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ABSTRACT

The underlying mechanisms of computation in sensorimotor cortex must be both flexible
and robust to support the range of skilled, dynamic forelimb movements observed in natural
primate behavior. To understand the full richness of these mechanisms, it is important to
study motor behavior in the most natural context possible using analytical tools that ac-
count for relationships between movement and both single-unit and population activity. In
this work, I demonstrate that accurately capturing naturalistic motor behavior — specifically
dynamic forelimb movements during foraging and prey-capture — is both critical and feasible.
[ leverage natural forelimb movements and pairwise precise spike time structure (represented
as a functional network) in marmoset sensorimotor cortex to develop a network encoding
model that links single-unit spiking activity with kinematic tuning properties and functional
network interactions. I use this model to investigate the computational mechanisms that
generate varied and naturalistic motor behavior. I show that a trajectory-based encoding
model predicts single-unit activity during naturalistic forelimb movements more accurately
than a simpler model. T demonstrate that tuning to kinematics depends on functional in-
teractions between units — particularly on structured strong connections. Finally, I identify
a reach-specific functional group that reorganizes to produce dynamic forelimb movements
during prey capture. This reach-specific functional group is strongly interconnected and
comprises units tightly linked to kinematics with strong, positively correlated preferred tra-
jectories. By examination of the reach-specific functional group and remaining non-specific
units, I suggest a potential framework linking single-unit properties to the neural population

dynamics that generate movement.
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CHAPTER 1
INTRODUCTION

1.1 Computations in Motor Cortex

Any interaction between an organism and the external world requires a motor behavior.
As a critical node in the nervous system involved in voluntary motor control, the primary
motor cortex (M1) provides the opportunity to investigate neuronal computations and their
outputs at the final stage of cortical processing before movement execution. The motor
system executes tasks of exquisite precision such as writing, playing musical instruments,
or even buttoning a shirt with ease, yet can produce powerful movements like a tennis
serve or butterfly stroke using the same neural circuitry. Motor behaviors can be highly
consistent and repeatable across this vast behavioral range and the motor system can react
quickly and skillfully to external sensory information or perturbations to correct and fine-tune
movement. Thus, the underlying mechanisms of computation in M1 must be both flexible
and robust to support the full repertoire of human motor behavior. In this work, I combine
tuning properties of individual neurons and a functional network approach to investigate the

computational mechanisms that generate varied and naturalistic motor behavior.

1.2 Relating M1 neural activity to movement parameters

Studies of primate upper limb control have historically searched for relationships between
the activity of individual neurons in M1 and either muscle-related features (such as force)
or movement kinematics. In 1968, Evarts used a wrist flexion-extension task with exter-
nal opposing forces to show that the activity of individual pyramidal tract neurons in M1
was related most directly to exerted force rather than to displacement in a majority of 31

units.! In the 1980s, a series of papers by Georgopoulos and colleagues used a center-out

1. Evarts, “Relation of pyramidal tract activity to force exerted during voluntary movement.”
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reaching task in two and three dimensions to demonstrate a relationship between direction
of movement and the mean firing rate of M1 units during the movement.23 These papers
modeled direction tuning in individual neurons by fitting a shifted and scaled cosine curve
to average firing rates over many trials in each direction. They also introduced the concept
of the population vector, in which the direction of movement could be predicted by the sum
of preferred directions weighted by firing rate across all direction-tuned units.*® While this
concept was instructive for much of the subsequent research in motor control, it treats the
output of the motor system as a linear summation operator and ignores any effect of the
complex interactions between neurons. A 1992 study partially reconciled the ideas of force
versus direction tuning by demonstrating tuning of neurons to the directional change in force
rather than to total exerted force.% Around this time, the field began to add complexity to
the standard center-out movement and force tasks. In this vein, Caminiti et al.” and Sergio
and Kalaska® added nuance to the concept of population vector encoding by demonstrating
that directional tuning to movement and isometric force production, respectively, rotates
systematically with arm posture. Scott and Kalaska® confirmed shifts in directional tuning
to movement but, in contrast with Caminiti et al., found no systematic relationship between

posture and the population vector. Hocherman and Wise!? showed that M1 codes for details

2. Georgopoulos et al., “On the relations between the direction of two-dimensional arm movements and cell discharge in
primate motor cortex.”

3. Schwartz et al., “Primate motor cortex and free arm movements to visual targets in three- dimensional space. I. Relations
between single cell discharge and direction of movement”.

4. Georgopoulos et al., “Neuronal Population Coding of Movement Direction”.

5. Georgopoulos et al., “Primate motor cortex and free arm movements to visual targets in three- dimensional space. II.
Coding of the direction of movement by a neuronal population”.

6. Georgopoulos et al., “The Motor Cortex and the Coding of Force”.
7. Caminiti et al., “Making arm movements within different parts of space: dynamic aspects in the primate motor cortex.”

8. Sergio & Kalaska, “Systematic Changes in Motor Cortex Cell Activity With Arm Posture During Directional Isometric
Force Generation”.

9. Scott & Kalaska, “Changes in motor cortex activity during reaching movements with similar hand paths but different arm
postures”.

10. Hocherman & Wise, “Effects of hand movement path on motor cortical activity in awake, behaving rhesus monkeys”.



of a movement trajectory as opposed to the net change in position. Moran and Schwartz!!
found that a model incorporating speed along with direction improved on directional tuning
alone.

As the field continued to explore the tuning properties of M1, several nuances and depen-
dencies were discovered. For example, multiple studies showed that the consistent directional
tuning reported by Georgopoulos and others depended on averaging spiking activity over the
duration of movement. In fact, the instantaneous preferred movement direction of neurons
in premotor cortex and M1 can change drastically over the course of movement!2:13:14 and
between preparatory and movement periods.!® The study by Sergio et al. also showed that
preferred force direction in an isometric force task was more consistent than preferred move-
ment direction in the center-out whole-arm movement task.

Aflalo and Graziano!® added complexity when they examined tuning of M1 neurons to an
array of previously proposed kinematic metrics in unconstrained behavior. They noted that
previous studies such as those discussed here related M1 activity to movements that were
constrained to a small percentage of possible kinematic variance, and that simple models
explaining a large degree of that variance may not extend to less constrained behavior.
They showed that direction tuning accounted for only 8% of variance in neural activity
while macaques moved their arms freely in the workspace; even the best model — an end-
posture model — accounted for only 36% of variance on average. A combination model
incorporating hand speed, directional tuning, and final position of the hand and posture

of the arm increased the explained variance to 44%, leaving the majority of neural activity

11. Moran & Schwartz, “Motor Cortical Representation of Speed and Direction During Reaching”.
12. Churchland & Shenoy, “Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex”.
13. Mason et al., “Temporal profile of the directional tuning of the discharge of dorsal premotor cortical cells”.

14. Sergio et al., “Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching
tasks”.

15. Churchland et al., “Cortical Preparatory Activity: Representation of Movement or First Cog in a Dynamical Machine?”

16. Aflalo & Graziano, “Relationship between unconstrained arm movements and single-neuron firing in the macaque motor
cortex.”



unexplained. This result, along with the body of work discussed above, suggests that M1 may
represent and control a combination of multiple kinematic or muscle-related variables; M1
may also execute unexplored computations that account for some portion of the remaining
variance.

A parallel approach to modeling tuning in M1 as a combination of kinematic parameters
began with the development of a trajectory encoding model by Hatsopoulos, Xu and Amit
in 200717 The authors used a random target pursuit task which produced more kinematic
variance than observed in most prior studies, although still within a single plane unlike
Aflalo and Graziano.!® The authors accounted for the shifting of preferred directions of sin-
gle neurons demonstrated in previous work by relating neural activity to brief movement
trajectories that incorporate a range of leading and lagging kinematics relative to neural
spiking. They found that a trajectory model incorporating average hand speed, position,
and finely sampled movement directions from -100ms before neural activity to +300ms af-
terward performed best and outperformed a brief trajectory model analogous to direction
tuning at a fixed lag of +100 to +150ms. The kinematic trajectory model also outperformed
a comparable torque trajectory tuning model for most of the population. The authors note
that their recordings were more rostral on the precentral gyrus than work showing a pref-
erence for force tuning,!® which may explain this difference. In a follow-up study,20 they
demonstrated that the preferred trajectories of pairs of neurons could sum linearly when
the two neurons fired simultaneously, suggesting a rich variety of complex movement repre-
sentations could be synthesized in the simultaneous firing of a neural population by adding

the trajectory representations of the constituent neurons in the population. Another line of

17. Hatsopoulos et al., “Encoding of Movement Fragments in the Motor Cortex”.

18. Aflalo & Graziano, “Relationship between unconstrained arm movements and single-neuron firing in the macaque motor
cortex.”

19. Sergio et al., “Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching
tasks”.

20. Hatsopoulos & Amit, “Synthesizing complex movement fragment representations from motor cortical ensembles”.



work?21:22

used the same trajectory encoding framework to relate neural activity with grasp
and reach-to-grasp behavior, respectively, demonstrating the potential for this approach to
explain the neural computations producing increasingly complex and naturalistic behavior.
In Chapter 3, I apply this trajectory encoding model to upper-limb kinematics produced by

common marmosets during the capture of live moths in an unrestrained, semi-naturalistic

environment.

1.3 Computations rely on neuronal interactions and population

dynamics

Early work interrogating the computational role of neuronal interactions showed that dy-
namic synchronization (precisely-timed cross-correlations at zero lag) between neurons can
emerge in conjunction with more general aspects of motor control such as the decision to
move?3 or cue expectation.2 Hatsopoulos et al.2% showed that synchrony varied with move-
ment direction for some neuron pairs in a manner that could not be explained by firing rates
alone. Follow-up work?0 demonstrated that pairwise noise correlations carried information
beyond that available in firing rates alone and contributed to decoding of movement direc-
tion. These studies — constrained by small populations of recorded neurons — suggested an
important computational role for neuronal interactions but were unable to explore that role
further.

Motivated by these results, by increasing population sizes of recorded neurons, and by the

lack of clarity as to the tuning properties of M1 neurons, a contemporary branch of motor con-

21. Saleh et al., “Encoding of coordinated grasp trajectories in primary motor cortex.”

22. Saleh et al., “Encoding of coordinated reach and grasp trajectories in primary motor cortex.”

23. Vaadia et al., “Dynamics of neuronal interactions in monkey cortex in relation to behavioural events”.

24. Riehle et al., “Spike synchronization and rate modulation differentially involved in motor cortical function”.

25. Hatsopoulos et al., “Information about movement direction obtained from synchronous activity of motor cortical neurons.”

26. Maynard et al., “Neuronal interactions improve cortical population coding of movement direction.”
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trol work has sought to explain M1 activity as a dynamical system that generates movement
through structured dynamics. Seminal work by Churchland et al.2” showed that oscillatory
patterns in single-neuron mean firing rates could be explained by rotational dynamics in a
low-dimensional state space representation of population activity. This framework has been
used to show that M1 activity remains in an “output-null” subspace of population activity to

prevent motion during the preparatory phase, then moves to the “output-potent”

subspace
and begins to exhibit rotational dynamics as movement begins.28:29 Moreover, the null and
potent spaces seem to be utilized by M1 neural populations more generally to send muscle-
like commands downstream while maintaining smooth dynamics.? It has also yielded the
finding that neural trajectories in M1 are significantly less “tangled” than trajectories in sen-
sory cortices or muscle activity, where low tangling means the future evolution of the neural
state is highly dependent on the current state and lends robustness to noise.3! This study
also showed that muscle-related activity could be read out linearly from population dynam-
ics, suggesting a mechanism by which the neural dynamical system might directly control
movement in the midst of rotations. The rotational dynamics that dominate M1 popula-
tion activity seem to be unique — despite similar single-unit modulation in M1 and both
upstream areas (supplementary motor area) and downstream readouts (muscle activity),
those areas exhibit dynamics with significantly weaker rotations.32 A recent development
termed the Location-Dependent Rotations (LDR) model builds on the work discussed above

by allowing for dynamics to unfold in higher dimensional neural space in a task-dependent

manner on single trials, rather than in a fixed space across trials and conditions.?® The au-

27. Churchland et al., “Neural population dynamics during reaching”.
28. Elsayed et al., “Reorganization between preparatory and movement population responses in motor cortex”.
29. Kaufman et al., “Cortical activity in the null space: Permitting preparation without movement”.

30. Stavisky et al., “Motor Cortical Visuomotor Feedback Activity Is Initially Isolated from Downstream Targets in Output-
Null Neural State Space Dimensions”.

31. Russo et al., “Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response”.
32. Lara et al., “Different population dynamics in the supplementary motor area and motor cortex during reaching”.

33. Sabatini & Kaufman, “Reach-dependent reorientation of rotational dynamics in motor cortex”.
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thors demonstrate that neural dynamics occur on a curved manifold, such that frequency
of local linear rotational dynamics is conserved while the orientation of the rotational plane
depends on the location of the fixed point on that manifold. They also show a near-linear
relationship between the fixed point location in neural space and reach kinematics on single
trials, suggesting a link between classical kinematic tuning and rotational dynamics. Low-
dimensional structure in neural population activity has also provided insight and utility for
brain-computer interface research (see Kao et al.3% and Oby et al.3® for two examples out of
many).

Although dynamical systems approaches have contributed profoundly to our understand-
ing of motor control, it is important to note the contexts in which they may fall short. Ro-
tational dynamics that explain M1 neural activity during movements of the proximal limb
cannot explain activity during grasping>® due in large part to higher tangling which may
reflect higher dependence on extrinsic inputs.37 This also suggests that dynamical systems
may struggle to explain M1 activity during naturalistic tasks that rely on continuous vi-
sual and proprioceptive feedback to make online adjustments, such as the reach-to-grasp
movements performed during the prey-capture of moths in Chapter 3. Stavisky et al.3®
used low-dimensional representations of output-null and output-potent subspaces to inves-
tigate neural trajectories in response to visuomotor feedback but did so for single ballistic

1.39 identified consistent

perturbations to a well-trained and stereotyped task. Gallego et a
low-dimensional latent dynamics as a hallmark of consistent performance of learned behav-

iors, but this again was for a simple task (cursor movement with a brain-computer interface).

34. Kao et al., “Single-trial dynamics of motor cortex and their applications to brain-machine interfaces”.
35. Oby et al., “New neural activity patterns emerge with long-term learning.”

36. Suresh et al., “Neural population dynamics in motor cortex are different for reach and grasp”.

37. Russo et al., “Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response”.

38. Stavisky et al., “Motor Cortical Visuomotor Feedback Activity Is Initially Isolated from Downstream Targets in Output-
Null Neural State Space Dimensions”.

39. Gallego et al., “Long-term stability of cortical population dynamics underlying consistent behavior”.



In contrast, Musall et al.40 demonstrated that the trial-specific, idiosyncratic movements oc-
curring throughout task performance were necessary to explain a large portion of neuronal
activity on single trials; thus, low-dimensional representations that require trial-averaging
may not be able to describe the computations occurring during corrective and idiosyncratic
movements. Although the LDR model* explains much of the single trial variance for curved
reaching in two dimensions, to my knowledge neither this model nor any other dynamical
systems approach has been applied to movements as varied and complex as those studied in

Chapters 2 and 3.

1.4 Moving towards complex and naturalistic motor behaviors

Most of the studies discussed so far relate neural activity to highly constrained and over-

trained tasks such as center-out reaching,42 isometric force application,43

or even pedaling a
wheel. 44 Such behaviors limit the variability in most movement parameters aside from those
under investigation and may impose an artificial ceiling on the dimensionality of neural pop-
ulation dynamics.*® It is clear from the history of motor control work described above that
the prevailing model of motor control required more nuance each time the behavioral task
was extended to a more complex subset of movements. It would be difficult, or perhaps

impossible, to comprehensively account for activity in M1 without studying motor behav-

ior in its full richness. Even in the case of less stereotyped behaviors like random target

40. Musall et al., “Single-trial neural dynamics are dominated by richly varied movements”.
41. Sabatini & Kaufman, “Reach-dependent reorientation of rotational dynamics in motor cortex”.

42. Georgopoulos et al., “On the relations between the direction of two-dimensional arm movements and cell discharge in
primate motor cortex.”

43. Evarts, “Relation of pyramidal tract activity to force exerted during voluntary movement.”
44. Russo et al., “Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response”.

45. Gao & Ganguli, “On simplicity and complexity in the brave new world of large-scale neuroscience”.



t,46 reaching around obstacles,*” and reach to grasp tasks,*® primates are restrained

pursui
in a chair with head-fixation and require weeks of daily training to reliably participate in
the experiment. There is evidence to suggest that a significant portion of M1 neurons en-
code a constrained, well-trained task differently than free behavior®? and that over-training
increases synchrony between M1 neurons.’? In addition to these results from primate stud-
ies, recent work in rodents suggests that motor cortex may not be directly involved in the
production of over-trained, skilled movements despite its necessary role in learning the move-

t.51 The authors propose that motor cortex trains subcortical circuits over the course

men
of learning, then cedes direct control to those circuits. Seemingly in contrast, Guo et al.®2
showed that rapid, reversible optogenetic inhibition of motor cortex prevented or paused
skilled prehension behavior but left untrained movements like grooming unaffected. Emerg-
ing work examining the role of subcortical regions in a similar task to Kawai et al. found that
lesions to sensorimotor striatum disrupted high-level sequencing of learned behavior but did
not disrupt equivalent movements that were visually cued,”® which means other regions were
in control of sensory-guided movements. Taken together, these studies suggest that motor
cortex is essential for executing movements that require dexterity (such as reach-to-grasp) or
rely on sensory feedback. These results, to the extent they generalize to primate motor con-
trol, bring into question the degree to which M1 directly controls over-trained, stereotyped

movements at all. Consequently, it is critical to investigate neural control of movement in

the most natural, unconstrained behavioral context possible.

46. Hatsopoulos et al., “Encoding of Movement Fragments in the Motor Cortex”.
47. Kaufman et al., “Cortical activity in the null space: Permitting preparation without movement”.
48. Saleh et al., “Encoding of coordinated reach and grasp trajectories in primary motor cortex.”

49. Jackson et al., “Correlations Between the Same Motor Cortex Cells and Arm Muscles During a Trained Task, Free
Behavior, and Natural Sleep in the Macaque Monkey”.

50. Schieber, “Training and Synchrony in the Motor System”.
51. Kawai et al., “Motor Cortex Is Required for Learning but Not for Executing a Motor Skill”.
52. Guo et al., “Cortex commands the performance of skilled movement”.

53. Mizes et al., “Dissociating the contributions of sensorimotor striatum to automatic and visually-guided motor sequences”.
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The common marmoset (Callithrixz jacchus) provides a unique opportunity for studying
neural representations of movement during ethological behaviors. Prior work by Walker
et al.%% produced a modular apparatus that allows for semi-automated training and data
collection on a variety of naturalistic, goal-directed behavioral tasks. This system leverages
marmosets’ inclination to engage in a behavioral task sporadically across numerous short
bursts of interest. Compared to the classical task paradigms discussed above, prey capture
in the apparatus produces a richer set of movements with variable directions, speeds, and
amplitudes.

The study of naturalistic behavior presents unique challenges; the first and immediate
challenge is accurately and efficiently capturing movement in a less constrained environment.
Recent developments in pose estimation technologies leverage deep learning computer vision
models to compute frame-by-frame pose estimation. In Chapter 2, I discuss the importance
of accurate pose estimation and the performance of DeepLabCut (DLC)55 compared to
marker-based tracking. Crucially, DLC proved capable of reliable pose estimation with
relatively little user effort compared to marker-based systems; its demonstrated accuracy
precludes the need for implanted or externally attached physical markers that could affect
naturalistic behavior. The methods and intuitions developed in Chapter 2 were applied to
accurately estimate the shoulder and wrist positions during the prey capture task investigated
in Chapter 3.

A second challenge is that naturalistic and untrained behaviors preclude trial-averaging
and produce a wealth of movement variability that can be difficult to parse. The models I
present in Chapter 3 are designed to leverage the kinematic variability of natural movements
in order to produce a motor control model capable of explaining complex, dexterous upper-
limb movements on single trials. As marmosets engage in voluntary prey-capture, they

initiate internally generated movements that engage motor cortical circuits in their natural

54. Walker et al., “A platform for semiautomated voluntary training of common marmosets for behavioral neuroscience”.

55. Mathis et al., “DeepLabCut: markerless pose estimation of user-defined body parts with deep learning”.
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state, presumably unaltered by over-training of stereotyped movements.

1.5 Population dynamics through the lens of the functional

network

Single-neuron approaches to understanding motor control provided a baseline certainty that
M1 is instrumental in the generation of upper-limb movements, particularly for skilled and
dexterous behaviors. However, the specific tuning properties of single neurons and neural
populations remain disputed. The population dynamics approach has provided an alterna-
tive view on M1 activity that may transcend the concept of tuning to movement parameters.
However, the dimensionality reduction techniques used to characterize these dynamics dis-
card the identity, role, and tuning properties of single neurons, thereby hindering efforts to
understand the function of individual neurons within the context of the population. A few
studies have attempted to interpret single-unit M1 activity in the context of the population,
showing that pairwise spike count correlations provided information about motor behavior
beyond what is provided by firing rates alone®® and improved encoding models that predict
single-unit activity.?” However, spike time correlations which may be more informative of dy-
namics remain under-studied in M1 neural populations (but see Sundiang et al..’® discussed
below).

Network science — the study of complex networks — provides an alternative approach to
the investigation of neurons and their interactions within the population. In this framework,
network activity is summarized in the form of a functional network (FN) that maintains
neuron-specific labels while simultaneously capturing all pairwise spike time correlations

between neurons. In the work presented here, functional connectivity defined by pairwise

56. Maynard et al., “Neuronal interactions improve cortical population coding of movement direction.”
57. Stevenson et al., “Functional Connectivity and Tuning Curves in Populations of Simultaneously Recorded Neurons”.

58. Sundiang et al., “Dynamic structure of motor cortical neuron coactivity carries behaviorally relevant information”.
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statistical relationships in spike timing do not necessarily reflect synaptic connectivity, al-
though there is likely some overlap for local connections.”? In murine primary visual cortex,
FNs can be used to predict single trial activity as an encoding model; to decode single trial
visual stimuli®!; and to generate realistic simulations of single trial activity.52 Recent work
demonstrated that coactivity in groups of source units with functional inputs to a target unit
(termed the target unit’s “functional group”) was the main predictor of single-trial activity
in V1 neurons and that the functional group’s predictive power depended on the specific
topology of the strongest inputs.93 Another study split V1 neurons into subpopulations that
were either tuned or untuned to visual drifting grating stimuli to show that the subpopu-
lations have distinct topological properties, with untuned units occupying central positions
in the FN.54 They also found that decoders utilizing FN topology yield accurate decoding
of visual stimuli, and that these decoders depend on the connectivity of both tuned and
untuned units. These studies demonstrate the potential for the FN approach to leverage
single-neuron properties and population-level interactions together in a cohesive manner.
The FN approach was recently applied to M1 neural activity in non-human primates
performing a standard delayed center-out reaching task, showing that FN structure is be-

t.65 FNs constructed from closer

haviorally specific and evolves systematically with movemen
reach directions were closer in network space and temporal FNs computed in short inter-
vals throughout the trial traversed reach-specific trajectories in a low-dimensional subspace.

These trajectories became separable and decodable in the timeframe shortly after the in-

59. Chambers & MacLean, “Multineuronal activity patterns identify selective synaptic connections under realistic experimen-
tal constraints”.

60. Dechery & MacLean, “Functional triplet motifs underlie accurate predictions of single-trial responses in populations of
tuned and untuned V1 neurons”.

61. Levy et al., “Network Analysis of Murine Cortical Dynamics Implicates Untuned Neurons in Visual Stimulus Coding”.

62. Sadovsky & MacLean, “Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory and So-
matosensory Microcircuitry”.

63. Kotekal & MacLean, “Recurrent interactions can explain the variance in single trial responses”.
64. Levy et al., “Network Analysis of Murine Cortical Dynamics Implicates Untuned Neurons in Visual Stimulus Coding”.

65. Sundiang et al., “Dynamic structure of motor cortical neuron coactivity carries behaviorally relevant information”.
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struction cue and remained so throughout movement initiation and execution. The decoder
incorporating both firing rates and temporal FNs provided significant performance gains over
the firing rate alone, and the FN-only decoder outperformed an equivalent decoder trained
on rate-matched null FNs — both results demonstrate that FN structure contains information
beyond that available in instantaneous firing rates. Finally, reciprocity in the FN decreased
shortly after the instruction cue, suggesting a transitory reorganization of network topol-
ogy that may facilitate integration and propagation of external inputs.%6 This change to
FN topology may be a complementary representation of the transition from preparatory to
movement subspaces identified by the dynamical systems auppl"oach.67’68 FNs provide an op-
portunity to parse relationships between neural activity and specific features of the network

such as reciprocity, in-degree, or membership in functional groups.

1.6 Comparison of M1 to Areas 3a and 3b

To this point I have discussed relationships between upper-limb control and motor cortical
activity exclusively. However, in Chapter 3 I investigate kinematic and network encoding
models for neurons in M1 and 6dc (pre-motor cortex) and area 3a, as well as some units in
area 3b. Area 3b primarily receives and processes cutaneous information from the peripheral

69,70,71

nervous system and has sparser connectivity with M1 and area 3a than with other so-

66. Malonis et al., “M1 dynamics share similar inputs for initiating and correcting movement”.
67. Kaufman et al., “Cortical activity in the null space: Permitting preparation without movement”.
68. Elsayed et al., “Reorganization between preparatory and movement population responses in motor cortex”.

69. Hyvérinen & Poranen, “Receptive field integration and submodality convergence in the hand area of the post-central gyrus
of the alert monkey.”

70. Iwamura et al., “Rostrocaudal gradients in the neuronal receptive field complexity in the finger region of the alert monkey’s
postcentral gyrus”.

71. Tanji & Wise, “Submodality distribution in sensorimotor cortex of the unanesthetized monkey”.
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matosensory regions.72’73’74’75 Area 3a, on the other hand, receives proprioceptive feedback

76,77,78

from the periphery and is highly interconnected with M1.79:80:81 Area 3a contains

pyramidal tract neurons (PTNs) with similar discharge properties and reflex responses to M1

182

PTNs, suggesting a direct influence on movement®~ in addition to its canonical role receiving

k.33:84 Gimilarities between

and processing ongoing postural and movement-related feedbac
M1 and area 3a extend to representation of proximal upper-limb movement direction and
externally applied loads8? as well as encoding® and decoding87 of distal limb movements
of the wrist and digits. Thus, I expect largely similar results in Chapter 3 for neuron popu-
lations in M1 and area 3a, with less similarity between these neurons and those in area 3b.
One potential difference is the timescale of neural encoding, such that sensory neurons prefer

trajectory samples leading the spike sample window and motor neurons prefer trajectories

lagging the spike sample. However, this effect is difficult to parse for natural, continuous

72. Burton & Fabri, “Ipsilateral intracortical connections of physiologically defined cutaneous representations in areas 3b and
1 of macaque monkeys: projections in the vicinity of the central sulcus”.

73. Huffman & Krubitzer, “Area 3a: Topographic Organization and Cortical Connections in Marmoset Monkeys”.
74. Jones et al., “Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys”.
75. Krubitzer & Kaas, “The organization and connections of somatosensory cortex in marmosets”.

76. Iwamura et al., “Rostrocaudal gradients in the neuronal receptive field complexity in the finger region of the alert monkey’s
postcentral gyrus”.

77. Phillips et al., “Projection from low-threshold muscle afferents of hand and forearm to area 3a of baboon’s cortex”.

78. Tanji & Wise, “Submodality distribution in sensorimotor cortex of the unanesthetized monkey”.

79. Huerta & Pons, “Primary motor cortex receives input from area 3a in macaques”.

80. Huffman & Krubitzer, “Area 3a: Topographic Organization and Cortical Connections in Marmoset Monkeys”.

81. Jones et al., “Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys”.

82. Fromm & Evarts, “Pyramidal tract neurons in somatosensory cortex: central and peripheral inputs during voluntary
movement”.

83. Fromm et al., “Sensory response properties of pyramidal tract neurons in the precentral motor cortex and postcentral
gyrus of the rhesus monkey”.

84. Gardner & Costanzo, “Properties of kinesthetic neurons in somatosensory cortex of awake monkeys”.

85. Prud’homme & Kalaska, “Proprioceptive activity in primate primary somatosensory cortex during active arm reaching
movements”.

86. Goodman et al., “Postural Representations of the Hand in the Primate Sensorimotor Cortex”.

87. Okorokova et al., “Decoding hand kinematics from population responses in sensorimotor cortex during grasping”.
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movements that exhibit long autocorrelations; this is especially true in Chapter 3 because

the vast majority of trajectory samples occur entirely in the midst of reaching.

1.7 Developing an encoding model incorporating naturalistic

kinematics and the functional network

I demonstrate in Chapter 2 that computer vision tools — specifically DLC-+ Anipose®8:89 —

track 3D pose with accuracy comparable to marker-based tracking. DLC+ Anipose estimates
pose as accurately as expert human labelers and significantly more accurately than novice
human labelers. I also characterize the effect of parameter choices on DLC+ Anipose accuracy
and identify a range of parameter value choices to minimize error and maximize the number
of well-tracked frames. These insights were used in Chapter 3 to accurately estimate pose
during prey-capture, thereby providing the complex kinematics necessary for the trajectory
encoding model.

In Chapter 3 I take steps toward integrating the neuron-centric and network perspec-
tives on computations in motor cortex by developing encoding models that can predict fine-
timing spike activity in individual neurons by accounting for temporally precise movement
kinematics, neuron-specific properties, and activity in the functional group. The veracity of
our results depends on using a network model built on the backbone of a suitably accurate
single-unit tuning model. Simple encoding models such as directional tuning at a fixed post-
spike delay fail to explain much of the variance in activity during unconstrained natural
movements?? and the majority of tuning models rely on average firing rates through the
duration of movement and often across trials. Prior work in the Hatsopoulos lab has demon-

strated that a temporally extended, trajectory-based model captures the single-trial tuning

88. Karashchuk et al., “Anipose: A toolkit for robust markerless 3D pose estimation”.
89. Mathis et al., “DeepLabCut: markerless pose estimation of user-defined body parts with deep learning”.

90. Aflalo & Graziano, “Relationship between unconstrained arm movements and single-neuron firing in the macaque motor
cortex.”
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of M1 neurons more accurately than prior models and can be used to decode instantaneous
movement direction with less error.91:92:93.94 Chartier et al.9 used the same approach to
create an encoding model relating dense ECoG recordings in ventral sensorimotor cortex to
articulatory kinematic trajectories during natural, continuous speech production. In Chapter
3, I use this generalized linear model (GLM) framework to elucidate the natural kinematic
encoding properties of single motor cortical neurons and their influence on other neurons
within an FN shaped by interactions. I identify the best-performing model across a range of
lead /lag kinematic sampling windows by evaluating the accuracy of predicted spiking activity
for held-out trajectory samples. I then augment the kinematics-only model with coincident
and leading network features, computed by the dot product of the FN with coincident or
leading activity in functionally connected units. With kinematics, neuron specificity, and
network activity combined in a single encoding model, I examine the role and structure of
functional interactions and their effect on kinematic tuning.

I find that the trajectory tuning model extends to more naturalistic movements and
explains neural activity better than a simpler model. Additionally, the trajectory tuning
model without any direct mathematical dependence on the FN links single-unit activity
to kinematics most accurately for units that are strongly interconnected within the net-
work. I incorporate network features in the model and show that single-unit spiking activity
depends fundamentally on functional interactions — particularly on the topology of strong
connections. Finally, I identify a reach-specific functional group that reorganizes to produce
dynamic forelimb movements during prey-capture. This reach-specific functional group is

strongly interconnected and comprises units tightly linked to kinematics with strong, posi-

91. Hatsopoulos & Amit, “Synthesizing complex movement fragment representations from motor cortical ensembles”.
92. Hatsopoulos et al., “Encoding of Movement Fragments in the Motor Cortex”.

93. Saleh et al., “Encoding of coordinated grasp trajectories in primary motor cortex.”

94. Saleh et al., “Encoding of coordinated reach and grasp trajectories in primary motor cortex.”

95. Chartier et al., “Encoding of Articulatory Kinematic Trajectories in Human Speech Sensorimotor Cortex”.
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tively correlated preferred trajectories. Analysis of the differences between the reach-specific
and non-specific groups suggests a potential framework for contextualizing single-unit prop-

erties and activity within the generation and evolution of population dynamics.
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CHAPTER 2
VALIDATING MARKERLESS POSE ESTIMATION WITH 3D
X-RAY RADIOGRAPHY

This work was previously published:
Moore, Dalton D., Jeffrey D. Walker, Jason N. MaclLean, and Nicholas G. Hatsopoulos.
"Validating markerless pose estimation with 3D X-ray radiography." Journal of Experimental

Biology 225, no. 9 (2022): jeb243998.

2.1 Abstract

To reveal the neurophysiological underpinnings of natural movement, neural recordings must
be paired with accurate tracking of limbs and postures. Here, we evaluated the accuracy
of DeepLabCut (DLC), a deep learning markerless motion capture approach, by comparing
it with a 3D X-ray video radiography system that tracks markers placed under the skin
(XROMM). We recorded behavioral data simultaneously with XROMM and RGB video as
marmosets foraged and reconstructed 3D kinematics in a common coordinate system. We
used the toolkit Anipose to filter and triangulate DLC trajectories of 11 markers on the
forelimb and torso and found a low median error (0.228 cm) between the two modalities
corresponding to 2.0% of the range of motion. For studies allowing this relatively small
error, DLC and similar markerless pose estimation tools enable the study of increasingly

naturalistic behaviors in many fields including nonhuman primate motor control.

2.2 Introduction

As the study of motor neuroscience progresses toward an emphasis on naturalistic, uncon-
strained behavior, kinematics must be captured accurately and efficiently. Past research

has relied on marker-based systems tracking markers attached to an animal’s skin (such as
18



Vicon, OptiTrack, and PhaseSpace) or surgically implanted radiopaque beads (XROMM).1
However, these systems are expensive and often impractical with smaller species like mice or
marmosets, especially for tracking free or semi-constrained behavior. To solve this problem,
multiple groups have developed marker-less pose estimation tools that use deep learning to
apply digital markers to recorded video. The most widely used is DeepLabCut (DLC),2 but
alternatives exist.34:%:6 These enable the study of a wider range of behaviors by allowing free
movement without the disturbance of physical markers. Furthermore, these tools alleviate
the bottleneck of semi-automatic tracking; a well-trained network labels video with accuracy
comparable to human labelers’ and requires minimal hands-on time for subsequent datasets.

DLC has been used in many contexts, including tracking eye movements, pupil dilation and

8,9,10 11

hand movements in mice, estimating 3D pose of freely moving macaques,”* and even
on XROMM video to increase throughput.!?

DLC accuracy has not been compared to that of marker-based tracking in the context
of close-up forelimb tracking that is common in motor control studies. Dunn et al.1? tested
DLC and a geometric deep learning tool (DANNCE) against a rat motion capture dataset,

but recording from a small number of cameras in this unconstrained context with significant

1. Brainerd et al., “X-ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in compar-
ative biomechanics research”.

2. Mathis et al., “DeepLabCut: markerless pose estimation of user-defined body parts with deep learning”.
3. Dunn et al., “Geometric deep learning enables 3D kinematic profiling across species and environments”.
4. Graving et al., “DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning”.
5. Pereira et al., “Fast animal pose estimation using deep neural networks”.
6. Wu et al., Deep Graph Pose: A semi-supervised deep graphical model for improved animal pose tracking.
7. Mathis et al., “DeepLabCut: markerless pose estimation of user-defined body parts with deep learning”.
8. Sauerbrei et al., “Cortical pattern generation during dexterous movement is input-driven”.
9. Siegle et al., A survey of spiking activity reveals a functional hierarchy of mouse corticothalamic visual areas.
10. Steinmetz et al., “Distributed coding of choice, action and engagement across the mouse brain”.
11. Bala et al., “Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio”.
12. Laurence-Chasen et al., “Integrating XMALab and DeepLabCut for high-throughput XROMM”.

13. Dunn et al., “Geometric deep learning enables 3D kinematic profiling across species and environments”.
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environment- and self-occlusion is beyond the intended use for DLC unless many cameras
are used as in Bala et al..14 Thus, a comparison in the semi-constrained context with a small
number of cameras is crucial to confirm whether DLC reliably tracks kinematics with accu-
racy comparable to human labelers and existing marker-based systems. XROMM provides
a useful comparison, as we have shown that the system tracks radiopaque markers with
submillimeter precision.!® To this end, we collect simultaneous recordings with XROMM
and RGB video as common marmosets engage in naturalistic foraging, then reconstruct
three-dimensional reaching kinematics in a shared coordinate system. We perform filtering,
triangulation and optimization steps with Aniposel® and present the effect of parameter
choices on tracking quality. We find that optimized DLC-+ Anipose tracks position with me-
dian absolute error of 0.228 cm (mean absolute error = 0.274 c¢m), corresponding to 2.0% of

the range of marker positions.

2.3 Methods

Subjects
These experiments were conducted with two common marmosets (Callithriz jacchus) (an
8-year old, 356g male and a 7-year old, 418g female). All methods were approved by the

Institutional Animal Care and Use Committee of the University of Chicago.

Data Collection
The two marmosets were placed together in a 1m x 1m x 1m cage with a modular foraging
apparatus attached to the top of the cage, as previously described by.17 The marmosets were

allowed to forage voluntarily throughout recording sessions that lasted 1-2 hours. Recordings

14. Bala et al., “Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio”.
15. Walker et al., “A platform for semiautomated voluntary training of common marmosets for behavioral neuroscience”.
16. Karashchuk et al., “Anipose: A toolkit for robust markerless 3D pose estimation”.

17. Walker et al., “A platform for semiautomated voluntary training of common marmosets for behavioral neuroscience”.
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of individual trials were triggered manually with a foot pedal by the experimenters when the
marmosets appeared ready to initiate a reach. The manual trigger initiated synchronized
video collection by the XROMM system!® and two visible light cameras, each described
in further detail below. We retained all trials that captured right-handed reaches. Mar-
moset TY produced four useful reaching events containing 5 total reaches and marmoset PT

produced 13 reaching events containing 17 reaches.

XROMM

Bi-planar X-ray sources and image intensifiers (90kV, 25mA at 200 fps) were used to track
the 3D position of radiopaque tantalum beads (0.5-1 mm, Bal-tec) placed subcutaneously
in the arm, hand, and torso. Details of bead implants can be found in,!? in which the au-
thors also report estimating XROMM marker tracking precision of 0.06 mm based on the
standard deviation of inter-marker distances during a recording of a calibration specimen.
Marker locations were chosen to approximate the recommendations given by the Interna-
tional Society of Biomechanics for defining coordinate systems of the upper limb and torso
in humans.2’ These recommendations were adapted to the marmoset and constrained by
surgical considerations. Positions of 13 beads were tracked using a semi-automated pro-
cess in XMALab?! following the procedure described there and in the XMALab User Guide
(https:/ /bitbucket.org/xromm /xmalab/wiki/Home). Two beads implanted in the anterior
torso were ignored for comparison with DLC because corresponding positions on the skin

were occluded in nearly every frame captured by visible light cameras.

18. Brainerd et al., “X-ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in compar-
ative biomechanics research”.

19. Walker et al., “A platform for semiautomated voluntary training of common marmosets for behavioral neuroscience”.

20. Wu et al., “ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human
joint motion—Part II: shoulder, elbow, wrist and hand”.

21. Knorlein et al., “Validation of XMALab software for Marker-based XROMM”.
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DeepLabCut

Two high-speed cameras (FLIR Blackfly S, 200 fps, 1440x1080 resolution) were used to
record video for analysis by DLC. The cameras were positioned to optimize visibility of
the right upper limb during reaching behavior in the foraging apparatus and to minimize
occlusions, while avoiding the path between the X-ray sources and image intensifiers (Fig.
2.1A). The cameras were triggered to record continuous images between the onset and offset
of the manual XROMM trigger, with series of images later converted to video for DLC
processing. All videos were brightened using the OpenCV algorithm for contrast limited
adaptive histogram equalization (CLAHE) prior to labeling. We labeled 11 body parts in
DLC — two labels on the torso and three on each of the upper arm, forearm, and hand (Fig.
2.1B). Locations of each label were chosen to be as close as possible to the approximate
location of XROMM beads, although concession<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>