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talking about science. I want to thank Dr. Heng Liu and Dr. Wei Qin for being excellent lab mates, 

sounding boards for ideas, and for never making too much fun of my horrible Chinese. I want to 
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with their careers. We learned a lot together, and I wish you all the best of luck.  

 I want to thank my committee members, Prof. Paul Nealey, Prof. Steve Sibener, and Prof. 

Yossi Weizmann, for not only agreeing to be on my defense committee, but for also collaborating 

with me on several of the projects in this thesis. The broad scientific background Iôve gained came 

about by working with, and learning about, the expertise of your labs. I also want to thank the JFI 

and the University of Chicago Chemistry department for fostering and maintaining a collegial 

working environment. I want to thank Prof. Tom Witten for inviting me to give MRSEC brownbag 
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Dr. Alexander Filatov, Jonathan Raybin, Lili Wang, Nicholas E. Williams, John P. Otto, Dugan 
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Pete Dahlberg, Sara Massey, and Igor Fedin for letting me borrow equipment from their labs, and 

for teaching me how to properly use it. I want to thank Qiti Guo, Joe Austin, and Pedro Rodriguez 
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ABSTRACT  

 

The plasmon phenomenon is the driving force behind noble metal nanoparticle research. While 

some work synthesizing new kinds of particles is still performed, a wider range of opportunities is 

available if these nanoparticlesô self-assembly in solution and on substrates can be controlled. This 

text presents several such methodologies, describing each assembly process and characterizing the 

resulting structures. The selective, aqueous dimerization of gold bipyramids is the first study. 

These novel antennae are created by stabilizing the gold biypramidôs ligand shell, then linking the 

particles with amino acids. Because of the gold bipyramidsô monodispersity and the precision of 

the reaction, the assembly can be monitored to ensure high dimer yield. Gold nanorod alignment 

on, and by, a shallowly corrugated diblock copolymer thin film demonstrates the power of template 

assisted assembly. Controlling the alignment of the underlying film controls the gold nanorodsô 

alignment, yielding mesoscale structures with orientation dependent optical properties. With 

intentional design, other polymer substrates are used to construct gold bipyramid ï silver 

nanosphere plasmonic heterostructures. With proper ligand-polymer interaction tailoring, this 

result demonstrates how this technique can rationally create almost any noble metal nanoparticle 

based structure. The nonlinear optical properties of these heterostructures are currently being 

investigated. 

 These assemblies are all unique, and barely represent a fraction of what plasmonic 

nanoparticle assembly research can entail. Given polymer templatesô efficacy in controlling these 

particleôs deposition and alignment, a study of a diblock copolymer thin filmôs swelling behavior 

is also contained in this work. By understanding and controlling the filmôs surface morphologies, 

its efficacy for noble metal nanoparticle alignment can be determined. Gold nanoparticles are used 
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to probe the chemical nature of diblockôs swollen surface, and concurrently demonstrate that it can 

align small, highly charged, plasmonic nanoparticles. Several attempts to synthesize solution-

based plasmonic antennae and fluorophore hybrids are also described, resulting in an introduction 

to the realm of semiconductor nanocrystal synthesis. Although these gold bipyramid ï water 

soluble quantum dot systems have not yet been achieved, with some refinement, such systems 

should be possible. Finally, following the theme of unexpected research directions, two 

collaborations are presented that utilized the nanoparticle synthesis and characterization skills 

required to perform the rest of this research. 
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Chapter 1. Introduction  

 

Gold nanoparticles (AuNPs) are the oldest of all colloidal nanomaterials. Used in the Lycurgus 

cup, red stained glass,1 and accidentally made by Faraday,2 their usefulness was long limited due 

to the inability to control their optical properties. This changed with the first syntheses of 

anisotropic gold particles in the early 2000s.3ï5 Since then, an explosion of research into AuNPs 

has occurred, yielding a wide range of particle shapes6ï11 and compositions.10ï13 Gold nanorods 

(AuNRs) and gold bipyramids (AuBPs) have attracted significant attention due to their simple 

syntheses, shape control, tunable optical properties, and significant enhancements of applied 

electric fields.6,11,14,15 These particles have already found biomedical, sensor,11,16ï18 and even 

catalytic11 applications. 

More opportunities present themselves if the aggregation of these NPs can be controlled.19 

Whether in solution20,21 or on a substrate,22,23 rationally designed electromagnetic hot-spots22ï26 

and extended optical tuning20,21,25,27ï29 can be achieved by self-assembling AuNRs and AuBPs. 

The promise of new uses for these NPs,30 combined with the interesting synthetic challenges and 

exciting optical properties, motivated me to research noble metal NP self-assembly and 

characterize the resulting structures. In the remainder of this chapter, I will introduce the 

phenomenon that makes noble metal NPs so interesting, and explain how it influenced the NPs 

and methodologies with which I worked. In chapter 2, I present my first project, where I 

synthesized and characterized AuBP dimers for the first time. Due to the AuBPsô monodispersity,20 

I was able to match the single particle scattering to the in-situ solution UV/Vis spectra of the 

dimers, which cannot be done with AuNRs.20 Chapter 3 is the result of a collaboration with the 

Sibener lab, where we successfully controlled the assembly of AuNR monolayers on shallowly 
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corrugated polymer templates. The AuNRs deposited into the polymer trenches nearly perfectly, 

and by controlling the underlying polymer filmôs alignment, we controlled the alignment of the 

AuNRs. This resulted in our AuNR monolayers demonstrating macroscopic, polarization 

dependent surface enhanced Raman scattering (SERS) spectra,22 which had never been previously 

reported.  

In chapter 5, I present the unpublished work of two on-going projects that intend to use the 

strong electromagnetic field enhancements at the tips of AuBPs15 to create novel hybrid structures 

with large optical nonlinearities. The first project, in chapter 5.1, has yielded the creation of unique, 

AuBP and silver coated gold nanospheres (Ag/AuNS) heterostructures by controlling their 

placement on pre-patterned polymer substrates. With this result, our collaboration with the Nealey 

lab demonstrates the generalizability of their methodology to make heterostructure arrays 

involving almost any noble metal NP. We further hope to show that coupling the field enhancement 

of a AuBP to a Ag/AuNS scatterer creates a system with large second harmonic generation (SHG) 

responses. The second project, in chapter 5.2, covers the several unpublished attempts to 

synthesize single, linked, AuBP ï quantum dot (QD) systems. From a simple application of 

Fermiôs Golden Rule,31,32 our goal was to make structures where the electric field enhancements 

of the AuBPs significantly enhanced the photoluminescent (PL) properties of a nearby QD. We 

had also wanted to probe the regimes of PL enhancement and quenching by using pH sensitive 

DNA strands, allowing us to determine their distance dependence with one system. This work is 

still ongoing. 

In chapters 4 and 6, I present work that is slightly outside the main scope of my thesis. 

Chapter 4 is a soon to be submitted project, where, in my attempts to expand the work of chapter 

3, I managed to stumble upon novel swelling morphologies of a diblock copolymer thin film. The 
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focus of my work then shifted to characterizing and investigating how these morphologies arose. 

In the process, I demonstrated that these swollen films can control the macroscopic alignment of 

small, spherical, highly charged AuNSs, from which larger particles can be grown. This proves to 

serve a dual purpose, since the particles also probe the filmôs nanoscopic chemical nature. Chapter 

6 contains my contributions as a NP synthesis and characterization expert to two other 

collaborations. For the first, I synthesized AuBPs that were used to probe the viscoelastic fluid 

dynamics regime in simple liquids,33 and for the second, I took TEM images and performed 

elemental analysis on incredibly stable and bright perovskite NPs.34 

The conclusion is a more complete summary of the work Iôve so far described, and provides 

several ideas for general and specific directions of future research. The fact that each of my projects 

was unique, presenting its own challenges, methodologies, and results, demonstrates the 

impressive number of research opportunities available in studying noble metal NP self-assembly. 

Carefully manipulating the phenomenon that makes these NPs so special yields systems with 

exciting properties and unexpected potential applications. 

 

1.1 The Plasmon Phenomenon 

The fascinating optical properties of noble metal NPs arise because the Drude model of the 

free electron sea survives the transition to the nanoscale. This means that noble metal NPsô 

conduction band electrons can still be treated as a freely moving plasma.35,36 However, the 

positively charged background coresô existence is now significant. Thus, when the plasma is 

displaced through exposure to an oscillating electric field, a dipole develops that exerts a restoring 

force, and causes the plasma to resonate at specific frequencies.35,36 When the source of the 

oscillating electric field is a photon, this phenomenon is called a localized surface plasmon 
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resonance (LSPR), and the frequencies at which it occurs depend upon the metal, the medium, and 

the dimensions of the NP.35,36  

 To understand how this frequency dependence arises, we must first understand the 

frequency dependence of a metalôs dielectric function. The equation of motion for a plasma when 

displaced by an oscillating electric field is well described by that of a damped harmonic 

oscillator,35 

ά ά  ὩὉ (1) 

where ὼ is the plasmaôs displacement, m is the effective optical mass of an electron, ɔ is the 

electronic damping parameter, e is the charge of an electron, and Ὁ is the applied electric field.35 

If we assume that the electric field is harmonic in time, 

Ὁὸ  ὉÅ  (2) 

then so too is the displacement, 

ὼὸ  ὼÅ , (3) 

such that 

ὼ  .35 (4) 

The macroscopic polarization (dipole moment per unit volume) of the plasma is then 

ὖ ὲὩὼ  Ὁ, (5) 

where ὲ is the number density of the electrons.35 Given the relationships between the dielectric 

displacement (Ὀ), and ὖ and Ὁ, 

Ὀ  ‐Ὁ ὖ  ‐‐Ὁ, (6) 

where ‐ is the electric permittivity of vacuum and ‐  is the dielectric function of the metal, 

then 
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‐‐Ὁ  ‐Ὁ Ὁ  ρ ‐Ὁ, (7) 

meaning 

‐  ρ  .35 (8) 

This is the dielectric function of a free plasma, which doesnôt account for the background of 

positive nuclei in a metal. Thus, the dielectric function for a metal replaces óρô with a constant, 

‐ , appropriately named the dielectric constant of the metal. Thus, the frequency dependent 

dielectric function for a metal is 

‐   ‐  .35 (9) 

  With this equation, we can understand how the LSPR of noble metal NPs arise. In 1908, 

Gustav Mie published the seminal work detailing the interaction of light with small gold spheres, 

using a multipole expansion from which the frequency dependent extinction cross section, 

„  , of the particles can be determined.35ï37 For particles with dimensions much smaller than 

the incident lightôs wavelength, the phase of the oscillating electromagnetic field can be considered 

constant, making all but the first term of Mieôs expansion negligible.35,36 This is the quasi-static, 

or dipole, approximation, and describes the LSPR behavior of noble metal NPs 20 ï 100 nm in 

diameter very well, yielding 

„  ω ‐
Ⱦ
ὠ
ȿ ȿ

, (10) 

where ὧ is the speed of light, ‐ is the dielectric constant of the environment, ὠ is the NPs volume, 

and the dielectric function of the metal is defined as in (9).35,36 In the small damping limit , i.e., 

when the imaginary part of ‐   can be ignored, „   is maximized when 

ὙὩ‐   ς‐.35 (11) 

The frequency at which this occurs is the LSPR frequency of the AuNS. 
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 In 1912, Richard Gans extended Mieôs theory to ellipsoidal AuNPs.35,36,38 Now, for a 

prolate spheroid, the extinction cross section within the dipole approximation is 

„  ω ‐
Ⱦ
ὠВ

Ⱦ

Ⱦ
, (12) 

where ὖ is the depolarization factor per axis, given by 

ὖ  ÌÎ ρ (13) 

for the major axis, and 

ὖ  ὖ   (14) 

for the minor axes.36 In this instance, Ὡ is the eccentricity of the particle, defined as 

Ὡ  ρ  ρ  , (15) 

where ὃ is the length of the major axis, ὄ ὅ are the length of the minor axes, and Ὑ is the aspect 

ratio of the NP.36 It is through this term that the dimension dependence of LSPRs in anisotropic 

NPs arises. The LSPR condition is now 

ὙὩ‐  ‐, (16) 

and has two solutions.35,36 The plasmon along the minor axis is called a transverse surface plasmon 

(TSP), and is close to the LSPR frequency of NSs (Figure 1.1.1a).39 The plasmon along the major 

axis is called the longitudinal surface plasmon (LSP), and is redshifted from the TSP.35,36 As Ὑ 

increases, the LSP redshifts even further, giving rise to the tunable optical properties of anisotropic 

NPs (Figure 1.1.1a).36 As ὃ increases past ~100 nm, the dipole approximation no longer 

completely describes „  , and higher order terms of the multipole expansion must be taken 

into account.35,36 
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Figure 1.1.1 a) UV/Vis spectra and TEM images of AuNRs and AuBPs I synthesized, 

demonstrating the LSP tuning of the structures. In all three syntheses, the large spectral feature 

around 2.3 eV is a combination of their TSP and the AuNS biproduct LSPR. b) Theoretical 

simulations of the electric field enhancements of AuNPs of different shape and tip sharpness at 

their plasmon resonances. Spheres, being the most round, show the least enhancement, and AuBPs, 

having the sharpest tips, show the most enhancement. Figure 1.1b is adapted with permission from 

ref. 15. Copyrighted by the American Physical Society, 2007. 

 

1.2 Gold Nanorods and Gold Bipyramids  

A consequence of Mie theory is that plasmonic NPs can be treated as nanoscale antennae, locally 

enhancing the applied electromagnetic field.15,40 Strongest at a noble metal NPôs plasmon 

resonance, this is known as the lightning rod effect, and since antennae focus electric fields to 

points, anisotropic NPs create much larger enhancements than their spherical counterparts (Figure 

1.1.1b).15 While anisotropic, plasmonic NPs of silver and copper exist, they tend to be less stable 

than gold counterparts,41,42 are harder to synthesize,43 and are limited in shape to spheres or rods.44ï
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47 This last point is very pertinent for electromagnetic field enhancements, since their magnitude 

directly correlates with NP tip sharpness (Figure 1.1.1b).15 Thus, the AuBPs first synthesized in 

our lab6 over a decade ago are the noble metal NPs with the strongest electromagnetic field 

enhancements to date (Figure 1.1.1b),15 with the additional benefit of being the most monodisperse 

colloidally synthesized anisotropic plasmonic NPs.6 Since extensive AuBP colloid and single 

particle characterizations had previously been performed in our lab,6,15,48ï52 the impetus for my 

research was to manipulate and utilize the AuBPôs extreme lightning rod effect by controlling their 

assembly (Chapters 220 and 5). While this did not always work (Chapters 322 and 4), I was always 

able to pull from the synthetic library of AuNPs to find plasmonic structures to use in my 

investigations.  
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Chapter 2. Gold Bipyramid Nanoparticle Dimers20 

 

This paper was originally published in The Journal of Physical Chemistry C on February 28th, 

2014, and is adapted with permission here: Malachosky, E. W.; Guyot-Sionnest, P. Gold 

Bipyramid Nanoparticle Dimers. J. Phys. Chem. C 2014, 118 (12), 6405ï6412. Copyright 2014 

American Chemical Society. 

Special thanks to: Dr. Gang Chen, Prof. Yossi Weizmann 

 

This chapter is my first, first-author paper, and is the aqueous synthesis of gold bipyramid (AuBP) 

dimers. The methodology, its selectivity, and the resulting structuresô characterization with optical 

dark-field and scanning electron microscopy are presented and discussed. In the bowtie 

orientation, the dimers exhibit a 20% redshift in their plasmon resonance as compared to the 

individual particles, with a weak dependence on the interparticle separation. From the analysis, it 

is found that the in situ absorption peaks that develop during the assembly can be assigned to 

specific dimer structures, which have not been shown previously. Lastly, the kinetics of the 

assembly are analyzed. 

 

2.1 Introduction 

Interest in anisotropic colloidal gold nanoparticles (AuNPs) stems from their tunable plasmon 

resonances and electric field enhancements.17,53 Gold nanorods (AuNRs) are the most studied 

example of these particles,4ï6,14,15,24,25,29,54ï78 but even the best AuNR samples exhibit aspect ratio 

variations that cause their inhomogeneous linewidth to exceed their homogenous linewidth by at 

least two fold. Gold bipyramids (AuBPs), however, have better shape homogeneity, the narrowest 
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ensemble linewidth of all plasmonic colloidal particles, and are predicted to have larger near-field 

enhancements due to their sharp tips.6,15,58,79,80 This makes them natural choices for seeking novel and 

enhanced optical properties.  

We have developed an aqueous methodology for the synthesis of AuBP dimers as a starting 

point for future field enhancement and nonlinear optical studies. The methodology, its selectivity, 

and the characterization of the resulting structures are presented and discussed. Previous work on 

AuBPs25,64 and AuNRs24,25,29,59ï74 showed the possibility of assembling dimers and extended 

chains of anisotropic AuNPs with some tip to tip selectivity. The UV/Vis spectra of these reactions 

exhibit a broad, red-shifted plasmon resonance as they proceed, attributed to the variety of 

aggregate structures formed. In this paper, we demonstrate the selective functionalization of 

AuBPs and their assembly into bowtie structures. From their joint structural and optical 

characterization, we show the dependence of the dimerôs plasmon resonance on their geometry 

and that the distinct spectral features that develop in solution correspond to the plasmon resonances 

of specific dimer structures. Lastly, we analyze the kinetics of the reaction and show that they do 

not fit a simple second order model. 

 

2.2 Experimental Methods 

Materials. Hexadecyltrimethylammonium bromide (CTAB, Ó99%), gold (III) chloride trihydrate 

(Ó99.9% metals basis, HAuCl4), silver nitrate (99.9999%, AgNO3), L-ascorbic acid (Ó99.0%, vit-

C), sodium citrate dihydrate (Ó99%, Na3Cit), sodium borohydride (Ó98.5%, NaBH4), L-cysteine 

(97%), L-glutathione (Ó98%), 2-mercaptoethanol (Ó99%), 3-mercaptoproprionic acid (3-MPA, 

Ó99%), cysteamine (Ó95%), and tetra(ethylene glycol)dithiol (97%) were all purchased from 

Sigma Aldrich and used without further purification. 5-bromosalicylic acid (5-BSA, Ó98.0%) was 

purchased from TCI and used without further purification. Hydrochloric acid (HCl, 1 N) was 
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purchased from Fisher and used without further purification. 1 mm thick, indium-tin-oxide (ITO) 

coated glass microscope slides were purchased from NANOCS and were plasma cleaned before 

use. 18.7 mɋ nanopure water (NPH2O) was obtained from the MRSEC filtration system. 

Instrumentation.  UV/Vis spectra were recorded using an Agilent HP 8453. Scanning electron 

microscope (SEM) images were taken using a FEI NanoSEM at both 50,000x and 400,000x at 

operating voltages of 15 kV and 19.5 kV. Transmission electron microscope (TEM) images were 

taken using a FEI Tecnai F30 TEM operating at 300 kV. HRTEM images were obtained by 

dropcasting a few drops of the solutions onto a formvar coated, lacy carbon grid, wicking away 

the excess liquid, and air drying the grid. Dark-Field (DF) optical microscopy spectra were 

recorded using a home-built microscope with an Andor iDus CCD air cooled to -70 °C as the 

detector (Figure 2.2.1). The microscope consisted of a 50 W tungsten halogen lamp, an oil 

immersion condenser (NA 1.2-1.4), Zaber Technologies T-LS28E X-Y mechanized stages, a 60x 

objective (NA 0.85), and a home-built spectrometer consisting of a lens focused onto a 

transmission grating. The system was calibrated using a Helium-Argon lamp. The ITO-glass 

substrates were patterned with a numbered, 100 ɛM x 100 ɛM gold grid system to allow the optical 

and structural matching. 

Gold Bipyramid Nanoparticle Dimer Synthesis. AuBPs were synthesized as previously 

described,6 which involves two steps. To synthesize the AuBP seeds, in 18.95 mL of NPH2O under 

vigorous stirring at room temperature (RT) were mixed 250 µL of 10 mM HAuCl4, 500 µL of 10 

mM Na3Cit, and 300 µL of NaBH4 solutions. The colloid was allowed to age for two hours, and 

should be clear, pink-orange color. To synthesize the AuBPs, 364 ± 4 mg of CTAB were dissolved 

in 10 mL of NPH2O with vigorous stirring at 30 °C. To this was then added 500 µL of 10 mM 

HAuCl4, 100 µL of 10 mM AgNO3, 200 µL of 1 M HCl, and 80 µL of 100 mM vit-C. The color 
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Figure 2.2.1 Picture of our home-built dark field microscope. 1) is the mechanical sample stage, 

2) marks the objectives and nose-piece holder, and 3) marks the dark-field condenser. 

 

will  change from gold-orange to clear as the Au(III) is reduced to Au(I). Then, the desired amount 

of AuBP seeds were added, and the reaction was allowed to run for two hours. Since the AuBP 

seeds age with time, the correct amount to add is difficult to predict. Thus, these reactions were 

usually performed in quadruplicate. After the AuBP synthesis, the colloid was centrifuged at 30 

°C and 8500 g for 20 min. The supernatant was decanted and the pellet resuspended in 10 mL of 

a 1 mM CTAB/200 ɛM 5-BSA stabilization solution. The colloid was centrifuged twice more 

under the same conditions, with the supernatant decanted and the pellet resuspended with the 

stabilization solution each time. After the final centrifugation, the pellet was resuspended to 2 mL 

and stored at 8 °C. It was found to be usable for over a month. The colloid was characterized using 

UV/Vis spectroscopy and TEM (Figure 2.2.2). 

Typical AuBP assembly reactions were performed at room temperature in a 4 mL cuvette 

and were monitored with time-resolved UV/Vis spectra. An aliquot of the stock AuBP colloid (125 

ɛL) was diluted with NPH2O water (2.725 mL) and mixed with 100 ɛL of a 30 mM HCl solution 

to obtain pH=3. An initial UV/Vis spectrum was recorded. 50 ɛL of a 6 mM linker solution were 

then swiftly added, mixed, and UV/Vis spectra recorded at constant intervals over the course of 

CCD 
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spectrometer 
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Figure 2.2.2 a) UV-Vis absorption spectrum of as synthesized AuBP colloid. b) Representative 

TEM image of the particles in a). 

 

the reaction. The final volume of every reaction mixture was 3 mL. The AuBP and CTAB 

concentrations are estimated to be 30 pM and 42 ɛM, respectively, and the linking moleculeôs 

concentration is 100 ɛM. The diluted colloid, before the addition of the linker, is stable for much 

longer than the lifetime of the reaction (Figure 2.2.3). 

For the samples imaged with the DF microscope, half as much stock colloid (62.5 ɛL) 

mixed with the same volume of the stabilization solution, was used while all other reaction 

conditions were kept the same. These assemblies evolved to a predetermined point, defined by 

their optical spectra, and then a few drops of the reaction mixture was spincast for 10 s at 6000 

rpm onto an ITO-glass substrate. The substrate was vacuum-dried for five minutes and analyzed 

using DF and low resolution SEM. After this data had been collected, the substrate was briefly 

plasma cleaned to remove dirt buildup and allow high resolution (HR) SEM imaging. 

 

2.3 Results and Discussion 

Building from the previous literature,64,65,78 initial assembly experiments were performed on 

diluted aliquots of stock AuBP colloids using only CTAB and the amino acid glutathione. A broad,  
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Figure 2.2.3 UV/Vis spectra of the reaction colloid monitored for an hour without the addition of 

a linker molecule. The lack of change in the spectra indicates that the reaction mixture is stable 

and the changes in the UV/Vis spectra of the reaction solutions are caused by the linking 

molecules. 

 

redshifted plasmon resonance developed, indicating that aggregation occurred, and the greater 

reduction of the AuBP longitudinal plasmon resonance (LSP) at ~1.6 eV over the gold nanosphere 

(AuNS) resonance at ~2.3 eV indicated that the AuBPs were being preferentially aggregated. 

However, these reactions suffered from large variability in their time and spectral feature evolution 

(Figure 2.3.1).29 Suspecting this was caused by poor control of the CTAB concentration, the AuBP 

colloids were repeatedly centrifuged and resuspended with a 2 mM CTAB solution, which was the 

lowest CTAB concentration that maintained particle stability. This did not improve the assembly 

reproducibility. Thus, modifications to the storage temperature, the age of the stock colloid,29 and 

the pH of the reaction solution were studied. The most reproducible results, for any sample age, 

were achieved when the stock colloids were stored at 8 °C before use and the reactions carried out 

at a pH of 3, ensuring the zwitterionic form of glutathione and preventing its oxidation. 

 The remaining variability was assigned to inhomogeneous CTAB bilayers,81 which would 

allow non-specific binding interactions to occur. Aromatic salts, such as 5-BSA, are known to 
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Figure 2.3.1 Time resolved UV/Vis spectra of early AuBP assembly reactions using two different 

stock colloid samples. The spectra exhibit very different shapes, even though the stock colloids 

were treated the same and the reaction mixtures were the same. The arrows indicate the how the 

peaks evolve with time. 

 

stabilize cylindrical CTAB micelles at lower concentration by improving CTABôs micellar 

packing parameter.82ï84  Ye et al. recently used this fact to improve AuNR syntheses,14 suggesting 

the existence of more homogeneous cylindrical bilayers on the particles. Thus, the stabilization 

solution was changed to a CTAB/5-BSA mixture. Figure 2.3.2 compares the UV/Vis spectra of 

assemblies performed with the CTAB and the CTAB/5-BSA solutions. The latter develops better 

defined spectral features.  

We noted in all of these reactions that the LSP of the AuBPs immediately (<30 s) and 

permanently shifted upon the addition of the glutathione linker. For the assemblies performed with 

CTAB, this is a ~4 meV redshift, (Figure 2.3.3a, Figure 2.2.3), while it is a ~6 meV blueshift 

(Figure 2.3.3b) for reactions performed with the CTAB/5-BSA mixture. Because this shift 

occurred in every reaction, we attribute it to the glutathione binding to the AuBPs and assign it to 

the plasmon resonanceôs dependence on its dielectric environment.37 The refractive indices of the 

molecules around the AuBPs are 1.435, 1.654, and estimated 1.55 for CTAB, 5- BSA, and 
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Figure 2.3.2 a) Representative time resolved UV/Vis spectra of an assembly reaction using 

glutathione and the 2mM CTAB stabilization solution. b) Representative time resolved UV/Vis 

spectra of an assembly reaction using glutathione after the stabilization solution was changed to 

1mM CTAB/ 200ɛM 5-BSA. The arrows indicate the spectral evolution with time. 

 

glutathione, respectively. Thus, the AuBP LSPôs red-shift upon the addition of glutathione in a 

CTAB solution is due to an increase in its local polarizability, while its blue-shift in the CTAB/5-

BSA solution is due to a polarizability decrease. The fact that these shifts occur on a much faster 

time scale than the assembly indicates that the glutathione (in 100x excess for full surface 

coverage) immediately adsorbs to the AuBPsô surfaces. Others have proposed that thiol linkers 

can only access AuNP surfaces through locations of poor CTAB bilayer coverage,64,78 such as the 

tips, but we consider this unlikely given the strong Au-thiol bond compared to the Au-CTAB non-

specific interaction. Therefore, we propose that the linker adsorption is not restricted to the tips 

but rather that the AuBPs are fully coated with glutathione, on top of which is the CTAB/5-BSA 

bilayer. The tip selective assembly then occurs due to glutathione exposure at regions where the 

bilayer has broken down due to geometric stress. 

AuNP assembly with glutathione was first proposed by Sudeep et al. to arise from a two 

point electrostatic interaction between the zwitterionic head groups on different particles.64,78 Since 
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Figure 2.3.3 Comparison of assembly reactions performed using a) glutathione b) cysteine under 

the standard reaction conditions. The red-shifted peaks in the cysteine assembly are better defined 

than the same peaks in the glutathione assembly. c) and d): The spectra of the cysteine assemblies 

performed for characterization. c) is the reaction performed with the full, 125 ɛL aliquot of stock 

colloid and d) is the reaction performed with the half, 62.5 ɛL aliquot and 62.5 ɛL of stabilization 

solution. The sample made for structural and optical analysis was made at the last taken time point 

in d). The arrows indicate how the spectra evolve with time. 

 

AuNR assembly has been achieved through a variety of other mechanisms as well, including 

covalent dithiol linking and hydrogen bonding interactions,24,25,29,59ï77 we also investigated other 

water soluble thiols as linkers. These reactions were performed on the same stock colloid and 

monitored for one hour, with the results shown in Figure 2.3.4. To explicitly determine the 

importance of the zwitterionic head group, assemblies were performed with 3-MPA at pH=9 (-

COO-, Figure 2.3.4a) and cysteamine at pH=3 (-NH3
+, Figure 2.3.4b). The 3-MPA induced an 
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immediate blue-shift, which we interpret as its rapid diffusion through the bilayer and adsorption 

to the AuBPsô surfaces, but the spectral evolution indicates that aggregation did not occur. This 

could be due to the negatively charged carboxylate group stabilizing the CTAB bilayer in a similar 

effect to 5-BSA.14,83,84 The cysteamine reaction exhibited a slow blue shift, indicating that it did 

not reach the AuBP surfaces quickly, probably due to repulsion from the positive bilayer. The 

slight shoulder in the UV/Vis spectra that developed over long time indicated the possibility of 

slow, non-specific aggregation. This was most likely caused by the bilayerôs destabilization by the 

positively charged ammonium group. To test for hydrogen bonding, reactions were performed with 

3-MPA and mercaptoethanol at pH=3 (-COOH and -OH, Figures 2.3.4c,d respectively). Both 

reactions exhibited a slow blue-shift and a small amount of slow, non-specific aggregation, 

indicating the slow diffusion of the neutral, hydrophilic species through the CTAB bilayer. This 

would eventually result in a gold surface terminated in neutral -OH groups that could destabilize 

the bilayer and cause the observed aggregation. The similar results for both molecules indicate that 

hydrogen bonding is not a large influence on our assembly.  

Covalent linking interactions were tested using tetra(ethylene glycol)dithiol at neutral pH 

(Figure 2.3.4e). Again, the spectral blue-shift occurred slowly, consistent with the neutral thiol 

results, but no obvious aggregation occurred. Interestingly, both AuBP and AuNS peaks shifted 

simultaneously, indicating non-selective functionalization that was not previously observed. An 

assembly reaction performed using glutathione as a control (Figure 2.3.4f) developed the expected 

spectral features, indicating the specific effectiveness of the amino acid. To test this, an assembly 

was performed using cysteine, with the results shown in Figures 2.3.3a,b. With cysteine, the 

reaction exhibited the immediate AuBP LSP blue-shift, as well as better resolved spectral features 

than those observed with glutathione. Thus, for the remainder of the work, cysteine was used as 
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Figure 2.3.4 Comparison of assembly reactions performed using different thiol linking molecules. 

a) 3-MPA at pH=9 b) Cysteamine at pH=3 c) 3-MPA at pH=3 d) Mercaptoethanol at pH=3 e) 

Tetra(ethylene glycol) dithiol at pH=7 f) Glutathione at pH=3. All reactions were monitored for 

one hour, and the arrows indicate how the spectra evolve with time. As can be seen, no other linker 

developed similar features to those observed with glutathione. 

 

the linker, and the UV/Vis spectra of the reactions used for characterization are presented as 

Figures 2.3.3c,d. These results confirm the specific role of zwitterionic amino acids in aqueous 
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AuNP assembly, which most likely occurs through the two-point electrostatic interaction 

previously proposed.64,78 However, our results do not support the idea that the glutathione or 

cysteine linkers preferentially bind to AuBP tips.  

The rapid drop of the AuBP LSP at ~1.6 eV and only a slight decrease in the AuNS 

resonance at ~2.3 eV in all of the cysteine and glutathione reaction spectra indicate a preference 

for AuBP aggregation that has not been previously reported. To confirm this, an aliquot of the 

reaction mixture was spincast onto the ITO-glass substrates at the final time point in Figure 2.3.3d, 

and one of its 100 ɛm x 100 ɛm grids was completely SEM imaged (198, 6 ɛm x 6 ɛm images). 

The results are shown in Table 2.3.1. The region contained over 3000 particles, with a ~30% AuBP 

and ~70% AuNS distribution, which is typical of a AuBP synthesis.6 There were 163 total dimers, 

and 21, 6, 2, and 1 trimers, quadrimers, pentamers and hexamers, respectively. 

27% of the AuBPs were taken up in assembly, compared to only 4% of the AuNSs, which 

can be assigned to a factor of 6 in their relative óreactivity,ô and is in fair agreement with the peak 

amplitude changes in Figure 2.3.3d. We note that no dimers were observed when substrates of the 

diluted stock colloid without the linker were made (not shown), indicating that the linking 

molecule, and not solvent evaporation,24,74 is the cause of the dimerization. A non-specific 

dimerization would yield structural ratios of: AuBP-AuBP: 1, AuBP-AuNS: 4.7, and AuNS-

AuNS: 5.4, while the measured ratios were: AuBP-AuBP: 1, AuBP-AuNS: 1.21±0.12, and AuNS-

AuNS: 0.16±0.13, with errors from the counting statistics. These results can be interpreted as the 

AuBPs being about five times more likely to aggregate than the AuNSs, as this would yield ratios 

of 1:0.93:0.22. The consistency of these results leads us to conclude that the AuBPs are about 5-6 

times more óreactive,ô i.e., more likely to assemble, than AuNSs, which further supports the picture 

of a less stable CTAB bilayer at regions of sharp curvature guiding anisotropic AuNP 
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Table 2.3.1 Complete AuBP Dimer Particle Count 

AuBP-

AuBP 

AuBP-

AuNS 

AuNS-

AuNS 
Trimer Quadrimer Pentamer Hexamer Oligomer AuBP AuNS 

69 83 11 23 6 3 1 0 800 2358 

 

assembly.64,78 

From the SEM images, the AuBP dimers can be subdivided into three structural categories: 

28 bowtie, 14 longitudinal edge-edge, and 27 V-shape dimers (Table 2.3.2). To optically 

characterize these structures, 59 AuBP dimers were isolated using both DF and SEM, with the 

results presented in Figures 2.3.5 and 2.3.6. Figure 2.3.7 outlines the DF and SEM matching 

process for the representative bowtie dimer of Figure 2.3.5a. The bowtie dimers range from tip to 

tip (Figure 2.3.5a) to structures whose tips overlap by no more than half the facet length (Figure 

2.3.5b). They exhibit the most red-shifted resonances, with a distribution from 1.25 to 1.4 eV (1.30 

eV average, Figure 2.3.5c), and the majority of the structures have less than 10 nm of interparticle 

overlap (Figure 2.3.5d). The longitudinal edge-edge dimers have a less red-shifted resonance, 

centered at 1.40 eV (Figure 2.3.6a), while the V-shape AuBP dimer structures have a distinctly 

blue shifted plasmon resonance centered at 1.74 eV (Figure 2.3.6b). With the lone AuBP LSP on 

the substrate entered at 1.62±0.017 eV, these resonances are a ~7% blueshift for the V-shape, a 

~14% redshift for the edge to edge, and a ~20% redshift for the bowtie dimers. 

The polarization dependent spectra (Figure 2.3.8a) of the AuBP dimers and their 

preservation of lone AuBP full width-half maximum (FWHM) (Figure 2.3.8b) indicate that their 

resonances are a single, new mode, determined by the coherent coupling between the plasmon 

resonances of their component NPs.28,74,85ï94 This matches the qualitative expectation from a 

simple dipole-dipole coupling model, where dipoles aligned end to end yield an optical red-shift, 

like the bowtie and longitudinal edge-edge structures, while dipoles aligned side to side yield an 
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Table 2.3.2 AuBP Dimer Type Analysis 

Type Bowtie Longitudinal Edge-Edge V-Shape 

Counts 28 14 27 

Ratio, per lone 

AuBP 
0.035 0.018 0.034 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.5 Characteristic DF spectra and SEM images of bowtie AuBP dimers. a) Tip to tip and 

b) tip overlap structures. The counts are normalized to the lamp spectrum. c) Histogram of the 

plasmon resonances of the bowtie structures. The bin widths are 0.01 eV. d) Histogram of the tip 

overlap of all bowtie structures. The bin widths are 1 nm.  

 

optical blue-shift, like the V-shape dimers. Even though the HRSEM and HRTEM (Figure 2.3.9) 

images of some of the bowtie structures seem to show interparticle overlap, we do not believe that 

a charge transfer plasmon (CTP) causes their plasmon resonances.24,25,85,95 The bowtie spectra have 

a similar ȹE/E shift to Shao et al.ôs for their gapped nanobipyramids,25 and the HRTEM images 

of AuBP dimers oriented perpendicular to the beam path show a small interparticle gap (Figure 

2.3.9). These factors indicate that the overlap does not correspond to the particles fusing together, 
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Figure 2.3.6 Characteristic DF spectra and SEM images of a,i) longitudinal edge-edge and b,i) V-

shape dimers. The counts are normalized to the lamp spectrum. Histogram of the a,ii) longitudinal 

edge-edge and b,ii) V-shape structuresô plasmon resonances. The bin widths are 0.01 eV. 

 

but is rather an issue of orientation on the substrate. 

 To elucidate the relationship between the AuBP dimersô resonances and the coupling 

between their individual AuBPs, the resonances were divided into two groups and plotted against 

the component AuBPsô center to center distance. The V-shape dimers (Figure 2.3.10a) display no 

relationship with particle separation, indicating that their shape is the factor that determines their 

resonance. The bowtie and longitudinal edge-edge dimers, however, exhibit a slight negative 

relationship between their plasmon resonances and the straight-line distance between the centers 

of their individual AuBPs (Figure 2.3.10b). The resonance energy is minimized for structures 

whose center to center separation corresponds to <10 nm of tip overlap (60-70 nm of center to 

center separation), indicating that the coupling strength between the particles increases as their 


