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ABSTRACT

Dopaminergic activity in the hippocampus modulates synaptic plasticity, alters place cell

activity, and affects hippocampal dependent learning and memory processes. Traditionally

these effects were attributed to the release of dopamine from sparse projections originating in

the ventral tegmental area (VTA) and extending to the hippocampus. However, the role of

VTA inputs in dopaminergic modulation of the hippocampus has recently been brought into

question, as denser inputs from the locus coeruleus (LC) have been shown to release dopamine

in the dorsal hippocampus, and impact hippocampal dependent learning and memory. To

dissect the impacts of both VTA and LC dopaminergic circuits on hippocampal activity and

memory, we functionally imaged the activity of VTA and LC axons in dorsal CA1 (dCA1).

During spatial navigation, VTA inputs exhibited a ramping to reward signal that depended

on the animals’ reward expectation. Inhibiting VTA dopaminergic neurons largely repli-

cated the effects of reward expectation extinction: reducing overrepresentation of rewarded

locations, inducing place field remapping, and decreasing place field trial-to-trial reliability.

We conclude that reward expectation restructures CA1 place cells and determines map re-

liability through the modulation of dopaminergic VTA-CA1 reward-proximity signals. In

contrast, LC inputs were devoid of the reward-proximity signal observed in VTA axons and

instead exhibited velocity correlated activity and increases in activity prior to motion onset.

Interestingly, a marked divergence emerged in novel VR environments. LC axon activity

sharply and persistently increased for over a minute, while the previously observed VTA

axon reward-proximity signal disappeared. We conclude that LC inputs to dCA1 encode

the animals’ brain state, as changes in behavior and environmental novelty are associated

with heightened arousal. This observation further strengthens the roles of LC neurons in

influencing brain states and in novelty encoding in the hippocampus. Together, these find-

ings demonstrate VTA and LC inputs encode unique information, likely contributing to

differential modulation of hippocampal activity during behavior and learning.
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CHAPTER 1

INTRODUCTION

Memory is an essential function of the brain. In order to survive, animals must be able to

not only acquire and store information from previous experiences, but also rapidly access

relevant memories and update them as necessary. Without this ability, animals would be

unable to learn and identify potential hazards, remember and locate food sources, navigate

complex social interactions, and adapt to ever changing environments. In fact, memory

is an integral component of nearly all other cognitive functions, shaping how the world is

perceived and interacted with. In humans, memories are a central aspect of identity. They

shape our relationships, our personality, and how we communicate and interact with the

world around us. Understanding how memories are formed, updated, and recalled is critical

to our understanding how brains function and has been a major goal of neuroscientists for

decades.

Memory can be divided into two categories: implicit(non-declarative) and explicit (declar-

ative) memories. Implicit memories refer to memories that do not require conscious aware-

ness and can only be demonstrated through actions. These memories include procedural

memories, or the memories that allow individuals to get better at motor tasks. While indi-

viduals are not aware of these memories, they explain how people improve at riding a bike

or playing the piano with practice. These memories depend heavily on function of the basal

ganglia (Foerde and Shohamy 2011) and cerebellum (H 2008) as dysfunction of either of

these structures leads to deficits in procedural memories. The other type of implicit memory

is conditioning, involving the pairing of an unconditioned stimulus with a conditioned stim-

ulus to evoke a conditioned response. The classic example of conditioning is Pavlov’s dog

where dogs were trained to salivate at the ringing of a bell by pairing the bell with a reward.

Depending on the response elicited, these memories can involve function of the amygdala

and cerebellum (Squire 2004).
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In contrast, declarative memories refer to memories that can be consciously recalled.

These memories are most often thought of when referring to memory and can be further

divided into semantic and episodic memories. Semantic memories are memories of facts

and concepts that can be recalled without knowing when the information was obtained,

while episodic memories are memories of experienced events that include information what

occurred, when and where it occurred, as well as the emotions associated to the event. Both

types of explicit memories depend on the function of the hippocampus. However, the precise

circuit mechanisms underlying the storage, updating, and recall of explicit memories are not

fully understood and are the focus of this thesis.

1.1 The identification of the hippocampus as a key component of

episodic memory

The idea that the hippocampus plays a vital role in the formation of new declarative mem-

ories largely came about following the studies of patient H.M. (Henry Molaison). After

suffering from epilepsy, patient H.M. underwent bilateral removal of parts of his medial tem-

poral lobes including both hippocampi (Scoville and Milner 1957). While this solved his

epilepsy, it caused some unforeseen complications. He was unable to form new declarative

memories or recall events that occurred shortly before the surgery. However, his declarative

memories that existed well before his surgery were undisturbed. These observations inspired

the idea that the hippocampus is necessary for the formation of new declarative memories

and recall of recently formed memories. Over time these memories are consolidated, and their

recall then becomes independent of the hippocampus. Additionally, his procedural memories

were unaffected eventually leading to our understanding of multiple memory systems that

exist in the brain (Cohen and Squire 1980). Although H.M.’s lesions extended beyond the

hippocampus (Corkin et al. 1997) and parts of his hippocampus remained intact (Annese

et al. 2014), many behavioral studies of humans and animals with hippocampal lesions have
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further demonstrated the role of the hippocampus in declarative memory.

At the same time as investigations into the functional role of the hippocampus, the first

recordings of hippocampal neuron activity in rodents were being conducted. These initial

recordings revealed the presence of neurons who are selectively active at specific places within

a given environment, earning these cells the title of place cells (J. O’Keefe and Dostrovsky

1971). Together, the firing activity of hippocampal place cells was theorized to serve as a cog-

nitive map, or an internal representation of an external environment, and allow an animal to

identify its location in an environment (John O’Keefe and Nadel 1978). Indeed, it is possible

to reconstruct the trajectory of an animal using its hippocampal activity patterns (M. Wilson

and B. McNaughton 1994; Krishnan et al. 2022) supporting the role of the hippocampus in

spatial navigation. There is now a growing body of evidence that this activity is used beyond

spatial navigation and serves as a representation of environmental information for episodic

memories. For example, sequences of place cell activity that occur during navigation are

repeated during rest, and disruption of these replay events impairs spatial memory (Carr,

Jadhav, and Loren M Frank 2011; Foster and Matthew A. Wilson 2006; Sadowski, Jones,

and Jack R. Mellor 2016; Ven et al. 2016; M. Wilson and B. McNaughton 1994). Addition-

ally, recent studies have shown the congitive map includes other non-spatial information, as

place cells have been shown to be modulated by time (Eichenbaum 2017), color (Leutgeb

2005), odor (Save, Nerad, and Bruno Poucet 2000; S. Zhang and Denise Manahan-Vaughan

2015), novelty(Larkin 2014), and reward (Hollup et al. 2001; Kobayashi et al. 2003; Dupret

et al. 2010; McKenzie et al. 2013; Mizumori and Tryon 2015; Zaremba et al. 2017; Gau-

thier and Tank 2018). The encoding of these various contextual features of experience by

cognitive maps strongly indicates they are a representation of episodic memory, encoding

general experiences in space in time. Indeed, non spatial cognitive maps have been observed

in hippocampal activity with neurons constructing maps of abstract value space (Knudsen

and Wallis 2021) and time (Eichenbaum 2017). Together, these findings support the role of
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hippocampal place cells in both spatial navigation and episodic memory.

1.2 The anatomy of the hippocampus

The first description of the hippocampus was published in 1587 in the 1st issue of the

Anatomicarum Observationum Liber (Book of Anatomical Observations) by Italian anatomist,

Giulio Cesare Aranzio (Arantius) (Engelhardt 2016). This curved structure deep in the tem-

poral lobe, resembled a seahorse to Arantius, earning it the name hippocampus, or seahorse

in Latin. While its anatomical boundaries were updated and redefined, the name persisted,

and the hippocampus is used today to describe this curved structure found deep in the medial

temporal lobe. Anatomical studies have since demonstrated that this archicortical structure

is conserved across may taxonomic classes including mammals, birds, and reptiles (Allen and

Fortin 2013). In mammals, the hippocampus is easily identifiable due to the presence of a

single, densely packed pyramidal neuron layer (stratum pyramidalis), a basal dendrite layer

(stratum oriens), and an apical dendrite layer (stratum radiatum), rather than six sparser

layers in many parts of the cortex. The hippocampus can then be divided into two regions;

the dentate gyrus (DG), and cornus ammonis (CA), which itself can be divided into CA1,

CA2 and CA3. In rodents, these two hippocampal regions from interlocking U’s with the

dorsal U composing the three subregions of the cornus ammonis. Unlike the neocortex, infor-

mation in the hippocampus largely flows in one direction through a trisynaptic circuit. The

entorhinal cortex, which receives multimodal information from many cortical areas, is the

main input to the hippocampus through the perforant path which largely synapses onto DG

neurons. DG neurons project onto CA3/CA2 neurons through mossy fibers, which in turn

project onto CA1 neurons through Schaffer collaterals. CA1 neurons then project out of the

hippocampus into the subiculum and parahippocampal areas. Each of these four subregions

has distinct anatomical and physiological properties which have been theorized and shown

to support the hippocampus’s role in episodic memory formation.
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How does the hippocampus the structure and physiology of the different hippocampal

subregions support its role in episodic memory formation? To understand this, it is helpful

to explain the role of the hippocampus in terms of the Hippocampal Index Theory (Teyler

and DiScenna 1986). In this theory, the hippocampus does not serve as the site of memory

storage but rather plays a role like that of a reference card at a library. Just as a reference

card does not provide the detailed information in a book but provides the means to quickly

locate and obtain the correct book, the hippocampus is theorized to serve as a means of

storing information about where a memory is located and how to retrieve said memory.

Therefore, during recall of a memory, the hippocampus would provide a means to reactivate

the correct pattern of cortical activity. Overtime, these memories are consolidated, and the

hippocampus is no longer needed recall, just as a reference card would no longer be needed

after a book has been found multiple times.

The hippocampus’s connections with neocortical areas supports this idea. It receives

highly processed information from all sensory modalities through its main excitatory inputs

from the entorhinal cortex. These connections with neocortical areas provide the hippocam-

pus with information about the cortical activity patterns that occurred during learning that

could then be stored in the hippocampus . Additionally, the hippocampus sends its major

outputs to the subiculum and then out to many cortical areas. Therefore, during recall

the hippocampus is perfectly situated to reactivate the cortical activity patterns necessary

for recall. These reciprocal connections with cortical areas provide the hippocampus with

information about the cortical activity patterns that occur during learning and a way to

reactivate those patterns during recall.

The hippocampal index theory depends on the idea that the specific firing patterns of

neurons that occur during learning can reliably be reactivated during recall. This idea was

first theorized by Donald Hebb in 1949. Simplified, the Hebbian theory is the idea that “cells

that fire together, wire together”, and predicts the presence of cellular mechanisms that allow
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for the strengthening of the connections between two neurons. More specifically, it states

that when the firing of one neuron reliably precedes the firing of another neuron, changes

will occur in the connections, or synapses, between these two neurons allowing the activity

of the first neuron to evoke activity more efficiently in the downstream neuron. Indeed, it

has since been discovered that there is a wide range of cellular mechanisms devoted to the

strengthening and weakening of synapses. These mechanisms extend beyond the plasticity

proposed by Hebb, and are considered to serve as the cellular basis of learning and memory

and considerable evidence supports this idea (Martin, Grimwood, and R. G. Morris 2000;

Citri and Malenka 2008; Magee and Grienberger 2020).

However, not all events are remembered. Animals must be able to ignore irrelevant stimuli

but also reliably form memories from single experiences with rewarding, or life-threatening

stimuli. It has been theorized that neuromodulators can serve as filter, controlling which

events are remembered (Dayan 2012; Palacios-Filardo and Jack R Mellor 2019). Rather

than acting directly on ion channels to excite or inhibit neurons, neuromodulators act on

metabotropic receptors which utilize signaling cascades to modulate neurons in a number of

ways. They can cause changes in cell excitability, synaptic efficacy, and even promote the

removal or formation of synapses, thus providing neuromodulators with a means to gate when

memories are formed. The hippocampus receives neuromodulatory inputs from several brain

areas but the strongest are seratonergic inputs from median raphe nucleus, cholinergic inputs

from medial septal nucleus/diagonal band of Broca, dopaminergic inputs from the ventral

tegmental area (VTA), and noradrenergic inputs from the locus coeruleus (LC) (Palacios-

Filardo and Jack R Mellor 2019). Each of these neurotransmitters has been shown to impact

hippocampal synaptic plasticity and hippocampal dependent learning in memory. However,

dopamine activity in the hippocampus has been shown to play many roles in hippocampal

dependent learning including spatial learning (Silva et al. 2012; McNamara et al. 2014;

Lisman and Grace 2005; Edelmann and Lessmann 2018), novelty encoding (Chowdhury et
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al. 2022; Wagatsuma et al. 2018; Kempadoo et al. 2016), aversive learning (Tsetsenis et al.

2019), and reward learning (N. Hansen and D. Manahan-Vaughan 2014; Assar et al. 2016;

Azevedo et al. 2019). Additionally, the main source of dopamine in the dorsal hippocampus

has been brought into question (Kempadoo et al. 2016; Takeuchi et al. 2016; Duszkiewicz

et al. 2019). Therefore, my thesis focuses on the role of dopaminergic inputs on hippocampal

function.

1.3 Dopaminergic neuromodulation of the hippocampus

There are dopamine receptor subtypes that can be divided into D1 like receptors (D1 and

D5 receptors) due to their positive effect on adenylate cyclase activity (AC) and D2 like (D2,

D3 and D4 receptors) receptors that downregulate AC activity. Therefore, these receptors

play opposing roles in the regulation of AC activity, impacting cAMP levels in the cytosol

and therefore effecting Ca2+ which is involved in many types of synaptic plasticity (Jean-

Martin Beaulieu and Raul R. Gainetdinov 2011). Throughout the dorsal hippocampus,

D1R are expressed most strongly in granule cells of the DG (Gangarossa et al. 2012; Wei

et al. 2018) but are also found in the stratum oriens and stratum radiatum of CA3-CA1

where they are found on both pyramidal neurons and interneurons (Yao, Spealman, and

J. Zhang 2008). D2Rs are mainly expressed in mossy cells in the dorsal DG (Wei et al.

2018) but have also been reported in the s.l.m. of CA3-CA1 (C Charuchinda et al. 1987).

In the ventral hippocampus, D1R and D2Rs are more strongly expressed in CA1 and the

subiculum (Puighermanal et al. 2017; Wei et al. 2018). The variable expression across the

longtitudinal axis and hippocampal subregions hints towards different roles of dopamine

across these regions.

Most of the research investigating dopamine’s actions in the hippocampus has investi-

gated its impact through D1Rs. However, there is evidence indicating that D2Rs modulate

LTD (Z. Chen et al. 1995; Rocchetti et al. 2015), play a role in food and drug seeking (Assar
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et al. 2016; Azevedo et al. 2019), and in the acquisition of conditioned place preferences

(Assar et al. 2016) highlight a distinct role of these receptors. The focus on D1Rs is likely

because have been shown to play a significant role in the regulation of synaptic plasticity

and hippocampus dependent memory (N. Hansen and D. Manahan-Vaughan 2014; Huang

and Kandel n.d.)(Hansen 2012, Hansen 2014, Kandel 1994). In slice preps, activity of D1Rs

has been shown to modulate early and late LTP and LTD in schaffer collaterals (Huang and

Kandel n.d.; Lisman and Grace 2005; N. Hansen and D. Manahan-Vaughan 2014; Z. Chen

et al. 1995), mossy fibers (Hagena and Denise Manahan-Vaughan 2013), and perforant path

(Kusuki et al. 1997; Wiescholleck and Denise Manahan-Vaughan 2014). DA has been shown

to play a role in spike timing-dependent plasticity in Schaffer collaterals (J.-C. Zhang, Lau,

and Bi 2009; Edelmann and Lessmann 2011; Yang and Dani 2014), a physiologically relevant

form of synaptic plasticity thought to serve as the neural correlates of memory formation.

The wide range and potentially contrasting roles of dopamine seen highlight importance of

experiments describing the activity of DA inputs and therefore DA concentrations during

spatial navigation and learning tasks, as different concentrations of DA could lead to con-

trasting effects on learning and memory due to the different binding affinities of DA receptors

(Cumming 2011).

In-vivo activity of D1Rs has been shown to influence many hippocampal dependent forms

of learning and memory. D1Rs play an important role in spatial memory formation, as their

activity during and after encoding significantly impacts memory retention and retrieval in

many different spatial learning tasks (O’Carroll et al. 2006; Silva et al. 2012; Xing et al.

2010; Granado et al. 2008). Additionally, inhibition of D1Rs leads to impairments in the

acquisition and reinstatement of morphine (Assar et al. 2016), cocaine (Burgdorf et al. 2017)

and nicotine-induced (Tang and Dani 2009) conditioned place preference. In contextual

fear conditioning experiments, D1Rs play a role in the acquisition and extinction but not

recall of contextual fear (Tsetsenis et al. 2019). Importantly, D1Rs have been shown to
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play an important role in encoding novelty in the hippocampus. Dopamine is released in

the hippocampus during exposure to spatial novelty, facilitates LTP and influence memory

formation (S. Li et al. 2003; Liu et al. 2009; Moncada and Viola 2007). During exposure

to spatial environments, the stable formation of place cells has been shown to be dependent

on cellular mechanism underlying LTP (Mark E.J. Sheffield, Adoff, and Daniel A. Dombeck

2017) and D1Rs (Wagatsuma et al. 2018) further supporting the role of dopamine in spatial

memory formation. Although there is the potential for different effects of dopamine between

the ventral and dorsal hippocampus, I will focus on dopaminergic inputs to the dorsal hip-

pocampus for a couple of reasons. First, much more is known about the role of the dorsal

hippocampus in episodic learning and memory largely due to the difficulty of recording from

the ventral hippocampus. Therefore, we will be able to connect the function of dopaminergic

inputs to the known dynamics of the dorsal hippocampus. Secondly, there is controversy

over the source of the dopamine in the dorsal hippocampus, highlighting a need for further

investigations of dopaminergic inputs to these regions.

1.4 Ventral tegmental area inputs to the dorsal hippoacmpus

Traditionally, dopaminergic inputs from the ventral tegmental area (VTA) were thought to

serve as the main source of dopamine in the dorsal hippocampus. This midbrain region is an

important part of the brains reward circuitry and it thought to provide a reward prediction

error to many parts of the brain (Schultz 1998). Dopaminergic neurons in the VTA will

respond strongly to unexpected rewards, but once an association has been learned between a

cue a reward, they will be active at the cue but not when the reward is delivered. However,

if the reward is omitted there will be a reduction in VTA neurons activity at the time

when the reward is delivered. These findings supported the idea that these neurons signal a

reward prediction error, or the difference between the expected value and the actual value of

a given timepoint. Reward prediction errors are an important component of reinforcement
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learning models (Sutton and Barto 1981; Dabney et al. 2020), which attempt to explain

how individuals ought to act to maximize reward. Therefore, VTA DA neurons are thought

to signal when to update the value of a given cue or action, and their projections to the

hippocampus may provide them with a way to gate when the value representations of an

environment or cue should be updated. Recent experiments demonstrate a wide degree

of heterogeneity in the activity of VTA DA neurons (Engelhard et al. 2019) while others

highlight a disconnect between VTA activity and RPE (Kim et al. 2020; Mohebi et al. 2019;

Howe et al. 2013). These findings highlight the importance of careful characterization of

projection specific VTA neuron activity during different behaviors.

Furthermore, some controversy exists regarding the strength of VTA DA projections to

the dorsal hippocampus. VTA DA neurons project strongly to the ventral hippocampus,

however their projections to the dorsal hippocampus are very sparse (Takeuchi et al. 2016;

Wagatsuma et al. 2018; Adeniyi, Shrestha, and Ogundele 2020). While some studies have

reported a near absence in VTA DA projections to the dorsal hippocampus (Takeuchi et

al. 2016; Wagatsuma et al. 2018), others have reported neurons innervating s.o. (Adeyelu

and Ogundele 2023; Rosen, Cheung, and Siegelbaum 2015; McNamara et al. 2014) and

s.r. (McNamara et al. 2014; Rosen, Cheung, and Siegelbaum 2015) of CA1 and CA3. It

is not clear how these axons connect to and release dopamine in the dorsal hippocampus.

They could connect to dendrites, act on presynaptic terminals, or act through bulk volume

transmission of dopamine (Rice and Patel 2015; Borroto-Escuela et al. 2015; Agnati et al.

1995). Additionally, it is now understood that the VTA is composed of a heterogenous

population of GABAergic, glutamatergic and dopaminergic neurons (Adeniyi, Shrestha, and

Ogundele 2020; Han et al. 2020; Morales and Margolis 2017). Recent evidence seems to

suggest that most inputs to the dorsal hippocampus from the VTA are glutamatergic rather

than dopaminergic (Adeniyi, Shrestha, and Ogundele 2020; Adeyelu and Ogundele 2023; Han

et al. 2020) which may explain the contrast between recent findings of VTA DA inputs and
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original tracing studies showing strong VTA innervation of the dorsal hippocampus (Gasbarri

et al. 1994). These glutamatergic inputs innervate all layers of CA1 and the hilus of DG

(Han et al. 2020), impact pyramidal neuron excitability (Adeniyi, Shrestha, and Ogundele

2020; Adeyelu and Ogundele 2023), and influence contextual fear conditioning and opioid

induced place preference (Han et al. 2020). While a picture of VTA projections to the dorsal

hippocampus is being developed, further experiments need to be conducted to characterize

the subregion specific anatomy of these inputs.

Although VTA DA projections to the dorsal hippocampus are sparse, they have been

demonstrated to impact hippocampal function and hippocampal dependent learning and

memory (McNamara et al. 2014; Rosen, Cheung, and Siegelbaum 2015; Mamad et al. 2017).

In vivo optogenetic stimulation of VTA DA inputs to dCA1 during learning increases the

persistence of reward-location associations, increases the stability of CA1 place cells across

days, and increases the rate of sharp wave ripples (SWRs) (McNamara et al. 2014). A recent

study demonstrated that optogenetic suppression of VTA DA neurons evokes place avoid-

ance, and biases place cell activity away from the location of suppression, while optogenetic

stimulation of these inputs can influence place cell activity and shift place fields towards the

stimulated location (Mamad et al. 2017). Together these findings indicate that VTA inputs

to dCA1 can influence learning of reward locations and may influence the overrepresentation

of reward locations by place cells (Gauthier and Tank 2018).

In-vitro Low levels of optogenetic stimulation of VTA DA inputs to dCA1 depressed

Schaffer collateral activity through D4 receptor dependent inhibition by parvalbumin-expressing

interneurons. However, high levels of optogenetic stimulation, increase Schaffer collateral ac-

tivity through a D1 receptor dependent mechanisms (Rosen, Cheung, and Siegelbaum 2015).

These findings suggest that VTA DA neurons can bidirectionally modulate the flow of in-

formation in the hippocampus by serving as a gate between CA3 and CA1. Additionally,

optogenetic stimulation of VTA DA inputs modulates the connectivity between pyramidal

11



neurons and interneurons (Adeyelu and Ogundele 2023; Adeniyi, Shrestha, and Ogundele

2020). It is possible that VTA DA inputs to dCA1 may act through interneurons allow-

ing them to have an outsized effect on hippocampal function . While there is considerable

diversity among interneurons (Booker and Vida 2018), they are largely characterized by

dense local connections that provide strong local inhibition. By modulating a small number

of interneurons, VTA DA inputs could therefore extend an impact onto a wide range of

hippocampal neurons.

1.5 Locus coeruleus inputs to the hippocampus

The effects of VTA DA release in the dorsal hippocampus have been additionally confounded

by the findings that locus coeruleus (LC) inputs also release DA in the dorsal hippocampus

(Kempadoo et al. 2016; Takeuchi et al. 2016). LC neurons are typically thought of as being

noradrenergic. However, DA is in the synthesis pathway of NE, and in norepinergic neurons,

DA is first loaded into vesicles where it is then converted into norepinephrine by dopamine

β-hydroxylase. There is now considerable evidence that this dopamine can be released prior

to being converted and impacts hippocampal dependent learning and memory (Wagatsuma

et al. 2018; Kempadoo et al. 2016; Takeuchi et al. 2016). It has also been shown that most

of the clearance of dopamine in the dorsal hippocampus occurs through norepinephrine

transporters (NET) (Borgkvist et al. 2012). This suggests that NET positive axons from

the LC are present in sites where dopamine is released and may be the source of dopamine

themselves.

The LC sends widespread projections throughout the brain and has a wide range of

behavioral effects. Studies have demonstrated a strong relationship between LC activity and

arousal levels (Aston-Jones and Bloom 1981; McCarley and Hobson 1975), and wakefulness

(Isaac and Berridge 2003), with LC activity being strongly correlated with many arousal

measures including pupil diameter (Reimer et al. 2016). LC neurons are also thought to play
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a role in attention, as LC activity can effect receptive fields of visual cortex neurons (Shulman,

Remington, and McLean 1979), modulate odour discrimination in the olfactory bulb (Bouret

and Sara 2002), frequency tuning in the auditory cortex (Martins and Froemke 2015), and

improve performance in visual tasks (Waterhouse and Navarra 2019). Furthermore, LC

neurons have been shown to play an important role in modulating plasticity and learning

and memory (Eschenko 2018; Yamasaki and Takeuchi 2017). In support of the wide range

of effects of LC activity, recent findings have demonstrated that the LC is not a homogenous

region as once believed (Noei et al. 2022). Instead, it is now believed that the LC is modular,

with neurons in different regions of the LC projecting to separate and distinct brain regions

(Chandler, Gao, and Waterhouse 2014; Kebschull et al. 2016; Uematsu et al. 2017). These

modular regions in the LC likely receive different inputs, allowing them to have different

activity and therefore lead to the different effects of LC inputs to different brain regions

(Noei et al. 2022). These findings highlight a need for projection specific characterization of

LC neuron activity during behavior.

LC neurons appear to innervate the dorsal hippocampus more densely than VTA DA

neurons, with LC axons found in all layers of CA1, CA3, and DG (Kempadoo et al. 2016;

Takeuchi et al. 2016; Wagatsuma et al. 2018) with the densest projections being found in

the DG and stratum lucidum of CA3 (Loy et al. 1980). These inputs were thought to act

through release of norepinephrine which binds to alpha-adrenergic receptors to regulate neu-

ronal excitability (Segal, Markram, and Richter-Levin 1991) and beta-adrenergic receptors

to regulate synaptic plasticity. B-adrenergic receptors have been reported to modulate per-

forant path (Edison and Harley 2012), mossy fiber (Hagena and Denise Manahan-Vaughan

2012), and schaffer collaterals synapses (Goh and Denise Manahan-Vaughan 2013). Nore-

pinephrine activity in the hippocampus is involved in the formation of spatial and contextual

fear memories (J. Ji, X. Zhang, and B. Li 2003; J.-Z. Ji, X.-H. Zhang, and B.-M. Li 2003),

short and long term memory consolidation (Gibbs and Summers 2002), memory retrieval
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(Thomas 2015), and extinction learning (André, Wolf, and Denise Manahan-Vaughan 2015).

Because LC neurons are activated by arousal and novelty and norepinephrine activity mod-

ulates hippocampal LTP and hippocampal dependent learning and memory, it has been

proposed that these inputs can provide a signal for when novel or salient events should be

encoded (Hagena, Niels Hansen, and Denise Manahan-Vaughan 2016). In support of this

idea, it has been demonstrated that optogenetic activation of LC inputs to the dorsal hip-

pocampus promotes spatial learning (Kempadoo et al. 2016), drive novelty induced memory

enhancement (Takeuchi et al. 2016), potentiates schaffer collateral synapses (Takeuchi et al.

2016), and drives overrepresentation of newly rewarded locations (Kaufman, Geiller, and

Losonczy 2020). Additionally, inhibition of these inputs impairs learning of novel contexts

(Wagatsuma et al. 2018), impairs memory linking (Chowdhury et al. 2022), and reduces the

stability of place fields across days (Wagatsuma et al. 2018). All these findings were found

to be dependent on D1Rs while beta-adrenergic receptors played no role supporting the idea

that LC inputs can influence dorsal hippocampus function through the release of dopamine.

It is clear dopamine has profound effects on hippocampal activity and therefore hip-

pocampal dependent learning and memory. However, both potential sources of dopamine

can impact hippocampal function, shape place cell activity, and effect learning and memory.

To disentangle the role of these two inputs in spatial learning and memory, it is important

to characterize the activity of these inputs during behavior. Because of the heterogeneity

of both VTA DA and LC neurons, this characterization must be specific to the projections

to the hippocampus. So far, no study has investigated the projection specific activity of

VTA DA inputs and only one has investigate activity of LC inputs (Kaufman, Geiller, and

Losonczy 2020). Kaufman et al. demonstrated that as an animal is navigating for reward

LC axons in dCA1 have activity correlated with velocity supporting previous findings of LC

activity during movement (Reimer et al. 2016). Additionally, these neurons fire at novel

reward locations and this activity can influence place cell locations, suggesting they play a
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role in the establishment of overrepresentation of reward locations. However, on its own, LC

input stimulation did not influence place fields indicating there may be other mechanisms

driving this process (Kaufman, Geiller, and Losonczy 2020). While the findings of Kaufman

et al start our understanding of how LC inputs are active during spatial navigation, they

only looked at activity during spatial navigation in a familiar environment for rewards and

did not address how VTA inputs may be active during the same tasks. Investigating how

these inputs are active during spatial learning of novel contexts would provide insight into

how these inputs influence novelty encoding in the hippocampus.

In chapter 1, I describe the first recordings of VTA DA inputs to the hippocampus and

observed ramping to reward activity that is dependent on the animals’ reward expectation.

I establish, in work with Seetha Krishnan, the effects of reward expectation on hippocampal

place cell activity and demonstrate these effects are largely mediated through the activity of

VTA DA neurons. Our results indicate that reward expectation restructures CA1place cells

and determines map reliability through the modulation of VTA-DA input reward-proximity

signals. In the second chapter, I compare the activity of VTA DA inputs to the activity

of LC inputs to dCA1. This work reveals distinct encoding across the two inputs, with

VTA DA neurons exhibiting ramping to reward activity and LC inputs showing activity

correlated with velocity and an increase in activity prior to motion onset. Additionally,

LC inputs drastically increase in activity for > 1 minute following exposure to a novel

environment while the ramping activity VTA DA disappears in the novel environment. This

work demonstrates VTA and LC inputs encode unique information, likely contributing to

distinct roles in modulation of hippocampal activity and episodic memory.
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CHAPTER 2

REWARD EXPECTATION EXTINCTION RESTRUCTURES

AND DEGRADES CA1 SPATIAL MAPS THROUGH LOSS OF A

DOPAMINERGIC REWARD PROXIMITY SIGNAL

This chapter is a full reprint of "Reward expectation extinction restructures and

degrades CA1 spatial maps through loss of a dopaminergic reward proximity

signal" In: Nature Communications 13.1, p. 6662. issn: 2041-1723. doi: 10.1038/s41467-

022-34465-5.(Krishnan et al. 2022), in which I was a co-first author. The work is included

with permission from all authors.

2.1 Abstract

Hippocampal place cells support reward-related spatial memories by forming a cognitive map

that over-represents reward locations. The strength of these memories is modulated by the

extent of reward expectation during encoding. However, the circuit mechanisms underlying

this modulation are unclear. Here we find that when reward expectation is extinguished in

mice, they remain engaged with their environment, yet place cell over-representation of re-

wards vanishes, place field remapping throughout the environment increases, and place field

trial-to-trial reliability decreases. Interestingly, Ventral Tegmental Area (VTA) dopaminergic

axons in CA1 exhibit a ramping reward-proximity signal that depends on reward expecta-

tion and inhibiting VTA dopaminergic neurons largely replicates the effects of extinguish-

ing reward expectation. We conclude that changing reward expectation restructures CA1

cognitive maps and determines map reliability by modulating the dopaminergic VTA-CA1

reward-proximity signal. Thus, internal states of high reward expectation enhance encoding

of spatial memories by reinforcing hippocampal cognitive maps associated with reward.
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2.2 Introduction

Individual pyramidal cells in the hippocampus fire action potentials in specific regions of

an environment, known as their place field1. Specific populations of place cells represent

cognitive maps of specific environments (Colgin, E. I. Moser, and M.-B. Moser 2008; Bostock,

Muller, and Kubie 1991). As animals become familiar with an environment, hippocampal

place fields become more stable and many of them are reinstated whenever the animal

navigates the environment (Ziv et al. 2013; Dong, Madar, and M. E. J. Sheffield 2021;

Hainmueller and Bartos 2018). When environmental cues change, hippocampal place cells

“remap” through changes in firing rate and place field locations, thought to be an integral

part of navigational and memory processes (Colgin, E. I. Moser, and M.-B. Moser 2008;

Bostock, Muller, and Kubie 1991; Dong, Madar, and M. E. J. Sheffield 2021; RU Muller and

JL Kubie 1987). Place cells and the maps they comprise allow animals to acquire, store,

code, and recall environments (Goode et al. 2020; Robinson et al. 2020). In addition, place

cells are modulated by external context variables that include odors and colors (Michael I.

Anderson and Kathryn J. Jeffery 2003) but also include internal context variables such as

attention (Kentros et al. 2004; André A. Fenton et al. 2010), decisions of future trajectories

(Wood et al. 2000; Zhao, Hsu, and Spruston 2022; Kinsky et al. 2020) and fear (Marta

A. P. Moita et al. 2004; Peter J. Schuette et al. 2020). Reward expectation (or reward

prediction) is another internal context variable that could modulate cognitive maps as it has

a powerful influence on hippocampal-dependent memories (Rouhani and Niv 2021; Jang et

al. 2019; Stanek et al. 2019). However, the influence of reward expectation on cognitive maps

remains unclear and some evidence suggests cognitive maps may be independent from reward

expectation (Éléonore Duvelle et al. 2019; Tabuchi, Mulder, and Wiener 2003; Wikenheiser

and Redish 2011).

Rewards themselves are represented through a distinct population of reward cells (Gau-

thier and Tank 2018) and an over-representation of place cells tuned to rewarded locations in
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CA1 (Hollup et al. 2001; I. Lee et al. 2006; Kaufman, Geiller, and Losonczy 2020; B. Poucet

and Hok 2017; Mamad et al. 2017). The over-representation of reward locations by place cells

requires learning (Kaufman, Geiller, and Losonczy 2020) and is dependent on the probability

a reward will be delivered at those locations (B. Poucet and Hok 2017). This suggests that

it is reward expectation that determines over-representation of reward locations rather than

the attainment of the reward itself, although this remains to be determined. Furthermore,

cues distant from reward locations can predict the attainment of future reward, i.e., lead to

them (Howe et al. 2013). Therefore, over-representation of reward locations by place cells

does not explain how reward expectation might influence the encoding of locations that are

distant from, but lead to, rewards. What is also unclear is how changes in reward expecta-

tion within an environment might influence the place cell code in the hippocampus, or the

time course over which such changes may occur.

The learned associations between isolated cues and future rewards involves dopaminergic

circuits that respond to reward predicting cues and act as a learning signal (Sutton and Barto

1981). Dopaminergic circuits that encode reward expectation project to the hippocampus

from the ventral tegmental area (VTA) (Gasbarri et al. 1994) and influence hippocampal

function, synaptic plasticity, and synaptic transmission (Mamad et al. 2017; Martig and

Mizumori 2011; McNamara et al. 2014). Recent work has begun to elucidate the role of

reward expectation and dopamine circuits during spatial navigation and has uncovered a

spatial proximity to reward signal emanating from the VTA that ramps up in activity as

animals approach an expected reward location (Howe et al. 2013; Engelhard et al. 2019;

Sosa and Giocomo 2021; Guru et al. 2020; Kim et al. 2020). Like the classic studies of

reward learning, spatial locations during navigation that predict future reward trigger in-

creases in dopamine release. As the animal approaches the reward, dopamine levels ramp up

as locations closer to reward are better predictors of the reward, i.e., they increase reward ex-

pectation. This suggests that reward expectation may influence the encoding of space during
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navigation through the effects of dopamine modulation, possibly through ramping dopamine

signals (Sosa and Giocomo 2021), but whether these signals exist in the hippocampus has

yet to be demonstrated experimentally, as is their influence on cognitive maps.

Spatial memories encoded in the hippocampus are represented by populations of place

cells that create a cognitive map, and reward expectation influences these memories through

dopaminergic circuits (Rouhani and Niv 2021; Jang et al. 2019; Stanek et al. 2019; Wiken-

heiser and Redish 2011; Martig and Mizumori 2011; McNamara et al. 2014). We therefore

hypothesized that changing reward expectation would modulate place cell properties and

transform the structure of the cognitive map (remapping) driven by dopaminergic signals

from the VTA. However, testing this hypothesis is challenging as manipulating rewards to

change reward expectation alters navigation behaviors that affects place cells(B. L. Mc-

Naughton, Barnes, and J. O’Keefe 1983). We therefore developed a paradigm that changes

reward expectation in head-restrained mice repeatedly traversing an unchanging virtual lin-

ear track. Importantly, mice in this setup showed matched navigation behaviors and en-

gagement with their environment across many trials during changes in reward expectation,

allowing us to isolate the influence of reward expectation on place cells. This head-restrained

setup allowed for continuous 2-photon calcium imaging of large populations of place cells in

CA1 as well as direct calcium imaging of dopaminergic axons from VTA in CA1 during

changes in reward expectation. We also inhibited dopaminergic neurons in the VTA to

further test our hypothesis.

19



2.3 Results

2.3.1 Lowering reward expectation changes spatial encoding of an

unchanging spatial environment in CA1

Mice were trained to run on a treadmill along a 2 m virtual linear track for water rewards

(rewarded condition: R) delivered at the track end (Fig.2.1 a, b), after which they were

teleported back to the start of the track. Well-trained mice learned the location of the

reward and pre-emptively licked before the reward location (pre-licking), providing a lap-

wise behavioral signal of reward expectation (Supp Fig. 2.6). On experimental day (Fig.

2.1b), mice ran in R for 10 min before water reward was unexpectedly removed (unrewarded

condition: UR). Interestingly, mice continued pre-licking for a few laps in UR, as though still

expecting a reward (see “Licking behavior” section in “Methods”; Fig. 2.1c.iii and Supp Fig

2.6). After mice traversed UR for 10 min, reward was reintroduced (re-rewarded condition:

RR).

Additionally, using 2-photon calcium imaging of dorsal CA1 pyramidal neurons expressing

the genetically encoded calcium indicator GCaMP6f (T.-W. Chen et al. 2013) (Fig. 2.1a),

we measured population activity while mice were switched across conditions: R-UR-RR

(Fig. 2.1b, c). Behavior and activity in an example mouse are shown in Fig. 2.1c. We

found that removing reward caused a dramatic change in population activity (Fig. 2.1c.i,

population activity is represented as a raster plot where cells with correlated activity are

arranged next to each other, see Methods). This was not a consequence of time or running

behavior (Supp Figs. 2.7 and 2.8) and like changes in pre-licking, did not occur immediately

after reward removal (Fig. 2.1c). To quantify this, we trained a naive Bayesian classifier

with all the extracted cells on the initial laps in R and used the trained classifier to predict

track position on the final laps of R and all laps in UR and RR (Methods). We found that

the decoder was able to accurately predict position on the final laps in R and initial laps in
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UR before abruptly underperforming (Fig. 2.1d).

Figure 2.1: Diminished reward expectation restructures spatial encoding in the
hippocampus a,Experimental setup (left), created with BioRender.com. A typical field of
view in CA1 (right, top). Extracted regions of interest, randomly colored (right, bottom). b,
Experimental protocol. Image of virtual track (top). Changing reward contingencies (bot-
tom, Rewarded (R), Unrewarded (UR), Re-Rewarded (RR)), created with BioRender.com.
c, i: Rasterplot representing fluorescence changes (∆F/F ) of cells in A across time. Cells
(y-axis) are arranged with the most correlated cells next to each other. ii: Mean ∆F/F
of the cells in (i). iii: Mouse licking behavior. iv: Mouse track position. v: ∆F/F from
an example cell. Laps before animal stops consistently licking in UR were considered laps
with high reward expectation (REhigh, orange laps) and after licking stops are laps with low
reward expectation (RElow, red laps, see Methods). d, A Bayesian decoder was trained on
CA1 activity from initial laps in R and tested on remaining laps.
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Figure 2.1, continued: (Top) Coefficient of determination (R2) between true and predicted
position of tested laps, (bottom right) zoomed in. (Bottom left) An example fit. Gray
lines indicate laps with licks. a–d are from the same animal. e Mean decoder R2 fitted
with a reverse Boltzmann Sigmoid (r = 0.94; magenta), mean lick frequency normalized to
maximum licks (black) for each lap in unrewarded condition. Error bars indicate s.e.m. The
point of maximum change in R2 as calculated from the fit is indicated by the dashed line.
f (Top) Boxplots (see methods for definition) show distribution of mean decoder R2 in the
different conditions. Circles represent individual animals. P values were obtained using a
two-sided Paired t test. (Bottom) Bootstrapped mean differences (∆) with 95% Confidence
Intervals (CI) (error bar). X-axis indicates the comparisons made. g (Left) Mean decoder
error by track position. Shading indicates s.e.m. (Right) Mean decoder error binned by track
position as indicated by gray bars in the left panel. Error bars indicate 95%CI. S: Start of
the track, M: Middle of the track, E: End of the track. Asterisk (*) indicates significant p
values (P < 0.01, two-sided paired t test) obtained by comparing R with other conditions
at each position. n = 12 mice used for f, g.

Because mice pre-licked for a few laps in UR, we asked if decoder underperformance was

associated with reduced reward expectation. In all mice (n = 12), we quantified the average

pre-licking and decoder fit on each lap after reward removal by running a rolling average (Fig.

2.1e, see Methods). On average, pre-licking continued for a few laps before rapidly dropping,

and interestingly, decoder performance sharply dropped around the same lap when pre-licking

reached zero. This decreased decoder accuracy with decreased pre-licking indicates that

hippocampal spatial encoding remains unchanged following reward removal, until reward

expectation diminishes, at which point the spatial code abruptly transforms.

To further quantify this, we identified the lap on which pre-licking stopped in each mouse

(Methods). For clarity, we labeled the laps with pre-licking as having high reward expectation

(REhigh) and the laps after pre-licking stopped as having low reward expectation (RElow).

Indeed, decoder accuracy in REhigh laps was similar to R and was significantly lower in

RElow laps (Fig. 2.1, mean decoder R2 [95% confidence intervals (CIs)]: R = 0.95 [0.93

0.97], REhigh = 0.90 [0.87 0.93], RElow = 0.65 [0.54 0.75]). This held true independent of

our definition of when licking stopped (Supp Fig. 2.9). The decoder accuracy somewhat

recovered following reward re-introduction in RR laps, although it remained lower than in

R (RR = 0.82 [0.77 0.87]). Reduced decoder performance during RElow was not explained
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by differences in time or running velocity (Supp Figs. 2.7 and 2.10).

To quantify these changes further, we analyzed decoder error across the track by mea-

suring the absolute distance between the true position from the position predicted by the

decoder at each point on the track. Interestingly, in RElow, decoder error had increased at

all locations across the track (Fig. 2.1g), and not just around the reward site, as may have

been predicted (Hollup et al. 2001; I. Lee et al. 2006; Kaufman, Geiller, and Losonczy 2020;

B. Poucet and Hok 2017; Mamad et al. 2017). As observed before, in RR, decoder error

decreased across the track but remained lower than in R (Fig. 2.1g). These data provide

evidence against spatial encoding being independent from reward expectation21 and demon-

strate that changing reward expectation drastically alters spatial encoding at all locations

within an unchanging spatial environment.

2.3.2 Changes in spatial encoding associated with diminished reward

expectation are not due to disengagement with the environment

Next, we tested an alternate explanation; that disengagement with the environment in RElow

laps was responsible for the changes in spatial encoding (Kentros et al. 2004; André A.

Fenton et al. 2010; Pettit, Yuan, and Harvey 2022). We noticed that mice in R slowed

down as they approached the reward site, exhibiting engagement with the VR environment

(Gauthier and Tank 2018) (Supp Figs. 2.11 and 2.12). To confirm this, we exposed mice to

a dark environment without any virtual cues and indeed found an absence of this approach

behavior (n = 6, Supp Fig. 2.11a). We therefore interpret approach behavior on each lap as

a behavioral readout of engagement with the environment. In UR we observed changes in

velocity throughout the track, but approach behavior remained intact on most laps in UR (n

= 12, 170/244 laps, 70%). This was true even after mice stopped licking (RElow: Engaged;

Supplementary Figs. 6 and 7). In contrast, laps displaying disengagement with VR were

less frequent (RElow: Disengaged, 74/244, 30%, Supp Figs. 2.11 and 2.12). Importantly, we
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found a similar reduction in decoder performance in UR when using only RElow engaged laps

(Supp Fig. 2.11b, Mean decoder R2 [95% CI]: R = 0.95 [0.93 0.97], REhigh = 0.90 [0.87 0.93],

RElow: Engaged = 0.65 [0.49 0.81]), although disengaged laps did further reduce decoder

performance (RElow: Disengaged = 0.31 [0.06 0.5]). The disengaged laps were uniformly

distributed throughout RElow (see example laps in Supp Fig. 2.12). The proportion of

disengaged laps also did not progressively increase with time, as was observed in Pettit et al.

(Pettit, Yuan, and Harvey 2022). The probability of disengaged laps in the first half of RElow

was similar to the second half (P = 0.14). Furthermore, the distribution of disengaged laps

throughout the session did not differ from a uniform distribution (P = 0.7). The influence of

disengagement on CA1 spatial representations is in agreement with a recent paper (Pettit,

Yuan, and Harvey 2022), but is not the main focus of this paper.

Using an alternate method to measure engagement with the VR environment, we quanti-

fied pupil area during running in R and UR conditions as pupil diameter has been shown to

be a measure of attentional/arousal state (n = 5, Supp Fig. 2.11c-f) (Beatty 1982; Bradley

et al. 2008). We observed a distinct pattern of pupil area changes during laps in R which

included an increase in pupil area near the end of the track. To quantify if within lap pupil

area dynamics were altered in UR compared to R, we calculated the Pearson’s correlation

coefficient of each lap’s pupil area dynamics to the mean pupil area dynamics from all laps

in R. We first ensured that any changes in pupil area correlation in UR were not due to

changes in animal behavior in UR (Supp Fig. 2.13). Engaged laps in UR in each animal

were then defined as laps where the correlation coefficient was greater than or equal to the

mean correlation coefficient of laps in R (the remaining laps were defined as disengaged

laps). 71% of these engaged laps were also classified as engaged laps using the approach

behavior described above (57/80 laps; chance levels = 37%). We again found that animals

were engaged on most laps in UR (n = 5, 80/106, 75%) after licking stopped (RElow: En-

gaged, Supp Fig. 2.11e) and found a similar reduction in decoder performance when using
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only these laps (Supplementary Fig. 2.11f, mean decoder R2 [95% CI]: R = 0.91 [0.81 1.00],

REhigh = 0.83 [0.71 0.94], RElow: Engaged = 0.57 [0.34 0.79], RElow: Disengaged = 0.43

[0.13 0.74]). Therefore, using two distinct measures of engagement with the VR environ-

ment, approach behavior and pupil area, we conclude that changes in spatial encoding in

UR are not due to disengagement with the VR environment but instead are due to lowered

reward expectation. However, because disengagement further influences spatial encoding,

we focused further analysis on engaged laps (laps with approach behavior) during RElow to

isolate the effects of RElow without confounds introduced by disengagement with the VR

environment (Pettit, Yuan, and Harvey 2022).

2.3.3 Lowering reward expectation induces place cell remapping

The changes in spatial encoding in UR suggests changes in activity patterns of place cells

(remapping). Place cell (PC) remapping is linked to encoding changes within environments

or distinct environments as well as separated exposures to the same environment across days

(Colgin, E. I. Moser, and M.-B. Moser 2008; Ziv et al. 2013; Dong, Madar, and M. E. J.

Sheffield 2021; RU Muller and JL Kubie 1987; Mark E.J. Sheffield, Adoff, and Daniel A.

Dombeck 2017). We explored if changes in reward expectation may induce remapping in an

unchanging spatial environment within a single session. We first defined PCs in R and con-

structed a population firing vector using these cells for each lap in R-UR-RR and correlated

these vectors across the session using only those laps in UR that showed engagement with

the VR (only RElow: Engaged laps, Fig. 2.2a). Correlations showed pronounced transitions

in population activity around the lap when licking stops (REhigh to RElow) and again fol-

lowing reward re-introduction (RElow to RR). To adequately quantify these transitions, we

clustered the lap-by-lap PV correlations and calculated the probability of laps being part of

the cluster to which R laps belong (see Methods). The lap-wise cluster probability traces

revealed dips in probability when transitioning from REhigh to RElow and not between R
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and REhigh (Fig. 2.2a bottom; mouse 3 correlation drops a lap before our definition of

low reward expectation) confirming changes in place cell activity occurring as animals stop

licking and not immediately following reward removal. Moreover, the probability increased

to a certain extent in RR laps. This is most apparent in mouse 1 which comes all the way

back to R levels. However, mice 2 and 3 did not show a similar reinstatement nor was there

an immediate transition in cluster probability following reward reintroduction.

Figure 2.2: Diminished reward expectation leads to place cell remapping across
all track locations and loss of reward overrepresentation
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Figure 2.2, continued: a,(Top) Population vector correlations between place cell activity
in each lap in all conditions in 3 animals. In laps with low reward expectation, only Engaged
laps were used (RElow: Engaged). (Bottom) Probability of laps belonging to the Rewarded
cluster following 1000 iterations of k-means clustering (see Methods). Red line indicates the
lap where pre-licking stops, and black lines divide each condition. b, Place fields defined
in R plotted across all conditions. Activity of each place cell was normalized to peak in R
and sorted by its center of mass along the track. c, Boxplots show distribution of place
field spatial correlation for cells (circles) within R condition (blue) and between R and other
conditions. P values were obtained using two-sided paired t test. (Bottom) Bootstrapped
mean differences (∆) with 95% CI (error bar). X-axis indicates the comparisons made. d,
(Top) Same data, averaged by track position. Shading indicates s.e.m. (Bottom) Average
correlation binned by track position indicated by gray lines in the top panel. S: Start of the
track, M: Middle of the track, E: End of the track. Asterisk (*) indicates significant P values
(two-sided paired t test, p < 0.01) obtained by comparing R (blue) with other tasks at each
position. Both d, e use n = 605 place cells defined in R. e, Fate of place cells identified
in different conditions. Place fields identified in R (blue) can be stable throughout RElow
(blue) and RR (blue). They can also remap in RElow and RR (light blue) or lose their place
field completely (black). New place fields can form in RElow (red) and be stable (red) or
remap (light red), in RR. New place fields can also form in RR (green). f, Example place
cell activity in the different conditions. White lines divide each condition and the red line
indicates lap defined as when pre-licking stops.

We next analyzed the RElow period in UR in these 3 mice as they had sufficient numbers

of engaged laps in all conditions (R-UR-RR) to define place fields using only the engaged

laps and removing disengaged laps (see Supp Fig. 2.14 for analysis on all mice using both

engaged and disengaged laps). We found RElow caused partial remapping as shown by a drop

in the spatial correlation of place fields between R and UR conditions (using only RElow:

Engaged laps; Fig. 2.2b–d). Interestingly, partial remapping caused by RElow occurred at

all locations throughout the environment, and not just at locations near the reward site (Fig.

2.2d). As observed with the population firing vector correlations, the extent of remapping

was reduced in RR—i.e., the R map seemed to somewhat return in RR (Fig. 2.2b–d).

To further analyze place field dynamics, we determined the fate of individual place fields

throughout R-UR (RElow: Engaged laps only)-RR. We found 27.9% of place fields found

in R (605 PFs in R, n = 3) remained stable throughout R-RElow-RR (169/605; Fig. 2.2e

blue throughout). In RElow, R place fields either remained stable (222/605, 36.7%; Fig.
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2.2e blue, middle column), disappeared (249/605, 41.2%; Fig. 2.2e black, middle column),

or remapped (134/605, 22.1%; Fig. 2.2e cyan, middle column). In addition, new place fields

formed in RElow (296/663 of all place fields found in RElow, 44.6%; Fig. 2.2e red, middle

column). More R-place fields retained their fields in RR (311/605, 51.4%; Fig. 2.2e blue,

right column), but other R-place fields remapped in RR (89/605, 14.7%; Fig. 2.2e cyan, right

column). Furthermore, of the place fields that disappeared in RElow some reappeared in RR

(126/249; 50.6%; Fig. 2.2e blue adjacent to black, right column). Only a small proportion of

those that were newly formed in RElow remained stable in RR (64/296 new PFs in RElow;

21.6%; Fig. 2.2e red, right column) and a larger percentage disappeared in RR (204/296;

68.9%; Fig. 2.2e black adjacent to red, right column). Finally, of the 674 place fields found

in RR, 140 were newly formed (20.8%; Fig. 2.2e green, right column). These place field

dynamics were also observed when place fields from all mice were analyzed that included

engaged and disengaged laps (Supp Fig. 2.14) and were not observed in control mice that

stayed in R for a matched number of laps (Supp Fig. 2.15). Example of the lap-by-lap

dynamics of individual place cells throughout R-UR-RR are shown in Fig. 2.2. In summary,

transitioning to RElow restructures the CA1 place code at all locations within an unchanging

spatial environment through the disappearance, emergence, and remapping of place fields.

Although a component of the structure returns when transitioning back to RR, the original

structure remains changed, and further restructuring takes place. This suggests that the

CA1 spatial code of an environment is dependent on reward expectation and the history of

reward expectation. This supports the idea that CA1 performs context discrimination in an

unchanging spatial environment.
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2.3.4 Place fields show diminished reliability and increased out-of-field firing

following lowered reward expectation

The quality of hippocampal spatial encoding is related to memory performance (Kentros et

al. 2004; Rotenberg et al. 1996). Qualitatively, increased reliability of firing across multiple

traversals through the same location, low out-of-field firing, and decreased place field width

are general indicators of better spatial encoding accuracy. Measuring these properties, we

asked whether place fields in RElow were of the same or reduced quality compared to place

fields in R. Plotting place fields defined in each condition, we found a total number of place

fields that tiled the track to be similar in R, RElow (using only Engaged laps), and RR

(n = 3, Fig. 2.3a, findings from all animals using both engaged and disengaged laps are

shown in Supp Fig. 2.16). We quantified place cell properties and found that the place

fields in RElow had degraded on every measure of spatial encoding we used (see Methods):

place field trial-to-trial reliability (Wikenheiser and Redish 2011) (Rewarded = 0.47 [0.38

0.57], RElow: Engaged = 0.32 [0.15 0.48]), out/in place field firing ratio (Rewarded = 0.10

[0.07 0.13]; RElow: Engaged = 0.16 [0.12 0.20]) and place field width (Rewarded = 53.34

[43.87 62.81]; RElow: Engaged = 60.56 [48.07 73.06]), across all locations (Fig. 2.3b). There

was also a small decrease observed in firing intensity (Rewarded = 0.36 [0.31 0.40]; RElow:

Engaged = 0.31 [0.23 0.40]). These place field properties returned to or approached R levels

in RR, except firing intensity which remained low in RR (Fig. 2.3b, Reliability 0.41 [0.31

0.51]; Out/In Field Firing 0.12 [0.08 0.15]; Place field width (cm) 54.08 [46.86 61.31]; Firing

Intensity 0.29 [0.24 0.34]). The degradation of place fields in RElow and return in RR was also

observed when we included engaged and disengaged laps together (Supp Fig. 2.16) and was

not due to time (Supp Fig. 2.17). This demonstrates that diminished reward expectation

leads to a spatial code in CA1 with low quality place fields at all locations, suggesting a

weakened spatial memory representation of the environment (Kentros et al. 2004; Rotenberg

et al. 1996).
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Figure 2.3: Diminished reward expectation leads to inferior spatial encoding by
unreliable place cells across the entire environment. a,Place fields defined and sorted
in each condition pooled from all mice (n = 3 mice). Each cell’s activity normalized to its
peak and cells are sorted by their center of mass along the track. b, Place cell parameters
calculated independently from each condition are displayed as a boxplot of average per animal
(left), cumulative histogram (right). P-values were calculated using a two-sided t test.

30



Figure2.3, continued: c, (left) Mean place cell parameters across track location. Shading
indicates s.e.m. (right) Average correlation binned by track position indicated by gray lines
in the left panel. S: Start of the track, M: Middle of the track, E: End of the track. Asterisk
(*) indicates significant P-values (two tailed KS-test, p < 0.01) obtained by comparing R
(blue) with other tasks at each position. d, Distribution of place field center of mass (COM)
locations in each condition pooled from all mice (n = 3 mice). Plots show observed density
(gray line), uniform distribution (gray shade) and Gaussian distribution of place field density
(color). P-values (two-sided t test) were obtained by calculating the place field distribution
with the uniform distribution. e, Percentage of place fields in the middle of the track
versus end of the track in each animal (circles). f, Difference between end of track and
middle of track place field percentages in each animal (circles, n = 3 mice). Dashed line
in e, f indicates the percentage expected from a uniform distribution across the track. All
place field calculations in RElow condition were done on Engaged laps (RElow: Engaged).
Number of cells in b–d; R: 605, RElow Engaged: 663, RR: 674.

Finally, we compared the degradation of place cells following reward expectation extinc-

tion to a novel never-reinforced environment (Supp Fig. 2.18). We found that the spatial

decoding and place cell parameters were poor in the initial laps of the novel environment,

however, with time, as the animal learned the environment and developed reward expecta-

tion (Supp Fig. 2.18b), these properties became better and comparable to properties in R

and RR (Supp Fig. 2.18c-e). Both reliability and out/in field firing ratio in RElow matched

the levels of the initial trials in the novel environment and remained so throughout the

session until reward expectation was reinstated in RR (Supp Fig. 2.18c-e). This further

demonstrates that reward expectation enhances the spatial code in CA1.

2.3.5 Lowering reward expectation eradicates the over-representation of

reward location and disrupts reward cell firing

One of the striking features of CA1 place cells is the accumulation of place fields near

learned rewarded locations (Hollup et al. 2001; I. Lee et al. 2006; Kaufman, Geiller, and

Losonczy 2020; B. Poucet and Hok 2017; Mamad et al. 2017). We similarly found an over-

representation of place fields near the reward site in R (Fig. 2.3d–f left, I; Supp Fig. 2.16c-

e). Interestingly, this over-representation disappeared once reward expectation diminished
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(Fig. 2.3d, e middle, f; Supp Fig. 2.16c-e). Of the place cells in R that disappeared in

RElow, 41.8% (104/249, n = 3) were at the end of the track (150–200 cm). Furthermore,

the new place cells that appeared in RElow, were equally distributed on the track length

(0–50 cm: 77/296 (26%), 50–100 cm: 83/296 (28%), 100–150 cm: 62/296 (21%), 150–200

cm: 74/296 (25%)). When reward was reinstated in RR, the over-representation of the

reward site reappeared (Fig. 2.3d, e right, f; Supp Fig. 2.16c-e). However, not all the place

fields that disappeared around the reward zone in RElow reappeared in RR (61/104, 58.6%

reappeared), instead, the increased density around the reward site was also derived from the

new place cells that formed fields in RR (0–50 cm: 31/140 (22%), 50–100 cm: 24/140 (17%),

100–150 cm: 18/140 (13%), 150–200 cm: 67/140 (48%)). Thus, place fields near reward

sites act like typical place fields, i.e., they are largely context-specific. Such changes were

not observed in control mice (Supp Fig. 2.17). This demonstrates that transitioning from

REhigh to RElow abolishes place field over-representation of the previously rewarded site.

Reinstatement of reward expectation (as in RR) restores over-representation of the reward

site with an overlapping yet distinct ensemble of place cells.

It was recently shown that a small fraction of cells distinct from place cells exist in the

CA1 that encode reward regardless of position or environment (Gauthier and Tank 2018). We

looked for these “reward cells” and defined them based on their reward activity in 2 distinct

VR environments (Supp Fig. 2.19). We found that these reward cells did not account for the

over-representation of the reward site by place cells in R (Supp Fig. 2.19b). We also found

that the correlation of reward cell activity between R and RElow was significantly less than

within R or between R and RR (Supp Fig. 2.19c, d). Importantly, reduced correlation in

reward cell activity was only observed in RElow and not in REhigh laps in UR (see example

cells in Supp Fig. 2.19d). These findings show that transitioning from REhigh to RElow

disrupts the additional coding of specific reward sites by place and reward cells.
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2.3.6 Bilateral VTA inhibition largely replicates lowering reward expectation

Ventral Tegmental Area (VTA) dopaminergic inputs to the hippocampus have been impli-

cated in shaping and stabilizing spatial representations (McNamara et al. 2014; Sosa and

Giocomo 2021) and VTA/dopamine encode changes in reward expectation (Schultz, Dayan,

and Montague 1997). We therefore hypothesized that inhibiting VTA dopaminergic neurons

would mimic the effects of lowering reward expectation. To do this, we bilaterally injected

Cre-dependent AAV expressing the inhibitory DREADD receptor hM4D(Gi) (Armbruster

et al. 2007) and mCherry in VTA of DAT-Cre mice and imaged from dorsal CA1 cells ex-

pressing GCaMP6f (Fig. 2.4a, b). On experimental day, mice ran in R for 10 min before

being removed and injected intraperitoneally either with saline (control) or one of two differ-

ent ligands for the hM4D(Gi) receptor—Descholoroclozapine (DCZ) (Nagai et al. 2020) or

Clozapine-N-oxide (CNO) (Armbruster et al. 2007). Due to the slower kinetics and known

off-target actions of CNO, DCZ was also used to inactivate VTA DA neurons. After the

injections (45 mins after CNO injections and 10 mins after DCZ injections due to the faster

metabolism of DCZ), mice were placed back in R for 10–20 min. Each mouse after training

went through 4 days with imaging: Day1: R-UR-RR switch; Day2: Saline session, Day3:

CNO, Day4: DCZ session (Fig. 2.4c). The same FOV was imaged throughout all days of

imaging and place cells were extracted from each imaging session (see Methods). This pro-

tocol allowed us to compare the effect of lowering reward expectation and VTA inhibition

on hippocampal neural activity in the same mice.
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Figure 2.4: Bilateral inhibition of VTA dopaminergic neurons largely replicates
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Figure 2.4, continued: ... the effects of low reward expectation on place cells. a,
Schematic representation of procedure, created with BioRender.com. b, i, ii: Representative
coronal brain section from 1 of 6 mouse brains expressing hm4D(Gi)-mCherry (red) in VTA,
GCaMP6f in dorsal CA1(green), and immunostained for Tyrosine Hydroxolase (TH- green).
iii: hm4D(Gi)-mCherry expression (left), TH expression (middle) and overlapping expression
(right) in example VTA neurons. c, Experimental protocol. d, e, Place fields defined
in the Before Saline/Before deschloroclozapine (DCZ) condition and plotted across After
Saline/After DCZ administration. Activity of each place cell was normalized to peak in the
Before conditions and sorted by their center of mass. f, (Top) Boxplots show distribution
of place field spatial correlation (circles) in R/RElow (left, n = 6 mice), Before Saline/After
Saline (middle, n = 5 mice) and Before DCZ/After DCZ (right, n = 6 mice). Place cells were
defined in the former condition. P-values were obtained using two tailed KS-test. (Bottom)
Bootstrapped mean differences (∆) with 95% CI (error bar). g, (top) Same data, averaged
by track position. Shading indicates s.e.m. (bottom) Average correlation binned by track
position indicated by gray lines in the top panel. S: Start of the track, M: Middle of the
track, E: End of the track. Asterisk (*) indicates significant P values (two tailed KS-test,
p < 0.01) obtained by comparing UR (red) with other tasks at each position. h-j, Place
cell parameters in each condition are displayed as boxplot of average per animal (left) and
cumulative histogram (right, p-values, two-sided paired t test). k-m, (left) Distribution of
place field center of mass (COM) locations in each condition pooled from all mice. Plots show
observed density (gray line), uniform distribution (gray shade) and Gaussian distribution of
place field density (color). P-values (two-sided t test) were obtained by calculating the place
field distribution with the uniform distribution. (right) Difference between end of track and
middle of track place field percentages in each animal (circles). Dashed line indicates the
difference expected from a uniform distribution across the track (P-values, two-sided paired
t test). Number of cells in f-g and k-m; R/RElow: 928, Before Saline/After Saline: 1139,
Before DCZ/After DCZ: 1629.

We found that inactivation by both DCZ and CNO yielded similar results (Fig. 2.4 and

Supp Fig. 2.22), demonstrating a shared mechanism of action and the timing differences

following CNO and DCZ injections and exposure to R, 45 mins versus 10 mins, respectively,

does not affect the results. DCZ and CNO administration caused a decrease in lap run-

ning speed in R (Supp Fig. 2.22, Mean speed (m/s) [95% CI]: Before Saline 42.74 [41.12

44.36], After Saline 42.75 [41.34 44.17], Before DCZ 41.99 [40.26 43.73], After DCZ 25.96

[24.30 27.62], Before CNO 43.18 [41.26 45.10], After CNO 25.71 [24.03 27.39]) but approach

behavior (demonstrating engagement) and anticipatory licking remained (Supp Fig. 2.21).

We then measured spatial correlation of place fields before and after DCZ/CNO administra-

tion and found a reduction at all locations across the track, similar to the effects in RElow
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(Fig. 2.4d–g and Supp Fig. 2.22a-c). This decrease was not observed in the saline control

(Fig. 2.4d–g). To test whether these changes might be due to decreased lap speed after

DCZ/CNO administration, we split our saline control data into fast velocity and slow ve-

locity laps (Supp Fig. 2.23a). We found a small reduction in spatial correlation on the slow

velocity laps compared to the fast laps (Supp Fig. 2.23b, c), but this was much smaller than

the effects induced by DCZ and CNO (Fig. 2.4d–g and Supp Fig. 2.22a-c).

Interestingly, we found a decrease in lap velocity in control mice following injections (CNO

injected in mice with no DREADD expression; Supp Fig. 2.20C, p < 0.001). However, this

decreased lap speed did not lead to the same changes in place cells we observed in our

experimental groups (Supp Fig. 2.20d, e), further indicating that decreased running speed

is not the cause of place cell changes we report in our experimental groups injected with

CNO/DCZ with DREADD expression in VTA DA neurons (Fig. 2.4d–g; Supp Fig. 2.22a-

c).

We next measured the lap-by-lap reliability of place fields and the out of field firing ratio,

two properties most affected by RElow. We found a similar decrease in place field reliability

and increase in out-of-field firing in DCZ and CNO as in RElow (Fig. 2.4h, j, Supp Fig.

2.22d, Mean [95%CI]: Reliability: Rewarded = 0.41 [0.31 0.52], RElow = 0.29 [0.17 0.40],

Before DCZ = 0.48 [0.38 0.58], After DCZ = 0.41 [0.31 0.51], Before CNO = 0.42 [0.31

0.52], After CNO = 0.35 [0.24 0.47]. Out/In Field Firing: Rewarded = 0.10 [0.06 0.13],

RElow = 0.17 [0.06 0.29], Before DCZ = 0.10 [0.05 0.14], After DCZ = 0.12 [0.08 0.16],

Before CNO = 0.10 [0.05 0.15], After CNO = 0.12 [0.07 0.17]). This was not the case in

the saline controls (Fig. 2.4i, Mean [95%CI]: Reliability: Before Saline = 0.45 [0.34 0.55],

After Saline = 0.46 [0.39 0.54], Out/In Field Firing: Before Saline = 0.09 [0.04 0.14], After

Saline = 0.09 [0.04 0.14]), even in the slow velocity saline control laps (Supp Fig. 2.23d,

Mean [95%CI]: Reliability: Before Saline fast velocity = 0.51 [0.46 0.57], After Saline slow

velocity = 0.45 [0.32 0.58], Out/In Field Firing: Before Saline fast velocity = 0.09 [0.04 0.13],
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After Saline slow velocity = 0.09 [0.04 0.14]). Lastly, we found DCZ and CNO tended to

induce a reduction in place field over-representation of the reward site compared to saline

controls, but this did not reach significance (Fig. 2.4m; p = 0.06) and the effect size was less

than RElow (Fig. 2.4k–m and Supp Fig. 2.22e), suggesting other neuromodulators might be

involved in over-representation. Additionally, both the reduction in over-representation and

the changes in reliability and out-of-field-firing ratio were not observed in control animals

expressing tdTomato in VTA DA neurons instead of DREADDs and injected with CNO

and DCZ (Supp Fig. 2.20). Together, these data indicate that the effects on CA1 spatial

encoding with changing reward expectation are largely driven by VTA dopaminergic inputs.

2.3.7 VTA inputs to CA1 encode reward expectation through a proximity to

reward signal

To further investigate how the VTA regulates CA1 encoding, we recorded from VTA dopamin-

ergic (DA) axons directly in CA1 using 2-photon imaging of axon-GCaMP7b specifically

expressed in VTA DA axons of DAT-Cre mice (Fig. 2.5a). We found that individual DA

axons ramped up in activity as mice moved closer to the reward site on each traversal of the

environment in R (Fig. 2.5b–d; n = 7 axons from 6 mice). The activity of these ramping DA

axons peaked right before the reward site and then rapidly returned to baseline levels after

reward was received (Fig. 2.5c, d). DA-axon-ramps decayed in slope and amplitude when

mice were switched to UR and disappeared in RElow (Fig. 2.5b–d). DA-axon-ramps started

to return early in RR and were almost back to R levels late in RR (Fig. 2.5e, h). To fur-

ther quantify DA-axon-ramp dynamics, we measured the slope and max peak of the ramps

on each lap throughout R-UR-RR from 5 axons that were imaged throughout all conditions

(Fig. 2.5i–l and Supp Fig. 2.24). We found DA-axon-ramps were consistent in R but decayed

abruptly after a few laps in UR (Fig. 2.5j and Supp Fig 2.24). Similarly, average pre-licking

continued for a few laps before rapidly dropping, indicating DA axon-ramps are impacted by
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reward expectation. DA-axon-ramps were on average smaller in UR compared to R during

REHigh laps but disappeared in RElow laps (Fig. 2.5k; n = 7, Mean [95%CI]: Slope*max: R

= 1.00 [1.00, 1.00], REHigh = 0.57 [0.40, 0.74], RElow = 0.24 [0.03, 0.45]). DA-axon-ramps

were not different in R versus RR (Fig. 2.5k; n = 5 , Mean [95%CI]: Slope ∗ max: R =

1.00 [1.00, 1.00], RR = 1.23 [-0.28, 2.74]). These data demonstrate that VTA DA axons in

CA1 encode the animal’s proximity to reward and disappear when rewards are no longer

expected.

To investigate the emergence of DA-axon-ramps with learning, we switched a subset of

mice to a novel (N) VR environment while continuously imaging VTA DA axons (n = 5

axons from 5 mice; Supp Fig. 2.25). We found DA axon activity had much lower peaks in

N and were much more locked to reward delivery rather than ramping with proximity to

reward (Supp Fig. 2.25b, c). However, activity peaks increased with experience in N and DA-

axon-ramps started to develop towards the end of the session (Supp Fig. 2.25d), revealing

DA-axon-ramps are a learned signal requiring repeated environment-reward associations.

We found two axons with distinct types of signals that did not ramp to reward (Supp

Fig. 2.26). One of these encoded the animal’s velocity and was not sensitive to the R-

UR transition (Supp Fig. 2.26a-c). The other responded to being in VR environments by

decreasing activity relative to being in a dark environment (Supp Fig. 2.26d). These findings

show that VTA DA axons in CA1 predominantly encode the animal’s proximity to reward,

but there exists heterogeneity across the population of DA axons with some axons encoding

other features of experience (Engelhard et al. 2019).
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Figure 2.5: Activity of dopaminergic VTA axons in CA1 ramp up to reward a,
Schematic representation of injection procedure created with BioRender.com (left). Example
CA1 field of view of VTA axons (right, top). Extracted region of interest (right, bottom).
b, Example mouse. i: Mouse licking behavior. ii: Mouse track position. iii: ∆F/F from
an example ROI. c, Fluorescent activity of axons (7 axons in 6 mice) in R (blue), REhigh
(orange-RE arrow), and RElow (red-RE arrow) experimental conditions averaged by time to
reward. Shaded areas represent s.e.m. d, Same data, averaged by position (left). Mean with
95% CI (error bar) of starting 50 cm (S), middle 100 cm (M), and end 50 cm (E)(right).
Asterisk (∗) indicates significant p-values (two-sided paired t test, p < 0.01) obtained by
comparing R (blue) with other tasks at each position. e, Normalized fluorescence of an
example axon in the different conditions binned by time to reward. White lines divide each
condition, and the dashed line represents time of reward delivery.
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Figure 2.5, continued: f, Fluorescent activity of VTA axons (5 axons in 5 mice) in
R(blue) and RR (green) averaged by time to reward. Shaded areas represent s.e.m. g,
Same data averaged by position. h, RR time binned fluorescent activity divided into early
(light green) and late laps (dark green) and averaged by time to reward. i, Example showing
how the max and slope of time binned fluorescence data was determined in an R (blue) and
RElow (red) lap. j, Mean slope∗max for laps in the R and Unrewarded (black, n = 7)
and mean lick frequency normalized to maximum licks (gray), error bars represent s.e.m. k,
l, Boxplot shows distribution of mean slope∗max of axons (circles) within R, REhigh, and
RElow (k; n = 7 axons) and within R and RR (l; n = 5 axons). P values were obtained
using a two-sided paired t test. (Bottom) Bootstrapped mean differences (∆) with 95% CI
(error bar) are shown at the bottom. X-axis indicates the comparisons made.

2.4 Discussion

During wakeful exploration animals continuously experience external events, some of which

are robustly encoded into memory for future recall. A key aspect of whether external events

become encoded into memory depends on the internal state of the animal during encod-

ing (Kentros et al. 2004; Tarder-Stoll et al. 2020). Here we found that changes in reward

expectation within unchanging spatial environments alters the structure and trial-to-trial

dynamics of place codes in CA1 likely through the modulation of a ramping to reward signal

in dopaminergic inputs from VTA to CA1. This is supported by several observations: 1,

reward removal led to diminished reward expectation which caused an abrupt restructuring

of the place code that included place cell remapping, the loss of some place fields, and the

formation of new place fields at all locations within the environment, plus a loss of place

field over-representation of the reward zone. 2, place code restructuring only occurred after

the reward expectation diminished and not following reward removal 3, place cells encod-

ing the environment during low reward expectation were degraded in quality exhibiting low

trial-to-trial reliability and high out-of-field firing at all locations 4, bilateral inhibition of

dopaminergic neurons in the VTA during high reward expectation largely mimicked the ef-

fects of lowering reward expectation 5, dopaminergic axons from the VTA to CA1 encoded a

ramping to reward signal during high reward expectation that disappeared after lowering re-
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ward expectation. These results provide evidence that the structure and robustness of spatial

memory encoding in the hippocampus is determined by dopaminergic inputs from the VTA

that is dependent on the animal’s internal state of reward expectation during navigation.

Reward contingencies in navigation tasks have been shown to modulate place cells (Wiken-

heiser and Redish 2011; Gauthier and Tank 2018; I. Lee et al. 2006; Martig and Mizumori

2011; Tryon et al. 2017). Most studies in this area either alter reward magnitudes or move

reward locations, and many times include a decision-making component in their behavioral

task. These factors all modulate place cells in some way, depending on the specifics of the

experiment. What has been difficult to achieve in this research area is a complete removal

of rewards for long enough to alter, and measure, reward expectation yet maintain matched

navigation behavior. This is a necessary step to assess the influence of changing reward ex-

pectations on place cells without confounds caused by changes in navigation behavior (B. L.

McNaughton, Barnes, and J. O’Keefe 1983). Our behavioral set-up allowed us to match

navigation behaviors, even when reward was not expected. Specifically, head direction, lo-

cation occupancy, location sequences leading to reward, running speed, and pupil area were

the same in rewarded and unrewarded conditions for many trials. A number of factors led to

this matched behavior: (1) Mice were head-fixed; (2) The behavior was simple and stereo-

typed (mice run on a linear treadmill along a linear track); (3) Mice were first trained to

run to a very high level with reward to establish high reward expectation before reward

was removed; (4) Many traversals of the environment could be achieved in short succession

( 5 traversals/min). In conjunction with our ability to measure reward expectation on a

trial-by-trial basis, this matched behavior allowed us to specifically connect the influence of

reward expectation on place cells in real-time.

Interestingly, our data show that the presence (or consumption) and subsequent absence

of reward itself has little influence on spatial encoding in CA1 as shown by very little dif-

ference in the spatial code between R and UR when RE is high on the first few laps. Sharp
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wave ripples and place cell replay events occur more frequently during reward consumption

which might reflect a reward-related feedback signal that could influence the place code for

the environment, but this does not seem to be the case (Singer and Loren M. Frank 2009;

Knudsen and Wallis 2021). Instead, it is only after animals learn to associate or disassociate

reward from the environment and change their reward expectation that we observe changes

in the place cell code. The structure of the map, place cell over-representation of the reward

location, and trial-by-trial reliability/out-of-field firing were all modulated only when reward

expectation changed, not when reward was removed/added. This demonstrates that the act

of reward attainment does not in itself modulate place cells in the hippocampus, which may

have been the case through a reward-related feedback signal. Instead, the animal’s inter-

nal state of reward expectation is a stronger driver of place cell encoding than the external

reward. Reward cells in this region have recently been described that encode reward inde-

pendently of space (Gauthier and Tank 2018). We did identify these cells, and found that

they too were modulated by reward expectation rather than reward per se. Therefore, our

data suggests internal states of reward expectation rather than reward attainment modulate

hippocampal spatial encoding of locations within environments.

Such changes in the place code in an unchanging spatial environment could reflect the

animal’s attempts to infer whether they are in a different “state” of the world (Knudsen

and Wallis 2021), something that has been observed in the prefrontal cortex (Durstewitz

et al. 2010; Karlsson, Tervo, and Karpova 2012). The sensory cues remained constant but

internal expectation of reward did not, and this was sufficient to induce partial remapping

along with other changes in the place code. From the perception of the mice, the state of

the world changed as the locations within the environment became devalued by lowering

reward expectation and no longer predicted the presence of a reward. The value of the

sensory experience thus alters the CA1 place code, suggesting that the hippocampus does

not simply represent spatial information, but flexibly encodes the value of space and is able
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to discriminate contexts within an unchanging spatial environment (Knudsen and Wallis

2021). This could be due to mice disengaging from their environment once it is no longer

valued. A recent paper showed that when mice disengage with their environment CA1 place

codes degrade41. However, we measured two distinct features—approach behavior and pupil

area—as a readout of engagement and found mice in our experiments remain engaged on

many trials even when reward expectation is low. For instance, mice decelerated as they

approached the end of the track on many trials even when reward expectation had diminished.

This approach behavior was likely due to mice anticipating hitting the VR wall at the end

of the track which triggers a 2s delay before teleportation to the start of the track. This was

not due to stereotyped behavior as switching mice to a dark environment with no spatial

cues eradicated approach behavior. Therefore, mice in our set up were engaged with their

spatial environment following lowered reward expectation on many trials. The changes in

the place code we observe are therefore unlikely due to disengagement with the environment

and are instead most likely due to reduced reward expectation. Although our mice show

signs of engagement, we cannot rule out that they are less engaged than during high reward

expectation and our engagement measures are not sensitive enough to capture more subtle

changes. Reduced engagement could therefore contribute to the place cell changes we report

here. In agreement with Pettit et al.(Pettit, Yuan, and Harvey 2022), we did find obvious

disengaged trials during low reward expectation and these trials show further place code

changes beyond those caused by reduced reward expectation. We therefore add to the Pettit

et al. (Pettit, Yuan, and Harvey 2022) findings by demonstrating extensive changes in CA1

place coding caused by lowered reward expectation during engagement (or minimally lowered

engagement) with the environment. This implicates additional internal states in modulating

place coding beyond environment engagement-disengagement.

The process of switching reward expectation from high-low-high led to a greater dis-

tinction between representations in the two high reward expectation conditions than when
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reward expectation was held high throughout the session (as was the case in control animals

that maintained high reward expectation throughout a time-matched session). This suggests

the CA1 chunks external events into distinct episodes based on changes in internal state,

even when external events remain the same. In other words, when internal expectations

are constant, unchanging external events are encoded as a single contextual episode. When

internal expectations change and then return to original levels, unchanging external events

are encoded as distinct contextual episodes. This encoding of episodic information within

the CA1 network is consistent with its proposed role in capturing temporal and contextual

episodes (Smith and Mizumori 2006).

DA activity in CA1 is known to play an important role in hippocampal-dependent reward

learning (Lisman and Grace 2005) and DA VTA inputs to CA1 have been shown to modulate

reward learning (McNamara et al. 2014). Optogenetic activation of VTA axons during learn-

ing of new goal locations enhances the subsequent reinstatement of spatial representations

and stabilizes memory performance(McNamara et al. 2014). The stability of CA1 spatial

representations is reduced by inactivation of VTA neurons (Martig and Mizumori 2011) or

CA1 DA receptor antagonism (Barter et al. 2015). Here, we also find that spatial represen-

tations are more stable when VTA DA neurons are active (during high reward expectation)

and destabilize when VTA DA activity is reduced (during lowered reward expectation and

during VTA DA inhibition). What is missing from previous studies is a direct connection

between the animal’s internal state of reward expectation and how changing reward expec-

tation changes spatial representations and VTA DA activity. Our findings fill this gap and

we additionally reveal that bilateral inhibition of VTA DA neurons: 1, decreases the trial-

to-trial reliability and increases the out-of-field firing of place fields. 2, reduces reward site

over-representation by place fields. 3, largely replicates the effects of lowering reward expec-

tation. We also reveal the natural VTA DA dynamics in CA1 and their response to changes

in reward expectation (further discussion below), which, as far as we know, has never been
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measured. Our findings therefore replicate previous work on VTA DA influences on spatial

representations and memory but add to this area by showing the natural dynamics of VTA

DA inputs to CA1 and their influence on spatial representations in real-time during changes

in reward expectation. We also show the “fate” of individual place cells through changes in

reward expectation, revealing heterogeneity of responses at the single cell level (some place

fields disappear when reward expectation is lowered, some remap, some cells form new place

fields, and some maintain their place fields). One caveat is that VTA inhibition did cause lap

velocity to reduce - a known role of VTA dopaminergic neurons(Barter et al. 2015)—which

itself could cause changes to place coding(B. L. McNaughton, Barnes, and J. O’Keefe 1983).

We addressed this by comparing slow and fast velocity laps in saline controls to see if place

cell differences could be observed, and we did find small differences. Therefore, reduced

velocity likely contributes to the observations we made during VTA inhibition but given the

small effect size of velocity it is unlikely to explain all the changes. Our findings instead

support a framework whereby diminished reward expectation causes diminished DA release

from VTA in CA1, leading to an abrupt restructuring of place coding that includes a loss of

over-representation of rewards sites, plus a degradation in the quality of place coding.

In support of this idea, we show that VTA DA neurons in the hippocampus exhibit

ramping to reward activity that diminishes following the removal of rewards. Similar activity

has been observed in VTA DA neurons and their projections to several brain areas using

various techniques (Howe et al. 2013; Kim et al. 2020; Guru et al. 2020; Mohebi et al. 2019). It

is not entirely clear whether this ramping activity signals reward prediction error (RPE) (Kim

et al. 2020) or value (Howe et al. 2013; Mohebi et al. 2019). However, our findings that VTA

axon activity peaks prior to expected reward locations in familiar environments but peaks at

the location of unexpected rewards in novel environments supports the established idea that

VTA DA neurons signal RPE. Importantly, this ramping activity diminished over the course

of several trials following reward removal, was completely absent in RElow, and rapidly re-
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established in RR mimicking the timing of changes to reward expectation and hippocampal

place cell codes we observed. Thus, we hypothesize that this ramping activity provides

reward expectation information to the hippocampus through DA release that is required to

maintain specific excitatory drive to place cells or postsynaptic responses within place fields.

However, we did not specifically manipulate this input in our DREADD experiment, which

targeted all DA VTA neurons and not just DA inputs to CA1. Future experiments should be

designed to specifically manipulate the VTA-CA1 DA input to further test our hypothesis.

Interestingly, we found that although our CNO/DCZ inhibition experiments largely repli-

cated the results of lowering reward expectation, it did not cause a corresponding inhibition

of pre-licking. This suggests a distinct brain region might encode reward expectation and

send parallel signals to both VTA, to drive DA ramps, and to a lower-order center that drives

pre-licking. In our CNO/DCZ experiment we inhibited the VTA component of this circuit

which appears to leave intact the parallel circuit to licking centers. Indeed, there is evidence

for such a reward expectancy center in PFC(Watanabe 1996).

Although VTA DA inputs to CA1 are sparse, manipulation of this pathway has large

effects on spatial memory (McNamara et al. 2014; Gomperts, Kloosterman, and Matthew A

Wilson 2015; Duszkiewicz et al. 2019) and many subtypes of DA receptors are expressed

throughout CA1 on pyramidal cells, Interneurons, and astrocytes (Edelmann and Lessmann

2018; Jennings et al. 2017). The influence of this sparse input could be amplified by the

types of connections VTA DA inputs make. A recent paper showed that VTA DA inputs

to Nucleus Accumbens make “spinule” connections that increase the surface area between

DA inputs and their postsynaptic targets, potentially amplifying their influence (Wildenberg

et al. 2021). Volume transmission is another potential mechanism that could amplify DA’s

influence on the hippocampus (Edelmann and Lessmann 2018). Local interneurons and/or

astrocytes expressing DA receptors could further amplify DA’s influence in CA1 through

their many connections with pyramidal cells. While we did not measure DA release in the
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hippocampus and cannot directly attribute the effects of bilateral VTA DA neuron inhibi-

tion to DA activity, studies have demonstrated that these neurons can impact hippocampal

place cell stability through DA receptor dependent mechanisms(McNamara et al. 2014). DA

regulates synaptic transmission and dendritic excitability(Tritsch and Sabatini 2012) and

high dendritic excitability of CA1 basal dendrites has been linked to place field emergence,

precision, and long term stability (Mark E.J. Sheffield, Adoff, and Daniel A. Dombeck 2017;

M. E. J. Sheffield and Daniel A. Dombeck 2015). Interestingly, VTA DA inputs are located

in the Stratum Oriens of CA1 where basal dendrites of pyramidal cells reside and express D5

receptors (Adeniyi, Shrestha, and Ogundele 2020). We hypothesize that DA increases den-

dritic excitability to increase dendritic branch spike prevalence across basal dendrites when

reward expectation is high. High dendritic branch spike prevalence stabilizes place fields and

increases their precision and reliability(Mark E.J. Sheffield, Adoff, and Daniel A. Dombeck

2017; M. E. J. Sheffield and Daniel A. Dombeck 2015). Following diminished reward expecta-

tion, loss of DA reduces branch spike prevalence, destabilizing place fields (restructuring the

place code at the population level) and reducing their trial-to-trial precision and reliability.

This hypothesis remains to be tested.

Although the presence of DA-ramps in CA1 means the level of DA release is not equal

across the track, attractor-like dynamics could ensure DA influences place cells at all loca-

tions. For instance, place cells with place fields closer to the end of the track receive greater

levels of DA release, but are part of a larger place cell sequence (possible attractor network)

with cells that have place fields at the beginning of the track that receive lower levels of

DA. Based on the known connectivity of CA1 neurons, this may arise from local inhibition

within CA1 or driven by input from CA3, which does have recurrent connectivity to sup-

port attractor dynamics and also receives dopaminergic input (Gasbarri et al. 1994; Lisman

and Grace 2005; Rolls 2007). Furthermore, place cells sequences are replayed during immo-

bility and reward enhances the fidelity and increases the frequency of replays which could

47



further stabilize place cell sequences associated with high reward expectation that include

place fields throughout the entire track and not just ones close to the reward site (Ambrose,

Pfeiffer, and Foster 2016; Bhattarai, J. W. Lee, and Jung 2020; Gillespie et al. 2021). A

hypothesis generated from this framework would be that DA ramps increase replay fidelity

and/or frequency. Indeed, optogenetic stimulation of DA neurons in VTA enhances replay

events in CA1, suggesting the DA ramps we observed may be the natural brain signal that

leads to a similar enhancement of CA1 replay events.

An alternative source of dopamine in CA1 could be coming from locus coeruleus (LC)

fibers which impact hippocampal learning and memory in a DA dependent manner (Kem-

padoo et al. 2016). LC has been shown to encode reward expectation (Bouret and Sara

2004) and a recent study found optogenetic stimulation of LC-CA1 inputs at a goal induced

a shift in place fields towards the goal, whereas inhibition decreased overrepresentations of

new goal locations suggesting these inputs help establish overrepresentation of reward loca-

tions (Kaufman, Geiller, and Losonczy 2020). However, these inputs only showed activity

locked to new goal locations but not familiar locations and have not been shown to influence

pre-existing overrepresentation of goal locations or place fields throughout an environment.

Therefore, it is unlikely that these inputs are the main driver for restructuring of the place

code observed during diminished reward expectation. It is possible LC inputs do have some

influence, though, as inhibition of VTA by DCZ or CNO did not induce the same effect

size as lowering reward expectation, implicating other neuromodulatory systems beyond

VTA. Serotonergic inputs to the hippocampus from the Raphe Nuclei also encode reward

related information, so could further modulate CA1 place codes during changes in reward

expectation74. Given the importance of strongly encoding reward-related memories it is not

surprising that reward-related information is distributed across multiple neuromodulatory

systems that project to the hippocampus. However, our findings suggest VTA DA is the

main system in modulating dorsal CA1 during changes in reward expectation during spatial
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navigation.

An outstanding question is what drives the DA ramps in VTA. Ramps seem to require

animals to know where they are and how far they are from a reward. This implicates

the hippocampus and the place codes represented there in providing spatial information

to the VTA (Guru et al. 2020). It has been proposed that a loop may exist between the

hippocampus and VTA whereby the hippocampus sends information through the subiculum,

accumbens, and ventral pallidum to the VTA (Lisman and Grace 2005). This pathway could

inform DA neurons in VTA of the animal’s position relative to reward. These neurons could

then ramp up their firing as the animal approaches expected reward locations, modulating

the value of locations based on their distance from reward locations. The DA released in

the hippocampus thus serves to stabilize the structure of place codes and maintain reliable

place fields along trajectories that lead to expected rewards (Guru et al. 2020).

2.5 Methods

2.5.1 Subjects

All experimental and surgical procedures were in accordance with the University of Chicago

Animal Care and Use Committee guidelines. For this study, we used 10–12-week-old male

C57BL/6J wildtype (WT) mice and Slc6a3(Cre + /−) (DAT − Cre( + /−)) mice (23–33

g). Male mice were used over female mice due to the size and weight of the headplates (9.1

mm × 31.7 mm, 2 g) which were difficult to firmly attach on smaller female skulls. Mice

were individually housed in a reverse 12h light/dark cycle at 72°F and 47% humidity, and

behavioral experiments were conducted during the animal’s dark cycle.
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2.5.2 Mouse surgery and viral injections

Mice were anesthetized ( 1–2% isoflurane) and injected with 0.5 ml of saline (intraperi-

toneal injection) and 0.5 ml of Meloxicam (1–2 mg/kg, subcutaneous injection) before being

weighed and mounted onto a stereotaxic surgical station (David Kopf Instruments). A

small craniotomy (1–1.5 mm diameter) was made over the hippocampus (1.7 mm lateral,

-2.3 mm caudal of Bregma). For population imaging, a genetically-encoded calcium indica-

tor, AAV1-CamKII-GCaMP6f (pENN.AAV.CamKII.GCaMP6f.WPRE.SV40 was a gift from

James M. Wilson – Addgene viral prep #1 00834-AAV1; https://www.addgene.org/100834/;

RRID:Addgene_100834) was injected ( 50 nL at a depth of 1.25 mm below the surface of

the dura) using a beveled glass micropipette leading to GCaMP6f expression in a large pop-

ulation of CA1 pyramidal cells. For DREADD experiments, craniotomies were made over

the hippocampus and bilaterally over the ventral tegmental area (VTA) (± 0.5 mm lateral,

3.1 mm caudal of Bregma) of DAT − Cre( + /−) mice. A genetically encoded DREADD

receptor (pAAV-hSyn-DIO-hM4D(Gi)-mCherry was a gift from Bryan Roth (Addgene viral

prep # 44362-AAV1; http://n2t.net/addgene:44362; RRID: Addgene_44362) or tdTomato

(pAAV-FLEX-tdTomato was a gift from Edward Boyden (Addgene viral prep # 28306-

AAV1; http://n2t.net/addgene:28306; RRID: Addgene_28306) was injected ( 200 nL at a

depth of 4.4 mm below the surface of the dura). For axon imaging, a small craniotomy was

made over the ventral tegmental area (VTA) (0.5 mm lateral, -3.1 mm caudal of Bregma) of

DAT − Cre( + /−) mice. A genetically-encoded calcium indicator, pAAV-Ef1a-Flex-Axon-

GCaMP7b (pAAV-Ef1a-Flex-Axon-GCaMP7b was a gift from Rylan Larsen - Addgene plas-

mid # 135419; http://n2t.net/addgene:135419; RRID: Addgene_135419) was packaged into

AAV1 and injected ( 200 nL at a depth of 4.4 mm below the surface of the dura) leading to

axon-GCaMP7b expression in dopaminergic VTA neurons. Afterwards, the site was covered

up using dental cement (Metabond, Parkell Corporation) and a metal head-plate (9.1 mm ×

31.7 mm, Atlas Tool and Die Works) was also attached to the skull with the cement. Mice
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were separated into individual cages and water restriction began the following day (0.8–1.0

ml per day). For axon imaging, mice were put on water restriction 3 weeks after viral injec-

tion to provide time for increased expression of axon-GCaMP7b. On the 7th day of water

restriction, mice underwent another surgery to implant a hippocampal window as previously

described (Daniel A. Dombeck et al. 2010). Following implantation, the head-plate was reat-

tached with the addition of a head-ring cemented on top of the head-plate which was used to

house the microscope objective and block out ambient light. Post-surgery mice were given

2–3 ml of water/day for 3 days to enhance recovery before returning to the reduced water

schedule (0.8–1.0 ml/day). Expression of GCaMP6f reached a somewhat steady state 20

days after the virus was injected.

2.5.3 Behavior and virtual reality

Our virtual reality (VR) and treadmill setup was designed similar to previously described

setups (Mark E.J. Sheffield, Adoff, and Daniel A. Dombeck 2017; Heys, Rangarajan, and

Daniel A. Dombeck 2014). The virtual environments that the mice navigated through were

created using VIRMEn(Aronov and Tank 2014). 2 m linear tracks rich in visual cues were

created that evoked numerous place fields in mice as they moved along the track at all

locations (Fig. 2.1a)(Bourboulou et al. 2019). Mice were head restrained with their limbs

comfortably resting on a freely rotating styrofoam wheel (‘treadmill’). Movement of the wheel

caused movement in VR by using a rotatory encoder to detect treadmill rotations and feed

this information into our VR computer, as in refs. (Mark E.J. Sheffield, Adoff, and Daniel A.

Dombeck 2017; Aronov and Tank 2014). Mice received a water reward (4 µL) through a

waterspout upon completing each traversal of the track (a lap), which was associated with a

clicking sound from the solenoid. Licking was monitored by a capacitive sensor attached to

the waterspout. Upon receiving the water reward, a short VR pause of 1.5 s was implemented

to allow for water consumption and to help distinguish laps from one another rather than
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them being continuous. Mice were then virtually teleported back to the beginning of the

track and could begin a new traversal. Mouse behavior (running velocity, track position,

reward delivery, and licking) was collected using a PicoScope Oscilloscope (PICO4824, Pico

Technology, v6.13.2). Pupil tracking was done through the imaging software (Scanbox v4.1,

Neurolabware) at 15 frames per sec, using Allied Vision Mako U-130b camera with a 25

mm lens and a 750 nm longpass IR filter. IR illumination from the objective was used to

illuminate the pupil for tracking. Behavioral training to navigate the virtual environment

began 4–7 days after window implantation ( 30 min per day) and continued until mice

reached >4 laps per minute, which took 10–14 days (although some mice never reached this

level). This high level of training was necessary to ensure mice continued to traverse the track

similarly after reward was removed from the environment. Initial experiments showed that

mice that failed to reach this criterion typically did not traverse the track as consistently

without reward. Such mice were not used for imaging. The rate of success in training

mice to reach this criterion was 60%. In mice that reached criteria, imaging commenced the

following day. Additionally, since we are testing changes in reward expectation, only animals

that displayed pre-licking in the familiar environment before reward delivery were used for

imaging.

2.5.4 Two-photon imaging

Imaging was done using a laser scanning two-photon microscope (Neurolabware). Using a

8 kHz resonant scanner, images were collected at a frame rate of 30 Hz with bidirectional

scanning through a 16x/0.8 NA/3 mm WD water immersion objective (MRP07220, Nikon).

GCaMP6f and GCaMP7b were excited at 920 nm with a femtosecond-pulsed two photon

laser (Insight DS + Dual, Spectra-Physics) and emitted fluorescence was collected using

a GaAsP PMT (H11706, Hamamatsu). The average power of the laser measured at the

objective ranged between 50–70 mW. A single imaging field of view (FOV) between 400–700
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µm equally in the x/y direction was positioned to collect data from as many CA1 pyramidal

cells or dopaminergic axons as possible. Time-series images were collected through Scanbox

(v4.1, Neurolabware) and the PicoScope Oscilloscope (PICO4824, Pico Technology, v6.13.2)

was used to synchronize frame acquisition timing with behavior

2.5.5 Imaging sessions

The familiar environment was the same environment that the animals trained in. The

experiment protocol for single day imaging sessions is shown in Fig. 1a. Each trial lasted

8–12 min and was always presented in the same order. 6 mice were exposed to Rewarded

(R), Unrewarded (UR) and Re-Rewarded environments (RR), in that order. An additional

6 mice were exposed to only R and UR. Mice on average ran 34 ± 2 (mean ± 95% CI)

laps in the Rewarded condition, at which point, reward was turned off and imaging in

the Unrewarded environment continued (28 ± 4 laps). In the Unrewarded condition, both

reward and auditory cue associated with the reward (solenoid click) were disabled. In n

= 6 animals, reward was then turned on again (Re-rewarded) and mice ran 27 ± 3 laps.

To identify reward cells, the 6 mice that went through R-UR-RR were also introduced to a

Novel-rewarded environment (NR; 31 ± 5 laps). The Novel-rewarded environment (N) had

distinct visual cues, colors and visual textures, but the same dimensions (2 m linear track)

and reward location (end of the track) as the familiar environment. Furthermore, to rule

out the possibility that observed changes in population activity were due to time, mice were

exposed to only the familiar Rewarded environment for 20 min (control, n = 6).

2.5.6 DREADD experimental protocol

To activate hM4D(Gi) receptor and silence VTA dopaminergic neurons, two ligands were

used - Deschloroclozapine dihydrochloride (DCZ, MedChemExpress)(Nagai et al. 2020) and

Clozapine N-Oxide (CNO, Enzo Life Sciences, Inc)(Armbruster et al. 2007). Due to the slow
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kinetics and known off-target effects of CNO, DCZ was used as an additional method for

inactivation(Nagai et al. 2020).

CNO was dissolved in DMSO at a 5 mg/mL concentration and stored at -80°C. On

experiment day, CNO solutions were thawed at room temperature and diluted to 0.6 mg/mL

with saline (details on saline). DCZ was dissolved in DMSO at 5 mg/mL concentration and

stored at -80°C. On experiment day, DCZ solutions were thawed at room temperature and

diluted to 0.02 mg/mL with saline.

Once DREADD or tdTomato (control) injected DAT-Cre mice met training criteria,

they were habituated to the injection process. They were exposed to the familiar rewarded

environment for 10 min. Afterwards, they were removed from the VR set up, placed in the

holding room, and injected with 150 µL of a 12% DMSO/Saline solution. After 30–45 min,

they were placed back in the VR setup and exposed to the familiar rewarded environment

for an additional 10 min. This was repeated for 3–5 days to acclimate mice to the injection

procedure.

The experimental protocol for the first day of DREADD experiments was identical to

the reward manipulation experiments described above. At the end of the imaging session, a

1 minute time-series movie was collected at a higher magnification and then averaged to aid

as a reference frame in finding the same imaging plane on subsequent days. On Experiment

Day 2, mice were first exposed to R for 8–12 min. The mice were removed from the VR

set up and placed in a holding room where they were immediately injected with 150 µL of

a 12% DMSO/ Saline solution. 35 min after injection mice were placed back on the VR

setup and the same imaging plane was found. At the 45 min post injection mark, mice were

again exposed to R for 15–20 min. The procedure for Experiment Day 3 was identical to

Day 2 except mice were injected with 5 mg/kg CNO in a 0.6 mg/mL solution instead of the

DMSO/Saline solution or with 0.1 mg/kg DCZ of a 0.02 mg/mL solution. Due to the faster

kinetics of DCZ, mice were placed back in R after 10 min post injection.
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2.5.7 Histology and brain slices imaging

We checked the VTA expression of hm4D(Gi)-mCherry to confirm adequate coverage of

dopaminergic VTA neurons. Mice were anesthetized with isoflurane and perfused with 10

ml phosphate-buffered saline (PBS) followed by 20 mL 4% paraformaldehyde in PBS. The

brains were removed and immersed in 30% sucrose solution overnight before being sectioned

at 30 µm-thickness on a cryostat. Brain slices were collected into well plates containing

PBS. Slices were washed 5 times with PBS for 5 min then were blocked in 1% Bovine

Serum Albumin, 10% Normal goat serum, 0.1% Triton X-100 for 2 h. Brain slices were then

incubated with 1:500 rabbit-α-TH (MAB318, Sigma Aldrich) in blocking solution at 4°C.

After 48 h, the slices were incubated with 1:1000 goat-α-rabbit Alexa Fluor 488 secondary

antibody (A32731, ThermoFisher) for 2 h. Brain slices were then collected on glass slides and

mounted with a mounting media with DAPI (SouthernBiotech DAPI-Fluoromount-G Clear

Mounting Media, 010020). The whole-brain slices were imaged under ×10 and x40 with a

Caliber I.D. RS-G4 Large Format Laser Scanning Confocal microscope from the Integrated

Light Microscopy Core at the University of Chicago.

2.5.8 Image processing and ROI selection

Time-series images were preprocessed using Suite2p (v0.10.1) (Pachitariu et al. 2017). Move-

ment artifacts were removed using rigid and non-rigid transformations and assessed to ensure

absence of drifts in the z-direction. Datasets with visible z-drifts were discarded (n = 2). For

multi-day datasets (DREADD Experiments), imaging planes acquired from each day were

first motion corrected separately. ImageJ (v1.53, NIH) was then used to align the motion

corrected images relative to each other by correcting for any rotational displacements. The

images across all days were then stitched together and motion corrected again as a single

movie. For population imaging, regions of interest (ROIs) were also defined using Suite2p

(Fig. 2.1a) and manually inspected for accuracy. Baseline corrected ∆F/F traces across
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time were then generated for each ROI and filtered for significant calcium transients, as

previously described (Mark E.J. Sheffield, Adoff, and Daniel A. Dombeck 2017; M. E. J.

Sheffield and Daniel A. Dombeck 2015; Daniel A. Dombeck et al. 2010). Finally, we used

raster plots(Stringer and Pachitariu 2019) to visualize the ∆F/F population activity of neu-

rons across time and across all conditions (Fig. 2.1c and Supp Figs. 2.7 and 2.8). In these

raster plots, neurons were clustered and sorted such that neurons with correlated activity

were next to each other on the vertical axis (https://github.com/MouseLand/rastermap).

For visual clarity, only neurons with at least 2 transients above 10% ∆F/F over the time of

the experiment were included in the raster plot and the 2-D plots were interpolated using a

hanning filter.

For axon imaging, ROIs were first defined using Suite2p and manually inspected for

accuracy. ROIs were then hand drawn over all segments of Suite2p defined active axons

using ImageJ to ensure all axon segments were included for analysis. Fluorescent activity

for each ROI was extracted and highly correlated ROIs (Pearson correlation coefficient ≥

0.7) were combined and fluorescent activity for the combined ROI was extracted. Baseline

corrected ∆F/F traces across time were then generated for each ROI using a larger sliding

window of 2000 frames.

2.5.9 Licking behavior

Licking data was collected using a capacitive sensor on the waterspout. Well trained mice

showed a higher proportion of licks (pre-licking) in the region immediately preceding the

reward in R (Supp Fig. 2.6). This anticipatory licking behavior continued for a few laps in

UR (5 ± 1 lap) and decayed exponentially (Fig. 2.1e) except for some animals (4/12) that

randomly licked in later laps. To calculate anticipatory licking in UR, we defined a reward

zone which started from the average track position at which the animal started pre-licking

in R and ended after teleportation. We calculated the presence of any licks within this zone
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to quantify anticipatory licking in UR in the absence of a reward. The lap where pre-licking

stops in UR was then defined as the lap following 2 consecutive laps with an absence of these

licks.

2.5.10 Position decoding

We trained a naive Bayes decoder (scikit-learn, v1.0.2, Python) to predict the spatial location

of the animal on the linear track from population activity within each mouse. Population

activity consisted of ∆F/F traces from all identified cells organized as NxT, where N is

number of cells and T is the total number of frames from an imaging session. Each lap

traversal on the 2 m track was discretized into 40 spatial bins (each 5 cm wide). Time periods

where the animal was stationary were filtered out (speed < 1cm/s) and the decoder was only

trained on frames belonging to running periods > 1 cm/s. Running behavior and population

activity before and after filtering is shown in Supp Fig. 2.8 and Fig. 2.3c, respectively. To

ensure decoder performance was not confounded by teleportation, we considered the end of

the track as continuous with the beginning of the track so that the topology of the track was

treated as a circle.

To assess how well a decoder trained in R was able to decode the animal’s spatial location

in other conditions (Fig. 2.1d–g), the decoder was trained on the first 60% of laps in R. The

resulting model was evaluated on the remaining laps in R and on all laps in UR and RR

(Fig. 2.1d). Quality of fit was assessed by calculating the coefficient of determination (R2)

between the actual location of the animal and the location predicted by the decoder. Decoder

error was quantified as difference in actual and decoded position in cm (Fig. 2.1g). We also

trained and tested decoders within each condition in each mouse (Supp Fig. 2.18). Here, to

assess decoder performance and to account for population activity changes across time, we

employed a cross-validation approach by sliding the tested laps (20% of laps) by one each

time and training on the remaining laps (80% of laps). Furthermore, to account for different
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numbers of laps across conditions, we down sampled each condition to match the condition

with the least number of laps.

2.5.11 Decoder performance with different behavioral parameters

Licking behavior To analyze the relationship between decoder error and licking, we iden-

tified the lap when licking had stopped in UR when 2 consecutive laps had no licks, and

then divided the data into laps before licking stopped (REhigh, before licking stops) and

laps after licking stopped (RElow, after licking stops). We found that if we instead used

different criteria to identify when licking had stopped, i.e., the first lap with no licks, or 4

consecutive laps with no licks, our results were unaffected. This was also true if instead of

defining when licking stopped in UR we simply grouped laps together based on the presence

or absence of licks (Supp Fig. 2.9). However, with 6 consecutive laps with no licks, our re-

sults differed (Supp Fig. 2.9). We obtained the lap wise decoder fit (R2) and lick frequency

in UR in each animal and ran a rolling average with a sliding window of 3 laps (Fig. 2.1e).

The average decoder fit across laps formed an S-shaped curve. We fit this mean R2 to a

reverse Boltzmann Sigmoid curve (scipy.curve_fit, v1.7.3, Python, Fig. 2.1e, coefficient of

determination of curve fit with mean decoder = 0.94). To calculate the inflection point at

which the rate of decrease in R2 reaches the maximum, we calculated the first point where

the second derivative of the fit reached 0 (lap 10, Fig. 2.1e).

Time taken to complete a lap This was calculated as the total time (in seconds) taken

by the animal to run from 0 to 200 cm. We assessed if there was any correlation between

the decoder fit and the time the animal took to complete a lap. To do so, we created a

histogram of the distribution of time taken to complete a lap in R and UR (Supp Fig. 2.10).

For each animal, we divided the laps in UR into those that overlapped with the histogram in

R (Matched velocity laps) and those that did not (Slower velocity laps). The average time

taken to complete a lap in the matched laps was 7.34 ± 0.46 s in R and 7.41 ± 0.40 s in UR.
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The slower speed laps took 19.99 ± 1.85 s. Most of the laps belonged to the Matched speed

laps and consisted of 70% of the total laps run by all animals in UR. Results are shown in

Supp Fig. 2.10.

Engagement with VR-approach behavior In R, mice slowed down as they ap-

proached the end of the track. We postulated that if mice were continuing to pay attention

to where they were in VR when reward was removed, they would display a similar approach

behavior. As a control, we first recorded running behavior of trained animals in the dark (n

= 6), without any visual cues, to ensure that well trained mice were not displaying a stereo-

typical behavior independent from VR. To assess approach behavior, instantaneous velocity

was calculated at each point along the 2 m track. This velocity trace was then smoothed by

averaging it over 5 cm bins. In the dark, there were no signs of stereotyped behavior that

looked like approach behavior (Supp Fig. 2.11a). The degree of this approach behavior at

the end of the track was calculated as the ratio between lap velocity in the middle (100–150

cm) and end (175–200 cm) of the track as indicated above the traces in each condition. On

average (mean ± 95% CI), this ratio was 1.01 ± 0.03 in the Dark, 1.3 ± 0.02 in the Rewarded

condition and 1.22 ± 0.02 in the Unrewarded condition. Engaged laps in each animal after

licking stops (RElow) were then defined as laps where the approach ratio was greater than

or equal to mean /pm1.5 ∗ standarddeviation of the ratio in the Rewarded Condition (rest

were defined as disengaged laps). In total, number of laps in each condition were obtained

as follows: REhigh:Engaged = 90, RElow:Engaged = 170, RElow:Disengaged = 74. Mean ±

95% CI approach ratio in each condition: REhigh:Engaged = 1.26 ± 0.04, RElow:Engaged

= 1.3 ± 0.02, RElow:Disengaged 1.02 ± 0.03. To ensure matched behavior in Rewarded and

RElow conditions and that the disengaged laps do not skew our results, only engaged laps

were extracted from animals for further analysis. Only one animal continued to randomly

pre-lick at laps after our definition of lick stop. Of those laps (n = 10 laps), 5 were classified

as engaged and 5 as disengaged. Reanalyzing the data excluding these laps did not change
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the decoder error. n = 3/6 animals that went through the R-UR-RR paradigm had enough

engaged laps (>12) to define place fields and their results are displayed in Figs. 2.2 and 2.3.

(see Supp Figs. 2.14 and 2.16 for all animals).

Engagement with VR-pupil measures To obtain images with dark pupils and high

contrast around the borders of the pupils, pupil images were inverted, and their bright-

ness/contrast was adjusted. Pupil area, pupil center of mass (COM), and blinking area were

obtained using FaceMap (v0.2.0) (Stringer and Pachitariu 2019). Pupil data during blinking

periods (frames where blinking area < mean – twice the standard deviation of the blink-

ing area) was removed and the pupil data was interpolated to match the 2-photon imaging

frame rate (30 fps). The pupil data was filtered to exclude time periods where the animal

was immobile (speed < 1 cm/s).

Pupil area correlation To obtain a pupil area trace for each lap, we binned the track

into 40 bins (5 cm wide) and calculated the mean pupil area of each bin. For each mouse,

the average pupil area of each bin across all laps in the familiar rewarded condition was

calculated and served as a template pupil area trace. The pupil area correlation was then

measured as the Pearson correlation coefficient between the template pupil area trace and

the lap’s pupil area trace. High pupil area correlation laps were defined as laps whose pupil

area correlation >= mean− 1.5 ∗ std of the pupil area correlation for rewarded laps.

Mean eye movement Eye movement for each frame in a condition was calculated as

the difference between the pupil’s center position and the mean center position of the pupil

during the condition. The mean eye movement for each lap was then calculated.

Blinking ratio Defined as the number of frames defined as blinking periods divided by

the total number of frames in each lap.

Freezing ratio Defined as the number of frames where the animal was immobile (speed

< 1 cm/s) divided by the total number of frames in each lap.
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2.5.12 Defining place fields

Place fields were identified as described in previous studies (Mark E.J. Sheffield, Adoff, and

Daniel A. Dombeck 2017; M. E. J. Sheffield and Daniel A. Dombeck 2015; Daniel A. Dombeck

et al. 2010) with a few key differences. The 2 m track was divided into 40 position bins (each

5 cm wide). The running behavior of the animal was filtered to exclude time periods where

the animal was immobile (speed < 1 cm/s). Filtering was done to ensure that place cells

were defined only during active exploration. In UR, only RElow frames after the licking

stopped (see section on “Licking behavior”) were included for place cell analysis. Separately,

RElow:Engaged laps only were included for place cell analysis (Figs. 2.2 and 2.3, see “Animal

engagement with VR” section). Place fields across the entire track were extracted if they

began firing on the track (see clipped cells at the end of the track in Fig. 2.2b). Cells that

began firing at or after reward delivery and during teleportation were excluded from this

analysis (although see Reward cells below). Extracted place fields satisfied the following

criteria and the same criteria was used for all conditions and all mice: 1. Their width was

> 10 cm (except for fields that are clipped at the end of the track). 2. The average ∆F/F

was greater than 10% above the baseline. 3. The average ∆F/F within the field was >4

times the mean ∆F/F outside the field. 4. The cell displayed calcium transients in the field

on >30% of laps. 5. The rising phase of the mean transient was located on the track. 6.

Their p-value from bootstrapping was <0.0575. Multiple place fields within the same cell

were treated independently.

2.5.13 Place field parameters

To calculate the various place field parameters, we binned the track into 40 bins (5 cm wide)

and measured the mean ∆F/F of each bin. The data of each place field was a Lx40 matrix

where L is the number of laps traversed by the animal. For all measures other than out-

of-field firing and spatial correlation, transients outside the defined place field region were
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removed.

Center of mass(COM) The COM from all traversals L was calculated as described

in (M. E. J. Sheffield and Daniel A. Dombeck 2015). Briefly, COM for each traversal was

calculated as,

COML =

∑
i Fixi∑
i Fi

(2.1)

where F is the ∆F/F in each bin i and xi is the distance of bin i from the start of the track.

Reliability Reliability of a place cell is the consistency with which it fires at the same

location across multiple lap traversals. To calculate this, we computed the Pearson correla-

tion between each lap traversal to obtain an L × L matrix. To obtain the reliability index,

the average of this correlation matrix was multiplied by the ratio of number of laps with a

significant calcium transient within the field and the total number of laps. The reliability

index is 1.0 if the cell fires at the same location in each lap and 0.5 if it fires at the same

position but only in half the laps, and so on.

Out/in place field firing ratio This was computed as the ratio between the mean

∆F/F in bins outside the place field and the mean firing in bins within the place field.

Width Width of the place field was computed as the distance between the spatial bin at

which the mean place field rose above 0 and the spatial bin when it decayed back to 0. For

place fields at the end of the track that were clipped the end of the place field was considered

as the end of the track.

Firing intensity Firing intensity of the place field was calculated as the peak ∆F/F of

the mean place field

Population vector correlation To determine level of similarity in spatial representa-

tions from lap-to-lap in the different conditions, population vector (PV) correlations were

calculated. For each of the 40 spatial bins, population vectors were defined as the mean rate

of firing for each place cell in that bin. The correlation between the population vector in

one lap versus another lap was then calculated and the correlations were averaged over all
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positions (Fig. 2.2a).

K-means clustering K-means clustering was performed on the calculated lap-wise pop-

ulation vectors. The elbow method was used to determine the optimal number of clusters.

For all animals, the method determined this to be 3. K-means clustering was performed

1000 times. Each time, the Rewarded cluster was determined as the cluster ID to which

most rewarded laps belong to. The probability of all laps (in R, UR and RR) belonging to

the Rewarded cluster was then calculated over the iterations (Fig. 2.2a).

Spatial correlation with Rewarded condition To calculate the consistency of firing

of the place cells defined in R across different conditions, we calculated the Pearson corre-

lation coefficient between mean place cell activity defined in R and the mean of the L × 40

matrix of the same cells in other conditions. The within-session correlation was calculated

from control animals (n = 6 mice). The control rewarded condition (the duration control

mice were in this condition matched experimental mice that experienced R-UR-RR) was di-

vided into two halves and the correlation coefficient was calculated between the mean place

cell firing in the two halves.

Place field parameters in DREADD experiments All place cells and associated

parameters were calculated and quantified as described above for R-UR-RR experiments.

2.5.14 Reward over-representation

To compute the density of place cells along the track, the COM of all place fields in all

animals were fitted to a gaussian distribution (mean ± standard deviation of the gaussian

distribution in cm in different conditions, R: 114 ± 55, UR: 102 ± 54, RR: 112 ± 58, N: 108

± 53, DREADD Experiments: R: 110 ± 55, UR: 103 ± 54, Before Saline: 113 ± 55, After

Saline: 114 ± 54, Before CNO: 113 ± 57, After CNO: 109 ± 56, Before DCZ: 113 ± 56, After

DCZ: 106 ± 55) and a uniform distribution to extract regions of place cell overrepresentation

(Figs. 2.3d–f and 2.4k–m and Supp Figs. 2.16c, 2.20g, 2.22e, 2.23e). To compare changes in
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place field density across conditions between the middle of the track (50–150 cm) and end

of the track (150–200 cm), we divided the middle of the track into 50 cm bins and averaged

place cell density across the bins.

2.5.15 Reward cells

Reward cells were defined as described in24. Briefly, a cell was defined as a reward cell if it

fired at the reward zone on the track (40 cm before reward) and around reward delivery (2

seconds before and after reward delivery) in both R and NR. The reward zone on the track

was chosen based on the area of high place field density before the reward in R and N (Supp

Fig. 2.19a). In total, we found 43 such cells from 6 animals, both on track and around

reward delivery (Supp Fig. 2.19a). These cells constituted 0.9% of all active cells recorded.

To compare reward cell firing across all conditions, we computed the lap wise firing of these

cells in time around reward delivery (Supp Fig. 2.19). Their COM in time around reward

delivery, reliability and correlation with R was then calculated similar to place cells.

2.5.16 Axon imaging analysis

To characterize the activity of VTA axons, their activity was divided into time and positional

bins. For positional bins, the 2 m track was divided into 40 position bins (each 5 cm wide)

and the mean fluorescent activity in each bin for every lap was calculated. For time bins, we

aligned each lap with the reward delivery and divided the lap into 40 time bins. The average

time to reward was 11.9 s (± 0.25 s, SEM) and the time after reward was 2 s. Therefore, to

align each laps reward delivery and maintain roughly equal time bins, the time before reward

was divided into 34 time bins and the time after reward was divided into 6 time bins. To

account for potential shifts in baseline fluorescence in both position and time binned data,

the binned fluorescence data was subtracted by the minimum bin fluorescence for each lap.

The binned data was then normalized by dividing by the maximum bin fluorescence for each
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mouse and pooled across mice. Finally, the average binned fluorescence was calculated for

each task condition.

DA ramp slope and max To characterize the ramping activity observed in VTA axons,

the maximum and slope of the time binned fluorescence data were calculated for each lap.

The maximum was defined as the maximum bin value of the time binned fluorescence data

for each lap. The maximum values for each lap were then normalized by dividing by the

average maximum value in the Rewarded condition for each mouse. To calculate the slope of

the curve in the Rewarded condition, the maximum value near the end of the track (within

15 bins of lap end) and the minimum value near the beginning of the track (within 25 bins of

lap start) were determined for each lap. In all other experiment conditions, the range of bins

used to find the maximum and minimum values were restricted to the nearest and furthest

bins where the maximum and minimum were found in the Rewarded condition for each

mouse. A line was then fit to the data points between the defined maximum and minimum

values using the matlab fitlm function. The slope of this line was found and normalized by

dividing by the average slope in the Rewarded condition for each lap. The slope*max was

calculated as the product of the slope and maximum values for each lap and was normalized

by dividing the average slope*max in the Rewarded condition for each mouse. The average

maximum, slope and slope*max in each experimental condition were calculated for each

mouse.

Velocity encoding To investigate velocity encoding in a VTA axon, we aligned the

activity of the axon to motion initiation. Motion epochs were identified as periods where the

animal’s velocity ≥ 1 cm/s for at least 1 s. Motion epochs were aligned to motion initiation,

or the first frame where velocity ≥ 1 cm/s. The ∆F/F data and velocity 2 s prior to motion

initiation and 8 s after motion initiation were collected for each motion epoch. Velocity was

normalized by dividing by the maximum velocity of each motion epoch. The average ∆F/F

and velocity of all motion epochs was calculated for each experiment condition.
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2.5.17 Statistics

For data distributions, a Shapiro–Wilk test was performed to verify if the data was normally

distributed. If normality were true, where applicable, a paired or unpaired Student’s t

test was used. For non-normal distributions, a paired Wilcoxon signed rank test or an

unpaired Mann–Whitney U-test was used. To compare between distributions, a two-tailed

Kolmogorov–Smirnov (KS) test was used. For samples with five data points or less, only

a non-parametric test was used. Multiple comparisons were corrected with Bonferroni post

hoc. Throughout the manuscript, boxplots are plotted to display the full distribution of

the data. The box in the boxplot ranges from the first quartile (25th percentile) to the

third quartile (75th percentile) and the box shows the interquartile range (IQR). The line

across the box represents the median (50th percentile). The whiskers extend to 1.5*IQR on

either sides of the box and anything above this range is defined as an outlier. Significance

tests were performed with and without outliers. P-values calculated without outliers have

been displayed in the figure panels. To model the probability distribution in the datasets

and get an accurate idea of the data shape, a kernel density estimate was fitted to the

data distribution and is shown alongside histograms. Cumulative probability distribution

functions were compared using a KS test. We employed estimation statistics to ascertain the

level of difference between distributions by using the DABEST (v0.3.1, Data Analysis with

Bootstrap-coupled Estimation) package82. Estimation plots display the median difference

between two conditions against zero difference, with error bars displaying 95% confidence

intervals of a bootstrap generated difference (5000 resamples). A kernel density fit (shaded

curve) on the resampled difference is also displayed alongside. This difference was compared

against zero. Correlations were performed using Pearson’s correlation coefficient. Data

preprocessing and analysis was done on MATLAB (Mathworks, Version R2018a) and Python

3.7.4 (https://www.python.org/).
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2.5.18 Figure graphics

All figure graphics including Figs. 2.1a, b, 2.4b, c, and 2.5a and Supp Figs. 2.18a and 2.20a

were created using BioRender.com.

2.5.19 Reporting summary

Further information on research design is available in the Nature Portfolio Reporting Sum-

mary linked to this article.

2.6 Data availability

Raw imaging data are extremely large and not feasible for upload to an online repository but

are available upon request at sheffield@uchicago.edu. Processed source data for all figures

and associated statistical analysis are provided with the paper. Source data are provided

with this paper.

2.7 Code availability

Scripts used for data analysis are available on Github

(https://github.com/seethakris/HPCrewardpaper).
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2.8 Supplementary

2.8.1 Supplementary figures

Figure 2.6: Pre-emptive licking is displayed by mice for a few laps before a learned
reward location in a familiar VR environment after reward is removed. Mean
number of licks around reward delivery (time = 0) in R (blue) and UR divided into laps with
licking (REhigh, orange) and laps without (RElow , red). Number of licks were calculated
for each mouse on each lap and were binarized as 1 or 0 depending on if the animal licked
or not in the given time bin. In R, animals display preemptive licking in anticipation of the
reward, which was present in REhigh and absent in RElow. Shading represents s.e.m. (n =
12 mice).
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Figure 2.7: Population activity remains stable with time. a, i: Raster representation
of population activity in 1 mouse traversing the rewarded environment for 15 minutes (a
similar amount of time and number of laps over which experimental mice were switched
between R and UR). ii: Mean activity of cells above, iii: mouse behavior, iv: example cell.
Note the relative stability of the population activity compared to Fig 2.1 b. b, Bayesian
decoder trained on activity on initial Rewarded laps to predict animal’s position on the
other laps. Decoder R2 true and predicted position in each of the tested laps are shown. c,
Tested laps were divided into two halves and boxplots display median R2 of true vs predicted
position for each mouse in each half of the session (n = 6 mice). Median: 1st half of session
= 0.95, 2nd half of session = 0.90. P-value was calculated using a two-sided paired t-test.
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Figure 2.8: Population activity without filtering laps for good running behavior.
Panels ai-v is the same dataset as Fig. 2.1c but without removing periods where the mouse
was stationary. i: Rasterplot representing fluorescence changes (∆F/F ) of cells across time.
Cells (y-axis) are arranged with the most correlated cells next to each other. ii: Mean ∆F/F
of the cells in (i). iii: Mouse licking behavior. iv: Mouse track position. v: ∆F/F from an
example cell. Most laps look similar to the filtered version shown in Fig 2.1c because mice
run in VR consistently even when reward is removed. Most stationary periods are found at
the start of the track before the mouse begins its traversal of the environment. Unfiltered
laps are shown in (iv).
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Figure 2.9: Change in decoder performance in the unrewarded condition after
licking stops by definition of when licking stops. a-e, Boxplots show distribution
of mean decoder R2 between true versus predicted position for each mouse (circles) in the
tested laps in R, UR, RR. The decoder was trained on initial laps in R and tested on
remaining laps. UR laps are separated by before and after licking stops (REhigh, RElow).
The definition of the lap at which licking stops varies in each panel as indicated in the title.
P-values were obtained using a two-sided paired t-test. Bonferroni post-hoc was used for
multiple comparison correction. a-e, Median: R = 0.96, RR = 0.80. a, Median: REhigh =
0.93, RElow = 0.69 b, REhigh = 0.91, RElow = 0.69 c, REhigh = 0.89, RElow = 0.70 d,
REhigh = 0.87, RElow = 0.70 e, REhigh = 0.92, RElow = 0.70. For all further analysis,
the lap when the animal stops licking was defined as the 2nd consecutive non-licking lap.
(f) Decoder R2 for each lap in each mouse (circles) in different conditions (Number of laps:
R = 399, REhigh = 90, RElow = 244, RR = 121). Mean pm standard deviation is shown
alongside (Mean (standard deviation): R = 0.97 (0.046), REhigh = 0.86 (0.14), RElow =
0.56 (0.34), RR = 0.79 (0.19). In all panels, Bootstrapped mean differences (∆) with 95% CI
(error bar) are shown at the bottom. X-axis indicates the comparisons made. In all panels,
n = 12 mice in R and UR conditions and n = 6 mice in RR.
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Figure 2.10: Diminished decoder performance in the unrewarded condition is not
due to changes in running behavior. a, Histogram of lap speed defined as the time
taken to complete a lap (in seconds) on the 200 cm track in R and UR (n = 12 mice, total laps
in R = 399, UR = 334). Curves are kernel density estimates on the distribution. 70% of the
laps in UR had lap speeds that matched lap speeds in R (matched speed laps = 233, slower
speed laps = 101). Lap speed in seconds Mean [95% CI]: R = 7.34 [6.88 7.80], Matched speed
= 7.4 [7.01 7.78], Slower speed = 20.00 [18.14 21.84] b, Scatter plot between lap speed and
decoder R2. Each circle is a lap (data pooled from all mice). R2 was derived by fitting the
data to a linear regression line y = 10 + 2.3 ∗ x, r and p-value were derived from Pearson’s
correlation coefficient. c, (left) Boxplot shows distribution of decoder R2 in each mouse
(circles, n = 12 mice) with running speed. (right) Bootstrapped mean differences (∆) with
95% CI (error bar). X-axis indicates the comparisons made. Median: R = 0.96, Matched
speed = 0.76 , Slower speed = 0.71. P-values were obtained using a two sided Wilcoxon
signed rank test, Bonferroni post hoc was done to correct for multiple comparisons.
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Figure 2.11: Decoder fit when reward expectation is low is not dependent on the
degree of engagement of the animal with the VR. Two methods were used to calculate
the engagement of animals with the VR in RElow laps; the amount of slowing down towards
the end of the track (a-b) and pupil area across track length (c-f). a, Instantaneous velocity
for each lap from 12 mice in R (n = 399 laps, blue traces) and UR (n = 334, brown traces)
and 6 mice in Dark condition (n = 226, gray traces). The velocity on each lap was normalized
to its peak. Mean velocity from all laps is shown in black. The degree of approach behavior
at the end of the track was calculated as the ratio between lap velocity in the middle (100-
150 cm) and end (175-200 cm) of the track as indicated above the traces in each condition.
Engaged laps in each animal were then defined as laps where the ratio in RElow was greater
than or equal to mean±1.5∗ standarddeviation of the ratio in R (rest are disengaged laps).
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Figure 2.11, continued: b, Boxplot shows distribution of decoder R2 in each mouse
(circles, n = 12 mice) with degree of engagement (P-values, two-sided Wilcoxon signed rank
test). Bootstrapped mean differences (∆) with 95% CI (error bar) are shown at the bottom.
X-axis indicates the comparisons made.c, Frame from a video recording of the mouse’s
face (left), Inverted and intensity adjusted (middle), extracted pupil image circled in green
(right). d, Example changes in pupil area (bottom) with track position (top) in one animal.
e, Normalized pupil area from n = 5 mice in R (n = 237 laps, blue traces) and UR (n
= 168 laps, brown traces). The Pearson correlation coefficient between the position binned
pupil area and the mean position binned pupil area in the Rewarded condition for each
mouse. Engaged laps in each animal were defined as laps where the correlation coefficient
was greater than or equal to the mean correlation coefficient of laps in the Unrewarded
condition (the remaining laps are defined as disengaged laps). f, Same as b but with the
degree of engagement laps derived from pupil data (P-values, twosided paired t-test, n = 6
mice). Decoders in b, f were trained as in Fig. 2.1.
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Figure 2.12: Decoder performance and engagement in three example animals. a, c,
e, (Top) Animal’s track position in the unrewarded condition. Laps are colored by degrees
of engagement as calculated by the amount of slowing down towards the end of the track.
(Bottom) Instantaneous velocity for each lap in the different conditions. The velocity on
each lap was normalized to its peak. Mean velocity from all laps is shown in black for each
condition.
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Figure 2.12, continued: b, d, f, (Top) Boxplots show distribution of decoder R2 in
each lap (circles) for the different conditions. P-values were obtained using a Paired t-test,
Bonferroni post hoc was done to correct for multiple comparisons. (Bottom) Bootstrapped
mean differences (∆) with 95% CI (error bar). X-axis indicates the comparisons made.
Number of laps: Panel B, Rewarded: 19 REhigh Engaged: 9, RElow Engaged: 31, RElow
Disengaged: 20. Panel D, Rewarded: 20 REhigh Engaged: 6, RElow Engaged: 13, RElow
Disengaged: 12. Panel F, Rewarded: 20 REhigh Engaged: 6, RElow Engaged: 21, RElow
Disengaged: 8

Figure 2.13: Changes in behavior do not correlate with changes in pupil area.
Pupil area correlation was defined as the Pearson correlation coefficient between the mean
position binned pupil area in R and the position binned pupil area of each lap in UR. a,
Scatterplot between pupil area correlation and mean eye movement. b, Scatterplot between
pupil area correlation and mean velocity normalized to max velocity. c, Scatterplot between
pupil area correlation and blinking ratio. d, Scatterplot between pupil area correlation and
freezing ratio. For all panels, each circle is a lap (n = 56 laps pooled from 5 mice). R2 was
derived by fitting the data to a linear regression line y = 10 + 2.3 ∗ x, r and p-value were
derived from Pearson’s correlation coefficient.
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Figure 2.14: Place cell dynamics in animals with engaged and disengaged laps. a,
Place fields defined in R plotted across all conditions in n = 6 mice. Activity of each place
cell was normalized to peak in R and sorted by their center of mass along the track. b,
Boxplots show distribution of place field spatial correlation for cells in (a) (dots) within R
(blue) and between R and other conditions (n = 1024 place cells). P-values were obtained
using a twosided paired t-test. (Bottom) Bootstrapped mean differences (∆) with 95% CI
(error bar). X-axis indicates the comparisons made. c, (Top) Same data, averaged by track
position. Shading indicates s.e.m. (Bottom) Average correlation binned by track position
indicated by gray lines in the top panel.
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Figure 2.14, continued: S: Start of the track, M: Middle of the track, E: End of the track.
* indicates significant p-values (two-sided paired t-test, p < 0.01) obtained by comparing
R (blue) with other tasks at each position. d-f, .Same plots as a-c but with n = 12 mice
and 2368 place cells. g Fate of place cells identified in different conditions (n = 6 mice). h
Percentage of place cells by their fate in RElow in each animal (circles, n = 6 mice). Error
bars indicate 95% confidence intervals. Percentage was calculated by number of cells in each
fate type divided by the total number of unique place cells in R and RElow

Figure 2.15: Place fields across time in a rewarded condition. Control mice (n =
6) were exposed only to the familiar rewarded condition for 15 minutes. The session was
divided into two and place fields from the 2 halves were analyzed for changes in place field
parameters. a, Place fields defined in the first half plotted across the two halves. Place
cells were sorted by their center of mass and normalized to their peak in the first half. b,
Boxplots show distribution of place field spatial correlation between the two halves for cells
in a (circles).
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Figure 2.16: Place field parameters in animals with engaged and disengaged laps
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Figure 2.16, continued: a, Place fields defined and sorted in each condition pooled from
all mice (n = 6). Each cell’s activity normalized to its peak and cells are sorted by their
center of mass along the track. b, Place cell parameters in each condition are displayed
as boxplot of average per animal (left), Bootstrapped mean differences (∆) with 95% CI
(left, inset), cumulative histogram (middle) and across track location (right). P-values were
calculated using two sided paired t-test. Medians: Reliability - R = 0.48, RElow = 0.26, RR
= 0.44. Out/In Field Firing - R = 0.10, RElow = 0.19, RR = 0.13. Place field width (cm)
- R= 50.21, RElow = 54.96, RR = 45.71. Firing Intensity - R = 0.34, RElow = 0.26, RR =
0.28. All place field calculations in RElow condition were done on engaged and disengaged
laps.c, Distribution of place field center of mass (COM) locations in each condition pooled
from all mice (n = 12 in R and UR, n=6 in RR). Plots show observed density (gray line),
uniform distribution (gray shade) and Gaussian distribution of place field density (color).
P-values (two sided t-test) were obtained by calculating the place field distribution with the
uniform distribution d, Percentage of place fields in the middle of the track versus end of the
track in each animal (circles). e, Difference between end of track and middle of track place
field percentages in each animal (circles). P-values were obtained using a two sided paired
t-test. Dashed line in d and e indicates the percentage expected from a uniform distribution
across the track. In all panels, n = 12 mice in R and RElow, n = 6 mice in RR. All place
field calculations in RElow condition were done on Engaged and Disengaged laps
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Figure 2.17: Place field parameters in control animals
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Figure 2.17, continued: a, Place fields defined and sorted in two halves of the rewarded
condition (n=6 mice). Each cell’s activity normalized to its peak and cells are sorted by their
center of mass along the track. b, Place cell parameters in each condition are displayed
as boxplot of average per animal (left), cumulative histogram (middle) and across track
location. Shading indicates s.e.m. (right). P-values were calculated using two sided paired
t-test. Medians: Reliability - First half = 0.50, Second half = 0.58. Out/In Field Firing -
First half = 0.09, Second half = 0.10. Place field width (cm) - First half = 52.03, Second half
= 49.52. Firing Intensity - First half = 0.42, Second half = 0.47. c, Distribution of place
field center of mass (COM) locations in the two halves pooled from all mice. Plots show
observed density (gray line), uniform distribution (gray shade) and Gaussian distribution of
place field density (color). d, Percentage of place fields in the middle of the track versus
end of the track in each animal (circles, n=6 mice). P-values were obtained using two sided
paired t-test. e, Difference between end of track and middle of track place field percentages
in each animal (circles, n=6 mice).
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Figure 2.18: Place field characteristics in a novel environment get better over time.
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Figure 2.18, continued: a, Experiment protocol (n = 6 mice). Bottom image created
with BioRender.com. b, Average pre-emptive licking in early (first 12) versus late (last 12)
laps in the novel-rewarded environment. Error bars indicate 95% CI. Gray circles indicate
data from each animal. Licking was calculated similar to Supp Fig 2.6. c, Decoders were
trained separately on each condition and were cross-validated. Boxplots display decoder R2

calculated on the early and late laps in each condition and each mouse (gray circles). d-e,
Boxplots of place cell reliability and out/in field firing ratio in early vs late laps in each
session and in each animal (circles) . P-values were obtained using a two sided paired t-test.
In all panels, n=6 mice were used.
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Figure 2.19: Reward cell encoding is disrupted in the unrewarded condition. a,
(Top left), center of mass (COM) of all cells with place fields (circles) in both R and Novel
rewarded conditions from 6 mice (n = 273 cells). In both environments, reward was given
at the end of the track and cells that fired around the reward were considered reward cells
(30 cells, red circles).
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Figure 2.19, continued: a, (Top right), density of COMs between the two conditions,
spatially binned and smoothed (width 25 cm). Red lines are drawn around the defined
reward zone. (Bottom left), time of peak firing of cells from reward delivery. Cells that
fired 1.5 seconds before and after reward delivery in both R and Novel conditions were also
identified as reward cells (13 cells). Peak firing time of the cells that were identified on the
track (top) are colored in red. b, (Top), distribution of place field center of mass (COM) in R
with and without reward cells. Plots show observed density (gray line), uniform distribution
(gray shade) and Gaussian distribution (color). (Bottom), percentage of place fields in the
middle versus end of the track. P-values were obtained using a two sided paired t-test (n
= 6 mice). c, (Left), mean activity of identified reward cells from time of reward delivery
(dashed line). Cells (n = 43 reward cells) were sorted by their time of peak firing in R and
plotted in the same order in the other conditions. Cells were normalized to their peak firing
in R. (Right), boxplots show distribution of correlation coefficient of the same cells (dots)
within R and between R and other conditions. P-values were obtained using a two sided
paired t-test. d, Example of two reward cells. Their lap-by-lap activity is shown on top and
average activity at the bottom. Dashed line indicates the time of reward delivery. Red line
in UR indicates the lap when the animal stops licking. e, Trial-by-trial reliability of reward
cells across conditions (See methods) as a cumulative distribution function (left, P-values:
two tailed KS-Test) and average per animal (dots, right, n=6 mice). P-values for boxplot
distributions in c and e were obtained using a two sided paired t-test.
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Figure 2.20: Control mice expressing tdTomato in VTA neurons. a, Schematic
representation of injection procedure (image created with BioRender.com). Control animals
(n = 3 mice) went through the exact same protocol as experimental animals. b, Repre-
sentative coronal brain section from 1 of 3 mouse brains expressing tdTomato in VTA. c,
Distribution of lap speed (m/s) in control animals before and after a manipulation. P-values
were obtained using a two sided t-test. d, (Top) Boxplots show distribution of place field
spatial correlation between activity of place cells, conditions correlated are displayed on the
x-axis (circles). Place cells were defined in the former condition P-values were obtained using
a two tailed KS-test. (Bottom) Bootstrapped mean differences (∆) with 95% CI (error bar).
X-axis indicates the comparisons made.
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Figure 2.20, continued: e, (Top) Same data, averaged by track position. Shading
indicates s.e.m. (Bottom) Average correlation binned by track position indicated by gray
lines in the top panel. S: Start of the track, M: Middle of the track, E: End of the track.
* indicates significant p-values (two tailed KS-Test, p < 0.01) obtained by comparing UR
(red) with other tasks at each position. For d, e, Number of place cells: R/RElow. =
512, Before Saline/AfterSaline = 532, Before CNO/After CNO = 423, Before DCZ/After
DCZ = 363. f, Place cell parameters (reliability - first two panels, out/in field firing ratio
- last two panels) displayed as boxplot of average per animal and cumulative histogram (P-
values, two tailed t-test). g, (left, middle) Distribution of place field center of mass (COM)
locations in each condition pooled from all mice. Plots show observed density (gray line),
uniform distribution (gray shade) and Gaussian distribution of place field density (color).
P-values (two tailed t-test) were obtained by calculating the place field distribution with the
uniform distribution. (right) Difference between end of track and middle of track place field
percentages in each animal (circles, n=3 mice). Dashed line indicates the difference expected
from a uniform distribution across the track.

Figure 2.21: DCZ and CNO administration decreases animals’ running speed.
a, Behavior of an example animal. b, Distribution of lap speed (m/s) in all animals .
Mice showed decrease in lap speed after administration of deschloroclozapine (DCZ) and
clozapine-N-oxide (CNO) (n = 5 mice, Saline; n = 6 mice, DCZ, CNO, p-values obtained
using two tailed t-test). c, Instantaneous velocity for each lap calculated similar to Fig 2.2.
d, Mean number of licks around reward delivery (time = 0) in each condition. Licking was
calculated similar to Supp Fig 2.6. Shading represents s.e.m.
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Figure 2.22: Bilateral inactivation of VTA using CNO. a, Place fields defined in the
Before CNO and plotted across conditions. Activity of each place cell was normalized to peak
in the Before conditions and sorted by their center of mass along the track. b, (Top) Boxplots
show distribution of place field spatial correlation between activity of place cells (circles) in
Rewarded/RElow (left), Before Saline/AfterSaline (middle) and Before CNO/After CNO
(right, n=1498 place cells). Place cells were defined in the former condition. Pvalues were
obtained using two tailed KS-test. (Bottom) Bootstrapped mean differences (∆) with 95%
CI (error bar). X-axis indicates the comparisons made. c, top) Same data, averaged by track
position. Shading indicates s.e.m. (bottom) Average correlation binned by track position
indicated by gray lines in the top panel. S: Start of the track, M: Middle of the track, E:
End of the track. * indicates significant p-values (two tailed KS-test, p < 0.01) obtained by
comparing UR (red) with other tasks at each position. d, Place cell parameters in each
condition are displayed as boxplot of average per animal (left, n=6 mice) and cumulative
histogram (right). P-values were obtained using two tailed paired t-test.
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Figure 2.22, continued: e, (left) Distribution of place field center of mass (COM)
locations in each condition pooled from all mice. Plots show observed density (gray line),
uniform distribution (gray shade) and Gaussian distribution of place field density (color).
P-values (two tailed t-test) were obtained by calculating the place field distribution with the
uniform distribution.(right) Difference between end of track and middle of track place field
percentages in each animal (circles, n=6 mice). Dashed line indicates the difference expected
from a uniform distribution across the track. P-values were calculated using a two tailed
Wilcoxon signed rank test
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Figure 2.23: Place cell parameters related to lap speed in Saline condition. a,
Distribution of lap speed (m/s) in all animals (n=5 mice). Original (left) After separating
laps by faster laps (in Before Saline) and slower laps (in After Saline). Faster laps were >
60th percentile and slower laps were > 40th percentile mean lap speed. Mean lap speed
(ms) [95% CI]: Original: Before Saline 42.74 [41.12 44.36], After Saline 42.75 [41.34 44.17],
After velocity split: Before Saline 47.30 [44.69 49.57], After Saline 35.03 [33.46 36.60]. b,
Place fields defined in the Before condition and plotted across conditions. Activity of each
place cell was normalized to peak in the Before condition and sorted by their COM along
the track. c, Boxplots show distribution of place field spatial correlation between (circles)
Before Saline/AfterSaline, original (left) and after velocity split (right), n=1139 place cells.
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Figure 2.23, continued: P-values were obtained using a two tailed KS-Test. (Bottom)
Bootstrapped mean differences (∆) with 95% CI (error bar). X-axis indicates the compar-
isons made. (right) Same data, averaged by track position. Shading indicates s.e.m. d,
Place cell parameters in each condition are displayed as boxplot of average per animal (left,
n=5 mice) and cumulative histogram (right). P-values were obtained using two tailed paired
t-test. Medians: Reliability - Before Saline = 0.52, After Saline = 0.48, Out/In Field Firing
- Before Saline = 0.09, After Saline = 0.09, Place field width (cm) - Before Saline = 61.07,
After Saline = 54.15, Firing Intensity - Before Saline = 0.03, After Saline = 0.03. e, (top)
Distribution of place field center of mass (COM) locations in each condition pooled from all
mice. Plots show observed density (gray line), uniform distribution (gray shade) and Gaus-
sian distribution of place field density (color). P-values (two tailed t-test) were obtained by
calculating the place field distribution with the uniform distribution. (bottom) Difference
between end of track and middle of track place field percentages in each animal (circles,
n=5 mice). Medians: Before Saline = 5.59, After Saline = 10.12. Dashed line indicates the
difference expected from a uniform distribution across the track. P-values were calculated
using a two tailed Wilcoxon signed rank test.
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Figure 2.24: Slope and Max of VTA ramps depend on reward expectation. a,
Mean slope for laps in the Rewarded and Unrewarded conditions for all axons, error bars
represent s.e.m (7 axons in 6 mice). b, Boxplot shows distribution of mean slope in each
axon within different conditions (n = 7 axons, Mean: slope: R = 1.00 , REhigh = 0.69
, RElow = 0.35). P-values were obtained using a two-sided paired t-test, with Bonferroni
post hoc performed to correct for multiple comparisons. Bootstrapped mean differences (∆)
with 95% CI (error bar) are shown at the bottom. X-axis indicates the comparisons made.
c, Boxplot shows distribution of mean slope*max in each axon (circles, n = 5 axons in
5 mice) within R and RR conditions (circles, n = 5 axons, Mean: slope: R = 1.00 , RR
= 1.01. P-values were obtained using a two-sided paired t-test. (Bottom) Bootstrapped
mean differences (∆) with 95% CI (error bar). X-axis indicates the comparisons made. d,
Mean max for laps in the Rewarded and Unrewarded conditions for all axons, error bars
represent s.e.m (7 axons in 6 mice). e, Boxplot shows distribution of mean max in each
axon within different conditions (circles, n=7 axons, Mean : max: R = 1.00, REhigh = 0.79,
RElow = 0.53). P-values were obtained using a two-sided paired t-test, with Bonferroni post
hoc was done to correct for multiple comparisons. Bootstrapped mean differences (∆) with
95% CI (error bar) are shown at the bottom. X-axis indicates the comparisons made. (F)
Boxplot shows distribution of mean max value of each axon R and RR conditions (circles,
n = 5 axons, Mean: max: R = 1.00, RR = 1.01). P-values were obtained using a two-sided
paired t-test. (bottom) Bootstrapped mean differences (∆) with 95% CI (error bar). X-axis
indicates the comparisons made.
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Figure 2.25: VTA activity is shaped by continued reward delivery in Novel envi-
ronments. a, Example mouse. i: Mouse licking behavior. ii: Mouse track position. iii:
∆F/F from an example ROI. b, Fluorescent time binned activity of axons (5 axons in 5
mice) in the R (blue), RR (green), and Novel (brown) experimental conditions averaged by
time to reward. c, Same data, averaged by position. d, Novel time binned fluorescent
activity divided into early (light green) and late laps (dark green) and averaged by time to
reward. Shaded area represents s.e.m
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Figure 2.26: Heterogeneity in VTA DA inputs to dCA1. a, Fluorescent activity
of VTA axon in the Rewarded (blue) and RElow (red) experimental conditions aligned to
initiation of motion and averaged by time from motion initiation. Shaded areas represent
s.e.m. b, Velocity of mouse in the Rewarded (blue) and RElow (red) experimental conditions
aligned to initiation of motion, averaged by time from motion initiation and normalized by
the max velocity for that motion epoch. c, Same data as a, averaged by position along
track. Shaded areas represent s.e.m. d, Example of environment specific activity in axon.
i: Mouse licking behavior. ii: Mouse track position. iii: ∆F/F from an example ROI.
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CHAPTER 3

DISTINCT SETS OF DOPAMINERGIC INPUTS IN

HIPPOCAMPAL CA1 TRANSMIT CONTRASTING SIGNALS

DURING BEHAVIOR IN A CHANGING WORLD

3.1 Abstract

Dopaminergic activity within the hippocampus plays a pivotal role in shaping synaptic plas-

ticity, influencing the activity of hippocampal neurons, and impacting the processes in-

volved in learning and memory. Traditionally, these effects were attributed to the release

of dopamine from sparse projections originating in the ventral tegmental area (VTA) and

extending to the hippocampus. However, recent discoveries have unveiled dopamine is also

released from inputs originating in the locus coeruleus (LC). To dissect the impacts of both

VTA and LC dopaminergic circuits on hippocampal function and memory, a thorough ex-

amination of how these pathways might divergently operate during behavior and learning

is necessary. We therefore utilized 2-photon microscopy to functionally capture the activity

of VTA and LC axons within the CA1 region of the dorsal hippocampus in mice that were

head-fixed and navigating linear paths within virtual reality (VR) environments. Within

familiar environments, as mice approached previously learned rewarded locations, VTA ax-

ons in CA1 exhibited a gradual ramping-up of activity, peaking at the reward location. In

contrast, LC axons in CA1 displayed a correlation with the animals’ running speed and a

pre-movement signal, devoid of the ramping-to-reward dynamics observed in VTA axons.

A marked divergence emerged in novel VR environments. LC axon activity sharply and

persistently increased for over a minute, while the previously observed VTA axon ramping-

to-reward dynamics disappeared. In conclusion, these findings highlight distinct roles of VTA

and LC dopaminergic inputs in the dorsal CA1 hippocampal region. These inputs encode

unique information, likely contributing to differential modulation of hippocampal activity
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during behavior and learning.

3.2 Introduction

Within the hippocampus there are pyramidal neurons known as place cells that selectively

fire action potentials at specific locations in an environment (J. O’Keefe and Dostrovsky

1971). Together, populations of these neurons are thought to serve as the neural basis of a

cognitive map, or an internal representation of an external environment, allowing animals

to acquire, store, code, and recall information about environments (John O’Keefe and Nadel

1978). In support of this idea, place cells flexibly encode both external environmental cues

and internal contextual variables, as they are modulated by odors(Save, Nerad, and Bruno

Poucet 2000; S. Zhang and Denise Manahan-Vaughan 2015), colors (Leutgeb 2005), novelty

(Larkin et al. 2014), time (Eichenbaum 2017), engagement (Pettit, Yuan, and Harvey 2022),

and reward expectation (Krishnan et al. 2022). Changing object or reward locations causes

some individual place cells to remap (Bourboulou et al. 2019; Gauthier and Tank 2018),

or change their firing locations, while exposure to a novel environment causes the entire

population of place cells to remap (Dong, Madar, and M. E. J. Sheffield 2021; Mark E.J.

Sheffield, Adoff, and Daniel A. Dombeck 2017). It is thought that neuromodulatory inputs

help promote the plasticity required for this flexible encoding of place cells(Duszkiewicz et al.

2019), however, the precise circuit mechanisms driving these processes is not well understood.

Dopaminergic activity in the dorsal hippocampus has been shown to play a wide range

of roles in learning and memory, impacting formation and persistence of spatial memories

(Silva et al. 2012), reward-location associations (Retailleau and G. Morris 2018)), aversive

conditioning (Tsetsenis et al. 2019), and the encoding of novel environments (N. Hansen and

D. Manahan-Vaughan 2014; Lemon and D. Manahan-Vaughan 2012; S. Li et al. 2003). In

support of these findings, hippocampal dopamine can bidirectionally alter synaptic plasticity

(Huang and Kandel n.d.; Hagena and Denise Manahan-Vaughan 2013; N. Hansen and D.
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Manahan-Vaughan 2014; Chu et al. 2011) and cell excitability (Edelmann and Lessmann

2018) and influence the formation and stability of hippocampal place cells (Kentros et al.

2004; Retailleau and G. Morris 2018)(Morris 2018, kentros 2004). These effects were orig-

inally attributed to release of dopamine (DA) from inputs from the ventral tegmental area

(VTA), a midbrain region that is part of the brains reward circuitry. VTA DA inputs to

the dorsal hippocampus mainly innervate stratum oriens (Takeuchi et al. 2016; Adeniyi,

Shrestha, and Ogundele 2020; Adeyelu and Ogundele 2023), and their activity bidirection-

ally modulates Schaffer Collateral synapses (Rosen, Cheung, and Siegelbaum 2015), enhances

persistence of reward-location associations (McNamara et al. 2014), and drives place prefer-

ence (Mamad et al. 2017). Their activity also biases place fields to a location (Mamad et al.

2017), improves place field stability across days (McNamara et al. 2014), and drives reward

expectation dependent enhancement of place field quality (Krishnan et al. 2022). However,

VTA DA inputs to dCA1 are relatively sparse (Takeuchi et al. 2016; Wagatsuma et al. 2018;

Adeniyi, Shrestha, and Ogundele 2020; Adeyelu and Ogundele 2023) and it has recently been

shown that DA is also released into the hippocampus by inputs from the locus coeruleus (LC)

(Kempadoo et al. 2016; Takeuchi et al. 2016), a brainstem nucleus well known for its roles

in arousal and attention (Aston-Jones and Bloom 1981; McCarley and Hobson 1975). Many

of the effects of DA modulation of the hippocampus have now been attributed to LC inputs

as their activity enhances the strength of Schaffer Collateral synapses (Takeuchi et al. 2016),

improves memory retention (Kempadoo et al. 2016), improves place field stability across

days (Wagatsuma et al. 2018), and can bias place fields to a location when paired with a

reward (Kaufman, Geiller, and Losonczy 2020) through DA mechanisms. Although many

of the effects of LC and VTA are overlapping potentially indicating shared mechanisms of

action, they are believed to play different roles in spatial learning and memory (Duszkiewicz

et al. 2019). LC inputs influence the encoding of novel environments (Kempadoo et al. 2016;

Wagatsuma et al. 2018), while VTA DA inputs increase persistence of reward context as-
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sociation (McNamara et al. 2014) and can bias place preference (Mamad et al. 2017). It

is possible that these differences arise because of the differences in activity observed be-

tween LC and VTA DA neurons. Therefore, characterizing the encoding properties of LC

and VTA inputs directly in the hippocampus during navigation and spatial learning would

provide important insights into the specific roles of these distinct DA inputs.

Recent findings indicate considerable heterogeneity in the activity of VTA (Engelhard

et al. 2019) and LC (Uematsu et al. 2017; Noei et al. 2022; Chandler, Gao, and Waterhouse

2014) neurons, highlighting the need for projection specific recordings. Therefore, we func-

tionally imaged VTA DA and LC axons in dCA1 of mice as they navigated familiar and

novel virtual reality (VR) environments for rewards. We observed distinct encoding proper-

ties between these sets of inputs during navigation and in response to novel environments.

VTA DA axons ramped in activity during approach of a learned rewarded location, while

LC axon activity did not show ramping-to-reward signals and instead predicted motion on-

set and correlated with animal velocity. Following exposure to a novel environment, VTA

axon ramping-to-reward signals greatly reduced but LC axon activity sharply increased.

These findings support distinct roles for VTA and LC inputs to the hippocampus in spatial

navigation of rewarded and novel environments.

3.3 Results

To record the activity of dopaminergic inputs to the dorsal hippocampus, we expressed

axon-GCaMP6s or axon-GCaMP7b in LC or VTA neurons of different mice. We utilized

the NET-cre mouse line (Wagatsuma et al. 2018) to restrict expression to norepinergic LC

neurons, and the DAT-Cre line (Zhuang et al. 2005) to restrict expression to dopaminergic

VTA neurons (Fig 3.1B). Mice were then headfixed and trained to run a linear virtual reality

(VR) track for water rewards delivered at the end of the track (Fig 3.1A). Following reward

delivery, mice were teleported to the beginning of the track and allowed to complete another
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lap. On experiment day, mice navigated the familiar, rewarded VR environment for 10 min

while 2-photon microscopy was used to image the calcium activity of LC (90 axons from

22 imaging sites in 16 mice) or VTA (7 axons from 7 imaging sites in 7 mice) axons in the

dorsal CA1 (Fig 3.1C). Based off the z-axis depth of the recording planes, and the presence

of increased autofluorescence in stratum pyramidal, we determined all 7 VTA axons were

in Stratum Oriens, while for LC recordings, 18 sessions(81 axons in 11 mice) occurred in

Stratum Oriens and 5 sessions (9 axons in 5 mice) in Stratum Pyramidalis. Example VTA

(left, orange) and LC (right, blue) axon calcium activity aligned to the animal’s behavior

are shown in Fig 3.1D. Axons from both brain regions showed periodic activity linked to the

animals’ exploration of the VR environment.

3.3.1 Distinct activity dynamics in VTA and LC inputs during rewarded

navigation of a familiar environment

To examine axon activity further, we first looked at the mean activity of axons as a function

of track position (Fig 3.1E). As previously reported (Krishnan Heer), these VTA DA axons

increase activity along the track, peaking at the reward location at the end of the track. In

contrast, LC input activity remains relatively constant across all positions along the track

(Fig 3.1Eii). To examine if this difference could be due to the lower sample size of VTA

axons compared to LC axons, the LC axons were down-sampled to match the VTA sample

size (n = 7) and the slope and intercepts of the down-sampled data was found. This was

repeated 1000 times and did not generate any LC datapoints that overlap with VTA data

demonstrating the difference in relationship between position and activity was not due to

the different sample sizes (Fig 3.1Eiii). We also examined the position related activity of

individual VTA and LC axons and observed a positive relationship between position and

activity in 85.7% of VTA axons (6/7) but only 27.8% of LC axons (25/90) while 41.1% of

LC axons (37/90) had a negative relationship between position and activity (Fig 3.1E.iv.).
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Figure 3.1: Distinct activity dynamics in VTA and LC axons during navigation
of familiar environments a, Experimental setup (top), created with BioRender.com. Ex-
ample virtual reality environment. b, Schematic representation of injection procedure (left).
Representative coronal brain sections immunostained for Tyrosine Hydroxolase (TH) from
a DAT-Cre mouse showing overlapping expression of axon-GCaMP (green) and TH (red)
in VTA neurons (top) and from a NET-Cre mouse showing overlapping expression of axon-
GCaMP(green and TH (red) in LC neurons (bottom).
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Figure 3.1, continued: c,. Example CA1 field of view of VTA axons (top) and LC axons
(bottom). Extracted regions of interest used for example VTA and LC activity throughout
the figure. d, Example DAT-Cre mouse (left) and NET-Cre mouse (right) with aligned
reward delivery (top, green), mouse track position (black), ∆F/F from example roi (VTA-
orange, LC-blue), and mouse velocity (bottom, gray). e, i, Position binned ∆F/F± s.e.m
in example VTA (orange) and LC (blue) ROIs during navigation of the familiar rewarded
environment. ii, Population average position binned ∆F/F± s.e.m. in VTA ROIs (orange,
n = 7 ROIs in 7 mice) and LC ROIs (blue, n = 90 ROIs from 27 sessions in x mice) . Linear
regression analysis (on all data points, not means) shows that the population of VTA ROIs
increase activity during approach of the end of the track while the population of LC ROIs
have consistent activity throughout all positions. Linear regression, F test, VTA, P < 1e−21,
LC, P < 0.01. iii, The LC data set was resampled 1000x using n = 7 axons to match the
number of VTA Rois and the slope and intercept of the regression line were measured each
time (blue dots). The VTA slope is steeper than all LC slopes indicating a stronger positive
relationship between position and activity for VTA inputs. iv, Linear regression of position
binned activity of individual VTA (orange diamonds), and LC (blue, circles) axons. The
majority (4/7) of VTA axons show a significant positive relationship with position while LC
axons show both a positive (25/90) and negative (37/90) relationship. F, i, Same example
ROIs as (d) binned by velocity. ii, Same data as (d, ii,) binned by velocity. Linear regression
shows that the population of VTA and LC ROIs have a significant relationship with velocity.
Linear regression, F test, VTA, P < 0.05, LC,P < 1e− 68. iii, Resampling shows the VTA
slope and intercept is within the resampled LC slopes and intercepts indicating similar
relationships with velocity. iv, Linear regression of individual VTA and LC axons shows
the majority (65/90) of LC axons have a significant positive relationship with velocity while
only 2 VTA axons show this relationship. g, Same example ROIs as (d) aligned to motion
onset. ii, Same data as (d, ii,) aligned to motion onset. Linear regression shows that the
population of VTA axons have a negative slope prior to motion onset while LC axons have
positive slope. Linear regression, F test, VTA, P < 0.01, LC, P < 1e− 65. iii, Resampling
shows the VTA slope is negative while all resampled LC slopes are positive. iv, Linear
regression of individual VTA and LC axons shows the majority (58/90) of LC axons have a
significant positive slope prior to motion onset while the majority (4/7) of VTA axons have
a negative slope.

Next, we investigate the mean activity of these axons at different velocities. The pop-

ulation mean of both VTA and LC axons increased as velocity increased (Fig 3.1F). This

is consistent with the findings that LC inputs to dCA1 encode velocity (Kaufman, Geiller,

and Losonczy 2020) and the findings that highlight kinematic encoding in DA VTA neurons

(Engelhard et al. 2019). Again, to account for differences in sample size, we down sampled

the LC axons 1000 times and found the slope and y-intercept of each sampling. The overlap

of the VTA and LC slopes and intercepts confirms we cannot conclude any differences in
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velocity related activity in the VTA and LC axon populations (Fig 3.1Fiii). However, when

we examine this activity in individual VTA and LC axons we observe a positive relationship

between velocity and activity in the majority, 72.2%, of LC axons (65/90) but only 28.6%

(2/7) of VTA axons showed a positive relationship with velocity. (Fig 3.1F.iv). The strong

velocity correlated activity in a small subset of VTA DA axons may indicate heterogeneity

in the activity of these inputs similar to what is observed in VTA DA cell bodies (Engelhard

et al. 2019).

Finally, we examined the activity of LC and VTA axons during rest and the transition

to movement. The population of LC axons ramped up in activity during the 2s leading

up to motion onset (Fig 3.1G). This is consistent with reports of activity of LC axons in

cortical areas (Reimer et al. 2016) showing LC activity prior to motion onset. In contrast,

VTA axons show decreasing activity during the 2 s leading up to motion onset (Fig 3.1G).

This ramping down in VTA axon activity is likely due to most (x%) periods of immobility

occurring between reward delivery and the start of the next lap, during which we previously

demonstrated reward related activity ramps down in VTA axons (Krishnan et al. 2022).

These differences in activity are not an artifact of lower sample size of VTA axons as shown

by down-sampling the LC axon activity 1000 times and measuring the slopes and intercepts

of the down-sampled data did not generate any data points that overlapped with the VTA

slope and intercept (Fig 3.1G.iii). In further support of distinct activity profiles leading

up to motion onset, we found that the majority (4/7) of VTA axons decreased in activity

leading up to motion onset but only 3/90 LC axons decreased in activity, while the majority,

(58/90), of LC axons increased in activity leading up to motion onset (Fig 3.1G.iv). Together,

this analysis demonstrates overlapping but distinct activity in VTA and LC neurons during

spatial navigation with VTA axons showing strong activity correlated with position related

to reward location and some velocity correlated activity, while LC axons demonstrate activity

correlated to velocity and time to motion onset.
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3.3.2 Environmental Novelty induces activity in LC but not VTA inputs

Following 10 minutes in the familiar environment, mice were teleported to a novel VR en-

vironment of the same track length, with a reward at the same position at the end of the

track. Following teleportation, we found the running speed of mice decreases (Fig 3.2A) and

they spend less time immobile (Fig 3.2A), demonstrating mice recognize they are navigating

a novel environment.

We aligned VTA and LC axon activity to the switch to the novel environment and

investigated changes in activity due to exposure to novelty. To test whether the mean axon

activity is significantly elevated or lowered, we defined a baseline in which to compare to by

generating 1000 shuffles of the axon traces across the entire recording sessions, downsampling

the shuffled data 1000 times to match the VTA (n = 7) and LC (n = 90) sample sizes, and

calculating the mean and 95% CI of the shuffled data. After teleportation, the periodic

activity observed in the mean of VTA axons, likely reflecting ramping-to-reward signals in

each individual axon, decreases dramatically (Fig 3.2B). This is evident in the traces of most

of the individual VTA axons showing a loss of the ramping-to-reward signal, as we have

previously shown (Krishnan et al. 2022) (Fig 3.2C).
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Figure 3.2: Strong environmental novelty induced activity in LC but not VTA
inputs to dCA1 a, i, Experimental Paradigm. ii, Behavior from example mouse during
the transition from the familiar VR environment to a novel VR environment showing the
animals track position (top, black) and velocity (bottom, gray). iii, The average running
velocity ± s.e.m. of all mice during the transition to a novel VR environment (top). The
average freezing ratio of all mice ± s.e.m., calculated as the time spent immobile (velocity
< 5cm/s) divided by the total lap time. Each lap was compared to the first lap in F using
a one-way ANOVA with Tukey HSD post hoc test. * P < 0.05 b, Mean normalized F of
all VTA ROIs (top, n = 7) and LC ROIs (bottom, n = 90) aligned to the switch to the
novel environment. To define a baseline and 95% CI (gray shaded region), 1000 shuffles were
created from the calcium traces and down sampled to match the sample size and averaged.
This was repeated 1000 times and the mean and 95% CI of this shuffled data was determined
for each frame. Red lines indicate periods where two or more consecutive frames passed above
the % CI of the shuffled baseline. c, Normalized ∆F/F activity of all VTA ROIs (top) and
LC ROIs (bottom) aligned to the switch to the novel VR environment. d, The normalized
fluorescence of all LC ROIs binned by lap (left) or into 50 frame bins (right). The baseline
and 95% CI (gray shaded region) was defined using the same method as in (b) Red lines
indicate bins above the baseline 95% CI.

Strikingly, LC axons show a dramatic increase in mean activity that remains elevated for

> 1 minute following exposure to the novel environment (Fig 3.2B) similar with findings that

LC cell body activity is elevated for minutes following exposure to environmental novelty

(Takeuchi et al. 2016). This increase in activity can be seen in many, but not all the individual
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LC axons (Fig 3.2C). To further characterize this activity, we found the mean population

activity for each lap and separately for 10s bins leading up to and following exposure to

the novel environment. This method shows that LC activity is significantly elevated above

baseline for 6 consecutive laps and 90s following exposure to the novel environment (Fig

3.2D). These findings demonstrate that LC inputs signal environmental novelty, supporting

a role for these inputs in novelty encoding in the hippocampus.

3.3.3 Novelty-induced changes in behavior explains the late but not early

increases in LC activity

It is possible that the change in behavior in the novel environment could explain the increase

in LC activity in the novel environment, as LC activity is related to behavior (Fig. 3.1). For

instance, LC axons show elevated activity during motion versus rest. Therefore, an increase

in the time spent in motion upon exposure to the novel environment could lead to an increase

in LC activity. To account for the differences in behavior between the two environments we

removed any periods where the mice were immobile to isolate the effects of novelty without

confounds due to differences in behavior (Fig 3A). We found that LC axon activity is elevated

for 2 laps, or 40s, in the novel environment (Fig 3.3B-E). This indicates that there are two

separate components that drive LC axon activity during the initial exposure to the novel

environment. One, a shorter purely novelty-induced increase in activity which occurs during

the first 2 laps, or about 40s, in the novel environment. Two, a behavior-induced increase

in LC activity that extends beyond the increase in the novelty-induced activity for laps

or 90s. If the novelty-induced signal is an additional signal riding on top of the behavior

correlated signals - position , velocity, and motion onset – we would expect a disruption to

these behavior correlations.

Indeed, the slopes of the position binned, velocity binned, and motion onset aligned data

are all significantly more negative in the first lap in the novel environment than the final laps
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Figure 3.3: Novelty-induced changes in behavior explain the late but not early
increases in LC activity a, Good behavior from example mouse following removal of
freezing periods (velocity < 0.2 cm/s) during the transition from the familiar to a novel VR
environment showing the animals track position (top, black) and velocity (bottom, gray). b,
Normalized ∆F/F activity of all LC ROIs aligned to the switch to the novel VR environment
following removal of freezing periods. c, Mean normalized F of all VTA ROIs (top, n = 7)
and LC ROIs (bottom, n = 90) aligned to the switch to the novel environment. To define
a baseline and 95% CI (gray shaded region), 1000 shuffles were created from the calcium
traces and down sampled to match the sample size and averaged. This was repeated 1000
times and the mean and 95% CI of this shuffled data was determined for each frame. Red
lines indicate periods where two or more consecutive frames passed above the 95% CI of the
shuffled baseline. d,e,. The normalized F of all LC ROIs binned by lap (d) or into 50 frame
bins (e). The baseline and 95% CI (gray shaded region) was defined using the same method
as in (c). Red lines indicate bins above the baseline 95% CI. f-h, Population average position
binned (f), velocity binned (g), and motion onset aligned (h) ∆F/F± s.e.m. in LC ROIs
(n = 90) in the final laps of the familiar environment (light blue), and the first (orange),
third (dark blue), and final laps (green) of the novel environment. Linear regression, F test,
position binned (f) fam last, P < 1e − 4, nov 1, P < 1e − 68, nov 3, P = 0.48, nov last,
P < 0.001; velocity binned (g) fam last, P < 1e − 31, nov 1, P < 0.05, nov 3, P < 1e − 5,
nov last, P < 1e − 13; motion onset aligned (h) fam last, P < 1e − 29, nov 1, P < 0.001,
nov 3, P < 1e − 9, nov last, P < 1e − 18. The slope of each lap was compared to the final
familiar laps using a one-way ANOCOVA with Tukey HSD post hoc test. * P < 0.01, **
P < 0.001, *** P < 1e− 4.
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of the familiar environment (Fig 3.3F-H). This is consistent with a decaying novelty signal

that peaks at the start of the first lap and rides on top of these other signals. This produces

an elevation in activity at positions near the start of the first lap that is lower at positions

near the end of the first lap, causing a negative slope relationship between position and LC

axon activity on the first lap (Fig. 3.3F; orange line). Further, low velocities occur at the

start of each lap compared to the end of the lap. Because the novelty signal is highest when

animals are running slowest, the novelty signal flattens the velocity-LC activity relationship

(Fig. 3.3G; orange line). Lastly, rest periods typically occur at the start of the track.

Therefore, motion onset encoding on the first lap in the novel environment occurs when the

novelty signal is highest, again, flattening the relationship (Fig. 3.3G; orange line). By the

third lap in the novel environment, once the novelty signal has disappeared, the relationships

seen in the position binned and motion onset aligned data are no longer different than the

relationship in the familiar laps (Fig 3.3F,H). Although the relationship between velocity and

activity is different in the third novel lap than that of the final familiar laps, this relationship

returns to the familiar relationship by the final lap in the novel environment (Fig 3G).

Interestingly, the slope is significantly increased in the final lap of the novel environment

(Fig 3.3F), potentially indicating the development of activity at the novel reward location

as seen by Kaufman et. al. Altogether, examining the lap-by-lap dynamics of the position,

velocity, and motion indicates that novelty induces increased activity in the first lap of

the novel environment while a change in behavior leads to increased activity throughout

additional exploration of the novel environment.

3.4 Discussion

During spatial navigation in the familiar environment, VTA DA inputs activity was strongly

modulated by position relative to reward, ramping up as mice approached the end of the

track where reward was located. We have previously shown that this activity is dependent
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on the history of reward delivery and reflects the animals’ reward expectation (Krishnan

et al. 2022). VTA axons also showed decreasing activity during rest prior to motion onset.

However, most pauses occurred immediately following reward delivery. Therefore, decreasing

VTA axon activity during rest is likely due to decreasing reward-related activity following

reward delivery. In other words, the decaying reward-related activity is bleeding into the rest

period. To test this, we could examine VTA axon activity during rest and prior to motion

onset during rest periods where reward-related activity is absent. These would include rest

periods that occur at locations other than the end/start of a lap, in unrewarded laps, and in

the novel environment. This will be the focus of future analysis to determine whether VTA

axons have any relationship with rest and motion onset.

VTA axons also showed activity modulated by velocity. This relationship was largely due

to the activity of two VTA axons that were strongly modulated by velocity, suggesting that

there may be heterogeneity in the population of VTA axons. This is consistent with find-

ings demonstrating heterogeneous encoding of behavioral variables in VTA DA cell bodies,

including activity related to rewards and kinematics (Engelhard et al. 2019). However, the

apparent velocity encoding axons we report here could be due to the strongly stereotyped

behavior that is observed in our well-trained mice. This creates a high correlation between

velocity and track position. In this case, axons that encode position would also show a

correlation with velocity. To determine if some VTA axons do really encode velocity, we will

analyze velocity related activity in the unrewarded laps and in the novel environment when

reward-related activity is absent in these axons.

LC axons showed no position encoding. Instead, they were modulated by velocity and

ramped up in activity prior to motion initiation, consistent with recordings of LC axons

in dCA1 (Kaufman, Geiller, and Losonczy 2020) and in the cortex (Reimer et al. 2016),

respectively. An important question is how is this LC axon activity impacting hippocampal

neurons during navigation in a familiar environment? It is possible that LC axons during
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navigation provide increases in excitability that promotes place cell activity as both dopamine

and norepinephrine in the hippocampus can impact cell excitability (Segal, Markram, and

Richter-Levin 1991; Edelmann and Lessmann 2011; Edelmann and Lessmann 2018). Ad-

ditionally, place cells are flexible during spatial navigation with new place fields forming

in familiar environments (Mark E.J. Sheffield, Adoff, and Daniel A. Dombeck 2017; Dong,

Madar, and M. E. J. Sheffield 2021)and shifting position with time/experience (Dong, Madar,

and M. E. J. Sheffield 2021). Place fields can also shift to follow changing reward (Gauthier

and Tank 2018)and object locations (Bourboulou et al. 2019). The combination of elevated

LC input and excitatory input activity during spatial navigation may allow place cells to

adapt to relevant stimuli by promoting plasticity of specific inputs (Kaufman, Geiller, and

Losonczy 2020; Redondo and R. G. M. Morris 2011). In other words, LC inputs could allow

the hippocampus to be flexible during navigation through their impacts on synaptic plastic-

ity (Takeuchi et al. 2016; Yamasaki and Takeuchi 2017; Duszkiewicz et al. 2019). Further

experiments should be conducted to investigate the impact of LC input activity on place cells

in the dorsal hippocampus during navigation of a familiar and unchanging environment.

Exposure to environmental novelty leads to an increase in dopamine in the dorsal hip-

pocampus (Ihalainen, Riekkinen Jr, and Feenstra 1999) and promotes synaptic plasticity

(S. Li et al. 2003; Hagena and Denise Manahan-Vaughan 2012), hippocampal replay (Mc-

Namara et al. 2014; Dupret et al. 2010) and memory persistence (S. Li et al. 2003; Cohen,

Bolstad, and A. K. Lee 2017). In our experiment, exposure to a novel environment caused

an increase in LC axon activity but not in VTA DA axon activity, supporting findings that

novel experiences induce activity of LC neurons (Takeuchi et al. 2016). The activity of LC

neurons in turn increases hippocampal neuron activity (Wagatsuma et al. 2018), increases

efficacy of Schaffer Colateral synapses (Takeuchi et al. 2016), stabilizes place cells across

days (Wagatsuma et al. 2018) and memory persistence (Wagatsuma et al. 2018; Takeuchi et

al. 2016; Chowdhury et al. 2022) persistence through dopamine receptor dependent mecha-
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nisms. Importantly, while LC inputs to CA1 have been shown to cause an increase in activity

(Wagatsuma et al. 2018; Chowdhury et al. 2022), shape overrepresentation of novel reward

locations (Kaufman, Geiller, and Losonczy 2020), and memory linking (Chowdhury et al.

2022), in dCA1 they do not play a role in the formation of contextual memories (Chowdhury

et al. 2022) or stable place cell maps across days (Wagatsuma et al. 2018) in dCA1. How-

ever, these experiments have only investigated the role of LC inputs to dCA1 in stability

across days. It is possible this novelty induced activity in LC dCA1 impacts the formation

of instant or delayed place field formation observed in novel environments (Dong, Madar,

and M. E. J. Sheffield 2021). Additionally, their activity may play a role in dynamics that

occur across trials, such as the backward shifting of place fields (Dong, Madar, and M. E. J.

Sheffield 2021). Further experiments should be conducted to investigate the role of LC in-

puts to dCA1 on the trial-by-trial dynamics of new place fields in novel environments to

determine the role of the novelty signal we report here.

While LC neurons have been shown to impact novelty encoding through dopaminergic

mechanisms (Wagatsuma et al. 2018; Takeuchi et al. 2016; Chowdhury et al. 2022), this does

not exclude the possiblity that they also release norepinephrine during exposure to novelty

and exploration of a familiar environment. Indeed, hippocampal levels of norepinephrine also

increase during exposure to environmental novelty (Lima et al. 2019; Moreno-Castilla et al.

2017). How this norepinephrine release during novelty exposure effects hippocampal function

is not well understood. Additionally, it is not known whether norepinephrine and dopamine

are release from the same LC inputs or from distinct sets of LC inputs. Dopamine is in the

synthesis pathway of norepinephrine and is loaded into vesicles where it is then converted

to norepinephrine by dopamine β-hydroxylase in LC neurons. It is possible that high levels

of activity of LC inputs, like those occurring during exposure to novelty, lead to release of

vesicles before dopamine can be converted thus leading to the release of dopamine. However,

low levels of LC activation, like those observed during familiar environment exploration, may
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provide time for dopamine to be converted and thus lead to the release of norepinephrine.

Further experiments investigating the dynamics of dopamine conversion and release in LC

inputs to the hippocampus should be conducted to test this hypothesis.

The findings that VTA DA axons show novelty induced activity is in contrast with

several studies showing novelty induced activity in VTA DA cell bodies (Takeuchi et al.

2016; Duszkiewicz et al. 2019; Lisman and Grace 2005), indicating potential heterogeneity

in VTA neurons response to novelty (Engelhard et al. 2019). It is possible that some VTA DA

inputs to dCA1 respond to novel environements, and the small number of axons recorded here

are not representative of the whole population. Perhaps more likely, this lack of a novelty

response is due to differences in experimental design. Here, mice learned to approach a

location for reward which has been shown to lead to ramping activity in dopaminergic VTA

neurons (Howe et al. 2013; Krishnan et al. 2022; Kim et al. 2020; London et al. 2018; Jeong

et al. 2022). When mice were switched to the novel environment they had no expectation

of reward, therefore, the ramping activity was absent, leading to a decrease in activity that

could obscure novelty induced activity.

The distinct activity dynamics exhibited by LC and VTA DA axons during spatial nav-

igation of familiar and novel environments underscore their distinct contributions to hip-

pocampal dependent learning and memory processes. Notably, these findings reinforce the

notion that VTA DA inputs play a pivotal role in the ongoing maintenance and updating of

associations between expected rewards and the locations that lead to them, while LC axons

appear to be integral to the process of encoding memories of entirely new environments.
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3.5 Methods

3.5.1 Subjects

All experimental and surgical procedures were in accordance with the University of Chicago

Animal Care and Use Committee guidelines. For this study, we used 10–20 week-old male

Slc6a3Cre+/- (DAT-Cre+/-) mice and Slc6a2 Cre+/- (NET-Cre+/-)(23–33 g). Male mice

were used over female mice due to the size and weight of the headplates (9.1 mm × 31.7

mm, 2 g) which were difficult to firmly attach on smaller female skulls. Mice were individ-

ually housed in a reverse 12 h light/dark cycle at 72 °F and 47% humidity, and behavioral

experiments were conducted during the animal’s dark cycle.

3.5.2 Mouse surgery and viral injections

Mice were anesthetized ( 1–2% isoflurane) and injected with 0.5 ml of saline (intraperi-

toneal injection) and 0.5 ml of Meloxicam (1–2 mg/kg, subcutaneous injection) before being

weighed and mounted onto a stereotaxic surgical station (David Kopf Instruments). A small

craniotomy (1–1.5 mm diameter) was made over the ventral tegmental area (VTA) (± 0.5

mm lateral, 3.1mm caudal of Bregma) of DAT-Cre+/- mice or over the locus coeruleus (LC)

(± 0.875 mm lateral, -5.45 mm caudal of Bregma). The genetically-encoded calcium in-

dicator, pAAV-hsyn-Flex-Axon-GCaMP6s (pAAV-hSynapsin1-FLEx-axon-GCaMP6s was a

gift from Lin Tian (Addgene viral prep # 112010-AAV5 ; http://n2t.net/addgene:112010 ;

RRID:Addgene 112010) was injected into the VTA of DAT-Cre+/- mice ( 200 nL at a depth

of 4.4 mm below the surface of the dura) or the LC of NET-Cre+/- mice ( 200 nL at a depth of

3.65 mm below Bregma). For a subset (4/7) of VTA recordings, a different GCaMP variant,

pAAV-Ef1A-Flex-Axon-GCaMP7b, was injected due to the difficulty finding and recording

VTA axons in dCA1 (pAAV-Ef1a-Flex-Axon-GCaMP7b (pAAV-Ef1a-Flex-Axon-GCaMP7b

was a gift from Rylan Larsen - Addgene plasmid # 135419; http://n2t.net/addgene:135419;
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RRID: Addgene 135419). Following injections, the site was covered up using dental cement

(Metabond, Parkell Corporation) and a metal head-plate (9.1 mm × 31.7 mm, Atlas Tool

and Die Works) was also attached to the skull with the cement. Mice were separated into

individual cages and water restriction began 3 weeks later (0.8–1.0 ml per day). Mice then

underwent surgery to implant a hippocampal window as previously described75. Following

implantation, the headplate was reattached with the addition of a head-ring cemented on top

of the head-plate which was used to house the microscope objective and block out ambient

light. Post-surgery mice were given 2–3 ml of water/day for 3 days to enhance recovery

before returning to the reduced water schedule (0.8–1.0 ml/day).

3.5.3 Behavior and virtual reality

Our virtual reality (VR) and treadmill setup was designed similar to previously described

setups44,76. The virtual environments that the mice navigated through were created using

VIRMEn77. 2 m (DAT-Cre mice) or 3 m (NET-Cre mice) linear tracks rich in visual cues

were created that evoked numerous place fields in mice as they moved along the track at

all locations (Fig. x)78. Mice were head restrained with their limbs comfortably resting on

a freely rotating styrofoam wheel (‘treadmill’). Movement of the wheel caused movement

in VR by using a rotatory encoder to detect treadmill rotations and feed this information

into our VR computer, as in refs. 46, 77. Mice received a water reward (4 µL) through a

waterspout upon completing each traversal of the track (a lap), which was associated with a

clicking sound from the solenoid. Licking was monitored by a capacitive sensor attached to

the waterspout. Upon receiving the water reward, a short VR pause of 1.5 s was implemented

to allow for water consumption and to help distinguish laps from one another rather than

them being continuous. Mice were then virtually teleported back to the beginning of the

track and could begin a new traversal. Mouse behavior (running velocity, track position,

reward delivery, and licking) was collected using a PicoScope Oscilloscope (PICO4824, Pico
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Technology, v6.13.2). Pupil tracking was done through the imaging software (Scanbox v4.1,

Neurolabware) at 15 frames per sec, using Allied Vision Mako U-130b camera with a 25

mm lens and a 750 nm longpass IR filter. IR illumination from the objective was used to

illuminate the pupil for tracking. Behavioral training to navigate the virtual environment

began 4–7 days after window implantation ( 30 min per day) and continued until mice

reached >2 laps per minute, which took 10–14 days (although some mice never reached this

threshold). Mice that reached this behavioral threshold were imaged the following day.

3.5.4 Two-photon imaging

Imaging was done using a laser scanning two-photon microscope (Neurolabware). Using a

8 kHz resonant scanner, images were collected at a frame rate of 30 Hz with bidirectional

scanning through a 16x/0.8 NA/3 mm WD water immersion objective (MRP07220, Nikon).

GCaMP6s and GCaMP7b were excited at 920 nm with a femtosecondpulsed two photon

laser (Insight DS + Dual, Spectra-Physics) and emitted fluorescence was collected using

a GaAsP PMT (H11706, Hamamatsu). The average power of the laser measured at the

objective ranged between 50–80 mW. A single imaging field of view (FOV) between 400–700

µm equally in the x/y direction was positioned to collect data from as many VTA or LC

axons as possible. Time-series images were collected from 3-5 planes spaced 2 um apart

using an electric lens to ensure axons remained in a field of view and reduce power going

to an individual plane. Images were collected using Scanbox (v4.1, Neurolabware) and the

PicoScope Oscilloscope (PICO4824, Pico Technology, v6.13.2) was used to synchronize frame

acquisition timing with behavior.

3.5.5 Imaging sessions

The familiar environment was the same environment that the animals trained in. The

experiment protocol for single day imaging sessions is shown in Fig. x. Each trial lasted
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8–12 min and was always presented in the same order. Mice were exposed to the familiar

rewarded environment for 10 minutes, then were immediately teleported to the start of a

novel rewarded VR environment and allowed to navigate for 10 minutes. Mice on average

ran 19 ± 3.8 (mean ± 95% CI) laps in the familiar environment, at which point they were

teleported to the novel environment and imaging continued for 30 ± 5.4 laps. The Novel-

rewarded environment (N) had distinct visual cues, colors and visual textures, but the same

dimensions (2 or 3 m linear track) and reward location (end of the track) as the familiar

environment. Imaging sessions with large amounts of drift or bleaching were excluded from

analysis (6 sessions for NET mice, 6 sessions for LC Mice).

3.5.6 Histology and brain slices imaging

We checked the expression axon-GCaMP to confirm expression was restricted to the VTA of

DAT-Cre mice and the LC of NET-Cre Mice were anesthetized with isoflurane and perfused

with 10 ml phosphate-buffered saline (PBS) followed by 20 mL 4% paraformaldehyde

in PBS. The brains were removed and immersed in 30% sucrose solution overnight before

being sectioned at 30 µm-thickness on a cryostat. Brain slices were collected into well plates

containing PBS. Slices were washed 5 times with PBS for 5 min then were blocked in 1%

Bovine Serum Albumin, 10% Normal goat serum, 0.1% Triton X-100 for 2 h. Brain slices

were then incubated with 1:500 rabbit-α-TH (MAB318, Sigma Aldrich) and 1:500 mouse-

α-GFP (x)in blocking solution at 4 . After 48 h, the slices were incubated with 1:1000

goat-α-rabbit Alexa Fluor 647nm secondary antibody (A32731, ThermoFisher) and 1:1000

goat-α-mouse Alexa Fluor 488nm (x) for 2 h. Brain slices were then collected on glass slides

and mounted with a mounting media with DAPI (SouthernBiotech DAPI-Fluoromount-G

Clear Mounting Media, 010020). The whole-brain slices were imaged under ×10 and x40 with

a Caliber I.D. RS-G4 Large Format Laser Scanning Confocal microscope from the Integrated

Light Microscopy Core at the University of Chicago.

116



3.5.7 Image processing and ROI selection

Time-series images were preprocessed using Suite2p (v0.10.1)79. Movement artifacts were

removed using rigid and non-rigid transformations and assessed to ensure absence of drifts

in the z-direction. Datasets with visible z-drifts were discarded (x). For axon imaging,

ROIs were first defined using Suite2p and manually inspected for accuracy. ROIs were then

hand drawn over all segments of Suite2p defined active axons using ImageJ to ensure all

axon segments were included for analysis. Fluorescent activity for each ROI was extracted

and highly correlated ROIs (Pearson correlation coefficient ≥ 0.7) were combined and their

fluorescent activity was extracted. To be included Baseline corrected δF/F traces across

time were then generated for each ROI using both a small window of 300 frames for lap by

lap analysis, and a larger sliding window of 2000 frames to avoid flattening slow signals for

novelty response analysis. Additional ROIs were drawn over autofluorescent structures that

were not identified by suite2p. These “blebs” were processed in the same way as axon ROIs

and used as controls to check for imaging and motion artifacts.

To remove low signal to noise axons, we defined the SNR of each ROI using the power

spectrum of their fluorescent activity similar to (Reimer et al. 2016). For frequencies above

1Hz, the power was defined as noise because this sits outside of the range of frequencies

possible for GCaMP6s fluorescence. The SNR ratio was then defined as the ratio of the peak

power between 0.5 Hz and 1Hz over the average power between 1 Hz and 3 Hz. The SNR of

“blebs” was also determined and any axon with a SNR greater than 1.5 std from the mean

of the “blebs” SNR was used for analysis (110/231 LC ROIs, 7/7 VTA ROIs).

Additionally, it was observed that a subset of axon ROIs would greatly increase fluores-

cence at seemingly random timepoints and remain elevated for the rest of the trial. This

activity could be due to the axons being unhealthy and filling with calcium. Therefore, we

identified these axons using the cusum function in matlab to detect changes in mean activity

that remained elevated for at least 2000 frames or at least 500 frames if they were still ele-
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vated at the end of the recording session and removed them from analysis(20/110 LC ROIs,

0/7 VTA ROIs).

3.5.8 Behavioral Analysis

Mouse velocity was calculated as the change in VR position divided by the sampling rate

and smoothed using a Savitzky-Golay filter with a 7 frame window and 5 degree polynomial.

To find the lap mean velocity, periods where the mice were immobile (velocity < x cm/s)

were removed and the average velocity during the remaining frames was calculated. The lap

mean freezing ratio was calculated as the number of frames spent immobile (velocity < 0.2

cm/s) divided by the total number of frames for each lap.

3.5.9 Axon Imaging Analysis

For the three measures below, to avoid weighting axons with a high SNR more than others

each ROI was normalized by δF/F˘δF/Fmin)/(δF/Fmax˘δF/Fmin) where δF/Fmin is

the 1st quantile and δF/Fmax was the 99 quantile for each ROI. The 1st and 99th quantiles

were used in order to avoid normalize to noisy outlier data points.

3.5.10 Position binned fluorescence

To find the position binned fluorescent activity of each ROI, the track was divided into 5 cm

bins. For each lap, the average fluorescence in each bin was calculated for each ROI. The

position binned fluorescence was then averaged across all laps in each environment to find

the mean position binned activity in the familiar and novel environments.
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3.5.11 Velocity binned fluorescent activity

To find the velocity binned fluorescent activity for each ROI, the velocity was divided into

1 cm/s bins from 1 to 30 cm/s. Velocities above this 14 cm/s were excluded from figures

because not all mice ran faster than 14 cm/s. For each lap, the ROIs average fluorescence

in each velocity bin was calculated and then averaged across all laps in each environment to

find the velocity binned activity in the familiar and novel environments.

3.5.12 Motion initiation aligned fluorescence

Periods where mice were immobile (velocity < 5 cm/s) for at least 1.5s then proceed to run

(velocity ≥ 5cm/s) for at least 3s were identified. The fluorescent activity for ROIs for these

periods was aligned to the frame mice began running (velocity crossed above 5cm/s). The

average aligned fluorescent activity of each ROI was then determined for each environment.

3.5.13 Linear regression analysis

To assess dynamics between each of the above measures and calcium activity of LC and

VTA axons, we performed linear regression on the population’s familiar environment data

and significance was assessed with an F test. To compare the dynamics between LC and

VTA axons, we performed exact testing based on Monte-Carlo resampling (1000 resamples

with sample size matching the lower sample size condition) as detailed in legends (Fig 3.1E).

To assess the changing position and velocity encoding of LC axons following exposure to

a novel environment, we performed linear regression on the population fluorescence data of

the average of the last 4 laps in the familiar environment, and each of the first three laps in

the novel environment for each measure. The significance for the fit of each line was assessed

with an F test, and an ANCOVA was conducted to test for differences in slope between the

four laps. The same process was conducted for the motion initiation dynamics, but only

using ROIs in mice who paused within the first 2 laps and 30s following exposure to the
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novel environment.

3.5.14 Novel response analysis

To examine the response of LC and VTA axons to the novel VR environment, the fluorescence

data was normalized by the mean for each ROIs and aligned to the frame where the mice

were switched to the novel environment and the mean normalized F for LC and VTA ROIs

at each time point was calculated. Baseline fluorescent activity was then calculated for LC

and VTA ROIs separately by generating 1000 shuffled traces of the ROIs calcium activity

and subsampling down to the sample size (90 for LC; 7 for VTA) 1000 times and finding the

mean of the subsampled shuffles. The mean and 95% CI of all 1000 subsamples was found

and the mean activity of LC and VTA ROIs was considered significantly elevated when it

passed above the 95% CI of the shuffled data. The same process was repeated to define a

baseline for the time binned data (fluorescent activity divided into 50 frame bins) and the

lap binned data (mean activity for each lap).

Additionally, to account for changes in behavior between the familiar and novel environ-

ments, periods where the animals were immobile (velocity ≤ 0.2 cm/s) were removed and

running periods were concatenated together and aligned to the switch to the novel environ-

ment. Here, we again defined a baseline for the time mean traces, time binned activity, and

the lap binned activity using the above bootstrapping approach.

3.5.15 Figure graphics

All figure graphics including Fig 3.1A-B were created using BioRender.com.

3.5.16 Code availability

Scripts used for data analysis are available on Github (x)
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CHAPTER 4

CONCLUSION AND FUTURE DIRECTIONS

4.1 Summary of Findings

Chapter 2: Reward expectation extinction restructures and degrades CA1 spa-

tial maps through loss of a dopaminergic reward proximity signal

1. When reward expectation is extinguished in mice, they remain egaged with their

environment, but over-representation of rewards vanishes, place field remapping throughout

the environment increases, and place field trial-to-trial reliability decreases.

2. Ventral tegmental area (VTA) dopaminergic axons in dorsal CA1 exhibit ramping to

reward activity that depends on the animals’ reward expectation.

3. Inhibition of VTA dopaminergic neurons largely replicates the effects of extinguishing

reward expectation, indicating that reward expectation restructures CA1 cognitive maps by

modulating VTA DA inputs to dorsal CA1.

Chapter 3: Distinct sets of dopaminergic inputs in hippocampal CA1 transmit

contrasting signals during behavior in a changing world

1. During exploration of familiar environments, VTA axons in dorsal CA1 exhibit ramp-

ing to reward activity while LC axon activity is correlated to the animals’ velocity and

increases prior to motion initiation.

2. LC axon activity sharply and persistantly increases following exposure to a novel envi-

ronemnt, while VTA axon ramping to reward activity disapears. These findings demonstrate

distinct activity dynamics in VTA and LC axons during spatial navigation.
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4.2 Discussion and Future Directions

Dopaminergic inputs to the dorsal hippocampus in reward location encoding

Here we demonstrate strong ramping to reward activity in VTA DA inputs to the dorsal

hippocampus, that depends on the animals’ reward expectation. While we did not observe

reward related activity in LC axons in dCA1, it has been reported that these inputs have

increased activity at new reward locations (Kaufman, Geiller, and Losonczy 2020). These

findings support the that LC axons play a role in the establishment of overrepresentation

of reward locations (Gauthier and Tank 2018; Kaufman, Geiller, and Losonczy 2020), while

VTA DA axons are involved in the maintenance of place fields in rewarded environments. In-

deed, while LC inputs are not active at familiar reward location but quickly develop activity

at new reward locaitons (Kaufman, Geiller, and Losonczy 2020), while VTA DA ramp to fa-

miliar rewarded locations but take time to develop ramping activity to novel reward location

(Krishnan et al. 2022). Furthermore, inhibition of VTA DA neurons mimicked the effects

of extinction of reward expectation on place cells but did not completely eliminate overrep-

resentation of reward locations, suggesting it modulates place fields throughout rewarded

environments but is not solely responsible for overrepresentatio of reward locations. In con-

trast, inhibition of LC-CA1 axons eliminated overrepresentation of new reward locations,

while excitation of this inputs can enrich place cells near familiar rewarded environments

(Kaufman, Geiller, and Losonczy 2020), demonstratitng a critical role for the establishment

of overrepresentation of rewarded locations. Further experiments should be conducted to

establish the role of these two inputs in other goal-oriented task.

Dopaminergic inputs to the dorsal hippocampus in novelty encoding

While it had previously been shown that VTA and LC neurons increase in activity fol-

lowing exposure to a novel envionrment (Takeuchi et al. 2016), here we only observed novelty

induced activity in LC inputs to dCA1. Combined with other studies, this demonstrates a

role of LC but not VTA inputs in the encoding of novel environments in the hippocampus
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(Takeuchi et al. 2016; Wagatsuma et al. 2018; Chowdhury et al. 2022). While, these exper-

iments did not demonstrate an effect on the stability of place fields in a novel environment

across days, our findings of a brief large increase in LC activity in a novel environment

suggest they may play a role in the development of instant versus delayed place fields that

occur in across a similar timescale (Dong, Madar, and M. E. J. Sheffield 2021). Additionally,

this activity may influence the trial by trial stability of new place fields, or influence their

backwards shifting over time (Dong, Madar, and M. E. J. Sheffield 2021). Further experi-

ments should be conducted to investigate the role of this novelty induced LC input activity

in hippocampal function.

It has been proposed that VTA DA inputs serve as a detector of common novelty, or

novel experiences that share common aspects with past experiences. In contast, LC neurons

are thought to serve as a detector of distinct novelty (Duszkiewicz et al. 2019). It is possible

that our novel VR environments served as distinct novelty, activating LC but not VTA DA

axons. To investigate this, experiments should be conducted introducing or removing objects

and rewards and observing the activity of VTA and LC axons during these changes. It is

possible VTA DA inputs or LC inputs could respond to these changes in reward and object

locations and are involved in the flexible encoding of rewards and objects seen during these

experiments (Gauthier and Tank 2018; Bourboulou et al. 2019).

Mechanisms of action of VTA and LC inputs to the dorsal hippocampus

One caveat of our experiments is we inhibited all VTA DA Neurons and did not directly

manipulate the VTA DA projections to dCA1. Therefore, the effects of VTA DA neuron

inhibition on hippocampal neuron activity cannot be attributed directly to VTA DA inputs

to dCA1. VTA DA neurons project to many brain regions important for reward learning and

motivation and may be impacting hippocampal function through these inputs. Therefore,

further experiments should be conducted, directly manipulating VTA DA inputs to dCA1

to examine the role of this pathway in reward expectations effects on hippocampal function.
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We demonstrate distinct activity dynamics in VTA DA and LC inputs to the dorsal

hippocampus indicating a role for VTA DA axons in reward expectation dependent modu-

lation of place fields and LC neurons in novelty encoding. However, we did not investigate

the mechanisms through which these inputs impact hippocampal function. Investigating

hippocampal pyramidal neuron dendirites during spatial navigation has revealed the sub-

compartment dynamics play a role in place field development (M. E. J. Sheffield and Daniel

A. Dombeck 2015; Mark EJ Sheffield and Daniel A Dombeck 2019; Mark E.J. Sheffield,

Adoff, and Daniel A. Dombeck 2017). Investigating how VTA and LC inputs influence

these dynamics and shape place field activity may reveal important insight into the cellular

mechanisms through which these inputs influence hippocampal encoding.

There is evidence that both VTA and LC inputs could act through interneurons (Adeyelu

and Ogundele 2023; Kaufman, Geiller, and Losonczy 2020), while DA receptors are also ex-

pressed on pyramidal neurons (Yao, Spealman, and J. Zhang 2008; C Charuchinda et al.

1987) suggesting they may impact these neurons directly. Additionally, reward related ac-

tivity has been observed in both VIP (Turi et al. 2019) and CCK interneurons and astrocytes

in the hippocampus, indicating they their involvement in reward encoding in the hippocam-

pus. Experiments investigating the effects of VTA DA and LC inputs on these neurons

may provide insight into how these sparse inputs can influence entire populations of hip-

pocampal place cells. The findings in this thesis support distinct roles of VTA DA and

LC inputs to the hippocampus in learning and spatial navigation which should be tested in

future experiments. Ultimately, these findings bring us closer to an understanding of how

neuromodulatory inputs influence hippocampal function and episodic learning and memory.
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