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ABSTRACT

The underlying mechanisms of computation in sensorimotor cortex must be both flexible

and robust to support the range of skilled, dynamic forelimb movements observed in natural

primate behavior. To understand the full richness of these mechanisms, it is important to

study motor behavior in the most natural context possible using analytical tools that ac-

count for relationships between movement and both single-unit and population activity. In

this work, I demonstrate that accurately capturing naturalistic motor behavior – specifically

dynamic forelimb movements during foraging and prey-capture – is both critical and feasible.

I leverage natural forelimb movements and pairwise precise spike time structure (represented

as a functional network) in marmoset sensorimotor cortex to develop a network encoding

model that links single-unit spiking activity with kinematic tuning properties and functional

network interactions. I use this model to investigate the computational mechanisms that

generate varied and naturalistic motor behavior. I show that a trajectory-based encoding

model predicts single-unit activity during naturalistic forelimb movements more accurately

than a simpler model. I demonstrate that tuning to kinematics depends on functional in-

teractions between units – particularly on structured strong connections. Finally, I identify

a reach-specific functional group that reorganizes to produce dynamic forelimb movements

during prey capture. This reach-specific functional group is strongly interconnected and

comprises units tightly linked to kinematics with strong, positively correlated preferred tra-

jectories. By examination of the reach-specific functional group and remaining non-specific

units, I suggest a potential framework linking single-unit properties to the neural population

dynamics that generate movement.
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CHAPTER 1

INTRODUCTION

1.1 Computations in Motor Cortex

Any interaction between an organism and the external world requires a motor behavior.

As a critical node in the nervous system involved in voluntary motor control, the primary

motor cortex (M1) provides the opportunity to investigate neuronal computations and their

outputs at the final stage of cortical processing before movement execution. The motor

system executes tasks of exquisite precision such as writing, playing musical instruments,

or even buttoning a shirt with ease, yet can produce powerful movements like a tennis

serve or butterfly stroke using the same neural circuitry. Motor behaviors can be highly

consistent and repeatable across this vast behavioral range and the motor system can react

quickly and skillfully to external sensory information or perturbations to correct and fine-tune

movement. Thus, the underlying mechanisms of computation in M1 must be both flexible

and robust to support the full repertoire of human motor behavior. In this work, I combine

tuning properties of individual neurons and a functional network approach to investigate the

computational mechanisms that generate varied and naturalistic motor behavior.

1.2 Relating M1 neural activity to movement parameters

Studies of primate upper limb control have historically searched for relationships between

the activity of individual neurons in M1 and either muscle-related features (such as force)

or movement kinematics. In 1968, Evarts used a wrist flexion-extension task with exter-

nal opposing forces to show that the activity of individual pyramidal tract neurons in M1

was related most directly to exerted force rather than to displacement in a majority of 31

units.1 In the 1980s, a series of papers by Georgopoulos and colleagues used a center-out

1. Evarts, “Relation of pyramidal tract activity to force exerted during voluntary movement.”
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reaching task in two and three dimensions to demonstrate a relationship between direction

of movement and the mean firing rate of M1 units during the movement.2,3 These papers

modeled direction tuning in individual neurons by fitting a shifted and scaled cosine curve

to average firing rates over many trials in each direction. They also introduced the concept

of the population vector, in which the direction of movement could be predicted by the sum

of preferred directions weighted by firing rate across all direction-tuned units.4,5 While this

concept was instructive for much of the subsequent research in motor control, it treats the

output of the motor system as a linear summation operator and ignores any effect of the

complex interactions between neurons. A 1992 study partially reconciled the ideas of force

versus direction tuning by demonstrating tuning of neurons to the directional change in force

rather than to total exerted force.6 Around this time, the field began to add complexity to

the standard center-out movement and force tasks. In this vein, Caminiti et al.7 and Sergio

and Kalaska8 added nuance to the concept of population vector encoding by demonstrating

that directional tuning to movement and isometric force production, respectively, rotates

systematically with arm posture. Scott and Kalaska9 confirmed shifts in directional tuning

to movement but, in contrast with Caminiti et al., found no systematic relationship between

posture and the population vector. Hocherman and Wise10 showed that M1 codes for details

2. Georgopoulos et al., “On the relations between the direction of two-dimensional arm movements and cell discharge in
primate motor cortex.”

3. Schwartz et al., “Primate motor cortex and free arm movements to visual targets in three- dimensional space. I. Relations
between single cell discharge and direction of movement”.

4. Georgopoulos et al., “Neuronal Population Coding of Movement Direction”.

5. Georgopoulos et al., “Primate motor cortex and free arm movements to visual targets in three- dimensional space. II.
Coding of the direction of movement by a neuronal population”.

6. Georgopoulos et al., “The Motor Cortex and the Coding of Force”.

7. Caminiti et al., “Making arm movements within different parts of space: dynamic aspects in the primate motor cortex.”

8. Sergio & Kalaska, “Systematic Changes in Motor Cortex Cell Activity With Arm Posture During Directional Isometric
Force Generation”.

9. Scott & Kalaska, “Changes in motor cortex activity during reaching movements with similar hand paths but different arm
postures”.

10. Hocherman & Wise, “Effects of hand movement path on motor cortical activity in awake, behaving rhesus monkeys”.
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of a movement trajectory as opposed to the net change in position. Moran and Schwartz11

found that a model incorporating speed along with direction improved on directional tuning

alone.

As the field continued to explore the tuning properties of M1, several nuances and depen-

dencies were discovered. For example, multiple studies showed that the consistent directional

tuning reported by Georgopoulos and others depended on averaging spiking activity over the

duration of movement. In fact, the instantaneous preferred movement direction of neurons

in premotor cortex and M1 can change drastically over the course of movement12,13,14 and

between preparatory and movement periods.15 The study by Sergio et al. also showed that

preferred force direction in an isometric force task was more consistent than preferred move-

ment direction in the center-out whole-arm movement task.

Aflalo and Graziano16 added complexity when they examined tuning of M1 neurons to an

array of previously proposed kinematic metrics in unconstrained behavior. They noted that

previous studies such as those discussed here related M1 activity to movements that were

constrained to a small percentage of possible kinematic variance, and that simple models

explaining a large degree of that variance may not extend to less constrained behavior.

They showed that direction tuning accounted for only 8% of variance in neural activity

while macaques moved their arms freely in the workspace; even the best model – an end-

posture model – accounted for only 36% of variance on average. A combination model

incorporating hand speed, directional tuning, and final position of the hand and posture

of the arm increased the explained variance to 44%, leaving the majority of neural activity

11. Moran & Schwartz, “Motor Cortical Representation of Speed and Direction During Reaching”.

12. Churchland & Shenoy, “Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex”.

13. Mason et al., “Temporal profile of the directional tuning of the discharge of dorsal premotor cortical cells”.

14. Sergio et al., “Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching
tasks”.

15. Churchland et al., “Cortical Preparatory Activity: Representation of Movement or First Cog in a Dynamical Machine?”

16. Aflalo & Graziano, “Relationship between unconstrained arm movements and single-neuron firing in the macaque motor
cortex.”
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unexplained. This result, along with the body of work discussed above, suggests that M1 may

represent and control a combination of multiple kinematic or muscle-related variables; M1

may also execute unexplored computations that account for some portion of the remaining

variance.

A parallel approach to modeling tuning in M1 as a combination of kinematic parameters

began with the development of a trajectory encoding model by Hatsopoulos, Xu and Amit

in 2007.17 The authors used a random target pursuit task which produced more kinematic

variance than observed in most prior studies, although still within a single plane unlike

Aflalo and Graziano.18 The authors accounted for the shifting of preferred directions of sin-

gle neurons demonstrated in previous work by relating neural activity to brief movement

trajectories that incorporate a range of leading and lagging kinematics relative to neural

spiking. They found that a trajectory model incorporating average hand speed, position,

and finely sampled movement directions from -100ms before neural activity to +300ms af-

terward performed best and outperformed a brief trajectory model analogous to direction

tuning at a fixed lag of +100 to +150ms. The kinematic trajectory model also outperformed

a comparable torque trajectory tuning model for most of the population. The authors note

that their recordings were more rostral on the precentral gyrus than work showing a pref-

erence for force tuning,19 which may explain this difference. In a follow-up study,20 they

demonstrated that the preferred trajectories of pairs of neurons could sum linearly when

the two neurons fired simultaneously, suggesting a rich variety of complex movement repre-

sentations could be synthesized in the simultaneous firing of a neural population by adding

the trajectory representations of the constituent neurons in the population. Another line of

17. Hatsopoulos et al., “Encoding of Movement Fragments in the Motor Cortex”.

18. Aflalo & Graziano, “Relationship between unconstrained arm movements and single-neuron firing in the macaque motor
cortex.”

19. Sergio et al., “Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching
tasks”.

20. Hatsopoulos & Amit, “Synthesizing complex movement fragment representations from motor cortical ensembles”.
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work21,22 used the same trajectory encoding framework to relate neural activity with grasp

and reach-to-grasp behavior, respectively, demonstrating the potential for this approach to

explain the neural computations producing increasingly complex and naturalistic behavior.

In Chapter 3, I apply this trajectory encoding model to upper-limb kinematics produced by

common marmosets during the capture of live moths in an unrestrained, semi-naturalistic

environment.

1.3 Computations rely on neuronal interactions and population

dynamics

Early work interrogating the computational role of neuronal interactions showed that dy-

namic synchronization (precisely-timed cross-correlations at zero lag) between neurons can

emerge in conjunction with more general aspects of motor control such as the decision to

move23 or cue expectation.24 Hatsopoulos et al.25 showed that synchrony varied with move-

ment direction for some neuron pairs in a manner that could not be explained by firing rates

alone. Follow-up work26 demonstrated that pairwise noise correlations carried information

beyond that available in firing rates alone and contributed to decoding of movement direc-

tion. These studies – constrained by small populations of recorded neurons – suggested an

important computational role for neuronal interactions but were unable to explore that role

further.

Motivated by these results, by increasing population sizes of recorded neurons, and by the

lack of clarity as to the tuning properties of M1 neurons, a contemporary branch of motor con-

21. Saleh et al., “Encoding of coordinated grasp trajectories in primary motor cortex.”

22. Saleh et al., “Encoding of coordinated reach and grasp trajectories in primary motor cortex.”

23. Vaadia et al., “Dynamics of neuronal interactions in monkey cortex in relation to behavioural events”.

24. Riehle et al., “Spike synchronization and rate modulation differentially involved in motor cortical function”.

25. Hatsopoulos et al., “Information about movement direction obtained from synchronous activity of motor cortical neurons.”

26. Maynard et al., “Neuronal interactions improve cortical population coding of movement direction.”
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trol work has sought to explain M1 activity as a dynamical system that generates movement

through structured dynamics. Seminal work by Churchland et al.27 showed that oscillatory

patterns in single-neuron mean firing rates could be explained by rotational dynamics in a

low-dimensional state space representation of population activity. This framework has been

used to show that M1 activity remains in an “output-null” subspace of population activity to

prevent motion during the preparatory phase, then moves to the “output-potent” subspace

and begins to exhibit rotational dynamics as movement begins.28,29 Moreover, the null and

potent spaces seem to be utilized by M1 neural populations more generally to send muscle-

like commands downstream while maintaining smooth dynamics.30 It has also yielded the

finding that neural trajectories in M1 are significantly less “tangled” than trajectories in sen-

sory cortices or muscle activity, where low tangling means the future evolution of the neural

state is highly dependent on the current state and lends robustness to noise.31 This study

also showed that muscle-related activity could be read out linearly from population dynam-

ics, suggesting a mechanism by which the neural dynamical system might directly control

movement in the midst of rotations. The rotational dynamics that dominate M1 popula-

tion activity seem to be unique – despite similar single-unit modulation in M1 and both

upstream areas (supplementary motor area) and downstream readouts (muscle activity),

those areas exhibit dynamics with significantly weaker rotations.32 A recent development

termed the Location-Dependent Rotations (LDR) model builds on the work discussed above

by allowing for dynamics to unfold in higher dimensional neural space in a task-dependent

manner on single trials, rather than in a fixed space across trials and conditions.33 The au-

27. Churchland et al., “Neural population dynamics during reaching”.

28. Elsayed et al., “Reorganization between preparatory and movement population responses in motor cortex”.

29. Kaufman et al., “Cortical activity in the null space: Permitting preparation without movement”.

30. Stavisky et al., “Motor Cortical Visuomotor Feedback Activity Is Initially Isolated from Downstream Targets in Output-
Null Neural State Space Dimensions”.

31. Russo et al., “Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response”.

32. Lara et al., “Different population dynamics in the supplementary motor area and motor cortex during reaching”.

33. Sabatini & Kaufman, “Reach-dependent reorientation of rotational dynamics in motor cortex”.
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thors demonstrate that neural dynamics occur on a curved manifold, such that frequency

of local linear rotational dynamics is conserved while the orientation of the rotational plane

depends on the location of the fixed point on that manifold. They also show a near-linear

relationship between the fixed point location in neural space and reach kinematics on single

trials, suggesting a link between classical kinematic tuning and rotational dynamics. Low-

dimensional structure in neural population activity has also provided insight and utility for

brain-computer interface research (see Kao et al.34 and Oby et al.35 for two examples out of

many).

Although dynamical systems approaches have contributed profoundly to our understand-

ing of motor control, it is important to note the contexts in which they may fall short. Ro-

tational dynamics that explain M1 neural activity during movements of the proximal limb

cannot explain activity during grasping,36 due in large part to higher tangling which may

reflect higher dependence on extrinsic inputs.37 This also suggests that dynamical systems

may struggle to explain M1 activity during naturalistic tasks that rely on continuous vi-

sual and proprioceptive feedback to make online adjustments, such as the reach-to-grasp

movements performed during the prey-capture of moths in Chapter 3. Stavisky et al.38

used low-dimensional representations of output-null and output-potent subspaces to inves-

tigate neural trajectories in response to visuomotor feedback but did so for single ballistic

perturbations to a well-trained and stereotyped task. Gallego et al.39 identified consistent

low-dimensional latent dynamics as a hallmark of consistent performance of learned behav-

iors, but this again was for a simple task (cursor movement with a brain-computer interface).

34. Kao et al., “Single-trial dynamics of motor cortex and their applications to brain-machine interfaces”.

35. Oby et al., “New neural activity patterns emerge with long-term learning.”

36. Suresh et al., “Neural population dynamics in motor cortex are different for reach and grasp”.

37. Russo et al., “Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response”.

38. Stavisky et al., “Motor Cortical Visuomotor Feedback Activity Is Initially Isolated from Downstream Targets in Output-
Null Neural State Space Dimensions”.

39. Gallego et al., “Long-term stability of cortical population dynamics underlying consistent behavior”.
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In contrast, Musall et al.40 demonstrated that the trial-specific, idiosyncratic movements oc-

curring throughout task performance were necessary to explain a large portion of neuronal

activity on single trials; thus, low-dimensional representations that require trial-averaging

may not be able to describe the computations occurring during corrective and idiosyncratic

movements. Although the LDR model41 explains much of the single trial variance for curved

reaching in two dimensions, to my knowledge neither this model nor any other dynamical

systems approach has been applied to movements as varied and complex as those studied in

Chapters 2 and 3.

1.4 Moving towards complex and naturalistic motor behaviors

Most of the studies discussed so far relate neural activity to highly constrained and over-

trained tasks such as center-out reaching,42 isometric force application,43 or even pedaling a

wheel.44 Such behaviors limit the variability in most movement parameters aside from those

under investigation and may impose an artificial ceiling on the dimensionality of neural pop-

ulation dynamics.45 It is clear from the history of motor control work described above that

the prevailing model of motor control required more nuance each time the behavioral task

was extended to a more complex subset of movements. It would be difficult, or perhaps

impossible, to comprehensively account for activity in M1 without studying motor behav-

ior in its full richness. Even in the case of less stereotyped behaviors like random target

40. Musall et al., “Single-trial neural dynamics are dominated by richly varied movements”.

41. Sabatini & Kaufman, “Reach-dependent reorientation of rotational dynamics in motor cortex”.

42. Georgopoulos et al., “On the relations between the direction of two-dimensional arm movements and cell discharge in
primate motor cortex.”

43. Evarts, “Relation of pyramidal tract activity to force exerted during voluntary movement.”

44. Russo et al., “Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response”.

45. Gao & Ganguli, “On simplicity and complexity in the brave new world of large-scale neuroscience”.

8



pursuit,46 reaching around obstacles,47 and reach to grasp tasks,48 primates are restrained

in a chair with head-fixation and require weeks of daily training to reliably participate in

the experiment. There is evidence to suggest that a significant portion of M1 neurons en-

code a constrained, well-trained task differently than free behavior49 and that over-training

increases synchrony between M1 neurons.50 In addition to these results from primate stud-

ies, recent work in rodents suggests that motor cortex may not be directly involved in the

production of over-trained, skilled movements despite its necessary role in learning the move-

ment.51 The authors propose that motor cortex trains subcortical circuits over the course

of learning, then cedes direct control to those circuits. Seemingly in contrast, Guo et al.52

showed that rapid, reversible optogenetic inhibition of motor cortex prevented or paused

skilled prehension behavior but left untrained movements like grooming unaffected. Emerg-

ing work examining the role of subcortical regions in a similar task to Kawai et al. found that

lesions to sensorimotor striatum disrupted high-level sequencing of learned behavior but did

not disrupt equivalent movements that were visually cued,53 which means other regions were

in control of sensory-guided movements. Taken together, these studies suggest that motor

cortex is essential for executing movements that require dexterity (such as reach-to-grasp) or

rely on sensory feedback. These results, to the extent they generalize to primate motor con-

trol, bring into question the degree to which M1 directly controls over-trained, stereotyped

movements at all. Consequently, it is critical to investigate neural control of movement in

the most natural, unconstrained behavioral context possible.

46. Hatsopoulos et al., “Encoding of Movement Fragments in the Motor Cortex”.

47. Kaufman et al., “Cortical activity in the null space: Permitting preparation without movement”.

48. Saleh et al., “Encoding of coordinated reach and grasp trajectories in primary motor cortex.”

49. Jackson et al., “Correlations Between the Same Motor Cortex Cells and Arm Muscles During a Trained Task, Free
Behavior, and Natural Sleep in the Macaque Monkey”.

50. Schieber, “Training and Synchrony in the Motor System”.

51. Kawai et al., “Motor Cortex Is Required for Learning but Not for Executing a Motor Skill”.

52. Guo et al., “Cortex commands the performance of skilled movement”.

53. Mizes et al., “Dissociating the contributions of sensorimotor striatum to automatic and visually-guided motor sequences”.
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The common marmoset (Callithrix jacchus) provides a unique opportunity for studying

neural representations of movement during ethological behaviors. Prior work by Walker

et al.54 produced a modular apparatus that allows for semi-automated training and data

collection on a variety of naturalistic, goal-directed behavioral tasks. This system leverages

marmosets’ inclination to engage in a behavioral task sporadically across numerous short

bursts of interest. Compared to the classical task paradigms discussed above, prey capture

in the apparatus produces a richer set of movements with variable directions, speeds, and

amplitudes.

The study of naturalistic behavior presents unique challenges; the first and immediate

challenge is accurately and efficiently capturing movement in a less constrained environment.

Recent developments in pose estimation technologies leverage deep learning computer vision

models to compute frame-by-frame pose estimation. In Chapter 2, I discuss the importance

of accurate pose estimation and the performance of DeepLabCut (DLC)55 compared to

marker-based tracking. Crucially, DLC proved capable of reliable pose estimation with

relatively little user effort compared to marker-based systems; its demonstrated accuracy

precludes the need for implanted or externally attached physical markers that could affect

naturalistic behavior. The methods and intuitions developed in Chapter 2 were applied to

accurately estimate the shoulder and wrist positions during the prey capture task investigated

in Chapter 3.

A second challenge is that naturalistic and untrained behaviors preclude trial-averaging

and produce a wealth of movement variability that can be difficult to parse. The models I

present in Chapter 3 are designed to leverage the kinematic variability of natural movements

in order to produce a motor control model capable of explaining complex, dexterous upper-

limb movements on single trials. As marmosets engage in voluntary prey-capture, they

initiate internally generated movements that engage motor cortical circuits in their natural

54. Walker et al., “A platform for semiautomated voluntary training of common marmosets for behavioral neuroscience”.

55. Mathis et al., “DeepLabCut: markerless pose estimation of user-defined body parts with deep learning”.
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state, presumably unaltered by over-training of stereotyped movements.

1.5 Population dynamics through the lens of the functional

network

Single-neuron approaches to understanding motor control provided a baseline certainty that

M1 is instrumental in the generation of upper-limb movements, particularly for skilled and

dexterous behaviors. However, the specific tuning properties of single neurons and neural

populations remain disputed. The population dynamics approach has provided an alterna-

tive view on M1 activity that may transcend the concept of tuning to movement parameters.

However, the dimensionality reduction techniques used to characterize these dynamics dis-

card the identity, role, and tuning properties of single neurons, thereby hindering efforts to

understand the function of individual neurons within the context of the population. A few

studies have attempted to interpret single-unit M1 activity in the context of the population,

showing that pairwise spike count correlations provided information about motor behavior

beyond what is provided by firing rates alone56 and improved encoding models that predict

single-unit activity.57 However, spike time correlations which may be more informative of dy-

namics remain under-studied in M1 neural populations (but see Sundiang et al.,58 discussed

below).

Network science – the study of complex networks – provides an alternative approach to

the investigation of neurons and their interactions within the population. In this framework,

network activity is summarized in the form of a functional network (FN) that maintains

neuron-specific labels while simultaneously capturing all pairwise spike time correlations

between neurons. In the work presented here, functional connectivity defined by pairwise

56. Maynard et al., “Neuronal interactions improve cortical population coding of movement direction.”

57. Stevenson et al., “Functional Connectivity and Tuning Curves in Populations of Simultaneously Recorded Neurons”.

58. Sundiang et al., “Dynamic structure of motor cortical neuron coactivity carries behaviorally relevant information”.
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statistical relationships in spike timing do not necessarily reflect synaptic connectivity, al-

though there is likely some overlap for local connections.59 In murine primary visual cortex,

FNs can be used to predict single trial activity as an encoding model60; to decode single trial

visual stimuli61; and to generate realistic simulations of single trial activity.62 Recent work

demonstrated that coactivity in groups of source units with functional inputs to a target unit

(termed the target unit’s “functional group”) was the main predictor of single-trial activity

in V1 neurons and that the functional group’s predictive power depended on the specific

topology of the strongest inputs.63 Another study split V1 neurons into subpopulations that

were either tuned or untuned to visual drifting grating stimuli to show that the subpopu-

lations have distinct topological properties, with untuned units occupying central positions

in the FN.64 They also found that decoders utilizing FN topology yield accurate decoding

of visual stimuli, and that these decoders depend on the connectivity of both tuned and

untuned units. These studies demonstrate the potential for the FN approach to leverage

single-neuron properties and population-level interactions together in a cohesive manner.

The FN approach was recently applied to M1 neural activity in non-human primates

performing a standard delayed center-out reaching task, showing that FN structure is be-

haviorally specific and evolves systematically with movement.65 FNs constructed from closer

reach directions were closer in network space and temporal FNs computed in short inter-

vals throughout the trial traversed reach-specific trajectories in a low-dimensional subspace.

These trajectories became separable and decodable in the timeframe shortly after the in-

59. Chambers & MacLean, “Multineuronal activity patterns identify selective synaptic connections under realistic experimen-
tal constraints”.

60. Dechery & MacLean, “Functional triplet motifs underlie accurate predictions of single-trial responses in populations of
tuned and untuned V1 neurons”.

61. Levy et al., “Network Analysis of Murine Cortical Dynamics Implicates Untuned Neurons in Visual Stimulus Coding”.

62. Sadovsky & MacLean, “Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory and So-
matosensory Microcircuitry”.

63. Kotekal & MacLean, “Recurrent interactions can explain the variance in single trial responses”.

64. Levy et al., “Network Analysis of Murine Cortical Dynamics Implicates Untuned Neurons in Visual Stimulus Coding”.

65. Sundiang et al., “Dynamic structure of motor cortical neuron coactivity carries behaviorally relevant information”.
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struction cue and remained so throughout movement initiation and execution. The decoder

incorporating both firing rates and temporal FNs provided significant performance gains over

the firing rate alone, and the FN-only decoder outperformed an equivalent decoder trained

on rate-matched null FNs – both results demonstrate that FN structure contains information

beyond that available in instantaneous firing rates. Finally, reciprocity in the FN decreased

shortly after the instruction cue, suggesting a transitory reorganization of network topol-

ogy that may facilitate integration and propagation of external inputs.66 This change to

FN topology may be a complementary representation of the transition from preparatory to

movement subspaces identified by the dynamical systems approach.67,68 FNs provide an op-

portunity to parse relationships between neural activity and specific features of the network

such as reciprocity, in-degree, or membership in functional groups.

1.6 Comparison of M1 to Areas 3a and 3b

To this point I have discussed relationships between upper-limb control and motor cortical

activity exclusively. However, in Chapter 3 I investigate kinematic and network encoding

models for neurons in M1 and 6dc (pre-motor cortex) and area 3a, as well as some units in

area 3b. Area 3b primarily receives and processes cutaneous information from the peripheral

nervous system69,70,71 and has sparser connectivity with M1 and area 3a than with other so-

66. Malonis et al., “M1 dynamics share similar inputs for initiating and correcting movement”.

67. Kaufman et al., “Cortical activity in the null space: Permitting preparation without movement”.

68. Elsayed et al., “Reorganization between preparatory and movement population responses in motor cortex”.

69. Hyvärinen & Poranen, “Receptive field integration and submodality convergence in the hand area of the post-central gyrus
of the alert monkey.”

70. Iwamura et al., “Rostrocaudal gradients in the neuronal receptive field complexity in the finger region of the alert monkey’s
postcentral gyrus”.

71. Tanji & Wise, “Submodality distribution in sensorimotor cortex of the unanesthetized monkey”.
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matosensory regions.72,73,74,75 Area 3a, on the other hand, receives proprioceptive feedback

from the periphery76,77,78 and is highly interconnected with M1.79,80,81 Area 3a contains

pyramidal tract neurons (PTNs) with similar discharge properties and reflex responses to M1

PTNs, suggesting a direct influence on movement82 in addition to its canonical role receiving

and processing ongoing postural and movement-related feedback.83,84 Similarities between

M1 and area 3a extend to representation of proximal upper-limb movement direction and

externally applied loads,85 as well as encoding86 and decoding87 of distal limb movements

of the wrist and digits. Thus, I expect largely similar results in Chapter 3 for neuron popu-

lations in M1 and area 3a, with less similarity between these neurons and those in area 3b.

One potential difference is the timescale of neural encoding, such that sensory neurons prefer

trajectory samples leading the spike sample window and motor neurons prefer trajectories

lagging the spike sample. However, this effect is difficult to parse for natural, continuous

72. Burton & Fabri, “Ipsilateral intracortical connections of physiologically defined cutaneous representations in areas 3b and
1 of macaque monkeys: projections in the vicinity of the central sulcus”.

73. Huffman & Krubitzer, “Area 3a: Topographic Organization and Cortical Connections in Marmoset Monkeys”.

74. Jones et al., “Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys”.

75. Krubitzer & Kaas, “The organization and connections of somatosensory cortex in marmosets”.

76. Iwamura et al., “Rostrocaudal gradients in the neuronal receptive field complexity in the finger region of the alert monkey’s
postcentral gyrus”.

77. Phillips et al., “Projection from low-threshold muscle afferents of hand and forearm to area 3a of baboon’s cortex”.

78. Tanji & Wise, “Submodality distribution in sensorimotor cortex of the unanesthetized monkey”.

79. Huerta & Pons, “Primary motor cortex receives input from area 3a in macaques”.

80. Huffman & Krubitzer, “Area 3a: Topographic Organization and Cortical Connections in Marmoset Monkeys”.

81. Jones et al., “Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys”.

82. Fromm & Evarts, “Pyramidal tract neurons in somatosensory cortex: central and peripheral inputs during voluntary
movement”.

83. Fromm et al., “Sensory response properties of pyramidal tract neurons in the precentral motor cortex and postcentral
gyrus of the rhesus monkey”.

84. Gardner & Costanzo, “Properties of kinesthetic neurons in somatosensory cortex of awake monkeys”.

85. Prud’homme & Kalaska, “Proprioceptive activity in primate primary somatosensory cortex during active arm reaching
movements”.

86. Goodman et al., “Postural Representations of the Hand in the Primate Sensorimotor Cortex”.

87. Okorokova et al., “Decoding hand kinematics from population responses in sensorimotor cortex during grasping”.
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movements that exhibit long autocorrelations; this is especially true in Chapter 3 because

the vast majority of trajectory samples occur entirely in the midst of reaching.

1.7 Developing an encoding model incorporating naturalistic

kinematics and the functional network

I demonstrate in Chapter 2 that computer vision tools – specifically DLC+Anipose88,89 –

track 3D pose with accuracy comparable to marker-based tracking. DLC+Anipose estimates

pose as accurately as expert human labelers and significantly more accurately than novice

human labelers. I also characterize the effect of parameter choices on DLC+Anipose accuracy

and identify a range of parameter value choices to minimize error and maximize the number

of well-tracked frames. These insights were used in Chapter 3 to accurately estimate pose

during prey-capture, thereby providing the complex kinematics necessary for the trajectory

encoding model.

In Chapter 3 I take steps toward integrating the neuron-centric and network perspec-

tives on computations in motor cortex by developing encoding models that can predict fine-

timing spike activity in individual neurons by accounting for temporally precise movement

kinematics, neuron-specific properties, and activity in the functional group. The veracity of

our results depends on using a network model built on the backbone of a suitably accurate

single-unit tuning model. Simple encoding models such as directional tuning at a fixed post-

spike delay fail to explain much of the variance in activity during unconstrained natural

movements90 and the majority of tuning models rely on average firing rates through the

duration of movement and often across trials. Prior work in the Hatsopoulos lab has demon-

strated that a temporally extended, trajectory-based model captures the single-trial tuning

88. Karashchuk et al., “Anipose: A toolkit for robust markerless 3D pose estimation”.

89. Mathis et al., “DeepLabCut: markerless pose estimation of user-defined body parts with deep learning”.

90. Aflalo & Graziano, “Relationship between unconstrained arm movements and single-neuron firing in the macaque motor
cortex.”

15



of M1 neurons more accurately than prior models and can be used to decode instantaneous

movement direction with less error.91,92,93,94 Chartier et al.95 used the same approach to

create an encoding model relating dense ECoG recordings in ventral sensorimotor cortex to

articulatory kinematic trajectories during natural, continuous speech production. In Chapter

3, I use this generalized linear model (GLM) framework to elucidate the natural kinematic

encoding properties of single motor cortical neurons and their influence on other neurons

within an FN shaped by interactions. I identify the best-performing model across a range of

lead/lag kinematic sampling windows by evaluating the accuracy of predicted spiking activity

for held-out trajectory samples. I then augment the kinematics-only model with coincident

and leading network features, computed by the dot product of the FN with coincident or

leading activity in functionally connected units. With kinematics, neuron specificity, and

network activity combined in a single encoding model, I examine the role and structure of

functional interactions and their effect on kinematic tuning.

I find that the trajectory tuning model extends to more naturalistic movements and

explains neural activity better than a simpler model. Additionally, the trajectory tuning

model without any direct mathematical dependence on the FN links single-unit activity

to kinematics most accurately for units that are strongly interconnected within the net-

work. I incorporate network features in the model and show that single-unit spiking activity

depends fundamentally on functional interactions – particularly on the topology of strong

connections. Finally, I identify a reach-specific functional group that reorganizes to produce

dynamic forelimb movements during prey-capture. This reach-specific functional group is

strongly interconnected and comprises units tightly linked to kinematics with strong, posi-

91. Hatsopoulos & Amit, “Synthesizing complex movement fragment representations from motor cortical ensembles”.

92. Hatsopoulos et al., “Encoding of Movement Fragments in the Motor Cortex”.

93. Saleh et al., “Encoding of coordinated grasp trajectories in primary motor cortex.”

94. Saleh et al., “Encoding of coordinated reach and grasp trajectories in primary motor cortex.”

95. Chartier et al., “Encoding of Articulatory Kinematic Trajectories in Human Speech Sensorimotor Cortex”.
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tively correlated preferred trajectories. Analysis of the differences between the reach-specific

and non-specific groups suggests a potential framework for contextualizing single-unit prop-

erties and activity within the generation and evolution of population dynamics.
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CHAPTER 2

VALIDATING MARKERLESS POSE ESTIMATION WITH 3D

X-RAY RADIOGRAPHY

This work was previously published:

Moore, Dalton D., Jeffrey D. Walker, Jason N. MacLean, and Nicholas G. Hatsopoulos.

"Validating markerless pose estimation with 3D X-ray radiography." Journal of Experimental

Biology 225, no. 9 (2022): jeb243998.

2.1 Abstract

To reveal the neurophysiological underpinnings of natural movement, neural recordings must

be paired with accurate tracking of limbs and postures. Here, we evaluated the accuracy

of DeepLabCut (DLC), a deep learning markerless motion capture approach, by comparing

it with a 3D X-ray video radiography system that tracks markers placed under the skin

(XROMM). We recorded behavioral data simultaneously with XROMM and RGB video as

marmosets foraged and reconstructed 3D kinematics in a common coordinate system. We

used the toolkit Anipose to filter and triangulate DLC trajectories of 11 markers on the

forelimb and torso and found a low median error (0.228 cm) between the two modalities

corresponding to 2.0% of the range of motion. For studies allowing this relatively small

error, DLC and similar markerless pose estimation tools enable the study of increasingly

naturalistic behaviors in many fields including nonhuman primate motor control.

2.2 Introduction

As the study of motor neuroscience progresses toward an emphasis on naturalistic, uncon-

strained behavior, kinematics must be captured accurately and efficiently. Past research

has relied on marker-based systems tracking markers attached to an animal’s skin (such as
18



Vicon, OptiTrack, and PhaseSpace) or surgically implanted radiopaque beads (XROMM).1

However, these systems are expensive and often impractical with smaller species like mice or

marmosets, especially for tracking free or semi-constrained behavior. To solve this problem,

multiple groups have developed marker-less pose estimation tools that use deep learning to

apply digital markers to recorded video. The most widely used is DeepLabCut (DLC),2 but

alternatives exist.3,4,5,6 These enable the study of a wider range of behaviors by allowing free

movement without the disturbance of physical markers. Furthermore, these tools alleviate

the bottleneck of semi-automatic tracking; a well-trained network labels video with accuracy

comparable to human labelers7 and requires minimal hands-on time for subsequent datasets.

DLC has been used in many contexts, including tracking eye movements, pupil dilation and

hand movements in mice,8,9,10 estimating 3D pose of freely moving macaques,11 and even

on XROMM video to increase throughput.12

DLC accuracy has not been compared to that of marker-based tracking in the context

of close-up forelimb tracking that is common in motor control studies. Dunn et al.13 tested

DLC and a geometric deep learning tool (DANNCE) against a rat motion capture dataset,

but recording from a small number of cameras in this unconstrained context with significant

1. Brainerd et al., “X-ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in compar-
ative biomechanics research”.

2. Mathis et al., “DeepLabCut: markerless pose estimation of user-defined body parts with deep learning”.

3. Dunn et al., “Geometric deep learning enables 3D kinematic profiling across species and environments”.

4. Graving et al., “DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning”.

5. Pereira et al., “Fast animal pose estimation using deep neural networks”.

6. Wu et al., Deep Graph Pose: A semi-supervised deep graphical model for improved animal pose tracking.

7. Mathis et al., “DeepLabCut: markerless pose estimation of user-defined body parts with deep learning”.

8. Sauerbrei et al., “Cortical pattern generation during dexterous movement is input-driven”.

9. Siegle et al., A survey of spiking activity reveals a functional hierarchy of mouse corticothalamic visual areas.

10. Steinmetz et al., “Distributed coding of choice, action and engagement across the mouse brain”.

11. Bala et al., “Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio”.

12. Laurence-Chasen et al., “Integrating XMALab and DeepLabCut for high-throughput XROMM”.

13. Dunn et al., “Geometric deep learning enables 3D kinematic profiling across species and environments”.
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environment- and self-occlusion is beyond the intended use for DLC unless many cameras

are used as in Bala et al..14 Thus, a comparison in the semi-constrained context with a small

number of cameras is crucial to confirm whether DLC reliably tracks kinematics with accu-

racy comparable to human labelers and existing marker-based systems. XROMM provides

a useful comparison, as we have shown that the system tracks radiopaque markers with

submillimeter precision.15 To this end, we collect simultaneous recordings with XROMM

and RGB video as common marmosets engage in naturalistic foraging, then reconstruct

three-dimensional reaching kinematics in a shared coordinate system. We perform filtering,

triangulation and optimization steps with Anipose16 and present the effect of parameter

choices on tracking quality. We find that optimized DLC+Anipose tracks position with me-

dian absolute error of 0.228 cm (mean absolute error = 0.274 cm), corresponding to 2.0% of

the range of marker positions.

2.3 Methods

Subjects

These experiments were conducted with two common marmosets (Callithrix jacchus) (an

8-year old, 356g male and a 7-year old, 418g female). All methods were approved by the

Institutional Animal Care and Use Committee of the University of Chicago.

Data Collection

The two marmosets were placed together in a 1m x 1m x 1m cage with a modular foraging

apparatus attached to the top of the cage, as previously described by.17 The marmosets were

allowed to forage voluntarily throughout recording sessions that lasted 1-2 hours. Recordings

14. Bala et al., “Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio”.

15. Walker et al., “A platform for semiautomated voluntary training of common marmosets for behavioral neuroscience”.

16. Karashchuk et al., “Anipose: A toolkit for robust markerless 3D pose estimation”.

17. Walker et al., “A platform for semiautomated voluntary training of common marmosets for behavioral neuroscience”.
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of individual trials were triggered manually with a foot pedal by the experimenters when the

marmosets appeared ready to initiate a reach. The manual trigger initiated synchronized

video collection by the XROMM system18 and two visible light cameras, each described

in further detail below. We retained all trials that captured right-handed reaches. Mar-

moset TY produced four useful reaching events containing 5 total reaches and marmoset PT

produced 13 reaching events containing 17 reaches.

XROMM

Bi-planar X-ray sources and image intensifiers (90kV, 25mA at 200 fps) were used to track

the 3D position of radiopaque tantalum beads (0.5-1 mm, Bal-tec) placed subcutaneously

in the arm, hand, and torso. Details of bead implants can be found in,19 in which the au-

thors also report estimating XROMM marker tracking precision of 0.06 mm based on the

standard deviation of inter-marker distances during a recording of a calibration specimen.

Marker locations were chosen to approximate the recommendations given by the Interna-

tional Society of Biomechanics for defining coordinate systems of the upper limb and torso

in humans.20 These recommendations were adapted to the marmoset and constrained by

surgical considerations. Positions of 13 beads were tracked using a semi-automated pro-

cess in XMALab21 following the procedure described there and in the XMALab User Guide

(https://bitbucket.org/xromm/xmalab/wiki/Home). Two beads implanted in the anterior

torso were ignored for comparison with DLC because corresponding positions on the skin

were occluded in nearly every frame captured by visible light cameras.

18. Brainerd et al., “X-ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in compar-
ative biomechanics research”.

19. Walker et al., “A platform for semiautomated voluntary training of common marmosets for behavioral neuroscience”.

20. Wu et al., “ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human
joint motion–Part II: shoulder, elbow, wrist and hand”.

21. Knorlein et al., “Validation of XMALab software for Marker-based XROMM”.
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DeepLabCut

Two high-speed cameras (FLIR Blackfly S, 200 fps, 1440x1080 resolution) were used to

record video for analysis by DLC. The cameras were positioned to optimize visibility of

the right upper limb during reaching behavior in the foraging apparatus and to minimize

occlusions, while avoiding the path between the X-ray sources and image intensifiers (Fig.

2.1A). The cameras were triggered to record continuous images between the onset and offset

of the manual XROMM trigger, with series of images later converted to video for DLC

processing. All videos were brightened using the OpenCV algorithm for contrast limited

adaptive histogram equalization (CLAHE) prior to labeling. We labeled 11 body parts in

DLC – two labels on the torso and three on each of the upper arm, forearm, and hand (Fig.

2.1B). Locations of each label were chosen to be as close as possible to the approximate

location of XROMM beads, although concessions had to be made to ensure the location was

not occluded consistently in the recordings. We used DLC 2.2 with in-house modifications

to produce epipolar lines in image frames that were matched between the two cameras (Fig.

2.1C), which significantly improved human labeling accuracy by correcting gross errors and

fine-tuning minor errors. We did not train a network on labels produced without the aid of

epipolar lines and therefore cannot evaluate 3D error reduction using epipolar lines. However,

we note that labels applied without epipolar lines on the torso were grossly inaccurate –

these labels were adjusted by an average of 63 pixels and 57 pixels in camera-1 and camera-

2, respectively, after implementation. The other nine labels were adjusted by an average

of <1 pixel in camera-1 and 11 pixels in camera-2. This modification has been added as

a command line feature in the DLC package (a guide for using epipolar lines can be found

at https://deeplabcut.github.io/DeepLabCut/docs/HelperFunctions.html). Aside from this

and related changes to the standard DLC process, we followed the steps outlined in Nath et

al.22

22. Nath et al., “Using DeepLabCut for 3D markerless pose estimation across species and behaviors”.
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Figure 2.1: Recording apparatus, markers, and labeling with epipolar lines. (A)
Marmosets use their upper limb to forage. Blackfly-S cameras and XROMM record foraging
behavior simultaneously. (B) Left : Video frames from camera-1 (top) and camera-2 (bot-
tom). Markers are applied by DLC+Anipose. The coordinate system is shown in green (x),
orange (y), and purple (z). Right : corresponding XROMM frames. Subcutaneous tantalum
beads are overlaid with colors to match corresponding DLC+Anipose labels. (C) Epipolar
lines improve labeling accuracy. A vector projects from camera-1 through the applied label
into 3D space, where it intersects with possible vectors from camera-2 (a subset is shown
in dotted yellow). The epipolar line (dot-dash) passes through the epipole in camera-2 and
each of the points at which a vector intersects the image plane. A correct label applied
along the epipolar line produces accurate triangulation to the object point (correct labels
and camera-2 vector shown in solid yellow).

In the first labeling iteration we extracted 100 total frames (50/camera) across the four

events for marmoset TY and 254 frames (127/camera) across seven of the 13 events for
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marmoset PT, which produced a labeled dataset of 354 frames. These were chosen manually

to avoid wasting time labeling frames before and after reaching bouts during which much

of the marmoset forelimb was entirely occluded in the second camera angle. An additional

202 frames (101/camera) were extracted using the DLC toolbox with outliers identified by

the ‘jump’ algorithm and frame selection by k-means clustering. We chose the number of

frames to extract for each video based on visual inspection of labeling quality and chose

the start and stop parameters to extract useful frames that captured reaching bouts. In all

cases, frame numbers of extracted frames were matched between cameras to enable the use

of epipolar lines. This refinement step resulted in an error reduction of 0.046 cm and percent

frames tracked increase of 14.7% after analysis with the chosen Anipose parameters. The

final dataset consisted of 278 human-labeled timepoints from 15 of the 17 events and 10,253

timepoints from all 17 events labeled by the network only.

We used the default resnet-50 architecture for our networks with default image augmen-

tation. We trained 3 shuffles of the first labeling iteration with a 0.95 training set fraction

and used the first shuffle for the label refinement discussed above. We trained 15 total net-

works after one round of label refinement – three shuffles each with training fractions of 0.3,

0.5, 0.7, 0.85, and 0.95. Each network was trained for 300,000 iterations starting from the

default initial weights. We evaluated each network every 10,000 iterations and selected the

snapshot that produced the minimum test error across all labels for further analysis.

We chose the network to use in subsequent analyses by finding the smallest training set

size that reached the threshold of human labeling error (discussed next). We then chose

the median-performing network of the three shuffles at this training set size for all further

analysis.

Human Labeling Error

We selected 134 frames (67/camera) across three events from the same marmoset and

session to be relabeled by the original, experienced human labeler and by a second, less
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experienced labeler. We used the error between the new and original labels to evaluate

whether the networks reached asymptotic performance, defined by the experienced human

labeling error.

Calibration

A custom calibration device was built to allow for calibration in both recording domains23

(instruction manual for small lego cube is located in the XMALab BitBucket). The device

was constructed to contain a three-dimensional grid of steel beads within the structure

and a two-dimensional grid of white circles on one face of the cube. Calibration of x-ray

images was computed in XMALab and calibration of visible light images was computed with

custom code using OpenCV. This integrated calibration device, along with the PCA-based

alignment procedure described below, ensures that DLC and XROMM tracked trajectories

in a common 3D coordinate system. DLC videos were accurately calibrated, with 0.42 pixels

and 0.40 pixels of intrinsic calibration error for camera-1 and camera-2, respectively, and

0.63 pixels of stereo reprojection error. XROMM calibration was similarly accurate, with

average intrinsic calibration error equal to 0.81 pixels and 1.38 pixels for the two cameras.

Trajectory processing with Anipose

We used Anipose to analyze videos, filter in 2D, triangulate 3D position from 2D trajec-

tories, and apply 3D filters (see Karashchuk et al.24 for details). For 2D-filtering, we chose

to apply a Viterbi filter followed by an autoencoder filter because the authors demonstrate

this to be the most accurate combination of 2D filters. For triangulation and 3D filtering,

we enabled optimization during triangulation and enabled spatial constraints for each set

of three points on the hand, forearm, and upper arm, and for the pair of points on the

torso. We identified six Anipose parameters and one post-processing parameter that may

affect the final accuracy of DLC+Anipose tracking and ran a parameter sweep to find the

23. Knorlein et al., “Validation of XMALab software for Marker-based XROMM”.

24. Karashchuk et al., “Anipose: A toolkit for robust markerless 3D pose estimation”.
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optimal combination. In 2D filtering, we varied the number of bad points that could be

back-filled into the Viterbi filter (“n-back”) and the offset threshold beyond which a label

was considered to have jumped from the filter. We varied four parameters in 3D process-

ing, including the weight applied to spatial constraints (“scale_length”) and a smoothing

factor (“scale_smooth”), the reprojection error threshold used during triangulation opti-

mization, and the score threshold used as a cutoff for 2D points prior to triangulation. We

also varied our own post-processing reprojection error threshold that filtered the outputs of

DLC+anipose. We tested 3,456 parameter combinations in total, the details of which will

be discussed below. We generally chose parameter values centered around those described

in Anipose documentation and in Karashchuk et al.25

Post-processing of DLC+Anipose trajectories

To process the 3D pose outputs from Anipose, we first used the reprojection error between

cameras provided by Anipose to filter out obviously bad frames. We tested two thresholds, 10

and 20 pixels, for 15 of 17 events. We tested much higher thresholds, 25 and 35 pixels, for the

final two events of 2019-04-14 because the calibration was poor in these events – we suspect

one of the cameras was bumped prior to these events. Next, we deleted brief segments of five

or fewer frames and stitched together longer segments separated by fewer than 30 frames.

Importantly, we did not have to do any further interpolation to stitch segments together,

as Anipose produces a continuous 3D trajectory. Together, these steps remove portions

of trajectories captured when the marmoset was chewing or otherwise disengaged from the

foraging task and outside of the usable region of interest in camera-2 and combined segments

during foraging bouts that were separated only by brief occlusions or minor tracking errors.

All steps were performed independently for each label and event.

DLC labels could not be applied to the upper limb and torso in spots corresponding

exactly to XROMM bead locations because those locations would often be obstructed from

25. Karashchuk et al., “Anipose: A toolkit for robust markerless 3D pose estimation”.
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view by the marmoset’s own body in one of the camera angles. We therefore applied labels

as close as possible to the correct spots and subtracted the average position from each label

and bead during post-processing. This removes a constant offset that should not be included

in the DLC error calculations.

Despite our best efforts to place DLC and XROMM in the same 3D coordinate system

through the calibration process described above, we found the two systems to be slightly

misaligned. To fix this, we computed the three principal components across good frames

for all DLC+Anipose labels and separately for all XROMM markers, then projected the

mean-subtracted DLC+Anipose and XROMM trajectories onto their respective principal

components. We found that this brought the coordinate systems into close alignment, such

that we could no longer identify any systematic error that could be attributed to misalign-

ment.

Finally, we found that there was a brief delay ranging from 0 to 10 frames between

pedal-triggered onset of the XROMM event and the corresponding pedal-triggered TTL

pulse initiating the start of the event for the FLIR cameras (and for the pulse ending the

event). To adjust for the timing difference, we iterated over a range of possible sample shifts

separately for each event to find the shift that minimized the mean absolute error between

the DLC+Anipose and XROMM trajectory. We visually inspected each trajectory after the

adjustment to ensure the shift was qualitatively accurate.

Evaluation of DLC Performance

We computed the median and mean absolute error between matched trajectories from

DLC+Anipose and XROMM for all body parts across all reaching events. We also computed

the percent of motion tracked across all labels and all active segments of reaching events.

To define active segments, we manually inspected the videos for the first and last frames

in each event for which the marmoset was engaged in the task; as mentioned before, the

position of camera-2 prevented accurate human labeling when the marmoset was positioned
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well behind the partition and the vast majority of these frames are discarded by Anipose

and in post-processing.

Statistical Tests

Since the error distributions are right-skewed with long tails of large errors, we use the

median error to describe the center of each distribution and the two-tailed Mann-Whitney

U-Test to assess statistical significance. The P-values computed with this method are arti-

ficially low due to the large sample size (e.g. between 27,630 samples for the three upper

arm markers and 11,480 samples for the two torso markers), so we report the correlation

effect size defined by the rank-biserial correlation to describe statistical differences between

distributions. According to convention, we consider r < 0.20 to be a negligible effect.26

In order to determine which of the Anipose and post-processing parameters from the

parameter sweep significantly affected either the median error or percent of frames tracked,

we created two linear regression models using the six parameters and a constant as indepen-

dent variables and either error or percent tracked as the dependent variable. We tested the

effect of individual parameters by calculating the log likelihood ratio Chi-squared test statis-

tic (LR) between the full model and each nested model created by leaving one parameter

out at a time (such that each nested model had a constant term and six parameter terms).

We computed the p-value of each comparison using a Chi-squared test with two degrees of

freedom.

We also created a full interaction model with the seven individual parameter terms and

all possible first-order interaction terms. We tested the significance of each term by the same

method.

Normalized Error and Fraction of Variance Accounted For

To compute normalized error, we divided the position error by the maximum range of

motion for each marker across the dataset. To compute the fraction of variance accounted

26. Cohen, “A power primer.”
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for, we used the following equation:

FV AF = 1−
∑

[DLC −XROMM ]2∑
[XROMM −mean(XROMM)]2

(2.1)

which normalizes the sum of squared DLC error by the XROMM variance and subtracts

from one.

2.4 Results & Discussion

Human versus DLC Error

We found that each network reached asymptotic performance within 300,000 iterations

(Fig. 2.S1A). DLC error on training images was similar across set sizes, but test error de-

creased with set size until reaching an asymptote at the 85% training fraction (472 images,

236/camera), with mean error = 7.38 pixels (Fig. 2.S1B). This error matches that of the

experienced human labeler (7.53 pixels) and is better than the inexperienced labeler (14.24

pixels). For subsequent analysis we used the median-performing shuffle of the 85% training

set networks. As further confirmation of asymptotic performance, we found that the median

error of frames that passed the post-processing reprojection error threshold remained con-

stant across training set size while the percent of frames tracked reached an asymptote at

the 85% split (Fig. 2.S1C).

Anipose Parameter Selection

By sweeping through a total of 3,456 combinations of six Anipose parameters and one

post-processing parameter, we identified four with large, significant effects on the median

error linear regression model (p<0.05 and log-likelihood ratio LR»50) – pre-triangulation

score threshold (LR=4666), post-processing reprojection error threshold (LR=3098), spatial

constraint (LR=1881), and smoothing factor (LR=1634; Fig. 2.2A-D). Error decreased

linearly with score threshold without reaching an asymptote. It decreased monotonically
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with smoothing factor until reaching 6 then continued to decrease at a small, constant

rate. Error was lowest for spatial constraint = 2. Anipose reprojection error threshold

was technically significant with a comparatively modest effect (LR=23.3). The remaining

parameters were not significant (Fig. 2.2E-G).

We identified the same four parameters with large, significant effects on the percent

tracked model – score threshold (LR=4689), post-processing reprojection error threshold

(LR=4085), spatial constraint (LR=261), and smoothing factor (LR=81.7; Fig. 2.2A-D).

Percent tracked decreased linearly with score threshold until dropping steeply at 0.6 and de-

creased slightly with spatial constraint and smoothing factor. N-back showed a modest effect

(LR=8.75) with slightly higher percent tracked for n-back>1, and the remaining parameters

were not significant (Fig. 2.2E-G).

The model incorporating first-order interaction terms provided limited information. Sig-

nificant interaction terms were combinations of significant individual parameters and we

found no evidence of nonlinear interactions (Fig. 2.S2). However, the interaction between

spatial constraint and smoothing factor helped us choose 2 and 6 for their respective values;

these were the smallest weights in the region of negligible error differences highlighted in

Fig. 2.2H.

We visualized the effect of score threshold, post-processing reprojection error thresh-

old, and n-back by plotting median error and percent tracked for each parameter set with

spatial constraint = 2 and smoothing factor = 6, sorted by score threshold first, post-

processing reprojection error threshold second, and n-back third (Fig. 2.2I). We found

that score_threshold = 0.45 and post-processing reprojection error threshold = 20 pro-

vided a balance of low error and high percent tracked, and that n-back>1 improves per-

cent tracked for some combinations. We selected the parameter set that minimized error

under these constraints and performed subsequent analyses with score_threshold=0.45,

post_reprojection_error_threshold=20, scale_smooth=6, scale_length=2,
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Figure 2.2: Anipose parameter sweep. (A) Median error (green) and percent frames
tracked (orange) versus score threshold, averaged across the other parameters. Plots show
mean±95% confidence interval of median errors. (B-G) Same for each of the tested parame-
ters. Plots are labeled with ** to indicate a large effect on both error and percent tracked (log
likelihood ratio Chi-squared statistic LR»50, p<0.05) and with * to indicate a modest effect
on one or the other (LR<50, p<0.05). (H) Median error, represented by cell color, versus
smoothing factor and spatial constraint. The combinations with lowest error are boxed. (I)
Median error and percent tracked for 108 parameter sets with smoothing factor and spatial
constraint set to 6 and 2, respectively. Results are sorted along the x-axis by score threshold
first, post-processing reprojection error threshold second and n-back third. Arrow indicates
the parameter set selected for further analysis.

n_back=5, reproj_error_threshold=8, and offset_threshold=20. We excluded 0.6

from the score threshold due to the large drop in percent tracked and unstable interactions
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with other parameters (Fig. 2.S2J).

Tracking Examples

Qualitatively, DLC+Anipose and XROMM forelimb trajectories were nearly identical

for most time points and reaches (Fig. 2.3A-B). The 3D view illustrates DLC tracking the

overall motion of a foraging bout consisting of a long reach and shorter secondary reach

faithfully, with some loss of fine details due to the smoothing factor (Fig. 2.3A). Breaking

out x-y-z components demonstrates low position error (median = 0.179 cm; Fig. 2.3B).

Some reaches were not tracked with the same accuracy. Fig. 2.3C shows the medial

forearm marker during a reach through the left-hand arm hole, resulting in three brief occlu-

sions, the first two of which are removed by the post-processing reprojection error threshold.

In the third, the marker gets “stuck” on the occluding part of the partition around 2 seconds,

manifesting as a position oscillation after filtering and smoothing. Fig. 2.3D shows a reach

in which a hand marker was occluded by the marmoset’s other hand in camera-2 around 1.25

seconds, resulting in brief large errors before an untracked gap. It also shows errors early in

the reach resulting from a non-optimal lag adjustment, which could happen if large errors in

another label (the torso labels in this case) biased the optimal lag for the event.

Aggregate Error Results

Error distributions were right-skewed with a long tail of large errors, so we used median

error as the measure of accuracy. We found that DLC tracked position with median error of

0.228 cm across all markers (Fig. 2.3E). We found that position errors on the torso (median

= 0.302 cm) were significantly larger than errors on the forearm (0.222 cm, r=0.26) and

upper arm (0.206 cm, r=0.319). We found no significant difference between the median

error of 278 timepoints corresponding to the training set and that of the remaining data

which were labeled by the network only (test).
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Figure 2.3: Tracking position with DLC+Anipose and XROMM. (A-B) Example
of accurate DLC tracking. (A) 3D position of distal hand marker with DLC+Anipose (dark
blue, solid) and XROMM (light blue, dot-dash). The movement begins at the blue dot.
(B) Top: Position split into x-y-z coordinates colored to match the axes in Fig. 1B, with
DLC+Anipose in solid and XROMM in dot-dash. Bottom: Error at each time (black)
overlaid on median error for the event (gray). (C-D) Examples of DLC+Anipose tracking
errors. (E) Distribution of errors for the markers of each body segment. Colored vertical
lines show median error for each segment and the dashed black line shows median error
across all markers. Significant differences between distributions are marked by asterisks in
the inset (rank biserial correlation, r>0.2, nhand=24605, nforearm=24403, nupperArm=27007,
ntorso=11083).

Median error was equivalent to 2.0% of position range when normalized by the maximum

range for each marker. Viewed another way, DLC+Anipose accounted for 97.2% of XROMM

position variance. We also computed the pixel error between reprojected trajectories and

labeled frames and found the median error to be 3.42 pixels (mean = 4.58 pixels), suggesting

that Anipose improved on the 7.38 pixels of error present in the original un-processed net-

work. The level of DLC+Anipose error demonstrated here is sufficient for many purposes,

and there is reason to treat this as an upper error bound for well-trained DLC networks.

Assessment of Errors and Limitations

The primary limitation in this study is the viewing angle of DLC camera-2 (Fig. 2.1),

which would ideally have been placed in the center of the XROMM image intensifier. The

angle resulted in occlusion of torso markers in approximately 34% of relevant timepoints and

occlusion of hand markers when the wrist was supinated. We approximated label positions for

the supinated hand to maximize percent tracked, but this certainly increased the error. The

second limitation is that marker positions were chosen as a compromise between proximity

to XROMM bead positions and ease of labeling – for example, the medial forearm marker

was placed in a muscular spot where the visual landmark was often ambiguous and resulted

in poor re-labeling precision (12.2 pixels error for the experienced labeler), while the upper

arm markers were easily located (5.96 pixels). There is also unquantified XROMM error

from soft-tissue artifacts as well as skin deformation affecting DLC relative to subcutaneous
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XROMM beads. The final limitation is the use of only two cameras – adding more would

increase the percentage of frames tracked and improve 3D optimization in Anipose.

Improving Accuracy

DLC is open-source and actively maintained, with frequent implementation of new fea-

tures. We have contributed one such feature by incorporating epipolar lines to improve

labeling precision across cameras for 3D projects (Fig. 2.1C). Epipolar lines simplify the

identification of the same landmark in different camera angles, particularly for ambiguous

landmarks.

Multiple tools supplement DLC, including Anipose,27 Pose3d,28 OpenMonkeyStudio,29

and a tool developed by Bolaños et al.30 Anipose and Pose3d implement optimizations for 3D

pose estimation python and MATLAB, respectively. OpenMonkeyStudio and the Bolaños

et al. method are data augmentation tools – the former uses labels on a subset of 62 camera

views to reproject labels on remaining views, while the latter animates a 3D model to render

synthetic DLC training data.

Optimal Anipose parameters for our data may not generalize perfectly to different set-

tings. We propose that readers without access to a marker-based system could optimize pa-

rameters by minimizing error between reprojected trajectories and held-out human-labeled

data. Errors can also be reduced through manual frame-by-frame error correction of DLC-

labeled video in XMALab or a similar toolbox.

Comparing DLC and XROMM Workflows

This dataset required 45-50 hours to produce a well-trained network to label 10,531

frames from 17 events (Fig. 2.S3A-B). This compares favorably with the approximately 34-

27. Karashchuk et al., “Anipose: A toolkit for robust markerless 3D pose estimation”.

28. Sheshadri et al., “3D reconstruction toolbox for behavior tracked with multiple cameras”.

29. Bala et al., “Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio”.

30. Bolaños et al., “A three-dimensional virtual mouse generates synthetic training data for behavioral analysis”.
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51 hours required for semi-automated XROMM tracking of the same events (Fig. 2.S3C).

While XROMM scales poorly to larger datasets, a robust DLC network may label such data

with little or no manual intervention. For example, six events that were excluded from the

initial set of labeled events required only the 5 hour refinement process, much less than 15

hours of XROMM tracking. Time requirements will depend on context, but the difference

in scalability is evident. For work requiring both the precision of XROMM and improved

scalability we suggest the procedure described by Laurence-Chasen et al.31 to apply DLC

directly to XROMM data.

Applicability to other pose estimation tools

There are a few alternative pose estimation tools. LEAP32 and DeepPoseKit33 use differ-

ent network architectures to reduce training and inference time. Deep Graph Pose (DPG)34

uses a similar architecture to DLC with temporal and spatial constraints to eliminate marker

jumps. We suspect DPG attenuates high-error frames resulting from marker jumps but would

not affect error for well-tracked frames. Based on advances in 3D human pose estimation,35

DANNCE36 trains a network on 3D image volumes rather than triangulating and optimiz-

ing outputs from a network trained on 2D images (as in DLC+Anipose; also see He et al.37

and Reddy et al.38 for subsequent state-of-the-art developments). DANNCE demonstrates

higher accuracy than DLC for the same small number of cameras when applied to uncon-

strained settings in which 3D information is crucial for dealing with occlusions. However, we

suspect DANNCE would perform similarly to DLC in semi-constrained settings such as ours

31. Laurence-Chasen et al., “Integrating XMALab and DeepLabCut for high-throughput XROMM”.

32. Pereira et al., “Fast animal pose estimation using deep neural networks”.

33. Graving et al., “DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning”.

34. Wu et al., Deep Graph Pose: A semi-supervised deep graphical model for improved animal pose tracking.

35. Iskakov et al., “Learnable Triangulation of Human Pose”.

36. Dunn et al., “Geometric deep learning enables 3D kinematic profiling across species and environments”.

37. He et al., “Epipolar Transformers”.

38. Reddy et al., “TesseTrack: End-to-End Learnable Multi-Person Articulated 3D Pose Tracking”.
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with just a few cameras. Thus, we expect DLC errors reported here to be representative for

existing tools, at least for well-tracked frames in semi-constrained environments.

2.5 Supplementary Figures
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Figure 2.S1: Training and performance of the DLC Network. (A) Error as a
function of training iteration for the 15 networks analyzed. Solid lines represent training error
and dashed represent test error. Coloring varies from light green to dark blue with increasing
training set fractions. Each line shows the mean ± standard deviation across three shuffles
with that training set fraction. (B) Pixel error as a function of training set fraction, evaluated
on DLC networks prior to Anipose. Lines represent the mean across shuffles and points
indicate individual networks. Train error (solid, light blue) is well below both human labeling
errors for all fractions. Test error (dashed, dark blue) drops below inexperienced human
labeling error (dot dash, black) at 50% and asymptotes at the experienced human labeling
error (solid, black) by the 85% training set. Human labeling errors presented as mean ±
95% confidence interval. Arrow indicates the network used for further analysis. (C) Median
position error (green, solid) and percent frames tracked (orange, dot dash) as a function
of training set fraction. This error was measured at the end of the DLC+Anipose and
post-processing pipeline. Median error is not correlated with training set fraction because
a reprojection error threshold was applied in post-processing, thus eliminating low-quality
frames. Percent of frames tracked, on the other hand, increases with set size because more
frames were well-tracked; percent tracked asymptotes at 85%. Arrow indicates the results
corresponding to the selected network.
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Figure 2.S2: Interaction between anipose parameters. (A) Median error, represented
by cell color, versus spatial constraint and post-processing reprojection error threshold. Dark
blue cells indicate the lowest error. (B-E) Median error vs four combinations of parameters.
(F-I) Similar plots of percent frames tracked vs combinations of parameters, where yellow
cells correspond to the highest percent and blue cells to the lowest. Note that the interactions
in (A-I), although technically identified as significant, are minor and not evident given the
vertical and horizontal striations in the figures. (J) Median error and percent tracked for
144 parameter sets including all score threshold values with smoothing factor and spatial
constraint set to 6 and 2, respectively. Results are sorted along the x-axis by score threshold
first, post-processing reprojection error threshold second and n-back third. The median
error and percent tracked vary predictably for score thresholds between 0.15 and 0.45, but
combinations with score_threshold = 0.6 vary unpredictably with the other parameters.
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Figure 2.S3: DeepLabCut and XROMM pipelines. (A) The DLC workflow for the
first time working with video data in a novel setting. (B) DLC workflow for analysis of sub-
sequent data with the well-trained network from (A). (C) The standard XMALab workflow.
Bold outlines indicate the starting point of each process. Purple steps require significant
hands-on work while green steps are primarily computational. All time estimates provided
refer to hands-on work either completing manual steps or preparing for computational steps.
Dotted lines indicate an optional path in the pipeline. Calibration steps are not very differ-
ent between DLC and XROMM and are not shown.
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Table 2.S1: Corresponding XROMM and DLC target locations. XROMM markers
were targeted superficial to specific skeletal or muscular locations. DLC labels were chosen to
match XROMM locations as close as possible, although we had to adjust marker positions
to the location of clear visual landmarks so that consistent human labeling was possible.
Colors match the colors in Fig. 2.1.
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CHAPTER 3

A REACH-SPECIFIC SUBSET OF NETWORK INTERACTIONS

UNDERLIES TUNING TO FORELIMB MOVEMENTS IN

SENSORIMOTOR CORTEX

3.1 Introduction

Examining the relationship between population activity in primary motor cortex (M1) and

upper limb motor behavior has taken one of two diverging approaches. On the one hand,

single neuron tuning properties have been characterized and then combined across the pop-

ulation without considering the interactions between neurons.1,2 On the other hand, low-

dimensional structure in the population dynamics has been linked to movement while ig-

noring and, in some cases, arguing against the role of single neuron tuning properties.3,4

Although these divergent methodologies have each proven useful, comparatively few stud-

ies have attempted to place single neuron tuning properties in the context of broader M1

population dynamics. Pairwise spike count correlations have been shown to provide infor-

mation about motor behavior beyond what is provided by firing rates alone5 and to improve

encoding models that predict single-unit activity.6 Recent work demonstrated that pairwise

spike time correlations also carry behaviorally relevant information in M1.7 A larger of body

of work in mostly primary visual cortex has shown that recurrent interactions within local

1. Georgopoulos et al., “Neuronal Population Coding of Movement Direction”.

2. Georgopoulos et al., “Primate motor cortex and free arm movements to visual targets in three- dimensional space. II.
Coding of the direction of movement by a neuronal population”.

3. Churchland et al., “Neural population dynamics during reaching”.

4. Shenoy et al., “Cortical Control of Arm Movements: A Dynamical Systems Perspective”.

5. Maynard et al., “Neuronal interactions improve cortical population coding of movement direction.”

6. Stevenson et al., “Functional Connectivity and Tuning Curves in Populations of Simultaneously Recorded Neurons”.

7. Sundiang et al., “Dynamic structure of motor cortical neuron coactivity carries behaviorally relevant information”.
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functional groups can explain single-trial neural activity,8 that both tuned and untuned units

are essential components of the functional network (FN),9 and suggested that reliable pair-

wise correlations, rather than first-order statistical features of spike trains, are the building

blocks of coding in visual cortex.10

Our understanding of single-unit activity in the context of neuronal interactions has been

limited in many cases by the necessity for trial averaging, due historically to wired neural

recording systems, difficulty in quantifying complex kinematics, or by the constraints of anal-

ysis methods. Constrained and over-trained behavioral tasks such as center-out reaching or

pedaling a wheel11,12 limit the variability in all movement parameters aside from those under

investigation and may impose an artificial ceiling on the dimensionality of neural population

dynamics.13 Even in the case of less stereotyped behaviors like random target pursuit,14

reaching around obstacles,15 and reach-to-grasp tasks,16 primates are restrained in a chair

with head-fixation and require weeks of daily training to reliably execute an experiment.

There is evidence to suggest that a significant portion of M1 neurons encode a constrained,

well-trained task differently than free behavior17 and that over-training increases synchrony

between M1 neurons.18 The extent to which findings discovered in the constrained, trained

setting will generalize to natural movements remains unclear.

8. Kotekal & MacLean, “Recurrent interactions can explain the variance in single trial responses”.

9. Levy et al., “Network Analysis of Murine Cortical Dynamics Implicates Untuned Neurons in Visual Stimulus Coding”.

10. Levy et al., “A sparse set of spikes corresponding to reliable correlations is highly informative of visual stimulus on single
trials”.

11. Georgopoulos et al., “On the relations between the direction of two-dimensional arm movements and cell discharge in
primate motor cortex.”

12. Russo et al., “Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response”.

13. Gao & Ganguli, “On simplicity and complexity in the brave new world of large-scale neuroscience”.

14. Hatsopoulos et al., “Encoding of Movement Fragments in the Motor Cortex”.

15. Kaufman et al., “Cortical activity in the null space: Permitting preparation without movement”.

16. Saleh et al., “Encoding of coordinated reach and grasp trajectories in primary motor cortex.”

17. Jackson et al., “Correlations Between the Same Motor Cortex Cells and Arm Muscles During a Trained Task, Free
Behavior, and Natural Sleep in the Macaque Monkey”.

18. Schieber, “Training and Synchrony in the Motor System”.
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Here we use a wireless neural recording system and computer-vision pose estimation

tools to study unrestrained and untrained arm movements executed by the common mar-

moset (Callithrix jacchus) during prey capture of moths.19,20,21,22 Compared to classical

task paradigms, this behavior produces a richer set of movements with variable directions,

speeds, and amplitudes and obviates concerns related to overtraining. Instead of assuming a

fixed time lag between neural activity and kinematic features,23,24,25,26,27,28,29,30 we quan-

tify single unit tuning properties using a temporally extended trajectory tuning model.31

At the same time, we incorporate neuronal interactions using a FN that describes pairwise

spike time statistics in the form of a weighted, directed graph. We show that the trajectory

tuning model extends to more naturalistic movements and explains neural activity better

than a simpler model. We also demonstrated that tuning to kinematics depends on func-

tional interactions between units – particularly on structured strong connections. Finally, we

identified a reach-specific functional group that reorganizes to produce the dynamic forelimb

movements necessary for prey capture. This reach-specific functional group is strongly inter-

connected and comprises units tightly linked to kinematics with strong, positively correlated

19. Karashchuk et al., “Anipose: A toolkit for robust markerless 3D pose estimation”.

20. Mathis et al., “DeepLabCut: markerless pose estimation of user-defined body parts with deep learning”.

21. Moore et al., “Validating markerless pose estimation with 3D X-ray radiography”.

22. Walker et al., “Chronic wireless neural population recordings with common marmosets”.

23. Aflalo & Graziano, “Partial tuning of motor cortex neurons to final posture in a free-moving paradigm”.

24. Aflalo & Graziano, “Relationship between unconstrained arm movements and single-neuron firing in the macaque motor
cortex.”

25. Caminiti et al., “Making arm movements within different parts of space: dynamic aspects in the primate motor cortex.”

26. Evarts, “Relation of pyramidal tract activity to force exerted during voluntary movement.”

27. Georgopoulos et al., “On the relations between the direction of two-dimensional arm movements and cell discharge in
primate motor cortex.”

28. Hocherman & Wise, “Effects of hand movement path on motor cortical activity in awake, behaving rhesus monkeys”.

29. Moran & Schwartz, “Motor Cortical Representation of Speed and Direction During Reaching”.

30. Sergio & Kalaska, “Systematic Changes in Motor Cortex Cell Activity With Arm Posture During Directional Isometric
Force Generation”.

31. Hatsopoulos et al., “Encoding of Movement Fragments in the Motor Cortex”.
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preferred trajectories.

3.2 Results

Each marmoset was allowed to voluntarily enter and exit the prey-capture apparatus attached

to the top of the home enclosure (Fig. 3.1A). Movement was recorded by high-speed cameras

that were automatically triggered using a beam-breaker switch (see Methods). Spontaneous

behavior in the home enclosure was recorded continuously by a separate camera system,

but we do not quantify kinematics or report classes of spontaneous behavior in this work.

Spiking activity was recorded throughout the recording session (TY = 175 units, Fig. 3.1B;

MG = 73 units, Fig. 3.S1A), during which the monkey was actively reaching for prey

(TY = 101 reaches, MG = 55 reaches) or engaged in undirected, spontaneous behavior.

Reaches were randomly assigned to reachSet1 or reachSet2 and the corresponding spiking

activity during reaches and during spontaneous behavior was used to compute functional

networks denoted reachFN1, reachFN2, and spontaneousFN (Fig. 3.1C-D; Fig. 3.S1B-D).

The reachFNs exhibited structures that were qualitatively very similar to each other and

different from the spontaneousFN in both monkeys, which was reflected in the relationship

between inter-electrode distance and edge weights for reachFNs versus spontaneousFN (Fig.

3.S1E). We built generalized linear models (GLMs) to predict single-sample spiking activity

of individual units given a temporally-extended velocity trajectory and average position of

the hand throughout the trajectory, similar to previous work in macaques.32 We refer to these

sets of models and to similar models without the position terms as the full kinematics and

trajectory model, respectively (Fig. 3.1E). We also built models that approached a time-

independent preferred direction representation by sampling brief velocity trajectories and

average position between +100 and +150 ms with respect to the spike sampling time, which

32. Hatsopoulos et al., “Encoding of Movement Fragments in the Motor Cortex”.
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is often treated as the optimal lag between a motor cortical neuron’s firing and velocity.33,34

We call these the short kinematics (brief trajectory and average position) and velocity (brief

trajectory only) model (Fig. 3.1F).

33. Moran & Schwartz, “Motor Cortical Representation of Speed and Direction During Reaching”.

34. Paninski et al., “Spatiotemporal Tuning of Motor Cortical Neurons for Hand Position and Velocity”.
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Figure 3.1: Behavior, data collection and encoding model construction. (A)
Left : subject capturing prey in the apparatus. Behavioral video data was collected by five
(MG) or two (TY) cameras. Right : subject behaving freely and spontaneously in the home
enclosure. (B) A raster plot shows the activity of 175 units recorded from TY across time,
ordered vertically by cortical area. Six of 101 reaches are separated into reachSet1 (dark blue)
and reachSet2 (light blue). The remaining recording segments correspond to non-reaching,
spontaneous behavior (green). (C) FNs were computed from activity during either reaches
in the corresponding reachSet or during spontaneous behavior. Within each area, units are
ordered by the average in-weight to the target unit for reachFN1. The color axis corresponds
to the conMI. (D) Wrist position corresponding to the reaches in (A), with reach onset at the
black dot. (E) A representative sample for the trajectory and full kinematics models with
τlead = 100 ms and τlag = 300 ms. Left : wrist position for a single reach (black) overlaid
with the spike sample time (white circle) and corresponding trajectory sample including
lead (blue) and lag (red) movements subsampled at 40 Hz. Right : velocity samples with
the spike sample window and trajectory center shown with vertical black dotted lines. (F)
The corresponding representative sample for the velocity and short kinematics models with
τlag1 = 100 ms and τlag2 = 150 ms.

Encoding models incorporating temporally-extended velocity trajectories and

average position predict single-unit spiking activity

For each unit in the population, we tested 17 sets of each encoding model with varying

sets of lead and lag times in the trajectory samples – the models were 300-500 ms in duration

and ranged from entirely lead to entirely lag kinematics. We found that the full kinematics

model performed best when it incorporated both lead and lag kinematics, particularly for

models containing majority lag kinematics (Fig. 3.2A). We report subsequent results for the

[-100, +300] ms model due to its high performance in both monkeys; we also confirmed that

results match qualitatively across the multiple lead-lag sets with similar mean performance.

We created two shuffled models for comparison with real data – total shuffle and trajec-

tory shuffle. For the total shuffle model we permuted the kinematic samples to break the

relationship between kinematics and spikes. For the trajectory shuffle model we permuted

just the trajectory samples, leaving the relationship between average position and spikes

unperturbed. We called units for which the real model outperformed the shuffled model for

99 of 100 train/test splits strongly tuned to full kinematics (total shuffle) or to the trajec-
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tory specifically (trajectory shuffle) for monkey TY. For monkey MG, we used a threshold

of 90/100 to account for the reduced sample count. We found that many units were strongly

tuned to kinematics (TY = 112/175 units; MG = 31/73 units), while a subset of these were

strongly tuned to the trajectory specifically (TY=62/175; MG=8/73). For results shown in

Fig. 3.2B-C, we filtered out units with full kinematics AUC greater than trajectory shuffle

AUC for no more than 50% of splits, meaning that they had no sensitivity at all to the
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Figure 3.2: Full kinematics encoding model predicts single-unit activity. (A-H)
Left : monkey TY. Right : monkey MG. (A) The mean ± sem AUC for the full kinematics
model, all lead-lag sets. The trajectory models range from 300 to 500 ms in duration, and
from entirely lead-heavy samples at the left end to lag-heavy samples at the right end. The
arrow indicates the selection of the [-100, +300] ms trajectory model. (B) Scatterplot of
the trajectory and velocity model AUC values for each unit, averaged over 100 train/test
splits. Each unit’s hue corresponds to average in-weight in the FN, which will be explained in
further detail in Fig. 3.3. Units above the unity line were predicted better by the trajectory
model. P-values are the result of a one-sided sign test. In (B) and (C), we filtered out
units with full kinematics AUC greater than trajectory shuffle AUC for no more than 50%
of train/test splits, leaving 169/175 units for TY and 61/73 units for MG. (C) The full
kinematics model predicted activity better than the short kinematics model (TY=139/169
units, p<0.01 by sign test; MG=41/61 units, p=0.0137). (D) The full kinematics model
outperforms the trajectory model due to the inclusion of average position terms (TY =
164/175 units, p<0.01, MG = 69/73 units, p<0.01). (E) Summary of model performance.
** indicates p<0.01 between the full kinematics model and other models, * indicates p<0.05.
(F) The preferred trajectory pathlets for three of the five units with the highest AUC. Each
of 100 train/test splits is shown in blue and red corresponding to lead and lag movements,
and the average pathlet is shown in black. (G) The pathlets for three of the five units with
the lowest AUC. (H) Histograms of the Pearson correlation between pathlets for all pairs of
units.

details of the trajectory. We were left with 169 units for TY and 61 units for MG.

The trajectory encoding model predicted spike likelihood more accurately than the ve-

locity model (TY = 138/169 units, p<0.01, one-sided sign test; MG = 45/61 units, p<0.01)

and the full kinematics model was more accurate than short kinematics (TY = 139/169

units, p<0.01; MG = 41/61 units, p=0.0137), confirming previous studies and showing that

activity of individual neurons is more closely related to temporally-extended velocity trajec-

tories than to ballistic velocity at a fixed time lag (Fig. 3.2B-C). The full kinematics model

was significantly more predictive than the trajectory model (TY = 164/175 units, p<0.01,

MG = 69/73 units, p<0.01; Fig. 3.2D), as well as all the kinematics models we tested (Fig.

3.2E).

We treated the coefficients of the velocity trajectory terms in the full kinematics model

as instantaneous velocities and integrated to obtain the preferred position trajectory, or

pathlet. Units with high AUC values were tuned to high amplitude preferred pathlets that
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were consistent across train/test splits, while units with low AUC values had no discernible

preferred pathlet (Fig. 3.2F-G). We computed the Pearson correlation between pathlets for

all pairs of units and found that preferred pathlets tended to be strongly correlated and

skewed toward positive correlations (Fig. 3.2H). The full kinematics model incorporating

a temporally-extended velocity trajectory and average position over the movement sample

was the best predictor of single-unit spiking activity, and individual units exhibited distinct

preferred trajectories that tended to be strongly correlated with a preference for positive

correlations.

Activity in the functional group improves the encoding model and relates to

kinematic tuning

We incorporated the FN in each target unit’s encoding model by taking the dot product

of all source unit spikes with the edge weights from the source units to the target unit (Eq.

3.6) for the leading bin and the coincident bin – this resulted in two network features for

each target unit model. We took this approach rather than the alternative – fitting all

pairwise coupling coefficients in the GLM – for three reasons. First, using conMI values

as the coupling coefficients to produce network features constrained the encoding models

to strict dependence on finely timed spike-train statistics measured directly from the neural

data rather than on maximum likelihood computations. Prior work has shown that couplings

taken from an FN approached optimality in a similar model.35 Second, our approach allowed

us to probe the influence of specific FN features and subsets and observe a direct result in

model performance. Third, adding just two terms to each target unit model rather than 73

or 175 terms reduces the likelihood of overfitting the model. Our final kinematics+reachFN

model contained the trajectory features with 48 x−y−z velocity terms, the average position

features with three terms, and the coincident and leading network feature terms (Eq. 3.5).

Note that we use the term functional group to denote subsets of the FN for which functional

35. Dechery & MacLean, “Functional triplet motifs underlie accurate predictions of single-trial responses in populations of
tuned and untuned V1 neurons”.
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interactions were studied in the GLM (in the unmodified kinematics+reachFN model, the

functional group is the entire set of source units to the target unit).

The inclusion of network activity improves the model significantly across the population

(TY = 169/175 units, p<0.01; MG = 73/73 units, p<0.01, one-sided sign test; Fig. 3.3A).

Improvements were similar across cortical areas (Fig. 3.S2A-B). We found that performance

of the full kinematics models increased with increasing average in-weight in the functional

group (TY: Pearson correlation r = 0.67; MG: r = 0.51; Fig. 3.3B). Additionally, model

Figure 3.3: Network features improve the encoding model and first order FN
structure is linked to kinematic tuning. (A-C) Top: monkey TY. Bottom: monkey
MG. (A) Adding the reachFN network features to the full kinematics model improves pre-
diction of single-unit activity (TY = 169/175 units, p<0.01, one-sided sign-test; MG = 73/73
units, p<0.01). Each unit’s hue corresponds to average in-weight in the FN. (B) Perfor-
mance of the full kinematics model (which contains no network feature terms) increases with
average in-weight to the unit in the FN (TY: r = 0.67, Pearson correlation; MG: r = 0.51).
(C) A scatterplot of all edge weights versus the pairwise preferred trajectory correlation.
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improvement from adding network features was positively correlated with average in-weight

but not with performance in the full kinematics model (TY: r = 0.66, MG: r = 0.49; Fig.

3.S2C-D). While we expect that a model incorporating functional group activity would im-

prove with stronger inputs, it is striking that the units most strongly tuned to the full

kinematics model (without network features) also received the stronger functional group

inputs. Units with strongly correlated preferred trajectories also tended to have strong func-

tional connections (Fig. 3.3C). The relationship between average full kinematics AUC in

a pair of units and their preferred trajectory correlation is weak (Fig. 3.S2E), suggesting

that the link between strong weights and strong trajectory correlations did not solely result

from the relationship between full kinematics AUC and average in-weight. None of these

findings are the result of variations in unit firing rate or waveform signal-to-noise ratio (Fig.

3.S3A-F). Taken together, these results demonstrate that functional interactions influence

single-unit activity, that a unit’s tuning to kinematics increases with the degree to which it

is interconnected with the surrounding network, and that strongly connected units exhibit

similar (or to a lesser extent, opposite) tuning properties.

The topology of strong functional interactions underlies accurate prediction of

single-sample activity

Previous work in murine visual cortex has shown the strongest connections in FN are

most informative of single-trial activity.36,37 To test the importance of specific topological

features in strongly connected functional groups in sensorimotor cortex, we identified the

top N% of strongest edge weights in the FN. Using the method described by Kotekal and

MacLean, we first permuted the weights amongst unchanged target-source unit pairs, which

preserves the original functional groups (Fig. 3.4A). Network features computed from the

permuted weights FN were then substituted into the kinematics+reachFN model. We did

36. Dechery & MacLean, “Functional triplet motifs underlie accurate predictions of single-trial responses in populations of
tuned and untuned V1 neurons”.

37. Kotekal & MacLean, “Recurrent interactions can explain the variance in single trial responses”.
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not re-train the GLM with permuted network features, but rather computed the change in

AUC values on training data compared to the kinematics+reachFN model. Re-training the

GLM would optimize model coefficients to minimize model error, which would obscure the

effect of permuted weights. We also selected functional groups of matched size at random

to determine whether functional groups of strong connections were of particular importance.

Across 100 permutations for monkey TY (1 for each training set as in previous sections),

we found that permuting weights in the connection strength functional group resulted in

significantly greater information loss than permuting weights randomly for functional group

sizes of greater than 15% and less than 100% of the network (p < 0.01, two-sided sign

test; Fig. 3.4B). The effect of removing FN terms entirely from the GLM was significantly

greater than the effect of weight permutations for set sizes up to 40%, beyond which shuffling

functional groups including the next 50% of weaker connections had a similar effect as

removing the network features entirely. However, increasing the set size did increase the

amount of information lost, and shuffling 95% or 100% of the FN even degraded the model

beyond simple removal of the terms.

We observed a less pronounced effect of permuted weights in monkey MG. The strongly

connected functional group carried more information than the random functional group for

multiple, but not all group sizes (p < 0.01; Fig. 3.4B). Unlike TY, the effect of removing the

FN terms from the model exceeded the effect of permuted weights for all functional group

sizes – even the 100% permuted FN. Although these results in MG demonstrate that the

strength functional groups – and the FN more broadly – contributed to prediction of single-

unit activity, they also suggest that a portion of the information available in the network

terms came from overall population activity rather than the specific structure of functional

interactions.

Next we permuted the target unit of the strongest (or random) edges, thereby generating

new functional groups and allowing us to determine the sensitivity of predictive power to
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the underlying strong edges. Unlike permuting the weights, which left the functional group

of inputs to each target unit unaltered, this procedure permuted edges across all functional

groups (Fig. 3.4A). As before, prediction loss was assessed on training data for 100 per-

mutations. Permuting edges produced qualitatively similar results to permuting weights,

although with heightened importance of the strongly connected functional groups for even

the smallest group sizes (Fig. 3.4C). Strength-based permutation of edges had a consistently

larger effect than random permutation for group sizes up to 75% in TY and 40% in MG,

with the effect of edge permutation matching the effect of entirely removing FN terms for
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Figure 3.4: The topology of strong functional interactions underlies accurate
prediction of single-sample activity. (A) Diagram of permutation methods. Top: two
original functional groups of source units (Sn) and their input edge weights to target units
(Tn). Green arrows indicate membership of this source-edge pair in the strongest N% of
edge weights, with larger and darker arrows indicating a larger weight. Gray arrows consti-
tute the remaining edges in the FN. Lower-left : for permuted weights, the strongest edges
were permuted freely, even across functional groups, while the source-target unit pairs were
unchanged. Lower-right : for permuted edges, the source-edge pair was held constant, but
the target unit receiving input from the pair was permuted freely. This resulted in entirely
new functional groups. Note that for simplicity this diagram does not depict the existence
or permutation of reciprocal connections or the interconnectivity of functional groups. (B)
Top: The percent AUC loss on the training set (mean ± sem for 100 shuffles) resulting
from permuting the strongest N% of weights (dark green) or a random N% (light green)
versus the size of the permuted functional group for monkey TY. Green circles above the
plot indicate functional group sizes for which permuting the strongest weights resulted in
significantly greater loss than permuting random weights (p < 0.01, two-sided median test).
Black circles indicate sizes for which the effect of removing the network feature terms entirely
was significantly different than permuting the strong weights (p < 0.01). Bottom: same for
monkey MG. (C) Same as (B) for the effect of permuting edges in the original functional
groups.

strongly connected functional groups larger than 15% in TY. As before, permutations of

edges never matched the effect of removing FN terms for MG.

The study in visual cortex38 permuted weights or edges for the top 25% of edge weights

– here we observe significant differences between the strong connection and random func-

tional groups across multiple group sizes. However, the difference observed for TY between

perturbing or removing the FN terms suggests that information carried in functional inter-

actions is focused in the 15-40% of strongest connections (Fig. 3.4B,C). The results from

MG are less conclusive for this comparison to the findings in visual cortex.

The finding that strong functional interactions underlie accurate prediction by the kine-

matics+reachFN model lends support to our observations that strong connections correlate

with tuning to kinematics and that units with highly correlated preferred pathlets tend to be

more strongly connected. Taken together, these provide evidence that the specific structure

of interactions captured by the FN are informative of the underlying dynamics involved in

38. Kotekal & MacLean, “Recurrent interactions can explain the variance in single trial responses”.
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kinematic production in the sensorimotor neural population, particularly for strongly con-

nected functional groups.

A reach-specific functional group reorganizes during prey-capture

Although these results and prior work demonstrate the importance of strongly connected

functional groups in the FN, connection strength may not be the only critical factor in func-

tional group organization. We next took an approach based on model performance that

was agnostic to any specific feature of the FN. We trained a kinematics and spontaneous

network model by computing network feature terms from the dot product of the sponta-

neousFN with the spiking activity associated with trajectory samples. We then tested this

model on network features computed with reachFNs to compare generalization of the kine-

matics+spontaneousFN model against the performance of the original kinematics+reachFN

model. Essentially, we asked whether functional interactions computed during spontaneous

behavior were informative during prey-capture. We found that the kinematics+reachFN

model significantly outperformed kinematics+spontaneousFN generalization across the pop-

ulation for TY (p < 0.01, one-sided sign test) but not for MG (p = 0.0503; Fig. 3.5A,F).

However, we observed that the kinematics+spontaneousFN model generalized well for most

units – in fact, there was only a small subset of the population for which it clearly could not

generalize (TY=19/175, MG=6/73). We call this subset the reach-specific functional group

and the remaining units non-specific.

We isolated the reach-specific and non-specific functional groups for reachFN1 and spon-

taneousFN (Fig. 3.5B-C,G-H). We found that the difference between the reachFN1 and

spontaneousFN was much larger for the reach-specific group compared to both the non-

specific and full networks (p < 0.01, two-sided median test; Fig. 3.5D,I). Reach-specific

reachFN1 also had a significantly stronger distribution of edge weights than the full net-

work, while the non-specific reachFN1 had a significantly weaker distribution (p < 0.01; Fig.

3.5E,J). The pattern was reversed for the spontaneousFN in TY, for which the reach-specific
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group had significantly weaker edges (p < 0.01). This did not hold for MG (p > 0.05). The

non-specific group had a statistically weaker distribution of edge weights compared to the full

FN in both monkeys (p < 0.01). These and subsequent results are consistent for reachFN2

– we don’t display or report them because they are essentially identical. The reach-specific

functional group which reorganized during prey-capture was also more tightly linked to fore-

limb movement. We found that the full kinematics model more accurately predicted spiking

activity for units in the reach-specific functional group than for non-specific units
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Figure 3.5: A reach-specific functional group reorganizes during prey-capture.
(A) The kinematics and reachFN model versus the network encoding model trained with
spontaneousFN network features and tested on reachFN network features, monkey TY. Units
above the dotted line (threshold = 0.03 AUC away from the unity line) are defined as the
reach-specific functional group (green, 19/175 units), and the remaining are non-specific units
(orange, 156/173 units). (B) The reach-specific functional group, with reachFN1 on top and
spontaneousFN on bottom. (C) The non-specific reachFN1 and spontaneousFN. (D) The
cumulative distribution of the absolute difference in edge weights between reachFN1 and
spontaneousFN for the reach-specific, non-specific, and full (purple) groups. Distribution
comparisons are inset as colored pairs of boxes. For D and E, the * indicates significantly
different distributions with p<0.01 (two-sided median test), remaining p-values less than 0.05
are written, and a blank next to the comparison inset indicates no significant difference. (E)
The cumulative distribution of edge weights for reachFN1 (left) and spontaneousFN (right).
(F-J) Corresponding results for MG, with 6/73 units in the reach-specific functional group.

(TY: p < 0.01, MG: p = 0.03, median test), and that the distribution of full kinematics

AUC values was higher than in the full set of units as well (TY: p < 0.01, MG: p = 0.03;

Fig. 3.6A). We also found that the preferred trajectories were more strongly and positively

correlated within the reach-specific functional group than within the non-specific or full FNs

(p < 0.01; Fig. 3.6B). To rule out the possibility that more strongly positive preferred

trajectory correlations could be explained simply by the higher distribution of AUC values,

we also tested unit pairs within the non-specific and full FNs for which both units had full

kinematics AUCs exceeding the lowest full kinematics AUC in the reach-specific functional

group. Pairs in the reach-specific group still exhibited more strongly positive preferred

trajectory correlations than these AUC-matched pairs in both the non-specific and full FNs

(p < 0.01; Fig. 3.S4A). Similarly, AUC-matched comparisons of the edge weight distributions

shown in Fig. 3.5E,J produced the same results (Fig 3.S4B-C), with the exception that for

monkey MG the distributions of edge weights were not significantly different between the

reach-specific, non-specific, or full FNs. We note that reach-specific units did not comprise

all of the units performing well in the full kinematics or full kinematics model, but were

intermixed with well-explained non-specific units (Fig. 3.S4D).

Finally, we examined the location of reach-specific and non-specific units on the cortical
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map as determined by intra-cortical microstimulation (ICMS) and passive tactile and somatic

Figure 3.6: Tuning properties and cortical location of the reach-specific func-
tional group. (A) Cumulative distribution of AUC values in the full kinematics model for
TY (top) and MG (bottom), separated by reach-specific vs non-specific/full groups. Legend
and statistics are denoted as in Fig 3.5. (B) Distributions of preferred trajectory correlation.
(C) Cortical location of reach-specific units (white circles) on the array. Each box in the
grid represents an array channel and is color-coded by the body-part associated with the
channel through ICMS and/or passive tactile or somatic stimulation. (D) Cortical location
of non-specific units.
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stimulation while the marmoset was in a restful state (see Methods). We found that ICMS

thresholds were not different between groups, ruling this out as an explanation for our find-

ings (Fig. 3.6C). We discovered that for monkey TY the units in the reach-specific functional

group were located entirely on channels linked to the shoulder or forelimb, with most units

residing within M1 or within 3a near the boundary with M1 (Fig. 3.6D). The location of

these units is striking in contrast with the non-specific units which were spread across the

cortical map (Fig. 3.6E). Importantly, many channels on which reach-specific units were

found also recorded non-specific units, and many non-specific units were located on other

channels linked to forelimb movement or sensory feedback. Our preliminary examination

of the location of reach-specific units for monkey MG was less conclusive (Fig. 3.S5A-B).

Based on passive somatic and tactile stimulation, we have drawn estimated boundaries for

the forelimb regions of area 3a, M1, and premotor cortex. We have not yet tested the effects

of ICMS. Based on this mapping and expected channel response properties to ICMS, five of

the six reach-specific units were located in the forelimb region and were spread across the

cortical areas (Fig. 3.S5A). Non-specific units were spread across the array (Fig. 3.S5B).

3.3 Discussion

We have shown that precisely timed single-unit activity during forelimb movements can be

predicted accurately by a network plus kinematics encoding model incorporating functional

interactions, a temporally-extensive velocity trajectory and the average wrist position taken

over the trajectory. We also demonstrated that tuning to kinematics depends fundamentally

on functional interactions between units – particularly on structured strong connections.

This builds on past work in macaque motor cortex demonstrating that movement related

information is present in pairwise spike count correlations,39,40 and provides complementary

39. Maynard et al., “Neuronal interactions improve cortical population coding of movement direction.”

40. Stevenson et al., “Functional Connectivity and Tuning Curves in Populations of Simultaneously Recorded Neurons”.

60



insights to recent work showing that the structure of fine-timing spike correlations in a FN

contains movement-related information and evolves systematically over the course of behav-

ior.41 Finally, we identified a reach-specific functional group that reorganizes its functional

interactions to produce the dynamic forelimb movements necessary for prey capture.

The trajectory encoding model predicts activity across sensorimotor cortex dur-

ing naturalistic behavior

Given evidence that neural activity recorded in association with highly constrained

and over-trained tasks may not generalize completely to naturalistic, unrestrained behav-

ior,42,43,44,45 it was not guaranteed that the results of our full kinematics model would

match those of Hatsopoulos et al.46 However, as in that study, we found that the trajectory

model predicted single-unit activity more accurately than a velocity model and that the

full kinematics model was most accurate for trajectories including a range of lead and lag

kinematics. In fact, the same [-100, +300] ms model that performed best for M1 units in

macaques performing a random-target pursuit task was also amongst the best-performing

models here. Interestingly, the model accurately predicted units in area 3a and part of area

3b, as well as in motor cortex; this aligns with recent studies demonstrating similar encod-

ing47 and decoding48 of distal limb movements of the wrist and digits for units in M1 and

area 3a. We also found that significantly tuned units exhibited distinct and consistent pre-

ferred trajectories in addition to average position tuning. Since the trajectory tuning model

41. Sundiang et al., “Dynamic structure of motor cortical neuron coactivity carries behaviorally relevant information”.

42. Aflalo & Graziano, “Relationship between unconstrained arm movements and single-neuron firing in the macaque motor
cortex.”

43. Gao & Ganguli, “On simplicity and complexity in the brave new world of large-scale neuroscience”.

44. Jackson et al., “Correlations Between the Same Motor Cortex Cells and Arm Muscles During a Trained Task, Free
Behavior, and Natural Sleep in the Macaque Monkey”.

45. Schieber, “Training and Synchrony in the Motor System”.

46. Hatsopoulos et al., “Encoding of Movement Fragments in the Motor Cortex”.

47. Goodman et al., “Postural Representations of the Hand in the Primate Sensorimotor Cortex”.

48. Okorokova et al., “Decoding hand kinematics from population responses in sensorimotor cortex during grasping”.
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extended to accurate prediction of spiking activity during naturalistic behavior, it served as

a useful tool for understanding additional contributions gained from the functional network.

Strong functional interactions underlie kinematic tuning properties

We found that the inclusion of network features in the kinematics+reachFN model sig-

nificantly increased predictive power over the full kinematics model, and that performance

of the full kinematics model increased with stronger average functional inputs – despite no

direct link built into the kinematics-only model. Furthermore, we demonstrated that the

specific structure of the strongest 15-40% of edge weights contained most of the information

available in the FN. This agrees with a similar study in murine visual cortex which demon-

strated that the topology of the functional group containing the largest 25% of edge weights

was critical to the performance gained by incorporating network features.49

Another study in visual cortex found that both tuned and untuned units play essential

roles in the functional network, and that untuned units were central to the structure of

the network.50 This is in contrast with two results presented here: that strongly intercon-

nected units tended to be more tuned to kinematics, and that members of the reach-specific

functional group were more strongly connected to each other and more tightly linked to kine-

matics. This suggests that untuned units may play a different role in sensorimotor cortex

than in visual cortex. We posit that this difference is related to the generation of temporally

smooth population dynamics that are necessary for production of motor behavior.51,52,53

We discuss this possibility in further detail below.

49. Kotekal & MacLean, “Recurrent interactions can explain the variance in single trial responses”.

50. Levy et al., “Network Analysis of Murine Cortical Dynamics Implicates Untuned Neurons in Visual Stimulus Coding”.

51. Churchland et al., “Neural population dynamics during reaching”.

52. Russo et al., “Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response”.

53. Shenoy et al., “Cortical Control of Arm Movements: A Dynamical Systems Perspective”.
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A reach-specific functional group for forelimb movement

We identified a small subset of the population, the reach-specific functional group, for

which the kinematics+spontaneousFN model could not generalize to match the kinemat-

ics+reachFN model. When we compared this group to the non-specific and full FNs, we

discovered that the reach-specific functional group was more strongly interconnected, con-

tained pairs of units with strong, positively correlated preferred trajectories, and exhibited

markedly different structures in the reachFNs and the spontaneousFN. In contrast, the struc-

ture of interactions between non-specific units was fairly consistent across spontaneous and

reaching behavior. Additionally, the reach-specific functional group was more strongly tuned

to forelimb kinematics than the non-specific units.

The novel finding that a reach-specific functional group, located primarily in forelimb

M1 and 3a, reorganizes to produce dynamic forelimb movements during prey capture sug-

gests intriguing possibilities for contextualizing single-unit properties within the framework

of population dynamics. The functional interactions making up the non-specific group were

consistent across dynamic reaching and the range of spontaneous motor behaviors in the

home enclosure. We speculate that these units exhibiting static interaction patterns may

constitute the population of neurons that generate low-dimensional and rotational dynamics

described across the motor control literature.54,55,56,57,58 Consistent pairwise interactions

would contribute to dynamics that evolve in a predictable fashion and could produce neu-

ral trajectories with low tangling.59 The reach-specific group, on the other hand, might

reorganize its pattern of interactions in order to read out motor commands for movement

production. Alternatively, the reach-specific group could be involved in setting the fixed

54. Churchland et al., “Neural population dynamics during reaching”.

55. Kaufman et al., “Cortical activity in the null space: Permitting preparation without movement”.

56. Lara et al., “Different population dynamics in the supplementary motor area and motor cortex during reaching”.

57. Russo et al., “Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response”.

58. Shenoy et al., “Cortical Control of Arm Movements: A Dynamical Systems Perspective”.

59. Russo et al., “Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response”.
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point about which rotational dynamics unfold in neural space, a mechanism suggested as a

link between classical tuning and dynamics in recent work.60 Furthermore, it may be that

the reach-specific functional group contributes preferentially to activity in the output-potent

subspace,61,62 while the non-specific group contributes preferentially to the output-null sub-

space. This is difficult to demonstrate with certainty, as it would require recordings of

muscle activity in marmosets (which is technically challenging from a surgical perspective)

or recordings of both goal-directed and spontaneous motor behavior in macaques with EMG

recordings. As an alternative explanation, work by Dann et al.63 suggests that reach-specific

units identified here could be tightly coupled by preferred trajectory correlations and by

strong interconnectivity in order to facilitate communication between areas.

The differences between reach-specific and non-specific groups aligns with recent work

demonstrating that reliable pairwise correlations, rather than first-order statistical features

of spike trains, are the building blocks of coding in visual cortex.64 The fact that the non-

specific group did not reorganize between spontaneous and prey-capture behavior implies a

weaker dependence on the structure of interactions and a stronger dependence on source unit

activity (first order features), while the reorganization of the reach-specific functional group

demonstrates a dependence on precisely structured interactions for units strongly tuned to

kinematics.

Future work could leverage the temporal network approach used by Sundiang et al.65 to

create a separate FN for each trajectory sample. Each FN would be truly specific to the

reach segment and might provide insight into the reorganization of reach-specific functional

60. Sabatini & Kaufman, “Reach-dependent reorientation of rotational dynamics in motor cortex”.

61. Elsayed et al., “Reorganization between preparatory and movement population responses in motor cortex”.

62. Kaufman et al., “Cortical activity in the null space: Permitting preparation without movement”.

63. Dann et al., “Uniting functional network topology and oscillations in the fronto-parietal single unit network of behaving
primates”.

64. Levy et al., “A sparse set of spikes corresponding to reliable correlations is highly informative of visual stimulus on single
trials”.

65. Sundiang et al., “Dynamic structure of motor cortical neuron coactivity carries behaviorally relevant information”.
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groups on a fine timescale. Additionally, classification of spontaneous motor behavior would

provide context to the spontaneousFN and would allow for multiple FNs computed during

behavioral classes that are more or less related to forelimb reach-to-grasp.

3.4 Methods

Subjects

These experiments were conducted with two common marmosets, Callithrix jacchus (a

10 year old, 370 g male designated TY and an 8 year old, 350 g female designated MG).

All methods were approved by the Institutional Animal Care and Use Committee of the

University of Chicago.

Data Collection – Behavior and Cameras

A custom-built, modular apparatus designed for prey-capture and other goal-directed

tasks66 was attached at the top of the home enclosure. Subjects were allowed to enter

the apparatus and engage in prey-capture voluntarily. When the subject was prepared

and alert, the experimenter dispensed a single moth into the apparatus to initiate a prey-

capture episode. The next prey was dispensed when the previous prey was either captured

and eaten or had escaped the apparatus (a rare occurrence). The subject was engaged in

spontaneous behavior in the home enclosure or in the apparatus when not directly alert and

responsive to the prey-capture task. Spontaneous behavior includes, but is not limited to:

leaping, hanging, grooming of self or pair housed monkey, ambulating or resting in the home

enclosure and visual exploration or chewing/fine manipulation of prey in between capture

episodes in the apparatus. A recording session lasted approximately 90 minutes for TY and

2.5 hours for MG.

High-speed cameras (Blackfly S, 200 frames/sec, 1440×1080 resolution; Teledyne FLIR)

66. Walker et al., “A platform for semiautomated voluntary training of common marmosets for behavioral neuroscience”.
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were used to record video for pose estimation by DLC. For marmoset TY, two cameras were

positioned to optimize visibility of the left upper limb and recorded at 150 fps. For marmoset

MG, five cameras recorded at 200 fps – two cameras for each side view and one front-facing

camera to improve coverage for reaches occluded in the side views. Image acquisition was

triggered intermittently by the marmoset activating a beam-break sensor when approaching

the partition within the apparatus. Additional cameras were used to record behavior in the

home enclosure from a wider angle, but we do not attempt to classify or quantify behavior

in the home enclosure in this work.

Data Collection – Array and Neural Recording

Each subject was implanted with a 96-channel Utah Array (Blackrock Microsystems, Salt

Lake City, UT) using stereotaxic coordinates67 to target the forelimb area of the primary

motor cortex in the right (TY) or left (MG) hemisphere. The surgical procedure is described

in detail by.68 Neural data was collected using a Blackrock Cereplex Exilis, which is houses a

digital amplifier, wireless transmitter and Li-ion rechargeable battery capable of powering 90

minutes of continuous recording in a compact headstage. A quick-connect solution designed

in-house facilitated the removal/attachment and charging cycle with minimal experimenter

intervention and disruption to the marmosets’ natural behaviors (see Walker et al., which

describes many of the design concepts which were adapted for the Exilis headstage). Ad-

ditional battery life was provided in the MG recordings by a detachable external battery

circuit designed in-house. Data is transmitted to 8 receiving antennas, then processed by

additional products from Blackrock Microsystems. All data was recorded as a raw 30 kHz

signal without filtering.

Data Collection – ICMS and receptive field mapping

Mapping of the arrays by ICMS and passive sensory stimulation was conducted at night

67. Burish et al., “Microstimulation and architectonics of frontoparietal cortex in common marmosets (Callithrix jacchus)”.

68. Walker et al., “Chronic wireless neural population recordings with common marmosets”.
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during quiet restfulness. For ICMS, a medium-strength current was used to identify muscle

groups for which stimulation evoked a twitch or movement. Then the current was reduced

to identify the specific muscle target of the channel and the lowest current that could evoke

a response. For passive stimulation, the skin was lightly brushed with a cotton-tipped

applicator (tactile) or the muscle body was palpated (proprioceptive). This was repeated

20 or more times for each muscle/body region using a 5sec on/5 sec off protocol. Peri-

stimulus time histograms were computed from the repetitions and mapped onto the array

for manual inspection by the experimenters. Cortical area boundaries were estimated from

the composite maps of ICMS and receptive field mapping, in accordance with cortical maps

from.69

Data Processing – Spike Sorting

Spike sorting was performed on raw neural data at 30 kHz using Spike Interface.70 Iron-

clust (https://github.com/flatironinstitute/ironclust) was the primary sorter, with Spyking-

Circus71 and waveclus72 used to cross-reference for consistent units that were identified across

all sorters. Inter-spike interval, autocorrelation, and signal-to-noise ratio thresholds were ap-

plied to automatically classify units as single units, multi-unit activity, noise, or unclassified.

Automatically sorted spikes were manually curated using phy (https://github.com/cortex-

lab/phy).

Data Processing – Kinematics

A comprehensive DeepLabCut network (DLC)73 with Resnet-50 base architecture was

trained on 2,343 labeled images from TY and MG recording sessions. Three labels were

69. Burish et al., “Microstimulation and architectonics of frontoparietal cortex in common marmosets (Callithrix jacchus)”.

70. Buccino et al., “Spikeinterface, a unified framework for spike sorting”.

71. Yger et al., “A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings in vitro and
in vivo”.

72. Chaure et al., “A novel and fully automatic spike-sorting implementation with variable number of features”.

73. Mathis et al., “DeepLabCut: markerless pose estimation of user-defined body parts with deep learning”.
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applied to each side of the wireless headstage housing (for head-tracking in future work),

three to the upper limb on each side (shoulder, elbow and wrist), and three to corners of the

apparatus to establish a coordinate system – a total of 15 labeled points. The model was

iteratively trained and refined until pose estimation was consistent throughout all significant

upper-limb movements in the apparatus prey capture space. Anipose was used to apply

the DLC network to videos and to perform subsequent 2D filtering and 3D calibration and

triangulation, as described in Moore et al.74 and Karashchuk et al.75

We added multiple steps of post-processing to reduce the effect of brief tracking lapses in

outputs from the well-trained DLC network (such as spurious jumps and brief occlusions).

Each step was applied independently to all markers and video events. We first filtered out

timepoints with reprojection error greater than 20 pixels (35 for MG) and fewer than two

cameras tracking the label, leaving only well-tracked segments of kinematic data. We then

removed very brief segments shorter than 50ms, then filled tracking data back in for inter-

segment gaps shorter than 200ms. Most lapses were fixed or removed correctly after these

simple steps. Next, we removed any remaining marker jumps using the reprojection error

and position data together. Then we replaced any brief inter-segment gaps that remained

with either original tracking data if that data matched a linear interpolation closely, or with

the interpolation. Finally, we trimmed long segments with a high percentage of interpolated

data at the beginning and end of video events – these segments corresponded to the marmoset

maintaining an occluded posture in the back of the apparatus before or after prey-capture

activity. The processed data was smoothed with a 3rd order, 70ms Savitsky-Golay filter.

We identified reaching segments by finding y-position peaks that indicated extension of the

upper-limb into the prey-capture space and assessing when hand speed crossed a threshold

before and after each peak.

74. Moore et al., “Validating markerless pose estimation with 3D X-ray radiography”.

75. Karashchuk et al., “Anipose: A toolkit for robust markerless 3D pose estimation”.
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Trajectory encoding model

To build the encoding model for each neuron, we used a generalized linear model that

estimated the set of coefficients to maximize the likelihood of correctly predicting the spike

count within a 10 ms spike sampling window given the corresponding sample of kinematics.

Each kinematic sample was the monkey’s hand velocity trajectory and average position

over a kinematic sampling window of length τlead + τlag, with the kinematic and paired

spike samples centered at t0. Samples of spikes and kinematics were extracted every 30

ms throughout reaching segments, resulting in around 8,000 samples for monkey TY (8,149

for [-100, +300] ms model) and 4,000 samples for monkey MG (4,250 for [-100, +300] ms

model). Instantaneous velocity trajectories were down-sampled from 150 or 200 Hz down to

40 Hz based on the observation that the power spectrum of velocities mostly fell below 25

Hz. Each velocity sample can be formalized as:

v̂t0 = (v⃗(t0 − τlead), . . . , v⃗(t0 + n∆t), . . . , v(t0 + τlag) (3.1)

where v⃗(t0 + n∆t) is the instantaneous 3-dimensional velocity vector at time t0 + n∆t and

∆t = 25ms. The full kinematics model relates these terms and the average position vector

p⃗ to the conditional spike intensity of target unit i:

P (spikei (t0)| v̂t0 , p⃗) = exp
(
γ + k⃗ · v̂t0 + c⃗ · p⃗

)
(3.2)

where k⃗ is referred to as the preferred velocity trajectory of the neuron and c⃗ is the vector

of coefficients for the average position terms. The preferred path or “pathlet” of the neuron

is obtained by integrating k⃗ in time as if it were a vector of 3-dimensional velocities.

GLMs were implemented using the Python statsmodels package and trained using ridge

regression (L1=0) with a light penalty of α = 0.00001. Results of the full kinematics

model were consistent for α values between 0.01 and 0.000001. All results of the kine-
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matics+reachFN model were consistent for α values 0.00001 and 0.000001, and most results

were consistent for α as large as 0.01.

Area under the receiver operating characteristic curve

To assess the predictive power of each encoding model, we computed receiver operating

characteristic (ROC) curves that quantified the relationship between the probability of cor-

rectly predicting a spike (hit probability) versus the probability of incorrectly predicting a

spike when it was absent (false positive probability). We used 90% of spike-kinematics sam-

ple pairs to train the model for each unit and used 10% as held-out test data. We predicted

the conditional spike intensity from the encoding model given the 10% of held-out kinematics

samples and compared predictions to the held-out spike samples. We then computed the

area under the ROC curve (AUC), which measures the predictive value of the model and

can vary from 0.5 (no predictive power) to 1.0 (perfect prediction). The train/test split was

sampled randomly 100 times, resulting in 100 encoding models for each unit.

Functional Network computation

We created weighted, directed FNs by computing pairwise spike time statistics between

recorded units. We binned the recorded spike trains into 10-ms bins, assigning a value of 1

if at least one spike occurred in that bin, and 0 otherwise. We then computed the confluent

mutual information (conMI) between the binned spike trains.76 ConMI tells us how much

information we gain from the firing state of a source unit i at time t about the firing state

of target unit j in the same time bin t and the consecutive bin, t+ 1:

conMI =
∑

j(t)∈{0,1}

∑
i(t)∈{0,1}

p
(
j (t) , i

(
t̂
))

· log2

[
p
(
j (t) , i

(
t̂
))

p (i (t)) · p
(
j
(
t̂
))], (3.3)

76. Chambers et al., “Ensemble stacking mitigates biases in inference of synaptic connectivity”.
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where i
(
t̂
)
=


1, if i(t) = 1 OR i(t+ 1) = 1

0, otherwise
(3.4)

We computed two FNs during reaching segments from a separate 50% of reaching seg-

ments chosen at random. We paired the kinematics from reachSet1 with the FN computed

during reachSet2, and vice versa, to eliminate the concern that kinematics and the FN

might co-vary within a single sample. We also computed the FN during the remainder of the

session in which the marmoset was behaving in an undirected, spontaneous manner either

in the apparatus or the home enclosure (spontaneousFN). Each FN was represented as a

square matrix of directed edge weights (the conMI) between nodes (units), with target units

represented along the rows and source units along the columns.

Incorporating the functional network into the encoding model

Activity in the functional group was incorporated in the encoding model by computing

the sum of input weights times spiking activity:

P
(
spikei (t0)

∣∣∣v̂t0 , p⃗, F 0, F 1
)
= exp (γ + k⃗ · v̂t0 + c⃗ · p⃗+ β0F

0 + β1F
1) (3.5)

F 0 =
∑
j

wjis
0
j and F 1 =

∑
j

wjis
1
j (3.6)

where wji is the edge weight (the conMI value) from source unit j to target unit i and s0j

and s1j are spike activity in the source unit at times t and t − 1. Thus, F 0 and F 1 are the

coincident and leading network features and β0 and β1 are the corresponding scaling terms

fit in the GLM.

Statistical Tests

We used three statistical tests to evaluate significance of results. We used the sign test for
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paired tests, including comparisons of unit performances in two encoding models and compar-

ing FN permutations. We used the median test to compare distributions for reach-specific,

non-specific and full FNs. We chose the median test because it is conservative and valid

for distributions with different sample sizes and variance. We used the Pearson correlation

to quantify preferred trajectory correlations and to evaluate the correlation between pairs

of features (for example, full kinematics AUC vs average in-weight). For correlations, we

considered |r| < 0.2 to be uncorrelated, |r| in [0.2, 0.5] to be weakly or moderately correlated,

and |r| > 0.5 to be strongly correlated.
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3.5 Supplementary Figures
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Figure 3.S1: MG data and full size FNs. (A-E) Data presentation and legends identical
to Fig. 3.1. (A) Raster plot from MG recording, with preliminary estimates of cortical area
boundaries used to group units. (B) Reaches associated with raster. (C) FNs computed
for MG. (D) Full-size versions of FNs computed for TY. (E) Edge weights (mean ± sem)
versus inter-electrode distance in the computed FNs for TY (left) and MG (right).
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Figure 3.S2: Further results of FNs and the kinematics+reachFN model. (A-B)
The kinematics+reachFN vs full kinematics model, split by cortical area for TY (A) and MG
(B). (C) Scatterplots showing a strong positive correlation between improvement in AUC
from the full kinematics model to the kinematics+reachFN model and average in-weight to
the unit for TY (top) and MG (bottom). (D) Same for FN-driven AUC improvement and the
original performance of the full kinematics model, showing no correlation. (E) Scatterplots
of pairwise preferred trajectory correlation versus average AUC of the unit pair, showing a
very weak positive correlation.

Figure 3.S3: Checks of potential confounds. (A) Scatterplots showing weak negative
correlation between AUC of the full kinematics model and firing rate for TY (left) and
MG (right). (B) No correlation for kinematics+reachFN model versus firing rate. (C) No
correlation for average in-weight versus firing rate. (D) Positive correlation between full
kinematics AUC and signal to noise ratio (SNR) for TY, no correlation for MG. (E) Weak
positive correlation between kinematics+reachFN model and SNR for TY, weak negative
correlation for MG. (F) Weak/no correlations between average in-weight and SNR.
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Figure 3.S4: Additional reach- versus non-specific functional group results. (A)
Distributions of preferred trajectory correlations for pairs of units in the full and non-specific
groups that each had kinematics AUC values greater than the lowest AUC value in the
reach-specific group, compared to the reach-specific group. (B-C) Similar AUC-matched
cumulative distributions of edge weight in reachFN1 and spontaneousFN. (D) Scatterplots
from Fig. 3.3A, displayed with hue designating functional group membership.
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Figure 3.S5: Cortical location of reach- and non-specific units for MG. (A-B)
Same as Fig. 3.6C-D for monkey MG. Channels with black stripes are hypothesized ICMS
results based on estimated boundaries and passive stimulation results. The estimated chan-
nels are based on the location of somatic stimulation results and the estimated cortical region
boundaries derived from those results. These maps are preliminary.
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CHAPTER 4

GENERAL DISCUSSION

The underlying mechanisms of computation in sensorimotor cortex must be both flexible

and robust to support the full repertoire of skilled motor behavior available to humans and

non-human primates. To understand the richness of these mechanisms, it is important to

study motor behavior in the most natural context possible. Furthermore, single-unit activity

should be examined in relation to movement and in the context of population activity in an

interacting network. In this work, I demonstrate that accurately capturing naturalistic mo-

tor behavior - specifically dynamic forelimb movements during foraging and prey-capture - is

both critical and feasible. I leverage natural forelimb movements and pairwise precise spike

time structure (measured using confluent mutual information and represented as a functional

network) in marmoset sensorimotor cortex to develop a network encoding model that links

single-unit spiking activity with kinematic tuning properties and functional network inter-

actions. I use this model to investigate the computational mechanisms that generate varied

and naturalistic motor behavior.

I demonstrate in Chapter 2 that computer vision tools (specifically DLC+Anipose)1,2

track 3D pose with accuracy comparable to marker-based tracking. This is crucial for study-

ing motor behavior of the common marmoset because they are less amenable to long, repet-

itive training and recording sessions in a constrained setting but can be engaged by other

methods; in fact, prior work in our lab has demonstrated that marmosets will complete hun-

dreds of reaches if allowed to enter the behavioral apparatus voluntarily to participate in a for-

aging or prey-capture task.3 I characterize the effect of parameter choices on DLC+Anipose

accuracy and identify a range of parameter value choices to minimize error and maximize the

1. Karashchuk et al., “Anipose: A toolkit for robust markerless 3D pose estimation”.

2. Mathis et al., “DeepLabCut: markerless pose estimation of user-defined body parts with deep learning”.

3. Walker et al., “A platform for semiautomated voluntary training of common marmosets for behavioral neuroscience”.
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number of well-tracked frames. I use the optimal parameter set in Chapter 3 to accurately

estimate pose during prey-capture, thereby providing the complex kinematics necessary for

our trajectory encoding model.

In Chapter 3, I develop an encoding model to predict single-unit spiking activity in 10ms

windows from a temporally-extensive velocity trajectory of the wrist, average position dur-

ing the trajectory, and network features derived from the spiking activity of source units

passed through the functional network. I show that the trajectory tuning model extends

to more naturalistic movements and explains neural activity better than a simpler model.

Additionally, the trajectory-based encoding model without any direct mathematical depen-

dence on the FN links single-unit activity to kinematics most accurately for units that are

strongly interconnected within the network. I show that the structure of the functional

group of source units is informative of spike activity in the target unit, and that the infor-

mation is focused in the 15-40% of strongest connections. Finally, I identify a reach-specific

functional group for which the functional connectivity is reorganized during prey-capture.

This reach-specific functional group is strongly interconnected and comprises units tightly

linked to kinematics with strong, positively correlated preferred trajectories. This functional

group exhibits distinct interaction patterns during prey capture and spontaneous behav-

ior, while the non-specific group interacts similarly across the spectrum of spontaneous and

goal-directed behavior. The reorganization or static nature of these sub-populations in pri-

mate sensorimotor cortex may have implications for understanding the generation of smooth

neural trajectories during movement production.

4.1 Analysis of Neuron Properties in the Network

This work demonstrates the utility of a comprehensive encoding model incorporating kine-

matic and network features – I leverage dynamic, variable forelimb reaching movements and

pairwise functional interactions on a fine timescale to identity important structural features
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of the neural circuit and the role these features play in moment-to-moment spiking activity.

However, I only scratch the surface of the information available in the functional network.

Every unit in the FN can be characterized according to many properties - these include

cortical area, degree of kinematic tuning, laminar depth (if recorded with a different array

technology, discussed below), and neuron type (narrow-spiking, wide-spiking or multi-unit

activity).

I address the cortical area of units tangentially in Chapter 3. Units strongly tuned to

kinematics are distributed across sensorimotor areas, and for one monkey the reach-specific

functional group is preferentially located in M1 and in 3a near the boundary with M1.

Further analysis may provide insight into the structure of functional interactions within and

across cortical areas. I plan to train and compare prediction performance of encoding models

using network features computed from exclusively intra- or inter-area connections, then probe

the importance of network topology as in Fig. 3.4. Additionally, I will examine relationships

between cortical area, functional edge weights, and pairwise preferred trajectory correlations

to potentially add context to the results presented in Chapter 3. Finally, work by Dann et al.4

shows that modularity in the functional network links large groups of interconnected units in

a single cortical area to smaller groups in other areas, suggesting a mechanism for information

flow between areas. It may be that members of the reach-specific functional group described

in this work, which are tightly coupled by preferred trajectory correlations and strong edge

weights, participate in reach-specific modules to facilitate inter-area communication.

I show in Chapter 3 that the degree to which a unit is tuned to kinematics can be partially

explained by the strength of functional inputs from the network. Furthermore, units in the

reach-specific functional group are more strongly tuned to kinematics than non-specific units.

This suggests strongly tuned units are free to reorganize for generation of specific movements,

while weakly tuned and untuned units, which tend to interact similarly across the range of

4. Dann et al., “Uniting functional network topology and oscillations in the fronto-parietal single unit network of behaving
primates”.

81



behavior studied here, may contribute to maintenance of the neural state or to smooth

transitions between states. The finding that strongly tuned units tend to be more strongly

connected within the circuit disagrees with results in visual cortex showing that untuned units

occupy central positions in the topology and act as crucial hubs for propagating information

through the network.5 It is plausible that untuned neurons play distinct roles in sensorimotor

and visual cortex. These areas perform different computations, and areas or behaviors with

different computational constraints exhibit distinct population dynamics.6,7 On the other

hand, a systematic examination of tuned and untuned sub-populations within the FN and

their impact on prediction of target unit activity may reveal similarities between visual and

sensorimotor cortex that are not yet apparent.

Similarly, narrow-spiking (NS) and wide-spiking (WS) units may play different roles in the

generation of complex kinematics and contribute differently within the functional network.

Using neuron classifications estimated by the waveform analysis described in Snyder et al.,8

I have found in preliminary analyses of TY data (Chapter 3) that NS (putative inhibitory)

neurons seem to be over-represented in the set of units that were best predicted by the

full kinematics model and the kinematics+reachFN model (Fig. 4.1A), and in the reach-

specific functional group (Fig. 4.1B). However, the distribution of AUC values was not

significantly different between the NS and WS (putative excitatory) populations in either

the full kinematics or kinematics+reachFN model (Fig. 4.1C). I have yet to investigate

whether NS neurons are significantly over-represented in the reach-specific functional group

or whether they exhibit differences in FN structure. I have also not ruled out the possibility

that these results are confounded by significantly higher waveform signal-to-noise ratios for

NS neurons (Fig. 4.1D). To test for structure in the tuning properties of each class in a more

5. Levy et al., “Network Analysis of Murine Cortical Dynamics Implicates Untuned Neurons in Visual Stimulus Coding”.

6. Lara et al., “Different population dynamics in the supplementary motor area and motor cortex during reaching”.

7. Suresh et al., “Neural population dynamics in motor cortex are different for reach and grasp”.

8. Snyder et al., “Dynamics of excitatory and inhibitory networks are differentially altered by selective attention”.
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nuanced fashion, we could examine the preferred trajectory correlations between NS-NS,

NS-WS, and WS-WS pairs. I hypothesize that NS-WS pairs will contain a greater degree of

strong anti-correlations than expected by chance, particularly for pairs on nearby channels.

This would be consistent with putative inhibitory-excitatory interactions, but may not bear

out because we have no way of measuring direct synaptic connectivity and because our

recordings contain an extremely sparse sample of inhibitory-excitatory interactions. Then

we could investigate the role of each connection type in the functional network by permuting

Figure 4.1: Looking at narrow-spiking and wide-spiking neurons. (A) Recreation
of Fig. 3.3A with unit hue representing neuron classification. (B) Recreation of Fig 3.5A.
(C) Cumulative distributions of full kinematics (top) and kinematics and reachFN (bottom)
AUC values, split by neuron classification. Significant differences indicated by * (p < 0.05).
(D) Cumulative distribution of waveform signal-to-noise ratios.

FN topology (as in Fig. 3.4) according to NS-NS, NS-WS, and WS-WS connectivity rather

than by the strongest edges. In this analysis, it is important to permute within functional
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groups of matched edge weight distributions to control for the demonstrated relationship

between edge weight and predictive power of both the full kinematics model and the kine-

matics+reachFN model.

The methods and analyses presented in Chapter 3 are perfectly suited for examining the

way in which functional interactions are structured by cortical depth. Given that excitatory

pathways from L2/3 to L5 contain the strongest and most stable projections between lamina

in M1,9 I hypothesize that L5 neurons would be more reliant on inputs from L2/3 than other

network subsets to explain their activity. We also know that sensory-related cortical and

thalamic inputs project primarily to L2/3 of M1, while L5 of motor cortex contains the vast

majority of pyramidal tract neurons projecting to the spinal cord.10,11 I hypothesize that

L2/3 units would be predicted best by models using trajectories that extend further back in

time, thereby encoding kinematics leading the neural response. In contrast, I expect preferred

trajectories of L5 neurons (from which all data in Chapter 3 was recorded) to extend further

into the future to encode upcoming motor output (as suggested by Fig. 3.2A). However, this

could be difficult to determine conclusively; I originally hypothesized that I would observe

similar differences in the preferred trajectories of motor versus sensory units in Chapter 3 and

was unable to identify any conclusive differences in the lead/lag set of preferred trajectories

across cortical areas. Investigations into laminar structure in M1 could be conducted in the

future by implanting an N-Form array (Modular Bionics) instead of the Utah array used in

Chapter 3. The N-Form array allows for custom placement of multiple electrode sites along

the depth of each shank, and we have an array ready for implantation that would record

from approximately three depths in L2/3 and two depths in L5 on each of 16 shanks.

9. Hooks et al., “Laminar Analysis of Excitatory Local Circuits in Vibrissal Motor and Sensory Cortical Areas”.

10. Ibid.

11. Shinoda & Kakei, “Distribution of terminals of thalamocortical fibers originating from the ventrolateral nucleus of the cat
thalamus”.
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4.2 Investigate temporal FNs

In Chapter 3, we computed two functional networks from two sets of reaches across the entire

session (reachFNs) and clearly demonstrated that they captured interactions and structure

that were not present in the FN computed from spontaneous behavior (spontaneousFN).

However, Sundiang et al.12 showed that temporal FNs capture cortical dynamics in finer

detail and can be used to generate insights into the timescale at which motor cortex processes

the requirements of individual trials and reorganizes its interactions to produce different

movements. In that study, the authors computed the temporal FN by computing confluent

mutual information from spiking activity in 200-ms windows centered on each consecutive

10-ms bin. I will modify this method to compute an FN associated with each trajectory

sample, such that for the [-100, +300] ms trajectories studied in depth in Chapter 3 the FN

window would be 400-ms in duration and sampled at 30-ms intervals. It would be interesting

to investigate systematic changes in the structure of the temporal FN and how such changes

relate to details of the kinematics, particularly for the reach-specific functional group.

To do so, we could start by training a kinematics+temporalFN model that computes

network features using the sample-specific FN in place of reachFNs. I expect this model

would predict unit activity more accurately because of the fine-grained information available

in the temporal FN. Next, we could perform a similar generalization experiment similar to

analysis that revealed the reach-specific functional group (see Fig. 3.5), training on network

features from the spontaneousFN or reachFNs and testing on the kinematics+temporalFN

model. I expect to find that the reach-specific functional group is conserved in this analysis.

I also expect to find an additional functional group that is particularly dependent on the

information captured only by the temporalFN. We could then focus on this sample-specific

functional group and the reach-specific group to investigate reorganization of the FN across

time. It would be particularly intriguing to find that the sample-specific and reach-specific

12. Sundiang et al., “Dynamic structure of motor cortical neuron coactivity carries behaviorally relevant information”.
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functional groups reorganize in a way that is linked to details of the movement – perhaps

to the trajectory sample’s tortuosity or mean speed. Structural details may be revealed by

first order analysis of something like in-weight, or may require more nuanced methods such

as the graph alignment score or UMAP-based methods described by Sundiang et al.13

4.3 Leveraging the details of spontaneous behavior

As demonstrated in Figs. 3.5 and 3.6, functional interactions measured during spontaneous

behavior are sufficient to predict activity during reaching for many, but not all, units in the

population. In Chapter 3, we considered all moments that the marmoset was not directly

engaged in the prey-capture task to belong to the broad class of spontaneous behavior. How-

ever, such behavior is highly variable and includes but is not limited to ambulating, leaping,

climbing, hanging, grooming of self, grooming of partner in the enclosure, and awake restful-

ness. Although we did not attempt to classify spontaneous behavior into these categories or

to quantify movement at all in Chapter 3, there is a wealth of information in these behaviors

that could add nuance to our findings. Behaviors that require coordinated forelimb move-

ments such as climbing and partner grooming may exhibit functional network structure that

is more similar to the reachFNs. On the other hand, activities such as hanging, self-grooming

and resting may exhibit even larger differences in the FN than the spontaneousFN presented

here. An investigation of functional groups underlying each of these varied behaviors would

be valuable. Additionally, understanding the structure of interactions during each behavior

would provide context to the reach-specific functional group and non-specific units. It may

be that a different functional group is engaged preferentially for each class of behavior; al-

ternatively, as we argue in Chapter 3, structured interactions within the non-specific group

might be conserved across behaviors while the reach-specific group reorganizes based on the

demands of each behavior.

13. Sundiang et al., “Dynamic structure of motor cortical neuron coactivity carries behaviorally relevant information”.
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4.4 Single-unit activity and functional interactions within the

framework of population dynamics

It is difficult to place single-unit tuning properties in the context of low-dimensional popula-

tion dynamics. However, our finding that a reach-specific functional group located primarily

in forelimb M1 and 3a reorganizes to produce dynamic forelimb movements during prey

capture suggests intriguing possibilities for contextualizing single-unit properties within the

framework of population dynamics. In Chapter 3, we speculate that the non-specific units

that interacted consistently from spontaneous behavior to reaching could contribute to the

generation of low-dimensional and rotational dynamics that evolve in a predictable fashion

with low tangling and govern activity in the output-null subspace.14,15,16,17 The reach-

specific functional group, on the other hand, may govern dimensions of the neural trajectory

that can be directly read out by downstream targets and thereby contribute preferentially to

the output-potent subspace. Testing this directly would require the experiment conducted

in Chapter 3 to be repeated with the addition of electromyographic recordings from mar-

moset forelimb muscles. Alternatively, our lab and others have frequently recorded muscle

activity in behaving macaque monkeys. To my knowledge, however, no studies have reported

unrestrained and naturalistic reaching behavior, richly varied spontaneous behavior, and si-

multaneous neural recordings together in macaques. Fortunately, it is becoming feasible to

record rich, unconstrained behavior in macaques,18 which in turn provides the opportunity

to apply our methods to macaque experiments with the addition of EMG recordings.

Alternatively, emerging work demonstrates that neural dynamics occur on a curved mani-

fold such that frequency of local linear rotational dynamics is conserved while the orientation

14. Churchland et al., “Neural population dynamics during reaching”.

15. Elsayed et al., “Reorganization between preparatory and movement population responses in motor cortex”.

16. Kaufman et al., “Cortical activity in the null space: Permitting preparation without movement”.

17. Russo et al., “Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response”.

18. Bala et al., “Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio”.
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of the rotational plane depends on the location of the fixed point on that manifold.19 In this

study, the location of the fixed point was linked to reach kinematics on single trials. It is

possible that the reach-specific functional group determines the location of the fixed point

in neural space, around which the non-specific units produce rotational neural dynamics to

generate movement. Since the reach-specific group was significantly more tuned to veloc-

ity and average position in Chapter 3, an experiment showing this to be true would be a

compelling reconciliation between classical tuning and dynamics.

There remain substantial barriers to understanding single-unit activity in the context of

broader population dynamics. There are a limited number of labs in the world that can

record single unit electrophysiology in non-human primates along with both spontaneous

behavior and unrestrained, goal-directed forelimb movements – either with marmosets or

macaques. Even as this becomes a possibility in our lab and others thanks to wireless neural

recording devices and computer vision pose estimation tools, wrangling the immense datasets

resulting from such experiments is daunting. Furthermore, many of the computational tools

used to study population dynamics depend on trial-averaging, which can be difficult or

impossible in the study of natural behavior. However, the work I present here - along with

work by Sundiang et al.20 – demonstrates that pairwise functional interactions computed

on a fine timescale provide a window into the neural dynamics in primate sensorimotor

cortex underlying natural forelimb movements. By combining these methods with dynamical

systems methods that can be applied to single trials such as the LDR-model described by

Sabatini and Kaufman,21 it may be possible to contextualize single-unit activity and tuning

properties within a dynamical systems framework.

19. Sabatini & Kaufman, “Reach-dependent reorientation of rotational dynamics in motor cortex”.

20. Sundiang et al., “Dynamic structure of motor cortical neuron coactivity carries behaviorally relevant information”.

21. Sabatini & Kaufman, “Reach-dependent reorientation of rotational dynamics in motor cortex”.
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