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a b s t r a c t 

Diffusion MRI tractography is the only noninvasive method to measure the structural connectome in humans. 

However, recent validation studies have revealed limitations of modern tractography approaches, which lead 

to significant mistracking caused in part by local uncertainties in fiber orientations that accumulate to produce 

larger errors for longer streamlines. Characterizing the role of this length bias in tractography is complicated by 

the true underlying contribution of spatial embedding to brain topology. In this work, we compare graphs con- 

structed with ex vivo tractography data in mice and neural tracer data from the Allen Mouse Brain Connectivity 

Atlas to random geometric surrogate graphs which preserve the low-order distance effects from each modality in 

order to quantify the role of geometry in various network properties. We find that geometry plays a substantially 

larger role in determining the topology of graphs produced by tractography than graphs produced by tracers. 

Tractography underestimates weights at long distances compared to neural tracers, which leads tractography to 

place network hubs close to the geometric center of the brain, as do corresponding tractography-derived ran- 

dom geometric surrogates, while tracer graphs place hubs further into peripheral areas of the cortex. We also 

explore the role of spatial embedding in modular structure, network efficiency and other topological measures 

in both modalities. Throughout, we compare the use of two different tractography streamline node assignment 

strategies and find that the overall differences between tractography approaches are small relative to the differ- 

ences between tractography- and tracer-derived graphs. These analyses help quantify geometric biases inherent 

to tractography and promote the use of geometric benchmarking in future tractography validation efforts. 
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. Introduction 

The structural connectome ( Sporns et al., 2005 ) is the comprehen-

ive map of connections among all neurons in the brain. Constructing

uch a map represents a major frontier in neuroscience that relies on

he development of novel imaging techniques across a range of spa-

ial scales and model organisms and will provide insight into the ba-

ic function and development of the brain ( Passingham, 2013 ) and its

athologies ( Griffa et al., 2013 ). Diffusion MRI tractography is currently

he only noninvasive method for mapping the human structural con-

ectome ( Yeh et al., 2020 ) and forms the basis of research initiatives

uch as the Human Connectome Project ( Glasser et al., 2016 ). Together

ith mathematical tools from graph theory ( Kaiser, 2011; Rubinov and

porns, 2010; Sizemore et al., 2018; Yeh et al., 2020 ), tractography stud-

es have helped reveal a number of important network properties in the

uman brain such as efficiency ( Latora and Marchiori, 2001 ), modu-

arity ( Sporns and Betzel, 2016 ), and the organization of network hubs

 van den Heuvel and Sporns, 2013 ). 
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Despite these advances, diffusion MRI also suffers from relatively

oor spatial resolution and fundamental ambiguities in the mapping be-

ween the underlying white matter fiber orientations and the resulting

iffusion signal ( Schilling et al., 2017 ). Recent efforts to validate tractog-

aphy have uncovered several limitations, and even modern approaches

till produce high numbers of both false positive and false negative

racts ( Aydogan et al., 2018; Maier-Hein et al., 2017; Schilling et al.,

019; Thomas et al., 2014 ). A specific limitation inherent to probabilis-

ic streamline tractography is the fiber-length bias: local uncertainties in

he fiber orientation distribution at each step in the tracking process ac-

umulate to produce global errors for longer streamlines, leading to an

nderestimation of connectivity weights at greater distances. Character-

zing this sort of geometric bias is complicated by the fact that the brain

s itself a spatially embedded network with properties partially inherited

rom geometry: there is a metabolic wiring cost in the establishment of

ong-range connections, and true falloff of both structural and functional

onnectivity with distance has been shown with high-resolution inva-

ive imaging as well as tractography in a number of mammalian species
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F  
 Horvát et al., 2016; Markov et al., 2013; Perinelli et al., 2019; Roberts

t al., 2016; Rubinov et al., 2015; Supekar et al., 2009 ). With tractog-

aphy alone, it is challenging to distinguish the role spatial embedding

lays in the true network properties of the brain from the potentially ex-

ggerated representation of that geometric effect resulting from biases

nherent to the imaging process. 

To characterize methodological biases and improve tractography ap-

roaches, tractography experiments need to be validated with additional

igh-resolution imaging. Neural tracer data is the gold standard for

esoscale connectivity studies in a number of model organisms ( Bota

t al., 2015; Girard et al., 2020; Jbabdi et al., 2015; Markov et al., 2014;

013; Oh et al., 2014 ). Data from the Allen Institute Mouse Brain Con-

ectivity atlas ( Oh et al., 2014 ) form the most comprehensive whole-

rain mesoscale brain network in a mammalian species and have been

sed in previous tractography validation studies, primarily to charac-

erize agreement in voxel-wise streamline density maps with consid-

ration for the role of specific algorithm parameters ( Aydogan et al.,

018; Calabrese et al., 2015; Chen et al., 2015 ). In this work, we ex-

and the use of the Allen Institute tracer data as a validation tool for

ractography connectomics in the mouse brain. Specifically, we use a

raph-theoretical approach previously developed for human tractogra-

hy data ( Roberts et al., 2016 ) of benchmarking empirical brain graphs

gainst an ensemble of random geometric surrogates. The random ge-

metric surrogate graphs are constructed from each empirical graph in

uch a way that the node strength distribution and low-order relation-

hips between connectivity and fiber distance are preserved, but the

opology is otherwise destroyed, allowing for determination of the ex-

ent to which certain properties of the mouse structural brain network

an be explained through spatial embedding alone. 

Previous studies have also explored the influence of spatial embed-

ing and geometry on the topology of the structural brain network in

ifferent mammalian species ( Henderson and Robinson, 2013; Horvát

t al., 2016; Markov et al., 2013; Roberts et al., 2016; Rubinov et al.,

015 ). While many of these studies explored the results in an evo-

utionary context in terms of pressures of wiring cost and efficiency

 Bullmore and Sporns, 2012 ), our aim is instead to use the same tools

cross the two imaging modalities to specifically assess methodological

eometric bias in tractography, taking the tracer-derived network as a

ignificantly higher-fidelity representation of the true mesoscale connec-

ome of the mouse brain. Furthermore, we explore the performance of

ifferent tractography approaches by assessing the use of two different

treamline node assignment strategies. Accordingly, our analysis aims

o do two things: (1) explore and compare the role spatial embedding

lays in the topology of graphs derived from tractography and neural

racer imaging and (2) explore the extent to which graphs constructed

rom different tractography methods reflect the topological properties

bserved in the empirical tracer model. 

. Methods 

.1. Construction of the primary tracer graph 

Our work uses a high-resolution model of the Allen Institute

ouse brain structural brain network published by Knox et al.

nox et al. (2019) The Knox et al. model provides estimates of con-

ectivity at the scale of 100 μm isotropic voxels in the Allen Mouse

rain Common Coordinate Framework (CCF v3), and is derived from

28 whole-brain anterograde fluorescent viral tracer experiments in

ild-type C57BL/6J mice collected for the Allen Mouse Brain Connec-

ivity Atlas ( Oh et al., 2014 ). Underlying tracer data are available at

ttp://connectivity.brain-map.org . The Knox et al. model can be ac-

essed publicly through the repository available at https://github.com/

llenInstitute/mouse _ connectivity _ models . While derived from tracer

xperiments with injection locations that may span multiple distinct re-

ions, the model allows for the efficient creation of regionalized connec-

ivity models using custom brain parcellations based on labeled struc-
2 
ures in the Common Coordinate Framework. For this study, we chose

o define graph nodes as 286 of the 291 gray matter regions used to con-

truct the regionalized voxel model analyzed in Knox et al. (2019) . Five

mall regions were excluded due to being located almost exactly along

he sagittal midline. A full list of gray matter structures used for the

arcellation is available in Supporting Information Table S1. The model

llows for four different connectivity metrics. Our tracer graph was con-

tructed using the normalized connection density metric, which takes

aw projection volume fractions and normalizes them by the volume

f the source and target regions for each edge. The anterograde tracers

sed to produce the Knox et al. model provide a directed graph, whereas

ractography graphs are derived from symmetric diffusion data and in-

erently produce undirected graphs. For fair comparison, the tracer

raph was manually made to be undirected by summing all bidirectional

onnectivity between every pair of nodes. The Allen Mouse Brain Con-

ectivity Atlas also assumes hemispheric symmetry, as all underlying

racer images were formed from injections into the right hemisphere.

emispheric symmetry was manually enforced in the final graph in or-

er to yield square connectivity matrices for subsequent analysis. 

.2. Additional tracer data 

The Knox et al. model has been shown to outperform the homoge-

eous model originally published in Oh et al. (2014) and produces a

raph that is nearly 100% fully connected at the scale of the parcellation

sed in this study. The true density of the whole mouse brain network

s an ongoing subject of research. Initial modeling of the Allen Institute

ata estimated cortical density to vary from 32–52% ( Oh et al., 2014 )

o 59–73% ( Ypma and Bullmore, 2016 ). A recent study by G ăm ănu ţ

t al. (2018) observed a much higher cortical density in the mouse

rain of 97% using tract-tracing measurements from independent retro-

rade tracer data. While only available for select ipsilateral intra-cortical

dges, the G ăm ănu ţ , et al. data have the benefit of representing empiri-

al neuron counts that do not rely on the fixed parcellation template and

ownstream computational modeling required for the Knox et al. model.

ccordingly, our cortical tractography connectivity weights were fur-

her benchmarked against these additional weighted connectivity data

rovided by the authors. These edge-weight values correspond to neuron

ount fractions within manually defined gray-matter region boundaries

orresponding to the parcellation from the Allen Institute (Figure S6B

n G ăm ănu ţ et al. (2018) ). As with the Knox et al. model, the G ăm ănu ţ ,

t al. cortical subgraph was manually made to be undirected by sum-

ing bidirectional connectivity weights between every pair of nodes. 

.3. Animal procedures 

Procedures for the collection of the diffusion MRI data used for this

tudy have been published in a previous study ( Foxley et al., 2020 )

nd are repeated here for completeness. All procedures performed on

nimals followed protocols approved by the Institutional Animal Care

nd Use Committee and were in compliance with the Animal Welfare

ct and the National Institutes of Health Guide for the Care and Use

f Laboratory Animals. Five adult mice were deeply anesthetized with

0 mg/kg pentobarbital and sacrificed by intercardial perfusion with a

olution (pH 7.4) of 0.1 M sodium cacodylate and heparin (15 units/ml).

his was immediately followed by a solution of 2% paraformaldehyde,

.5% glutaraldehyde, and 0.1 M sodium cacodylate (pH 7.4). Brains

ere carefully removed from the skulls and post-fixed in the same fixa-

ive overnight at 4 ◦C. Brains were soaked in phosphate buffered saline

PBS) prior to imaging for at least 72 h to remove fixative from the

issue. 

.4. Diffusion MRI acquisition 

Resected mouse brains were dried of excess PBS and placed in 10 ml

alcon tubes. Tubes were filled with Fluorinert (FC-3283, 3M Electron-

http://connectivity.brain-map.org
https://github.com/AllenInstitute/mouse_connectivity_models


S. Trinkle, S. Foxley, G. Wildenberg et al. NeuroImage 244 (2021) 118576 

i  

a  

B  

a  

1  

t  

s  

t  

t  

f  

e  

𝛿  

o  

d

2

 

s  

w  

2  

2  

c  

f  

a  

fi  

s  

m  

t  

t  

o  

w  

2  

m  

t  

i  

c  

2  

p

2

 

i  

i  

l  

f  

h  

v  

E  

t  

t  

t  

g  

d  

d  

n  

n  

t  

s  

s  

T  

g  

o  

t  

s  

i

2

 

c  

s  

d  

d  

t  

d  

t  

t  

fi  

a  

w

t  

r  

p  

s  

m  

t  

r  

w  

w  

i  

t

 

g  

l  

b  

l  

p  

s  

b  

t  

w

 

u  

p  

b

r  

w  

n  

t  

s

3

 

i  

“  

F  

r  

t  

U  

w  

a  

c

3

 

s  
cs) for susceptibility matching and to improve shimming. Data were

cquired at 9.4 T (20 cm internal diameter, horizontal bore, Bruker

ioSpec Small Animal MR System, Bruker Biospin, Billerica, MA) using

 6 cm high performance gradient insert (maximum gradient strength:

000 mT/m, Bruker Biospin) and a 35 mm internal diameter quadra-

ure volume coil (Rapid MR International, Columbus, Ohio). Third-order

himming was iteratively performed over an ellipse that encompassed

he entire brain, but did not extend beyond the boundaries of the Falcon

ube/Fluorinert interface, using the Paravision mapshim protocol. Dif-

usion MRI was performed using a standard diffusion-weighted 3D spin-

cho sequence (TR = 600 ms, TE = 11.389 ms, b-value = 3000 s/mm 

2 ,

= 3.09 ms, Δ = 6 ms, spatial resolution = 125 μm isotropic, number

f b0s = 8, number of directions = 30, receiver bandwidth = 150 kHz,

uration = 36h 28min 48s). 

.5. Diffusion MRI processing 

Data and diffusion gradient vectors were manually reoriented to the

tandard RAS neurological display convention. Subsequent processing

as performed with the MRtrix3 software package ( Tournier et al.,

019 ). Data were denoised using the dwidenoise protocol ( Veraart et al.,

016a; 2016b ). Binary brain masks were generated for subsequent pro-

essing using the dwi2mask routine. The data were first fit to a dif-

usion tensor model ( Basser et al., 1994 ) to calculate the fractional

nisotropy metric ( Basser and Pierpaoli, 1996 ). The data were then

t to fiber orientation distribution functions (fODFs) using constrained

pherical deconvolution ( Tournier et al., 2017; 2004 ) up to a maxi-

um spherical harmonic order of 𝓁 max = 6 (28 coefficients). The frac-

ional anisotropy image from each dataset was spatially registered to

he Allen reference mouse brain template at an isotropic voxel size

f 100 μm using affine and diffeomorphic transformations calculated

ith the ANTS registration package ( Avants et al., 2008; Klein et al.,

009 ). The Allen template and structure-level annotations in the Com-

on Coordinate Framework were accessed using the allensdk software

ool ( https://allensdk.readthedocs.io ). The spatial transforms calculated

n ANTS were then applied to the fODFs using the mrtransform proto-

ol in MRTrix3, which applies appropriate reorientation ( Raffelt et al.,

012b ) and modulation ( Raffelt et al., 2012a ) of the fODFs in order to

reserve fiber densities across each lobe after transformation. 

.6. Construction of tractography graphs 

Probabilistic tractography was performed in MRTrix3 using the

FOD2 algorithm ( Tournier et al., 2010 ) (step size = 12.5 μm, max-

mum curvature = 30 μm, minimum length = 0.5 mm, maximum

ength = 30 mm, fODF cutoff = 0.055). Streamlines were seeded uni-

ormly throughout each of the 286 gray matter regions in the right

emisphere used in the regionalized tracer model, with 2000 seeds per

oxel, amounting to around 400 million total streamlines per dataset.

dge weights were determined from each tractography dataset using

wo different streamline node assignment strategies in order to compare

heir effects on downstream network structure. For “endpoint ” connec-

ivity, streamlines were assigned to the two nodes corresponding to the

ray matter regions closest to their endpoints, within a maximum ra-

ius of 125 μm, corresponding to the size of the underlying diffusion

ata voxels. For “dense ” connectivity, streamlines were assigned to all

ode-pairs corresponding to pairs of gray matter regions they traverse,

ot just those corresponding to their endpoints. Edge-weight values be-

ween two nodes were then taken to be the number of streamlines as-

igned to the two nodes under both endpoint and dense assignment

trategies, resulting in two different graphs per tractography dataset.

o match the normalized connection density metric used for the tracer

raph, the weights for each node pair were then divided by the product

f the two node volumes. As with the tracer graph, hemispheric symme-

ry was manually enforced to create square connectivity matrices. Also
3 
imilar to the tracer graph, the probabilistic tractography seeding used

n this work led to nearly fully connected graphs. 

.7. Construction of surrogate graphs 

The goal for the construction of geometric surrogate graphs was to

reate an ensemble of graphs that preserve both the distribution of node

trengths (the sum of weights at each node) and the low-order weight-

istance relationships of a given empirical graph but are otherwise ran-

om. Geometric surrogate graphs were constructed from all empirical

racer and tractography graphs by directly following the methodology

escribed in Roberts et al. (2016) , repeated here for completeness. First,

he fiber distance between each pair of nodes was quantified based on

ractography results. The distance 𝑓 𝑖𝑗 between nodes 𝑖 and 𝑗 was de-

ned as the length of the shortest streamline connecting them, aver-

ged across all datasets. To estimate first-order weight-distance effects,

e follow Roberts et al. in fitting the logarithm of the edge-weights 𝑤 𝑖𝑗 

o a curve given by log 𝑤 𝑖𝑗 ≈ 𝑔( 𝑓 𝑖𝑗 ) , where 𝑔 is a cubic polynomial. This

elationship was subtracted from the raw weights, and an additional

arabolic curve was then fit to the residuals. After normalizing by this

econd curve, low-order distance-dependent effects were effectively re-

oved from the weight values and they were randomly shuffled. Af-

er randomization, the transformations were applied in reverse order to

eimpose low-order weight-distance effects. The original weight values

ere then reordered to match the random rank order of the surrogate

eights. Finally, the node-strength distribution was restored using an

terative procedure that updates the sums of the rows and columns of

he surrogate weight matrix towards the empirical values. 

This procedure resulted in an ensemble of geometric surrogate

raphs 𝑊 geo for each network construction method that preserve the

ow-order distance-dependent characteristics and node-strength distri-

ution of the underlying empirical graph 𝑊 emp , but have all other topo-

ogical properties destroyed. We make the assumption that network

roperties that are preserved in the geometric surrogate graphs repre-

ent those that have been inherited from the spatial embedding of the

rain. Likewise, we assume that differences in network properties be-

ween empirical and geometric surrogate graphs represent the extent to

hich those properties arise from other, non-geometric factors. 

A similar procedure without the use of distance transformations was

sed to construct an ensemble of random surrogate graphs 𝑊 rand , which

reserve the exact strength-sequence of the underlying empirical graphs,

ut are otherwise completely random. The geometric surrogates 𝑊 geo 
epresent the null hypothesis that topological properties of brain net-

orks arise from the falloff of edge weights with distance for a given

ode-strength distribution, while the random surrogates 𝑊 rand represent

he null hypothesis that topological properties of brain networks arise

olely from the particular distribution of node strengths and locations. 

. Results 

Here we report analysis of brain networks constructed using tracer

maging data and two tractography approaches: “endpoints ” and

dense ” corresponding to two methods of streamline node assignment.

or each metric, our goal is to explore how graphs from each tractog-

aphy approach compare to the tracer graph, specifically with respect

o the relationship between empirical and geometric surrogate graphs.

nless otherwise noted, all results labeled “tracer ” correspond to the

hole-brain graph derived from the Knox et al. connectivity model. All

nalysis was performed in Python, with graph theoretical measures cal-

ulated using the networkx package ( Hagberg et al., 2008 ). 

.1. Comparison of edge-weight values 

Structural connectivity matrices and edge-weight distributions are

hown for all empirical graphs in Fig. 1 a–c. Differences in the mean

https://allensdk.readthedocs.io


S. Trinkle, S. Foxley, G. Wildenberg et al. NeuroImage 244 (2021) 118576 

Fig. 1. Edge-weight values. (a–c) Connectivity matrices for (a) tracer, (b) endpoint tractography, and (c) dense tractography. Rows represent nodes comprised 

of 286 gray matter regions across 12 major brain divisions. Columns represent the same nodes for ipsilateral (left) and contralateral (right) connections. Values 

are shown on a log-color scale spanning five orders of magnitude centered on the mean edge-weight value for each matrix. 𝜌 values represent Spearman rank 

correlation coefficients between tractography and tracer weights across the whole brain. (d) Edge-weight distributions. Empirical weight histograms (solid lines) 

with corresponding normal fits (dashed lines). (e–f) Spearman correlations between tracer and (e) endpoint and (f) dense tractography edge-weights across 12 major 

brain divisions: Isocortex (ICTX), Olfactory areas (OLF), Hippocampal formation (HPF), Cortical subplate (CTXsp), Striatum (STR), Pallidum (PAL), Thalamus (TH), 

Hypothalamus (HY), Midbrain (MB), Pons (P), Medulla (MY), Cerebellum (CB). “-I ” and “-C ” in (e–f) refer to ipsilateral and contralateral correlations, respectively. 

All tractography values represent averages across 5 datasets. 
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e  
eight values across tractography approaches in Fig. 1 d follow pre-

ictable trends: dense node assignment resulted in higher weights than

ndpoint node assignment. Note that the physical interpretation of edge

eights differs between modalities, so direct comparison of the edge-

eight means between modalities is not meaningful. Tracer weights re-

ect normalized projection volumes and tractography weights reflect

ormalized streamline counts under different node assignment strate-

ies. Regardless, edge-weight distributions had a comparable and ap-

roximately log-normal shape for all empirical graphs. 

Overall agreement in edge-weight values was assessed using the

pearman rank correlation coefficient, a nonparametric correlation met-

ic used in previous studies ( Calabrese et al., 2015; Coletta et al., 2020 )

o assess nonlinear agreement between connectivity values. Spearman

orrelation values between tracer and tractography weights across all

dges are shown above each tractography matrix in Fig. 1 b–c. Edge

eights constructed with dense node assignment had a slightly higher

pearman correlation with the tracer weights than those constructed

ith endpoint node assignment. The difference in correlations was sta-

istically significant ( 𝑝 < 0 . 01 ) using a t -test. Scatterplots of edge weights

etween the tracer and tractography graphs are available in Supporting

nformation Figure S1. 
4 
Spearman correlations between tractography and tracer weights as-

essed at the level of major brain divisions are shown in Fig. 1 e–f.

ll tractography methods showed relatively high correlations in ipsi-

ateral intra-division connectivity (diagonals in Fig. 1 e–f), and weaker

ontralateral connectivity to homologous regions, reflecting not only a

alloff in weight for longer-distance connections, but a falloff in agree-

ent with tracer values. Dense node assignment led to higher Spearman

orrelations than endpoints for nearly all connections to the pons, and

or connections between the hypothalamus, midbrain, and medulla. 

.2. Comparison of weight-distance relationships 

The raw weight-distance distributions and polynomial fits used to

onstruct the geometric surrogate graphs are available in Supporting

nformation Figure S2a– b. Transformed weights (Figure S2c) show ef-

ectively zero correlation with fiber distance using both Pearson and

pearman correlation coefficients, indicating that low-order distance re-

ationships have been effectively removed prior to randomization for the

onstruction of the geometric surrogate graphs. 

Because the weight values have different physical interpretations for

ach network construction method, the weight-distance relationships
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Fig. 2. Normalized weight-distance relation- 

ships. (a) Circles represent the average log- 

weight z-scores for each method within 1 mm 

fiber distance bins. (b) Circles represent the 

standard deviation of the log-weight z-scores 

for each method within 1 mm fiber distance 

bins. Shaded regions represent 1 standard de- 

viation across 5 tractography datasets. The 

widths of the horizontal lines at the top of 

each subfigure indicate the range of fiber dis- 

tance bins with statistically significant differ- 

ences ( 𝑝 < 0 . 01 ) between tracer and tractog- 

raphy values for each tractography method, 

calculated using a one-sample t -test after cor- 

recting for multiple comparisons. 
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Table 1 

Percent agreement in consensus node-module assignment. 

Tracer Endpoints Dense 

Tractography vs. tracer — 54 54 

Empirical vs. geometric surrogates 53 66 67 
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annot be directly compared. Instead, Fig. 2 visualizes the relative re-

ationships between methods after the log-weights were first standard-

zed to zero mean and unit variance. Fig. 2 a shows the relative falloff of

ean normalized log-weights with fiber distance, and Fig. 2 b shows the

hange in the standard deviation of normalized log-weights with fiber

istance for each method. 

The mean normalized weight-distance curves from both tractogra-

hy graphs in Fig. 2 a fall below the corresponding tracer curve for dis-

ances above around 10 mm, with both tractography methods show-

ng statistically significant differences from tracers for fiber distance

etween around 17–22 mm. These results suggest that the tractogra-

hy methods explored in this work underestimate relative long-range

onnectivity by as much as two orders of magnitude. For most fiber

istances, both tractography methods also underestimate the standard

eviation of normalized weights compared to tracers. A smaller rela-

ive standard deviation around the mean weight-distance relationship

s consistent with tractography weights being more strictly determined

y fiber distance than tracer weights are, though these differences were

nly statistically significant between around 3–15 mm for endpoint node

ssignment and for a smaller range around 4–6 mm for dense node as-

ignment. 

.3. Comparison of network organization 

.3.1. Modular structure 

The modular structure of each brain graph was determined by opti-

izing the modularity ( 𝑄 ) using the Louvain algorithm ( Blondel et al.,

008 ). Modularity expresses the extent to which a graph can be subdi-

ided into distinct modules such that intra-modular connectivity is max-

mized and inter-modular connectivity is minimized ( Newman, 2004 ).

he confusion matrices for consensus node-module assignments are

hown in Supporting Information Figure S3 for comparisons between

mpirical tractography and tracer modules as well as between empiri-

al and geometric surrogate modules for all methods. Consensus node-

odule assignments represent the module ID label most frequently as-

igned to each node across 5 tractography datasets and ensembles of 100

eometric surrogates. ID labels were first standardized across tractogra-

hy and geometric surrogate graphs by assigning labels to identified

odules such that the overall agreement with the identified modules in

he empirical tracer graph was maximized. 

The resulting consensus modular decompositions are visualized in

hysical coordinates for the empirical and geometric surrogate graphs

erived with all network construction methods in Fig. 3 . Spheres repre-

ent the physical location of distinct gray-matter nodes, which are col-

red according to their identified module. Intra-module edges are also

isualized as colored lines. Overall, modules identified in the tractog-

aphy networks are much more spatially clustered together than those

n the tracer network. Intra-module edges are more likely to be shorter

ange for both tractography methods than for tracers, consistent with

ractography modular structure being partially determined by geomet-
5 
ic bias against long-range connections. This result is further quantified

n Table 1 , which shows the percent agreement in node-module assign-

ent for pairs of graph construction methods. Graphs from both trac-

ography methods show only modest agreement in module assignment

ith the tracer graph. The tracer graph also shows only modest agree-

ent in module assignment with its geometric surrogates, suggesting

hat modules in the true mouse brain network are less spatially clus-

ered than they would be if determined by geometry alone, while both

ractography methods show much higher overlap in module assignment

etween their empirical and geometric surrogates. 

The optimized 𝑄 value itself is a metric of network segregation, in-

icating a capacity for specialized processing to occur in different re-

ions of the brain. Raw 𝑄 values are shown for all graphs in Fig. 4 a.

igure 4 b shows the empirical 𝑄 values normalized by the 𝑄 values from

heir corresponding random surrogate graphs, 𝑊 rand , constructed by ran-

omly shuffling weights within each empirical graph such that the node

trength sequence is preserved. While raw 𝑄 values are comparable be-

ween the tracer and two tractography graphs, the tracer graph shows a

ubstantially higher 𝑊 rand -normalized modularity relative to all tractog-

aphy methods, suggesting that tractography graphs under-represent the

odularity of the mouse structural brain network beyond what would

e expected from a random graph with the same strength sequence.

n Fig. 4 c, empirical 𝑄 values have been normalized by the 𝑄 values

rom their corresponding geometric surrogate graphs. This ratio repre-

ents the additional modular structure present in the empirical graphs

eyond what would be predicted by spatial embedding alone, with a

atio of 1 indicating complete geometric determination. Both tractogra-

hy methods show values significantly closer to 1 than the tracer graph

oes. Overall, these results suggest that modular structure in the mouse

tructural brain network is both underestimated overall and more geo-

etrically determined in tractography relative to neural tracer imaging.

.3.2. Hub node organization 

The arrangement of the subnetwork of central “hub ” nodes is key

o understanding overall brain network structure. Hub nodes can be

dentified using a number of complementary centrality measures. The

articipation coefficient 𝑃 is based on a particular modular decomposi-

ion and expresses the diversity of intermodular connections for a given

ode, with a value of 1 indicating a node is connected uniformly to all

odules and a value of 0 indicating a node is connected exclusively to its

wn module ( Guimerà and Amaral, 2005; Newman, 2004 ). Fig. 5 shows

catterplots of participation coefficients for empirical tractography and

racer graphs ( Fig. 5 a–b) and for each empirical graph method and its
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Fig. 3. Module diagrams for (a) tracer, (b) endpoint, 

and (c) dense graphs in physical coordinates. Spheres 

represent the center of mass of each node, colored by 

module assignment. Intra-module edges are shown as 

colored lines. Graphs are visualized along the axial 

(left), sagittal (middle), and coronal (right) planes with 

labeled orientations: A = anterior, S = superior, R = right, 

L = left. Module assignments represent consensus values 

across 5 empirical tractography graphs and an ensem- 

ble of 100 geometric surrogate graphs. 
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Fig. 4. Modularity. (a) Raw 𝑄 values for empirical ( 𝑊 emp ), geometric surrogate ( 𝑊 geo ), and random ( 𝑊 rand ) surrogate graphs. Error bars represent 1 standard 

deviation across 5 tractography datasets for empirical graphs, and 1 standard deviation across ensembles of 100 geometric and random surrogate graphs per method. 

(b) Empirical 𝑄 values normalized by their corresponding mean random surrogate 𝑄 value. (c) Empirical 𝑄 values normalized by their corresponding mean geometric 

surrogate 𝑄 value. Red stars indicate statistical significance ( 𝑝 < 0 . 01 ) in the difference between 𝑊 emp and 𝑊 geo data calculated with Tukey’s range test, and blue 

diamonds indicate statistical significance ( 𝑝 < 0 . 01 ) in the difference between 𝑊 rand - and 𝑊 geo -normalized tracer and tractography data, calculated with a permutation 

test. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Scatterplots showing the relationship between participation coefficients assigned to each node by different network construction methods. (a–b) Correlations 

between empirical tracer and empirical (a) endpoints and (b) dense tractography participation coefficients. (c–e) Correlations between empirical (c) tracer, (d) 

endpoint, and (e) dense participation coefficients and those from their corresponding geometric surrogate graphs. Values represent averages across 5 tractography 

datasets and an ensemble of 100 geometric surrogate graphs. 
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eometric surrogates ( Fig. 5 c–e). Both tractography methods show only

eak correlation with the values from the corresponding tracer graph,

ut significantly stronger correlations with the values from their own

eometric surrogates. 

Previous work with human tractography datasets ( Roberts et al.,

016 ) has revealed that the human brain places its strongest nodes fur-

her into geometrically peripheral regions than would be expected by

eight-distance effects alone. In Fig. 6 , we extend this analysis into

he mouse brain and compare physical hub organization using node

trength as a centrality measure. Hub node locations are visualized in

hysical coordinates for all empirical and geometric surrogate graphs.

ub nodes are identified as the top 15% of nodes for each graph by node

trength and are visualized as large spheres. The remaining bottom 85%

f nodes by strength are identified with smaller spheres. Edges between
7 
ub nodes are colored teal. For visual clarity, the remaining edges have

een omitted. 

Through visual comparison of empirical and geometric surrogate

racer graphs, we find the expected result that the mouse brain net-

ork as measured with tracer data places its hub nodes further towards

he periphery of the brain than would be predicted by geometry alone,

ith the strongest nodes located across the isocortex, medulla, and infe-

ior hypothalamus. Empirical tractography graphs, however, place the

trongest nodes deeper towards the center of the brain compared to the

racer graph, with hubs organized into a ball-like structure comparable

o their corresponding geometric surrogates. Table 2 shows the percent

f total hub node strength located within select major brain divisions for

ach network construction method. 17% of the total tracer hub strength

as located along the isocortex, while no isocortex nodes in either of
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Fig. 6. Visualization of network structure for (a) 

tracer, (b) endpoint, and (c) dense graphs in phys- 

ical coordinates. Spheres represent the center of 

mass of each node, colored by relative strength. 

Edges between the top 15% strongest “hub ” nodes 

(larger spheres) are shown as teal lines. Graphs 

are visualized along the axial (left), sagittal (mid- 

dle), and coronal (right) planes with labeled ori- 

entations: A = anterior, S = superior, R = right, L = left. 

Tractography node strengths are calculated as 

averages across 5 datasets. Geometric surrogate 

graphs are single representative samples. (For in- 

terpretation of the references to colour in this fig- 

ure legend, the reader is referred to the web version 

of this article.) 
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Fig. 7. Violin plots showing the distribution of 

distances between the center of mass of indi- 

vidual hub nodes and the center of mass of the 

brain. Horizontal bars indicate the means of 

each distribution. Distributions represent per- 

node values across all datasets. 𝑊 geo data are 

taken from an ensemble of 100 random graphs 

per network construction method. Red stars in- 

dicate statistical significance ( 𝑝 < 0 . 01 ) in the 

difference between 𝑊 emp and 𝑊 geo data, and 

blue diamonds indicate statistical significance 

( 𝑝 < 0 . 01 ) in the difference between empirical 

tracer and tractography data. 𝑝 -values were 

calculated using Tukey’s range test. (For inter- 

pretation of the references to colour in this fig- 

ure legend, the reader is referred to the web 

version of this article.) 

Table 2 

Percent of total hub node strength contained in se- 

lect major brain divisions. 

Region Tracer Endpoints Dense 

Hypothalamus 29 57 22 

Medulla 19 9 7 

Isocortex 17 0 0 

Midbrain 10 12 22 

Thalamus 9 9 31 
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he tractography graphs were identified as hubs. Tractography graphs

ikewise underestimated hub strength in the medulla and overestimated

ub strength in the midbrain and thalamus, particularly for the dense

ode assignment strategy. Overall, only 11 individual structures were

o-identified as hubs between the tracer and both tractography meth-

ds. 

In the case of dense node assignment, the tendency to cluster hub

odes near the center of the brain appears even more pronounced than

ould be predicted by geometric surrogate graphs with the same 

weight-distance relationship. These results suggest a strong geomet-

ic determination in the organization of hub nodes in tractography

bove and beyond the geometric relationship expected from tracer data.

The geometric centrality of hub nodes is further quantified in Fig. 7 ,

hich shows the mean distance between hub nodes and the center of

ass of the brain for all empirical and geometric surrogate graphs. As

isualized in Fig. 6 , the tracer empirical graph places its hubs further

rom the center of mass than its corresponding geometric surrogates,

hile dense tractography not only places its hubs closer to the center

f the brain than the tracer graph does, but also places its hubs slightly

ore central than its own geometric surrogates. Endpoint tractography

raphs also place their hub nodes more geometrically central overall

han the tracer graph, with distances from the center of mass comparable

o their geometric surrogates. However, Fig. 6 shows that the endpoint

raphs are better able than dense graphs to capture some of the more

eripheral hubs along the inferior hypothalamus. 

In addition to the participation coefficient and node strength, hubs

ere identified and characterized using their eigenvector centrality

EC), a robust measure of relative node importance calculated by tak-

ng the elements of the leading eigenvector of the connectivity matrix

 Newman, 2004 ). Each node’s EC is related to the weight of the connec-

ions to its neighbors, such that a node could acquire a high EC either by
9 
aving a large number of very weak connections or by having a small

umber of very strong connections. Figure 8 shows distributions of the

verage fiber distance to each node’s neighbors ⟨𝐷 neighbors ⟩ for all em-

irical and geometric surrogate graphs. Distributions are split into hub

top 15%) and “feeder ” (bottom 

85%) nodes defined using EC. Nodes with a low ⟨𝐷 neighbors ⟩ imply

hysical, geometric centrality with respect to their neighbors, and nodes

ith a high EC imply high topological centrality and node importance. 

Geometric surrogate graphs from all network construction methods

ave much lower mean ⟨𝐷 neighbors ⟩ for hub nodes than for feeder nodes,

eaning they predict the most topologically central hub nodes to also be

he most geometrically central. The empirical tracer graph predicts the

pposite relationship: not only are tracer hub nodes located further from

heir neighbors than predicted by geometry, they are also less geometri-

ally central than the remaining feeder nodes, reflecting their peripheral

lacement seen in Figs. 6 and 7 . 

This effect is not observed in any of the empirical tractography

raphs. The dense tractography graphs predict ⟨𝐷 neighbors ⟩ values for

heir hub nodes more similar to those from the tracer graph, but the dis-

ributions from both tractography approaches are much more similar to

hose from their corresponding geometric surrogates than the empirical

racer distributions are to theirs. Particularly, both empirical tractogra-

hy graphs have lower mean ⟨𝐷 neighbors ⟩ values for hub nodes than for

eeder nodes, the reverse of the relationship seen in the tracer graph.

his once again indicates a strong geometric bias in the placement of

opologically important nodes in tractography graphs. 

.4. Comparison of network efficiency 

While analysis of modular structure and related metrics describe as-

ects of network segregation, the global and local efficiencies are met-

ics of integration for unweighted networks. Local efficiency is calcu-

ated as the average inverse shortest path length between a node and

ll of its neighbors, while global efficiency is the average inverse short-

st path length between all pairs of nodes in a network. Accordingly,

etworks with high global efficiencies are able to efficiently commu-

icate information across different regions. Raw global efficiency val-

es are shown in Fig. 9 a. As the underlying weighted graphs are nearly

ully connected for all methods, binary efficiencies are characterized as a

unction of network density after thresholding low-weight edges. Global

fficiencies normalized by the values from 𝑊 rand - and 𝑊 geo -surrogate

raphs are shown in Fig. 9 b–c, respectively. Across all threshold levels

nd normalizations, global efficiencies from endpoint tractography pro-
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Fig. 8. Violin plots showing distributions of 

the average fiber distance to each node’s neigh- 

bors, split into hub (top 15%) and feeder (bot- 

tom 85%) nodes defined using eigenvector cen- 

trality. Distributions from empirical graphs are 

shown in blue colors, and distributions from 

geometric surrogate graphs are shown in red 

colors. Lighter shades of each color indicate 

hub nodes and darker shades indicate feeder 

nodes. Horizontal bars indicate the means of 

each distribution. Distributions represent per- 

node values across all datasets. Green squares 

indicate statistical significance ( 𝑝 < 0 . 01 ) in the 

difference between empirical hub and feeder 

distributions. Red stars indicate statistical sig- 

nificance ( 𝑝 < 0 . 01 ) in the difference between 

𝑊 emp and 𝑊 geo hub values. Blue diamonds in- 

dicate statistical significance ( 𝑝 < 0 . 01 ) in the 

difference between empirical tracer and trac- 

tography hub values. 𝑝 -values were calculated 

using Tukey’s range test. (For interpretation of 

the references to colour in this figure legend, 

the reader is referred to the web version of this 

article.) 

Fig. 9. Efficiency. (a–c) Global efficiencies for each method as a function of network density. Shaded regions represent 1 standard deviation across 5 tractography 

datasets. (a) Raw global efficiency values for all empirical graphs. (b) Global efficiencies for all empirical graphs randomized against the mean value from their 

corresponding random surrogates. (c) Global efficiencies for all empirical graphs randomized against the mean value from their corresponding geometric surrogates. 

The widths of the horizontal lines at the top of (a–c) indicate the range of network densities with statistical significance ( 𝑝 < 0 . 01 ) in the difference between tracer and 

tractography values for each tractography method, calculated with (a) Tukey’s range test and (b–c) a permutation test. (d–e) Scatterplots showing local efficiencies 

calculated with empirical tracer and (d) endpoint and (e) dense tractography graphs across a range of network densities. 𝑟 values indicate Pearson correlations. 
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n  
ided a good match to those from the tracer model. Dense tractography

ignificantly underestimated global efficiency at all densities, even af-

er normalization with the values from its geometric surrogates, which

uggests that dense tractography underestimates the role of geometry

n network integration relative to the tracer model. Figure 9 d–e shows

catterplots demonstrating the relationship of per-node local efficien-

ies between tractography- and tracer-derived networks across multiple

ensities. Pearson correlations were weak across both methods and all

ensities, indicating that while endpoint tractography performs well in

stimating global efficiency, neither tractography method is able to ac-

urately predict the local efficiency of individual nodes. Plots comparing

he additional binary topological properties of clustering coefficient and

ean path length are shown in Supporting Information Figures S4– S5.

.5. Validation with independent tracer measurements 

For independent validation of the whole-brain network analysis re-

ults from the computational tracer model from Knox et al., tractog-

aphy edge-weights were also compared to ipsilateral cortical connec-

ivity measurements published in G ăm ănu ţ et al. (2018) . Figs. 10 a–

 show connectivity matrices of 18 cortical regions from both tracer

atasets and tractography methods. Scatterplots between tractography

nd tracer edge-weights are shown for endpoints and dense tractography

n Fig. 10 e–f, respectively. For both node assignment methods, Spear-

an correlations between tractography and tracer weights are signifi-

antly higher with the Knox et al. model than the G ăm ănu ţ et al. data.

ig. 10 g shows the mean relationship between edge weights and fiber

istance after the log-weight distributions were normalized to a mean of

 and standard deviation of 1. Even though the overall range of distances

s shorter between ipsilateral cortical nodes than across the whole brain,

he tractography methods both still demonstrate a significant underes-

imation of long-range connectivity relative to empirical tract-tracing

easurements in the cortex, which is consistent with the resulting geo-

etric bias in network properties found through comparison to compu-

ational tracer-derived connectivity estimates in the whole brain. 

. Discussion 

Across nearly all metrics explored in this study, we find that the topo-

ogical properties of tractography-derived graphs are much more influ-

nced by spatial embedding than would be predicted by the more ac-

urate role of spatial embedding represented by the tracer model. Trac-

ography graphs underestimate connectivity weights at long distances,

eading to a conflation of topological and geometric centrality that bi-

ses the estimated modular structure and the architecture of hub subnet-

orks. These results serve as an important reminder for consideration

n future tractography studies: given that many properties of the true

rain network can be reasonably predicted strictly by spatial embed-

ing, tractography methods development and validation efforts should

e targeted towards the ability to predict network properties beyond a

eometric baseline. While we expect that methodological geometric bias

lays a similar role in human tractography networks, some studies have

hown encouraging results. For example, Roberts et al. (2016) demon-

trated that empirical human tractography graphs exhibit a more pe-

ipheral hub network structure than predicted by their corresponding

eometric surrogate graphs, similar to our tracer results in Fig. 6 and

n contrast to what we observed with tractography networks. Never-

heless, conclusions from human tractography networks cannot be veri-

ed with additional ground-truth imaging, and caution should be taken

hen interpreting tractography-derived brain networks in all species,

articularly for metrics which rely more on long-range connections. 

One aim of this work was to explore differences in tractography net-

ork structure resulting from the streamline node-assignment strategy.

ltimately, we found our results were largely independent of the specific

ode-assignment approach. The geometric bias in tractography was not
11 
itigated by either method; despite small differences, network char-

cteristics of both tractography graphs were far more similar to each

ther than either of them were to characteristics of the tracer graph.

hile endpoint tractography might represent a more physically intu-

tive model of brain connectivity, the comparable performance of dense

ractography reflects the ambiguous physical definition of tractography

treamlines. Particularly at this spatial resolution and in the absence

f stronger anatomical regularization, tractography streamlines strictly

epresent potential probabilistic pathways of white matter fibers that are

onsistent with symmetric diffusion data. When streamlines are made to

erminate under reasonably enforced constraints such as on fODF mag-

itude or streamline curvature, this enforces a penalty on unrealistic

ber geometries or the use of lower-confidence diffusion data, but does

ot yield a physical sense of the actual origin or termination points of

he underlying neuronal fibers. This compromises the intuitive appeal

f “endpoint ” streamline node assignment as used in this study. In fact,

ithout additional constraints, we expect the endpoint locations of any

iven streamline to be more noisy and erroneous as streamline length

ncreases due to the fiber orientation errors accumulated at each step in

he tracking process, an inherent tradeoff that exists even with more so-

histicated forms of anatomic regularization. With dense tractography,

he effective signal to noise ratio for connectivity similarly falls off for

oints further away from the seed location, but since a single streamline

s allowed to contribute to the connectivity estimate between multiple

ode-pairs at varying distances, a greater proportion of points from each

treamline contribute connectivity estimates that are less noisy than

hose from the endpoints. Dense tractography also serves as a poten-

ially more physically meaningful match to the tracer data used in this

tudy, as connectivity values in the Knox et al. model are derived from

egmented projection volumes of a viral tracer that fluoresces along the

ntire length of any given neural projection. 

For the data used in this study, we took the approach of seeding

nly from the gray matter to avoid known tract-length connectivity bi-

ses ( Girard et al., 2014; Jeurissen et al., 2019 ), and normalized the

treamline counts by the volumes of each node-pair in order to bet-

er match the normalized connection density metric used in the Knox

t al. model. Since our data were acquired with a single, relatively low

-value, we opted against the use of more advanced streamline quan-

itation algorithms such as SIFT2 ( Smith et al., 2015 ). This also pro-

ides a more direct comparison between our results and those of sim-

lar studies that have used the Allen tracer data to benchmark trac-

ography performance without reference to the role of spatial embed-

ing ( Aydogan et al., 2018; Calabrese et al., 2015; Chen et al., 2015 ).

ven with these relatively simple post-processing approaches, the re-

ults of this study serve to echo recent tractography validation reviews

hat suggest that the future of tractography connectomics hinges on the

ncorporation of more advanced anatomical and microstructural priors

o tractography pipelines in order to address geometric and other bi-

ses and make streamlines more quantitative and physically meaning-

ul ( Maier-Hein et al., 2017; Schilling et al., 2019 ). Network analysis

ith geometric surrogate graphs can be an important tool to evaluate

uch quantitative tractography pipelines in the future. A recent study

y Girard et al. (2020) rigorously benchmarked 15 tractography algo-

ithms and a number of regularization approaches such as the “anatom-

cally constrained tractography ” framework ( Smith et al., 2012 ) and the

IFT2 post-processing algorithm ( Smith et al., 2015 ) against tracer data

n the macaque cortex, though it did not present analysis of downstream

etwork measures. Our future work will similarly explore the adoption

f more advanced tractography and regularization approaches in the

ouse brain, where whole-brain tracer data are more readily available.

enchmarking these approaches with the use of geometric surrogate

raphs will allow for a deeper understanding of the value of existing

uantitative strategies designed to mitigate tractography biases. 

The results in this study rely on the assumption of the tracer data as

 ground truth representation of the underlying mesoscale mouse brain

etwork architecture. While tracer data is certainly ideal in many re-
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Fig. 10. Comparison to empirical, retrograde tracer data in the cortex from G ăm ănu ţ , 2018. (a–d) Cortical connectivity matrices for (a) the Knox, 2019 tracer model, 

(b) the G ăm ănu ţ , 2018 empirical data, (c) endpoint tractography, and (d) dense tractography. (e–f) Scatterplots showing correlations between (e) endpoint and (f) 

dense tractography edge weights and values from the two tracer graphs. 𝜌 values indicate Spearman correlation coefficients with standard deviations calculated 

across 5 tractography datasets. (g) Normalized weight-distance relationships. Circles represent the average log-weight z-scores for each method within 1 mm fiber 

distance bins. Shaded regions represent 1 standard deviation across 5 tractography datasets. The widths of the dotted and solid horizontal lines at the top of the 

figure indicate the range of fiber distance bins with statistically significant differences ( 𝑝 < 0 . 01 ) between Knox, 2019 (dotted) and G ăm ănu ţ , 2018 (solid) tracer 

values and tractography values for each tractography method, calculated using a one-sample t -test after correcting for multiple comparisons. 
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pects for the benchmarking of diffusion tractography, there are also

imitations to this assumption. Both anterograde and retrograde tracer

tudies produce inherently directed graphs, whereas tractography is

ased on inherently symmetric diffusion measurements and produces

ndirected graphs. This requires the use of directional symmetry en-

orcement for fair comparison that may alter the underlying network

roperties represented by the tracer data. Besides any biases in the imag-

ng and registration process itself, the Knox et al. model relies on com-

utational estimates of connectivity based on segmented volume frac-

ions of underlying tracer experiments that may span multiple different

ray-matter regions. Accordingly, the Knox et al. model itself is only

n estimate that may carry its own biases of the true underlying den-

ity of neurons connecting each region pair. For this reason, we are en-

ouraged by the validation of our tractography results against the more

mpirical measurements of neuronal connectivity from the retrograde

ract-tracing experiments published by G ăm ănu ţ et al. ( Fig. 10 ). Corre-
12 
ations between tractography and tracer edge-weights are even lower

or the G ăm ănu ţ et al. data than for the Knox et al. model, while trac-

ography shows a comparably dramatic falloff in weight with distance

elative to both tracer datasets, suggesting that our overall conclusion

hat tractography graphs are more determined by geometry than tracer

raphs would persist if empirical measurements similar to those from

he G ăm ănu ţ et al. study were available across the whole brain. 

. Conclusion 

We used geometric surrogate graphs to explore the role of spatial

mbedding in the topological properties of the mouse structural brain

etwork measured by neural tracer imaging and diffusion MRI tractog-

aphy. We found that spatial embedding played a considerably larger

ole in the topology of tractography networks than tracer networks.

ractography approaches underestimate long-range connectivity, which
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eads to geometric biases in the estimated modular structure and place-

ent of high-strength hub nodes. Our results demonstrate the caution

equired in the interpretation of tractography-derived network measure-

ents that rely on long-range connections and motivate additional ge-

metric consideration in the design of future tractography validation

tudies. 
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