then choose a particular way of connecting the disconnected components in an

optimal degenerate BFS of SPP(F).

Lemma 9. If the system is product-form, then G = F .

Proof. Support graph G is the subgraph of F where arcs that are never used in any solution

are removed. Then, to show that G = F , it is sufficient to construct a solution that uses the

entire graph F . Algorithm 3 describes a procedure to construct such a solution.

Algorithm 3 starts by scaling SPP(F) appropriately and uses the equivalent pure trans-

portation problem to construct a solution on F . We recall that

∑
i∈I

λ̃i =
∑
j∈J

βj

is satisfied because the pure transportation problem is feasible. We claim that at each

iteration of Algorithm 3,

∑
i∈I ′

λ̃′i =
∑
j∈J ′

β′j (4.12)

is maintained. We will prove this with induction.

• Base case: k = 1.

– If ξk is a demand node, we have

β′j = βj −
λ̃ξk
m

λ̃′ξk = 0.

103

Then,

∑
j∈J ′

β′j =
∑
j∈J

(
βj −

λ̃ξk
m

)

=
∑
j∈J

βj − λ̃ξk

=
∑
i∈I

λ̃i − λ̃ξk

=
∑
i∈I ′

λ̃i

=
∑
i∈I ′

λ̃′i.

– If ξk is a supply node, we have

λ̃′i = λ̃i −
βξk
n

β′ξk = 0.

Then,

∑
i∈I ′

λ̃′i =
∑
i∈I

(
λ̃i −

βξk
n

)
=
∑
i∈I

λ̃i − βξk

=
∑
j∈J

βj − βξk

=
∑
j∈J ′

βj

=
∑
j∈J ′

β′j .

104

• Induction hypothesis: for iteration k,

∑
i∈I ′

λ̃′i =
∑
j∈J ′

β′j ,

where |I ′| = n− kq and |J ′| = m− ks.

• Next case: k + 1.

– If ξk+1 is a demand node, we have

β′′j = β′j −
λ̃′ξk

m− ks

λ̃′′ξk = 0,

where β′′j and λ̃′′i are end-of-iteration remaining supplies and demands. Then,

∑
j∈J ′′

β′′j =
∑
j∈J ′

(
β′j −

λ̃′ξk
m− ks

)

=
∑
j∈J ′

β′j − λ̃′ξk

=
∑
i∈I ′

λ̃′i − λ̃′ξk

=
∑
i∈I ′′

λ̃′i

=
∑
i∈I ′′

λ̃′′i .

– If ξk+1 is a supply node, we have

λ̃′′i = λ̃′i −
β′ξk

n− kq

β′′ξk = 0.

105

where β′′j and λ̃′′i are end-of-iteration remaining supplies and demands. Then,

∑
i∈I ′′

λ̃′′i =
∑
i∈I ′

(
λ̃′i −

β′ξk
n− kq

)

=
∑
i∈I ′

λ̃′i − β′ξk

=
∑
j∈J ′

β′j − β′ξk

=
∑
j∈J ′′

β′j

=
∑
j∈J ′′

β′′j .

Thus, we conclude that 4.12 is maintained at each iteration of Algorithm 3.

At each iteration of Algorithm 3, if ξk is a demand node, that node pulls δk amount

of flow from every remaining server. Unless there is a single demand node remaining (i.e.,

unless n− kq = 1),

β′j − δk = β′j −
λ̃′ξk

m− ks
≥ β′j −

β′j
n− kq

> 0

by construction. Then we only deplete the remaining demand of node ξk without fully

depleting any of the remaining supply nodes. This implies that we use and then remove

exactly m−ks arcs from the network at this iteration. If a single demand node is remaining,

that demand node pulls required supply from all of the remaining supply nodes, and because

4.12 is maintained at each iteration, no supply remains in the network and we end up with

a solution that uses all mn arcs.

If ξk is a server node, the dynamics are very similar. Therefore, Algorithm 3 returns a

solution to SPP(F) using the entire F .

106

Starting with a degenerate basis B, we want to apply Algorithm 2 to obtain a sparse S

that achieves a single resource pool. Relying on Theorem 3, we want to connect components

of B. Because G = F , we have a lot of flexibility in choosing the incoming and outgoing arcs

from each component when the system is product form. Then we can connect components

by creating a long chain-like graph. Since all the chosen arcs exist in G, the resulting graph

is a feasible sparse S that contains exactly m+ n arcs.

Corollary 3. If the system is product form, there exists a sparse design S with m+ n arcs

such that DSPP(S) has a unique solution.

Proof. Let B be a degenerate basis to SPP(F) with τ trees. Consider Algorithm 2. Because

G = F , every tree can be connected to every other tree. Without loss of generality, we can

order the trees C1, . . . , Cτ . In the execution of Algorithm 2, we start by picking the first tree

C1. Subsequently, the outgoing arcs can be chosen such that C1 has an outgoing arc to C2,

which has an outgoing arc to C3. Then C3 can have an outgoing arc to C4, and continuing

like this, Cτ can have an outgoing arc to C1.

Therefore, we can terminate Algorithm 2 in a single iteration. Because we have connected

τ components using τ arcs, we end up with |C| = 1 at the end of this iteration, so that

|S| = m+ n− τ + τ = m+ n.

4.2.2 Uniqueness of Solutions in SPP(F)

As we have established so far, systems with flow conservation have desirable properties in the

context of the design problem. However, such systems do not satisfy the traditional heavy-

traffic assumptions that much of the performance analysis literature relies on. In particular,
107

systems with flow conservation do not satisfy the assumption that SPP(F) has a unique

solution. Indeed, Atar et al. (2022) had shown that if µij = αiβj for all (i, j) ∈ F , SPP(F)

has multiple solutions. An application of Theorem 4 enables us to prove a partial converse

to that statement, obtaining a simple characterization of uniqueness in SPP(F).

Theorem 5. If SPP(F) has multiple solutions, µij are partially product form.

Proof. If a bounded feasible linear program has multiple solutions, then at least two of them

are adjacent basic feasible solutions (Property 1b, p. 195, Hillier and Lieberman (2001)).

Let (x∗B , 1) and (x∗B′ , 1) be adjacent basic feasible solutions to SPP(F). Then, x∗B and

x∗B′ share m + n − 2 components. Because they are basic feasible solutions, they uniquely

solve RB

AB

xB =

λ
1

 ,

and RB′

AB′

xB′ =

λ
1

 ,

respectively. Then the coefficient matrices,

RB

AB


and RB′

AB′


108

each have m+ n− 1 linearly independent columns.

Let BC and B′C denote the set of common components of bases B and B′. Note that

BC = B′C and they have m+n−2 elements. Let BN and B′N denote the distinct components

of the bases, and note that BN ̸= B′N and they are singletons. Then xB and xB′ uniquely

solve RBC
RBN

ABC
ABN


xBC

xBN

 =

λ
1

 ,

and RB′
C

RB′
N

AB′
C

AB′
N


xB′

C

xB′
N

 =

λ
1

 ,

respectively. This implies that

RBC
RBN

RB′
N

ABC
ABN

AB′
N



xBC

− xB′
C

xBN

−xB′
N

 = 0. (4.13)

This system has a nontrivial solution because xB ̸= xB′ . Since the homogeneous system

in m + n equations and m + n unknowns has a nontrivial solution, it must be that the

determinant of its coefficient matrix is zero (Corollary 2.13, p.37, Shafarevich and Remizov

(2012)). Then the coefficient matrix must be rank deficient. Because the coefficient matrix

has at least m + n − 1 linearly independent columns, being rank deficient implies that its

rank is exactly m+ n− 1. Since the coefficient matrix corresponds to that of a generalized

network, by Theorem 4, µij associated with B ∪B′ must be product form.

Theorem 5 implies that if in F , fewer than m+ n of µij are product form, then SPP(F)

109

has a unique solution. Additionally, it implies that when SPP(F) has multiple solutions, at

least m + n of the µij must be product form. This insight allows us to construct partially

product form systems with multiple solutions to SPP(F) and a unique solution to DSPP(F),

which we use as a construction principle in Section 3.5 where we numerically compare the

performance of our proposed design S to that of the full flexibility structure F .

Theorem 5 uncovers a new part of the involved connection between the geometry of

the static planning problem and the system parameters. Discovering deeper details of this

relationship may allow researchers to propose flexibility designs with even fewer connections

that can achieve the benefits of the full flexibility structure.

110

Algorithm 3: Solution on F in product form systems
Input : Product form SPP(F)

1 Apply the appropriate scaling to obtain the equivalent pure transportation problem
with demand λ̃i for all i ∈ I and supply βj for all j ∈ J .

2 Initialize remaining demands and supplies: λ̃′i = λ̃i for all i ∈ I and β′j = βj for all
j ∈ J .

3 Initialize remaining node sets I ′ = I, J ′ = J .
4 Initialize counters: kq = 0, ks = 0.
5 Set flows: fij = 0 for all (i, j) ∈ F .
6 while kq + ks ≤ m+ n− 1 do
7 Set iteration counter k = kq + ks + 1.
8 Calculate

δk = min
i∈I ′,j∈J ′

{
λ̃′i

m− ks
,

β′j
n− kq

}
,

ξk = arg min
i∈I ′,j∈J ′

{
λ̃′i

m− ks
,

β′j
n− kq

}
.

if ξk ∈ I ′ then
9 Update fξkj = fξkj + δk for all j ∈ J ′.

10 Update λ̃′ξk = 0 and β′j = β′j − δk for all j ∈ J ′.
11 kq = kq + 1, I ′ = I ′ \ {ξk}.
12 else
13 Update fiξk = fiξk + δk for all i ∈ I ′.
14 Update β′ξk = 0 and λ̃′i = λ̃′i − δk for all i ∈ I ′.
15 ks = ks + 1, J ′ = J ′ \ {ξk}.
16 end if
17 end while

Return: fij , (i, j) ∈ F .

111

REFERENCES

Saghar Adler, Mehrdad Moharrami, and Vijay Subramanian. Learning a discrete set of optimal allo-
cation rules in queueing systems with unknown service rates. arXiv preprint arXiv:2202.02419,
2022.

Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows. 1988.
Matthew Andrews and Lisa Zhang. Achieving stability in networks of input-queued switches.

IEEE/ACM Transactions on networking, 11(5):848–857, 2003.
Gautam Appa. On the uniqueness of solutions to linear programs. Journal of the Operational

Research Society, 53:1127–1132, 2002.
Arash Asadpour, Xuan Wang, and Jiawei Zhang. Online resource allocation with limited flexibility.

Management Science, 66(2):642–666, 2020.
Baris Ata and Sunil Kumar. Heavy traffic analysis of open processing networks with complete

resource pooling: Asymptotic optimality of discrete review policies. 2005.
Rami Atar, Eyal Castiel, and Martin I Reiman. Parallel server systems under an extended heavy

traffic condition: A lower bound. arXiv preprint arXiv:2201.07855, 2022.
Golshid Baharian and Tolga Tezcan. Stability analysis of parallel server systems under longest

queue first. Mathematical Methods of Operations Research, 74(2):257, 2011.
Steven Bell and Ruth Williams. Dynamic scheduling of a parallel server system in heavy traffic

with complete resource pooling: Asymptotic optimality of a threshold policy. 2005.
Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6. Athena

scientific Belmont, MA, 1997.
Maury Bramson, Bernardo D’Auria, and Neil Walton. Stability and instability of the maxweight

policy. Mathematics of Operations Research, 46(4):1611–1638, 2021.
Maury Bramson et al. Instability of fifo queueing networks. The Annals of Applied Probability, 4

(2):414–431, 1994.
Xi Chen, Jiawei Zhang, and Yuan Zhou. Optimal sparse designs for process flexibility via proba-

bilistic expanders. Operations Research, 63(5):1159–1176, 2015.
Xi Chen, Tengyu Ma, Jiawei Zhang, and Yuan Zhou. Optimal design of process flexibility for general

production systems. Operations Research, 67(2):516–531, 2019.
Mabel C Chou, Geoffrey A Chua, Chung-Piaw Teo, and Huan Zheng. Design for process flexibility:

Efficiency of the long chain and sparse structure. Operations research, 58(1):43–58, 2010.
Mabel C Chou, Geoffrey A Chua, Chung-Piaw Teo, and Huan Zheng. Process flexibility revisited:

The graph expander and its applications. Operations research, 59(5):1090–1105, 2011.
Mabel C Chou, Geoffrey A Chua, and Huan Zheng. On the performance of sparse process structures

in partial postponement production systems. Operations research, 62(2):348–365, 2014.
Tuhinangshu Choudhury, Gauri Joshi, Weina Wang, and Sanjay Shakkottai. Job dispatching poli-

cies for queueing systems with unknown service rates. In Proceedings of the Twenty-second
International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mo-
bile Networks and Mobile Computing, pages 181–190, 2021.

Jim G Dai. On positive harris recurrence of multiclass queueing networks: a unified approach via
fluid limit models. The Annals of Applied Probability, pages 49–77, 1995.

112

Jim G Dai and Wuqin Lin. Maximum pressure policies in stochastic processing networks. Operations
Research, 53(2):197–218, 2005.

Jim G Dai and Gideon Weiss. Stability and instability of fluid models for reentrant lines. Mathe-
matics of Operations Research, 21(1):115–134, 1996.

Antoine Désir, Vineet Goyal, Yehua Wei, and Jiawei Zhang. Sparse process flexibility designs: Is
the long chain really optimal? Operations Research, 64(2):416–431, 2016.

Antonis Dimakis and Jean Walrand. Sufficient conditions for stability of longest-queue-first schedul-
ing: Second-order properties using fluid limits. Advances in Applied probability, 38(2):505–521,
2006.

Atilla Eryilmaz and Rayadurgam Srikant. Asymptotically tight steady-state queue length bounds
implied by drift conditions. Queueing Systems, 72:311–359, 2012.

Vivek F Farias, Ciamac C Moallemi, and Balaji Prabhakar. Load balancing with migration penalties.
In Proceedings. International Symposium on Information Theory, 2005. ISIT 2005., pages 558–
562. IEEE, 2005.

David Gamarnik and Dmitriy Katz. On deciding stability of multiclass queueing networks under
buffer priority scheduling policies. The Annals of Applied Probability, pages 2008–2037, 2009.

Itay Gurvich and Ward Whitt. Scheduling flexible servers with convex delay costs in many-server
service systems. Manufacturing & Service Operations Management, 11(2):237–253, 2009.

George Hadley. Linear programming. Narosa publishing house, 1961.
J Michael Harrison. Heavy traffic analysis of a system with parallel servers: asymptotic optimality

of discrete-review policies. Annals of applied probability, pages 822–848, 1998.
J Michael Harrison and Marcel J López. Heavy traffic resource pooling in parallel-server systems.

Queueing systems, 33:339–368, 1999.
Frederick S Hillier and Gerald J Lieberman. Introduction to operations research, 2001.
Wei-Kang Hsu, Jiaming Xu, Xiaojun Lin, and Mark R Bell. Integrate learning and control in

queueing systems with uncertain payoffs. Purdue University, available at https://engineering.
purdue. edu/% 7elinx/papers. html, Tech. Rep, 2018.

Seyed MR Iravani, Bora Kolfal, and Mark P Van Oyen. Call-center labor cross-training: It’sa small
world after all. Management Science, 53(7):1102–1112, 2007.

William C Jordan and Stephen C Graves. Principles on the benefits of manufacturing process
flexibility. Management science, 41(4):577–594, 1995.

Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ronnie Chaiken. The
nature of data center traffic: measurements & analysis. In Proceedings of the 9th ACM SIG-
COMM conference on Internet measurement, pages 202–208, 2009.

Subhashini Krishnasamy, Rajat Sen, Ramesh Johari, and Sanjay Shakkottai. Learning unknown
service rates in queues: A multiarmed bandit approach. Operations Research, 69(1):315–330,
2021.

Avishai Mandelbaum and Alexander L Stolyar. Scheduling flexible servers with convex delay costs:
Heavy-traffic optimality of the generalized cµ-rule. Operations Research, 52(6):836–855, 2004.

Sean P Meyn and Richard L Tweedie. Markov chains and stochastic stability. Springer Science &
Business Media, 2012.

Sean P Meyn et al. Transience of multiclass queueing networks via fluid limit models. The Annals
of Applied Probability, 5(4):946–957, 1995.

113

Ramtin Pedarsani and Jean Walrand. Stability of multiclass queueing networks under longest-queue
and longest-dominating-queue scheduling. Journal of Applied Probability, 53(2):421–433, 2016.

Ramtin Pedarsani, Jean Walrand, and Yuan Zhong. Robust scheduling for flexible processing
networks. Advances in Applied Probability, 49(2):603–628, 2017.

Igor R Shafarevich and Alexey O Remizov. Linear algebra and geometry. Springer Science &
Business Media, 2012.

Cong Shi, Yehua Wei, and Yuan Zhong. Process flexibility for multiperiod production systems.
Operations Research, 67(5):1300–1320, 2019.

Gerard Sierksma and Yori Zwols. Linear and integer optimization: theory and practice. CRC Press,
2015.

David Simchi-Levi and Yehua Wei. Understanding the performance of the long chain and sparse
designs in process flexibility. Operations research, 60(5):1125–1141, 2012.

David Simchi-Levi and Yehua Wei. Worst-case analysis of process flexibility designs. Operations
Research, 63(1):166–185, 2015.

David Simchi-Levi, He Wang, and Yehua Wei. Increasing supply chain robustness through process
flexibility and inventory. Production and Operations Management, 27(8):1476–1491, 2018.

Thomas Stahlbuhk, Brooke Shrader, and Eytan Modiano. Learning algorithms for minimizing queue
length regret. IEEE Transactions on Information Theory, 67(3):1759–1781, 2021.

Alexander L Stolyar et al. Maxweight scheduling in a generalized switch: State space collapse and
workload minimization in heavy traffic. Annals of Applied Probability, 14(1):1–53, 2004.

Leandros Tassiulas and Anthony Ephremides. Stability properties of constrained queueing systems
and scheduling policies for maximum throughput in multihop radio networks. In 29th IEEE
Conference on Decision and Control, pages 2130–2132. IEEE, 1990.

Tolga Tezcan. Instability of fifo in a simple queueing system with arbitrarily low loads. Operations
research letters, 37(5):312–316, 2009.

Tolga Tezcan. Stability analysis of n-model systems under a static priority rule. Queueing Systems,
73(3):235–259, 2013.

Gert A Tijssen and Gerard Sierksma. Balinski—tucker simplex tableaus: Dimensions, degeneracy
degrees, and interior points of optimal faces. Mathematical programming, 81:349–372, 1998.

Klaus Truemper. An efficient scaling procedure for gain networks. Networks, 6(2):151–159, 1976.
John N Tsitsiklis and Kuang Xu. On the power of (even a little) resource pooling. Stochastic

Systems, 2(1):1–66, 2013.
John N Tsitsiklis and Kuang Xu. Flexible queueing architectures. Operations Research, 65(5):

1398–1413, 2017.
Sushil Mahavir Varma and Siva Theja Maguluri. Transportation polytope and its applications in

parallel server systems. arXiv preprint arXiv:2108.13167, 2021.
Shixin Wang, Xuan Wang, and Jiawei Zhang. A review of flexible processes and operations. Pro-

duction and Operations Management, 30(6):1804–1824, 2021.
Shixin Wang, Xuan Wang, and Jiawei Zhang. Robust optimization approach to process flexibility

designs with contribution margin differentials. Manufacturing & Service Operations Manage-
ment, 24(1):632–646, 2022.

Xuan Wang and Jiawei Zhang. Process flexibility: A distribution-free bound on the performance of
k-chain. Operations Research, 63(3):555–571, 2015.

114

Zhen Xu, Hailun Zhang, Jiheng Zhang, and Rachel Q Zhang. Online demand fulfillment under
limited flexibility. Management Science, 66(10):4667–4685, 2020.

Yueyang Zhong, John R Birge, and Amy Ward. Learning the scheduling policy in time-varying
multiclass many server queues with abandonment. Available at SSRN, 2022.

115

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	2 Stability and Instability of Parameter Agnostic Policies in Parallel Server Systems
	2.1 Introduction
	2.1.1 Discussion of MaxWeight and Other Related Works
	2.1.2 Definitions and Notation

	2.2 Intersecting Switching Curves
	2.2.1 Lack of Stationary Distribution for a Markov Chain with One Dimensional State Space
	2.2.2 Coupling of the X-Model with the One Dimensional Markov Chain

	2.3 Non-Intersecting Switching Curves
	2.3.1 Instability Result
	2.3.2 Stability Result

	2.4 One Switching Curve for Both Servers
	2.5 Discussion and Conclusion

	3 Process Flexibility Design for Parallel Server Systems with General Processing Rates
	3.1 Introduction
	3.1.1 Literature Review

	3.2 Model, Definitions and Notations
	3.3 Static Planning Problem and Its Dual
	3.4 Sparse Design of the Flexibility Graph
	3.5 Numerical Experiments
	3.6 Discussion and Conclusion

	4 Extensions and Related Topics
	4.1 Instability Results for Non-Switching Curve Parameter Agnostic Policies
	4.2 Connection between the Static Planning Problem and the Transportation Problems
	4.2.1 Application of Algorithm 2 in Product Form Systems
	4.2.2 Uniqueness of Solutions in SPP(F)

	References

