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to my grandfather



If you’re presenting something new and you’re not terrified that you drew the wrong

conclusion, then you have a major personality flaw

-Margaret Gardel

All this happened, more or less

-Slaughterhouse-Five
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ABSTRACT

Describing biological phenomena using physics is a difficult problem. Biological systems such

as cells and tissues exhibit emergent behavior which is driven by genes, proteins, and the

interplay and feedback loops between them. To capture biological behavior in a physical

theory, one has to sort through this complexity, often by hand, and determine how to ac-

count for these sub-cellular interactions. This physical theory must then be connected to

experimental reality, posing an even greater challenge. To reconcile the laws of physics with

the complexity of nature, one must sift through large experimental datasets in order to find

the critical details which enable connections between these two pictures.

This thesis presents machine learning as a tool to streamline this process. Our method of

data-driven biophysical modeling combines physical theory, biological insight, and machine

learning to characterize and understand diverse phenomena. Using experimental case stud-

ies on protein dynamics, cell mechanics, and fruit fly embryo development, we show how

this approach can not only predict the future of complex systems, but also help uncover

interpretable rules governing their behavior.
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CHAPTER 1

INTRODUCTION

A central goal of physics is to understand the rules that govern what happens around us.

To do this, physicists have built general frameworks, often relying on symmetries and con-

servation laws, to model behavior ranging from the very large to the very small. Classical

continuum mechanics is one such framework which — despite ignoring significant complex-

ity at molecular, atomic, and subatomic scales — has proven successful at describing solids,

fluids, and many materials in between. Cells are decidedly non-classical. The mechanics

of cells are driven by actions and feedback loops involving many interacting proteins and

protein structures. To describe cell behavior within the framework of classical mechanics,

one must connect the biochemical objects which make things happen (i.e. proteins) to the

mechanics one aims to capture (i.e. cell motion). Determining these couplings for a given ex-

perimental system, either by coarse-graining a detailed microscopic model or by adding terms

phenomenologically, is a difficult problem due to the complexity of not just the biochemistry

and mechanics, but also the experimental data itself.

Machine learning (ML) has the potential to overcome these challenges by building com-

plex models directly from experimental data. Indeed, ML has achieved superhuman per-

formance on a variety of problems — chess, Go, racing simulators, and protein structure

prediction, to name a few — by searching for and recognizing patterns within complex

datasets. While such models are predictive, they are not explanatory. A deep neural net-

work is a black-box and it is difficult to determine what it has learned or how it makes

a prediction. Thus, despite the success of deep learning in biology, an open question re-

mains: How can we use ML as a tool for building interpretable physical models

of biological systems?

1



1.1 Thesis overview

The thesis is organized as follows. First, we provide overviews of key concepts used through-

out this work. Chapter 2 offers an introduction to active matter, a framework which

extends classical mechanics to describe materials which exist out of equilibrium. We out-

line common active matter models and their connections to biological systems. Chapter 3

introduces deep learning by explaining the building blocks of neural networks, describing

several common network architectures, and discussing considerations for choosing which neu-

ral network to use for a given task. This material was adapted from a series of supplemental

“primers" on deep learning written alongside each of our papers.

The following chapters demonstrate data-driven biophysical modeling through a

series of case studies spanning biological scales. Chapter 4 examines active nematics, a

material composed of biofilaments and molecular motor proteins, and shows how neural net-

works can connect experiments to hydrodynamic theory as well as forecast complex chaotic

behavior in a model-free manner. Chapter 5 focuses on the mechanics of single cells. We

use machine learning tools to identify relevant proteins for predicting mechanical behavior.

We introduce two data-driven pipelines — one constrained by physics and one more agnostic

— which build complementary interpretable models that predict cellular forces from protein

distributions. Chapter 6 examines the multi-cellular dynamics of developing Drosophila

embryos. By applying our machine learning toolkit to experimental movies of embryo de-

velopment, we learn a set of equations which describe how protein dynamics and genetic

patterns govern morphogenesis, or how organisms develop their shapes.

2



CHAPTER 2

ACTIVE MATTER

This chapter is an introduction to active materials, whose components perform work at

the microscopic level and create large-scale motion. A classic example is a collection of

self-propelled particles – these could be microscopic bacteria, small battery-powered robots,

or people walking in a crowd. In each of these cases, the agents convert chemical energy

(ATP, a battery, or a hamburger) into mechanical work (flagellar motion, spinning wheels, or

moving feet). This conversion process, called mechanotransduction, injects energy at the

agents’ scale and moves the system out of equilibrium. Many biological systems are active,

ranging from epithelial tissues to bird flocks to the cellular cytoskeleton, which is composed

of biofilaments driven by molecular motors. This chapter will present some common active

matter behaviors, such as flocking, through the lens of continuum theory. Each case will

demonstrate how to extend classical continuum mechanics models of passive materials to

the active regime where detailed balance is broken at the microscopic scale.

Describing active matter using continuum equations, as one would for a passive fluid or

solid, requires careful re-examination of the symmetries and conservation laws present (or

absent) in the system. For example, active materials violate conservation of energy. The

components create mechanical energy at the microscale which powers self-sustained active

flows and stresses. We will show how to account for this energy injection and examine its

consequences. We begin with an introduction to classical hydrodynamics, a framework for

writing down coarse-grained equations constrained by symmetries and conservation laws.

Next, we examine self-propelled systems which exhibit a flocking transition. We then in-

troduce active nematics and place a special focus on the behavior of topological defects.

We will briefly discuss how activity influences elasticity, demonstrating its relevance to solid

mechanics as well as fluid mechanics. Finally, we cover active gel theory and apply it to

describe the mechanics of the cell cytoskeleton.

3



2.1 Hydrodynamics

The Navier-Stokes equations can describe water flowing through a pipe without knowing

anything about the individual H2O molecules that comprise the flow. These molecules

move around and collide with each other, but the typical length (∼ 10−10 m) and time

(∼ 10−10 s) scales of their interactions are much smaller than those of the pipe flow we

are interested in. Hydrodynamics is a theoretical framework for describing such systems

at long distances and long timescales relative to their microscopic components. Despite its

origins, hydrodynamics captures more than just water. Hydrodynamic modeling has been

applied to systems whose particles range from atoms, molecules, cells, or even birds [34, 119,

154]. The goal of this framework is to predict the behavior of materials in a universal manner,

independent of microscopic details such as the individual positions of their constituents.

A core assumption of hydrodynamic models is that systems achieve local thermaliza-

tion. That is, a local region, whose size is much larger than the typical particle size or inter-

particle separation, will reach thermal equilibrium over a timescale which is much larger than

the typical collision (or interaction) time between particles. The system can be described

by thermodynamic variables which are uniform within each local region. Hydrodynamics

seeks to describe the total system by modeling the dynamics of each hydrodynamic degree

of freedom within each box. The number of these degrees of freedom typically corresponds

to the number of conserved quantities in a system. The charge of a conserved quantity is

a suitable hydrodynamic variable. For example, momentum is conserved in classical fluids,

and so momentum density is a relevant variable [34].

After identifying the degrees of freedom, we can determine their dynamics using con-

servation laws constrained by symmetry. As an example, consider a system with one

conserved quantity: the particle number N . The corresponding conserved charge is the par-

ticle density ρ(x), and so this is our lone hydrodynamic variable. The dynamics is described

4



by a conservation law [34]
∂ρ

∂t
+∇ · J = 0 (2.1)

Here J is a current which we will define via a constitutive relation. A typical approach is to

perform a derivative expansion and write Ji(x) = Ci ρ+Dij ∂jρ+Eijk ∂
2
jkρ+O(∂

3). When

ρ varies slowly in space1, we can truncate the expansion at leading order. At equilibrium2,

the density will be uniform and there should be no current. Thus, we can set Ci = 0. By

assuming rotational invariance, we can further constrain Dij ∼ δij . This allows us to

write a the hydrodynamic equation for our system

∂ρ

∂t
−∇ · (D∇ρ) = 0 (2.2)

This is a diffusion equation and the relation J = −D∇ρ is known as Fick’s Law. Taking

the diffusion coefficient D to be constant, we recover Fourier’s heat equation.

The above example was a derivation for a system with one conserved quantity. Using a

similar approach, one can derive other familiar hydrodynamic equations. For example, by

considering a system whose mass, momentum, and energy are conserved, one can derive the

well-known Navier-Stokes equations of fluid mechanics.3

2.2 Flocking

Flocking is a paradigmatic example of collective behavior in active matter. Active con-

stituents, such as flying birds, organize into large complex patterns whose size is much

greater than an individual bird. We will examine flocking first from the discrete particle/bird

perspective before constructing a continuum mechanical theory following [193].

1. i.e. ρ has long-wavelength behavior

2. The infinite-wavelength limit

3. For a detailed derivation, see Chaikin and Lubensky Chapter 8.4 [34].

5



2.2.1 Discrete theory: Vicsek model

The Vicsek model was the first attempt to describe the physics of flocking [202]. This model

takes a classic physicist’s view and models birds as a set of spins. This is a similar approach

to modeling a ferromagnet. Just as a ferromagnet can spontaneously magnetise, so too can

the birds spontaneously align, or flock (Figure 2.1a). In the Vicsek model, the birds have a

position x and a direction θ. Their dynamics follow the update rule

ri(t+ dt) = ri(t) + ri dt (2.3)

θi(t+ dt) =
1

NR

∑
∆ij<R

θj(t) + ηi(t) (2.4)

The first equation updates each bird’s position, assuming it moves with a constant speed

v in its direction θ – the birds are self-propelled. The second equation updates each bird’s

direction by taking an average over its neighbors within a distance R. The term ηi is Gaussian

noise with ⟨ηi(t)⟩ = 0 and ⟨ηi(t)ηj(t′)⟩ = ∆δijδ(t− t′).

The update rule (2.4) is relaxational dynamics. At each time step, the value at each

point is replaced by an average over its neighbors. On a regular 2D lattice with spacing a,

(2.4) is the discrete form of a noisy diffusion equation. It is identical to solving the following

equation using a finite-difference method.

∂tθ = D∇2θ + η

(
D =

a2

4

)
(2.5)

At low densities or high noise, the bird orientations are either disordered or correlated

only within small regions. However, at high densities and low noise, the birds align and move

along a single chosen direction (Figure 2.1b). This is known as the flocking transition [202].

6



Figure 2.1: Modeling the flocking transition. (a) The Vicsek model models birds as spins
which tend to locally align. (b) Spins exhibit a transition to uniform alignment along a
chosen direction. (c) Toner-Tu Free energy Fp for α > 0 (blue) and α < 0 orange.

2.2.2 Continuum theory: Toner-Tu hydrodynamics

We can examine this flocking transition more closely using Toner-Tu theory, a continuum

model which describes the collective behavior of the discrete birds defined by Equations. 2.3-

2.4.

To build hydrodynamic theories, we start with symmetries and conservation laws. We

assume no birds are born4 or die, and so the number of birds is conserved. Because the birds

are self-propelled, neither energy nor momentum are conserved. Thus, the hydrodynamic

theory will have an equation for one conserved charge: the number density ρ. We also need

an equation for the birds’ motion direction p (also called polarization), which is a variable

related to broken rotational invariance. We will discuss the significance of this later. To

obtain our hydrodynamic variables ρ, p, we must coarse-grain the variables in the Vicsek

4. The growth and development of flying organisms are covered in Chapter 6

7



model.

ρ(r, t) =
∑
n

δ(r− rn(t)) (2.6)

p(r, t) =
1

ρ(r, t)

∑
n

pn(r, t)δ(r− rn(t)) (2.7)

Here pn is a vector for each birds’ direction and points along its orientation angle θn. Al-

though p relates to the birds’ orientation, it is not required to be a unit vector. It is a local

average of the birds’ direction, and one can view its magnitude as a measurement of how

aligned the birds are at point r.

Following [119], it is convenient to write the dynamical equations for ρ and p in a way

that separates equilibrium and non-equilibrium physics. The former can be written as arising

from a free-energy functional Fp, leading to a compact form for the hydrodynamic equations.

∂tρ+ v0∇ · (ρp) = −∇ ·
(
− 1

γρ
∇
δFp
δρ

+ fρ

)
(2.8)

∂tp+ λ1(p · ∇)p = −1

γ

δFp
δp

+ fp (2.9)

Here, v0 is the birds’ self-propulsion speed, γ, γρ are kinetic coefficients, and fρ,p are noise

terms. The term λ1(p · ∇)p resembles the nonlinear advective term in the Navier-Stokes

equations. Here however, momentum is not conserved, and so there is no Galilean invariance

to enforce λ1 = v0. Instead, λ1 is a phenomenological coefficient related to the birds’

properties, or more formally, the microscopic components of the system.

The free energy Fp can be defined phenomenologically. A common approach is to write

all terms allowed by symmetry to leading order in gradients, in the spirit of Landau theory.5

Fp =

∫
d2x α|p|2 + β|p|4 + K

2
|∇p|2 + . . . (2.10)

5. This truncates additional, more complicated terms. The full expression is in [119]

8



We first consider Fp when p is uniform. Figure 2.1c, shows (2.10) for different signs

of α. Fp is parabolic when α > 0 and the free energy is minimized when p = 0 and

the net "magnetization" or orientation of the birds is M ≡ arg(p) = 0. This disordered

phase has no net magnetization and the birds do not flock. When α < 0, Fp is a wine-bottle

potential and the disordered phase is unstable. The lowest-energy configuration occurs at any

polarization p such that p =
√
α/β. Thus, the birds will align with a finite polarization and

achieve a net magnetization. This is the ordered phase, and the change from disordered to

ordered phases is the flocking transition. There are infinitely many equivalent directions

that the birds could flock along. The collective alignment of the flock along one chosen

direction is an example of spontaneous symmetry breaking. Combining Equations 2.9-

2.10 leads to the common form for the Toner-Tu equations6 [193]

∂tp + λ1(p · ∇)p = −[α̃ + β̃|p|2]p + K̃∇2p − ν̃∇ ρ

ρ0
+
λ̃

2
∇|p|2 − λ̃p(∇ · p) + fp (2.11)

The first term on the right-hand side controls the flocking transition, while the second term

is analogous to a viscosity term in the Navier-Stokes equations. The next two terms can

be interpreted as gradients of an effective pressure – note however that this pressure is not

a thermodynamic variable, but instead is defined using the density and polarization field.

The fifth term does not have an analog in fluid mechanics, but is allowed because symmetry

does not explicitly forbid it [193]. This is a common theme in deriving continuum equations

for active matter, which typically resemble a corresponding passive system with additional

terms allowed by lifting symmetry constraints [33, 119].

6. Here we have reinstated the terms omitted in Eq. 2.10

9



2.3 Active nematics

The Vicsek model and Toner-Tu theory describe polar active fluids – each bird has a head

and a tail and flies in the direction of its head. We now turn to a system of apolar com-

ponents which are head-tail symmetric. These nematic liquid crystals can be composed,

for example, of granular rods or microscopic filaments [13, 41]. By adding molecular mo-

tors to this system, which attach to and pull nearby filaments, we obtain an active ne-

matic [46, 119, 154]. Such materials are driven out of equilibrium by the energy injected

by these motors at the microscopic scale. We will see that a hydrodynamic theory of active

nematics which has just one leading-order term allowed by activity exhibits rich behavior,

such as proliferating topological defects which are spontaneously self-propelled.

2.3.1 Continuum theory: active nemato-hydrodynamics

To construct a theory for active nematics, we will first consider the hydrodynamics of a

passive nematic and then add further effects allowed by activity. We will assume constant

density and conserved momentum in the passive case, which leads to an incompressible

Navier-Stokes equation for the velocity v. We require an additional equation for the nematic

director n, which is the coarse-grained filament orientation and is analogous to the polariza-

tion field in Toner-Tu theory. Note that the director has head-tail symmetry, so n = −n.

The equations governing n, v in a passive nematic are [13, 46, 119].7

ρ0
Dv

Dt
= −∇P + η∇2v +∇ · σ (2.12)

Dn

Dt
= −1

γ

[
δF

δn
−
(
δF

δn
· n

)
n

]
(2.13)

7. To hide complexity, we use D/Dt as a generalized time derivative. This includes the nonlinear advective
term as well as an additional co-rotation term for n. We also assume incompressibility ∇ · v = 0
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The stress σ in (2.12) in a passive nematic is an elastic stress which couples flow dynamics to

gradients in the nematic director. It is related to the molecular field, which is the derivative

of the Frank free energy F [13, 41]

F =
K

2

∫ [
(∇ · n)2 + (n · (∇× n))2 + (n · (∇× n))2

]
dr (2.14)

Here the coefficient ρ0 is the density and η, γ are the fluid and rotational viscosity, respec-

tively. The Frank free energy is minimized when n is uniform and the filaments align. The

terms in the integral are the three deformation modes allowed by symmetry: splay, twist,

and bend. The coefficient K is an elastic modulus which determines how much the material

resists deformation. Equation 2.14 yields a right-hand-side in (2.13) of −K
γ ∇

2n. Thus, a

passive nematic’s director undergoes relaxational dynamics.

To extend these equations to describe an active nematic, we need to introduce terms to

describe the active forces from molecular motors. These forces inject energy and move the

system out of equilibrium, and are therefore distinct from the elastic stresses which minimize

the Frank free energy. The leading order contribution of the motors is to add an active stress

to (2.12) σ = σelastic + σactive.

σactive
ij = α ninj (2.15)

We can understand this term through a symmetry argument that bypasses the algebraic

complexities of the nemato-hydrodynamic equations [154]. The stress σ is a symmetric

tensor, and so the leading-order active stress is the simplest symmetric term arising from the

motor forces. Because the motors pull filaments along each other, their force will be directed

parallel to n, leading to the active stress (2.15). The coefficient α is the activity parameter

which sets the strength of motor-induced stresses. This can be related to the density of

motors, their pulling strength, their movement speed, or other microscopic effects. Despite
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the apparent simplicity of (2.15), this single active term describes much of the complex

dynamics of active nematics.

2.3.2 Nonequilibrium behavior: active nematic "turbulence"

Active nematic flow is governed by two competing stresses: active and elastic. The elastic

stress works to align the filaments while the active stress tries to deform them. The interplay

between the two sets the amount of activity-induced disorder in the material. We can use

dimensional arguments to determine the winner of this competition. The strength of elastic

stresses is set by K, the elastic modulus, which has units [K] = energy · length−1 = force.

The active stresses are set by α, the activity parameter, which has units [α] = [σa] = force ·

length−2. The typical forces for a system of size L are thus F elastic ∼ K and F active ∼ αL2.

Equating these two gives a critical activity

αc ∼ K/L2 (2.16)

When α > αc, activity wins the competition and the system enters a chaotic state known as

active turbulence.8 When α < αc, elastic stresses win and the system remains aligned in

a quiescent state. We can rearrange the above equation to obtain an active length

ℓα ∼
√
K/α (2.17)

Simulations and experiments have found that characteristic lengths in active nematics are

proportional to ℓα, including the director and velocity correlation lengths [82, 189, 190].

8. Active turbulence is a distinct phenomenon from classical fluid turbulence. In high Reynolds number
turbulence, energy cascades from long to short length scales. The opposite happens in active media. Energy
is injected at the microscopic level and cascades upwards to long length scales. This novel energy cascade is
of much interest, see [4, 5]
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Figure 2.2: Active nematics. (a) Topological defects appear in opposite-charged pairs. (b)
Increasing activity results in a greater defect density.

2.3.3 Active self-propulsion of topological defects

Nematic liquid crystals can have topological defects, or points where the nematic order breaks

down and cannot be restored via a smooth deformation of the director field. A hallmark of

active turbulence is the spontaneous formation of opposite-charged topological defect pairs

with a defect density that scales like nd ∼ 1/ℓ2α (Figure 2.2). Here, we will show that activity

causes the defects to behave differently depending on their charge. +1/2 defects self-propel

along their symmetry axis while −1/2 defects are more stationary.

Before diving into equations, we can try to understand the charge-dependent motility

through symmetry arguments. +1/2 defects are polar – they are comet-shaped with a

head and a tail (Figure 2.2). This creates imbalanced flows and a net propulsion. −1/2

defects have no polarity. The activity-induced flows are balanced and there is no self-

propulsion. To make this symmetry argument more convincing, we will explicitly derive

the motor-induced flows around a topological defects, following [68]. First, we make the

(experimentally-justified) assumption that defect dynamics are overdamped, obeying the

equation of motion

ζ

(
dr

dt
− v

)
= F (2.18)

Here r is the defect position, v is the local flow field, and F is the net force due to interactions
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with other defects or external perturbations. We assume that the defects are far apart and

that the flow relaxes much faster than the director (η ≪ γ). This lets us ignore F and

compute v using a Stokes equation.

η∇2v −∇p+∇ · σ = 0, ∇ · v = 0 (2.19)

The Stokes equation is linear and its solution can be decomposed v = v0+va+ve, where v0

is the homogeneous solution (σ = 0) while the latter two terms are the flows from active and

elastic stresses respectively. We compute them by convolving the active and elastic forces

with a Green’s function

vαi (r) =

∫
d2r′Gij(r− r′) fαj (r

′) (2.20)

Here fα = ∇·σα is the force per unit area due to the respective stress term σα. The Green’s

function for the Stokes equation is the Oseen tensor, given in 2D by

Gij(r) =
1

4πη

[(
log

L
r
− 1

)
δij +

rirj

r2

]
(2.21)

L is a length scale dependent on the boundary condition. For a defect with charge k we

define the director n = (cos kϕ, sin kϕ) and assume uniform concentration around the defect

core. The active force fa = ∇ · σactive is

fa = ∇ · σa =
α

2r


x̂ k = +1/2

− cos 2ϕx̂+ sin 2ϕŷ k = −1/2

(2.22)
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We can integrate the Stokes equation to obtain the active backflow [68]

va+(r, ϕ) =
α

12η
{[3(R− r) + r cos 2ϕ] x̂+ r sin 2ϕŷ}

va−(r, ϕ) =
αr

12ηR

{[(
3

4
r −R

)
cos 2ϕ− R

5
cos 4ϕ

]
x̂+

+

[(
3

4
r −R

)
sin 2ϕ+

R

5
sin 4ϕ

]
ŷ

} (2.23)

The flow at the defect core is v0 = v(0, ϕ). For ±1/2 defects, the propulsion velocity is

v0 =


αR
4η x̂ k = +1/2

0 k = −1/2

(2.24)

Active stresses do not propel −1/2 defects. Any motion they exhibit is caused solely by

elastic stresses coming from defect- or boundary-induced director distortions in the medium

which are also present in the passive case. On the other hand, active stresses do propel +1/2

defects along their symmetry axes. The sign of α determines whether they move towards

their head or their tail.9

2.4 Active solids

Until now, this chapter has focused on active fluids. We now turn to solids composed of

active agents, following [165]. Just as we did for active nematics, we will re-evaluate classical

continuum theory and lift certain constraints, such as energy conservation. This modifies the

stress-strain relation and allows new elastic moduli to appear. These odd elastic moduli lead

to novel phenomena including auxetic behavior and self-sustained energy cycles [59, 165].

9. α > 0 for contractile systems and α < 0 for extensile systems
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2.4.1 Continuum theory: Active or Odd elasticity

Traditional elasticity assumes energy is conserved and therefore one derives forces by taking

the gradient of a potential. Active or odd elasticity does not enforce energy conservation, as

active forces inject energy and are typically non-conservative. Consider a general constitutive

relation, which relates stresses and strains.

σij = Kijkl ukl (2.25)

Here Kijkl is the elastic modulus tensor, σij is the stress, and ukl is the strain tensor

ukl = (∇kul + ∇luk)/2. Conservative forces can be written as the derivative of a strain

energy f , i.e. σij = δf
δuij

. If all forces are conservative and come from a general quadratic

strain energy f ∼ Cijkl uij ukl, we find σij = 1
2

(
Cijkl + Cklij

)
ukl and therefore

Kijkl = Kklij (2.26)

Odd elasticity does not assume that all forces are conservative. Non-conservative forces,

which cannot be represented as derivatives of an energy, are also allowed. We decompose

the elastic modulus tensor Kijkl = Ke
ijkl +Ko

ijkl where

Ke
ijkl = Ke

klij Ko
ijkl = −Ko

klij (2.27)

Ke
ijkl contains even moduli arising from conservative forces. It is symmetric under the

interchange ij ↔ kl. Ko
ijkl holds odd elastic moduli which can arise due to non-conservative

forces. These are anti-symmetric, or odd, under ij ↔ kl. Active elastic solids exhibit

behavior which comes from this new antisymmetric component of the elastic modulus tensor.

In the special case of an isotropic 2D solid, the modulus tensor Kijkl has 16 independent

components while the strain ukl has 4 components. ukl is a 2×2 matrix, but we can represent
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it as a column vector using.a basis of Pauli matrices. The 4 Pauli matrices are given by

τ 0 =

1 0

0 1

 τ 1 =

 0 1

−1 0

 τ 2 =

1 0

0 −1

 τ 3 =

0 1

1 0

 (2.28)

These matrices are orthogonal and obey the identity τα · τβ = 2δαβ . They correspond to 4

deformation modes: dilation, rotation, and two shears.

We can write any matrix uij as a column vector Uα such that uij = Uαταij . We can

similarly write stress as a column vector σij = σγτ
γ
ij . Here, the Pauli matrices correspond

to stress modes of pressure, torques, and two shear stresses. In this basis, the constitutive

relation is more compact

σα = KαβUβ (2.29)

Kαβ =
1

2
ταij Kijkl τ

β
kl (2.30)

The elastic modulus tensor is a matrix in this basis, given by10

o

o
(2.32)

Isotropy requires that many terms are zero. Solid body rotations create no stress, so

Kα1 = 0. The off-diagonal quadrants are zero as shear does not couple to rotation or

dilation. B and µ are the familiar bulk and shear moduli from passive elasticity. The

10. Adopting the geometric notation from [165]

σα =


 uβ =


 (2.31)
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remaining terms A and Ko are allowed when the constraint Kijkl = Kklij → Kαβ = Kβα

is lifted. A couples dilation to torques while Ko rotates the shear stress response relative to

the applied strain. These are the new odd elastic moduli.

2.4.2 Active engines with odd elasticity

When energy is conserved, the work done by elastic forces is a state function. It depends

only on the initial and final configuration, i.e. strains, of the material. This is no longer true

in an active solid, where the work depends on the path in strain space. With odd elasticity,

work can be extracted from, or lost to, the system via quasistatic strain cycles. To see

this, take A = 0 and consider the work done over some cyclic path in strain space

W =

∮
σij duij =

∮
σβ duβ =

∫∫
dA ϵαβ

∂σβ

∂uα
(2.33)

Only the odd components Kαβ = Koϵαβ will remain leading to

W =

∫∫
dA ϵαβϵαβKo = 2Ko × Area (2.34)

Thus, an odd-elastic engine extracts work proportional to the odd elastic modulus and the

area of the cycle in strain space. We can realize this in a microscopic model with odd elastic

bonds whose spring force is f = −(kr̂ + koϕ̂)δr. Consider the following cycle

1. Rotation: r0 → r0 − δϕ ϕ̂

2. Extension: r0 − δϕ ϕ̂ → r0 − δϕ ϕ̂+ δr r̂

3. Rotation: r0 − δϕ ϕ̂+ δr r̂ → r+ δr r̂

4. Relaxation: r+ δr r̂ → r0

This is indeed a cycle as the spring returns to its original state. Step 1 performs no work as

the spring is not extended and the net work by steps 2 and 4 is zero as the radial force is

conservative. However, the work done in step 3 is f ·δr = koδr ·δϕ(r0+δr). For infinitesimal
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displacements this is approximately kor0 δrδϕ = koA. The net work done over the cycle and

is proportional to both ko and the area enclosed by path. Ref. [165] shows this non-zero

work enables self-sustained waves powered by odd-elastic energy cycles. This is not limited

just to overdamped media containing abnormal springs – as we will see at the end of this

chapter, microscopic activity can power deformation in biological systems as well.

2.5 Active gels

To conclude this chapter, we will show an example of how active matter theory can predict

biological behavior. By modeling a cell membrane as a thin active gel, one can describe

cytokinesis, or cell division. An active gel is a material consisting of a network of cross-

linked filaments and molecular motors [152]. Beyond motor-induced deformation, active gel

physics considers a second phenomenon that drives the material out of equilibrium. The

filaments are polymers made of building blocks called monomers. The gel contains both

polymers and free monomers not bound to a filament. The free monomers can attach to

a filament, or polymerize, while the bound monomers can detach from a filament, or de-

polymerize. This spontaneous polymerization and depolymerization is a second energy

transduction process which can create mechanical work from chemical energy.

In this section, we will first construct a theory for active gels following [152]. The two

driving factors, motor-induced activity and (de-)polymerization result in equations with new

active terms that break detailed balance. Next, we will apply this theory following [197],

which demonstrates how active gel models predict cytokinesis.

2.5.1 Continuum theory: Active gel hydrodynamics

To construct a hydrodynamic theory, we start with conservation laws. In an active gel,

momentum and number of monomers/motors are all conserved. We therefore require hy-

drodynamic equations for the dynamics of each corresponding conserved charge. Because
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the gel is composed of filaments which can have a direction, we include an additional bro-

ken symmetry variable as with Toner-Tu and active-nematic hydrodynamics. Depending on

whether there is polar or nematic order, this will be the polarization vector p or nematic

director Qij , respectively.11 The hydrodynamic equations come from a low-order gradient

expansion restricted only to terms allowed by symmetry. The following sections will outline

the equations for each collective variable and emphasize the new terms arising from activity.

Because an active gel has filaments and molecular motors, you might expect its hydro-

dynamics to resemble active nematics. You would be correct. The free monomers which can

attach and disengage from the filaments will add a new wrinkle to the equations and make

them more complicated, but capable of predicting biological behavior like cytokinesis.

Momentum

The momentum equation includes a stress σij which for a passive system is

σ
p
ij = η

(
∇i vj +∇j vi −

2

3
(∇ · v) δij

)
+ η̄ (∇ · v) δij + σbs (2.35)

The first few terms are the classical linear stress tensor from Navier-Stokes, while σbs is

a new component which depends on the density and orientation order parameter. Without

time-reversal symmetry12, the constitutive relation can have a new active stress term σaij =

ζQij + ζ̄δij which is similar to that in active nematics. The coefficients ζ and ζ̄ are related

to the motor and filament densities. They also scale with the difference ∆µ between the

chemical potential of the fuel (ATP) and that of its reaction products. Thus ∆µ controls

the activity in the gel and can drive the system out of equilibrium.

Crosslinkers bind filaments together which introduces a new elastic regime at intermediate

11. The nematic tensor Qij = q(ninj − δij/d) is a director representation that accounts for head-tail
symmetry. q is the local ordering strength. At a defect, the director is undefined and q = 0.

12. No energy conservation
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timescales. To account for this, we modify the constitutive relation with the Maxwell time

τM – this is the timescale the crosslinkers remain bound.

(
1 + τM

D

Dt

)
(σij − σaij − σbsij ) = η

(
∇i vj +∇j vi −

2

3
(∇ · v) δij

)
+ η̄ (∇ · v) δij (2.36)

When τ < τM , the derivative D/Dt dominates the left hand side. The material behaves

like an elastic solid with shear modulus η/τM . The elastic regime breaks down at long time

scales where the D/Dt term becomes negligible.

Monomer number

The monomer density ρ can be separated into polymerized (in filaments) monomers ρf and

unbound monomers ρm. The total mass ρ = ρf+ρm is conserved but the two sub-populations

can fluctuate following

∂tρf +∇ · Jfk = kp ρm − kd ρf (2.37)

∂tρm +∇ · Jmk = −kp ρm + kd ρf (2.38)

The polymerization and depolymerization rates kp, kd do not obey detailed balance

beause they represent different chemical processes. The monomer fluxes Jf , Jm obey the

constitutive relations

J(f/m) = J(f/m)p + ϵ(f/m)(∇ · n)n+ ϵ′(f/m)(n · ∇)n (2.39)

Here (f/m) means the same equation form applies to both found and unbound monomers.

We will apply this convention whenever equations are identical up to a choice of sub/super-

script. The first right hand side term is the passive flux and is identical to that obtained in

passive convection or diffusion problems. The remaining terms are due to activity. Because
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there is no time-reversal symmetry, the constitutive relations can have terms with the sym-

metry of a vector – for example, the two active terms which come from filament distortions

(splay/bend). For systems with polar order, the polarization p also has vector symmetry,

allowing terms like λf/mp.

The active terms allow monomers to flow spontaneously due to filament distortion. For

polar active gels, local alignment can also create a monomer flux. The number of molecular

motors is also conserved and they too can be separated into bound and unbound motors.

Following the above procedure, one can find equations for molecular motor dynamics which

have similar active terms.

Polarization

For gels with nematic order, the equations for Qij are identical to those for active nematics.13

For polar gels, the dynamic equations instead become [152]

Dp

Dt
= −1

γ

δF

δp
+ ν̄ (∇ · v)p+ ν p ·

(
∇v + (∇v)T − 2

3
(∇ · v) I

)
+

λ0 p+ λ1 (∇ · p)p+ λ2 (p · ∇)p (2.40)

The first term minimizes a free energy F which depends only on gradients of p. The next

two couple p to the flow field. Here γ is a rotational viscosity and ν, ν̄ are flow-alignment

parameters. The λ0 p term is also present in passive gels. One can absorb it into the free

energy as a Lagrange multiplier that enforces p · p = 1.

The final two terms are unique to active polar gels. The λ1 term creates active dynamics

around splay distortions, whlie the λ2 term produces dynamics around bend distortions.

Both of these terms also appear in Toner-Tu theory [193], although we neglected them for

simplicity in the above discussion. There, as is also the case here, they are allowed because

13. Earlier, we wrote these equations in terms of n. A formulation using Qij is in Chapter 4.
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symmetries and conservation laws do not explicitly prohibit them.

Summary

Active gel theory has much in common with the other active systems in this chapter. The

polarization dynamics are reminiscent of Toner-Tu theory, while the momentum equation

has the same active stress appearing in active nematics. Both active nematics and active

gels are driven by molecular motors pulling on filaments.

On the other hand, the monomers binding and unbinding creates new terms that we have

not seen before. The total monomer number is conserved, But the bound and free monomers

are two distinct sub-groups whose interactions do not obey detailed balance. Beyond their

chemical behavior, they are also driven by both the flow and orientation field.

2.5.2 Cytokinesis

The cell cytoskeleton is an active gel made up of crosslinked actin filaments and myosin

molecular motors. Because of this, active gel theory can describe aspects of cell behavior

and motion. Here, we follow [197] to demonstrate how active hydrodynamics can model

cytokinesis, or cell division.

During cytokinesis, the cell membrane contracts over time until the cell separates into

two. The membrane is attached to an actomyosin cortex and membrane dynamics are driven

by the competition between cortical tension, which causes contraction, and cytoplasmic

pressure, which prevents that contraction. To describe the former effect, we will model the

actomyosin cortex using active gel theory. The latter effect comes from the cell interior, and

we will assume it is a uniform hydrostatic pressure.

To model the cell membrane, we parameterize it with a curve in the (ez, er) plane. The

full membrane is assumed axisymmetric about the ez axis. Along this curve, we define a local

coordinate system (s,n, eϕ) where s,n are unit vectors tangent and normal to the membrane
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Figure 2.3: Application of active gel theory to cell division. (a) Setup of active gel model of
cytokinesis described in 2.5.2. (b) Qualitative sketch of dynamics from solving (2.44)-(2.47).
Original plot with numerical results is available at [197] Figure 1.

mid-line, respectively, and eϕ is a unit vector in the azimuthal direction. These global and

local coordinate systems are shown in Figure 2.3a.

The membrane can contract in the axial and azimuthal directions. The corresponding

contractile tensions Ns, Nϕ are given by integrating stress across the membrane and keeping

to leading order in the small membrane width e

Ns/ϕ =

∫ e/2

−e/2
dξ σss/ϕϕ(ξ) ≈ e σss/ϕϕ (2.41)

The stress σ has passive and active components. With the strain rate uij = (∇iuj+∇jui)/2,

the passive stress is σpij = 2η uij − p δij as in a classical Stokes flow.

Incompressibility requires ∇ · u = 0 and thus uss + uϕϕ + unn = 0. At the membrane

surface ξ = ±e/2, the normal stress σnn must be zero14. Because of this, the pressure p is

p ≈ 2η unn = −2η(uss+ uϕϕ). The axial and azimuthal strain rates uss, uϕϕ are, to leading

14. We assume it is constant in the transverse direction following the lubrication approximation
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order, equal to their average values over the membrane width

ds/ϕ =
1

e

∫ e/2

−e/2
dξ uss/ϕϕ(ξ) ≈ uss/ϕϕ(0) (2.42)

Plugging these results into the expression for the passive membrane tensions Ns/ϕ gives

N
p
s = 2ηe (2ds + dϕ) N

p
ϕ = 2ηe (ds + 2dϕ) (2.43)

As before, the active stress is σaij = ζ∆µQij . Assuming that actin is parallel to the mem-

brane requires Qnn = 0. Further assuming that its in-plane polarization is isotropic gives

Qss = Qϕϕ = 1/2 and the active membrane tensions are Na
s = Na

ϕ = e
2 ζ∆µ. Putting

everything together, the total membrane tensions are

Ns =
e

2
ζ∆µ+ 2ηe (2ds + dϕ) Nϕ =

e

2
ζ∆µ+ 2ηe (ds + 2dϕ) (2.44)

The activity coefficient ζ is related to the myosin motors. Experimental imaging of the

protein RhoA, which regulates myosin activity, indcates that the motors are most active at

the cell mid-line. We approximate this using a Gaussian profile centered at s = 0

ζ(s, t) = ζ0 + I(t) exp

(
−1

2

[ s
w

]2)
δζ (2.45)

Actin filament (de-) polymerization also contributes to membrane dynamics. Polymerization

happens near the membrane surface where there are more free monomers. Depolymerization

happens throughout the membrane. These effects control the dynamics of actin monomers

a via

d (ae)

dt
= −kd a e+ vpa (2.46)
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Here kd is a depolymerization rate and vp is a polymerization velocity. The full membrane is

parameterized as an axisymmetric curve with thickness e determined by the (de-) polymer-

ization equation. The overall curve shape is determined by the competition between cell’s

cytoplasmic pressure P and the membrane tensions

div(Ns, Nϕ) + P n = 0 (2.47)

The divergence operator depends on the membrane shape at a given time. Discretizing

(2.44)-(2.47) yields a system of equations for the velocities which can be solved at each

time step in order to determine the dynamics of the membrane shape. These equations

are implemented numerically in [197] and evaluated for an initially spherical shape. Their

results, approximately sketched in Figure 2.3, demonstrate that the active gel membrane

model qualitatively reproduces the complex dynamics of cell division.

2.6 Summary

In active matter, microscopic components inject energy and induce emergent collective mo-

tion at the macroscale. This behavior appears in many biological contexts, including cell

dynamics, bacterial swarms, flocking birds, and schooling fish. To model active materials us-

ing continuum theory, it is useful to lift constraints from a corresponding passive material. In

the examples from this chapter, energy is no longer conserved. Lifting this constraint allows

new terms in constitutive relations or hydrodynamic equations. In active gels, monomers

are free to bind and unbind in a way that breaks detailed balance, which further modifies

dynamical equations for density.

Active continuum theories are powerful, but they are also quite complicated. The equa-

tions are frequently coupled nonlinear partial differential equations. They are parameterized

by many coefficients which are proxies for the microscopic components of the material.
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However, it is difficult map between known microscopic properties, such as myosin motor

concentration, and their corresponding hydrodynamic coefficients.

It is even less clear how to reliably apply active matter theory to biological systems. In

our final example, we used active gel theory to build a simplified two-dimensional model

that qualitatively described cell division. To achieve quantitative comparisons to real ex-

perimental data, we may have to extend these already complicated theories even further.

Cells are controlled by many proteins which assemble and interact to produce large-scale

mechanics. While a detailed microscopic model may account for all of these proteins, an

effective continuum description might be able to get by using only a few. How to iden-

tify this relevant biochemical information and incorporate it into continuum theory via

mechano-chemical couplings remains an open question.
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CHAPTER 3

DEEP LEARNING

Machine learning (ML) refers to algorithms which learn from and adapt to data. A ML

model trains on a dataset and learns behavior by updating its of parameters, also known as

weights. By observing data, a model can optimize its weights to capture underlying patterns

and then be applied to make predictions on unseen situations. In this chapter, we provide an

introduction to deep learning, a machine learning framework centered around deep neural

networks. Deep neural networks are a type of ML model with strong expressive power and a

noted ability to generalize beyond their training. Unlike traditional approaches to statistical

modeling, for instance linear regression, that are more or less curve fitting, neural networks

have the capability to distill complex underlying physics and achieve robust predictions on

high-dimensional data. We begin with some ML preliminaries and then provide an overview

of neural networks, their building blocks, and several common network architectures. We

conclude by summarizing considerations for selecting neural network models for biophysical

problems. These insights were "human-learned" during the projects presented in this thesis.

3.1 Machine learning frameworks

Machine learning can be separated into three frameworks: supervised, unsupervised, and

reinforcement learning. In supervised learning, a model examines a dataset containing

labeled input-target pairs and learns to match each input to its target. A common example

of supervised learning is linear regression, which attempts to find a slope α and intercept β

such that yi = αxi + β. Here, x is the vector of input data and y is the target data. In

a linear regression problem, one can exactly solve for the weights α and β. More complex

models, such as deep neural networks, are nonlinear and their parameters are typically found

via gradient descent.
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In unsupervised learning, the input data do not have specified targets. Instead, the

network aims to optimize an objective which is carefully chosen so that the output identifies

hidden patterns or a useful representation of the data. Unsupervised methods are particularly

useful for simplifying complex data through dimensionality reduction, as well as modeling the

probability distribution that a dataset is sampled from. One common unsupervised method

is principal component analysis, which is a linear method of dimensionality reduction that

finds the directions of maximal variance in the data.

Reinforcement learning is focused on the behavior of agents acting in an environ-

ment. The major goal is for intelligent agents to learn how to act in order to maximize

their reward. A common application for reinforcement learning is games. In chess, for ex-

ample, the players are agents, the board and pieces are the environment, and the goal is

to learn a strategy which maximizes the chance of winning. By learning within this setup,

AlphaZero achieved superhuman chess performance within 24 hours of training [174]. While

reinforcement learning is an active and vibrant area of research, we do not focus on it in this

dissertation.

3.2 Neural network building blocks

Neural networks are a nonlinear computing model inspired by the structure of the human

brain which have proven effective at learning behavior from large complex datasets [108,

122]. They consist of several layers of interconnected neurons. The network computes

an output by processing input data through each layer, additionally applying nonlinear

activation functions which enhance expressivity. Each layer’s input is combined with the

trainable weights on each neuron connection to produce an output which in turn becomes

the input for the next layer. This follows the equation

xℓ+1
j = f(wℓ

ijx
ℓ
i + bℓj) (3.1)
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Here ℓ is the layer index, w denotes the weights between neurons, b denotes a bias parameter

to be trained on each neuron, and f is some fixed nonlinear function such as a sigmoid

or tanh which enables neural networks to have strong expressive power. Here, we use the

Einstein summation convention on the indices i and j, which represent the indices of neurons

in each layer. During training, the weights and biases are adjusted to minimize the difference

between the predicted output and the targeted output.

In a fully-connected or dense neural network (DNN) (Fig. 3.1A), each pair of

neurons in adjacent layers are connected with a unique weight. When the number of neu-

rons in a given layer is large, the number of weights to train can grow rapidly and become

intractable. This can occur, for example, when the input layer is a spatially-extended field

like the nematic director field. Architectural choices such as the use of convolutional or re-

current neural networks that employ shared weights can largely reduce the model complexity

and make training tractable in such cases. The methods of weight sharing used by these

architectures naturally account for symmetries present in many physical problems.

A convolutional neural network (CNN) is an architectural choice originally designed

for image processing. They are commonly used to extract features in pictures that can

contain millions of pixels. Nevertheless, a CNN is generally applicable to any input data

that can be represented on a regular grid (of arbitrary dimension), such as the physical

fields considered later in this dissertation. It takes advantage of translational invariance

by employing patches of weights, known as filters, which are spatially scanned through the

values on the grid (Fig. 3.1B). In this process, the same set of neural weights are shared

by each input component, greatly reducing the number of weights to train. Sharing weights

in this way also enables a CNN to be trained on a small-sized system and applied later to

arbitrarily large systems. This not only avoids the issue of retraining the model for any

different input sizes, which is typically required for dense neural network, but also allows us

to conveniently generate large amounts of training data using small systems. While a single
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Figure 3.1: Overview of common neural network building blocks. (A) Dense neural networks
(DNN). When an input vector X (blue) passes through the network, it is processed by
multiple layers of neurons (black) to generate the final predictive output Y . Neurons (circle)
at any two adjacent layers are fully connected. Each connection line contains a weight
W , which will be optimized to capture the relation Y (X) during the training process. (B)
Convolutional neural networks (CNN). CNNs are commonly used for image processing. They
employ neural patches (grey) to scan through the input. This not only takes the spatial
connectivity of the input data into account but also largely reduces the model complexity
by using shared weights. (C ) Recurrent neural networks (RNN). RNNs are often applied
to sequential data, i.e., X(t) and Y (t) with t = t1, t2, . . . , tn. Unlike a DNN that passes
input directly to output, RNN also contains a recurrent link (loopy arrow), which can be
expanded as another neural network passing information from the initial time t1 all the way
to the current time tn. This allows us to capture memory effects along the sequence. These
three common neural networks provide the building blocks for more advanced neural network
architectures. On the right-hand side of each panel, we provided the corresponding graphic
symbols that we used in the maintext.
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convolutional layer can only collect local information up to the size of each filter, a neural

network can obtain information from larger regions by using a stack of convolutional layers

connected in sequence. By doing so, each subsequent layer of filters gets a progressively

larger field of view (or receptive field) on the input.

A recurrent neural network (RNN) is an architectural choice designed to process

sequential data. It exploits time invariance by scanning through an input sequence with

the same neural cell (Fig. 3.1C). Unlike the convolutional filters that are only connected

with adjacent layers, a recurrent neural cell is also connected with itself through a so-called

recurrent connection (Fig. 3.1C). This allows a RNN to preserve useful information collected

from the past time points and capture memory effects that could exist in a system. The

prediction made at any point in time is based on both the current input and any information

it has kept from the past. Because the same set of weights is used at each point in time, a

RNN can be used to study complex dynamical problems even with long-term memory effects

without requiring an excessive number of weights.

3.3 Neural network architectures

The architecture of a neural network refers to the number of layers, the amount of neurons

in each layer, and the ways the neurons themselves are connected. Diverse architectures have

been proposed and proven successful for various tasks across computer vision and natural

language processing. Several of these have been adapted to data analysis problems in both

biology and physics, ranging from biomedical image segmentation to rare event identification

in high-energy physics. In addition to architecture, neural networks can be chosen to model

different features of the data for different purposes. For example, given pairs of inputs x and

outputs y, one may try to approximate a function f(x) ≈ y with a deterministic model,

p(y|x) with a discriminative model, or p(x, y) with a generative model [133]. We focus

on deep learning for building biophysical models from image data. In the following, we will
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review important concepts related to neural network architectures. We will then discuss

considerations for selecting architectures for biophysical modeling.

3.3.1 Convolutional neural networks

A convolutional neural network (CNN) is an architecture type originally designed for

use in computer vision. Instead of learning unique weights for each pixel in an image, a CNN

exploits translational invariance and learns a series of filters which are applied equivalently

to all pixels to produce feature maps. This weight sharing greatly reduces the number of

trainable parameters in each layer, allowing CNNs to be built deeper (more layers) and wider

(more features). Adding more CNN layers means the NN can built more complex features

which correlate larger regions of the image. Below, we review several common types of CNN.

An autoencoder is a tool used for compression and feature extraction. It contains two

modules: an encoder and a decoder. The encoder uses CNN layers and downsampling oper-

ations to build a compressed, or latent, representation of the input. The decoder attempts

to reconstruct the input from the latent representation. During training, the autoencoder

learns to build a high-level latent features essential for reconstructing the image. In physics,

autoencoder compression can be thought of as coarse-graining a system, and is used for

dimensionality reduction or identifying useful degrees of freedom. They are also useful for

distilling essential information from noisy data.

CNN weight sharing enables deeper networks, but deep CNNs can be more difficult to

train and perform worse than their shallow counterparts. A ResNet alleviates this problem

by using residual, or skip, connections [80]. These pass inputs across layers and combine

them with the layer outputs. This improves the training performance of deep CNNs, enabling

networks with hundreds of layers.

A UNet is a CNN tool that combines autoencoder and ResNet designs and has proven

remarkably successful across diverse domains. It includes an encoder which compresses the
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Figure 3.2: Overview of common neural network architectures. (a) CNN learns filters ap-
plied over an image. (b) Autoencoder architecture. (c) Skip connection in ResNet. (d)
UNet architecture combines autoencoder and residual connections. (e) ConvNext modifies
CNN to improve performance. (f) Transformers use self-attention mechanism computes soft
weights (g) Schematic of self-attention on sentences. Red represents current word (query)
and blue highlights the context (aligned keys) for each word. (h) Vision transformers apply
self-attention after separating images into patches. Red highlights current patch (query) and
blue highlights regions interacting with that (aligned keys) (i) PCA can model Gaussian-
distributed data using learned principal axes. (j) Sampling non-gaussian data is more compli-
cated. Generating a sample from the center of a bi-modal distrubtion may produce nonsense,
represented here as a cat-dog. (k) Variational autoencoders model complex data distribu-
tions by learning a nonlinear mapping to a well-conditioned latent space. (l) Generative
adversarial networks learn to generate realistic data by training a generator to fool a dis-
criminator network.
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input as well as skip connections which send information from the encoder to the decoder.

This provides several advantages useful for biological and physical applications. The encoder

can still perform compression and noise reduction, but in the process it may also remove

important small-scale features. The skip connections mitigate this problem, allowing the

UNet to preserve relevant fine-grained information and local structure. This is particularly

useful for learning deterministic rules in data such as protein distributions, as the UNet can

learn causal relationships about protein structures at different scales.

3.3.2 Attention-based networks

In traditional neural networks, the neuron weights are fixed during evaluation. Regardless

of the input or the features extracted from the input, each layer always performs the same

operation on its data. Attention is a mechanism that allows a neural network to act dif-

ferently depending on context by allowing the network weights to change during evaluation.

During training, an attention-based network learns how to determine context and the correct

behavior for each context [24]. Explicitly, an attention mechanism encodes data into (key,

value) pairs. It also computes a query, which describes the context to predict in. The

alignment between a query and key determines the connection weight for the corresponding

value. This alignment might be different depending on the input data, and thus the neuron

connections can change during evaluation.

A transformer is a type of neural network which uses attention mechanisms for sequence

prediction. It was originally developed for natural language processing applications [199].

This provides a more concrete interpretation to the attention mechanism. Consider trans-

lating a sentence – to process each word, a query might contain information about word

itself while the keys might encode the other words in the sentence. If a key aligns closely to

the query, then it provides important context for that word in the sentence – its value then

plays a bigger role in choosing how to translate that word. Attention mechanisms are not
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restricted to language models. In biology, one could view amino acids in proteins as analogs

of words in sentences. Indeed, AlphaFold used attention-based building blocks in order to

predict protein structures from amino acid sequences [90].

Transformers are effective at processing sequences, but not all data are sequences. Vision

transformers adapt attention mechanisms to image analysis [101]. An image is made up of

pixels just as a sentence is made up of words. However, images contain thousands to millions

of pixels and computing attention between each pair of pixels (millions to billions) is simply

not tractable. A vision transformer instead separates an image into patches – in the sentence

analogy, the pixels (letters) make up patches (words) which make up the image (sentence).

The fact that these images are not sequential is not an issue. A transformer learns the correct

context for each word by examining the whole sentence, rather than the sequence of words

leading up to it. Similarly, a vision transformer learns the correct context for each patch

by examining the full image and learning the proper query-key alignment between patches.

Vision transformers and their offshoots have achieved state-of-the-art performance at many

computer vision tasks [115].

3.3.3 ConvNext: Improved CNN with transformer design principles

The performance of vision transformers comes with a price: these models often require more

parameters, higher training costs, and larger datasets in comparison to CNNs. CNNs are

simpler to implement and their core operation, the convolution which slides a filter over the

image, is quite efficient. In the ConvNext paper [116], the authors reevaluated CNNs and

carefully considered their fundamental design principles in the context of vision transformers.

To do this, they applied iterative upgrades to a ResNet architecture, ranging from layer- (new

activations, larger filters) to module- (grouped convolution, inverse-bottleneck design) to

network-level changes (patch separation, new training techniques). The result was a family

of models which were as accurate as transformers, but remained pure CNNs. ConvNext

36



designs can be incorporated into existing CNN architectures, such as those discussed in the

previous sections. Later, we will discuss the advantages this provides from a biophysical

modeling perspective.

3.3.4 Discriminative and generative models

Neural networks are often trained on data pairs (x, y), where x is an input, and y may be an

output or label for the item x. In most real-world settings, there is no purely deterministic

relationship between x and y, but instead a distribution of possible y’s for every x. This

distribution can either arise naturally due to stochasticity in the data, or artificially due to

human error in generating labels y.

Generally, discriminative ML models aim to learn the conditional distribution p(y|x),

or a function thereof. In common regression tasks, one assumes a deterministic function

f(x) ≈ y. However, if the relationship is not truly deterministic one instead learns the best

deterministic approximation, which is given by f(x) = E(y|x) =
∑

y y p(y|x). In addition

to learning deterministic functions, certain classes of probabilistic neural networks (among

others, mixture density models [16]) explicitly attempt to learn a probability distribution

p(y|x). This can be useful if noise is expected to be large relative to the deterministic part,

or if the data is drawn from a highly non-Gaussian distribution.

A generative model aims to explicitly model the data distribution so that it can draw

new samples that resemble the real data [20]. A simple yet illustrative example is principal

component analysis (PCA), a common tool for dimensional reduction [122]. PCA aims to

represent each data point using a linear combination of principal components, which are

the "axes" along which the data is distributed. One can generate new samples using PCA

by changing the set of component coefficients into a combination that has never been seen

before. However, generating samples in this way is only valid for Gaussian data. For more

complicated distributions, choosing a particular combination of component coefficients may
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lead to unrealistic samples as they lie far outside the data’s distribution. The central issue is

that PCA does not provide insight into what choices of coefficients lead to realistic samples,

and is the reason why it is not a true generative model. Proper generative models not only

create new samples, but generally also provide a measure of probable such a sample is to

occur. Below, we review several common neural network architectures that realize deep

generative models.

We presented autoencoders as a tool for data compression and dimensional reduction,

they make poor generative models. In an autoencoder, the relationship between the latent

variables and the data has no constraints. Two similar inputs might have dramatically dif-

ferent latent variables, and two nearby latent variables might decode to completely different

outputs. A variational autoencoder (VAE) adapts autoencoders for generative model-

ing by making the latent variables well-behaved. To do this, it optimizes two objectives: a

reconstruction term common to a standard autoencoder, and a distribution term that en-

forces the latent distribution matches a simple form (usually a normal distribution) [97, 98].

While this second term (a Kullback-Leibler divergence) is computationally expensive, a VAE

exploits a reparameterization trick to train efficiently. In short, this trick replaces latent

variables with samples from their learned distributions, and this randomness enables effi-

cient estimation of the second objective. Once trained, a VAE can draw samples from this

well-behaved latent space and decode them into new data points that resemble the training

dataset.

A perfect generative model produces outputs indistinguishable from real data. This

means it must not only be able to recreate its training data, but should produce believable

new samples. This is difficult. Neural networks require mathematical objectives – the second

objective here is simply the question "real or fake?" A generative adversarial network

(GAN) solves this issue by turning training into a game between a generator network and

a discriminator network [71]. The discriminator learns to distinguish between real data
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and the generator’s samples. The generator learns to fool the discriminator. Both networks

are trained simultaneously and thus push each other to improve. The discriminator can learn

complex criteria that are hard to represent mathematically, and the generator can learn to

satisfy these criteria and produce strikingly realistic images.

While GANs are a powerful tool for generating realistic data, their training setup of an

adversarial game makes them difficult to train. VAEs are simpler to implement, but ulti-

mately learns a limited approximation of the distribution using a neural network. Other

types of generative models can learn more exact representations of the data distribution.

Normalizing flows learn a set of invertible transformations which map samples from a

gaussian distribution to the data samples [99, 158]. While these models allow for exact

representation and sampling from the data distribution, their constraints (difficulty train-

ing large mixtures, restriction to invertible transformations) can limit their effectiveness at

generating data from more complex distributions [20]. Diffusion models take a different

approach which is inspired by nonequilibrium thermodynamics. They first destroy samples

by iteratively adding noise, and then learn a model for the reverse process which reconstructs

data from the noise [83, 176]. Diffusion models have led to state-of-the-art tools for image

synthesis [208]. However, their generation process can be computationally-expensive due to

the many denoising operations as well as the requirement that the latent space have the

same dimensionality as the generated data [20]. From a physical perspective, they do not

perform coarse-graining.

3.4 Summary

We have presented a small sample of the many successful neural network architectures. With

all of these available choices, it can be difficult to determine which is best for a given appli-

cation. In many cases, there is no "right" answer. Here, we outline general considerations

for choosing network architectures for biophysics applications.
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Data and training costs: The commonly-used datasets in computer vision and natural

language processing – the home territory of many models presented above – are large, well-

curated, and standardized. On the other hand, biophysical datasets may come from a single

laboratory and are typically smaller and noisier. While transformers and their variants

achieve state-of-the-art performance on language and image analysis tasks, they often require

large datasets, many parameters, and long training times to do so [116]. CNNs on the other

hand are straightforward to implement and train, which may make them a better choice

for analyzing biological images. With the development of ConvNext, which allows pure

CNNs to compete with vision transformers, choosing CNNs no longer comes at the cost of

dramatically lower accuracy.

Interpretability: A goal of scientific research is to understand why systems behave

as they do. Deep neural networks are great at predicting behavior, but their black-box

nature often makes it difficult to determine what they have learned. Networks designed

for unsupervised learning are useful in this regard as they produce representations of the

data that may be used for further interpretation. Autoencoders learn to compress data and

examining their compressed representations can shed light on the crucial ingredients of a

system. Generative models learn a latent space from the data, and by sampling new data

from this space, one can learn about the different "axes" that describe a system. We note that

some modern generative models, such as GANs, can be difficult to train reliably [20]. VAEs

strike a reasonable balance between ease of implementation/training and interpretability.

Physical intuition: In data-driven biophysical modeling, we aim to use machine learn-

ing to uncover the physical rules governing biological behavior. To choose a network archi-

tecture for biophysics, it is useful to consider the types of rules one aims to learn. CNNs

exploit translational invariance, a common feature of physical models. CNN filters can im-

plement local physics operations. For example, a Laplace filter which identifies local maxima

is a finite-difference implementation of a diffusive term (i.e. D∇2ρ) present in many hydro-
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dynamic models [122]. Networks with a bottleneck structure (autoencoders and VAEs) can

be viewed as coarse-graining the system, and their compressed latent representations can be

interpreted as a system’s relevant collective variables [31, 100]. Such coarse-graining may be

impossible when behavior is driven by processes across scales, as is often the case in biology.

Here, it may be necessary to use architectures which lack a bottleneck, such as flat CNNs,

or ones which preserve information at small and intermediate scales such as UNets.

Modeling frameworks such as classical hydrodynamics and continuum mechanics have

deterministic rules, and are thus well-suited to architectures such as CNNs or autoencoders

that similarly make deterministic predictions. However, biological systems may exhibit fluc-

tuations or stochasticity due to unobserved processes at smaller scales. Networks which use

a variational approach such as VAE or other generative models may be better suited to

learning this behavior. How to map models such as VAE or diffusion models to frameworks

such as fluctuating hydrodynamics remains an open question.
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CHAPTER 4

LEARNING ACTIVE-NEMATIC HYDRODYNAMICS

Hydrodynamic theories effectively describe many-body systems out of equilibrium in terms

of a few macroscopic parameters. However, such parameters are difficult to determine from

microscopic information. Seldom is this challenge more apparent than in active matter,

where the hydrodynamic parameters are in fact fields that encode the distribution of energy-

injecting microscopic components. Here, we use active nematics to demonstrate that neural

networks can map out the spatio-temporal variation of multiple hydrodynamic parameters

and forecast the chaotic dynamics of these systems. We analyze biofilament/molecular-motor

experiments with microtubule/kinesin and actin/myosin complexes as computer vision prob-

lems. Our algorithms can determine how activity and elastic moduli change as a function

of space and time, as well as ATP or motor concentration. The only input needed is the

orientation of the biofilaments and not the coupled velocity field which is harder to access in

experiments. We can also forecast the evolution of these chaotic many-body systems solely

from image-sequences of their past using a combination of autoencoders and recurrent neural

networks with residual architecture. In realistic experimental set-ups for which the initial

conditions are not perfectly known, our physics-inspired machine learning algorithms can

surpass deterministic simulations. Our study paves the way for artificial-intelligence char-

acterization and control of coupled chaotic fields in diverse physical and biological systems,

even in the absence of knowledge of the underlying dynamics.1

1. This chapter contains material previously published in [38], titled Machine learning active-nematic
hydrodynamics. Re-use is permitted according to the copyright agreement used by PNAS. Text contains
references to supplementary figures available online.
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4.1 Introduction

Machine learning holds great promise as a tool capable of transforming quantitative mod-

elling in the physical sciences [31, 122]. It takes data generated from simulations or collected

from experiments and uses powerful nonlinear fitting functions to find the characteristic

features behind the data. It can be used as either a continuous regression tool to extract

physical principles or a discrete classifier to identify states of matter. Among the wide variety

of machine learning techniques, neural networks [108, 166] have attracted much attention

due to their strong predictive power and ability to establish complex models from common

building blocks (see SI Appendix for a primer). Notable developments within condensed

matter physics have led to machine learning algorithms capable of recognizing structural

signatures of the glass transition [8, 168] or distinguishing phases of matter [32, 198]. They

have also unveiled intriguing connections between deep learning and renormalization group

methods [100, 123]. However, the use of machine learning as a tool for the experimental

characterization and discovery of material properties is still in its infancy [40, 153]. Ac-

tive nematics [46, 49, 53, 79, 95, 105, 119, 163, 188] provide an ideal material platform for

machine-learning methods. While sufficiently well-characterized to be a reliable benchmark,

their chaotic dynamics are hard to predict and rich in unexplored phenomena of relevance

to both material science and biology [17, 46, 48, 50, 69, 121, 128, 164, 207, 216].

Unlike simple fluids, nematic liquid crystals are orientationally ordered media described

by a director field n(r), which tracks the average orientation of their microscopic constituents

(e.g., biofilaments or elongated molecules), in addition to the local velocity field v(r) [46, 119].

Representative images of the director field are shown in Fig. 4.1A and B. In equilibrium

nematics, the filaments tend to align and gradients of n(r) are penalized by the Frank free-

energy, which in three dimensions reads

F =
K

2

∫ [
(∇ · n)2 + (n · (∇× n))2 + (n× (∇× n))2

]
dr (4.1)
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where, for simplicity, all the elastic constants are set equal to K.

The introduction of microscopic energy sources into these orientationally ordered fluids

generates out-of-equilibrium systems called active nematics [46, 119]. A common example

is provided by cytoskeleton filaments, with molecular motors that generate active forces

promoting inter-filament sliding. The resulting active stress, σaij , can be macroscopically

described by

σaij = αninj , (4.2)

where α(r, t) is an a priori unknown activity field related to the concentration of molecular

motors or other energy sources, which is typically approximated as constant [1, 119].

4.2 Active-nematic hydrodynamics

The dynamical equations for active nematics involve a coupling between the director field

n(r, t) and the velocity field v(r, t) [1, 46, 73, 119]. In particular, the director field evolves

according to the equation

(∂t + v · ∇)ni = λijk∂jvk −
1

γ

[
δF

δni
−
(
δF

δnj
nj

)
ni

]
, (4.3)

where γ is the rotational viscosity. The tensor λijk is given by

λijk ≡ λ+ 1

2
njδik +

λ− 1

2
nkδij − λninjnk (4.4)

where λ is a dimensionless flow-alignment parameter and δij is the Kronecker delta.

The velocity field evolves according to the equation

ρ0(∂t + v · ∇)vk = −∂kP + η∇2vk + ∂j

(
λijk

δF

δni

)
+ ∂jσ

a
jk (4.5)
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where P is the hydrostatic pressure, η is the isotropic fluid viscosity, and σa is the active

stress defined in (4.2). The final three terms on the right-hand side of (4.5) correspond

to the viscous, elastic, and active stresses, respectively. The coupled equations of motion

Eqs.(4.3–4.5) can also be cast in terms of a symmetric and traceless order parameter Qij =

S(ninj − δij/3) with a scalar field S that quantifies the orientational-order strength (see

Methods).

Determining how hydrodynamic parameters, such as α and K, vary in space and time as

well as a function of ATP or motor concentrations is challenging [88, 105, 110, 111]. Even

direct measurements [7, 22, 64, 180] that rely on controlled flow experiments are difficult to

devise if the underlying flows are chaotic. This is precisely what happens in active nematics,

where the energy injected by molecular motors at the microscale cascades to macroscopic

scales, leading to chaotic flows mediated by the proliferation of topological defects [1, 119].

The mechanisms behind this process, loosely called active nematic turbulence, are not fully

understood [1, 5, 17, 66, 67, 163, 170, 171, 188, 204]. Nonetheless, it is clear that most

active nematic responses depend on the competition between active stresses, that promote

director or velocity gradients, and viscoelastic stresses that resist them. As a consequence

of this interplay, experimental measurements often access only non-trivial combinations of

hydrodynamic parameters, e.g. α/K or ratios of elastic constants [105, 110]. Furthermore,

the derivation of these parameters from realistic microscopic models is often prohibitively

difficult [22]. This prompts us to seek approaches that bypass coarse-graining and extract

hydrodynamic parameters like α(r, t) directly from experiments.

In this paper, we first design a neural network to extract hydrodynamic parameters

directly from experimental or simulated movies. This requires prior knowledge of the under-

lying physics. For systems whose governing equations are unknown, we introduce another

neural network capable of forecasting the time evolution of a nonequilibrium system solely

based upon its past. Detailed workflows for training and testing these neural networks are

45



provided in SI Appendix Fig. S2.
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Figure 4.1: Machine learned hydrodynamic parameters in Lattice-Boltzmann sim-
ulations. (A, B) Nematic director fields in two (A) and three (B) dimensions. + 1/2 and
− 1/2 defects in 2D are marked as red and blue dots, respectively. Disclination loops are
indicated in red. (C, D) Continuous representations of the director field used by the net-
work. In 2D, the network can use sin 2θ where θ is the angle of the director field. In 3D, the
network uses the tensor Qij = ninj−1/3. Color indicates the magnitude of these continuous
representations. (E ) Schematic of neural network architecture. The full input images are
divided into patches, which are then fed into a set of convolutional filters, a LSTM recurrent
layer, and a fully connected dense layer. The outputs are averaged into a final estimate for
hydrodynamic parameters. (F, G) Predictive accuracy of rescaled dimensionless activity in
simulation data in 2D and 3D at different values of K. Networks were trained at K = K0
(see Methods).
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4.3 Extracting hydrodynamic parameters as fields

To make progress, we recast the task of estimating the spatio-temporal variations of multiple

hydrodynamic parameters as a computer-vision problem that can be effectively addressed

by artificial intelligence. We begin by generating a library of director fields (Fig. 4.1A and

B) for a wide range of activity in two and three dimensions using Lattice-Boltzmann sim-

ulations based on the continuum equations [105, 120] (see Methods). Using the simulated

library, we train neural networks on continuous representations of n that account for the

nematic symmetry n = −n. For instance, in two dimensions we use sin(2θ) with θ denoting

the tilt angle of n, see Fig. 4.1C and D. The neural network architecture, shown schemat-

ically in Fig. 4.1E, contains (i) a single convolutional layer used for image processing, (ii)

a recurrent layer that captures the system dynamics, and (iii) a dense layer that identifies

the hydrodynamic parameters (see SI Appendix primer on neural networks and SI Appendix

Fig. S1). We train these neural networks on simulation data for which we can obtain the

exact values of the prescribed hydrodynamic parameters corresponding to each director field

configuration. This allows us to conduct supervised learning, which would not be possible

using experimental data alone. Once trained, these neural networks can be used to obtain

hydrodynamic parameters in simulations as well as experiments (SI Appendix Fig. S2A).

We first apply this scheme to estimate a single parameter: the rescaled dimensionless

activity α/K × a2, where a denotes the pixel or voxel size for the director field image.

Comparison of the machine learning predictions for the activity with the known values of

α reveals good agreement for both two-dimensional (2D) and three-dimensional (3D) active

nematics (Fig. 4.1F and G). Although these networks are trained on data generated at a

single value of K = K0, their accuracy persists for samples where K differs from K0. We

also stress that our machine learning model is robust and its predictive performance does

not depend on the choice of K0 (SI Appendix Fig. S3).

Hydrodynamic theories suggest how α can be estimated from the characteristic length
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ℓd ∝
√
K/α obtained by balancing the right hand sides of Eqs. (1) and (2) [82]. In 2D,

ℓd can be interpreted (and experimentally extracted) as the average spacing between point

disclinations, topological defects with index + 1/2 and − 1/2 shown in Fig. 4.1A as red and

blue dots, respectively [67, 119]. This procedure cannot be carried out in the low-activity

regime, where disclinations are not always present in the field of view. Furthermore, it

does not extend to 3D samples where the dominant excitations are charge-neutral disclina-

tion loops [49] (Fig. 4.1B) whose activity-dependence is unclear. Extracting and measuring

topological defects with a neural network would require multiple convolutional layers to

achieve a sufficiently large receptive field, i.e. the total field of view for the last neural layer.

Our networks, which contain just a single convolutional layer, simply exploit local spatial

fluctuations of the director field.
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Figure 4.2: Comparison of multiparameter estimation using neural networks and
a high-throughput parameter scan. (A, B) Simultaneous estimation of α and K using
a high-throughput parameter scan. (C, D) Multiparameter estimation using our neural net-
work. The network estimator outperforms the parameter scan approach for the predictions
of both α and K. Here ᾱ and K̄ are the mean values of α and K from the training dataset.
We quantify the performance for each parameter using the R2 of the linear fit between the
predictions and the ground truth (dashed line).

While capable of achieving high accuracy even in 3D or at low α, neural networks de-

signed for single-parameter estimation still predict only combinations of parameters such
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as ℓd ∝
√
K/α. To decouple α from K, one would need to resort to additional measure-

ments [111] or ad hoc assumptions like the independence between K and α which is not

always experimentally valid [110]. However, our neural networks are also capable of extract-

ing multiple parameters without the need to devise a set of experiments that disentangle

the parameters’ interdependence. In Fig. 4.2, we demonstrate the performance of a machine

learning model that uses the same architecture described above but is trained to predict α

and K simultaneously.

Using a simulated dataset, we evaluate the performance of our machine learning model

by comparing it to high-throughput scans of parameter space inspired by [111]. While the

exact approach implemented in [111] uses all evolving fields, our machine learning model

does not rely on knowledge of the velocity field to which the director is coupled. Because

complete information about the system state is inaccessible in many experimental systems,

we compare our method against parameter scans which use only the nematic director field.

These scans aim to find the set (α,K) best fitting the observed nematic correlation length

and correlation time (see SI Appendix Text and SI Appendix Fig. S4). For each parameter,

we quantify the model performance using the R2 value of the linear fit between the predicted

parameter and the ground truth. We find that the machine learning model results in a higher

R2 than the parameter-scan approach (Fig. 4.2), indicating a more accurate prediction of

the ground truth for each parameter.

So far we have tested our machine learning algorithms on numerical data. We now

turn to experiments and begin by applying our multiparameter estimation trained on sim-

ulations to data obtained from microtubule-kinesin experiments [42, 163] (see Methods).

It is known that in this system the rescaled activity α/K increases with ATP concentra-

tion [88, 110]. Here, we use machine learning to measure α and K independently, probing

first how they vary with the ATP concentration, c. Inspection of Fig. 4.3A shows that

the spatio-temporally averaged activity, α, predicted by our machine learning algorithms

49



C

10

10
2

10
3

c
(

M
)

10

10
2

10
3

c
(

M
)

0 20 40
Time (s)

1.0

1.4

1.8

/
m

in

0.6

0.8

1.0

K
/K

m
ax

B

12

18

24

l
(

m
)

Exp ML+LB

10
1

10
2

10
3

ATP concentration c (μM)

10

50

90

n
d

(m
m

2
)

A

1.0

1.4

1.8
/

m
in

10
1

10
2

10
3

ATP concentration c (uM)

0.6

0.8

1.0

K
/K

m
ax

Figure 4.3: Multi-parameter estimation and dynamics in microtubule-kinesin ex-
periments. (A) Dependence of spatio-temporally averaged activity and elastic modulus on
ATP concentration. Here, αmin, Kmax are the time-averaged predicted activity and elastic
modulus at the lowest level of ATP concentration cmin = 10 µM. (B) Comparison of director
field correlation length lθ and defect spacing nd in experiments (Exp) and ML-informed lat-
tice Boltzmann simulations (ML+LB). (C ) Simultaneous prediction of activity and elastic
modulus over time at different levels of ATP concentration. The shaded regions represent
the standard-error of spatio-temporal fluctuations in the machine learning predictions. ATP
concentration c is indicated by the color bar.

increases with c while the elastic modulus, K, decreases.2 Similar results obtained from

experiments on 3D microtubule-kinesin systems [49] and 2D actin-myosin systems [105, 216]

are shown in SI Appendix Figs. S5–S6.

Before expanding on the capabilities of our parameter-estimation networks, we highlight

their salient features. Our algorithms do not perform curve-fitting by (i) identifying observ-

ables for which the underlying theory is solvable and (ii) parameterizing them in terms of

the sought-after coefficients. Instead, neural networks are trained on data obtained using

whatever conditions are experimentally available without choosing in advance which reduced

data representations to use (e.g. correlation functions or collective variables). Training neu-

ral networks differs from building lookup tables (or other discrete representations of the

data), which are impractical for fields like n(r, t) when the number of possible pixel (voxel)

2. This drop in K indicates the material resists deformation less at higher ATP concentrations and motor
activities. The effects of molecular motors, which are responsible for crosslinking the nematic biofilaments,
on material properties of active liquid crystals has been proposed theoretically [2] and recently investigated
in experiments [156].
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configurations vastly exceeds the number of available data points. When applied to previ-

ously unseen data, neural networks can still produce accurate predictions because they learn

the smooth high-dimensional manifolds that map all possible realizations of the fields onto

the corresponding hydrodynamic parameters.

Equipped with the ability to determine multiple hydrodynamic parameters from exper-

imental data, we now proceed to put the hydrodynamic theory itself to the test. Here, we

compare microtubule-kinesin experiments at different ATP concentrations to the evolution of

Lattice-Boltzmann simulations calibrated using parameters machine-learned from the same

experiments. As the chaotic nature of active nematics makes exact director field comparisons

unreliable over long times, we instead resort to properties of the dynamical steady state. Us-

ing the spatial correlation function Cs(r) for the director field (see Methods), we define the

correlation length ℓθ such that Cs(ℓθ) = 1/2. We find that both the average correlation

length and the defect density nd calculated from machine learning informed Lattice Boltz-

mann simulations match experiments for a wide range of ATP concentrations (Fig. 4.3B).

This procedure allows us to provide a partial experimental validation of the hydrodynamic

theory with constant parameters. Note, however, that these hydrodynamic parameters are

often taken as constant because measuring them locally is difficult.

Our machine learning methods provide a rare glimpse into the spatio-temporal variations

of these hydrodynamic parameters. For example, we can extract from the microtubule-

kinesin experiments the activity field, α(r, t), whose coarse-grained dynamics stems from

heterogeneities in the motor distribution. We start by plotting in Fig. 4.3C examples of time

series for the sample-averaged α(t) and K(t). The mean values are plotted as solid lines and

their uncertainties are marked with shaded regions over a wide range of ATP concentrations

(denoted by color bars). We compare the parameters extracted from experiments with those

from simulations, where constant parameters are prescribed so that the fluctuations in the

extracted parameters arise solely from the uncertainty of the machine learning predictions.

51



We find that the fluctuations of the machine-learned α are markedly more pronounced in

experiments than in simulations, while the variation of the predictedK is comparable in both

cases (SI Appendix Fig. S7). Our analysis also shows that the time variations in α and K are

significantly larger than their spatial fluctuations. The machine-learned evidence discussed

above suggests that a non-linear fluctuating hydrodynamic theory may better explain our

experimental observations. Heuristically, the strong disruption of fiber alignment at large

activity can trigger motor detachment-reattachment events causing the time modulation of

α inferred by our algorithms.

Our machine learning models can be also applied to situations in which activity is en-

gineered to deliberately vary in both time and space. We test this activity control sce-

nario first in Lattice-Boltzmann simulations, where we prescribe spatio-temporal patterns

of α(r, t) [216]. Remarkably, neural networks trained on the data with constant activity

can still accurately estimate a time-varying activity coefficient as shown in Fig. 4.4A and B

where linear and sinusoidal activity profiles are probed. Since small director-field patches are

sufficient to generate reliable predictions, we can generate a spatial activity map of α(r, t)

by applying our neural networks locally to each patch composing an image. By doing this,

we are able to discern prescribed spatial activity patterns in Lattice-Boltzmann simulations,

as demonstrated in Fig. 4.4C where activity is non-zero only in the central square.

We further test the capability of our machine learning models in extracting parameter

fields using actin-myosin experiments [105]. In this system, one can alter the speed of some

specialized molecular motors via selective exposure to light [132]. This phenomenon, infor-

mally called gear-shifting (see Methods), allows for precise spatio–temporal control of active

stresses [216]. Inspection of Fig. 4.4D and SI Appendix Movie S1 reveals that our machine

learning models can successfully identify the marked increase in activity that occurs as light

is turned on (indicated by the dashed line in Fig. 4.4D). Furthermore, our approach can

identify the activity changes that occur in selectively illuminated spatial domains in these
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Figure 4.4: Machine-learned activity field, α(r, t), in simulations and actin-myosin
experiments. (A, B) ML-predicted activity on lattice Boltzmann simulations with spatially
uniform activity prescribed to vary linearly (A) and sinusoidally (B) in time. (C ) ML-
predicted activity on simulations where the central square (dashed line) is activated. (D) ML-
predicted activity vs. time on actin-myosin experiments where myosin motors are controlled
through light-activated gearshifting. The dashed line indicates when light is switched on. (E,
F ) Direct image (E ) and ML-predicted spatial activity profile (F ) of a selectively illuminated
actin nematic with light-activated gearshifting motors. For E, F the experimental data is
the dataset reported in Fig. 1 of Zhang et al. [216]. Data for D are from the current study,
following the approach used in [216]. Scale bars, 20 µm.

systems, see Fig. 4.4E, F and SI Appendix Movie S1. We can also extract the elastic modu-

lus field K(r, t) in these experiments, but we find that K does not change significantly when

light is applied to the gearshifting motors (see SI Appendix Fig. S8). The performance of our

machine learning model in identifying spatio-temporally varying activity demonstrates its

potential for (i) the control of engineered active materials and (ii) the inference of biochem-

ical processes that take place at the microscopic level (such as the different experimental

configurations summarized in SI Appendix Table S1).
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4.4 Forecasting time evolution

We now ask: can neural networks forecast the evolution of chaotic many-body systems solely

from image-sequences of their past? A time-honored approach to quantitative modelling

relies on writing down equations and then solving them, analytically or via simulations, to

make predictions. In what follows, we use the word machine-learning model to denote a

very different approach [144]. Instead of solving the equations, we train neural networks on

existing data and then ask them to forecast the future behavior of the chaotic system. A

feature that distinguishes our forecasting neural networks from the ones used for parameter

estimation, is that the former can be trained directly on experimental data while the latter

rely on an underlying model. Our physics-inspired machine learning approach to forecasting

the dynamics of active nematics consists in iterating the following two steps. First, we

perform next-frame predictions using a neural network that does not know anything about

the physics of the system. Second, we reduce any noise generated in the previous step

by applying to each frame a physics-inspired sharpening algorithm. This sharpening filter

harnesses the known propensity of the fibers to align (i.e., it minimizes the elastic energy

in (4.1)) while being agnostic about the active forces driving the non-equilibrium dynamics

(see Methods).
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Figure 4.5: Neural networks as surrogate models of time evolution.
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Figure 4.5: (cont.) (A) Schematic for forecasting active-nematic evolution. An encoder
compresses images into a sequence of feature vectors. A residual recurrent block predicts
the next feature vector, which is translated by a decoder into an output image. The output
is sharpened using relaxational dynamics to update defect positions, which are then used to
update the director field. (B) Pixel-wise error rate 1−⟨|nML · nLB|⟩ of the ML model versus
time for different activity ranges. The gray region is beyond the simulation Lyapunov time
(see Methods), which is measured in units of τd = η/α, the characteristic defect lifetime. (C-
D) Comparison of average correlation lengths (C ) and times (D) in ML and LB simulations.
τLC is a viscoelastic timescale τLC = γa2/K [68]. (E ) A defect nucleation event observed
in experiment and predicted by the ML model trained on microtubule-kinesin experimental
data. ML predicts sin(2θ), where θ is the director field angle. + 1/2 and − 1/2 defects are
marked as red and blue dots, respectively. Scale bar 100 µm.

Our forecasting neural networks are a modification of the autoencoder architecture, a

popular tool in the computer vision community (see SI Appendix primer). A traditional

autoencoder learns to compress an image to a feature vector which is then used to reconstruct

the image. In our network, we insert a recurrent layer in between the encoder and the decoder

to learn the system dynamics (see Methods). Crucial for ensuring high performance is the

following algorithmic trick: a residual architecture [80] is used in the recurrent layer to

capture the difference between frames, rather than the images themselves. Denoting the

output of the recurrent layer as RNN(X0, X1, · · · , Xt), the predicted next frame can be

written as:

Xt+1 = Xt + RNN(X0, X1, · · · , Xt) (4.6)

Such a residual recurrent network resembles the discrete form of a general differential

equation:

dX
dt

= f(X0, X1, · · · , Xt). (4.7)

As illustrated in Fig. 4.5A, the network encodes a time series of director-field images into

a sequence of feature vectors. Next, it uses them to predict the future state of the system,

and finally decodes this state back into a director-field image (Fig. 4.5A). For large systems,
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the director field is divided into small overlapping domains. Machine learning predictions are

made within each domain and then stitched into a final prediction of the next director field

configuration. Although stitching could introduce artificial defects and image blurriness in

the overlapping area between adjacent domains, these errors can be automatically corrected

by the sharpening step (see Methods). Once trained on either simulated or experimental

image sequences, the machine learning model can then forecast the defect dynamics in active

nematics (SI Appendix Fig. S2B).

We first examine the performance of our forecasting neural networks on simulation data.

Given a particular sequence of nematic configurations, our algorithm can reliably learn the

spatio-temporal evolution of the director field including singular events such as defect an-

nihilation and nucleation (see SI Appendix Movie S2 or selected examples in SI Appendix

Fig. S9).

To systematically evaluate the accuracy of our machine learning predictions, we first com-

pare the time-evolved director fields generated by machine learning and Lattice-Boltzmann

simulations pixel by pixel. Such pixel-wise comparison is only meaningful within the Lya-

punov time, the characteristic timescale after which a non-linear dynamical system becomes

chaotic. Inspection of Fig. 4.5B shows that the pixel-wise error rate of the predicted direc-

tor field 1 − ⟨|nML · nLB |⟩ remains small within the Lyapunov time (see Methods). The

Lyapunov time is the exponential diverging time for the evolution of a small difference in

n(r, t) introduced in the initial condition, which we find is equal to tλ ∼ 3.6τd (τd denotes

the average defect lifetime). Beyond the Lyapunov time (shaded region in Fig. 4.5B), even

the Lattice-Boltzmann simulations are unreliable at the pixel-wise level due to numerical

precision.

Our forecasting neural network predicts the evolution of the director field without know-

ing the velocity field v(r, t) or ordering magnitude S. We compare the error rates of our

algorithm to those of a Lattice Boltzmann simulation, where similarly no initial velocity
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Figure 4.6: Performance comparison between physics-inspired machine learning
model and Lattice-Boltzmann simulations with parameters extracted using the
multi-parameter estimation network. To make a fair comparison as well as mimic
the true experimental constraints, both approaches only take director fields as input, with
no prior knowledge of the velocity field. We quantify their performance by measuring the
pixel-wise error rate (1 −

〈
|nprediction · nground truth|

〉
. (A) Error rates for predicting the

simulated nemato-hydrodynamics at different levels of activity. Red curves show results for
the machine learning model, while purple curves show results for velocity-uninformed Lattice-
Boltzmann predictions. The gray area shows regions beyond the Lyapunov time for the
Lattice Boltzmann simulations (see Methods). (B) Error rates for predicting the evolution
of microtubule-kinesin experiments at different ATP concentrations. Here we emphasize
that unlike Lattice Boltzmann simulations, the machine learning model does not implement
any physical theory. Nevertheless, its performance matches or exceeds Lattice Boltzmann
simulations.
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or ordering magnitude information is provided (Fig. 4.6A). Our machine learning model

achieves lower error rates up to the Lyapunov time, except at the lowest levels of activity

when the system is nearly passive.

In order to evaluate the predictive accuracy of our machine learning methods for even

longer times, we turn to properties of the dynamical steady state such as the director field

correlation length ℓθ defined before and the correlation time tθ defined by setting the time

correlation function Ct(tθ) = 1/2 (see Methods). Previous numerical studies have shown

that the quantity ℓθ is proportional to
√
K/α [82]. When comparing the predictions of our

machine learning model against Lattice-Boltzmann simulations, we find that machine learn-

ing correctly captures the activity dependence of the characteristic length ℓθ, see Fig. 4.5C

(corresponding results for the mean defect spacing ℓd are shown in SI Appendix Fig. S10).

We stress that while ℓθ at steady state is plotted in both Fig. 4.3B and Fig. 4.5C, the former

is generated from Lattice-Boltzmann simulations with machine-learned parameters whereas

the latter is generated solely using our time-evolution neural network. Furthermore, our

networks also reproduce the same activity dependence for tθ as the Lattice-Boltzmann sim-

ulations (Fig. 4.5D), suggesting that they have learned to reproduce the correct dynamics

expected at each level of activity.

After training a neural network exclusively on experimental data, we can successfully

forecast the time evolution of the nematic director field including singular events such as

topological defect nucleations or annihilations, see Fig. 4.5E for an example. Here we choose

microtubule-kinesin experiments as a paradigmatic example, as they often exhibit clear de-

fect dynamics. In SI Appendix Movie S3 we show the corresponding experimental video

next to the one generated using machine learning. Inspection of these movies show no

discernible differences in the defect dynamics between experiments and machine learning

predictions. Similar agreement is obtained when our time-evolution neural networks are

trained on Lattice-Boltzmann simulation data (SI Appendix Movie S3).
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As an alternative approach, one can also forecast the evolution of active nematics by first

extracting the parameters (α,K) using our parameter-estimation network and then plugging

them into Lattice–Boltzmann simulations to model the corresponding hydrodynamics. We

stress that this approach requires prior knowledge of the underlying physics. Notably, we find

that our time-evolution network outperforms the physics-informed simulations in the context

of practical applications to experimental data, where complete knowledge of the initial state

is inaccessible (Fig. 4.6B). To evaluate the long-term validity of our predictions beyond

specific realizations, we systematically check (as we did in Fig. 4.3B and Fig. 4.5C ) that the

steady-state values of ℓθ and nd extracted from the machine-learned nematic director are in

good agreement with experiments over a wide range of ATP concentrations (SI Appendix

Fig. S11).

The successful performance of our time-evolution networks relies on the combination of

autoencoders and recurrent networks that adopt a residual architecture. The convolutional

autoencoders compress input images into feature vectors, which represent the underlying

physics using fewer variables. This dimensional reduction not only diminishes the burden

of the machine-learning model, but it also enables training on limited experimental datasets

without overfitting. We stress that our recurrent networks predict the correct long-term

dynamics at steady state only when supplemented with a residual architecture, see SI Ap-

pendix Figure S12. More generally, we expect the use of a residual architecture capturing the

difference between frames to be crucial for all dynamical systems that are naturally governed

by differential equations (see Eqs. (4.6, 4.7)).

4.5 Conclusion

The machine learning framework proposed here can estimate hydrodynamic parameters using

only movies of the director field without requiring knowledge of the velocity field, even if

the two are coupled. Because the framework primarily exploits local spatial fluctuations
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of the nematic director, one can map out the spatio-temporal variation of hydrodynamic

parameters and promote them from constants to fields. This provides a generic way to

quantitatively connect experimental observations and theories.

When trained only on experimental data, neural networks are shown to be capable of

forecasting the future, without theoretical knowledge of the underlying dynamics. This sce-

nario is particularly intriguing for experimental systems that, unlike active nematics, lack

a quantitative description of their coarse grained dynamics. In addition, the simplicity of

our time-evolution neural network system makes it suitable for implementation of artificial-

intelligence informed control of such systems. For example, induced spatio-temporal varia-

tions of active parameters combined with machine learning techniques could enable efficient

control of complex flows and pattern formation in synthetic [69, 73, 139, 147, 207, 216, 219]

and biological systems [50, 61, 121, 128, 164]. Beyond active and soft matter, our neural-

network models could be employed in other contexts where coupled chaotic fields naturally

occur, such as turbulent flows or magneto-hydrodynamics [25, 51, 113].
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CHAPTER 5

LEARNING ADHERENT CELL MECHANICS

Cellular form and function emerge from complex mechanochemical systems within the cy-

toplasm. Currently, no systematic strategy exists to infer large-scale physical properties of

a cell from its molecular components. This is an obstacle to understanding processes such

as cell adhesion and migration. Here, we develop a data-driven modeling pipeline to learn

the mechanical behavior of adherent cells. We first train neural networks to predict cellular

forces from images of cytoskeletal proteins. Strikingly, experimental images of a single focal

adhesion protein, such as zyxin, are sufficient to predict forces and generalize to unseen bi-

ological regimes. Using this observation, we develop two approaches – one constrained by

physics, the other agnostic – to construct data-driven continuum models of cellular forces.

Both reveal how cellular forces are encoded by two distinct length scales. Beyond adherent

cell mechanics, our work serves as a case study for integrating neural networks into predictive

models for cell biology. 1

5.1 Introduction

The structure and dynamics of living cells are controlled by the physical properties of the cy-

toskeleton [19, 146]. The cytoskeleton itself, however, is the product of complex biochemical

circuits which regulate its dynamics and spatial organization [58, 186]. The central challenge

faced when studying the physical biology of the cell is to untangle this interplay between

physics and biochemistry. Current modeling approaches lean heavily on intuition built upon

centuries of work on classical continuum mechanics, where symmetries and conservation laws

dictate both the variables which arise in such models as well as the equations they obey [149].

1. This chapter is adapted from work in press at Cell titled Machine learning interpretable models
of cell mechanics from protein images, which has been released as a preprint at ArXiv:2303.00176.
Text contains references to supplementary figures which are available online.
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Figure 5.1: Learning models of cell mechanics from protein images. Data-driven
biophysical modeling techniques occupy a spectrum of model complexity and interpretability.
Deep neural networks are not limited to making black-box predictions, but can serve to test
physical hypotheses and build models of various degrees of refinement.
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Cells, however, are decidedly non-classical, relying instead on distributed enzymatic activity

and non-equilibrium mechanochemical processes across a hierarchy of scales [9, 118]. For

example, forces in cells arise not only to restore local deformations, but also as a result of

continuous remodeling regulated by biochemical signaling networks. This intertwined action

of physics and biochemistry complicates coarse-graining and system parameterization of cell

dynamics in terms of a few simply-understood collective variables [152, 159].

Machine learning (ML) has the potential to overcome this challenge by augmenting ex-

isting physical models with biochemical information and even discovering new ones directly

from the statistics of data [31, 37, 175, 214]. These tools have proven very successful in struc-

tural biology for predicting protein structures directly from gene sequences [90, 112]. Here, we

illustrate the power of ML approaches in a classic cellular biology problem: how cytoskeletal

proteins govern the mechanics of cells. Cells generate contractile forces, which are critical reg-

ulators of cell shape, adhesion, motility, and mechanotransduction [87, 130]. Forces generated

in the actin cytoskeleton are transmitted via transmembrane focal adhesions (FAs) to the

extracellular matrix [29, 106, 169] where they can be measured directly with techniques like

Traction Force Microscopy (TFM) [85, 162]. TFM measurements coupled with live cell imag-

ing of fluorescently-tagged cytoskeletal proteins have helped develop a number of biophysical

models of cellular force generation and mechanosensing [30, 78, 124, 135, 136, 138, 177, 203].

While providing insight into various local microscopic mechanisms, these models do not cap-

ture the broad heterogeneity of structures and behaviors in cells. As a result, they cannot

fully account for how non-local and cell-scale properties such as cell morphology and FA

structure and location affect, and even dominate, local forces.
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Figure 5.2: Neural networks predict forces from images of a single protein.
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Figure 5.2: (cont.) (a) Fluorescent protein intensities (e.g. EGFP-zyxin) are measured in
cells spread on 2D polyacrylamide gels coated with fibronectin. (b) Adherent cells generate
forces via the contractile activity of the cytoskeleton. These traction forces are transmitted
to the substrate through focal adhesions (FAs). By measuring the displacement of fluorescent
beads embedded in the substrate (red circles), the traction forces can be reconstructed using
Traction Force Microscopy (TFM; see Methods). (c) (Top) Forces (F⃗exp) recovered from
experimental measurements of substrate deformations via TFM. (Bottom) U-Nets predict
traction forces (F⃗NN) from images of protein intensity. In both plots the magnitude of the
traction force is indicated by the color, and the direction by the overlaid arrow. (d) Zoomed-
in view of colored boxes in (c). (e) At each pixel, we measure (αexp, αNN, |Fexp|, |FNN|),
which we bin to calculate the conditional angular distribution p(αexp|αNN) (e) and (f) the
conditional magnitude distribution p(|Fexp|

∣∣|FNN|). An optimal predictor lies exactly along
the diagonal. Solid lines denote the average of the distribution while dashed lines mark one
standard deviation. The angular distribution is strongly peaked along this diagonal (with
additional peaks appearing due to periodicity), while the magnitude distribution remains on
the diagonal up to |Fexp| ≈ 4 kPa, which corresponds to 99.9% of pixels. Inset of (e) shows
the probability distribution of angular error ∆α = αNN − αexp. (g) Partition of 31-cell
dataset into 16-cell training set and 15-cell test set. Every cell shown in this paper is in
the test set and was not seen during training. (h) Model mean-square error for 22 random
train/test partitions. Dashed lines denote days on which cells were imaged. Pixel color pij
is the average MSE of all models which use cell i for training and cell j for testing.

In this work, we demonstrate how to harness the flexibility of neural networks to both

improve existing models of cellular forces as well as discover new ones. We begin by train-

ing deep neural networks to predict forces directly from images of fluorescent cytoskeletal

proteins, and in the process discover that a single focal adhesion protein, such as zyxin or

paxillin, is sufficient to predict traction stresses. The ability to make accurate predictions

with only a single protein distribution does not imply that other proteins are biochemically

redundant for force generation. Rather, it suggests the minimum amount of information,

and hence minimal complexity of models, needed to predict the magnitude and orienta-

tion of cellular forces. These predictions are robust, as we find the networks can generalize

to previously unseen experimental and biological perturbations. To understand this gen-

eralizability, we probe the neural network to identify features which inform its predictions

and further guide the formulation of two complementary mathematical models. First, we

introduce a physics-constrained ML approach which augments existing mechanical cellular
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models [52, 124, 136, 179]: it learns directly from data how a single measured protein dis-

tribution sets the physically-meaningful parameters of an effective linear-elastic model. Sec-

ond, we cast away our mechanical hypotheses and demonstrate a purely data-driven pipeline

which constructs relevant fields and distills effective equations which predict cellular traction

stresses. Despite incorporating varying degrees of model complexity and prior knowledge, all

of our approaches consistently reveal that models for force generation are characterized by

the interaction of both local and non-local features. Our findings illustrate how FA proteins

encode information of local forces at adhesion sites as well as whole-cell contractility through

their distribution in the cell, and demonstrate a suite of complementary approaches to build

novel models of living systems.

5.2 Neural networks predict traction forces from images of a

single protein

To assess whether neural networks could make mechanical predictions from biochemical

fields, we created a library by pairing fluorescence microscopy images of the FA protein

zyxin in fibroblasts ([84]; Fig. 5.2a) with their corresponding traction forces as directly

measured by TFM (F⃗exp; Fig. 5.2b-c). In total our library contained images obtained from

31 separate time-lapses of cells expressing zyxin and their associated traction force fields

(see Methods for details). In each of these cells, traction forces primarily localized along the

cell boundary at FAs as marked by zyxin accumulation, and pointed inwards towards the

cell body (Fig. 5.2c,d). For our neural network, we chose a U-Net architectural backbone

which learns large-scale features via successive strided convolutions, while skip connections

between layers propagate fine-grained information and preserve local structure that may

be lost during coarse-graining ([161]; Fig. 5.2a). While U-Nets have proven successful at

solving the TFM inverse problem [102, 206], here we push them to link biochemistry and

mechanics. We augment this backbone with ConvNext blocks to improve accuracy and
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training efficiency [116] (see Methods and SI for architecture details). We trained the U-

Net to directly predict traction forces using the library of paired zyxin images as inputs

(F⃗NN; Fig. 5.2c,d). The library was split into training and test sets containing 16 and 15

cells, respectively (Fig. 5.2g). Although the U-Net was taught using only the training set,

it learned to generalize and was able to accurately predict traction forces in cells from the

test set which it had never seen before (Fig. 5.2c,d). The network predictions of traction

forces agreed generally with experimental measurements in both location and magnitude

(Fig. 5.2c), with some smoothing occurring at the micron scale (Fig. 5.2d).

To evaluate the U-Net accuracy, we compared the experimentally measured traction force

directions (αexp) and magnitudes (|Fexp|) to those predicted by the U-Net for all the cells in

the test set (αNN, |FNN|). Fig. 5.2e,f shows the conditional distributions p(αexp
∣∣αNN) and

p(|Fexp|
∣∣|FNN|) (see Methods for additional details) along with the averages (solid line) and

standard deviation (dotted line). The neural network achieves near-optimal accuracy for

force angles as well as magnitudes up to ∼4 kPa, which represents approximately 99.9% of

pixels in the test dataset (Fig. 5.2e,f; SI Fig. 6). To evaluate the neural network’s sensitivity

to the test and train data used, we generated 22 random partitions of our 31-cell library into

16-cell training sets and 15-cell test sets. We trained a separate U-Net on each partition,

and evaluated the mean square error (MSE) of the force predictions (Fig. 5.2h; SI Fig. 7).

The network performance varies weakly depending on the cells present in the test and train

set, with the MSE fluctuating by less than ±5% across test cells. As a comparison, the

MSE varies by ±2% between cells measured on different days (SI Fig. 7), denoted by Di in

Fig. 5.2h. The network’s sensitivity to training and testing data is thus similar in magnitude

to systematic variations which arise from differences in experimental preparation, rather

than fundamental differences between cells. Together, these results demonstrate that from a

readily achievable amount of experimental data, a U-Net can robustly learn to make accurate

predictions of traction forces from fluorescent images of a single focal adhesion protein, such
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Figure 5.3: Zyxin-trained networks outperform other cytoskeletal proteins.
(a) The predictive power of different cellular proteins inputs are compared by training neu-
ral networks on each protein individually. The comparison includes cytoskeletal proteins
associated with force generation (actin, myosin), FA proteins (paxillin, zyxin), as well as
a protein thought to be unrelated to force generation (mitochondria) and the binary cell
mask. (b) While all networks trained in (a) predict accurate force directions on average,
the distribution of errors varies depending on protein. (c) We quantify the angular error
by the full width half maximum (FWHM) value of the distributions in (b). The networks
performed similarly, with the exception of the mitochondria network which showed a much
larger FWHM. Error bars denote standard deviations of the error across different cells. (d)
NNs trained on focal adhesion proteins, in particular zyxin, predict force magnitudes more
accurately than those trained on other inputs. Inset shows calculation of magnitude error,
which measures the cumulative distance from the diagonal up to F ∗ = 6 (black dashed line).
(e) Zyxin outperforms all other proteins in predicting force magnitudes, and training on
zyxin plus other proteins does not improve performance. Error bars denote standard devia-
tions as in (c). One cell in the actin dataset was an outlier and was excluded (see Methods
and SI Fig. 10 for details).
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as zyxin.

5.3 Zyxin-trained networks outperform other cytoskeletal proteins

In addition to identifying FAs, zyxin also reveals information about actin stress fiber orga-

nization and general cell geometry [210]. To determine which of these features was driving

the U-Net performance, we tested the efficacy of other cytoskeletal proteins involved in

force transmission, including: actin and myosin, the filaments and motors which make up

the contractile network; paxillin, another focal adhesion protein; mitochondria, an organelle

unconnected to the contractile machinery as a negative control; and binary masks of the

cell morphology. For these experiments, we simultaneously expressed zyxin with the other

proteins of interest. With the exception of mitochondria-trained networks, all networks

learned to predict forces to some degree of accuracy, capturing the general localization and

magnitude of traction stresses (Fig. 5.3a). The probability distribution of angular error

∆α = αNN −αexp peaked around zero for all proteins, differing only in the width of the dis-

tribution about the true value (Fig. 5.3b). This distribution width was similar for networks

trained on each protein, with the exception of mitochondria which showed a high angular

variance (Fig. 5.3c). When comparing force magnitude predictions, we observed larger dif-

ferences amongst the proteins, with the FA proteins zyxin and paxillin outperforming all

others (Fig. 5.3d; SI Figs. 8,9). Surprisingly, training networks on combined inputs of zyxin

and these proteins did not improve performance, and they performed as well as a U-Net

trained on zyxin alone (Fig. 5.3e; SI Fig. 8). Similarly, combining paxillin and actin also did

not perform as well as zyxin alone (Fig. 5.3e). Although the cellular forces themselves are

generated by many interacting proteins, a single focal adhesion protein is sufficient to serve

as a proxy for this microscopic complexity and contains enough information to determine

the coarse-grained mechanical behavior. These results demonstrate that neural networks can

be used to sort through potentially relevant proteins and identify a minimal subset which
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contains all the necessary information about the cell to predict forces. We proceed using our

highest-performing neural network, which was trained using zyxin alone.

5.4 Zyxin-trained networks generalize across cell types and

perturbations

While it is generally assumed that the underlying mechanics of contraction are universal [130],

we sought to explicitly test this by evaluating our U-Net (which was trained on images of

fibroblasts) on images of other adherent cell types. Specifically, we imaged zyxin in individual

human osteosarcoma epithelial cells (U2OS; Fig. 5.4a) and paxillin in colonies of canine

epithelial cells (MDCK; Fig. 5.4d; SI Fig. 11). Without any retraining, the zyxin-trained

U-Net generally predicted accurate traction force directions and magnitudes for both new

cell types (Fig. 5.4b-c,e-f), that were comparable to differences between training on different

cytoskeletal proteins (SI Fig. 12). This was true despite the MDCK data being taken on a

softer substrate (2.8 kPa vs. 16 kPa shear modulus) using a different microscope. While

these changes in experimental setup can induce small errors (see SI Figs. 13-15), the ability of

the network to generalize to different cell types, adhesion proteins, and cell clusters suggests

that it has learned some underlying general law governing traction force generation.

To probe this idea further, we next challenged our U-Net model to make predictions in

response to a biochemical perturbation. We imaged cells for 30 minutes at a basal contractile

state before adding 5 µM of the Rho Kinase (ROCK) inhibitor Y-27632 for 45 minutes, and

then washing out the drug and imaging for a final 45 minutes (Fig. 5.4g-h). Adding Y-27632

resulted in a drop in traction forces, an increase in overall cell area, and a reduction in the

size of FAs, as expected [137, 183], while the washout reversed each of these trends. Despite

having never seen these drug perturbations, the network still predicted the overall changes

in global traction forces (Fig. 5.4g) and the local changes at FAs (Fig. 5.4h) during both

the drug treatment and the subsequent recovery following wash-out. Together, these results
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Figure 5.4: Zyxin-trained networks generalize to new cell types and biological
perturbations. The fibroblast-trained network of Fig. 5.2 is evaluated on (a-c) individual
U2OS cells expressing zyxin, and (d-f) colonies of MDCK cells expressing paxillin. Pixel-
wise distributions of angle and magnitude predictions for U2OS cells (b-c) and MDCK cells
(e-f), as in Fig. 5.2. (g) The same network, which was trained only on fibroblasts in their
basal contractile state, is evaluated on fibroblasts perturbed with the ROCK inhibitor Y-
27632. The wash-in at t = 30min impairs cytoskeletal contractility resulting in lower total
force, which recovers after the drug is washed out at t = 75min. (h) Three snapshots from
the time series in (g) demonstrate the NN’s ability to capture redistribution of forces seen
during the perturbation.
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indicate that the distribution of zyxin alone is a faithful proxy for the mechanical state of a

cell and is sufficient to predict traction forces under a wide variety of conditions.

5.5 Neural networks identify features of cell adhesion and

morphology

Motivated by the success of the U-Net at predicting traction forces, we next sought to

identify features of the zyxin distributions that are relevant for making those predictions.

Zyxin encodes both micron-scale structures, such as FAs (∼ 1 µm), as well as cell-scale

structures like stress fibers ∼ 10-100 µm (Fig. 5.2a). To probe how the network interprets

these features, we trained U-Nets on random image crops of sizes ranging from 10 µm up

to 130 µm in our input data (Fig. 5.5a). Even when trained on only a small fraction of the

cell, these networks learned models which were accurate on average for both force magnitude

(Fig. 5.5b-c) and direction (Fig. 5.5d-e). In both of these measurements, improvements in the

prediction accuracy was negligible as the input size increased beyond ∼25 µm (Fig. 5.5c,e).

This indicates that the U-Net does not need to know the whole-cell geometry and that it can

make accurate predictions by considering a smaller neighborhood around any given point.

Previous work has suggested that both cell morphology [124, 136, 151, 192, 195, 203]

and FA distribution [60, 77, 114, 191] can impact force generation. To understand how

the U-Nets interpreted these features, we generated synthetic “cells” to systematically vary

these features and examine the trained models’ response [129]. To probe the role of cell

morphology, we evaluated the mask-trained U-Net on cells that were triangular in shape

with a width L and whose edges were arcs with radius of curvature Rc (Fig. 5.5f). While

the network did not systematically respond to increases in cell edge curvature (Fig. 5.5h),

we did find that force production increased with total cell size (Fig. 5.5i). This result is

consistent with previous work showing that force generation scales with cell area [136], and

further demonstrates that the network is sensitive to large-scale features of cell geometry.
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Figure 5.5: Neural networks identify features of cell adhesion and morphology
(a) Networks are trained with varying crop sizes, ranging from 64 pixels (≈ 10µm) to 768
pixels (≈ 130µm). All networks are trained on the same data and have the same architecture
as the U-Net of Figs. 5.2 and 5.4. (b) Average force magnitude (defined in Fig. 5.2) for
varying crop sizes. (c) Magnitude error as a function of crop size, using the same metric
defined in Fig. 5.3d. (d) Distribution of angular errors ∆α = αNN − αexp for each crop
size. Larger crops cause the distribution to peak sharply about ∆α = 0. (e) Full width half
maxima of the distributions in (d) as a function of crop size. FWHM reduces dramatically
at a crop size of ≈ 25µm, beyond which it plateaus. (f) Synthetic cells of size L consist
of three points connected by circular arcs with radius Rc. (g) Dependence of average force
predicted by mask-trained U-Net on radius of curvature relative to the size of the synthetic
cell, and cell size. (h) Averaging along the x-axis of (g) shows that average predicted force
is independent of of relative radius of curvature. (i) Averaging along the y-axis of (g) shows
that average predicted force increases as a function of cell size. Shaded region in both (h) and
(i) denotes one standard deviation. (j) (Top) Synthetic cells composed of ellipses of varying
aspect ratio (defined relative to radial direction) and area, which are randomly distributed
in a circular boundary. A section of one such cell is shown along with the force magnitudes
predicted by the zyxin-trained U-Net. (Bottom) Average predicted force magnitudes vary
with aspect ratio and area. (k) Additional synthetic cells are generated of evenly spaced,
radially oriented focal adhesions with varying length and intensity. (Top) A section of one
such cell is shown along with the force magnitudes predicted by the zyxin-trained U-Net.
(Bottom) Average predicted force varies with zyxin intensity.
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To probe the role of FA-like features, we created synthetic cells composed of elliptical

“FAs” of varying area and aspect ratio which were distributed randomly throughout a circular

cell (Fig. 5.5j; SI Fig. 16-17). The aspect ratio was defined with respect to the radial direction,

allowing us to simultaneously probe the response of the network to both orientation and size

of the FA-like structures. We found that the zyxin-trained U-Net predicted the highest forces

for ellipses of area ∼2 µm2 and aspect ratio of ∼ 0.1 (i.e. those pointed radially), consistent

with experimental descriptions of FAs [62, 91, 151, 182]. We further investigated the role of

FA intensity by creating circular cells with uniformly distributed ellipses of fixed intensity

and length along the edge (Fig. 5.5k). Upon increasing the intensity of the ellipses, we found

a nonlinear response where the magnitude of the predicted traction forces rose sharply at first

and continued to grow at a slower rate at higher intensities, consistent with previous reports

of zyxin intensity increasing with applied force [138]. This retrospective analysis revealed

how the neural network transforms many different specific features of the zyxin signal into

cellular force predictions. Instead of memorizing complex, uninterpretable correlations in the

training data, the U-Net identified biological features which allow it to accurately generalize

predictions of force generation across cell types and biomechanical states.

5.6 The physical bottleneck: learning adhesion enhances an

effective elastic model

While the U-Net learned rules for predicting forces from zyxin generalize far beyond the do-

main on which it was trained, it is not transparent how the network uses features of the input

data to make predictions. In comparison, previous models inspired by classical continuum

theory rely on simple hypotheses allowing for maximum interpretability. However, they typ-

ically lack the ability to make predictions under wide ranges of cell shapes and distributions

of localized FAs [30, 52, 78, 124, 135, 136, 138, 177, 179, 203]. Here, we demonstrate how to

incorporate zyxin into continuum mechanical models using neural networks, thereby learning
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relationships between proteins and physical parameters which enhance the generalizability

of physical models.

We resort to an existing model that views the cell as an effective two-dimensional active

elastic gel adhered to a substrate [52, 124, 136]. The main attraction of this minimal model

is its simplicity: it represents the complex processes governing cell adhesion and contractility

in terms of only two parameters, a uniform adhesion strength Y and a global active stress σa

(Fig. 5.6a). The forces are calculated as F⃗ (x) = Y u⃗(x), where u⃗(x) is the displacement field

found by minimizing the system’s free energy (see SI for details). Here, we extend this model

by considering a spatially-varying adhesion field Y (x), to account for the inhomogeneous

distribution of focal adhesion sites in the cell [179]. Inspired by the success of the U-Net, we

connect both physical parameters to chemical quantities by making them zyxin-dependent,

Y [ζ](x) and σa[ζ], with ζ(x) denoting the experimentally-determined zyxin distribution, so

that forces are now given by

F⃗ (x) = Y [ζ](x)u⃗(x). (5.1)

While classical methods exist to estimate model parameters from experimental force data,

they do not account for the additional constraint that the parameters are functions of zyxin.

To overcome this limitation, we introduce a “physical bottleneck” neural network (PBNN)

architecture. The U-Net of Figs. 1-4 calculates forces by processing hundreds of features

calculated in the latent layers of the network. In contrast, our physical bottleneck computes

only two features from which forces are calculated in a deterministic and well-understood

way. Concretely, the PBNN calculates Y [ζ](x) and σa[ζ] with a neural network and feeds

them as parameters into a PDE solver to calculate traction forces (Fig. 5.6c; SI Fig. 18).

We train the PBNN to predict parameters which minimize the mean squared error between

predicted forces and the experimentally-measured forces. In each iterative training step, the

adjoint method [194] is used to calculate updates to the physical model parameters, which
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are then passed to the neural network using backpropagation. This two-step process ensures

that updates to the neural network obey the stringent constraints of the physical model.

The PBNN accurately predicts forces and generalizes to cells perturbed by the ROCK in-

hibitor Y-27632 (Fig. 5.6c,d). The predicted force angles (Fig. 5.6e) and magnitudes (Fig. 5.6f),

however, are less accurate on average across the dataset than those predicted by the uncon-

strained zyxin-trained U-Net of Figs. 1-4. This behavior is expected due to the additional

constraints imposed on the PBNN. The PBNN nevertheless makes predictions on par with

the mask-trained U-Net (Fig. 5.6e,f), which indicates that the two parameters learned at

the physical bottleneck contain at least as much relevant information for force prediction

than anything an unconstrained deep U-Net could infer from the cell morphology alone.

Moreover, the U-Net processes its latent features with a nearly arbitrarily complex function,

while the PBNN processes the Y field and σa into forces via a simple differential equation.

The introduction of a zyxin-dependent adhesion field Y [ζ](x) was sufficient to make the

physical model competitive with fully deep U-Nets. The notation Y [ζ](x) is used to indicate

that Y is a functional of the zyxin field ζ which varies in space. We occasionally omit the

dependence on ζ for brevity. We found that the learned field is strongly heterogeneous and

localizes to FA sites (Fig. 5.6g,h). Furthermore, the intensity of Y (x) decreases in response

to the ROCK inhibitor Y-27632 and mirrors the reorganization and reduction in number of

FAs (Fig. 5.6d,h). However, it is not immediately clear how the PBNN calculated Y (x) from

the spatial distribution of zyxin ζ(x). To characterize how the adhesion at a point xi depends

on zyxin at a point xj we defined the susceptibility, or linear response, of the network as

κxi,xj =
∂Y (xi)
∂ζ(xj)

. The susceptibility curve exhibits a rapid decay with a minimum at ≈5µm

(Fig. 5.6i). Its shape resembles a Laplace filter commonly used in peak-finding algorithms,

indicating that Y (x) is associated with maxima in the zyxin signal. We further probed the

dependence of Y on zyxin by correlating the average adhesion in each image Ȳ with the sum

of zyxin values above a given threshold (Fig. 5.6h, SI Fig. 19). Upon increasing the threshold,
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Figure 5.6: The physical bottleneck: learning adhesion enhances an effective elas-
tic model. (a) We model the cell as an elastic medium which is subject to a uniform active
contractility σa and is pinned to the substrate with a spatially varying adhesion field Y (x).
(b) A neural network learns to map zyxin to model parameters, which a PDE solver uses to
compute the forces. Network weights are optimized such that physical constraints are always
satisfied. We refer to this strong enforcement of the PDE as a “physical bottleneck” neural
network (PBNN). The elastic model with non-uniform adhesion captures forces in cells in
both high (c) and low-contractility regimes (d). The PBNN predicts both forces directions
(e) and magnitudes (f) similarly on average with the full mask-trained U-Net of Fig. 5.3.
The angle FWHM for the PBNN is 68◦ and for the mask U-Net 65◦, while for the zyxin
U-Net it is 50◦. (g-j) The PBNN reveals how the learned adhesion field depends on zyxin.
(g) The learned Y (x) is highly heterogenous and captures the location of FAs. (h) The mag-
nitude of the Y field decreases in response to the ROCK inhibition, but remains localized
to FAs. (i) The “susceptibility” of the PBNN, κ(xi, xj) =

∂Y (xi)
∂ζ(xj)

is sharply peaked within

a radius of a few microns. (j) We correlate the average adhesion value Ȳ with the amount
of zyxin above a threshold ζq, where q denotes the qth quantile of the zyxin distribution
(inset). Ȳ correlates strongly only with the highest values of zyxin.
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Ȳ becomes significantly more correlated with zyxin, suggesting that the magnitude of the

adhesion field is set primarily by the highest zyxin values. Together, these results indicate

that the adhesion field is encoding high-value peaks of zyxin intensity, which correspond to

FAs.

The parameters learned by the PBNN are subject to the assumptions of the model

used to constrain them. The elastic model makes predictions about displacements within

the cell which are not directly accessible experimentally using TFM, nor is it clear what

undeformed reference frame these displacements should be measured from. This is due to

the fact that a cell, unlike a passive lattice of masses and springs, continuously undergoes

cytoskeletal remodelling even if no external deformations are applied. Nevertheless, the

PBNN is still a powerful tool to test our hypothesized model and it informs us of the

minimal necessary ingredients required to predict traction stresses. We showed that cell

shape (encoded as boundary conditions), a global contractile “set-point” σa, and a field

Y (x) encoding focal adhesions were sufficient to make predictions. Furthermore, we find

that a linear partial differential equation describing an intermediate displacement field is an

adequate mathematical model to describe the observed behavior.

5.7 Green’s function neural networks reveal length scales and

effective equations

The success of the PBNN relies on generating plausible hypothesized models, hence the in-

sights it produces are biased by the specific model prescribed. We now investigate whether

we can relax these constraints to gain insights even in the absence of strong mechanical

hypotheses. To do this, we turn to a physics-inspired approach to identify machine-learned

rules that are agnostic to specific underlying physical models. This method again trades the

complexity of our deep U-Net for fewer, more interpretable operations (Fig. 5.7a). Specifi-

cally, we assume that the force can be written as a function of machine-learned fields derived
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Figure 5.7: Green’s function neural networks: physics-agnostic model-building
reveals length scales and effective equations. (a) Green’s-function neural networks
(GFNNs) first extract the fields and long-range interactions needed to predict forces. Next,
sparse regression builds effective equations fitting the machine-learned model. (b) The
GFNN predicts traction forces from the zyxin intensity field (top), which we compare to
the forces measured in experiment (bottom). (c-e) The GFNN learns sources ρξ, ρχ (c) from
local zyxin information. These sources are integrated with machine-learned Green’s func-
tions (d) to produce the fields ξ, χ (e). The Green’s functions Gξ, Gχ decay over different
length scales representing regions over which protein information accumulates (d top). Gξ
decays over roughly a focal adhesion size, while Gχ decays more slowly across the cell. (f)
The predicted force field from the GFNN agrees well with the ground truth (b bottom). (g)
Using sparse regression, we learn a formula (see SI) based on the GFNN which predict the
force field. (h) Time course of predicted forces during a ROCK inhibitor experiment. We
compare the experimental forces (grey) to those predicted by GFNN (blue) and the effective
equation (red). The dashed lines indicate the drug wash-in and wash-out times. (i) Sparse
regression yields equations of varying complexity. We plot the improvement in mean-squared
error of sparse-regressed models as a function of their complexity, compared to a baseline
model F = 0 with no learnable parameters. Star denotes the average performance of a 10-
term equation.
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from zyxin (yellow and pink boxes in Fig. 5.7a(i)). While these fields are analogous to the

PBNN’s displacement u⃗(x) and adhesion Y (x) fields, we do not demand that these quanti-

ties obey linear elasticity or any other particular continuum theory. We only require that

their non-local machine-learned relationships with zyxin density are represented by Green’s

functions. The Green’s function method is a general tool to calculate a system’s response to

localized perturbations. For example, the Green’s function of classical electrostatics is the

1/r potential that determines the effect of a charge located at a distance r away. With the

aid of our machine-learned Green’s functions, we will similarly seek to determine how the

local traction force depends on zyxin density throughout the cell (Fig. 5.7a(ii)). In contrast

to the physical bottleneck, this is a question for which we do not have the luxury of a readily

available formula.

Using the same input zyxin images (Fig. 5.7b), we train a Green’s function neural network

(GFNN) to characterize spatial interactions between our input zyxin images and their re-

spective traction maps. The GFNN learns a series of sources and fields (drawn in yellow and

pink in Fig. 5.7c-e) from the zyxin images which it uses to predict the traction stresses (see

Methods and SI). While in principle a GFNN can learn any number of fields, we found that

a minimally-complex model could achieve accurate predictions using only two (Fig. 5.7f).

Specifically, the GFNN learned two fields ξ, χ in terms of which predictions of the traction

forces can be made

F⃗ = ξ(x)∇⃗χ(x). (5.2)

Such a representation is reminiscent of Coulomb electrostatics, with ξ and χ analogous to the

charge and electric potential, respectively (see SI Fig. 4 and discussion for a demonstration of

the GFNN method on 2D Coulomb electrostatics data). Going back to our mechanical model,

note that this machine-learned formula Eq. (5.2) resembles in form the physics-informed Eq.

(5.1). The “charge” ξ in Eq. (5.2) identifies local peaks in zyxin intensity that are similar
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to focal adhesions (Fig. 5.7c,e top). The Green’s function for ξ, Gξ, decays over a very

short length scale ∼ 5µm (Fig. 5.7d), suggesting that it is determined by local information

at the adhesion site (Fig. 5.7a(ii),d). The “potential” χ is less localized and its Green’s

function, Gχ, accumulates zyxin information from a larger area of the cell (Fig. 5.7a(ii),c-e

bottom). This longer decay length suggests that the “potential” can infer aspects of the cell

morphology from the zyxin distribution. Thus, our GFNN model predicts traction forces

from interactions between a focal adhesion “charge” and a cellular “potential”.

To simplify this model further, we used sparse regression to build effective equations

which approximate the traction forces (Fig. 5.7a(iii)). A qualitatively accurate analytical

formula (Fig. 5.7g) can be obtained using only a handful of terms inspired by the GFNN (see

SI for full equation). This formula is dramatically compressed compared to the full U-Net,

which contains 105 times more parameters. Nevertheless it can capture 77% of the U-Net

predictions and also generalizes to the biochemical perturbations induced by our ROCK

inhibition experiments (Fig. 5.7h,i). This illustrates how the U-Net, a complex black-box,

can be distilled into a similarly-accurate formula consisting of two non-local interactions and

parameterized by only a handful of terms (Fig. 5.7i). Our proposed pipeline demonstrates

how to extract effective equations which map protein distributions to traction forces without

knowing the explicit underlying relations. Although no physical input was used to derive

them, the structure of Eq. 5.2 and the learned equation (see SI) are strikingly similar to

Eq. 5.1. In particular, ξ and Y are both fields which accumulate zyxin information within

focal adhesions, while ∇⃗χ and u⃗ are vector fields which propagate information throughout

the cell.

5.8 Discussion

Here, we established that deep neural networks can predict the contractile mechanics of

cells directly from images of protein distributions. Our results demonstrate that images of
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Figure 5.8: Data-driven biophysical modeling
We present a suite of machine-learning approaches to identify and interpret links between bi-
ological information contained in images of protein distributions and traction force measure-
ments in adherent cells. Deep neural networks require no prior knowledge but can identify
relevant components for achieving robust generalizable predictions. Here, they found that a
single adhesion protein is sufficient to predict traction forces. Physics-inspired models use
structural constraints to learn governing rules but remain agnostic to any specific theory.
Physics-constrained learning enhances existing models by linking biochemical information
to physical parameters, such as a zyxin-dependent adhesion field in a linear elastic model.
All three methods accurately predicted traction stresses and revealed a consistent theme of
forces encoded by adhesion protein information over two length scales – one associated with
the adhesions themselves and another related to cell morphology.
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a single focal adhesion protein, such as zyxin, contain sufficient information to accurately

predict traction forces. We showed that a network trained on images of one cell type collected

from one microscope can generalize across a range of cell types, experimental setups, and

biomechanical regimes. These results illustrate the utility of machine learning for extracting

robust predictions from heterogeneous, biological data. Such methods can be implemented

with a readily-achievable volume of experimental image data. This makes them particularly

well-suited to predict mechanical behavior in situations where proteins can be easily imaged

but physical measurements are difficult.

We introduced three data-driven approaches for biophysical modeling which incorporate

machine learning at various points in the model building process to reveal new insights

(Fig. 5.8). While deep neural networks are not directly interpretable, we demonstrated the

utility of synthetic data for identifying relevant components in processes with many inter-

acting proteins. Next, we introduced a novel PBNN to test and enhance existing models,

which revealed the protein-dependence of effective physical parameters. Finally, our GFNN

approach traded some of the complexity of deep U-Nets for interpretable operations, un-

covering long-range interactions and even an analytical formula that describes the system

behavior. These methods represent an alternative approach to hypothesis testing and for-

mulation in the framework of data-driven biophysical modeling.

All three approaches, despite being subject to dramatically different constraints and

assumptions, revealed two important length scales. One length scale of a few microns is

consistent with the size of individual focal adhesions and describes the relationship between

force magnitude and local zyxin intensity (Fig. 5.5j-k; Fig. 5.6g-j; Fig. 5.7c-e, top). Pre-

dicting force directions, however, requires information encoded over a larger length scale.

In the GFNN and U-Net, this scale of tens of microns is associated with aspects of cell

morphology while in the the PBNN it is accounted for in the PDE’s boundary conditions

(Fig. 5.5c,e; Fig. 5.6a-b; Fig. 5.7c-e,bottom). Moreover, in the PBNN and GFNN the fields
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corresponding to long length scales (χ, u⃗) and short length scales (ξ, Y ) are coupled in a

strikingly similar way (Eqs. 5.1-5.2). Neural networks are a complex black box and care

must be taken when analyzing their behavior. By using multiple methods which produce

consistent results, we become more confident that the rule learned through our data-driven

framework is generalizable and independent of the method we use to derive it.

From these rules we can also hypothesize why single FA proteins are sufficient to make

accurate predictions. The shorter length scale identified by these models seems directly

encoded by the FA itself, while the longer length scale relating to cell geometry can be

inferred by integrating over many FAs. Additional information could potentially be gleaned

from the geometry and orientation of the FAs which are determined by the stress fibers

to which they’re coupled. This information is present in the distribution of multiple focal

adhesion proteins, which might explain a certain degree of interchangeability between zyxin

and paxillin revealed in our analysis of MDCK cells. As to why zyxin appears to slightly

outperform paxillin, we speculate this could be related to its force-sensitive recruitment to

actin and focal adhesions [74, 106] but further research will be required.

Finally, the approaches presented here are applicable beyond simple models of cellular

contractility. Interpretable machine learning methods can lead to an improved understand-

ing of the rules and equations governing spatiotemporal behavior in diverse biological sys-

tems [70, 72, 89, 185]. They may be used to test and enhance existing models, as well as

learn entirely new ones, in areas where first-principles approaches to biophysics fail. We only

consider prediction of forces from proteins, but an autonomous dynamic model will need to

be closed by a relation which predicts how protein distributions evolve in time. Our work

suggests that it may suffice to consider only the dynamics of an effective adhesion field,

rather than accounting for the precise details of cytoskeletal rearrangement. The methods

introduced here could aid in developing mechano-chemical descriptions of diverse systems

such as migrating cells [6, 27, 28, 148, 150], epithelial tissue dynamics [39, 45, 164] and
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morphogenesis [3, 121, 160, 181]. They could also be coupled to recent large quantitative

datasets describing organelle positioning and interactions [201] to glean additional insights.

These approaches represent a step forward towards harnessing the versatility of machine

learning to tackle the complexity of living systems.

5.8.1 Limitations of the study

Our data-driven biophysical modeling pipeline inherently relies on the data itself. Despite

the demonstrated ability of our networks to generalize to unseen data, their predictions

depend on the data in subtle ways. Variations in data quality caused by different micro-

scopes, the choice of imaging fluorophore, substrate stiffness, or even how individual cells

express proteins, can affect the accuracy of U-Net predictions (Fig. 5.4 and SI Figs. 11-13).

We can account for some of these effects via normalization, but to further improve this

generalizability, it may be useful to assemble a wide-ranging dataset using an ensemble of

experimental conditions. In particular, generalizing to substrates of different stiffness is com-

plicated by the role of the TFM regularization parameter (SI Figs. 14-15), which suggests

that elastic substrates cannot be discarded. Beyond data quality, our analysis is limited

by the use of two-dimensional image data. Cells are not two-dimensional objects and so we

would not expect our method to generalize to structured 3D environments where out-of-plane

mechanical interactions become important. In this paper, we also restricted our analysis to

time-independent models. However, we observe that cells move significantly throughout each

movie. Future work may find that additional biochemical information is needed to capture

the cells’ full dynamic behavior.
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CHAPTER 6

LEARNING THE DYNAMICS OF MORPHOGENESIS

Morphogenesis is the process whereby the body of an organism develops its target shape.

The morphogen BMP is known to play a conserved role across bilaterians in determining

the dorsoventral (DV) axis. Yet, how BMP governs the spatio-temporal dynamics of cy-

toskeletal proteins that drive morphogenetic flow remains an open question. Here, we use

machine learning to mine a morphodynamic atlas of Drosophila development, and construct

a mathematical model capable of predicting the coupled dynamics of myosin, E-cadherin, and

morphogenetic flow. Mutant analysis reveals that it is BMP that sets the initial condition

of this dynamical system according to the following signaling cascade. BMP establishes DV

pair-rule-gene patterns that in turn set-up an E-cadherin gradient which creates a counter

running myosin gradient through mechanochemical feedbacks. Using neural tube organoids,

we unveil how BMP, and the signalling cascade it triggers, prime the conserved dynamics of

neuroectoderm morphogenesis from fly to humans.12

6.1 Introduction

Morphogenesis is the process by which the shape of an organism emerges from the coor-

dinated behavior of groups of cells. Turing’s pioneering work traced morphogenesis to the

presence of “chemical substances called morphogens, reacting together and diffusing through

a tissue” [196]. Molecular biology has since identified these morphogens as molecules whose

concentration modulates the expressions of various genes [65]. This in turn determines a

1. This chapter is adapted from a forthcoming manuscript: How BMP governs the dynamics of neu-
roectoderm morphogenesis across species, by Matthew Lefebvre∗, Jonathan Colen∗, Nikolas Claussen∗,
Fridtjof Brauns, Marion Raich, Noah Mitchell, Michel Fruchart, Vincenzo Vitelli, and Sebastian Streichan.

2. Text contains references to Boxes, Methods, and Supplementary Material. Boxes and selected Sup-
plementary Material are included at the end of the chapter, while Methods are available in Appendix A.
Additional Supplementary Material is available online.
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cell’s fate – namely, its future identity or that of its daughter cells. During early develop-

ment, morphogen concentrations set up a spatial coordinate system and body axes on which

the embryo organizes future tissues and organs [172]. However, it is force-generating pro-

teins – not morphogens – that actually move each group of cells into the right place. Active

mechanics describes how biology harnesses such physical processes [6, 119, 152]. A central

challenge in developmental biology is to unveil general mechanisms by which morphogens

control the active mechanics of shape-creating proteins. A paradigmatic example is the role

of bone morphogenetic protein (BMP) signaling in establishing the neuroectoderm, the first

step in forming the central nervous system [14, 15]. This role is evolutionarily conserved

across organisms with bilateral symmetry, likely because it traces back to a common an-

cestor. Beyond BMP, many force-generating proteins have a conserved role across species,

yet the exact process by which BMP controls these proteins is not known. This raises the

questions: how does BMP control the active mechanics that execute morphogenesis and is

such a mechanism conserved across species?

To understand the dynamics of morphogenesis, one needs to find causal relationships

between biochemical and biophysical observables, such as protein distributions and cellular

flow. Recent progress in light-sheet microscopy has yielded unprecedented glimpses into

tissue and protein kinematics across the embryo [104]. However, these imaging advances

come at a price: they produce very large datasets with little a priori knowledge of what

minimal information (typically encoded in proteins) should be considered [157]. Machine

learning (ML) is a powerful tool to work with such complex datasets [108]. It allows one

to identify reduced sets of variables and use them to perform statistical inference or predict

the future of a system [31, 122]. But high-performance ML models do not come with a

Rosetta stone. To go beyond their black-box limitations and interpret them, we need to

supplement ML techniques with physical and biological insights [93]. To unveil how BMP

controls the dynamics of morphogenesis across species, we develop a pipeline that combines in
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toto light sheet microscopy, interpretable machine learning, and theories of active mechanics.

We then apply this integrated approach to perform a comparative study of neuroectoderm

morphogenesis in Drosophila and in a stem cell-based human neural tube model.

In Drosophila, an initial major morphogenetic movement, part of gastrulation, is the

elongation of the neuroectoderm along the anterior-posterior (AP) axis, known as germ-band

extension (GBE) [86] (Fig. 6.1a-b). It involves transcription factors patterned in periodic

stripes along the AP axis (stripes in Fig. 6.1c), that are encoded by homeobox domain

containing genes known as pair-rule-genes (PRGs). PRG patterns have been proposed to

organize GBE by regulating Toll-like receptors [141, 213]. However, the mechanism that

would lead from Toll-like receptors to tissue flow along the axis of elongation remains unclear

(see Box 1). Quantitative mechanical analysis using live-imaging of Drosophila has linked

tissue flow to a contractility gradient along the dorso-ventral (DV) axis, the axis orthogonal to

the AP direction [181]. A patterned force-generating protein, non-muscle myosin-II (myosin),

causes cell interfaces on the ventral side to contract more than those on the dorsal side,

which in turn drives tissue flows in the neuroectoderm (Fig. 6.1b). In addition to cell-level

AP-polarization of cells, this suggests that morphogenetic flow also relies on a large-scale

myosin imbalance along the DV axis. Recent work has found these myosin gradients are not

only due to spatially-varying gene expression, but emerge from mechanochemical feedback

loops [21, 75, 109] (Fig. 6.1d).

In humans, the neuroectoderm also undergoes major morphogenetic remodelling: an

initial folding process creates the neural tube, the precursor of the brain [94, 205]. The

mechanics of folding requires both basal motility of the surface ectoderm and apical con-

tractility of the neural ectoderm [94]. However, how Drosophila PRGs and their human

counterparts regulate force-generating proteins to perform these movements remains un-

known [109, 141, 142]. Here, we propose and test the following hypothesis: the dynamics of

force-generating proteins in both the human and the fly are regulated by mechanochemical
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feedback loops involving the proteins themselves as well as transcription factors, under the

overall control of BMP.

This paper is organized as follows. We first develop a pipeline for analyzing Drosophila

embryos that combines light-sheet microscopy, active matter theories, and machine-learning.

Using this pipeline, we identify a set of biophysical quantities predictive of their own fu-

ture — tissue flow, myosin, and E-cadherin — and construct a set of equations describing

their coupled dynamics. Next, we present a mutant analysis that reveals how BMP sets

the initial condition of this dynamical system through a multi-step signaling cascade. First,

BMP establishes DV-graded patterns that set-up a global E-cadherin gradient. Second,

mechanochemical feedback convert this E-cadherin gradient into a myosin gradient in the

opposite, or counter-running, direction. To probe the generality of this mechanism, we turn

to experiments on human stem cell-based neural tube organoids that unveil how BMP, and

the signaling cascade it triggers, prime the conserved dynamics of neuroectoderm morpho-

genesis from flies to humans.
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Figure 6.1: Drosophila GBE as a system for understanding the interplay between
genetic patterning and cytoskeletal force generation using machine learning.
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Figure 6.1: (cont.) (a) During Drosophila GBE, the body axis undergoes a 2-fold elonga-
tion over the course of 90 minutes. (b) Snapshots of nuclei from in toto live recording of
Drosophila gastrulation, comprising invagination of the ventral furrow and GBE. (c) (Top,
cartoon) The conserved morphogen DPP (the Drosophila homolog of BMP) patterns cell
fates along the DV axis. (Bottom) The AP axis is patterned by striped expression of PRGs,
three of which are shown (Even-skipped: blue, Runt: cyan, Paired: magenta, virtual over-
lay created from 3 different embryos). We find that PRGs are also graded along the DV
axis. This patterning hierarchy shapes cytoskeletal recruitment and drives tissue flow. (d)
A gradient of myosin recruitment along the DV axis generates forces that drive tissue flow.
Mechanical feedback loops respond to tissue deformation, sculpting local patterns of cy-
toskeletal recruitment. (e) Tissue cartography projects the curved 3D embryo surfaces onto
a 2D plane. (f) Additional image processing includes spatial downsampling/smoothing and
optional anisotropy detection via a radon transform algorithm. (g) A NN forecasts tissue
dynamics from the measured biological initial conditions. The network is a residual autoen-
coder which maps the inputs to a latent vector, predicts dynamics using a recurrent layer,
and then translates the latent vector sequence into flow fields. (h) Trajectories of test points
in the flow fields measured in experiment. (i) Trajectories in flow fields predicted by the
NN. (j) Overlay of (h) and (i) showing agreement between over 20 minutes of forecasted
behavior.

6.2 Neural networks learn tissue dynamics from myosin

distribution

To understand the rules that control Drosophila GBE, we aim to isolate a small set compris-

ing the most relevant proteins, and construct biophysical equations to describe their pattern

and dynamics, generating testable hypotheses. To do so, we leverage a morphodynamic atlas

of Drosophila gastrulation which contains movies of in-toto protein expression for various

patterning genes and force-generating cytoskeletal components. We [125] (Fig. 6.1c-d) mine

the data using machine learning [31, 108, 122]. We first train deep neural networks (NNs)

to learn tissue dynamics using different sets of biophysical quantities contained in the atlas

(Fig. 6.1d-e). As detailed in the SI (Fig. 6.9), this allows us to identify a restricted set of

biophysical quantities that are predictive of both future tissue flow patterns and patterns of

junctional myosin recruitment patterns . Our results corroborate the crucial role of myosin

in driving tissue flow during GBE, in agreement with previous work relating the instanta-
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neous myosin distribution and tissue flow [181]. In short, myosin creates forces that put the

cells in motion. When given an initial condition of myosin measured prior to ventral furrow

(VF) formation, a trained NN can forecast tissue flow for 20 minutes and maintain excellent

agreement with experiments throughout the initial period of GBE (Fig. 6.1f-h; this entire

process takes approx. 45 min).

6.3 Minimal active matter models require control fields and

mechanical feedback

To gain further insight into tissue dynamics during GBE, we performed a principal compo-

nent analysis (PCA) of dynamic time series data representing the entire timecourse of GBE.

This technique organizes data into features called “principal components” (PCs), sorted by

their importance in the available data. As shown in Fig. 6.2, a small number of PCs can

account for the main features of GBE morphodynamics. Over the course of GBE, a gradi-

ent of junctional myosin recruitment develops along the dorso-ventral axis (Figs. 6.2c’-f’).

Prior to the initiation of GBE (t = 0 min post ventral furrow initiation), there is very little

motion of the germband. Over time, tissue flow increases, and the flow field evolves into a

quasi-stationary state composed of four vortices located at antero-lateral and postero-lateral

positions on either side of the embryo (t from 5 to 20 mins), see Figs. 6.2c-f. Crucially, pat-

terns of myosin recruitment and the spatiotemporal positions at which tissue flow vorticies

develop are both robust across multiple embryos. This behavior holds even in embryos which

lack a VF (ex. twist and snail mutants) and therefore do not undergo mechanical symmetry

breaking [75].

In the SI (Fig. 6.10-6.11), we attempt to reproduce these qualitative features of myosin

and flow dynamics using minimal active matter models. Under reasonable biological assump-

tions, a dynamical model including only myosin and flow cannot reproduce the long-lived

GBE-like state observed in experiments (Fig. 6.2c). Because myosin and velocity are nearly

93



uniform at t = 0, such a model can only create a myosin gradient (and the GBE flow it pro-

duces) via a pattern-forming instability. We rule this out because it would lead to patterns

randomly shifted along the DV axis, in contradiction with experimental observations. In

contrast, a simple model where a control field modulates myosin concentration can produce

a quasi-stationary state. This control field induces a myosin gradient along the DV axis

which in turn causes a GBE-like flow with four vortices. This quasi-stationary state is pro-

longed using more complex models including advection and junction rotation, by including

a mechanical feedback coupling strain-rate to myosin recruitment as suggested by previous

works [57, 75, 109, 181, 211] (see Fig. 6.12-6.13).
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Figure 6.2: Dimensional reduction describes patterns on the embryo surface.
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Figure 6.2: (cont.) (a) Principal component analysis (PCA) represents high-dimensional
data using linear combinations of learned components. Each frame from the morphodynamic
atlas [125] is an individual sample with data dimension equal to the number of pixels. (b)
PCA for different fields in the morphodynamic atlas. N is the number of components needed
to capture 90% of data variation. Flow and the cytoskeletal proteins myosin and E-cadherin
require few PCs (N = 4) while PRGs require more (N ≥ 8). (c) Average flow magnitude
over time, with VF at t = 0 min. (d) Representative snapshots of the flow field for VF
and GBE. (e) Primary PCs for the flow field. The first captures GBE flow while the second
is a DV component which produces VF flow. (f) Projection of flow movies onto primary
PCs, demonstrating smooth and reproducible dynamics. (c’-f ’) PCA for myosin showing
that the primary behavior is a developing DV gradient. Here, we mask out the cephalic
furrow and posterior midgut regions which become prominent at later times. (c”-f ”) PCA
for E-cadherin, whose PCs also show a DV gradient opposite myosin. The similarity between
the PCA of myosin and E-cadherin fields suggests their evolution may be coupled.

6.4 E-cadherin may intermediate between transcription factors

and force-generating proteins

We now aim to identify the control field that establishes the myosin recruitment gradient.

Mutant phenotypes of the PRGs Even-Skipped and Runt exhibit abnormal myosin pat-

terns and abrogated tissue flow during GBE, demonstrating their importance for myosin

recruitment [57, 86, 109, 213]. However, we find that both Even-Skipped and Runt require

nearly twice as many PCs to encode as myosin or flow (Fig. 6.2b). This reflects the greater

spatio-temporal complexity of PRG expression profiles which have clear AP oriented stripes

(Fig.6.4b,c). In addition, these complex PRG expression patterns are continuously advected

by the flow [109]. These observations are consistent with the idea that while PRGs are

important for myosin recruitment and ultimately for tissue flow, downstream cytoskeletal

effectors may be necessary to organize myosin recruitment and tissue flow.

To this end, we considered E-cadherin, a hallmark component of the sub-apical adhesion

cortex. This complex and dynamic network of signaling molecules and cytoskeletal proteins

also recruits myosin motors. Because of this, we expect that features which affect myosin

recruitment may be reflected in the expression profile of E-cadherin (or other integral adhe-
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sion complex proteins with similar expression profiles, see SI online). Indeed, it has recently

been shown that high levels of E-cadherin can inhibit junctional recruitment of myosin [184].

E-cadherin exhibits less complex spatio-temporal behavior than PRGs, requiring the

same number of PCs as myosin and tissue flow (Fig. 6.2b). E-cadherin is expressed in a

dorso-ventral gradient before significant apical myosin recruitment or the onset of tissue

flow in the germband (Fig. 6.2c-c”). The E-cadherin profile maintains higher expression at

the dorsal pole throughout GBE (Fig. 6.2c”). When myosin recruitment initiates during

VF invagination, the direction of the emerging gradient is opposite that of E-cadherin (Fig.

6.2d’-d”). In both cases, expression levels vary smoothly along the DV axis. We note

that in other contexts, opposing patterning gradients are known to shape gene expression

profiles [10, 11, 47, 103, 127, 200, 212].

These observations suggest that the E-cadherin profile may reflect features of the sub-

apical adhesion complex which play a role in organizing myosin recruitment. Indeed, while

mutant phenotypes demonstrate PRG expression is necessary for tissue flow and myosin

recruitment [57, 86, 109], our results suggest that E-cadherin or other components of the

sub-apical adhesion cytoskeleton (such as Bazooka/Par3) may play a more direct role in

regulating myosin expression during GBE.
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Figure 6.3: Predicting dynamics of cytoskeletal proteins and flow.
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Figure 6.3: (cont.) (a) Schematic of the machine-learned dynamical system. At each time
step, a NN (Fig. 6.1e-h) translates myosin to the current tissue flow. Eqs. 6.1-6.2 predict the
time derivatives of the myosin and E-cadherin fields, which are integrated to forecast embryo
behavior from initial conditions. (b) Error rate of predictions over 30 minutes, beginning 10
minutes before VF. The error for each field remains within ≈25% over the course of the movie.
(c) Snapshots of myosin evolution at 10-minute increments. The top half of each image shows
the model prediction (ML) while the bottom half shows the experimentally-observed behavior
(EXP). Additional rows show E-cadherin (c’) and tissue flow (c”) at the same timepoints. (d)
Average intensity of predicted myosin (solid line) and experiment (dashed line) along a DV
cut through the center of the embryo, showing that a gradient develops from uniform initial
conditions (d’) Similar DV cuts for the E-cadherin field, showing an initial DV gradient that
is maintained throughout the trajectory. (e) Average flow magnitude predicted by the model
and measured in experiment (dashed line). The model predicts the onset of GBE flow arising
from the developing DV contractility gradient.

6.5 Machine learning yields interpretable dynamics of

neuroectoderm morphogenesis

Our current tentative picture is as follows: myosin puts cells into motion leading to tissue

flow during GBE and our neural networks identify myosin as a necessary ingredient for

forecasting these tissue dynamics. In minimal continuum equations, an additional DV-graded

field is needed to organize myosin recruitment. Our PCA results suggest that E-cadherin

is a possible candidate for this second field. To assemble these ingredients – myosin, tissue

flow, and E-cadherin – into a mathematical model that describes experimental data, we

use a ML technique known as SINDy [26]. Our goal is to learn biophysical equations for

the coupled dynamics of myosin and E-cadherin that are compatible with the biological

constraints delineated in previous sections and the SI (Fig. 6.10-6.13). Our procedure and

the equations it identifies are detailed in 6.9.2.

These dynamical equations must be supplemented with a mathematical relation that

explains how flow is instantaneously generated by myosin. At a qualitative level, this relation

can be captured by a Stokes equation [181] (Eq. 6.3 in SI) which models the tissue as a

viscous fluid. However, to reach quantitative agreement with experiments, we must account
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for external forces due to a biological phenomenon not captured by a Stokes equation (VF

invagination). To do so, we instead use a NN to instantaneously map between myosin and

flow. This NN alongside evolution equations for myosin and E-cadherin forms our complete

dynamical model (Fig. 6.3a and 6.9.2). Our hybrid model predicts the development of a

dorso-ventral myosin gradient opposite to the E-cadherin gradient (Fig. 6.3c-d’) and the

transition to a vortical flow pattern (Fig. 6.3c”-e). We accurately forecast the developmental

trajectory for up to 30 minutes, starting 10 minutes before initiation of the VF, and ending

during GBE (Fig. 6.3a-b).

6.5.1 Tissue flow requires cytoskeletal gradients downstream of BMP/DPP

signalling.

Our model predicts that convergent extension tissue flow during GBE requires a DV oriented

contractility gradient, which we hypothesize is controlled by a gradient in cytoskeletal orga-

nization, as measured by E-cadherin. We can test this hypothesis directly using Drosophila

DV patterning mutants in which all cells along the DV axis adopt the same fate. We char-

acterize tissue flow, and cytoskeletal expression profiles in both lateralized (TollRM9) and

dorsalized (spz4) embryos, in which cells uniformly adopt lateral, neural ectodermal fates or

dorsal ectoderm fates respectively. Myosin recruitment is uniformly low in dorsalized em-

bryos, and E-cadherin expression is uniformly high (Fig. 6.4a’-c’,e-f)). In contrast, myosin

recruitment is uniformly high in lateralized embryos whereas E-cadherin expression is low

(Fig. 6.4a”-c”,e-f)). In both cases, graded cytoskeletal expression is eliminated (compare to

Fig. 6.4a-c). Importantly, tissue flow is nearly eliminated in both DV patterning mutant

classes (Fig. 6.4g). These results demonstrate that junctional myosin recruitment is not suf-

ficient to drive convergent extension flow during GBE. Indeed, lateralized embryos have high

levels of myosin recruitment uniformly. Rather, the generation of a contractility gradient is

necessary for flow.
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Building off of the observation that DV patterning mutants have serious phenotypes

during GBE, we next asked which component of the DV patterning system mediates this

effect. We investigated the effect of Decapentaplegic (DPP, Drosophila homolog of BMP)

signaling during GBE. DPP is a key morphogen responsible for differentiation of cell fate

along the Drosophila DV body axis. Hypomorphic reduction of DPP signaling flattens the

DV gradient of both E-cadherin expression (Fig. 6.4b” ’) and myosin recruitment (Fig. 6.4c” ’).

Flow is also abrogated in dpp mutants (Fig. 6.4g). These results suggest that the regulatory

effect of DV patterning during GBE –sculpting the expression of the contractile cytoskeleton

– requires DPP/BMP signaling.
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Figure 6.4: DV patterning mutants abolish cytoskeletal gradients and tissue flow.
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Figure 6.4: (cont.) (a–a′′′) Cartoon of DV patterning “clock” of the Drosophila gastrula.
Shading indicates different genetically patterned cell fates. (a”) In TollRM9 and (a’) spz4
embryos, cells around the entire DV circumference uniformly adopt a ventro-lateral or dorso-
lateral fate respectively. (a” ’) In dpp mutants (Drosophila BMP), dorsal-most fates are elim-
inated, and lateral fates shift towards the dorsal pole. (b–b′′′) E-cadherin at t = 0 minutes
post CF initiation in four genetic conditions. Bars indicate the presence or absence of an
expression gradient. E-cadherin in (b” ’) was measured in dpp4 , snailIIG05 double mutants.
(c–c′′′) Cytosolic-normalized myosin at t = 0 minutes in four genetic conditions. Myosin
in (c” ’) was measured in Dpphin46/+ mutants. (d–d′′′) Gradients of myosin contractility
create forces that drive tissue flow. DV-patterning mutants abolish (TollRM9, spz4) or im-
pair (Dpphin46/+) tissue flow (quantified below). (e) Quantification of E-cadherin gradient
along the DV axis in DV mutants (N = 3 embryos for each genotype). E-cadherin in (e)
was measured in dpp4 , snailIIG05 double mutants. (f) Quantification of junctional myosin
levels in TollRM9,spz4, and WT. Myosin is high in TollRM9, low in spz4, and graded in WT.
Dpphin46/+ shows an intermediate phenotype with impaired grading. Data in (e-f) based
on N = 3 embryos for each genotype. (g) Quantification of tissue flow demonstrates that
flow is abolished in both TollRM9 and spz4 mutants. These embryos were imaged at 22o C.
Dpphin46/+ mutants impair but do not abolish tissue flow. Both Dpphin46/+ and Dpp+/+

control embryos were imaged at 27o C which increases the speed of gastrulation over embryos
imaged at lower temperatures [125].

6.6 BMP signaling may pattern E-cadherin via homeobox genes

How does DPP/BMP regulate cytoskeletal recruitment and drive tissue flow? Previous work

has demonstrated that the PRGs – effectors of AP patterning information – are necessary

for cytoskeletal recruitment and tissue flow during GBE [86, 141, 213]. Intriguingly, we

find that the PRGs exhibit DV oriented gradients of expression that fall roughly into three

classes (Fig. 6.5a-b’): (i) Runt, Paired, and Sloppy-paired expression is low dorsally and

high ventro-laterally (Fig. 6.5a-b and SI online for variation along a single Runt stripe), (ii)

Hairy expression is high dorso-laterally, low ventro-laterally, and low at the dorsal pole (iii)

Even-skipped and Fushi-Tarazu expression is uniform along the DV axis (Fig. 6.5b-b’). DV-

modulation is also observed in two transcriptional targets of the PRGs that are known to

affect cytoskeletal recruitment and GBE tissue flow downstream of PRGs – Toll-6 (a toll-like

transmembrane receptor, TLR) and Tartan [140, 141] (Fig. 6.5b).
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In lateralized (Fig. 6.5d,f)and dorsalized (Fig. 6.5f) embryos (TollRM9), graded Runt

expression is abolished, although striped expression along the AP axis is unaffected. In

hypomorphic DPP mutants, the slope of the DV Runt gradient is abrogated (Fig. 6.5e,f).

Together, these observations are consistent with the abolition of graded cytoskeletal recruit-

ment and tissue flow in DV patterning mutants we observed above, and suggest that PRGs

might be effectors of DV regulation during GBE: DPP modulates PRG expression, which in

turn modulates the cytoskeleton, creating the DV gradients required for tissue flow.

We now test this hypothesis more directly by analyzing PRG mutants and investigating

if the DV oriented expression gradients, and not only the overall levels or the anisotropy,

of cytoskeletal components are affected. Even-skipped eveR13 mutants exhibit a shallower

E-cadherin gradient than control embryos prior to axis elongation (Fig. 6.5g,g’ and SI). Pre-

vious work established that these mutants have lower myosin levels overall [141, 213]. Note

that while Even-Skipped expression is not strongly DV-graded (Fig. 6.5b), its downstream

effectors, such as Toll-6 [141] are.

Next, we over-expressed (OE) Even-Skipped under UAS control, driven by ubiquitous

maternal Gal4 drivers ( 67,15≫UAS-eve see materials and methods for details). In response,

we observe higher levels of anisotropic myosin extending towards the dorsal pole and a weaker

global myosin gradient (Fig. 6.5h-h”). Consistent with our expectations, tissue flow in both

eveR13 and 67,15≫UAS-eve mutants is weaker than in control embryos (Fig 5i). Note that

we observe high levels of anisotropic myosin recruitment in eve-OE mutants, even though

Even-Skipped AP stripes become less pronounced in the presence of ubiquitous Even-Skipped

expression, in contrast to the prediction of the heterotypic juxtaposition model (See Box 1)

[213].

Together, these observations support the hypothesis that DPP/BMP acts via the AP-

patterned PRGs to establish a DV-graded profile of E-cadherin expression before tissue flow

begins in the germband. This gradient in cell adhesion then shapes the extent of myosin
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recruitment along the DV axis. The resulting contractility gradient drives tissue flow. A

visual summary of this proposed mechanism is show in Fig. 6.5c. Based on our model above,

previous work [75, 109], and the results we obtained from over-expression of Even-Skipped,

we propose that PRGs do not recruit myosin directly [213], but indirectly by modulating

mechanical feedback loops. For instance, the optogenetic experiments of Ref. [75] showed

that feedback responding to cell stretching is weaker dorsally than ventrolaterally, potentially

due to different PRG expression levels.

Finally, we do not exclude the possibility that the DV patterning could influence the

cytoskeleton via a PRG-independent pathway. However, patterns of cytoskeletal recruitment

are dramatically altered in PRG mutants [141, 213]. In agreement with these observations,

our findings: (i) that PRGs are graded along the DV axis, (ii) and that cytoskeletal gradients

are weaker in PRG mutants — imply that at least part of the cytoskeletal DV patterning is

mediated via the PRGs.
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Figure 6.5: (cont.) (a) Drosophila PRGs are patterned along the DV axis. Runt and Paired
are striped along the AP axis and graded along the DV axis, with less expression dorsally. (b-
b’) Quantification of the DV gradients of 6 PRGs. Shaded areas indicate standard deviations
across samples. (b) Includes two transmembrane receptors - Toll-6 and Tartan - that mediate
the influence of PRGs on the junctional cytoskeleton [140, 141]. (c) Cartoon of proposed
mechanism: DPP/BMP acts through homeobox genes to pattern the cytoskeleton. (d-
f) Mutating the DV patterning system (d: TollRM9; e: Dpphin46/+) abolished the DV
gradient of PRGs. (f) Quantifications of a representative PRG, Runt. (g-g’) A null allele of
Even-skipped (eveR13) reduces but does not abolish the DV-gradient of E-cadherin. (N = 3
embryos). (h-h’) Ubiquitous over expression of Even-Skipped (67,15≫UAS-eve) drives
ectopic myosin expression. (h”) Myosin gradients are reduced in 67,15≫UAS-eve (N = 2
embryos for each curve). (i) Tissue flow is slower but not abolished in both eveR13 and
67,15≫UAS-eve (N = 3 embryos per genotype). All live embryos imaged at 22o C.

6.7 Comparing Drosophila to a human stem-cell based model

BMP plays a conserved role in determining cell fates in the neural ectoderm [14] across

species. In Drosophila, the neural ectoderm accounts for much of the tissue which undergoes

convergence and extension during GBE. We hypothesize above that BMP signaling results

in a graded DV pattern of homeobox genes (PRGs). Graded PRG expression along the

DV axis then modulates mechanical feedback loops which control cytoskeletal proteins and

ultimately drive tissue flow (Fig. 6.5c). We were interested in understanding the extent

to which analogous mechanism could be at play in other systems where BMP signaling is

necessary.

For this purpose, we turned to a human stem cell-based model of neural tube morpho-

genesis [94]. In this model, stem cell cultures confined on 2D micropatterns form 3D lumina

upon matrigel addition. Lumina are then exposed to neural induction media supplemented

with TGF-β inhibitor (SB 431542) and BMP4 which reproducibly drives fold formation in

a region of neural ectoderm surrounded by surface ectoderm [94]. Fate differentiation and

tissue flow depend on the generation of a radial BMP4 expression gradient, with levels of

BMP4 activity at structure edges (Fig. 6.6a). As represented in Fig. 6.6a-b’, folding of

the neural ectoderm occurs 24 hours after BMP4 exposure and leads to tube closure by 120
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hours after BMP4 exposure [23, 94]. Myosin inhibition prevents this neural tube closure [94],

suggesting that a myosin-driven contractility gradient is essential for tissue morphogenesis.

Focusing on the first 24 hours post BMP exposure (hpb), we analyze the spatial distri-

butions of several proteins. First, we find that human orthologs of Drosophila PRGs (which

belong to the class of homeobox transcription factors) exhibit graded patterns at 24 hbp:

the gene Zic2 is more strongly expressed in the center of the neural plate (the future neural

epithelium) than at the periphery (the future surface ectoderm), while Hes1 is more strongly

expressed at the periphery than in the center (Fig. 6.6f-f′′). Zic2 is known to affect neural

tube closure in mice[54, 131] via a pathway involving BMP signaling [209].

Second, we find that E-cadherin and myosin exhibit counter-running gradients visible by

24 hpb (Fig. 6.6b-d): E-cadherin concentration is higher at the periphery of the culture,

while myosin concentration is higher in the center. As shown in Fig. 6.6e, e’, the pattern of

E-cadherin at 24 hpb is similar to a readout of BMP signaling at 20 hbp.

These results suggest that both force-generating proteins and PRG orthologs are modu-

lated along the BMP4 signaling gradient. To test this further, we eliminated BMP4 signaling

by treating our neural tube cultures with 200 nM LDN 193189 concomitant to neural in-

duction. The resulting structures completely lacked surface ectodermal differentiation as

all cells differentiated into neural ectoderm. Additionally, no folding occurred (Fig. 6.6g).

No gradients were observed in either E-cadherin(Fig. 6.6h,h’) or PRG ortholog (Fig. 6.6i,i’)

expression profiles.

We note that there are two overt differences between the in vitro neural tube model and

Drosophila GBE. (1) The geometries of the two structures are distinct [21, 75, 109] and (2)

while myosin is recruited to the adherens-junctional belt in both systems (Fig. 6.6d), it is po-

larized in the Drosophila germ band and unpolarized in the synthetic neural tube. However,

in both systems, there is a key axis – defined by BMP patterning – along which a contrac-

tility gradient needs to be established. Independent of the particular kinetic mechanism
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(i.e. polarized vs unpolarized myosin), large-scale gradients of contractility along an axis

are necessary for tissue flow. Therefore, while the specific parameters informing cytoskeletal

recruitment and tissue flow will undoubtedly vary in different developmental contexts, gen-

eral trends, such as the capacity of BMP to drive the generation of contractility gradients

through cytoskeletal recruitment, may be conserved.

Together, these results demonstrate that core components of the BMP signaling cascade

observed in Drosophila body axis elongation also inform ex-vivo human neural tube closure,

suggesting that important trends in BMP signaling transduction are conserved across species

in radically different geometric contexts.
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Figure 6.6: (cont.) (a) 3d organoids recapitulate folding morphogenesis of human neural
tubes. Neural tube folding occurs within a primary lumen (blue dome). Blue tissue: surface
ectoderm, red tissue: neural ectoderm. Cartoon shows neural tube at 24 and 120 hours
post addition of BMP4 (hpb). BMP4 forms a radial gradient, with cells at the outer edge
of the structure exposed to the highest levels of BMP4. Folding is complete by 120 hpb.
(b-b’) Cross sections of NTO at 24 (b) and 120 (b’) hpb. (c) Apical surface of NTO at 24
hpb, showing apical E-cadherin. E-cadherin is graded, with low levels in the future neural
ectoderm, which is not exposed to BMP4 signaling. (c’) Quantification of radial gradient
in apical E-cadherin expression based on 20µm-sections around the apical surface (N = 6
NTOs). This and all quantifications below use a shaded area representing standard deviation
and fluorescent intensity of the images normalized so that 0 = 5th percentile, 1 = 95th

percentile. (d) Apical surface of NTO at 24 hpb, showing apical myosin. Myosin is graded
opposite E-cadherin. (d’) Quantification of radial gradient in apical myosin expression based
on 20µm-sections around the apical surface (N = 2 NTOs). (e-e’) NTO stained for the
BMP4 target Smad1/5/9 as a readout for BMP4 signaling at 20 hpb. (e’) Quantification
of the radial gradient in nuclear SMAD1/5/9 expression at 24 hpb (N = 6 NTOs). This
quantification, as well as (f” , i’) are based on average nuclear signal across z-slices in NTO
(surface ectoderm dome was excluded from analysis). (f-f”) PRG homologs Zic2 (f) and
Hes1 (f ’) display a radial gradient at 24 hpb (f” , N = 6 NTOs). (g) When BMP4 signaling
is inhibited, NTO morphogenesis fails and the entire structure differentiates into neural
ectoderm without folding. (h-h’) NTO treated with BMP4 inhibitor LDN (200nM) at time
point equivalent to (b). E-cadherin levels on the apical surface are low. Quantification shows
low E-cadherin levels and lack of DV gradient (h’). (i-i’) Addition of 200nM LDN abolishes
Zic2 gradient (N = 6 NTOs). Time point equivalent to 24 hpb.

6.8 Discussion

In this work, we have proposed a mechanism for neuroectoderm morphogenesis and argued

that it is conserved across species. Figure 6.7 summarizes our mechanism and compares

morphogenetic movements in the neural epithelium of Drosophila (left) and in a human

neural tube model (right). In both cases, BMP signaling gradients are relayed into a global

E-cadherin pattern via homeobox domain containing genes (PRGs or their mammalian ho-

mologs). E-cadherin in turn sets up a global pattern of force-generating cytoskeletal pro-

teins, such as myosin, by modulating mechanical feedback loops involving tissue-scale stress

or externally-imposed strains [75, 109]. This results in a coordinated morphogenetic flow

during axis elongation in Drosophila. Whether human neural tube closure relies on similar
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mechanical feedback loops for governing protein dynamics remains an exciting question [131].

A key feature of our mechanism is the tight integration between dorso-ventral (DV) and

anterior-posterior (AP) patterning systems. This interplay between the DV and AP axes

might be conserved beyond bilaterians. In Nematostella (sea anemones), for example, BMP

signaling regulates a distinct set of homeobox genes [63] also associated with the mechanical

processes sculpting the body [81].

The consensus heterotypic juxtaposition model of Drosophila neuroectoderm extension

holds that direct genetic regulation locally modulates cell adhesion and anisotropic forces at

cell boundaries. Our model presents an alternative picture in which the critical ingredient

for shape evolution is the dorso-ventral symmetry-breaking of mechano-chemical feedback

loops. Our results also support global modulation of cell adhesion, realized by the dorso-

ventral E-cadherin gradient created by BMP signaling. Indeed, our results are in agreement

with classical work [56] showing that the direction of Drosophila neuroectoderm extension

can be reversed by inverting the BMP gradient via RNA injection. The recent discovery of

Toll-like transmembrane receptors (TLRs) in a broad class of invertebrate systems [12] could

indicate a molecular mechanism for this large-scale adherens junctions modulation. Indeed,

we find a global DV modulation patterns in TLRs (Fig 5b). Under the control of PRGs,

TLRs are isotropically localized to the membrane [107, 187] and strongly impact neural

epithelium elongation in Drosophila. Yet how precisely TLRs regulate the cytoskeleton

remains incompletely understood [142].

By applying machine learning techniques to live-imaged Drosophila development data,

we found an autonomous dynamical system which quantitatively and causally reproduces the

coupled dynamics of tissue flow and cytoskeletal proteins (myosin and E-cadherin). Decou-

pled from interpretative models, NNs are unable to distinguish correlation from causation.

In order to obtain a causal model, we had to complement the machine learning methods with

insights from physics and biology, and to put the predictions of the model to test using addi-

112



tional experiments. A further simplification allowed us to obtain a fully analytical minimal

model that captures most qualitative features of neuroectoderm morphogenesis, but not in

a quantitative way. However, our coarse-grained continuum models have several limitations:

they do not describe the VF and show discrepancies with experimental strain-rate feedback

measurements (Box 2 and SI). Resolving such effects may require more sophisticated models,

such as graph NNs to process cell-level data.

We conclude by asking: why should the mechanisms by which morphogenesis unfolds be

conserved? In biology, usual sources of universality are the conservation of genes by natural

selection and convergent evolution. Morphogenesis has the peculiarity (shared, for instance,

with locomotion) of strongly mixing biological and mechanical constraints – organisms have

to abide to the laws of mechanics to get their shape. These constraints come together in the

cytoskeleton, where genetics codes for conserved proteins that in turn execute the mechanical

processes shaping tissues. For this reason, we hope that our approach may facilitate the

systematic identification of the universal physical mechanisms (conserved across species)

that biology uses to seed the shape of organisms.
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Figure 6.7: DV patterning from the fly to the human neural tube. Hypothesized mor-
phogenetic parallels between Drosophila gastrulation and human neural tubes. SE: surface
ectoderm, NE: neural ectoderm, M: mesoderm, AS: amnioserosa. Dpp/BMP signaling es-
tablishes a gradient in Homeobox transcription factors (PRGs in Drosophila), which lead to
large scale cytoskeletal gradients, notably of E-cadherin and adherens-junctional proteins.
These gradients lead to tissue flow, which can feed back to the cytoskeleton. Open questions
in the neural tube organoids are the causal role of homeobox gradients, and the presence or
absence of mechanical feedback loops.
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6.9 Boxes and Supplementary Information

The main text of this manuscript refers to Boxes, Methods, and Supplementary Information.

In this section, I include the SI sections related to the interpretation of neural network

results, minimal active matter models of the embryo, and interpretation of the machine-

learned equations used in Fig. 6.3 and in Box 2. Methods are included in the Appendix to

this thesis and will be available online.

6.9.1 Box 1. Juxtaposition model of Drosophila germ-band extension

This box summarizes the current view of how genetic patterning controls GBE. Tissue flow

during GBE can be quantitatively predicted based on measured myosin anisotropy [181].

Therefore, understanding GBE requires a understanding of how the myosin is controlled, in

particular its anisotropy and its DV gradient.

Historical Context: PRG mutants have strong GBE phenotypes[86]. The orientation

of PRG stripes and anisotropic myosin (which drives GBE) are superficially similar, especially

at the beginning of GBE[109, 213]. These two observations have led to the hypothesis that

anisotropic myosin is recruited preferentially to interfaces between cells that express different

levels of PRGs. Several members of the Toll-family of transmembrane receptors (TLR) which

are also expressed in stripes along the DV axis have been recognized as possible effectors of

PRG mediated myosin recruitment. The TLRs are transcriptional targets of the PRGs, and

TLR mutants phenocopy PRG mutants during GBE [141]. Additive effects on tissue flow

are seen when multiple TLRs are disrupted [140, 141].

It remains unclear how the TLRs – which are isotropically distributed at cell edges –

facilitate anisotropic myosin recruitment. The heterotypic juxtaposition model predicts that

an instructive anisotropic cue comes from neighboring cells sitting on either side of a DV ori-

ented TLR stripe recognizing and responding to heterotypic TLR expression at their shared

interface. However, heterotypic juxtaposition models predict that knocking out all TLRs,
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and knocking out all but one should have the same phenotype. This is inconsistent with

the observation mentioned above that TLR mutations are additive [142]. Additionally, while

the striped pattern of PRGs rotates over time due to tissue flow, the orientation of myosin

anisotropy is only weakly deflected[109]. As a result, the orientations of PRG stripes and

myosin uncouple quickly once tissue flow in the germband begins. Furthermore, individual

cell-cell junctions change their myosin levels as they rotate into and out of alignment with the

DV axis of the embryo [55], while the heterotypic juxtaposition model predicts that junctions

should have fixed ’identities’ during tissue flow.

An Alternative View: Instead of directly controlling myosin recruitment, gene ex-

pression patterns may modulate the strength of mechanical feedback loops. Mechanical

feedback is know to influence myosin recruitment [57], and recent work using optogenetics

has shown that junctional deformation leads to myosin recruitment, irrespective of junc-

tion orientation[75]. In this work, we present a framework that can reproduce the spa-

tiotemporal profile of myosin, E-cadherin, and tissue flow as a result of mechanical feedback.

Myosin anisotropy is produced from mechanical anisotropy, in two ways. Mechanical stress

is anisotropic, due to cylindrical shape of the embryo (discussed in Ref. [109]). The axes

of stress are illustrated as dashed lines in the schematic embryo above. Further, cell edges

are anisotropically stretched (as measured by the strain rate) by the invagination of the VF.

Both cues are parallel to the DV axis. Next, we explain the myosin DV gradient by the

spatial modulation of the strength of mechanical feedback, with high activity of tension-

and deformation-based feedback loops ventro-laterally, and low activity dorsally. In the

schematic, this is illustrated by different shades of green. Indeed, optogenetic measurements

show that strain-rate leads to weaker mysoin recruitment dorsally than ventrally[75], and

analysis of cell geometry indicates tension-feedback is absent dorsally[21].

We hypothesize that modulation of mechanical feedback is carried out by one or more

proteins that (1) are bound to adherens junction complexes (where myosin recruitment
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occurs), (2) generate persistent patterns based on sufficiently slow turnover rates, (3) are

dorso-ventrally graded. While E-cadherin fulfills these requirements, here it is treated as an

agnostic representative of a broader class of DV graded cytoskeletal components including

Bazooka/Par3 (SI online) and β-Catenin [125].

Our model reconciles several discordant observations. The direction of myosin anisotropy

rotates little since tension-feedback aligns it with the static axis of geometric stress. New

junctions that rotate into alignment with the direction of stress will recruit myosin. The onset

of GBE coincides with VFI since VF strain recruits myosin. We predict that the phenotypes

of PRGs and TLRs arise because these proteins play a role in mechanical feedback. Finally,

we can cast our model into a set of equations that reproduce the onset of GBE, for E-cadherin,

myosin, and tissue flow.

6.9.2 Box 2. Learning closed-loop hydrodynamics of embryo development

After considering minimal models, we use the SINDy method to learn rules from the data

itself. In brief, this method constructs dynamic equations from a large library of possible

terms, with the aim of fitting the data with as few terms as possible (see SI for details).

Eq. 6.1 is a passive advection equation for E-cadherin. The cartoons below Eq. 6.2 are vi-

sual interpretations of each term. The LHS is constrained to the co-rotational derivative for

the given velocity field. The first RHS term captures the propensity for myosin motors to

detach from junctions. The second is tension recruitment due to local myosin-driven active

stress and the third is an embryo-scale static stress. Finally, there is a mechanical feedback

which recruits myosin to strained junctions.
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∂tc+ (v · ∇)c = 0 (6.1)

Dtm = −k1(1−a1c) m+k2(1−a2c) mm+kΓ(1−aΓc) mΓDV+kE(1+aEc) Em (6.2)

Figure 6.8: Learning dynamical equations for cytoskeletal proteins

Each mechanism is modulated by the cadherin pattern c. The (1− c) prefactors establish a

myosin DV-gradient opposite cadherin. The strain-rate recruitment term increases myosin

concentration as a tissue is stretched. We note that the coarse-grained field E cannot dis-

tinguish contributions from two distinct biological processes, cell rearrangement and cell

stretching [18]. Biologically, only the latter should recruit myosin. The learned strain rate

term has a (1 + c) prefactor, which we interpret as distinguishing the strains from these two

sources. Rearrangement dominates laterally while deformation primarily occurs dorsally,

correlating with the cadherin pattern. Thus, the strain rate term in (6.2) plays a different

role than the strain rate feedback measured in [75].
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Figure 6.9: Myosin is an optimal predictor of tissue flow. (a) Average test error rate
for NNs trained on PRGS, cytoskeletal proteins, and combinations. Networks trained using
myosin as input outperformed all others. (b) Error-rate for single predicted trajectories
for networks trained on myosin (red) and a PRG (runt, blue). Error rates were calculated
against the ensemble-averaged flow trajectory. We also plot the error-rate for a "mean-field"
prediction (black), which is given by the time- and embryo-averaged flow fields over the entire
dataset. (c) Snapshots of experimental and predicted flow fields at three-minute intervals
marked by grey lines in (b). While the myosin-trained network predicts a transition from
a VF flow pattern to a vortical GBE configuration, the PRG-trained network predicts a
constant flow field over time.
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6.9.3 Identifying predictive proteins using neural networks

Using a morphodynamic atlas [125], we trained NNs to predict tissue flow from PRGs and cy-

toskeletal proteins. Myosin yielded the best predictions (6% error on unseen embryos), while

E-cadherin (16%) and the live-imaged PRGs Runt (23%) or Even-Skipped (20%) performed

worse. To train on multiple patterns, we supplemented each movie with an ensemble average

of a second time-aligned field. Training on more than one PRG (including the static-imaged

Fushi-Tarazu, Paired, and Sloppy-Paired) yielded no improvement, while supplementing E-

cadherin with myosin or a PRG did improve results. Including other fields alongside myosin

produced no improvement beyond the accuracy achieved by myosin alone (see Fig. 6.9a).

To contextualize the error rates reported in Fig. 6.9a, we used myosin-trained and PRG-

trained NNs to predict 15-minute trajectories from initial conditions coinciding with VF

onset (t = 0). In Fig. 6.9b-c, we plot the error rates over time and include sample snapshots

of the predicted flow from each trajectory. The myosin-trained NN predicts a transition from

a VF to a vortical GBE flow configuration. The PRG-trained NN gives a nearly-constant

field which only slightly outperforms a constant "mean-field" prediction of the time- and

ensemble-averaged flow field. Both achieve low error rates after the onset of GBE where

the flow is quasi-static but have higher error rates during VF and GBE onset when the

flow changes rapidly. Indeed, the network which predicts using myosin obtains a lower error

rate over the entire trajectory (7.3%) than either the PRG (21%) or "mean-field" (26%)

predictions.

Biological perspective

While myosin may be all a NN needs to generate flow, the same is not true for the embryo.

Myosin binds to actin and produces stresses which propagate through the tissue across cell

junctions. The NN results do not imply that other cytoskeletal proteins are unnecessary

for axis elongation. Rather, the NN learned to use myosin as a proxy for this complex
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microscopic machinery, and can infer the necessary information to predict tissue-scale flow

from myosin alone.

Mechanical perspective

The NNs reaffirm the pivotal role of myosin in driving flow during axis elongation but they

are not constrained by physics. The features they extract from myosin can be more complex

than what might enter a hydrodynamic model via a local gradient expansion. Indeed, a

recent study found that distilling a NN which predicted cell mechanics from proteins into

a continuum mechanical model required adding new information – displacements and cell

geometry – which the NN never saw [167]. Similarly, a hydrodynamic model for Drosophila

might require more than just myosin.

6.9.4 Minimal active matter modeling

Myosin alone cannot reproduce GBE dynamics

Using minimal continuum models, we aim to reproduce (i) a long-lived vortex flow pattern

and (ii) a long-lived myosin DV gradient (see Fig. 6.2c’-f’). As a starting point, we consider

the following equations.

µ∇2v −∇P + α∇ ·m = 0 (6.3)

Dtm = A m+B mTr(m) +D ∇2m (6.4)

Eq. 6.3 is an incompressible (∇·v = 0) Stokes flow driven by myosin active stress ∇·m [181].

To account for myosin anisotropy on cell-cell junctions, we use the local orientation angle θ(r)

to write a director n = (cos θ, sin θ) and analogue to a nematic order parameter m = mnnT

(m is the local myosin intensity). Eq. 6.4 describes myosin dynamics in terms of m where the

left hand side is the co-rotational derivative Dtm = ∂tm+ (v · ∇)m+ (Ω ·m−m ·Ω). The
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Figure 6.10: Myosin alone cannot reproduce GBE dynamics. (Left) Phase diagram
for the system of equations Eq. 6.3-6.4. (Right) Prediction of pattern-forming in a myosin-
only dynamical system enabled by a hydrodynamic instability.

right hand side contains minimal terms modeling myosin feedback (albeit somewhat non-

biological, as myosin is bound in cells and cannot directly diffuse). This system of equations

has two spatially-uniform fixed points m(r) = m0, with Tr(m0) = 0,−A/B (with constant

myosin, v → 0 and Dt → ∂t), and the latter exists only when AB < 0. Unless A,B > 0,

the system will evolve to a constant stable fixed point and produce no flow. Otherwise, the

system is unstable to long-wavelength perturbations with wavenumber q2 < A/D. In this

case, the model produces a plausible myosin and flow pattern, but due to the instability it

will grow without bound. In our simulation, the myosin anisotropy direction is inherited

from a polarized, nearly homogeneous, experimental initial condition.

Hydrodynamics with a control field

We now add a stationary spatially-patterned field c(r) which cross-regulates the myosin.

ṁ+ (v · ∇)m = A [1− k c(r)]m+Bm2 (6.5)

While myosin includes concentration and orientation dynamics, we focus on the former in

Eq. 6.5. A non-uniform myosin pattern m can be maintained by c(r) = (Am + Bm2 −

v · ∇m)/km. This stationary configuration replaces the non-trivial fixed point (red) in the

above phase diagram. As an example, we numerically computed a pattern c⋆ which would
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Figure 6.11: Hydrodynamics with a control field. (Left) Comparison of an experimental
E-cadherin field with a field c⋆ obtained by setting the RHS of Eq. 6.5 to zero. Both fields are
DV-graded with higher levels dorsally. (Right) Integration of Eq. 6.5 with the experimental
E-cadherin field produces a myosin pattern which is longer lived than one generated via a
hydrodynamic instability (Fig. 6.10).

maintain the GBE configuration at t = 20 minutes post-VF and found it is DV-graded

similar to E-cadherin. We integrated the system using the experimental E-cadherin field,

and observed it evolve to a patterned myosin field.

Orientational dynamics —myosin rotation by vorticity— prevents this pattern from being

a true fixed point. Over longer timescales, the pattern disappears after GBE flow destroys

the orientational order of myosin. In the subsequent sections, we show mechanical feedback

slows this effect, enabling a longer-lived GBE state.

Myosin anisotropy modifies hydrodynamics

After focusing on the myosin concentration in previous sections, we now consider orientation

dynamics.

ṁ+ (v · ∇)m+ (Ω ·m−m ·Ω) = A [1− kc(r)] m+BmTr(m) (6.6)

Eq. 6.6 has a co-rotation term which describes how myosin orientation deflects due to gra-

dients in flow. Note that we have dropped the unbiological diffusion term D∇2m. We

separate concentration and orientation dynamics using the stream function ψ (v = ∇× ψ)

123



Figure 6.12: Orientational dynamics destroy fixed point over time. (Left) For a
simplified control field profile c⋆, the system evolves to a quasi-fixed point m⋆ which qual-
itatively reproduces GBE-like flow. (Right) The nonlinear advection and co-rotation terms
in Eq. 6.7 create sharp gradients in myosin orientation, eventually destroying the GBE flow
pattern.

and orientation matrix Dθ = nnT .

[
ṁ−∇ψ ×∇m

]
︸ ︷︷ ︸

Concentration dynamics

Dθ +m

[
θ̇ −∇ψ ×∇θ + 1

2
∇2ψ

]
︸ ︷︷ ︸

Orientation dynamics

∇θDθ =
[
A(1− kc)m+Bm2

]
Dθ

(6.7)

This decomposition shows that the RHS creates a stationary concentration pattern via a

fixed source c(r), but the orientation will always vary, as argued in Ref. [109]. Simulations

support this result. We integrate from an initial condition with a simple control field profile

c⋆ = c0 + c1 cos
(
2πx
Lx

+ 2πy
Ly

)
and myosin m = m0, θ = π/2. The myosin concentration

approaches the fixed point m⋆ defined by the control field such that the RHS in Eqs. 6.6-6.7

= 0 but this GBE-like configuration is short-lived. Vorticity creates sharp gradients in the

myosin orientation, producing unrealistic and rapidly-diverging flow patterns.

Mechanical feedback slows destruction of orientational order

The flow caused by myosin rotates junctional orientations and ultimately destabilizes the

GBE configuration in Eq. 6.6. However, experiments have shown that tissue flow is nearly

static during GBE [125], suggesting that additional hydrodynamic terms may be necessary

to agree with biology. Recent work has demonstrated that mechanical feedback can recruit

myosin to cell-cell junctions [75]. Including a strain-coupling term proportional to {m,E} =
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Figure 6.13: Mechanical feedback term preserves orientational order. (Left) Com-
parison of correlation lengths over time in simulations with (red) and without (black) me-
chanical feedback terms. The mechanical feedback preserves orientational ordering for nearly
twice as long. (Right) Plot of simulated myosin and flow fields at t = 40 (A.U.) in a model
with the mechanical feedback term {m,E}. Compared to Fig. 6.12, the modified model
better preserves the vortical flow structure associated with germband-extension.

m ·E+E ·m appears to slow the rate at which θ changes and preserves the GBE flow pattern

nearly twice as long. To understand this, consider dynamics about m = m⋆, θ = π/2. Here,

the new term becomes {m,E} = −mDθ∇2
xyψ, and the dynamics are given by Eq. 6.8.

[
ṁ−∇ψ ×∇m+ kEm∇2

xyψ

]
Dθ +m

[
θ̇ +

1

2
∇2ψ

]
∇θDθ = 0 (6.8)

At first, it is surprising that {m,E} preserves orientational order, as it only suppresses ṁ

rather than θ̇. Consider instead θ̈ = −1
2∇

2ψ̇, the rate at which θ̇ grows. Differentiating the

Stokes equation yields

∇4ψ̇ = −2∇2θ̈ =
α

µ

[
∇2

xyṁ− (∇2
x −∇2

y)mθ̇
]

(6.9)

In this Poisson equation for θ̈, mechanical feedback suppresses the source term containing ṁ.

Rather than eliminate θ̇, mechanical feedback adjusts the concentration (and flow) dynamics

to slow θ̇’s growth. This prevents accelerating destruction of orientational order (see plot of

correlation length ℓθ over time) and allows the system to maintain GBE flow longer. In the

subsequent section, we interpret the term {E,m} in more detail.
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6.9.5 Interpretation of of machine-learned continuum equations

Here we connect the learned continuum equations to previous models of myosin dynamics

during GBE. The right hand sides of the SINDy equations Eqs.(6.1)-(6.2), are the usual

convective derivatives, because myosin m and E-cadherin c are localized to cells that are

transported by tissue flow velocity v. As explained in the preceding section, the myosin

pattern is strongly anisotropic, which is why we describe it using a nematic tensor, while E-

cadherin, appears localized to cell-cell interfaces in an isotropic manner and can be described

by a scalar density.

We note that the SINDy equations combine several terms, and are non-linear, which makes

a complete analysis, in particular of the instabilities, challenging. Distinguishing strain-rate

and stress (tension) effects, for example, is difficult as they are typically correlated. More-

over, SINDy solves an underdetermined regression problem with potentially many equivalent

solutions, meaning interpreting individual terms in (6.2) must be done with caution. Our

equation is not intended to model other, distinct morphogenetic events that occur simulta-

neously with axis elongation, such as ventral furrow and posterior midgut invagination. We

do not attempt a complete analysis here and instead comment on the interpretation of the

different terms in (6.2) and their connection to the prior literature.

E-cadherin dynamics

The left-hand side of the learned E-cadherin equation (6.1) is 0. This means E-cadherin

is conserved. Indeed, biologically, the turnover of E-cadherin, which is a trans-membrane

molecule, is very slow [36], and the E-cadherin pattern can be considered as conserved over

a timescale of 20 minutes.
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Myosin dynamics: turnover

We now turn to the myosin dynamics in equation (6.2). The term −k1m corresponds to

constant detachment of myosin from junctions. Such detachment is indeed measured exper-

imentally using FRAP [109].

Myosin dynamics: tension feedback

The learned equations (6.1)-(6.2) contain additional RHS terms that model tension feedback,

or recruitment of myosin on edges under higher tension. This mechanism was previously

analyzed in Ref. [109], which considered only the local orientation θ ∈ [0, π] of the myosin

nematic tensor m, and not its magnitude. It was shown that the behavior of θ(t, r) can be

understood as a combination of advection (i.e. tissue rotation), detachment, and recruitment

by a static source. These mechanisms lead to following equation for the full myosin tensor:

∂tm+ (vk∇k)m+ [Ω,m] = −k1m+ k · (m+ ΓDV) (6.10)

of which Eqs. (6.1)-(6.2) are an extension. The static source ΓDV was hypothesized to be

the surface stress that balances the internal turgor pressure in the embryo. Because the

embryo is elongated, this stress is anisotropic, and because the embryo geometry does not

change during tissue flow, it is static.

Ref. [21] analyzed GBE on a single-cell level and found that the dynamics of active tension T

on single edges (computed using tension inference), was well described by excitable tension

recruitment:

∂tT = kTn, n > 1 (6.11)

Tension feedback has previously been found experimentally [57, 211]. The mesoscale tension

127



recruitment term k2mm can be viewed as a coarse-graining of Eq. 6.11.

Myosin dynamics: Strain rate feedback

Ref. [75] has shown that junctions recruit myosin in response to deformation strain rate.

The paper analyzes single junctions of length ℓ and myosin level m. Strain rate recruitment

is modelled by :

ṁ

m
= α(r)

ℓ̇

ℓ
(6.12)

This type of feedback was first postulated theoretically as a way for cells to ensure

convergence to mechanical equilibrium while maintaining tissue plasticity [134]. The

feedback coefficient α does not depend on the junction orientation, but it does depend on

the position along the DV axis. It was found experimentally that α was low dorsally and

high ventrally. To interpret this strain-rate feedback in the context of Eqs. 6.1-6.2, we

first coarse-grain Eq. 6.12 to determine how it might appear in a continuum model. Next,

we examine a discrepancy between the feedback coefficient in Eq. 6.2 and the patterned

mechanical feedback reported in [75].

Coarse-graining single-cell level strain rate feedback

We can connect the continuum equation terms involving the strain rate with this edge-level

model. The anticommutator {E,m}ij = (Eikmkj +mikEkj)/2 can be seen as an (inexact)

coarse graining of Eq. 6.12. To see this, define the single-edge myosin tensor me
ij , computed

from the junction orientation n and the myosin level m of a junction e: me
ij = mninj . In

presence of local strain rate E, the junction will become stretched depending on its relative
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orientation to the strain axes:

ℓ̇

ℓ
= αniEijnj = α

me
ijEji

m
(6.13)

Second, if the orientation n is not perfectly aligned with the eigenvectors of E, the junction

orientation will also be affected.

∂tni = Eijnj − (njEjknk)ni (6.14)

The second term here ensures that n remains a unit vector. Because of its non-linear nature,

this term leads to subtleties when coarse graining. Ignoring these issues, however, we can

combine the two preceding equations into tensorial form:

∂tm
e
ij = α{E,me}ij (6.15)

Another way to derive Eq. 6.15 is to model the local angular distribution m(θ) of myosin

intensity as a function of edge orientation. This distribution gets shifted by the strain rate

E, and the resulting equations can be expanded in a Fourier basis in θ and repackaged into

a tensor. However, similar subtleties make this coarse graining inexact.

Eq. 6.15 is the term that is considered in Eq. 6.8, and the strain rate term Tr[E]m in Eq.

6.1 has a similar shape. Note that a commutator {E,m} can also occur as part of the

convective derivative. However, because the per-edge levels of myosin m transform as a

density (myosin is diluted if an edge is stretched), such a convective term would have the

opposite sign as strain rate feedback, which is a form of “anti-dilution”.
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Discrepancy of SINDy model with experiment due to different types of tissue

strain

While a strain-rate term does appear in the SINDy equations, its dorso-ventral modulation

behaves unexpectedly. Based on the experimental results explained above, we were expecting

high levels of strain-rate ventro-laterally, and low levels above. However, the E-cadherin-

dependent strain-rate coefficient in Eq. 6.2 is (1 + aE c) with aE > 0, so that the opposite

is true: in the SINDy model, the strain rate feedback is strongest dorsally.Furthermore, in

the SINDy model, strain rate feedback does not significantly contribute to the establishment

of the DV myosin gradient, which is opposite to the results of Ref. [75]. Instead, our

learned equations generate a DV myosin gradient through excitable tension dynamics which

are controlled by the E-cadherin field. To understand the discrepancy between these two

pictures, we need to revisit how strain can appear in a tissue.

In the absence of cell division and death, a tissue can either deform by stretching individual

cells, and hence junctions, or by cell rearrangement without changing cells shapes [18].

Ref. [75] established a feedback only in response to cell stretching. Cell rearrangement will

not induce a similar feedback, because during cell rearrangements individual junctions are

not stretched.

Immediately before Drosophila GBE, mesodermal cells along the ventral pole invaginate,

forming the VF. This causes cells in the ventral lateral domain of the germband to stretch,

driving a temporary tissue flow towards the ventral pole. Subsequently, flow is dominated by

cell rearrangements [21]. Our coarse-grained flow field, which is computed from image data

using PIV and further processed via smoothing and PCA, omits the cell-scale information

needed to distinguish between these two modes of driving tissue flow — cell stretching and

cell rearrangement.

This lack of distinction between rearrangement and cell shape provides a possible explanation

for the discrepancy between [75] and our machine-learned strain rate term. The (1 + aE c)
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E-cadherin dependence learned by SINDy reduces feedback in the lateral regions, where

strain-rate during GBE primarily comes from rearrangement [21]. Strain-rate feedback in

the lateral region would kill the myosin field and stop flow, because there, strain rate E and

myosin orientation are opposite. It strengthens feedback in the dorsal tissue, which deforms

via both rearrangement and deformation [21]. The role of our machine-learned feedback,

which appears to prioritize deformation and ignore rearrangement, is to preserve myosin at

the dorsal pole at late times. We note that this also suppresses steep myosin gradients which

would cause the tissue flow to continue to grow. Such an effect is consistent with our earlier

analysis which uses minimal hydrodynamic models to show that mechanical feedback can

help stabilize flow patterns during GBE.
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CHAPTER 7

CONCLUSIONS AND OUTLOOK

In this thesis, we developed a set of tools for studying active and biological materials which

combine machine learning, traditional physics, and biological insight. When applied to

experimental case studies across biological scales, our methods unveiled predictive and inter-

pretable models. These results present machine learning as a promising pathway for studying

complex systems which evade traditional approaches to physical modeling. While our meth-

ods are data-driven, they are not automatic. In each case study, domain knowledge played a

crucial role in driving our analysis. We refined and applied our tools while working in close

collaboration with experimental groups. This was necessary in order to better understand

the assumptions — implicit and explicit, physical and biological — inherent to our models.

Machine learning methods are capable of achieving excellent predictions of complex sys-

tems. To move beyond prediction and extract insight, it is important to use these powerful

tools in direct pursuit of physical questions. In this thesis, we used machine learning to

identify relevant variables for biophysical models, examine how experimental perturbations

appear in active continuum theories, and test proposed mechanisms governing biological be-

havior. Identifying these questions enabled us to tailor our models and develop interpretable

architectures. The power of deep learning tools makes it tempting to immediately train

models on new datasets, and these initial results are often exciting. However, it can be

difficult to push further without determining a suitable (and actionable) scientific problem.

To push data-driven physical modeling beyond the presented case studies, we need to

expand our tools as well as our understanding of how they interact with the intricacies of

each problem. Below, I outline some possible directions for future investigation.

• Geometry plays a crucial role in many biological systems including the cells and flies

presented in this thesis. Our neural networks could treat the experimental data as im-

ages, but our subsequent physical analysis required us to add geometric terms. Adapt-
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ing our methods to incorporate system geometry from the outset, with tools such as

MeshCNN, could help streamline post hoc physical analysis.

• In our case studies, we were fortunate to collaborate with groups that collected large

well-curated datasets, but this is not always the case. Because it is often costly to

obtain high-quality data, it is crucial to develop methods which can learn from minimal

examples. Introducing physical constraints is one path forward, while unsupervised

learning can negate the time-consuming process of labeling large datasets. Beyond

this, insights from few-shot learning may help adapt our physical modeling methods

to difficult scenarios with limited data.

• Systems such as crowds or epithelial tissues blur the line between discrete and contin-

uum. In such cases, tools from geometric deep learning such as graph neural networks

could help shed light on the interagent interactions, while our existing methods could

simultaneously identify a continuum description. Identifying correspondences between

such complementary analyses could produce a more unified and informative model

than either could achieve by itself. How to coarse-grain a “microscopic" graph neural

network to a “continuum" CNN remains an open question.
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APPENDIX A

METHODS

This appendix contains methods for the papers presented in this thesis. I have omitted

experimental methods for brevity. Interested readers can find complete experimental details

and supplementary information at the references provided at the start of each chapter.

A.1 Active-nematic hydrodynamics

Active nematohydrodynamics and lattice Boltzmann simulations

Simulation data for training and testing was generated using a hybrid Lattice Boltzmann

method which has been used in prior studies of different types of active nematics [105, 178,

216, 218]. The symmetric and traceless tensorial order parameter of the nematic is defined

as

Q = S(nn− I/3) (A.1)

with S being the scalar order parameter, n being the unit vector describing the local nematic

orientation, and I being an identity tensor. The following governing equation of the nematic

microstructure, namely Beris-Edwards equation (A.2) reads

(∂t + u · ∇)Q− S(W,Q) = ΓH (A.2)

where u is the velocity vector, W is the velocity gradient ∇u, and Γ is related to the

rotational viscosity γ1 via Γ = 2S20/γ1 with S0 the equilibrium scalar order parameter[44].

Here, the generalized advection term S(W,Q) is defined as
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S(W,Q) = (ξA+Ω)(Q+ I/3)

+ (Q+ I/3)(ξA−Ω)

− 2ξ(Q+ I/3))Tr(QA)

(A.3)

with A = (W + WT )/2 being the strain rate tensor, Ω = (W − WT )/2 being the

vorticity, and ξ being a flow-alignment parameter setting the Leslie angle. The molecular

field H is a symmetric, traceless projection of the functional derivative of the free energy of

the nematic. Its index form reads

Hij =
1

2

(
δF

δQij
+

δF

δQji

)
−
δij
3

Tr

(
δF

δQkl

)
(A.4)

in which the free energy functional is F =
∫
V fdV . Its density f takes the following form:

[155]

f =
A0

2

(
1− U

3

)
QijQij −

A0U

3
QijQjkQki

+
A0U

4
(QijQij)

2 +
1

2
L∂kQij∂kQij

(A.5)

where A0, U are material constants and L is related to the Frank elastic constant under

the one-constant-approximation. Eq.A.2 is solved using a finite difference method.

The hydrodynamic flow is governed by a momentum equation:

ρ(∂t + uj∂j)ui = ∂jΠij

+ η∂j
[
∂iuj + ∂jui + (1− 3∂ρP0)∂γuγδij

] (A.6)

where ρ is density, η is the isotropic viscosity, and P0 = ρT − f is the hydrostatic pressure

with T being the temperature. The additional stress has two contributions, Πij = Π
p
ij+Πa

ij ,
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where the first term is passive in its nature accounting for the anisotropy, and is defined as

Π
p
ij =− P0δij − ξHik

(
Qkj +

1

3
δkj

)
− ξ

(
Qik +

1

3
δik

)
Hkj

+ 2ξ

(
Qij +

1

3
δij

)
QklHkl

− ∂jQkl
δF

δ∂iQkl
+QikHkj −HikQkj

(A.7)

The active stress that drives the system out-of-equilibrium reads[1, 120]

Πa
ij = −αQij (A.8)

in which α > 0 describes an extensile active nematic, as is the case for the experimental

systems discussed in this manuscript. Eq.A.6 is solved simultaneously via a lattice Boltzmann

method over a D3Q15 grid [43]. Additional details on this method can be found in [217].

Typical simulation parameters were Γ = 0.13, η = 0.33, A = 0.1, and U = 3.5, leading to

S0 ∼ 0.62. For Figs. 4.1, 4.5, simulation were trained on K = 0.075, α ∈ [0, 0.05]. The range

of K for testing in Fig. 4.1F and G was K ∈ [0.06, 0.09]. For the multiparameter estimator

used in Figs. 4.2, 4.3, 4.4, SI Appendix Fig. S6-S8, K ∈ [0.06, 0.20] and α ∈ [0, 0.05]. For

the experimental prediction in 3D (SI Appendix Fig. S5), models were trained on K = 0.1,

α ∈ [0, 0.09] as initial predictions indicated that the range of α first used for training was

insufficient. For all the simulations prescribed with constant activity, the director field was

recorded after the system reached a dynamical steady state.

Machine learning models

Neural networks are implemented in Python using the Pytorch library. Code for data prepa-

ration, network implementation, training, and evaluation is available online at https:
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//github.com/jcolen/ML_ActiveNematics The machine learning training and testing

workflows are summarized in SI Appendix Fig. S2.

Parameter estimation models

Parameter estimation networks contain between 1-2 convolutional layers with hyperbolic

tangent activation functions, each of which is followed by a max pooling layer and a dropout

layer with dropout probability of 0.15. The convolutional layers are further connected with a

single recurrent layer implemented with a long short-term memory cell. Lastly, a dense layer

with linear activation function is added to output the predicted parameters. An example

architecture is shown in Fig. 4.1E. To make predictions on large director field images, the

network randomly selects patches and ensemble averages the results into a final prediction.

For networks using a recurrent layer, the model accepts a sequence of director field frames,

rather than a single frame.

Three parameter estimation network architectures are used in this paper. The first, used

to predict activity in two-dimensional nematics (Fig. 4.1F, SI Appendix Fig. S3), has a

single convolutional layer with 32 filters of size 3 × 3, a single 2 × 2 max pooling layer, a

recurrent layer implemented using a long short-term memory (LSTM) with hidden size 32,

and a fully-connected layer with 32 neurons. This model accepts input sequences of 32× 32

pixel image patches and was trained on a dataset of 6,000 director field frames separated by

10 simulation time steps, at 12 different levels of activity. The second model, used to predict

activity in three-dimensional nematics (Fig. 4.1G, SI Appendix Fig. S3 and S5) has a similar

architecture, but with 5 × 5 × 5 convolutional filters and no recurrent layer. This model

accepts image volumes of size 32 × 32 × 32 and was trained on a dataset of 6,000 director

field configurations, separated by 100 time steps, at 12 levels of activity. The third model is

used for simultaneous prediction of activity and elastic modulus in two-dimensional nematics

(Fig. 4.2, 4.3, Fig. 4.4 and SI Appendix Fig. S6-S8). This network has the same structure
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as the other two-dimensional model, but outputs two values and was trained on a dataset

of 15,000 image frames, generated with 30 different combinations of activity and elastic

modulus. The accuracy of this multi-parameter estimator is summarized in Fig. 4.2C-D.

The networks used on two-dimensional active nematics were trained on continuous repre-

sentations of the two-dimensional director field such as sin 2θ or cos 2θ. The choice of contin-

uous representation had no effect on the predictive accuracy of the model. The networks used

on three-dimensional active nematics were trained on the traceless tensor Qij = ninj − 1/3,

which is the nematic order parameter without ordering magnitude coefficient.

Networks were trained for 100 epochs on director field configurations generated using

Lattice-Boltzmann simulations. Each frame of training data was a 200 × 200 director field

image with periodic boundary conditions. These datasets were augmented by applying

random rotations, flips, and shifts during the training procedure. During each epoch, each

input frame was randomly cropped to the predictive network input size. During training,

we used an 80-20 training-validation split on the input dataset.

Forecasting model achitecture

The neural network for predicting time evolution, depicted in Fig. 4.5A, is comprised of

three parts: an encoder, recurrent layers, and a decoder. The encoder uses a sequence of

convolutional layers to downsample input images into feature vectors. The decoder accepts

feature vectors and uses convolutional layers to upsample those feature vectors back into

images. A traditional autoencoder is comprised of these two layers only, and is an effective

method of reducing data dimensionality. In our model, we insert the recurrent layers in

between the encoder and decoder, so that dynamics can be computed on the encoded feature

vectors. A benefit of this approach is that the dimensional reduction achieved by the encoder

allows for smaller recurrent layers, reducing network complexity and improving performance.

The models reported in this paper accept director field images processed into the 2-

138



channel input (sin(2θ), cos(2θ)), where θ is the local orientation angle of the director field.

The encoder contains two convolutional layers of stride-2 with 4 and 6 output channels,

respectively. The decoder architecture mirrors that of the encoder, accepting a 6-channel

feature vector and using two stride-2 transposed convolutional layers with 4 and 2 output

channels, respectively. All convolutional layers use 4 × 4 kernels and are followed by batch

normalization, which improves training performance, as well as hyperbolic tangent activation.

The recurrent portion is a two-layer long short-term memory (LSTM) unit implemented as

a residual network, or resnet, with a shortcut that directly connects input and output of

the entire LSTM cell. Given a sequence of feature vectors, the resnet computes a small

residual to be added to the input, rather than computing a full output feature vector from

scratch. For input sequences with small time separations, the residual vector is sparse, which

helps improve training performance and predictive accuracy, see SI Appendix Fig. S12A and

B. In particular, the residual architecture allowed the model to more effectively learn the

activity-dependent temporal dynamics present in this system, see SI Appendix Fig. S12C.

These models were trained using a two-step training procedure. First, the encoder,

resnet, and decoder were trained together for 100 epochs. Next, the weights in the resnet

were frozen and the encoder and decoder were trained together for 50 epochs. Training data

was generated either using Lattice-Boltzmann simulations or directly from experiments. The

Lattice-Boltzmann training data consisted of 200 × 200 director field images with periodic

boundary conditions, separated by 6, 10, and 25 simulation time steps. Each simulation

dataset contained 6,000 director field configurations at 12 levels of activity and was aug-

mented during training using random flips, shifts, and crops. As before, we used an 80-20

training/validation split. Different models were trained on each dataset, with input image

sizes of 48 × 48, 64 × 64, and 120 × 120. In the main text, we report results from the best

performing of these models, which were trained on data with a frame separation of 10 time

steps and use 48× 48 input image size. All predictions are made using input sequences of 7
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frames.

The experimental data consisted of 1,500 director field configurations extracted from

microtubule-kinesin experiments at 5 different ATP concentrations (see Experimental Meth-

ods). We did not train on experiments with ATP concentrations of 10 µM and 18 µM as

the time between snapshots was 5× longer than for the other ATP concentrations. Here,

we also used an 80-20 training validation split and augmented data using random flips and

crops. The results reported in this paper are for a model with an input size of 48× 48.

Stitching forecasted predictions

While the models were trained to predict the evolution of director field patches, the error

rates and characteristic length and time scales reported in Fig 4.5 are computed for full

images in the testing dataset. To obtain the predicted configuration of the full director field,

the model stitches together predictions made on overlapping subdomains of the image. Here,

each pixel will appear in the prediction for multiple subdomains. The final prediction for

each pixel is given by the weighted average of predictions from each subdomain. For a pixel

located at r = (x, y), the weight given to the predicted value from a subdomain centered at

r0 = (x0, y0) is the Gaussian weight with σ = R, the radius of the subdomain. Thus, more

credence is given to domains in which the pixel is farther from the boundary. For all results

reported in this paper, predictions were stitched together from 48×48 (R = 24
√
2) domains

which overlapped by 8 pixels.

Sharpening algorithm for forecasting

To reduce any noise or artificial defects that arise from stitching together neural network pre-

dictions, we use a physically-motivated sharpening procedure. This algorithm only exploits

the fact that the system is composed of fibers which tend to align while knowing nothing

about the active forces present in the system.
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The sharpening procedure minimizes the elastic free energy of a system composed of such

fibers. Following [34, 41], we write the elastic free energy density as

fd =
1

2
K1(∇ · n)2 + 1

2
K2(n · ∇ × n)2

+
1

2
K3(n× (∇× n))2

(A.9)

Assuming a two dimensional system parameterized by an angle θ as n = (cos θ, sin θ),

this becomes:

fd =
1

2
K1(sin θ∂xθ − cos θ∂yθ)

2

+
1

2
K3(cos θ∂xθ + sin θ∂yθ)

2
(A.10)

In the one elastic constant approximation K1 = K3 = K, this reduces to

fd =
1

2
K

[
(∂xθ)

2 + (∂yθ)
2
]

(A.11)

The elastic free energy is minimized by setting δfd
δθ = 0, leading to the Laplace equation:

∇2θ = 0 (A.12)

Thus, the elastic free energy minimization can be accomplished by applying relaxational

dynamics to the director field. We implement this using a standard finite-differences ap-

proach, slightly modified to account for the nematic symmetry n = −n.

We first apply relaxational dynamics in a small box surrounding the topological defect

positions from the previous director field frame. Because the winding number around the

boundary of this box is fixed and nonzero, this sharpens the director field around each

defect without risking removing the defect. Next, the director field is fixed inside the box

and relaxational dynamics are applied in the defect-free region. This procedure is applied

iteratively to sharpen the raw predicted image.
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This procedure will work if the defect has not moved outside of the box between image

frames. Assuming a timestep of τ , box size of R, and characteristic defect velocity vd, this

condition is satisfied if vdτ < R. We can approximate vd using the relation provided by

[68] for an isolated +1/2 defect, vd ≈ αld/η. Here, we insert ld ≈
√
K/α, the mean defect

spacing, as the radius of the defect-free region surrounding the +1/2 defect. Thus, the

defect will remain in the box if
√
αKτ/η < R. The simulation data used in Fig. 4.5 had

K = 0.075, η = 0.33, αmax = 0.05, and τ = 10, leading to R > 2. The data reported in

the main text was generated using a 5×5 box, corresponding to R ∈ [2.5, 3.5]. We chose the

smallest possible value for R above this threshold, as it prevented the immediate annihilation

of recently-nucleated defect pairs, which would otherwise be close enough to be enclosed by

the same box. This would result in a net zero winding around the boundary, leading to their

removal by the sharpening procedure.

Applications to experiment

Before being fed into parameter-prediction models, the actin-myosin images are adjusted in

ImageJ to remove outliers using a median filter. The fixed orientation of the dye along the

actin filaments and the polarization of the laser yields a polarized image whose intensity is

proportional to cos2 θ, where θ is the director field orientation. From this we extract the

continuous director representation cos 2θ and downsample. For actin-myosin, we downsample

by a factor of 6 to an effective pixel width of a = 1 µm, a convention that has been used in the

past when comparing this Lattice-Boltzmann code with actin-myosin nematics [105, 215].

The microtubule-kinesin orientation fields were extracted from fluorescence images using

the ImageJ plugin OrientationJ, which determines the structure tensor from intensity gradi-

ents. We use the extracted director field to obtain continuous director representations and

then downsample them. Microtubule-kinesin data was downsampled to an effective pixel

width of a = 2.6 µm, as the length scale of spatial variations in the raw data is larger. As a
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machine learning model will be less reliable when applied to data significantly different from

its training set, we aimed to downsample data such that the correlation length fell within

the range of our simulation training dataset.

Determination of Lyapunov time

Active nematics are a nonlinear system characterized by a positive Lyapunov exponent. As

a result, direct comparison of time-evolved director field configurations is not necessarily

valid for long timescales. Pixel-wise accuracy should not be expected beyond the Lyapunov

time, particularly as our predictive model lacked complete information about the system.

While we report pixel-wise accuracy in the main text (Fig. 4.5B), knowledge of the chaotic

dynamics of these systems is important to contextualize these results.

The grayed out region in Fig. 4.5B is bounded by the Lyapunov time as determined

from Lattice-Boltzmann simulations. To find this timescale, we ran Lattice-Boltzmann sim-

ulations at different levels of activity and saved an intermediate state of the system. We

then perturbed this state and continued the simulation. At each level of activity, we ran 10

trials from 10 separate intermediate states. Each simulation time-evolved at 200x200 grid,

from which 100 points were randomly selected and tracked over time. By comparing these

randomly selected pixels as a function of time, we extracted the Lyapunov exponent which

was inverted to obtain the Lyapunov time. This quantity was dependent on activity, with

more active systems exhibiting a shorter Lyapunov time. However, when we rescaled by the

characteristic defect lifetime τd = η/α, we found that all values coalesced to approximately

τ = 3.6τd.

As infinitesimal pixel-wise changes would be eliminated by relaxational dynamics, we

used a more global method of perturbing the intermediate state. First, we computed the

singular value decomposition of the order parameter tensor field Qij(r). We then fractionally

changed 10 elements of the singular matrix by random amounts between -10% and +10%
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and used the new matrix to reconstruct the perturbed order parameter field. This method

of globally varying the intermediate state yielded non-vanishing pixel-wise deviations that

showed exponentially growing behavior.

Characteristic length and time scales

Direct comparisons of the machine learning predicted director field to Lattice-Boltzmann

simulations are unreliable beyond the Lyapunov time. To evaluate the validity of our pre-

dictions over longer time scales, we compare instead characteristic length and time scales of

the machine learning predicted dynamical steady state. For a given order parameter config-

uration Qij(r, t), with i and j running over x, y, we define the spatial correlation function

Cs(r, t) as

Cs(r, t) =

〈
Qij(r, t)Qij(0, t)

〉〈
Qij(0, t)Qij(0, t)

〉 (A.13)

and the time correlation function Ct(r, t)

Ct(r, t) =

〈
Qij(r, t)Qij(r, 0)

〉〈
Qij(r, 0)Qij(r, 0)

〉 (A.14)

where indices i and j are contracted following the Einstein summation convention. Using Eqs.

(A.13) and (A.14), we define the director field correlation length ℓθ such that Cs(ℓθ, t) = 1/2

and the correlation time tθ such that Ct(r, tθ) = 1/2.

In Fig. 4.5C and D, we compare the average values of ℓθ, tθ as found in machine learning

predicted director field frames to those of Lattice-Boltzmann simulations. Here, we iterate

the predictive model to predict large (200× 200) image frames over a long time (t = 30 τLC)

and compute the time-averaged correlation length and spatially-averaged correlation time.

Correlation lengths and correlation times are computed using only the machine learning-

generated image frames. In SI Appendix Fig. S10, we report the time-averaged mean-defect
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spacing, defined as ℓd = 1/
√
nd, where nd is the defect density.

Comparisons for multiparameter estimation

In Fig. 4.2, we compare the performance of our neural networks for multiparameter esti-

mation to an approach adapted from [111]. The original method used correlation functions

calculated from both the director and velocity fields to simultaneously fix multiple param-

eters in bacterial active nematics. We modified this approach to remove its dependence on

the velocity field, which is not available in our active nematics experiments. To determine

multiple parameters, we scan the parameter space and find the pair (α,K) that yields the

best match for the observed nematic correlation length and correlation time. As the cor-

relation length has been shown to depend on the ratio K/α [82] and the correlation time

appears to depend on α but not K, these two quantities are sufficient to fix α and K.

Comparisons for Time Evolution

In Fig. 4.6, we compare the performance of our time evolution neural networks to Lattice-

Boltzmann simulations. Our neural networks do not receive any information about the

velocity field v(r, t) or ordering strength S which are not directly observable in our active ne-

matics experiments. For a direct comparison of the ability to predict the evolution of coupled

chaotic fields when one is not easily measurable, we provide these Lattice Boltzmann simu-

lations no initial information about the velocity field or ordering strength. In Fig. 4.6A, the

machine learning predictions and the unknown-velocity Lattice Boltzmann simulations are

compared to a baseline Lattice Boltzmann simulation with full information about all fields.

In Fig. 4.6B, the machine learning predictions and unknown-velocity Lattice-Boltzmann

simulations are compared to the observed director field evolution in microtubule-kinesin ex-

periments. Here, the Lattice-Boltzmann simulations use parameters machine-learned from

the same experiments (see Fig. 4.3A).
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A.2 Adherent cell mechanics

Day Cell Type Proteins Number Time Duration Notes
of Cells (min)

1 MEF Zyxin 4 180
2 MEF Zyxin 4 240
3 MEF Zyxin 4 120 Y-27632 from T=30-75

Actin
4 MEF Zyxin 5 120 Y-27632 from T=30-75

Actin
5 MEF Zyxin 4 120 Y-27632 from T=30-75

Paxillin
6 MEF Zyxin 10 120 Y-27632 from T=30-75

Myosin
7 MEF Zyxin 7 120 Y-27632 from T=30-75

Paxillin
8 MEF Zyxin 7 120 Y-27632 from T=30-75

Mitoch.
9 MEF Actin 10 120 Y-27632 from T=30-75

Paxillin
10 U2OS Zyxin 5 120 Y-27632 from T=30-75
11 U2OS Zyxin 12 120 Y-27632 from T=30-75
12 MDCK Paxillin 17 (clusters) 42

Table A.1: Summary of the datasets considered in this work. We label each dataset by the
day on which it was taken. In the case of MDCK, “Number of Cells” indicates the number of
cell clusters. Cells were imaged at a frequency of 1 min−1, so the time duration in minutes
corresponds to the number of frames in each time series.

Data processing

Fluorescent images are normalized to have similar values across all cells, for all different

proteins considered. For each cell, we calculate the mean value of the fluorescent signal f

within the cell mask, µcell
in = ⟨⟨f(x, t)⟩x∈mask⟩t, and the average value of the signal outside

the mask µcell
out = ⟨⟨f(x, t)⟩x/∈mask⟩t. The signal is then normalized as fnorm(x, t) = (f(x, t)−

µcell
out)/(µ

cell
in − µcell

out) and any negative values (corresponding to values below the noise value

of empty space) are set to 0. This ensures that fnorm has a mean value of approximately
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1. Cell masks are binary and are generated by thresholding the zyxin channel in each image

and filling any holes which appear.

Due to variations in substrate preparation, forces measured by cell depend slightly on the

experimental round they belonged to. In our case this corresponds to the day on which they

were measured (cf. Fig. 5.2). We therefore normalize the forces of each cell by the average

within their dataset, µday
F = ⟨⟨|F (x, t)|⟩x,t⟩cell∈day, so that F⃗ cell

norm = F⃗ cell/µday
F for each cell

in day. Normalized fluorescent signals and forces are used everywhere in this work.

Training data

The training and testing data used for all networks in this work is shown in Table A.2, which

we elaborate on here.

The dataset used to train the U-Net of Figs. 5.2,5.4,5.5 consists of 31 cells from days

1-6. Of these, 8 were not subjected to any perturbation (Days 1 and 2). For training we

randomly select 16 cells from the full set of 31. To ensure that only images of cells in their

basal contractile are present, we include only the first 30 minutes of each time series. Even

for cells not subject to the perturbation, we only take the first 30 minutes to ensure that

each cell is represented equally in the dataset. In total, this amounts to 480 training frames.

For evaluation, full time series are used. The test statistics shown in Figs. 5.2,5.4,5.5 are

computed from the cells shown in Table A.2.

For the U-Nets trained on individual proteins shown in Fig. 5.3 we use 5 datasets. The

first is composed of cells from Days 3 and 4, where actin and zyxin were measured simul-

taneously; the second from Days 5 and 7, with zyxin and paxillin measured; the third from

Day 6 with zyxin and myosin measured; the fourth from Day 8 with zyxin and mitochondria

measured; the fifth from Day 9 with paxillin and actin measured. For each combination

of protein inputs, we train a network on data from all but one cell. We repeat this, with

separate networks, using each cell in the dataset as the hold-out cell one time. The training
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Network Figures Trained on Evaluated on
U-Net1 1, 4 (16 cells) D1-6, zyxin D1: {2}, D2: {1,2},

(first 30 frames of each cell) D3:{2,3,5}, D4: {4,5}
D5: {2,4}, D6: {1,3,4,5,6}

3a-c " U2OS
3d-f " MDCK
3g-h " D4: {4}

U-Net2 2 (8 cells) D3-4, zyxin OR mask (1 cell; each cell chosen once)
OR actin OR zyxin and actin

U-Net2 2 (10 cells) D5, 7, zyxin OR mask (1 cell; each cell chosen once)
OR paxillin OR zyxin and paxillin

U-Net2 2 (9 cells) D6, zyxin OR mask (1 cell; each cell chosen once)
OR myosin OR zyxin and myosin

U-Net2 2 (6 cells) D8, zyxin OR mitoch. (1 cell; each cell chosen once)
OR myosin OR zyxin and mitoch.

U-Net2 2 (10 cells) D9, paxillin OR actin (1 cell; each cell chosen once)
OR paxillin and actin

PBNN 5 D1: {3,5}, D2: {2,4} D1: {2,4}, D2: {3,5}
, D3: {1,3}, D4: {1,2,4} D3: {2,5}, D4: {3,5}

D6: {1}, zyxin D6: {2,3,4,5}
GFNN 6 D1 {1, 2} D2 {3} D3 {1}

Table A.2: Overview of the training and testing data used in this work. “D” stands for “Day”,
corresponding to datasets in Table A.1. For the protein experiments (U-Net2), separate
networks were, for each protein input, trained on all but one cell which was reserved for
testing. For example, the dataset in row 5 (“D3-4”) contains 8 cells. We therefore train 8
identical U-Nets on the zyxin channel from 7 cells, withholding a different cell for testing
each time.

data consists of full time series (which includes Y-27632 perturbations, if present). We cap

the total size of the training dataset to 600 frames, which is roughly the size of the smallest

dataset (Day 6, zyxin + mitochondria), for a fair comparison.

U-Net Architecture

Neural networks are implemented in Python using the Pytorch library. Code for network

implementation, training, and evaluation is available online at github.com/schmittms/cel

l_force_prediction.
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Predicting force distributions from protein fluorescent images is an image analysis prob-

lem and many neural network variants have been proposed for such tasks. In the SI, we

provide a primer on common network types and relevant considerations for choosing among

them. We opted for a convolutional neural network (CNN) due to their straightforward im-

plementation and training procedure. A CNN also exploits the spatial structure of the data

to limit the number of trainable parameters. While attention-based networks such as vision

transformers have also proven successful at image analysis tasks [101, 115], they come with

higher computational and training costs and require very large datasets. To achieve com-

petitive performance with visual attention networks while maintaining efficiency, we instead

adapted our CNNs with ConvNext design [116]. We found success with a U-Net architecture

which combines aggressive coarse-graining with skip connections that preserve fine-grained

features and crucially can learn to generalize well from limited data [161].

The channel structure of the U-Net is shown in Table. A.3. Most layers are composed

of blocks with a ConvNext structure [116]. Briefly, they consist of a layer-wise convolution,

batch normalization, an inverse-bottleneck depth-wise convolution, activation function, and

finally a depth-wise convolution. Our ConvNext blocks have a layer-wise kernel size of 7 and

increase channels in the inverse bottleneck by a factor of 4. For all other convolutions, we use

a kernel size of 3. Dropout is used with a dropout probability of 10%. A detailed illustration

of the architecture is shown in SI Fig. 2. The number of encoding (coarse-graining) layers

was set by the minimal image size we processed in the paper. With a minimal image size

of 64×64 and 4×4 downsampling convolutions, this restricted us to 3 encoding layers. The

hyperparameters of the ConvNext blocks, including kernel size, inverse bottleneck width,

and normalization layers, are chosen according to the optimal values found in [116].

The U-Net is trained with the Adam optimizer with weight decay (“AdamW”, [117]) with

an initial learning rate of 0.001. The learning rate is scheduled to decay exponentially with

rate 0.99. We use a batch size of 8.
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Layer Size in Size out Details
Prepended block 1× L× L C × L× L Conv2d, 4×ConvNext blocks

Skip block 0 C × L× L C × L× L 4×ConvNext blocks
Encoder block 0 C × L× L 2C × L

4 × L
4 4×ConvNext, BN,

Strided Conv2d, GELU
Skip block 1 2C × L

4 × L
4 2C × L

4 × L
4 (cf. skip 0)

Encoder block 1 2C × L
4 × L

4 4C × L
16 × L

16 (cf. encoder 0)
Skip block 2 4C × L

16 × L
16 4C × L

16 × L
16 (cf. skip 0)

Encoder block 2 4C × L
16 × L

16 8C × L
64 × L

64 (cf. encoder 0)
Skip block 3 8C × L

64 × L
64 8C × L

64 × L
64 (cf. skip 0)

Decoder block 2 2C × L
64 × L

64 C × L
16 × L

16 Upsample, Concat.,
4×ConvNext, Conv2d

Decoder block 1 6C × L
16 × L

16 2C × L
4 × L

4 (cf. decoder 2)
Decoder block 0 3C × L

4 × L
4 C × L× L (cf. decoder 2)

Appended block C × L× L 2× L× L 4×ConvNext blocks, Conv2d

Table A.3: Channel structure for the U-Net used in Figs. 1, 3, and 4. We set C=4, while
L varies depending on input image size. Strided convolutions in the encoder layers have a
stride of 4. The U-Nets in Fig. 2 are the same, but do not have encoder block 2, skip block
3, or decoder block 2. They also have only 3 ConvNext blocks everywhere instead of 4.

For the U-Net used in Figs. 1, 3, and 4, training data consists of 480 randomly sampled

frames from time-lapse series of 16 cells (of 31 cells total). For the U-Nets used in Figs. 2,

training data consists of 600 randomly sampled frames with a variable number of cells for

training (see Table A.2). Each data sample contains an input image (either zyxin, another

protein, the mask, or a two-channel zyxin + protein image) paired with the corresponding

traction force map measured via TFM. Traction force maps have two channels, which we

represent as magnitudes and angles rather than x and y components. In all cases, the network

is trained for 300 epochs (passes through the entire training data set). As a loss function,

we take the MSE for the magnitude component, and a 2π-periodic MSE for the angles.

Synthetic Cells

We consider three variants of synthetic cell for the experiments shown in Fig. 4. The first

variant captures large-scale features of cell geometry. We generate cells of triangles whose
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sides are given by circular arcs. The cell shape is parameterized by L, the distance between

the corners of the triangle, and Rc, the radius of curvature of the circular arcs. Forces

measured in Fig. 4g,h,i correspond to the average force across the area of the cell. These

synthetic cells were fed as input to a U-Net trained on cell geometry.

The second class of synthetic cells models the distribution of focal adhesion-like objects in

the cell. The intensity structure of these adhesions was chosen to match those of experimental

adhesions, see SI Fig. 16 for details. In each cell, ellipses of a given aspect ratio and area

were randomly distributed (uniformly with a density of 60%) in a circle of fixed radius of 200

pixels (≈ 34µm). Each cell is parameterized by the corresponding area and aspect ratio of

the ellipses. Each ellipse had an intensity of 1, and they were allowed to overlap. Hence, the

input image contained a range of (integer) intensities. Ellipse aspect ratio was defined relative

to the radial direction, so probing aspect ratio in effect probed focal adhesion orientation.

We evaluate the predicted force by calculating the average force on regions where a focal

adhesion is present.

The role of zyxin intensity was probed by creating cells consisting of equidistant elliptical

adhesions on a circular cell “background”. These synthetic cells are parameterized by the

intensity of the background B, the radius of the cell R, the angular density of focal adhesions

D (D = 1 corresponds to no angular space between neighboring adhesions), and the length

L and intensity I of focal adhesion ellipses. The intensity of the background models zyxin

intensity in the cell away from focal adhesions. The zyxin intensity at focal adhesions

typically has values in the range 4-12 (a.u.), while the background has values in the range

0-1. In Fig. 4k, we show the change in intensity for B = 0.8 and D = 0.5; results do not

strongly depend on B and D. To model the intensity profile of FAs seen in experiment, at

the edges of the FA ellipses intensity increases linearly over 2 pixels until the specified FA

intensity is reached. We evaluate the predicted force by calculating the average force on

regions where a focal adhesion is present.
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In the Supplementary Information, we show an additional variant of “synthetic cell” used

to probe length-scale dependence of the neural network. These fake cells were generated

by binarizing the zyxin images via thresholding, and applying dilations to achieve binary

regions of different sizes. While this procedure does not afford fine control over the size of

the resulting regions, it preserves some aspect of the distribution of FAs in the cell and results

in sufficient regions that trends can be extracted. The results suggest that information is

integrated over a length scale of ∼ 5µm, consistent with our other findings in this work. See

SI Fig. 17 for details.

Note all values of zyxin here and in the rest of the paper are given in units after normal-

ization described in “Data processing” above.

Effective Elastic Model

We consider a model of the cell as an effective two-dimensional linear elastic medium. While

originally introduced to model cells on micropillar arrays [52], it has been extended to de-

scribe cells uniformly adhered to 2D substrates [136]. The free energy of the cell is

U =
h

2

∫
dA (σel

ij + σaδij)uij +
1

2

∫
dAY (x)uiui (A.15)

where uij = 1
2(∂iuj + ∂jui) and σel

ij is the elastic stress tensor. h is the height of the cell,

which is assumed to be small. As described in the main text, Y (x) models a adhesion

or pinning force which penalizes deformations, while σa serves as an active pressure term.

Minimization of the elastic free energy leads to force balance equations for u⃗(x):

h∂jσ
el
ij = Y (x)ui (in bulk) (A.16)

σel
ijnj = −σani (on boundary). (A.17)
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Layer Size in Size out Details
Prepended block 1× L× L C × L× L Conv2d

Skip block C × L× L C × L× L 10 ConvNext blocks
Encoder block C × L× L 2C × L

4 × L
4 BN, Strided Conv2d, ReLU

Skip block 1 2C × L
4 × L

4 2C × L
4 × L

4 10 ConvNext blocks
Decoder block 3C × L

4 × L
4 1× L× L Upsample, Concat., Conv2d

Strided Conv2d 1× L× L 16× L
16 × L

16 Followed by flattening
FC ·L2/16 N
FC N N Layer repeated 10 times
FC N 2

Table A.4: Channel structure for the physical bottleneck neural network. The top section
describes the network used to predict the field Y (x). Here, C = 32, all Conv2d layers have a
kernel size of 5, and ConvNext blocks have kernel size of 15 and inverse bottleneck factor of
4. GELU is used as the activation function throughout. The bottom section describes the
fully-connected network used to predict the constants σa and ν. We use N = 32. In this
network, every layer is followed by a ReLU activation.

In addition to these conditions, we also require that σel and u⃗ are related via the constitutive

relation

σij =
E

1 + ν

(
ν

1− 2ν
δijukk + uij

)
, (A.18)

where E and ν are the effective Young’s modulus and Poisson ratio, respectively, of the cell.

Combining the force balance equations with the constitutive relation gives a PDE which

determines u⃗.

Physical Bottleneck

The physical bottleneck consists of a neural network step joined with a PDE-solver step. The

neural network is implemented in the PyTorch library, and the PDE-solver is implemented

with the dolfin-adjoint library [126]. At each step during training, we first predict a field Y (x)

and scalars σa and ν (the Poisson ratio, which we find to be nearly constant ν ≈ −1) using

a neural network with zyxin as input. The convolutional neural network used to calculate
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Y is a shallow U-Net with structure shown in Table A.4. The network used to calculate the

scalars consists of one convolutional layer which aggressively coarse-grains the image by a

factor of 16, followed by fully-connected layers (see Table A.4).

The parameters output by the neural networks are mapped to a mesh (for spatially-

varying parameters) after which they are fed as inputs to a PDE solver. To solve both

forward PDE problems and derive adjoints (described in the following), we use the dolfin-

adjoint library [126]. The PDE solver calculates a displacement field u⃗(x) satisfying the

PDE imposed by the physical model. Forces are calculated as Y (x)u⃗(x) and compared to

the experimentally measured values to give the loss L, which is simply the mean-squared

error. Gradients ∂L/∂Y (x) etc. are computed using the adjoint method.

We briefly introduce the adjoint method [194], a widely-used technique to optimize PDE

parameters in control or data-assimilation tasks. We consider a PDE which acts on a field

u(x) and has parameters p(x). One wants to optimize a function of the PDE’s solution J(u).

This can be cast as a constrained optimization problem where one wants to minimize the

Lagrangian

L(u, v, p) = J(u) + ⟨v,Du⟩.

Here D denotes the PDE we wish to optimize (which depends on p(x)) and v(x), introduced

as a Lagrange multiplier to enforce that u satisfies Du = 0, is called the adjoint state.

The angled brackets denote an inner product on the function space in which u and v live.

Gradients of the Lagrangian ∂L/∂p are given in terms of v, which is itself found by solving

the adjoint PDE D∗p = f(u). The adjoint PDE is determined from the Euler-Lagrange

equation ∂L/∂u = 0.

In practice, the adjoint equations are solved using automatic differentiation. We use

dolfin-adjoint to calculate ∂L/∂Y (x), ∂L/∂σa and ∂L/∂ν. These gradients are passed di-

rectly to PyTorch’s autograd library to update the neural networks which predict Y (x), σa
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and ν.

Green’s Function Neural Networks

Green’s Function Neural Networks (GFNN) were implemented using the Pytorch Library. To

predict traction forces with a GFNN, we used the Clebsch decomposition F⃗NN = ∇ϕ+ ξ∇χ,

which is possible for any vector field. We hypothesized that each Clebsch variable was the

solution to a linear partial differential equation (PDE) whose source was a function of the

local zyxin density.

Dϕϕ = ρϕ [ζ] ; Dξξ = ρξ [ζ] ; Dχχ = ρχ [ζ] (A.19)

To predict traction forces subject to this hypothesis, we trained a GFNN to compute each

Clebsch variable. Under (A.19), each term is the integral of a source and a Green’s function.

ϕ(x⃗) =

∫
d2r⃗ Gϕ(x⃗− r⃗)ρϕ(r⃗) (A.20)

ξ(x⃗) =

∫
d2r⃗ Gξ(x⃗− r⃗)ρξ(r) (A.21)

χ(x⃗) =

∫
d2r⃗ Gχ(x⃗− r⃗)ρχ(r) (A.22)

For the network presented in Fig. 5.7, we trained on three cells imaged under normal

conditions and evaluated on an unseen cell to which the ROCK inhibition had been applied.

The inputs were the zyxin density and the target outputs were traction force predictions

from U-Net discussed in Fig. 5.2-5.5. We center-cropped each input-output pair to a box

of size 1024×1024 pixels, downscaled by a factor of 4, and applied a Fourier cutoff with

kmax = 50. The GFNN used the zyxin field as input and learned to predict forces through

the Clebsch decomposition and its corresponding Green’s functions. It predicted the sources

ρα using a shallow convolutional neural network and represented the Fourier-transformed
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Green’s function as a three-channel 256 × 256 complex float tensor (N = 256 matches the

downscaled images size in pixels). The complete network structure is shown in Table A.5.

We trained the network for 200 epochs with batch size 8, learning rate λ = 10−2 on the

Green’s functions and λ = 10−4 on all other parameters. We used the Adam optimizer [96]

and scheduled the learning rate to decrease by a factor of 10 whenever the loss function failed

to improve for 10 epochs. The GFNN learned to minimize the following loss function with

β = 0.1

L =
∑

(F⃗ − F⃗GFNN )2 + β
∑

|Gα(q⃗)|2 (A.23)

After training, we found that the ϕ field contributed minimally to the predictions. In

SI Fig. 3, we demonstrate that the ∇ϕ term in the Clebsch representation accounts for

1.1% of the overall traction force field and is not necessary for the GFNN to generalize to

experimental perturbations. Because of this, we omitted it from our analysis in Fig. 5.7.

To demonstrate the performance of GFNN as well as the Clebsch decomposition approach,

in SI Fig. 4 we train a GFNN to predict forces in a 2D Coulomb electrostatic system. When

trained on synthetic data, the network learns to perfectly predict forces and learns Green’s

functions which agree well with the ground truth, i.e. the Coulomb force law.

Sparse Regression

We performed sparse regression [26] in Python using the PySINDy library [92, 173]. Our

candidate library was informed by the Green’s function neural network results. We as-

sumed that the sources ρα were expressible as linear combinations of local zyxin gradients

and approximated Gα using a set of radially-decaying functions. We used a set of local

scalar derivatives ρi ∈ {ζ,∇2ζ, (∇ζ)2, ζ2, ζ∇2ζ, ζ(∇ζ)2} and chose the following candidate
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Module Layer Channels Details
Conv2d 1 → 64 k3×3, groups=64

Block 1 Conv2d 64 → 256 k1×1
Sine Activation function

Conv2d 256 → 64 k1×1
Conv2d 64 → 64 k3×3, groups=64

Block 2 Conv2d 64 → 256 k1×1
Sine Activation function

Conv2d 256 → 64 k1×1
Sources Conv2d 64 → 3 k1×1

FFT2
Integration Green’s functions {ϕ, ξ, χ}(q) = Gi(q) · fi(q)

IFFT2
Output Clebsch F = ∇ϕ+ ξ∇χ

Table A.5: GFNN architecture for cell force prediction. The network includes convolutional
blocks inspired by the ConvNext architecture. Grouped convolutions accumulate local infor-
mation within each channel, while 1 × 1 convolutions with the inverse-bottleneck structure
enable the network to learn complex local functions at each pixel while maintaining a mini-
mal receptive field.

functions for the Green’s functions.

Gi(r) ∈
{
r−1, log(r), r, e−ℓξ , e−ℓχ

}
(A.24)

The last two terms are exponentially decaying functions whose length scales ℓα were fit

to the machine-learned Gξ, Gχ in Fig. 5.7d. We included the remaining three terms as

slowly-decaying functions which might capture the long-range behavior of Gχ. From the

set of sources ρi and Green’s functions Gi, we constructed a library such that F⃗ could be
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represented as a linear combination of the following terms.

F⃗ (x⃗) =
∑
ij

[
w
ϕ
ij ∇

∫
dr⃗ Gi (|x⃗− r⃗|) ρj (r⃗)

]
︸ ︷︷ ︸

∇ϕ

+

∑
ijkℓ

[
w
ξχ
ijkℓ

(∫
dr⃗ Gi (|x⃗− r⃗|) ρj (r⃗)

)
∇
(∫

dr⃗ Gk (|x⃗− r⃗|) ρℓ (r⃗)
)]

︸ ︷︷ ︸
ξ∇χ

(A.25)

The weight grouping for ξ∇χ (A.25) is necessary as sparse regression is framed as a linear

optimization problem. To obtain the weights w⃗, we used an elastic net objective.

w⃗ = argmin
[
⟨
(
F⃗ − F⃗ (w⃗)

)2⟩+ α||w⃗||1 +
1

2
α||w⃗||2

]
(A.26)

Here, α is a parameter which sets the level of solution complexity, which we set to α = 0.75.

For training, we used the first 16 minutes of the cell movie (Day 3 cell 1, see Table A.1), all

of which were before the ROCK inhibitor was applies at t = 30 min. We performed sparse

regression on 50,000 randomly-selected pixels in the 16 training frames (approximately 8%

of the data in the training frames). This yielded an effective equation with 10 terms (see

SI). Fig. 5.7g shows a sample prediction at t = 40 min, 10 minutes after the ROCK inhibitor

was applied. Fig. 5.7h summarizes the predictions from this equation over the entire movie.

A different choice of α yields equations of different complexity. For Fig. 5.7i, we fit

formulas using 17 values of α in the range [10−4, 101]. We performed this procedure for

each cell in the dataset and recorded the number of terms in the resulting formula and the

mean-squared error (MSE) with experiment. As a baseline, we also recorded the MSE of the

U-Net with experiment. To quantify how adding terms to the formula improves predictions,

we defined the Relative Error metric in Fig.5.7i as MSESINDy(α)−MSE0, where MSE0 is

the error of a model with zero learnable parameters F⃗ = 0, representing the α → ∞ limit.
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Thus, a model which uses more learnable parameters to achieve higher accuracy will have

a negative relative error. To contextualize the performance of the sparse regression models,

we compared the relative error of the learned equations to that of the U-Net and found that

on average, a 10-term equation achieved 77% of the U-Net relative error. For the model

reported in Fig. 5.7, the learned equation was

F = −0.7
(
(∇ζ)2 ⋆ e−r/ℓ1

)
∇⃗
(
ζ ⋆ r

)
− 0.2

(
∇2ζ ⋆ e−r/ℓ1

)
∇⃗
(
(∇ζ)2 ⋆ log |r|

)
+

2.0
(
ζ∇2ζ ⋆ e−r/ℓ1

)
∇⃗
[ (

ζ − 0.4ζ2 − 0.1(∇ζ)2
)
⋆ log |r|−

2.4

(
ζ − 0.5ζ2 + 0.6(∇ζ)2 − 0.1ζ(∇2ζ) + 0.5ζ∇2ζ

)
⋆ r

]
(A.27)

Here ⋆ denotes a convolution operation a ⋆ b =
∫
dr⃗a(|x⃗− r⃗|)b(r⃗).

Outlier determination

One cell in the actin dataset was an outlier, and was excluded from the calculation of the

mean in Fig. 5.3c. We tested for outliers using the Iglewicz-Hoaglin outlier test [76] and

illustrate these results in SI Fig. 13.

Optimal predictors and histogram plots

Probability distributions shown in angle and magnitude plots (for example, Fig. 1e,f) are

calculated by binning all pixels of all frames in the test set to calculate the number of

joint occurrences of |F⃗exp| and |F⃗NN|. The histogram is normalized to yield a probability

and divided by the marginal distribution to calculate conditional probabilities. The “average”

curves in Figs. 1e, 1f, 2b, 2d, 3b, 3c, 3e, 3f, 4b, 4d, 5e, 5f are given by C(FN ) = EFE
[FE |FN ]

(or analogously for angles).

In this work, we evaluate predictions by relying on conditional distributions p(|Fexp|
∣∣|FNN|).

(In the following we consider only force magnitudes and write |F | = F , and we abbreviate
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FNN ≡ FN and Fexp ≡ FE for brevity). This choice is motivated by the fact that, in the

presence of noise, the conditional average C(FN ) = EFE
[FE |FN ] will satisfy C(FN ) = FN

for a theoretically optimal predictor and will thus lie along the diagonal in the FE − FN

plane. On the other hand, C(FE) = EFN
[FN |FE ] will generally not lie along this diagonal.

To see this, consider our dataset as a set of pairs {X(i), F (i)} indexed by i where Fi is

force magnitude at some pixel, and Xi is the distribution of zyxin in a neighborhood of that

pixel. The neighborhood is set by the receptive field of the neural network. Due to either

biological or experimental noise, there is a joint (non-deterministic) distribution p(X,FE)

from which our data is drawn. The loss function for the force predictions FN (X) can be

written

L(FN ) = EXEFE

[
(FN − FE)

2|X
]
≡ EXLX(FN ).

The (Bayes) optimal predictor is one which optimizes, for every X,

F ∗
N (X) = argmin

FN

LX(FN ).

In can be shown that LX is minimized by F ∗
N (X) = EFE

[FE |X]. Note that for this to be valid

for all X, our network must be sufficiently expressive, else our model would be constrained

and we would not (necessarily) be able to satisfy this condition for all X independently. If

we do indeed have sufficient (infinite) expressivity, this is the (Bayes) optimal predictor.

In the SI, we show that with an optimal predictor, the conditional averages satisfy

C(FN ) = EFE
[FE |FN ] = FN and C(FE) = EFN

[FN |FE ] = Ep(F ′
E |FE)

[F ′
E ]. Here p(F ′

E |FE)

denotes the posterior predictive distribution p(F ′
E |FE) =

∫
dXp(F ′

E |X)p(X|FE). We addi-

tionally show that even in the case of Gaussian random variables, the mean of the posterior

predictive distribution p(F ′
E |FE) is, for a given FE , smaller than FE . Thus even for an

optimal predictor, the line defined by C(FE) lies below the diagonal. For this reason, we
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evaluate our predictions by considering C(FN ) and its distance from the diagonal, which is

0 for an optimal predictor.

A.3 Dynamics of morphogenesis

A.3.1 Data handling: image processing and ensemble time alignment

Image processing

To obtain coarse-grained data for training the deep neural networks and sparse dynamical

equations, we used the morphodynamic atlas of Drosophila development [125]. This contains

time series’ of fluorescent images of a variety of biomarkers including cytoskeletal proteins

and pair rule gene expression patterns. To convert the raw data into image suitable for our

machine learning algorithms, we performed spatial downsampling smoothing which averaged

over the microscopic, cell-level variations within the data. For the pair rule gene images,

we performed a gaussian smoothing with σ = 6µm. For e-cadherin, which appears at cell

junctions and therefore is more spatially inhomogeneous, we smoothed over a larger window

of σ = 15µm. All fields were downsampled by a factor of 8.5, leaving 236× 200 images with

spatial dimension 452× 533µm.

In order to characterize junctional myosin, we first performed cytosolic normalization

which defines a myosin concentration relative to the average level in the cytoplasm [75, 109].

The cytoplasm intensity Ic is computed via a top-hat transform of the raw intensity I over

a single-cell region. The cytosolic-normalized signal is then

In =
I − Ic
Ic

(A.28)

To characterize junctional anisotropy, we used the radon transform technique introduced

in [181]. The radon transform method integrates the signal intensity within small windows
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along lines of varying orientation. This maps bright cell edges to peaks in a Radon plane

whose coordinates define a position and orientation for the edge. We use the maximum

in the Radon plane to define the local orientation angle θ and director n = (cos θ, sin θ).

As these orientation angles are defined modulo 180◦, we define myosin anisotropy using a

nematic tensor

m = mnnT = m

 cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

 (A.29)

As with the e-cadherin data, we applied gaussian smoothing to the myosin tensor over a

window σ = 15µm and downsampled by a factor of 8.5. This produced a four-channel

236 × 200 image with spatial dimension 452 × 533µm, where each channel represented a

component of the myosin tensor m.

Ensemble time alignment

To compare behavior across different embryos, we used time-alignment procedures reported

previously for the Drosophila atlas [125]. Briefly, the pair rule gene datasets were co-imaged

with Runt and aligned by comparing the position and geometry of the runt stripe pattern

at each time point. To align the live-imaged datasets of cytoskeletal proteins, we computed

the spatially-averaged flow magnitude ⟨v⟩ and selected a constant offset for each embryo

that minimized the difference between ⟨v⟩(t) and that computed for a reference embryo. SI

Fig. REF shows the aligned time series’ for each embryo imaged for myosin and e-cadherin,

demonstrating the reproducibility across embryos. The ensemble average across all live-

imaged embryos is plotted in Fig. 6.2c.
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A.3.2 Deep Neural Networks

Deep Neural Network Architecture

To forecast from initial conditions, we use an encoder-decoder architecture with a residual

recurrent block at the latent bottleneck [38]. The network learns a set of latent variables

from the inputs via a compressing convolutional encoder and computes the dynamics of those

variables using a LSTM cell. Next the network transforms the latent variable trajectory

into a spatially-resolved flow field via an upsampling convolutional decoder. At the latent

bottleneck, we use the VAE reparameterization trick [97] to enforce a smooth latent space.

This means that for each latent parameter, the encoder computes a mean and variance of

a latent probability distribution. During training, the latent vector is sampled from this

distribution rather than computed deterministically from the inputs. All neural networks

were implemented using Pytorch [143].

We use ConvNext blocks [116] in our neural network architecture. A standard convo-

lutional layer learns k × k kernels for each input and output channel, meaning a N → N

convolutional layer has k2N2 tunable weights. In contrast, a ConvNext block learns spatial

kernels that act only on each input channel via a grouped convolution, and then mixes each

channel using 1× 1 kernels. In the second step, it uses an inverse bottleneck structure with

expansion factor B, which is equivalent to applying a fully-connected neural network with

hidden size B×N at each point in space. A ConvNext block uses k2N +2BN2 weights. In

our network, which uses k = 7 and B = 4, each block requires approximately 5 times fewer

weights than an equivalent standard convolutional layer.

Deep Neural Network Training

We train for 100 epochs using the Adam optimizer with a learning rate of λ = 10−4. We use

a learning rate scheduler which decreases the learning rate by a factor of 10 if the validation
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Module Layer Data Size Channels Details
Encoder Conv2d 236× 200 C → 32 k4×4, stride 4

2×ConvNext 59× 50 32 → 32
Conv2d 32 → 64 k2× 2, stride 2

2×ConvNext 29× 25 64 → 64
Conv2d 64 → 128 k2× 2, stride 2

2×ConvNext 14× 12 128 → 128
Conv2d 128 → 256 k2× 2, stride 2

2×ConvNext 7× 6 256 → 256

Latent Linear 256× 7× 6 → 2× 32 outputs (µ, σ2)

VAE trick z = N (µ, σ2)
Evolver LSTM 32 → 32 zt+1 = z+ LSTM(z)

2 layers, h = 64
Decoder ConvTranspose2d 7× 6 32 → 256 k2× 2, stride 2

2×ConvNext 14× 12 256 → 256
ConvTranspose2d 256 → 128 k2× 2, stride 2

2×ConvNext 29× 25 128 → 128
ConvTranspose2d 128 → 64 k2× 2, stride 2

2×ConvNext 59× 50 64 → 64
ConvTranspose2d 64 → 32 k4× 4, stride 4

2×ConvNext 236× 200 32 → 32
Conv2d 32 → 2 k1× 1

Table A.6: Forecasting NN architecture.

Layer Details Channels Kernel Groups
Conv2d Mix space N → N 7x7 N

LayerNorm
Conv2d Mix channels N → 4N 1x1 1
GELU Nonlinear activation
Conv2d Inverse bottleneck 4N → N 1x1 1
Dropout p=0.1

Table A.7: ConvNext block architecture
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loss has not improved for 10 epochs. Each training sample is a randomly selected trajectory

of length 2 + N (0, 3) minutes. The inputs are a set of biological markers and the outputs

are the flow field v. Each embryo was imaged for only one biological marker, so we use

ensemble averages in order to train networks to predict from multiple inputs. Here, we

generate ensembles by aggregating all marked embryos with a timepoint within 1 minute of

the live-imaged initial condition, and averaging over 2 randomly selected embryos in that

ensemble. During training, the network learns to minimize the following loss function

L =
∑
t

Res
[
vNN (t),vExp(t)

]
+ βDKL

[
N (µ, σ2)||N (0, 1)

]
(A.30)

Res(u,v) =
⟨u2⟩v2 + u2⟨v2⟩ − 2u · v

√
⟨u2⟩⟨v2⟩

2⟨u2⟩⟨v2⟩
(A.31)

This joint loss function contains two terms. The first is a reconstruction loss based on the

residual metric defined in [181]. The second term is a Kullback-Leibler divergence between

the latent variables and a normal distribution. The coefficient β, which we set to 10−4 during

training, determines the relative importance during training between the KL divergence term

and the reconstruction residual.

A.3.3 Principal component analysis

To perform the decomposition into sparse componets, we constructed a pipeline using the

scikit-learn Python library [145]. The pipeline accepted the processed image data and iter-

atively fit and transformed using the following steps

1. StandardShaper - a custom class to transform input data to size [Nsamples, C,H,W ],

where H,W are the image dimensions, C = 4 for tensor data, C = 2 for flow fields,

and C = 1 for scalar fields.
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2. LeftRightSymmetrize - a custom class which symmetrizes the image along the lateral

direction, to prevent any left-right asymmetry from dominating the principal compo-

nents

3. Masker - a custom class which applies a specified crop and mask to the data. In all

cases we cropped 10 pixels (22 µm) from the boundary in each direction to eliminate

distortion at anterior/posterior poles, as well as behavior at the ventral furrow. At

later time points we masked out regions by the cephallic furrow and posterior midgut.

4. ModifiedStandardScaler - Unlike traditional standardization which centers the data

by subtracting the mean, we subtract the ensemble average of all timepoints before

ventral furrow invagination. Note that by not centering the data to have zero mean

before decomposing, this pipeline is not technically PCA.

5. TruncatedSVD - Singular Value Decomposition truncated to N = 16 components.

A.3.4 SINDy fitting procedure and library construction

Library construction

For each field in the library (m, v, c), we first projected onto the first N PCA components,

where N = the number of components that explain 95% of variance. From these smoothed

projections of the raw data, we computed the following libraries of scalar and tensor terms:

Lc =

{
1, c, Tr(m), v2,∇ · v

}
(A.32)

Lm =

{
m, mTr(m), Ω, E, ΓDV

}
(A.33)

Here Ω = (∇v −∇vT )/2 is the vorticity tensor, and E = (∇v +∇vT )/2 is the strain rate

tensor. We also included a static DV-aligned source ΓDV in the tensor library. We used

these base sets to generate composite libraries using the following operations
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1. Advective terms: (v · ∇)c, (v · ∇)m

2. Symmetric couplings of tensors in Lm. Note that this creates the co-rotation term

[Ω,m]

3. Nonlinear couplings of scalars in Lc

4. Outer product of tensor library and {1, c} to include cadherin-modulated terms

5. Removal of any terms higher than first order in derivatives

We used these operations to generate a candidate library and stored it in an H5F filesystem

for faster access during repeated training operations. We also stored the projections of each

field onto the principal components. Finally, we included the time derivatives of the projected

fields, computed using smoothed finite differences with a window size of 7 minutes, for use

in the SINDy fitting procedure [26].

In the atlas, myosin and cadherin were measured on different embryos. To compute

terms which couple m and c, we leveraged time-aligned ensemble averages enabled by the

Drosophila atlas. Specifically, to compute a term like cm(t = t0) for an embryo live-imaged

for myosin, we used c = ⟨c(|t − t0| < 1)⟩. A similar replacement was used for terms like

cTr(m) for cadherin-imaged embryos.

SINDy fitting

To fit equations to the data using the above libraries, we collected each term and standard-

ized them so that they had zero mean and unit variance over the entire dataset. We used

the SINDy procedure and the Sequentially-Thresholded Least Squares (STLSQ) selection

algorithm [26]. Rather than fit equations to the bare time derivative, we instead fit to the

material derivative by adding the relevant terms to the left hand side before optimization.

That is, we fit a myosin equation to the target ṁ + (v · ∇)m + [Ω,m], with the latter two
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terms removed from the candidate library. Similarly, we fit a cadherin equation to the target

ċ+ (v · ∇)c and removed the latter term from the candidate library.

STLSQ iteratively performs a regularized least squares minimization procedure. At each

iteration, it removes any library terms whose standardized coefficients are below a threshold-

ing parameter τ , which we set to τ = 0.01. This process is repeated until the result converges.

For the least squares fitting, we used L2 (ridge) regularization with a ridge parameter α = 10.

The SINDy procedure is not deterministic, especially when the data is noisy and the

library is large or contains several nearly equivalent terms. To account for this, we repeated

the fitting procedure and kept terms that were present in an ensemble average over these

runs. The terms present in (6.2) were found via an ensemble average over 10 trials, each

trained on 10% of the dataset.

When performing an ensemble average of trials on a large library, the magnitudes of each

coefficient may be suppressed by the presence of subleading terms that appeared stochasti-

cally in different models within the overall ensemble. For this reason, we repeated the fitting

procedure using a library restricted to only the terms present in (6.2). We used the resulting

equation, listed below, to integrate the model and generate the results in Fig. 6.3.

∂tm+ (v · ∇)m+ [Ω,m] = −0.06(1− 0.9 c) m+ 0.56(1− 0.7 c) mm+

0.49(1 + 0.6 c) Em+ 0.05(1− 0.8 c) mΓDV (A.34)

Hybrid integration of cytoskeletal and tissue dynamics

To integrate the cytoskeletal dynamics, we used a hybrid model which forecasts myosin

and cadherin using (6.1)-(6.2) and predicts instantaneous tissue flow using a neural network

(Fig. 6.3a). At each time step, we computed the field v from the current myosin field m

using the neural network trained and reported in Fig. 6.1e-h. In order to translate the

instantaneous flow rather than forecast, we omitted the recurrent LSTM layer (Evolver
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module in Table A.6) and only applied the Encoder, Latent, and Decoder modules to the m

field. Next, we computed the derivatives ṁ, ċ according to the machine-learned dynamical

equations. To eliminate artifacts, we performed two postprocessing steps. First, we zeroed

each time derivative at the anterior and posterior poles (15 pixels or 33 µm from each pole)

in order to eliminate artifacts due to distortion that may be amplified further when taking

spatial gradients, following [181]. Second, we applied a gaussian filter (σ = 3 pixels = 6µm)

to each field in order to smooth over upsampling artifacts introduced by the neural network.

We performed a fourth order Runge-Kutta integration using the torchdiffeq library [35] for 30

minutes, beginning 10 minutes prior to VF and ending approximately 14 minutes after GBE

onset. Following [181], we compare predictions using the normalized error metric (A.31).

While past work has proposed that a Stokes equation can determine tissue flow from

the global myosin distribution [181], we have instead used a neural network to predict in-

stantaneous flow. The reason for this is that [181] required adding a ventral cut to the 3D

embryo mesh to model cell internalization during VF. This spontaneous change in geometry

is a distinct morphogenetic event that is beyond the ability of our hydrodynamic models to

predict. Instead, we used a NN which has learned to predict flow observed in experiment

from myosin directly. It does not need to know about the system’s changing geometry, but

instead infers its effects from features of the myosin pattern. Using a NN kept the dynamical

system closed and autonomous such that it could be integrated from initial conditions.

A.3.5 Analysis of experimental data for Figures 4-6

In this section, we describe the analysis of the experimental data shown in main text Figs.

4-6. We used slightly different image processing protocols than for the preceding Figures

1-3, where the main aim is to pre-process data for machine learning models.
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Analysis of Drosophila e-cadherin and mysoin levels in DV and AP mutants

Pullback images were created from 3d lightsheet data using tissue cartography as described

in Materials & Methods. To time-align movies from DV mutants, we used the formation of

the cephalic furrow and the invagination of the posterior midgut, all of which are preserved

in DV patterning mutants. For AP mutants (Fig. 5), we used PIV to time align. Since

the overall level of flow is very low, the uncertainty due to this manual alignment was not

a serious concern. Data from fixed embryos (e-cadherin) was aligned by comparing the

morpholgy, in particular the characteristic folds, with the live movies.

We pre-processed the myosin and e-cadherin images as follows. Myosin was analysed

using the cytosolic normalization filter described above. E-cadherin has very low levels in

the cytosol, so the cytosolic normalization cannot be used. Instead, we normalized the

contrast of all images by setting the 5th and 95th percentiles to 0 and 1, respectively. Note

that therefore, comparisons of absolute levels of e-cadherin are not possible, in contrast to

myosin. To measure myosin and e-cadherin gradients, we averaged the signal over the AP

axis in a rectangular window that spanned the distance between the cephalic furrow and

the beginning of the region that invaginates to form the posterior midgut. Tissue flow was

analysed using PIV as described above.

We also analyzed the AP-variation of myosin and e-cadherin. As examined in Ref. [109],

there are no systematic AP stripes in the myosin pattern. In SI Fig.

Analysis of Drosophila AP genetic patterning

To analyze the gradients of homeobox genes, we normalized the images by setting the 5th

and 95th percentiles to 0 and 1, respectively. We then we averaged the signal over the AP

axis in a curved window that spanned the distance between the 2nd and 7th Runt stripes.

We adjusted the signal by the cell density, which is higher on the dorsal side of the embryo.

We applied the same procedure to the TLRs Tartan and Toll6 shown in Fig. 5.

170



Analysis of neural tube organoids

All images of neural tube organoids (NTOs) were taken on a Leica SP6 confocal microscope

as z-stacks. For this system, time alignment is trivial since the onset of the morphogenetic

process is controlled by the addition of BMP4. In all quantifications we exclude the “dome”,

i.e. the single-cell layer surrounding the outer lumen, making the cutoff where the cells do

not adhere to the glass substrate anymore. We performed three different kinds of image

analyses on these datasets.

1. For myosin and e-cadherin as shown in Fig. 6, we used surface extraction and tissue

cartography to extract the apical surface of the NTO. For myosin, we used these

surfaces to quantify the radial gradient. In the case of myosin, we found fluorescent

granules in the NTO lumen, close to the apical surface. We removed these granules

computationally where possible, and excluded regions where the granules were too close

to the apical surface to be separated from it from our quantifications.

2. For e-cadherin, we used a slightly different method to quantify the radial gradient

which was more convenient for a large number of samples. We created radial slices,

as shown in Fig. 6b, rotating the sample by 45 degree increments to obtain multiple

perspectives, and then extracted the apical surface within such a 2d slice. We then

quantified the e-cadherin levels along the extracted surface.

3. For dataset showing nuclear-localized markers (Hes1, Zic2, Smad 1/5/9), we used the

DAPI channel to create a nuclear mask, excluding all non-nuclear signal. We then

created radial slices as before, and computed the average signal, normalized by nuclei

area, along the z-axis (vertical axis in Fig. 6).

For all three analyses, we standardized the images by setting the 5th and 95th percentiles to

0 and 1, respectively.
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