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Summary  
Background Cities are becoming increasingly important habitats for mosquito vectors of disease. The pronounced 
heterogeneity of urban landscapes challenges our understanding of the effects of climate and socioeconomic factors 
on mosquito-borne disease dynamics at different spatiotemporal scales. Here, we quantify the impact of climatic and 
socioeconomic factors on urban malaria risk, using an extensive dataset in both space and time for reported 
Plasmodium falciparum cases in the city of Surat, northwest India.

Methods We analysed 10 years of monthly P falciparum cases resolved at three nested spatial resolutions (seven zones, 
32 units, and 478 worker units) with a Bayesian hierarchical mixed model that incorporates the effects of population 
density, poverty, relative humidity, and temperature, in addition to random effects (structured and unstructured). 
To reduce dimensionality and avoid correlation of covariates, socioeconomic variables from survey data were 
summarised into main axes of variation using principal component analysis. With model selection, we identified the 
main drivers of spatiotemporal variation in malaria incidence rates at each of the three spatial resolutions. We also 
compared observations to model-fitted cases by quantifying the percentage of predictions within five discrete levels of 
malaria risk.

Findings The spatial variation of urban malaria cases was stationary over time, whereby locations with high and low 
yearly cases remained largely consistent across years. Local socioeconomic variation could be summarised with three 
principal components accounting for approximately 80% of the variance. The model that incorporated local 
temperature and relative humidity together with two of these principal components, largely representing population 
density and poverty, best explained monthly malaria patterns in models formulated at the three different spatial 
scales. As model resolution increased, the effect size of humidity decreased, whereas those of temperature and the 
principal component associated with population density increased. Model predictions accurately captured aggregated 
total monthly cases for the city; in space-time, they more closely matched observations at the intermediate scale, with 
around 57% of units estimated to fall in the observed category on average across years. The mean absolute error was 
lower at the intermediate level, showing that this is the best aggregation level to predict the space-time dynamics of 
malaria incidence rates across the city with the selected model.

Interpretation This statistical modelling framework provides a basis for development of a climate-driven early warning 
system for urban malaria for the units of Surat, including spatially explicit prediction of malaria risk several weeks to 
months in advance. Results indicate environmental and socioeconomic covariates for which further measurement at 
high resolution should lead to model improvement. Advanced warning combined with local surveillance and 
knowledge of disease hotspots within the city could inform targeted intervention as part of urban malaria elimination 
efforts. 
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Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
4.0 license.

Introduction  
Cities are becoming an increasingly important ecosystem 
worldwide, characterised by large spatial heterogeneity.1 

Urban landscapes exhibit rapid and pronounced 
environmental variation in both time and space, such as 
flooding events from extreme rainfall and considerable 
heterogeneity in local temperatures with differences of 
2–10°C.2–4 Urbanisation has also sharpened heterogeneity 
in population density and socioeconomic conditions, 

exacerbating inequalities.5,6 Pronounced socioeconomic 
inequalities are evident in the unprecedented scale of 
vast, informal settlements in low-income and middle-
income cities.7,8 Although such heterogeneity is expected 
to have important consequences for the spatiotemporal 
population dynamics of vector-borne diseases, the joint 
effects of climatic and socioeconomic conditions remain 
poorly quantified for whole cities and across different 
spatial scales.9,10

http://crossmark.crossref.org/dialog/?doi=10.1016/S2542-5196(23)00249-8&domain=pdf
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Urbanisation can influence mosquito vectors’ 
ecological and physiological parameters, altering the 
spread and emergence of mosquito-borne diseases. It 
can also improve infrastructure and environmental 
health, leading to better health-care provision.11 Studies 
of urban malaria have largely focused on Africa, where 
the disease remains a predominantly rural problem 
because the vectors are adapted to breed in rural 
environments.12,13 A common view is that urbanisation 
reduces malaria transmission in African cities due to 
fewer suitable breeding sites for the vectors,14 improved 
access to health-care services, and an increased ratio of 
humans to mosquitoes.13 Nevertheless, transmission 
continues to persist in cities, in some cases at even 
higher levels than in surrounding rural areas, with low 
socioeconomic status as a major risk factor typically 

concentrated in peri-urban locations.12,14 Continuing 
adaptation of predominantly rural vectors to the urban 
environment is an increasingly concerning trend.11,13

In contrast to Africa, the Indian subcontinent harbours 
a truly urban mosquito vector, Anopheles stephensi, 
which can transmit both malaria parasites 
Plasmodium falciparum and Plasmodium vivax. The 
mosquito breeds in various artificial containers within 
homes and construction sites.15,16 Given the rapid 
urbanisation of this region, there is growing interest 
in the spatiotemporal structure of urban malaria and 
how it reflects the socioeconomic and environmental 
heterogeneities of large cities.17,18 A previous study 
addressed malaria risk in the city of Ahmedabad in 
northwest India.17 The statistical models considered 
climate factors averaged across the whole city as well as 

Research in context 

Evidence before this study
Urban landscapes are becoming an increasingly important 
ecosystem around the globe. Low-income and middle-income 
countries comprise the world’s most urbanised regions, with 
70% of their populations living in cities. The large and 
heterogeneous environments of growing cities challenge the 
understanding and control of infectious disease dynamics, 
including diseases transmitted by vectors. Because the major 
mosquitoes transmitting malaria in Africa (Anopheles gambiae) 
rely on natural habitats for their breeding, the disease is 
considered a predominantly rural problem, with urbanisation 
expected to decrease its burden in Africa. The term urban 
malaria often refers to malaria occurring in the peri-urban 
environment of cities. By contrast, a truly urban malaria 
mosquito vector, Anopheles stephensi, exists in the Indian 
subcontinent, which relies on the built-in environment for 
breeding. Thus, malaria spread occurs within cities, which 
constitute important regional reservoirs of the parasite despite 
seasonal and low transmission intensity. A literature search of 
publications in English performed on July 16, 2017, in Mendeley 
using the search terms “urban malaria” and “India’’ returned 
161 publications, which were mostly reports on diagnostics or 
brief reports on the disease, and were mostly cross-sectional 
rather than longitudinal studies addressing the spatiotemporal 
variation of disease risk for a whole city, the subject of our work. 
A relevant exception was a modelling study for the city of 
Ahmedabad, India, although this study did not address multiple 
seasons at different spatial scales and the statistical modelling 
did not incorporate climatic conditions jointly with 
socioeconomic drivers. Another exception was a study of a 
Geographical Information System for an urban town in Tamil 
Nadu, India, which assembled, but did not analyse, the 
surveillance data in real time together with several potential 
drivers. As such, the Geographical Information System provides 
a valuable setting for applying the type of analysis presented 
here. A second search on Scopus using “Anopheles stephensi” as 
the keyword returned 107 publications, including mostly early 

entomological studies for India but also a few recent such 
studies on the effect of temperature on demographic and 
transmission parameters and recent reports of the mosquito in 
the Horn of Africa (appendix p 6). This geographical expansion 
makes urban malaria a future possibility for the African 
continent, where the disease remains so far largely rural and 
peri-urban.  

Added value of this study
This study relies on an extensive surveillance dataset of 
Plasmodium falciparum cases for Surat, India, to investigate the 
variation and drivers of malaria risk in a heterogeneous urban 
environment. A statistical model for the spatiotemporal 
variation of cases was developed, which includes both climatic 
and socioeconomic drivers, with the latter summarised into 
two principal axes of variation. Model structures were 
compared across three spatial resolutions, ranging from a few 
zones to a few hundred units. Seasonal hotspots were shown to 
be largely stationary in time, which allowed the identification of 
dominant extrinsic drivers. Our results show how the 
differential effects of population density, temperature, and 
humidity modulate year-to-year malaria burden at different 
spatial scales. 

Implications of all the available evidence
The largely stationary patterns of risk across seasons emphasise 
the existence of hotspots driven by spatial heterogeneity, and 
facilitate seasonal prediction for ongoing intervention efforts, 
including vector control, based on malaria surveillance. Our 
analyses also show how the importance of different drivers 
varies with spatial resolution, indicating that deeper sampling 
at a finer scale (ie, units) is likely to improve spatiotemporal 
modelling of malaria risk and associated prediction, although 
sampling at the finest scale (ie, worker units) could reduce 
predictability. The modelling framework, incorporating climatic 
predictors and major axes of socioeconomic variation, could be 
applied to other vector-borne diseases and other cities for 
which surveillance records are available. 
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other drivers but so far only at the mesoscale of districts. 
Thus, the combined role of local population density, 
humidity, and high temperatures remains largely 
undescribed for whole cities and across spatial 
resolutions.17,19 Reports of A stephensi in Ethiopia,20,21 

Sudan,22 and Djibouti23 raise concerns on the future 
expansion of urban malaria beyond its established 
current geographical distribution in southern and 
western Asia.24,25

Climate variability and climate change are expected to 
impact urban areas in particular ways, acting as major 
determinants of global health.26 Some researchers have 
argued that at coarser spatial resolutions (eg, >10 km), 
the effect of climate in urban areas could be negligible.27 

Others have argued that even at coarse, aggregate scales, 
the effects of climate change should be evident, not only 
in cities, but also in large, peri-urban areas.28 The 
sensitivity of mosquito vectors to environmental variation 
at fine spatial scales has been studied,29–31 with expected 
complex interactions with local features, such as housing 
density and material, vegetation cover, and distance to 
water.29,32 Because climate variables at coarse resolutions 
represent averages over large areas, land types, and 
populations, they tend to hide extremes and can lead to 
spurious correlations with disease risk.33,34 

The elimination of urban malaria in India remains 
a challenge. India’s urban population increased from 
240 million in 1900 to 1·4 billion in 2020 during the 
20th century, extending the problem of malaria to cities. 
Migrants from rural regions usually settling in slums 
brought malaria parasites and seeded transmission via 
A stephensi in urban areas and Anopheles culicifacies in 
peri-urban areas.35 Urban malaria cases account for 
6–28% of annual disease incidence, thus necessitating 
targeted attention. In most urban settings, malaria 
transmission is related to water stored within homes and 
to construction sites where the breeding of the vector 
occurs.24,36 The disease as a specific problem of cities was 
first recognised in 1969. An in-depth review committee 
strongly recommended effective anti-larval measures in 
urban areas, considered responsible for exporting 
infection to rural areas in many states.37 The Urban 
Malaria Scheme was launched in 1971 in 131 cities and 
towns to address the urban malaria problem.36 Control 
efforts are largely based on recurrent anti-larval measures 
at breeding sites and malaria treatment through passive 
case detection.37

An extensive surveillance programme in the coastal 
city of Surat in the northwestern state of Gujarat, India, 
provides an opportunity to analyse the spatiotemporal 
variability of the disease across three different spatial 
resolutions. Here, we use a statistical space-time 
modelling approach to investigate the spatial distribution 
of urban malaria risk and the effects of both climatic and 
socioeconomic drivers within the city. We focus on cases 
by P falciparum because these have been the main 
concern of control efforts, even though incidence 

attributed to the less virulent P vivax is typically higher. 
Also, P falciparum lacks the relapse characteristic of 
P vivax, and as such, should more directly reflect 
environmental drivers of vector transmission. For 
climate, the temperature is well known to affect 
demographic parameters of the vector and the 
developmental time of the parasite within the vector.16 

Moreover, relative humidity has recently been shown to 
influence the interannual variability of the disease at the 
whole-city level for both Surat and Ahmedabad.38 
Humidity rather than precipitation preceding the 
epidemic season best explains and predicts the temporal, 
year-to-year variation in epidemic size.38 Therefore, we 
interrogate the spatiotemporal data on more local 
effects of both temperature and relative humidity, in 
a socioeconomic context. We are interested in the 
plausibility of reducing the complexity of the socioe-
conomic space by considering a low number of dimen-
sions that nevertheless accounts for a substantial 
fraction of the variance. That is, we seek a parsimonious 
model of the spatiotemporal variation of the disease 
for the whole city. We discuss how this approach 
complements more local and detailed epidemiological 
studies, how our approach could be coupled with 
existing efforts to use Geographical Information Systems 
for urban malaria surveillance, and the implications of 
our findings for malaria control and elimination efforts 
in the Indian subcontinent. 

Methods  
Study site and data collection  
The city of Surat presents ideal characteristics for our 
study, given the pronounced environmental and socioe-
conomic disparities and a well established vector-borne 
disease surveillance programme. The city is located on 
the banks of the Tapi River in Gujarat, northwestern 
India (figure 1). It is one of the fastest-growing Indian 
cities due to immigration from various parts of Gujarat 
and other Indian states, with a ten-fold increase in 
population in the past four decades.39 The climate is 
semi-arid, with temperatures ranging from 37°C to 44°C 
in the summer, minimum values of about 22°C in winter, 
and averages of 28°C during the monsoon season. 
Rainfall ranges from 950 mm to 1200 mm per year 
(appendix p 2), and 90% of rainfall falls during the 
monsoon season, from June to September.40

Malaria transmission in Gujarat, including the city of 
Surat, is considered low and epidemic, with highly 
seasonal transmission and yearly epidemics of peak 
incidence between September and November.41 Surat 
has an average of 1978 total cases per year (0·17 cases 
per 1000 population) for P falciparum (and 6114 cases 
per year, or 0·36 cases per 1000 population, for P vivax; 
appendix p 3). Control efforts have reduced the burden 
of malaria since the epidemic emerged in the 1990s for 
both parasites in the city. We focus here on P falciparum 
because it remains the main target of control efforts. 

See Online for appendix
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Dedicated control efforts (indoor residual spraying, 
breeding site detection, or insecticide-treated bednets 
to prevent transmission) by the Surat Municipal Corpo-
ration have kept malaria incidence low but have not 
eliminated the disease. Malaria still exhibits interannual 
variability with seasonal outbreaks of varying sizes 
(appendix p 3). 

We obtained monthly malaria cases from 2008 to 2014 
from the Surat Municipal Corporation disaggregated at 
three different levels of spatial resolution corresponding 
to seven zones, comprising 32 units, which are further 
divided into 478 worker units. A worker unit corresponds 
to an area inhabited by approximately 10 000 population, 
assigned to a malaria control personnel for epidemi-
ological surveillance (both active and passive). 

We collated multi-sourced spatiotemporal climatic and 
socioeconomic datasets. We reconciled the socioeconomic 
and demographic data to the 1-km grid of the climate 
data, to generate three databases of malaria cases and 
associated covariates at the different levels of aggregation. 
Specifically, an ordinary kriging method (appendix p 14) 
was used to generate an estimated interpolation surface 
for each covariate at the level of the 478 worker units. 

The socioeconomic data are based on both the 2011 
census and a household survey at 90 locations and 
400 households (appendix p 14).39 Additional data on 
population and slum density were obtained from the 
Surat Municipal Corporation. 

Satellite products were used for the climate data. Land 
surface temperatures were extracted from both the Terra 
and Aqua satellites of MODIS, and precipitable water 
values were acquired from MODIS MOD05_L2 Total 
Precipitable Water for their overlapping period between 
2008 and 2015. Relative humidity is typically associated 
with precipitable water, land surface temperature, and 
specific humidity, with high precipitable water values in 
the absence of clouds indicating a very moist atmosphere.42 
Relative humidity reflects the amount of moisture in the 
atmosphere; when relative humidity is low, it contributes 
to the drying of environmental moisture (a measure of 
the amount of water in the air column and vegetation), 
and conversely when relative humidity is high, the 
environment absorbs moisture from the atmosphere. We 
used these products and relationships to estimate surface 
relative humidity. Specifically, we calculated specific 
humidity from precipitable water using a previously 

Figure 1: Map of the study zones and time series of P falciparum cases in the 
central zone in 2008–14
(A) Study area. The seven administrative zones of Surat, India, are depicted in 
red. For illustration, selected units (of a total of 32) are shown in black within the 
central zone. The embedded image shows worker units in blue. A time series of 
P falciparum cases is shown for the central zone (B), and the three units (C) and 
six worker units (D) within the central zone. P falciparum=Plasmodium falciparum.

0

100

200

300

2008 2010 2012 2014
Year

N
um

be
r o

f
P 

fa
lci

pa
ru

m
 ca

se
s

Central zone

City South Begampura City North

2008 2010 2012 2014 2008 2010 2012 2014 2008 2010 2012 2014
0

40

80

120

0

20

40

60

0

50

100

150

200

Year YearYear

Year YearYear

N
um

be
r o

f
P 

fa
lci

pa
ru

m
 ca

se
s

N
um

be
r o

f
P 

fa
lci

pa
ru

m
 ca

se
s

Units

4 5 6

1 2 3

2008 2010 2012 2014 2008 2010 2012 2014 2008 2010 2012 2014

0

2·5

5·0

7·5

0

2

4

6

0

2

4

6

0

3

6

9

0

0·5

1·0

1·5

2·0

0

2·5

5·0

7·5

N
um

be
r o

f
P 

fa
lci

pa
ru

m
 ca

se
s

Worker units

A

C

D

B

https://earthdata.nasa.gov/eosdis/daacs/laads
https://earthdata.nasa.gov/eosdis/daacs/laads
https://modis.gsfc.nasa.gov/data/dataprod/mod05.php
https://modis.gsfc.nasa.gov/data/dataprod/mod05.php


Articles

www.thelancet.com/planetary-health   Vol 7   December 2023 e989

published expression (appendix p 16). We calculated air 
pressure using a linear association with elevation 
(appendix p 16) and used land surface temperatures from 
MODIS. Relative humidity was calculated based on 
specific humidity, air pressure, and air temperature 
(appendix p 17). Because satellite climate data are often 
sensitive to measurement errors, we used observations 
from ten local temporary meteorological stations to check 
for the consistency of the satellite products (appendix 
p 16). 

Data analyses  
To examine spatial patterns of malaria risk independently 
from the interannual variation of incidence, we accu-
mulated reported cases for a given year. We normalised 
this sum by the total yearly cases for the whole city. We 
then conducted standard univariate statistical analyses 
for spatiotemporal systems to evaluate the spatial 
dependency of malaria cases per 1000 people. 
Specifically, a univariate Moran Index (Moran’s I) was 
computed through time (appendix p 3).43,44 Moran’s I is 
used to identify the global degree of spatial association 
(how much the magnitude of the variable of interest at 
one location influences its magnitude at a nearby 
area).43,44 Given the existence of a significant spatial 
autocorrelation in the data, we aimed to identify where 
the hotspots formed by spatially autocorrelated units 
were located. We used for this purpose a local indicator 
of spatial association (LISA).44 This statistic specifically 
identifies units with a high incidence that are 
significantly associated with surrounding units also of 
high incidence. We could therefore identify malaria 
hotspots and assess whether they were maintained over 
time. 

To reduce the dimensionality of the socioeconomic 
variables (appendix p 4) and to address the existence of 
a spatial pattern in these indicators, we used principal 
component analysis (PCA). This method was applied to 
find the best low-dimensional representation of the 
variation in this multivariate dataset, and to determine 
which variables were associated with each of the major 
components. In the statistical model described later, we 
specifically retained components that together account for 
more than 80% of the variance in socioeconomic space. 

Statistical models  
We used a spatiotemporal Bayesian hierarchical model 
framework to assess the relative contribution of climatic 
and socioeconomic factors in determining space-time 
urban malaria case patterns. Generalised linear mixed 
models (GLMMs) were formulated, including climate 
covariates (with linear and non-linear terms), PCA terms, 
and random effects (to account for spatial depen-
dency structures, seasonality, and interannual variability 
attributed to unobserved factors, such as control efforts, 
quality of health-care services, and local health inter-
ventions).45–48 The model parameters were estimated in 

a Bayesian framework in R version 4.0.2 (using integrated 
Laplace approximations49,50). The equations are given and 
described in the appendix (pp 18–20).

Scale dependency  
Model selection criteria (deviance information criterion 
and cross-validated mean log score) were applied to 
identify the best model at a given resolution (starting 
with the intermediate scale of units). Then, to evaluate 
the model sensitivity to a change in spatial scale, we also 
compared the likelihood ratio pseudo-R² and the mean 
absolute error (MAE) of the best model selected at the 
intermediate level of aggregation with those selected at 
both the more aggregated resolution (seven zones) and 
the more disaggregated resolution (478 worker units). 
Although it is interesting to compare the model perfor-
mance at different scales, we focused on understand-
ing a comparison of the factors that are significant 
at the different scales; for this, we evaluated changes 
in the 95% credible interval of the different estimated 
parameters to determine whether they contained zero.

Model predictability  
To assess the predictive ability of the best model for each 
spatial resolution, we used the posterior predictive 
distributions of malaria incidence for each unit and 
month. To summarise this information, we aggregated 
annually the observed and posterior predictive mean 
malaria risk estimates across months and generated 
predictions for each unit in high and low incidence years. 
We compared the temporal evolution of the fitted 
posterior median cases with the observed cases for the 
entire city of Surat. We first compared the difference in 
MAE (the average of all absolute errors). We performed 
comparisons between the baseline model (model with 
the monthly and yearly random effect) and each new 
candidate model fitted at each level to identify the 
proportion of units for which more complex models 
improved model fit.51 In addition, we classified the 
cases into five categories generated by assembling all 
zero cases in one class and subdividing all remaining 
non-zero cases into four equally sized intervals (based on 
quantiles of the distribution of cases). The resulting 
categories were labelled as no cases, very low, low, high, 
and very high cases. We then mapped the categories of 
the spatial predictions and observed cases for 2008 and 
2011, and quantified the times that the classes correctly 
matched. These years were selected to represent a high 
and low transmission year based on the temporal 
dynamics (appendix p 3). Finally, we compared the 
proportion of places where the selected model accurately 
predicted malaria incidence across scales. 

Role of the funding source  
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

For more on land surface 
temperature data from MODIS 
see https://earthdata.nasa.gov/
eosdis/daacs/laads

For more on precipitable water 
data from MODIS see https://
modis.gsfc.nasa.gov/data/
dataprod/mod05.php

https://earthdata.nasa.gov/eosdis/daacs/laads
https://earthdata.nasa.gov/eosdis/daacs/laads
https://modis.gsfc.nasa.gov/data/dataprod/mod05.php
https://modis.gsfc.nasa.gov/data/dataprod/mod05.php
https://modis.gsfc.nasa.gov/data/dataprod/mod05.php
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Results  
The pattern that resulted from ranking malaria risk based 
on incidence was mainly stationary, with locations of high 
risk and low risk persisting over time (figure 2A), 
independently from the interannual variation in total 
malaria cases (figure 1, appendix p 6). This regular spatial 
pattern suggests the existence of underlying substantial 
spatial determinants that are largely stationary over the 
temporal scales of malaria variation considered here. This 
pattern exhibited spatial autocorrelation as evalu ated with 
Moran’s I (appendix p 3); of note, this spatial association 
was also largely stationary but exhibited seasonal and 
interannual variation with a slight reduction concomitant 
with the transient decline in epidemic size during this 
period (appendix p 3). The LISA test showed that clusters 
of high versus low malaria risk locations varied across the 
city (figure 2B). Specifically, units in the central and 
northern parts of the city showed positive-positive 
associations with malaria risk or hotspots, whereas some 
units in the southern periphery showed negative-negative 
associations or coldspots. This pattern of clusters identified 
through spatial associations also showed a striking 
regularity from season to season (figure 2B, appendix p 6).

We used PCA to reduce the dimensionality of the 
socioeconomic space (appendix p 4). This analysis provides 
a low-dimensional representation of the variation in this 
multivariate dataset (figure 3A, B, appendix p 7). The 
scores in figure 3C show the correlations between specific 
socioeconomic variables and the different principal 
components (PCs). PC1 broadly represents the economic 
level, with contributions including total income and 
variables related to access to water. PC2 is associated 
mainly with labour and employment, probably repre-
senting the effect of movement and exposure in particular 
environments within the city. Finally, PC3 exhibits 
a substantial contribution from population density. These 
three components accounted for more than 80% of the 
total variance in the data (figure 3D). 

We then addressed the association of malaria risk 
with the space-time variation in socioeconomic 

vari ables, including population density, summarised in 
the three main components of the PCA and environmental 
factors incorporated linearly and non-linearly (relative 
humidity and temperature). The temporal associations 
between ranked malaria risk and mean temperature and 
humidity are shown in the appendix (p 8). A statistically 
significant linear correlation was found only between 
malaria risk and relative humidity (p<0·01). Signifi-
cant spatial correlations (p<0·05) were found between 
PC1 and PC3 and the mean ranked cases (appendix p 8). 
These exploratory analyses suggested the covariates that 
might contribute significantly to the spatiotemporal 
statistical model for cases across the city. 

To identify and select these variables, we considered the 
results of fitting the different GLMMs of increas-
ing complexity, which incorporate the climatic and socioe-
conomic factors, as well as random effects accounting for 
unobserved variation, more formally. Goodness-of-fit 
metrics for the GLMMs are shown in the table. Models 
that included or excluded the effect of a given climatic or 
economic or demographic variable and neighbourhood 
structure were compared based on DIC and cross-validated 
mean log score. In addition to the terms of our baseline 
model (seasonal, annual, and spatial random effects), we 
found that the model fit was best when the socioeconomic 
variation summarised in PC1 and PC3 was included 
(table). For the two climate covariates, we specifically 
compared model performance for linear and non-linear 
functions. The DIC scores for the different models 
with combinations of climate covariates (with lag 0) 
implemented linearly and non-linearly are shown in the 
appendix (p 8). For most models, performance was better 
for the non-linear than for the linear functions. The non-
linear association between climate factors and malaria 
incidence rates is supported by a decreasing non-linear 
association for temperature and a saturating positive asso-
ciation for humidity (appendix p 9). 

The selected model that best accounted for the spa-
tiotemporal variation in malaria incidence included the 
combined effects of temperature, humidity, PC1 and 
PC3, and seasonal and spatial random effects. Combined 
with the random structured and unstructured effects, 
these factors explained 60% of the variance based on the 
R² likelihood ratio test (table). Of the 60% total variance 
explained, 29% was accounted for by the monthly 
(seasonality) and yearly unstructured and structured 
random effects. An additional 10% was accounted for by 
PC1 and PC3, and another 21% by climate factors 
(temperature and relative humidity). Specifically, the 
interannual variability of humidity and temperature 
affected the temporal variation of malaria cases across 
the years (appendix p 9). 

We showed the posterior mean parameter estimates for 
the best model at the intermediate level (units; appendix 
p 10). All parameters differed significantly from zero, with 
posterior distributions from the two chains well mixed 
and converged based on the Gelman-Rubin diagnostic. 

Figure 2: Spatiotemporal patterns of malaria annual ranked incidence
(A) Distribution of cases normalised by population, with colour intensity (from 
low [white] to high [blue]) corresponding to the ranking of incidence at the level 
of the unit. (B) Clusters in malaria incidence (cases per 1000 population) for 
2008–14 identified using LISA analysis. The resulting LISA cluster maps depict 
locations with significant local Moran’s I statistics, classified by type of spatial 
association. This analysis explicitly identifies units with a spatial association in 
malaria incidence. Depending on the indicator’s sign (positive or negative), the 
local associations can be positive-positive (in red), positive-negative, negative-
positive, or negative-negative (in dark blue). Positive-positive and negative-
negative associations represent spatial clustering, whereas positive-negative 
and negative-positive correspond to spatial outliers. In this plot, local spatial 
autocorrelation corresponds to the core of a cluster (the actual cluster includes 
all the neighbours of a unit and the core). Clusters are significant at p<0·05 
(based on 9999 permutations). LISA=local indicator of spatial association.
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PC3 exhibited a positive and statistically significant 
association with malaria incidence. Moreover, the effects of 
climate factors on malaria incidence rate were non-linear, 
consistent with our exploratory analyses (appendix p 9). 
The effect of temperature was negative, consistent with 
temperatures above a certain threshold decreasing trans-
mission intensity by influencing mosquito and parasite 
physiological and demographic parameters.52,53 Relative 
humidity showed a significant positive effect on malaria 
risk across the city (appendix p 9) 

A comparison of predicted and observed malaria cases 
is presented in figure 4 (and appendix p 9). In general, 
predicted and observed cases were consistent over time 
for the total cases, with a slight tendency to underpredict 
seasonal peaks (figure 4A). The maps show spatial 
comparisons for observed and predicted cases at the unit 
level for representative years, namely 2008 for high 
incidence (figure 4C, E) and 2011 for low incidence 
(figure 4D, F). Generally, the predicted patterns reflected 
the observations for individual units and the mean 
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Figure 3: Principal component analysis of the socioeconomic data
(A, B) Contribution of the different socioeconomic variables to the three principal axes of variation. Vectors depict the contributions of the socioeconomic variables to 
two PCs at a time, the first and second in (A) and the second and third in (B). The colours from light blue to red indicate the value of the contributions from low to 
high. (C) Scores (the transformed variable values in the new space defined by the PCs) or correlation coefficients between the variables (rows) and the PCs (columns). 
(D) Scree plot showing the contribution of the different components to the total variance in the original data in descending order of importance; the three first 
components explain 80% of the variance. The association between the PCs and the cases is shown in the appendix (p 8). PC=principal component. SC=Scheduled 
Caste. ST=Scheduled Tribe. 
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seasonality, and for the aggregated total cases over the 
whole city monthly (figure 4, appendix p 9). The 
interannual variability of these total cases was well 
reproduced in these simulations for the whole study 
period, starting from initial conditions (appendix p 9). In 
the spatially explicit comparisons, we observed that the 
models at the intermediate level correctly predicted 
the observed case quantile in 73% of the units in 2008 
and 66% in 2011. In addition, the percentage of units for 
which the model predicted on average the right case 
quantile was the highest at the intermediate level (57%), 
compared with two (29%) of seven units at the aggregated 
level of zones and 236 (49%) of 478 worker units predicted 
correctly (appendix p 11). Underprediction of peaks 
occurred particularly for the city centre in years with low 
epidemics, such as 2011. By contrast, for years with large 
epidemics, such as 2008, the model could capture the 
overall spatial pattern across the southeast and northwest 
of the city. 

To explore whether the significance of the covariates 
varied as a function of spatial scale, we repeated the 
model selection process for the other two spatial 
resolutions of seven zones and 478 worker units. The 
goodness of fit of the selected models for these two levels 
is shown in the appendix (p 11). Results were broadly 
consistent with those at the intermediate scale, in that 
adding climate and PCs representing socioeconomic or 
demographic variation improved the fit despite the 
increased model complexity. In addition, based on 
the R² likelihood, we found that, overall, the models 
at the intermediate scale had a higher goodness-of-fit 
measure, meaning that they explain a larger proportion 
of the variance. To further explore the influence of scale, 

we compared the significance of the fitted coefficients for 
the respective best models at the three different spatial 
levels (zones, units, and worker units; figure 5). Although 
the signs of each coefficient were consistent across 
scales, and, to some extent, their values were also largely 
consistent, we were interested in changes in their signif-
icance level (parameter estimates were considered 
statistically significant if their 95% credible interval 
did not contain zero). The effect of climate covariates 
contributed to explaining temporal variability in the data. 
Specifically, when we compared the contribution of the 
monthly and yearly random effects from the baseline 
model to those for the best model at each of the levels, 
the contribution was significantly reduced when we 
incorporated these covariates (appendix pp 12–13). When 
we disaggregated the system, the effect of temperature 
strengthened, whereas that of humidity weakened 
(figure 5). The effects also intensified for PC1 and PC3 
(primarily reflecting the level of income or economically 
deprived communities and the population density of 
a site, respectively), both for the value and the significance 
of the corresponding coefficients from lowest to highest 
resolution. 

To explore the predictive ability of the best models at 
each of the scales, we evaluated the differences in the 
MAE. The respective difference in the MAE of a baseline 
model (in this case, a model with only random effects: 
seasonal, annual, and spatial) and the best model at each 
level are shown in the table and appendix (pp 4, 13). This 
quantity represents a measure of the difference between 
modelled and observed values, over the 8 years, for each 
spatial unit. The unit level showed a lower variance in 
these differences and a higher proportion of locations 

DIC Cross-validated 
mean log score

Likelihood ratio 
pseudo-R²

Baseline: monthly and yearly random effects 

Monthly (eg, seasonality) and yearly random effects plus unstructured and structured spatial 
random effects

4940 3·45 0·291

Baseline plus socioeconomic factors

Baseline plus PC1 4927 3·33 0·354

Baseline plus PC1 and PC2 4928 3·34 0·341

Baseline plus PC1, PC2, and PC3 4921 3·29 0·362

Baseline plus PC2 and PC3 4923 3·28 0·361

Baseline plus PC1 and PC3 4913 3·06 0·396

Baseline plus socioeconomic factors plus climatic factors

Baseline plus PC1 and PC3 plus spatial temperature (linear) 4901 2·96 0·433

Baseline plus PC1 and PC3 plus spatial temperature (non-linear) and humidity (linear) 4894 2·93 0·481

Baseline plus PC1 and PC3 plus spatial temperature (non-linear) and spatial humidity (non-
linear)

4899 2·95 0·600

Adequacy results include DIC, cross-validated mean log score (the conditional and marginal coefficient of determination for generalized mixed-effect models1), and R² based 
on the log-likelihood from the Bayesian fit comparing the baseline model to each of the other models, for Plasmodium falciparum cases in Surat at the intermediate resolution 
(units). Humidity and temperature denote averages over all the units, whereas spatial humidity and temperature denote their local value for the 32 units. Smaller values 
indicate better fitting models for the DIC and cross-validated mean log scores. The value of R² compares observations and predictions (organised into five levels) and provides 
a measure of the fraction of the total variability explained. DIC=deviance information criterion. PC=principal component.

Table: Comparison of the goodness of fit for the spatiotemporal statistical models at the intermediate spatial resolution (units)
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with positive values of the MAE difference (appendix 
p 13). Thus, adding the climatic and socioeconomic 
variables improved the model fit for most units. At the 
finer level of worker units, we saw an interesting pattern 
with a considerable fraction of locations with positive 
values of the MAE difference, indicating again that 
consideration of climatic and socioeconomic conditions 
improved model performance for most of these units. 
However, we also saw substantial variance across 
locations in the MAE difference values, reflecting that 
there were places with very high improvement and others 
with very low improvement in predictive power. Finally, 
at the coarser level of zones, a high fraction of locations 
showed a negative value for this quantity, reflecting 
a lower performance of a model incorporating climatic 
and socioeconomic conditions for most of the regions 
compared with a model that incorporates only the 
random effects. 

Discussion  
Urban environments show pronounced heterogeneity 
from rapid and unplanned urbanisation.18,54,55 Our results 
underscore the importance of considering this spatial 
heterogeneity for predicting urban malaria risk in the 
Indian subcontinent. The spatiotemporal statistical 
models presented here build upon the results of Santos-
Vega and colleagues17 for a different inland city in 
northwest India by addressing the combined role of 
socioeconomic, demographic, and climatic factors in 
determining malaria risk at different spatial scales. 
Combining these factors best explains the spatiotemporal 
variation regardless of spatial scale, from seven coarse 
zones to more than 400 worker units.

Although both temperature and relative humidity 
showed significant effects across these spatial scales, the 
significance of their respective effects increased only 
for temperature at the finer scales, reflecting a local 
influence. Thus, the two climate covariates contribute 
differentially to explain malaria variation: humidity helps 
capture interannual variability and peak timing of 

Figure 4: Observed versus predicted P falciparum cases
(A) Total P falciparum cases. The identity line (in red), a Pearson correlation of 
predicted versus observed cases, shows a value of 0·65. (B) Seasonal pattern for 
the observed cases averaged over all years (red) and the median of 1000 model 
simulations (blue). The 2·5th to 97·5th percentiles of the simulated data are 
shaded in light red. Comparison of observed (C, D) and predicted (E, F) cases for 
2008, a low incidence year (C, E) and 2011, a high incidence year (D, F). The 
colours in the maps progress from blue to red based on quantiles generated by 
considering all zero cases in one class and subdividing all remaining non-zero 
cases into four intervals. The resulting five categories correspond to no cases (0), 
and a very low (1), low (2), high (3), and very high (4) number of cases. 
Comparisons of the quantiles in the maps show that 73% of values match for 
2008 and 66% match for 2011. P falciparum=Plasmodium falciparum.
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outbreaks; temperature contributes to explaining spatial 
variation synergistically with socioeconomic covariates. 
Comparisons across scales indicated that the variation 
explained by temperature was highest for the highest 
resolution, whereas that explained by humidity increased 
for the lower resolution.

The model specifically shows a negative relationship 
between malaria cases and high temperatures. The 
negative effect is consistent with the known non-mono-
tonic dependence of malaria’s vectorial capacity, and 
therefore reproductive number, R0, as a function of 
temperature, which changes from positive to negative as 
temperature increases beyond the thermal maximum 
toward the high end of the temperature spectrum.54–56 As 
a composite quantity, vectorial capacity incorporates 
several parameters that also vary as a non-linear function 
of temperature; these include the incubation period of the 
parasite within the mosquito, several demographic 
parameters of the mosquito, such as larval developmental 
rate and adult survival rate, and parameters related to 
transmission, such as biting rate and the probability that 
a bite results in infection (a study in A stephensi was done 
by Villena and colleagues16). Consistent with the negative 
effect in our model, Surat’s temperatures fall above the 
thermal maximum of vectorial capacity and are generally 
higher than the optima identified for malaria vectors. The 
negative relationship at high temperatures emphasises 
the need to better understand thermal dependencies at 
the high end of the temperature spectrum, the least 
studied part of the physiological curve.29,54,57

The difference between the two climate variables in 
whether they are most significant at aggregate or local 
scales could be explained by the strong dependence of 
relative humidity on winds, which can alter evaporation 
by changing water vapour in the air. Because winds tend 
to vary at a regional scale, humidity would also manifest 
change over large distances.2 By contrast, temperature 
can exhibit large variation within a city at the local level, 
given the pronounced heterogeneity of impervious 
surfaces, with different radiative, thermal, aerodynamic, 
and moisture properties.19 This conclusion should be 
further examined with a higher number of local humidity 
measurements on the ground to cross-validate satellite-
derived values. Similarly, a higher number of households 
could be included to describe socioeconomic variation 
across the city.

Our PCA showed that the presence of three distinct 
components summarised most of the variability across 
spatial units in the socioeconomic covariates, with only 
the first and third proving relevant to the spatiotemporal 
patterns. The first component largely summarises the 
effect of economic disparities, which can modulate host 
exposure to mosquitoes and water availability and 
management, affecting recruitment of the vector.15,16,36 
Access to water is an important determinant of malaria 
risk given that water is supplied irregularly in Indian 
cities, leading to water storage within households, 

creating breeding sites for the mosquito. Specifically, 
A stephensi breeds mainly in clean or clear water 
containers such as overhead water tanks, wells, cisterns, 
barrels or drums, sumps (underground tanks), roof 
gutters, curing pits in construction sites, fountains, and 
ornamental tanks.56 The second component largely 
corresponds to variation in labour and employment, 
which is likely to relate to human mobility. Households 
relying on public and non-motorised transport typically 
correspond to poor socioeconomic status, including 
employment as casual labourers and low-skilled workers, 
and typically belong to socioculturally disadvantaged 
communities such as Scheduled Castes or Scheduled 
Tribes. Employment has also followed the outward 
growth in housing, thus creating commute patterns 
that are not only periphery to centre but also centre to 
periphery and periphery to periphery.58,59 Movement of 
vectors is expected to act at very local scales because 
mosquitoes do not travel far60 and typically stay within the 
same residence for days.16 Finally, the third component is 
associated with population density, critical to epidemic 
spread, particularly in urban landscapes with pronounced 
heterogeneity in population distributions. Population 
density can influence individual risk of infection through 
its effect on the local abundance of mosquitoes.61

Here, population density (represented by PC3) 
increased malaria risk. For urban malaria, higher 
population density could result in higher water storage 
concentrations in close proximity to people. Our finding 
is consistent with that of Romeo-Aznar and colleagues,61 

who presented indirect evidence for an increase with 
human population density of the carrying capacity of 
vector abundance per human for dengue in poor areas 
of Delhi. The authors found that an increase faster than 
linear in poor areas of Delhi was sufficiently fast to 
generate a positive trend in the force of infection with 
human population. These findings differ from the typical 
assumptions in process-based temporal models for 

Figure 5: Model coefficients and their effect size at different spatial scales
Comparison of parameter estimates for the best respective models at the three levels of aggregation (zone, unit, 
and worker unit). A given covariate contributes significantly to the model fit when the 95% credible interval does 
not contain zero. PC=principal component.
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coupled vector-human transmission, of either a constant 
population or a linear increase of vectors with human 
numbers. These assumptions imply a lower force of 
infection when the number of humans is higher, 
resulting in a lower malaria risk with higher population 
density. Thus, our finding further underscores that the 
effect of population density might not be properly 
parameterised in process-based models, depending on 
socioeconomic status, as suggested by Romeo-Aznar and 
colleagues.61

Despite limitations, our spatiotemporal statistical model 
captures the seasonal pattern and the main trends in 
interannual variation of malaria cases. The model can also 
predict the spatial variation in epidemic peaks for the 
period up to 2014 to a reasonable extent. Additionally, 
modelling malaria incidence rates at this resolution, rather 
than at coarser or finer scales, generates better predictions 
overall for each unit in the city, based on comparison of 
MAE between the best model and the baseline model. 
Goodness of fit measured with the pseudo-R² also shows 
that we can explain more spatiotemporal variability overall 
at this scale. Spatially explicit predictions decline in 
accuracy towards coarser levels, reflecting the averaging 
across heterogeneous effects, as seen in the reduced 
contribution of the structured random effect and the 
socioeconomic variables. At the finest scales, there is also 
a reduction in predictability, which could result from 
increased measurement noise in both malaria and 
covariates, and insufficient measurement resolution in 
covariates in general. 

Future analysis will extend the data up to the present 
and improve on the sampling and calibration of 
covariates in space. There is clearly room for more 
detailed characterisation of microclimate and for 
explaining a larger fraction of the observed variability, 
including that captured so far by random effects. 
Resulting model improvements could help address 
whether the population dynamics of the disease exhibits 
a decreasing trend with intervention efforts when 
evaluated in the context of climate variability, and how 
such a trend varies in space. The model framework 
proposed here could be further improved by including 
mobility fluxes derived from movement models based on 
the spatial distribution of the population, to replace the 
near-neighbour effects in the spatial random effect. 
Temporal changes in city structure would also be 
informative, particularly the development of informal 
settlements and the local growth of the periphery with 
associated construction sites. 

The current framework complements efforts to map 
and monitor in real time the spatiotemporal variability 
of urban malaria in India with Geographic Information 
Systems. For example, Srivastava and colleagues62 

describe such a system for a town in Tamil Nadu with 
a considerably smaller population than that considered 
here. Statistical modelling of cases in space and time 
provides a basis for an early-warning system informing 

control efforts. Given the time lags in the climate 
malaria transmission system, which typically span from 
1 month to 3 months, observed climate variables 
incorporated in a model such as the one presented here 
can provide predictive lead capacity for forecasting 
malaria out breaks ahead of the peak season. Random 
effects were incorporated in the formulation of the 
model to account for unaccounted factors in the 
covariates, including effects of control efforts, and for 
case reporting and surveillance error. Although the 
random effects account for substantial variability, 
consideration of the climate covariates reduced their 
size effect. Indication that the effects of specific 
covariates, including temperature and PC1, increase in 
significance at the finest spatial scale, suggests the value 
of better characterising spatial heterogeneity along 
these axes. Extension of the approach to other cities, 
including larger ones, and its sustained application over 
time, would provide a basis to evaluate similarities and 
differences, and to go from maps and alerts based solely 
on surveillance to predictions ahead of the season. Also, 
the larger number of potential environmental and 
socioeconomic covariates collected through such efforts 
could further inform summary variables such as the 
PCs used here.

Surat has experienced extensive malaria interventions 
in the past three decades, reflected in a negative trend in 
reported cases from the 1980s and 1990s to the 2000s. 
Since 2002, the city has had seasonal outbreaks of 
smaller size but nevertheless recurrent, with interannual 
variability but no monotonic trend in reported cases.38 

The stationary pattern of spatial risk described here, 
together with the major drivers of this variation, indicate 
that targeted control could help reduce transmission 
even further, and that control measures could be 
implemented ahead of the season based on known 
spatial heterogeneity. Ongoing efforts to provide better 
access to water might reduce the transmission of 
urban malaria and possibly that of other vector-borne 
infections. Although we could not separate the correlated 
effects of poverty and water access and storage here, this 
is an important area for further study. Ultimately, at 
longer time scales, a poverty reduction concomitant with 
better access to an uninterrupted water supply is 
fundamental to reducing and eliminating malaria within 
cities and at a regional and national level. A deeper 
understanding of the effects of relative humidity and 
temperature on urban malaria transmission, and their 
interplay with population growth, is essential to 
evaluating control in the context of climate variability 
and to building climate change scenarios for the disease. 
Both humidity and temperature are expected to increase 
under future climate projections for the Indian 
subcontinent,3 specifically in the northwest of India.2,57 
A better understanding of how climate factors affect 
malaria transmission within urban environments could 
inform India’s target of malaria elimination by 2030.
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