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Abstract

Objectives: The REACT project was designed around two main aims: (1) to

assess children's growth and motor development after the COVID-19 pandemic

and (2) to follow their fundamental movement skills' developmental trajecto-

ries over 18 months using a novel technological device (Meu Educativo®) in

their physical education classes. In this article, our goal is to describe statistical

analysis of the longitudinal ordinal motor development data that was obtained

from these children using the multilevel ordinal logistic model.

Methods: Longitudinal ordinal data are often collected in studies on motor

development. For example, children or adolescents might be rated as having

poor, good, or excellent performance levels in fundamental movement skills,

and such ratings may be obtained yearly over time to assess changes in funda-

mental movement skills levels of performance. However, such longitudinal

ordinal data are often analyzed using either methods for continuous outcomes,

or by dichotomizing the ordinal outcome and using methods for binary data.

These approaches are not optimal, and so we describe in detail the use of the

multilevel ordinal logistic model for analysis of such data from the REACT

project. Our intent is to provide an accessible description and application of

this model for analysis of ordinal motor development data.

Discussion: Our analyses show both the between-subjects and within-subjects

effects of age on motor development outcomes across three timepoints. The

between-subjects effect of age indicate that children that are older have higher

motor development ratings, relative to thoese that are younger, whereas the

within-subject effect of age indicates higher motor development ratings as a

child ages. It is the latter effect that is particularly of interest in longitudinal

Received: 25 September 2023 Revised: 30 October 2023 Accepted: 31 October 2023

DOI: 10.1002/ajhb.24015

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2023 The Authors. American Journal of Human Biology published by Wiley Periodicals LLC.

Am J Hum Biol. 2023;e24015. wileyonlinelibrary.com/journal/ajhb 1 of 15

https://doi.org/10.1002/ajhb.24015

https://orcid.org/0000-0001-8134-6094
https://orcid.org/0000-0001-8024-909X
https://orcid.org/0000-0002-5607-5736
https://orcid.org/0000-0002-9280-6022
mailto:hedeker@uchicago.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/ajhb
https://doi.org/10.1002/ajhb.24015
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fajhb.24015&domain=pdf&date_stamp=2023-11-19


Funding information
Portuguese Foundation for Science and
Technology, Grant/Award Number:
PTDC/SAU-DES/2286/2021

studies of motor development, and an important advantage of using the multi-

level ordinal logistic model relative to more traditional methods.

1 | INTRODUCTION

In many studies of motor development and health-related
behaviors the outcome of interest is measured in a series
of ordered categories. Such outcomes are termed “ordinal”
and can represent a variety of graded responses such as
ratings of skill level (e.g., poor, good, excellent), sleep qual-
ity (very bad, reasonably bad, good, very good), and screen
time (e.g., not watching, less than 1, 1–2, 2–3, 4–5, and 5 h
or more). In other cases, the outcome may represent a
count (e.g., number of minutes exercised in a day) that has
a large number of zero responses (i.e., no exercise), many
values in the intermediate range, and a few extreme
values. In these cases, an ordinal variable can be con-
structed with ordered categories of, say, 0, 1–15, 16–30,
31–45, 46–60, and more than 60 min of exercise in a day.

Researchers sometimes analyze ordinal outcomes
assuming a normal (continuous) distribution for the out-
come. However, treating the outcome as normal assumes
that the intervals between the categories of the outcome
are all equal, which is clearly a dubious assumption. Also,
as will be described, the ordinal model takes into account
the ceiling and floor effects of the dependent variable,
whereas models for continuous data do not. For example,
if the outcome is coded in categories 1 to 5, a model for
normal data can easily yield estimates below 1 and above
5. In this case, as McKelvey and Zavoina (1975) point out,
biased estimates of the regression slopes and incorrect con-
clusions can result. Furthermore, as Winship and Mare
(1984) note, the advantage of ordinal models in accounting
for ceiling and floor effects of the ordinal variable is most
critical if the variable is highly skewed, which is often the
case where many of the responses are observed in the low-
est and/or highest category of the ordinal outcome. Bauer
and Sterba (2011) conducted an extensive simulation study
addressing these issues and concluded that continuous
models were only reasonable when the ordinal outcome
had seven or more response categories and its distribution
was approximately normal.

Alternatively, researchers sometimes dichotomize an
ordinal outcome and analyze it using (binary) logistic
regression. Sankeya and Weissfeld (1998) provided a sim-
ulation study in which an ordinal outcome with 5 catego-
ries was dichotomized and observed rather large losses of
precision and power resulting from this practice. Also,
Strömberg (1996) showed that the regression estimates
can be poorly estimated when dichotomizing an ordinal
outcome in datasets of limited size. Since power is often a
critical issue, it behooves researchers to analyze ordinal

outcomes with ordinal models, rather than losing power
and information by dichotomizing them.

The ordinal logistic regression model, described as the
proportional odds model by McCullagh (1980), provides a
useful approach for analyzing ordinal outcomes. For multi-
level data, where observations are nested within clusters
(e.g., classes, schools, clinics) or are repeatedly assessed
across time within subjects, multilevel models (aka mixed-
effects models) are often used to account for the depen-
dency inherent in the data (Goldstein, 2011; Hedeker &
Gibbons, 2006; Raudenbush & Bryk, 2002). Multilevel
models for ordinal data have been developed for quite some
time (Agresti & Natarajan, 2001; Hedeker & Gibbons, 1994;
Tutz & Hennevogl, 1996), including software (Hedeker &
Gibbons, 1996), making such analysis accessible to
researchers. More recently, most of the major statistical
packages (e.g., SAS, Stata, R) include multilevel ordinal
models, making these methods even more accessible.

The purpose of this paper is to describe the application
of the multilevel ordinal logistic regression model for data
that are both longitudinal and clustered. In terms of the
organization of this paper, the study design and fundamen-
tal movement skills (FMS) outcomes (e.g. kick, running,
overhand throw) will be described in Section 2. The multile-
vel model for longitudinal ordinal data will be described in
Section 3. We will begin with a 2-level longitudinal model
in which observations (level-1) are nested within subjects
(level-2). We will then present a 3-level model in which the
subjects are nested within clusters (level-3). Section 4 will
illustrate application of the 3-level model using the FMS
total score as the outcome, accounting for the clustering of
repeated observations within subjects and subjects within
schools. Section 5 will present an analysis at the item level,
considering the longitudinal FMS item responses from the
5 items as nested within subjects within schools. Finally,
Section 6 will conclude with some discussion.

2 | STUDY DESIGN AND
FUNDAMENTAL MOVEMENT
SKILLS ASSESSMENT

This study, part of the REACT project, aimed to evaluate
the growth and motor development of children after the
COVID-19 pandemic. A new technological device called
Meu Educativo® was used to track the developmental tra-
jectories of children's FMS over 18 months in their physi-
cal education classes. For more information on the
background, rationale, and methodology of the REACT
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project, which was carried out in Matosinhos municipal-
ity, north of Portugal, see Pereira et al. (2023). The study
included 849 children, aged approximately 6–10 years.
These children were assessed every 6 months from the
beginning of the study to the 12-month mark. We
excluded children without permission from their parents
or legal guardians and those with physical disabilities
that limited their ability to complete all assessments.

The Meu Educativo® technological platform was used
to help the research team members to assess children's
fundamental movement skills (FMS). Information on the
validation process of the platform and reliability can be
found elsewhere (Garbeloto et al., 2023). This device
allows the assessment of 14 FMS. However, in the
REACT project, we only considered 5 FMS associated
with object control because they were part of the annual
Physical Education program used in Matosinhos munici-
pality for children aged 6 to 10 years:

1. Stationary dribbling (FMS1): the child must dribble
(bounce) a ball at least four consecutive times without
leaving the place.

2. Kick (FMS2): the child must kick a ball against the
wall (or a goal) as hard as possible.

3. Overhand throw (FMS3): The child must throw a ball
as hard as possible against the wall.

4. Catch the ball (FMS4): the child must receive a ball
with both hands without leaving the place.

5. Underhand roll (FMS5): the child must roll a ball
against the wall as hard as possible.

Before starting the assessments, team members par-
ticipated in a specific training process following all proce-
dures established by the Meu Educativo® Assessment
Manual. During the training, raters needed to obtain at
least an inter-rater and intra-rater agreement of 80%.

Following the Meu Educativo® assessment protocol, all
participants were instructed to perform each skill at least
twice, the first for familiarization and the second for scoring.
If the rater had doubts regarding the child's performance
level, a third and even fourth attempt was requested, but
only one grade was assigned to the participant.

2.1 | Materials

The materials used were a cell phone with internet to
access to the Meu Educativo® app., a tennis ball
(or similar measurements) for the overhand throw and
underhand roll, a soccer ball for kicking (or with similar
measures to an official adult category ball), and a softball
like a volleyball used by young players (or a ball with
similar measurements).

2.2 | Performance measure

Each FMS assessed in the REACT project contains three
(e.g., kicking and catching the ball) or four components
(e.g., overhand throw, stationary dribbling, and under-
hand roll). The greater the number of components per-
formed with proficiency, the better the performance
level. For example, if a child performs all three compo-
nents proficiently in kick, she/he is classified as a Wizard
Climber representing the proficient level, that is, level
3. If she/he performs only two components proficiently,
she/he will be classified as an Adventurous Climber
representing the intermediate level, that is, level
2. Finally, if a child performs only one or none of the
components proficiently, she/he will be classified as an
Explorer Climber representing the beginner level, that is,
level 1. Further information on the performance measure
can be found in Pereira et al. (2023).

The five FMS items, each rated from 1 to 3, were
added together to yield a sum or total score. A histogram
of these scores (for the observations from all subjects
across all timepoints) is presented in Figure 1. As can be
seen, the distribution of the scores does not approximate
a normal distribution. In fact, the modal response is the
highest category of 15, rather than in the middle of the
distribution. Clearly, assuming a normal distribution for
this outcome is not reasonable according to the guidance
provided by Bauer and Sterba (2011).

3 | MULTILEVEL LOGISTIC
MODEL FOR LONGITUDINAL
ORDINAL DATA

To begin, we will describe the multilevel model for lon-
gitudinal ordinal data, where repeated observations
(level-1) are nested within subjects (level-2). To estab-
lish the notation, subjects are denoted as i (where
i¼ 1,…,N subjects) and the repeated observations are
denoted as j (where j¼ 1…,ni). The number of repeated
observations per subject is ni, and so there is no
assumption that each subject is measured on the same
number of timepoints. In longitudinal studies, it is
common to have incomplete data across time, so it is
important that the model allows for this. Ordinal
regression models often utilize cumulative compari-
sons of the categories. For this, define the cumulative
probabilities for the C categories of the outcome Y as
Pijc ¼Pr Y ij ≤ c

� �¼Pc
m¼1pijm, where pijm represents the

probability of response in category m. For example, with
three categories, we would have Pij1 ¼ pij1 as the probabil-
ity of a response in category 1, and Pij2 ¼ pij1þpij2 as the
probability of a response in categories 1 and 2. The
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probability of a response in category 3 would be obtained
by subtraction as pij3 ¼ 1 – Pij2.

3.1 | Random intercept model

The multilevel logistic regression model for the cumula-
tive probabilities of subject i at timepoint j is given in
terms of the C – 1 cumulative logits as

log
Pijc

1 – Pijc

� �
¼ γc – x

0
ijβþυi

h i
, ð1Þ

with C – 1 strictly increasing model thresholds γc. These
thresholds are akin to intercepts and represent the cumu-
lative logits when the covariates and random effects
equal 0. Basically, the thresholds indicate how many
responses are in the different categories (when the covari-
ates and random effects equal 0), and are usually not of
great interest. The distribution of responses in the
ordered categories is completely arbitrary. As usual, xij
are the covariates and β are the regression slopes
(i.e., effects of the covariates). The covariates can be at
level-1 (e.g., time) or level-2 (e.g., group), or could be
cross-level interactions (e.g., group by time). The random
effects υi reflect each subject's influence on their repeated
observations. This model is referred to as a random-
intercept model as the subject effects do not vary across
time. These are assumed to be distributed in the popula-
tion of subjects as N 0,σ2υ

� �
, and so the sample of subjects

are thought to represent a population of subjects that one
wants to make inferences about.

In terms of the effects of time on the repeated out-
comes, typically the covariate(s) xij would include at least
a linear effect of time. For example, suppose that subjects
are measured at baseline, 6 and 12months. Then, one of
the covariates in xij might be a variable tij (and coded
0, 1, 2) to represent the linear effect of time (in 6month
intervals). With more timepoints, the model might also
include quadratic effects to allow for curvilinear effects of
time. That is, the response across time might be a decel-
erating or accelerating trend, rather than a simple linear
trend. For this, one could include both tij and its square
t2ij to represent the linear and quadratic components of
the trend across time. Alternatively, in some cases, it
might be of interest to compare each follow-up to base-
line and therefore to create dummy variables for each of
the follow-ups treating baseline as the reference cell.
Whether one uses polynomials for trends or dummy
codes to represent the effects of time depends on the sci-
entific questions of interest.

Interactions with the time effects are usually of inter-
est in longitudinal models in order to assess, for example,
the degree to which trends vary across groups of subjects.
So, if there is a grouping variable Gi, say coded 0 for a
control group and 1 for an intervention group, and one
simply included a linear effect of time, the following
model might be posited:

log
Pijc

1 – Pijc

� �
¼ γc – β1Tijþβ2Giþβ3 Gi�Tij

� �þυi
� �

: ð2Þ

Here, β2 represents the group difference when Tij equals
0, and β3 indicates how the group difference varies with

FIGURE 1 Histogram of the FMS

total sum score.
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time. Or, β1 represents the time trend for the control
group (when Gi equals 0), and β3 represents the differ-
ence in the trend for the intervention group relative to
the control group. Thus, testing the significance of β3 is
of great interest as it represents how the trends differ
between the two groups.

3.1.1 | Intraclass correlation

For a random-intercept model, it is often of interest to
express the subject variance in terms of an intraclass corre-
lation (ICC). The ICC indicates the proportion of unex-
plained variance that is at the subject level, and is given by
ICC¼ σ2υ= σ2υþσ2

� �
, where σ2υ is the subject or level-2 var-

iance and σ2 is the level-1 variance. For a logistic regres-
sion model (either binary or ordinal), the level-1
variance, which is not estimated, equals the variance of
the standard logistic distribution, namely π2=3
(Agresti, 2002). Note that the ICC has a minimum of
0 and a maximum of 1, with higher values indicating a
greater proportion of the unexplained variance in the out-
come that is at the subject level. Because the ICC reflects
the unexplained variance (i.e., the variance that is not
explained by model covariates), it can change depending
on the covariates that are included in the model.

3.2 | Random intercept and trend model

Thus far, the model only includes a single random sub-
ject effect υi and assumes that a subject's effect on their
responses is the same across all timepoints. This is often
an unreasonable assumption because subjects often vary
in their trends across time. To permit this, we can extend
the model by including a random subject trend:

log
Pijc

1 –Pijc

� �
¼ γc – β1Tijþβ2Giþβ3 Gi�Tij

� �þυ0iþυ1iTij
� �

:

ð3Þ

Here, υ1i is essentially an interaction of subject by time,
indicating the degree to which subjects have different
time trends. In this model, υ0i represents the subject
effect when Tij equals 0, and υ1i indicates how a subject's
effect varies with time. Subjects have different time
trends to the extent that the υ1i parameters are non-zero.
Both random effects are usually assumed to be normally
distributed in the population of subjects with variances σ2υ0
and σ2υ1 , respectively. The covariance between a subject's
intercept and trend, συ01 , indicates the degree to which a
subject's starting point is associated with their trend.

Notice that the random-intercept model in
Equation (2) is a special case of the random trend model

in Equation (3). By not including the random time effect
υ1i, the random intercept model assumes that these are
all zero and thus that the variance σ2υ1 and covariance συ01
both equal zero. Thus, comparison of the two models via
a likelihood ratio test can be performed to test whether
these two co(variance) parameters (σ2υ1 and συ01 ) equal
zero. If the test is non-significant, then the simpler
random-intercept model is supported and there is no
appreciable subject heterogeneity in the time trends
(other than the random intercept υ0i). Alternatively, if
this test is significant it indicates that subjects do vary in
their trends, and the simpler random-intercept model
would be rejected in favor of the random trend model.

3.2.1 | Time-varying covariates

In some studies, there might be time-varying covariates
which are thought to influence the ordinal outcome. In
this case, the model might be

log
Pijc

1 – Pijc

� �
¼ γc – β1Tijþβ2Xijþυ0iþυ1iTij

� �
, ð4Þ

where Xij represents the time-varying covariate. One
might also examine whether there is an interaction of Xij

with time, by including the product term Xij�Tij into
the model, which would suggest that the relationship
between the covariate and the outcome varies with time.

When time-varying covariates are included in the
model, as in Equation (4), an assumption is made that
the between and within-subjects effects of the covariate
are equal (Hedeker & Gibbons, 2006; van de Pol &
Wright, 2009). To see this, express the time-varying
covariate Xij as Xij ¼Xiþ Xij�Xi

� �
, where Xi is the

mean of the time-varying covariate (averaged across
time) for each subject (i.e., a between-subjects variable).
The term Xij�Xi

� �
represents the subject's deviation at

timepoint j around their mean (i.e., a within-subjects var-
iable). Including both of these terms into the model
yields:

log
Pijc

1�Pijc

� �
¼ γc� β1Tijþβ2Xiþβ3 Xij�Xi

� �þυ0iþυ1iTij
� �

,

ð5Þ

The total effect of Xij, β2Xiþβ3 Xij�Xi
� �

, is parti-
tioned into its between- and within-subjects effects
(i.e., β2 and β3, respectively). The between-subjects part
indicates the degree to which the subject's average covari-
ate level is related to their average outcome level, averag-
ing across time. The within-subjects component
represents the degree to which change in a subject's
covariate level at a particular timepoint is associated with
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change in their outcome at that timepoint (i.e., a within-
subject change). For example, in the analyses presented
below, we will partition the effect of age in this way. The
between-subjects component reflects differences between
children of different ages (i.e., a cohort effect), whereas
the within-subjects component reflects differences as a
child ages (i.e., an aging effect). If these two are equal
(β3 ¼ β2), then the effect is exactly as in Equation (4).
Thus, Model (4) makes the assumption that the within-
and between-subjects effects of the covariate are the
same. This assumption can be assessed by comparing the
models specified by (4) and (5) via a likelihood ratio test.
If these two models are significantly different, then the
assumption is rejected and the more general Model (5) is
preferred; whereas if the models are not significantly dif-
ferent then the assumption is reasonable and Model
(4) can be used. In some situations, one wants to disen-
tangle these two effects, regardless of the results of this
test. In this case, one wants to obtain estimates of the
“pure” within-subjects effect and the “pure” between-
subjects effect of the time-varying covariate, and then
Model (5) is clearly preferred.

3.2.2 | Intraclass correlation

For a random intercept and trend model, there is no lon-
ger a single ICC, as the subject variance varies with the
time variable Tij. However, one can still calculate the
ICC for particular values of Tij. This can be useful to
examine the degree to which the proportion of (unex-
plained) variance that is at the subject level varies with
time. In this case, the subject (level-2) variance equals
σ2υ0 þT2

ijσ
2
υ1
þ2Tijσυ01 . Here, σ2υ0 is the variance of the ran-

dom subject intercepts, σ2υ1 is the variance of the random
subject time trends, and συ01 is the covariance of the two
random subject effects. The level-1 variance is π2=3 (for
the standard logistic distribution), and the ICC is still the
level-2 (subject) variance divided by the sum of the
level-1 and level-2 variances.

3.3 | Three level extension

Thus far, we have considered repeated observations
(level-1) within subjects (level-2), and have presented
two-level models. In some cases, the subjects might be
nested within clusters (e.g., schools, hospitals, work-
places), which then requires a three-level model. Three-
level models for ordinal data have been developed and
described by Raman and Hedeker (2005) and Liu and
Hedeker (2006). For this, consider clusters to be denoted
as i (where i¼ 1,…,N clusters), subjects to be denoted as j

(where j¼ 1,…,ni subjects in cluster i), and the repeated
observations are denoted as k (where k¼ 1…,nij for sub-
ject j in cluster i). The number of subjects per cluster and
repeated observations per subject are not assumed to be
equal. Then, we can generalize (5) by including a random
cluster effect υi as:

log
Pijkc

1�Pijkc

� �
¼ γc� β1Tijkþβ2Xijþβ3 Xijk�Xij

� �"

þ υiþυ0ijþυ1ijTijk

#
,

ð6Þ

Here, the random cluster effects υi are assumed to be nor-
mally distributed in the population (of clusters) with
mean 0 and variance σ2υ 3ð Þ . Notice that these random clus-
ter effects are in addition to the random subject effects in
the model. They represent the effect of a given cluster on
an outcome (from a subject at a given timepoint) within
the same cluster, over and above the effect of a subject
on their repeated outcomes. In this way, the random
cluster effects account for the correlation in the out-
comes of subjects within the same cluster (over and
above the influence of the subject on their repeated
outcomes).

3.3.1 | Intraclass correlation

For a three level model, one can calculate both the
level-3 and level-2 ICCs, which indicate the degree of
unexplained variance that is attributable to the cluster
(level-3) and to the subject (level-2). Again, if there are
random subject intercepts and trends, then one can cal-
culate the subject variance for particular values of Tij.
The ICC for clusters (level-3) is then given by:

ICC 3ð Þ ¼
σ23ð Þ

σ23ð Þ þσ22ð Þ þπ2=3
, ð7Þ

and the ICC for subjects (level-2) is:

ICC 2ð Þ ¼
σ23ð Þ þσ22ð Þ

σ23ð Þ þσ22ð Þ þπ2=3
, ð8Þ

where σ23ð Þ is the cluster (level-3) variance, and σ22ð Þ is the
subject (level-2) variance (which again, can vary by Tij in
models with random time trends). The reason that the
level-3 variance appears in the numerator of the level-2
ICC is that subjects are nested within clusters.
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3.4 | Proportional odds assumption

Models for ordinal outcomes often include the propor-
tional odds assumption for model covariates. For an ordi-
nal response with C categories, this assumption states
that the effect of the covariate is the same across the C – 1
cumulative logits of the model (or proportional across the
cumulative odds). The idea is that if one did dichotomize
the ordinal outcome and used a (binary) logistic regres-
sion model, the regression slopes would be equal, regard-
less of how one did the dichotomization (e.g., for an
ordinal variable with 3 categories there are two possible
dichotomizations: 1 vs. 2 & 3, and 1 & 2 vs. 3). In previ-
ous papers (Hedeker & Mermelstein, 1998, 2000), we
have described an extension to allow for non-
proportional odds for the covariates. While this extension
is useful, especially for categorical covariates, one should
be cautious in using non-proportional odds models if the
model covariates are continuous variables. The reason for
this is that in the non-proportional odds model the trend
lines for the cumulative logits (y-axis) versus the continu-
ous covariate (x-axis) are not parallel, and therefore cross
each other at some value of the covariate. For example,
the cumulative logits of 1 vs. 2 & 3 and 1 & 2 vs. 3 cross
each other. If this crossing happens within the range of
values for the continuous covariate, it would imply, for
example, that the probability of a 1 response exceeds the
probability of a 1 & 2 response, for covariate values below
the crossing, which is clearly impossible. Thus, for con-
tinuous covariates, it is generally reasonable to maintain
the proportional odds assumption. More information
about this can be found in Hedeker et al. (1999) and Ful-
lerton and Xu (2016).

4 | 3-LEVEL ANALYSIS OF THE
FMS TOTAL SCORE

As seen in Figure 1, the distribution of the FMS total
score does not approximate a normal distribution, and so
here we present an ordinal analysis of this outcome. As
can be seen in the figure, the scores ranged from a mini-
mum value of 5 to a maximum value of 15, for a total of
11 ordinal categories. Boys (N = 411) and girls (N = 438)
were analyzed in separate models, treating the repeated
observations (level-1) as nested within subjects (level-2)
who were nested within schools (level-3; N = 25). Each
subject had measurements at three timepoints at which
their FMS, Age, and body mass index (BMI) were
recorded. In total, there were 1120 observations for the
411 boys (an average of 2.725 observations per boy), and
1192 observations for the 438 girls (an average of 2.721
observations per girl). Here, the repeated FMS scores are

the longitudinal outcomes, and Age and BMI are time-
varying covariates. As indicated above, for these time-
varying covariates, we decomposed them in terms of their
WS and BS effects. As recommended in McArdle (2006)
and others, we use age instead of study wave as our time
variable, thus the WS version of Age is our time variable.
This permits us to examine how subjects change in their
FMS total score as they got older in age. Across all obser-
vations, the minimum age value was 5.57 and the maxi-
mum was 11.23 (mean = 8.40). This variation in age was
also observed at each study wave: wave 1 (mean = 7.92,
min = 5.57, max = 10.63), wave 2 (mean = 8.50,
min = 6.39, max = 11.19), and wave 3 (mean = 8.88,
min = 6.62, max = 11.23). For BMI, the minimum was
10.4 and the maximum was 42.92 (mean = 17.85).
Finally, we also included the school size (number of chil-
dren) as a school-level covariate (min = 77, max = 370,
mean = 183.8). Our model is then:

log
Pijkc

1�Pijkc

� �
¼ γc� β1SchoolSizeiþβ2Ageij

"

þ β3 Ageijk�Ageij
� 	

þβ4BMIij

þ β5 BMIijk�BMIij
� �þυiþυ0ij

þ υ1ij Ageijk�Ageij
� 	#

:

ð9Þ

We used the program Supermix (Hedeker et al., 2008)
for all analyses. Supermix provides estimates that are
both conditional (adjusting for the random effects) and
marginal (averaging over the random effects). The latter
er are often called “population-averaged” effects, and are
of interest when inference is to be made about the popu-
lation, whereas the former are sometimes called “subject-
specific” effects, and are useful when interest is on infer-
ence for individual subjects (Hu et al., 1998). Here, we
present the marginal or “population-averaged” estimates.
More information about the difference between the con-
ditional and marginal effects can be found in Hedeker
et al. (2018).

The estimates of the model covariates are presented
in Table 1, which provides the logit estimates, odds ratios
(OR), and 95% confidence limits for the ORs for the sepa-
rate analyses for boys and girls. Note, that if the 95% con-
fidence limit does not include 1, this would reflect a
statistically significant effect at the α¼ 0:05 level.

As can be seen from Table 1, age has a very signifi-
cant positive effect for both boys and girls, and both in
terms of the BS and WS effects. Thus, older boys and girls
have, on average, higher FMS total scores (BS effects),
and subjects increase their FMS total score as they age

HEDEKER ET AL. 7 of 15
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(WS effects). In terms of ORs, the BS effects for boys and
girls are equal to 2.7 and 4.5, respectively, meaning that
the odds of a higher value on the FMS total score increase
by a factor of 2.7 (boys) and 4.5 (girls) for each year of
age. Since this is the BS effect, it is comparing boys and
girls of different average ages. The WS effects indicate
that boys have increased odds of a higher FMS total score
by a factor of approximately 2 per year as they age,
whereas for girls this factor is 4.4. Clearly, subjects signif-
icantly improve on their FMS total score as they age. BMI
has no significant effect for girls, however the BS effect of
BMI is significant and negative for boys. Thus, comparing
boys of different average BMI values (averaged across
time) indicates that the odds of a higher FMS total score
are decreased by a factor of 0.92 with each unit increase
of (average) BMI. Thus, boys with higher (average) BMI
have lower (average) FMS total scores. Finally, school

size does not have a significant effect on the FMS total
scores in both boys and girls.

Table 2 lists the estimates of the variance parameters
associated with the random subject and random school
effects, separately for boys and girls. The random subject
intercept effect variances are highly significant for both
boys and girls. Thus, there is clear evidence of heteroge-
neity in FMS total scores across subjects. In terms of the
random subject WS age variances, there is also heteroge-
neity in the trends across age for boys, but not for girls.
Taken together, subjects differ from each other in their
average FMS scores, while boys also differ from each
other in the change in FMS scores as they age. Based on
the covariances, the two random effects are not signifi-
cantly associated in girls (p¼ :946), and positively related
in boys (p< :001). Expressed as a correlation, the covari-
ance of 2.561 for boys is a correlation of

TABLE 1 3-level ordinal analysis of

FMS total score for boys and girls. Logit

estimates, odds ratios (OR), and OR

95% confidence intervals.

Parameter Logit estimate Odds ratio (OR)

OR 95% confidence interval

Lower Upper

Boys

SchoolSize �0.006 0.994 0.984 1.004

WS age 0.726 2.067 1.501 2.848

BS age 1.005 2.733 1.868 3.999

WS BMI �0.041 0.960 0.857 1.075

BS BMI �0.082 0.922 0.850 0.999

Girls

SchoolSize �0.002 0.998 0.994 1.002

WS age 1.483 4.408 2.293 8.474

BS age 1.515 4.547 3.527 5.862

WS BMI �0.114 0.892 0.758 1.050

BS BMI �0.032 0.969 0.906 1.036

Abbreviations: BS, between-subject effect; WS, within-subject effect.

TABLE 2 3-level ordinal analysis of

FMS total score for boys and girls.

Random effect variance estimates,

standard errors, z values, and p values.

Parameter Estimate Standard error z value p value

Boys

Subject int var 11.722 1.214 9.659 .001

Subject WS age/int cov 2.561 0.288 8.892 .001

Subject WS age var 0.645 0.077 8.378 .001

School int var 0.660 0.388 1.703 .089

Girls

Subject int var 3.950 0.591 6.685 .001

Subject WS age/int cov 0.022 0.334 0.067 .946

Subject WS age var 0.772 0.598 1.290 .197

School int var 0.256 0.171 1.497 .135

Abbreviations: cov, covariance; int, intercept; var, variance.
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2:561=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11:722

p � ffiffiffiffiffiffiffiffiffiffiffi
0:645

p� �¼ 0:931, reflecting a strong
positive association. For boys there is a significant posi-
tive association between their average FMS total score
and their trend in FMS total score as they age. Boys that
have steeper trend lines have higher average FMS total
scores. Finally, the p-values for the school variances do
not reach the .05 level in Table 2. However, these are
two-sided p-values. For variances, which cannot be nega-
tive, it is more appropriate to have one-sided p-values
(Snijders & Bosker, 2012), which would be equal to
p¼ :089=2¼ :045 for boys and p¼ :135=2¼ :0675 for
girls. Thus, there is a significant clustering effect attribut-
able to schools on the FMS total scores for boys, but not
quite for girls.

Using the ICC equations presented earlier, we can
calculate the amount of variance that is attributable to
both schools and subjects based on the variance estimates
in Table 2. Since there are random subject time trends in
these models, the ICCs can be calculated for any value of
the time variable Ageijk�Ageij

� 	
. For simplicity, we will

do this when this variable equals 0, namely for when a
subject is at their average age. Using the approximate
value of π2=3¼ 3:290, we get:

School ICC for boys

ICC¼ 0:660
0:660þ11:722þ3:290

¼ 0:042

Subject ICC for boys

ICC¼ 0:660þ11:722
0:660þ11:722þ3:290

¼ 0:790

School ICC for girls

ICC¼ 0:256
0:256þ3:950þ3:290

¼ 0:034

Subject ICC for girls

ICC¼ 0:256þ3:950
0:256þ3:950þ3:290

¼ 0:561

These ICC calculations show that the amount of vari-
ation in FMS total scores that is at the subject level is

quite large, especially for boys. The amount of variation
that is at the school level is approximately 4% (boys) and
3% (girls), which are in a similar range as what has been
reported in other school-based studies of physical activity
(Kristensen et al., 2013; Murray et al., 2004; Pereira
et al., 2020; Steenholt et al., 2018).

5 | ANALYSIS AT THE
ITEM LEVEL

The previous analyses used the FMS total scores as the
outcome, however it is also possible to analyze at the
item level. This approach allows one to test whether, for
example, the effect of age is the same or different on the
items that comprise the FMS total score. Here, there were
5 items, each rated from 1 to 3, as described above in
Section 2. Figures 2 and 3 provide the category propor-
tions of the ratings to the 5 items across time for boys
and girls, respectively. From Figure 2, one can see that
for boys category 3 is the most frequent rating for most
items at the first timepoint, and for all items at the sec-
ond and third timepoints. For girls, from Figure 3, cate-
gory 3 is rated highest only for item 4 (catch the ball).
From both figures, one can see the overall improvement
in ratings across the three timepoints.

An analysis considering items nested within times
within subjects within schools was first considered, how-
ever the time variance went to zero in the estimation.
Thus, a 3-level analysis considering items by time
(15 observations) within subjects within schools was
used, separately for boys and girls. Here, i is for schools, j
is for subjects, k is for time, l is for items, and c is for the
cumulative logit of the ordinal items (here c¼ 1,2 for the
two cumulative logits of the 3-category items). The model
is given by:

log
Pijklc

1�Pijklc

� �
¼ γlc� β1SchoolSizeiþβ2Ageij

"

þ β3 Ageijk�Ageij
� 	

þβ4BMIij

þ β5 BMIijk�BMIij
� �þυiþυ0ij

þ υ1ij Ageijk�Ageij
� 	#

,

ð10Þ

Since the thresholds (γ parameters) have the l sub-
script, the distribution in the three categories is allowed
to vary across the 5 items. Figures 2 and 3 show that this
is generally the case, as, for example, item 4 is a much
easier item (i.e., more responses in the higher categories)
than the other items for both boys and girls.

HEDEKER ET AL. 9 of 15

 15206300, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ajhb.24015 by U

niversity O
f C

hicago, W
iley O

nline L
ibrary on [20/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Table 3 lists the estimates of the covariates for the
analysis of boys and girls. Age, both BS and WS, has a sig-
nificant positive effect for both boys and girls. In terms of
the WS effects, the odds ratio for boys is estimated to be
2.2, and for girls it is 2.1. Thus, the odds of a response in
a higher category on these items increases by a factor of
2.2 (2.1) as a boy (girl) ages. Similarly, the BS effects of
age yield an estimated odds ratio of 2.0 for boys and 2.2
for girls. This indicates that comparing boys (girls) of dif-
ferent ages, a 1 year difference in age corresponds to an
increased odds of a higher rating by a factor of 2.0 (2.2).
Taken together, the odds of a higher rating on these
items increases significantly as a child ages, and also
comparing children of different ages. Finally, the covari-
ate effects of BMI and School size are not significant,
either for boys or girls, except for the BS effect of BMI for
boys. As in the analysis of the FMS total score, this indi-
cates that boys with higher average BMI have lower aver-
age ratings on the FMS items.

The above analyses assumed that the age effects
were equal across the 5 items. However, it could be

that age has differential effects across these 5 items.
For this, we can include item by age interactions, both
BS and WS, to assess this assumption via a likelihood-
ratio test. This involves comparing the model deviances
(�2 log likelihood values) for the model assuming
equal age effects versus the model that relaxes
this assumption (i.e., the model that adds in the item
by age interactions). If the deviances for these two
models are statistically similar, then we accept the
assumption of equal age effects across the 5 items,
whereas a significant difference would indicate a rejec-
tion of this assumption. Here, for boys, this equals
χ28 ¼ 5941:952 – 5919:175¼ 22:777,p¼ :004, and for girls:
χ28 ¼ 8615:619 – 8583:724¼ 31:895,p< :001. These tests
are based on 8 degrees of freedom because the model
with equal age effects included 2 age effects (BS and
WS), whereas the model allowing for differential age
effects on the 5 items included 10 age effects (BS and
WS for each of the 5 items). The degrees of freedom is
the difference in these two numbers of parameters.
Based on these likelihood-ratio test results, the
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FIGURE 2 Response proportions for the five FMS items across time for boys.
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assumption of equal age effects is rejected, and so the
effect of age on the item ratings varies significantly for
both boys and girls.

Table 4 lists the estimates for the age by item interac-
tions for boys and girls (from the model that added in
these interactions). From Table 4, while all age effects are
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FIGURE 3 Response proportions for the five FMS items across time for girls.

TABLE 3 3-level ordinal analysis of

FMS item responses for boys and girls.

Logit estimates, odds ratios (OR), and

OR 95% confidence intervals.

Parameter Logit estimate Odds ratio (OR)

OR 95% confidence interval

Lower Upper

Boys

SchoolSize �0.001 0.999 0.996 1.003

WS age 0.794 2.211 1.662 2.941

BS age 0.708 2.030 1.660 2.483

WS BMI �0.035 0.965 0.895 1.041

BS BMI �0.070 0.933 0.888 0.980

Girls

SchoolSize �0.001 0.999 0.997 1.001

WS age 0.756 2.129 1.764 2.568

BS age 0.792 2.208 1.942 2.511

WS BMI �0.063 0.939 0.865 1.019

BS BMI �0.019 0.982 0.946 1.018

Abbreviations: BS, between-subject effect; WS, within-subject effect.
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highly significant (since the CIs do not include 1), they
do vary across the 5 items, and vary somewhat for boys
and girls. For boys, in terms of both the WS and BS
effects, FMS4 shows the strongest age effects (OR = 2.6
and 2.99, respectively), while FMS3 shows the weakest
(OR = 1.85 and 1.65). Thus, as a boy ages and comparing
boys of different ages, there is clear improvement in
FMS4 (catch the ball), and less improvement in FMS3
(overhand throw). For the girls WS effects, FMS1 shows
the strongest age effect (OR = 3.03), while FMS5 shows
the weakest (OR = 1.64). FMS1 also shows the strongest
BS age effect (OR = 2.71), while item 2 shows the least
BS age effect (OR = 1.88). Thus, as a girl ages and com-
paring girls of different ages, there is clear improvement
in FMS1 (dribbling). Also, as a girl ages, there is more
modest improvement in FMS5 (underhand roll), and
comparing girls of different ages, there is less of a differ-
ence in terms of FMS2 (kicking). Analysis at the item
level therefore gives more specific information on the
items, and how age effects the responses to these items,
than the analysis of the total FMS score.

6 | DISCUSSION

This article has focused on describing application of the
multilevel ordinal logistic model for analysis of motor
development data in a practical and accessible way. Models
have been described for both clustered and longitudinal
motor development data. In our applications, students
were clustered within schools and measured longitudinal
over three timepoints. For clustered data, random cluster
effects characterize the dependency of subjects' responses
from the same cluster (i.e., school). For longitudinal data,
random subject effects account for the dependency of the
responses within the same subject, and give information
about the heterogeneity in trends across time at the subject
level. The 3-level ordinal model included both random
effects for schools and subjects. Based on the ICC esti-
mates, the dependency attributable to schools was approxi-
mately 5% (boys) and 8% (girls), while the dependency
attributable to subjects was approximately 80% (boys) and
60% (girls). We presented models using both the total FMS
score and also the individual FMS items.

TABLE 4 3-level ordinal analysis of

FMS item responses for boys and girls.

Logit estimates, odds ratios (OR), and

OR 95% confidence intervals for the WS

and BS effects of age on each item.

Parameter Logit estimate Odds ratio (OR)

OR 95% confidence interval

Lower Upper

Boys

FMS1 WS age 0.822 2.276 1.621 3.194

FMS2 WS age 0.831 2.295 1.484 3.549

FMS3 WS age 0.616 1.851 1.395 2.455

FMS4 WS age 0.957 2.603 1.528 4.435

FMS5 WS age 0.809 2.247 1.551 3.254

FMS1 BS age 0.753 2.123 1.686 2.673

FMS2 BS age 0.595 1.814 1.401 2.348

FMS3 BS age 0.499 1.647 1.343 2.020

FMS4 BS age 1.095 2.989 2.146 4.163

FMS5 BS age 0.762 2.143 1.697 2.707

Girls

FMS1 WS age 1.107 3.025 2.282 4.009

FMS2 WS age 0.735 2.085 1.531 2.839

FMS3 WS age 0.613 1.846 1.454 2.343

FMS4 WS age 0.787 2.196 1.482 3.254

FMS5 WS age 0.491 1.635 1.229 2.174

FMS1 BS age 0.997 2.709 2.280 3.220

FMS2 BS age 0.630 1.877 1.573 2.239

FMS3 BS age 0.664 1.942 1.664 2.265

FMS4 BS age 0.947 2.578 2.035 3.267

FMS5 BS age 0.758 2.134 1.797 2.534

Abbreviations: BS, between-subject effect; WS, within-subject effect.
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Our models included time-varying covariates of age
and BMI. For both variables, we decomposed the covari-
ate effect in terms of the BS and WS effects (Hedeker &
Gibbons, 2006; van de Pol & Wright, 2009). The separa-
tion of these effects allowed us to examine whether sub-
jects of different average ages (and BMI values) had
different average FMS total scores (BS effect), and also if
as subjects age across time (or change BMI values) their
FMS total scores changed (WS effect). Our results indi-
cated highly significant BS and WS positive effects of age
for both boys and girls. For BMI, a negative BS effect was
observed only for boys. These effects were also observed
at the item level, which showed that the age effects (both
BS and WS) on items varied across the items. An addi-
tional school-level covariate, school size, was included,
but found to be statistically non-significant.

In some studies, researchers have compared subjects
of different age groups in terms of ordinal ratings of
motor development outcomes using cross-sectional statis-
tical methods such as the L� statistic (Lane et al., 2018)
and item response theory (IRT) methods Sacko et al.
(2021). While these can be useful for between-subjects
comparisons of age groups, here we have focused on
within-subject changes in motor development outcomes
as subjects age (Roberton et al., 1980). Since between-
subjects effects of age can always be confounded by
cohort effects, the ability to simultaneously estimate both
the between- and within-subjects effects of age provides a
more powerful and informative approach. This is espe-
cially the case for analyzing the motor development of
children and young adolescents. Also, other time-varying
covariates (e.g., BMI) can be included and decomposed in
terms of their between- and within-subjects effects on the
time-varying motor development outcomes. As such, the
multilevel ordinal logistic model provides a more com-
prehensive approach for the analysis of motor
development data.

Another area of application for ordinal models is for
time to event data in which the timing is not known pre-
cisely but only within time periods. For example, one
might be interested in modeling time until subjects reach
some value on the FMS total score (say, 15) in the stu-
dents who are measured at the three timepoints. Here,
the ordered outcome is the timepoint in which the FMS
total score equals 15. We have described such multilevel
survival analysis using the ordinal modeling approach
(Hedeker et al., 2000; Hedeker & Mermelstein, 2011).
Rather than using a logit link function, these survival
models typically use a complementary log-log link func-
tion in order to yield a proportional hazards interpreta-
tion. Also, in this scenario one needs to consider the
possibility of right-censoring in which the time of the
event is unknown beyond a certain timepoint.

Certainly, researchers are more familiar with nor-
mal models and software, and so often treat ordinal
outcomes as normal outcomes. One might wonder
about whether this is a reasonable practice or not. In
this regard, a comprehensive examination of this prac-
tice was performed by Bauer and Sterba (2011). They
examined the performance of mixed normal and ordi-
nal models to ordinal outcomes with 3 to 7 categories,
and distributions that were symmetric, skewed, and
polarized. In terms of bias, these authors concluded
that the multilevel normal model only gave reasonable
results if there were 7 categories and the distribution
was symmetric. In all other cases, the multilevel nor-
mal model yielded unduly biased estimates of regres-
sion coefficients. In comparison, the multilevel ordinal
model (i.e., the same model as presented in the current
paper) produced unbiased estimates regardless of the
number or shape of the distribution across the ordered
categories. Furthermore, as described by Harrell
(2015) and Liu et al. (2017), the ordinal model can also
be used for continuous outcomes that do not follow a
normal distribution, in order to obtain robust
inferences.

Another consideration is statistical power, particu-
larly for smaller datasets. In this regard, Armstrong and
Sloan (1989) ordinalized a continuous outcome and
reported relative efficiency (i.e., power) of 94% to 99% for
4 to 9 categories, respectively, as compared to the contin-
uous outcome. Thus, even if the outcome is continuous,
there is little efficiency loss, especially as the number of
categories is increased. Conversely, if one dichotomizes
an ordinal outcome, there can be appreciable loss in sta-
tistical power. Strömberg (1996) dichotomized an ordinal
outcome with 5 categories, and for which the power level
was 78%. The dichotomized outcomes had power levels
between 38% to 68% depending on the cutpoint chosen.
Thus, blindly dichotomizing an ordinal outcome can
severely reduce power.

In conclusion, this article has attempted to describe
the ordinal model clearly and in relatively non-technical
terms. Ordinal models are probably not as popular as use
of normal and binary models, despite the fact that ordinal
outcomes are often obtained. Given that the methods and
software are widely available, hopefully this situation will
change as researchers become more familiar with appli-
cation of the ordinal model.
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