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“The eye obeys exactly the action of the mind. When a thought strikes us, the eyes fix, and

remain gazing at a distance; in enumerating the names of persons or of countries, as

France, Germany, Spain, Turkey, the eyes wink at each new name. There is no nicety of

learning sought by the mind, which the eyes do not vie in acquiring.”

- Ralph Waldo Emerson, The Conduct of Life
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ABSTRACT

Categorization is a fundamental cognitive process by which the brain assigns stimuli to be-

haviorally meaningful groups. Previous studies on visual categorization in primates have

identified a hierarchy of cortical areas that are involved in the transformation of veridical

sensory information into abstract category representations. However, categorization behav-

iors are ubiquitous across diverse animal species, even those without a neocortex, motivating

the possibility that subcortical regions may contribute to abstract cognition in primates. One

candidate structure is the superior colliculus (SC), a midbrain region that is evolutionarily

conserved across vertebrates. Although traditionally thought to mediate only reflexive spa-

tial orienting behaviors, especially saccades in primates, the SC is also involved in cognitive

tasks that require spatial orienting.

In the first part of this thesis, we investigated the involvement of the primate SC in

abstract categorization, and show that the SC plays an unexpected key role in higher-order,

non-spatial cognition. We trained monkeys to group motion stimuli into categories based

on an arbitrary rule, and compared neural activity in the SC and the lateral intraparietal

area (LIP), a cortical region previously shown to causally contribute to category decisions,

while monkeys performed this task. We observed unexpectedly strong and short-latency

category encoding in the SC that was more reliable and arose even earlier than in the LIP.

Moreover, monkeys’ performance on the categorization task was markedly impaired during

reversible inactivation of the SC, indicating that the observed category signals in the SC

may causally contribute to category processing. In addition, we show that category and eye

movement-related signals are encoded in near-orthogonal subspaces in population activity

in the SC, providing an explanation for how a motor structure like the SC can be recruited

to participate in more flexible cognitive behaviors. These results extend the well-established

role of the SC in spatial orienting to non-spatial, higher-order cognition.

In the second part of this thesis, we investigated how behavioral task demands affect

x



category and sensory encoding in the SC, LIP, and the middle temporal area, (MT), an early

visual cortical area that is involved in motion processing. We trained monkeys to alternate

between blocks of the motion categorization task and blocks in which they passively viewed

the same stimuli and received a reward for maintaining fixation. The physical stimulus

and stimulus location was identical in the two blocks, but only the categorization task

required the monkeys to use the stimulus information to obtain a reward; therefore, we

could compare, in the same neurons, how behavioral context affects stimulus encoding. We

observed significantly weaker stimulus direction encoding during passive viewing than during

the categorization task in all three brain areas. Moreover, although both LIP and SC encoded

stimulus category during the categorization task, category encoding was largely absent during

passive viewing in both areas. These results indicate that neural populations in LIP and SC

can flexibly route sensory input based on current behavioral demands.
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CHAPTER 1

INTRODUCTION

Categorization is a fundamental cognitive process that enables animals to efficiently process

and organize information in their environment, thus facilitating their understanding and

memory of the world and allowing them to form decisions, make predictions, and adapt to

novel situations. Animals (especially primates) are remarkably skilled at rapidly categorizing

complex stimuli into behaviorally relevant groups. How do our brains perform this (seem-

ingly effortless) feat of flexibly transforming low-level sensory information into high-level

representations of categories?

In advanced animals, category rules are often learned from experience, and categories

can be defined by abstract features rather than shared physical characteristics. Because the

higher-order cognitive processing required for this kind of abstract categorization has tradi-

tionally been attributed to the neocortex, previous investigations of the neural mechanisms

of abstract categorization have largely focused on cortical regions. These studies have iden-

tified several cortical brain regions in the rhesus macaque that encode categories of visual

stimuli during abstract categorization tasks, including the prefrontal cortex (Freedman et

al., 2001; Swaminathan and Freedman, 2012; Antzoulatos and Miller, 2011), the lateral in-

traparietal area (Freedman and Assad, 2006; Sarma et al., 2016; Rishel et al., 2013; Mohan

et al., 2021), and the frontal eye fields (Ferrera et al., 2009).

In an early study, monkeys were trained to categorize parametrically morphed "cat" and

"dog" stimuli. Activity of neurons in the prefrontal cortex (PFC) reflected the category

membership of the stimuli; many PFC neurons preferentially responded to all stimuli in

one of the two categories, even though the category was comprised of stimuli that varied

considerably in their physical features (Freedman et al., 2001). In more recent studies,

monkeys were trained to categorize motion stimuli that consist of videos of a patch of dots

moving coherently in a particular direction. In these experiments, 360° of motion directions
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were assigned to two categories based on an arbitrary category boundary (Fig. 1.1a). After

animals learn the motion categorization task, neurons in LIP acquire category selectivity (i.e.,

preferentially respond to all motion stimuli that belong to one category over all stimulus in

the other category; Fig. 1.1b). (Freedman and Assad, 2006). However, experience with the

categorization task does not affect affect responses across all visual cortical areas. Neurons

in the middle temporal area (MT), an extrastriate region that receives direct input from

the primary visual cortex (V1) (Cragg, 1969) and is involved processing of motion stimuli

(Maunsell and Van Essen, 1983b), remained tuned to direction rather than category even

after extensive training on the category task (Freedman and Assad, 2006).

a b

Figure 1.1: Neurons in the lateral intraparietal area signal learned categories. a,
Schematic illustrating how 360° of motion directions are assigned to two groups based on an
arbitrary category rule. b, An example category-tuned neuron from the lateral intraparietal
area (LIP). The neuron preferentially responds to motion directions that belong to one of
the two categories. Adapted from (Freedman and Assad, 2006)

Converging evidence suggests that the LIP may play a central role in visual categoriza-

tion. In a study that compared neuronal responses in the LIP and PFC during motion

categorization, LIP neurons had stronger, more predictive, and shorter-latency category sig-

nals than PFC neurons (Swaminathan and Freedman, 2012). Moreover, a recent experiment

reported that reversible inactivation of the LIP caused significant impairments in perfor-

mance on a motion categorization task when stimuli were placed in the inactivated hemifield

(Zhou and Freedman, 2019), indicating that the LIP may be causally involved in sensory

evaluation of stimuli during categorization.
2



In this thesis, we extended these investigations of the neural basis of visual motion cat-

egorization to the superior colliculus (SC), a midbrain structure that is involved spatial

orienting and target selection. The LIP and the SC are both core nodes of the primate

oculomotor network, and the two brain regions are reciprocally connected through direct

descending projections from the LIP to the SC and indirect ascending projects from the SC

to the LIP through the pulvinar nucleus in the thalamus (Fries, 1984; Lynch et al., 1985;

Asanuma et al., 1985; Andersen et al., 1990; Paré and Wurtz, 1997; Clower et al., 2001).

1.1 The role of the superior colliculus in orienting movements

The superior colliculus (or tectum) is a brain structure located on the dorsal surface of the

midbrain that evolutionarily conserved across all vertebrate species. The SC has been studied

for more than a century in the context of its role in directing orienting movements of the

eyes and head. The earliest experiments that linked the SC to eye movements showed that

electrical stimulation of the SC generates reliable eye movements (Adamük, 1870). Decades

later, electrophysiological recordings in rhesus macaques revealed that many neurons in

the SC, particularly in the deep and intermediate layers, reliably discharge before (and

during) eye movements made in a particular range of directions (Schiller and Koerner, 1971;

Schiller and Stryker, 1972; Wurtz and Goldberg, 1971, 1972; Sparks, 1978). The role of the

primate SC in generating eye movements was confirmed through causal perturbations that

showed that (1) electrical stimulation of the SC in macaques generates movements of the

eye and neck (Robinson, 1972; Schiller and Stryker, 1972; Van Opstal et al., 1990; Freedman

et al., 1996; Stanford et al., 1996), and that (2) application of muscimol or lidocaine to

reversibly inactivate the SC significantly reduces velocity and amplitude of eye movements

contralateral to the inactivation hemifield (Hikosaka and Wurtz, 1985, 1986; Lee et al., 1988),

decreases accuracy of contralateral saccades (especially for saccades to remembered locations)

(Hikosaka and Wurtz, 1985), and increases latency of contralateral saccades (Hikosaka and
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Wurtz, 1985, 1986; Schiller et al., 1987).

This large body of work, spanning more than a century, established the SC as a key

brain region involved in coordinating and executing eye movements and established a clear

causal link between activity in the SC and saccadic eye movements. For a long time, the

SC was thought to be a low-level, reflexive structure that merely receives and implements

instructions from upstream brain areas where to orient to.

1.2 The role of the superior colliculus in target selection

Some of the first experiments to indicate that the SC may be involved in the deliberation

of what kind of saccade to make showed that activity of neurons in the intermediate layer

of the SC are differentially modulated depending on the certainty of the impending saccade,

when the parameters of the saccades are similar (Basso and Wurtz, 1997, 1998). Almost a

decade later, (McPeek and Keller, 2004) provided one of the first causal reports that the

SC is involved in saccade target selection, rather than just motor command implementation.

In this study, monkeys performed a color-search task in which the they viewed an array

of four visual targets that included three distractors that matched in color and one color-

mismatched target. The monkeys were trained to identify and saccade to the odd-one-

out target in order to receive a reward. The authors reversibly inactivated the SC and

compared animals’ performance on the task before and during SC inactivation. The key

manipulation in the experiment was the inclusion of two conditions of varying difficulty: in

the easier condition, there was a large perceptual difference between the color of the target

and distractors, and in the difficult condition, the perceptual difference between the target

and distractor was small. If the role of the SC is limited to simply generating a saccade

based on instructions from another brain region, inactivation of the SC should produce

similar impairments in performance on the easy and difficult task conditions. However, if

the SC is causally involved in choosing which of the four targets to make a saccade to, then
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inactivation of the SC should cause larger impairments on the difficulty condition than the

easier condition. Indeed, SC inactivation caused significantly greater impairments on the

difficult task condition, indicating that the SC is causally involved in the choice of where to

saccade to.

1.3 The role of the SC in cognitive spatial processing

More recent work has shown that the SC is involved in even more complex types of spatial

orienting functions (Basso et al., 2021). In particular, the SC has been shown to play a

causal role in the deployment of covert spatial attention (Krauzlis et al., 2014, 2013), as well

as decision making during tasks in which animals report their choice with a saccade.

1.3.1 The primate SC in involved in the deployment of spatial attention

Converging evidence indicate that the primate SC is a key brain area involved in directing

spatial attention to locations of interest (Krauzlis et al., 2014, 2013). Spatial attention has

been studied using attentional cuing tasks in which animals are directed to covertly orient

(or attend) to a cued spatial location without moving their eyes. For example, in the classical

change-detection task, monkeys receive a cue indicating the spatial location that they will

need to attend to later in the trial. After the cue disappears, two stimuli appear, and the

monkeys are trained to indicate when there is a change in the stimulus at the previously

cued location (and ignore changes of the stimulus at the un-cued location).

Studies using this (or similar) paradigms have shown that neurons in the SC signal the

location of covert attention; SC neurons can have vastly different responses to identical

stimuli depending on whether the animal is attending to that stimulus or to a stimulus at

another location (Ignashchenkova et al., 2004). Causal manipulations have provided further

evidence that the SC is critically involved in the deployment of spatial attention. Low-

intensity electrical stimulation of the SC enhances behavioral detection (Cavanaugh and
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Wurtz, 2004; Cavanaugh et al., 2006) and discrimination of motion directions, selectively

for stimuli presented in the spatial locations that correspond with the receptive fields of

the stimulated region of SC (Müller et al., 2005; Cavanaugh and Wurtz, 2004). Moreover,

inactivation of the SC impairs animals’ ability to attend to stimuli in the affected spatial

location (Zénon and Krauzlis, 2012), though only when there is a distractor stimulus present

in an unaffected location (Lovejoy and Krauzlis, 2010).

1.3.2 The primate SC is involved in sensorimotor decision-making

The role of the SC in more cognitive spatial functions also extends to decision-making tasks

in which animals report their choices with a saccade, such as the perceptual decision-making

paradigm, a classical style of task that has been used to study decision-making processes in

primates for decades (Britten et al., 1992; Gold and Shadlen, 2007). In these tasks, monkeys

are trained to report their perceptual decisions about noisy or ambiguous stimuli. In the

popular random-dot-motion variant of this task, monkeys view visual stimuli that consist of

a patch of moving dots, some proportion of which (as determined by the experimenter) are

moving coherently in a particular direction while the rest are moving randomly. The animals

are tasked with making a decision about this (mostly) noisy stimulus (on average, are the

dots moving more to the left or to the right?) and making a saccade to the target associated

with their choice. The experimenters can control the difficulty of the decision on each trial

by varying the coherence of the stimulus. The noisiness of the stimuli is a critical aspect of

the task; the "decision" component is the weighing and accumulation of the sensory evidence

that culminates in the decision of which target to orient to.

A large number of studies have shown that the SC is important for forming and represent-

ing sensorimotor decisions during. Neurons in the SC have been shown to encode animals’

decisions these types of perceptual decision tasks, and their firing rates are modulated by

the coherence of the stimuli (Horwitz and Newsome, 1999, 2001; Ratcliff et al., 2003; Hor-
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witz et al., 2004; Ratcliff et al., 2007). In a task designed to systematically shift monkeys’

decision criteria, activity of SC neurons has been shown to track these shifts in criterion

(Crapse et al., 2018). Finally, recent studies studies have shown that inactivation of the SC

disrupts the accumulation of evidence towards choices associated with targets in the affected

locations (Jun et al., 2021; Stine et al., 2022), indicating that the SC is causally involved in

sensorimotor decisions.

Together, these studies provide strong support for the notion that the SC is not just a

reflexive orienting structure, but rather is involved in the deliberation of where to orient

to. The role of the SC in target selection even extends to more complex tasks, such as

the attentional cuing and perceptual decision paradigms described above. However, those

studies used tasks in which animals reported their decisions with eye movements, or tasks that

directed animals to covertly orient to stimuli at particular spatial locations. It is therefore

unknown whether the involvement of the SC in more cognitive tasks is restricted to contexts

involving orienting, either overt (through saccades) or covert (through modulation of spatial

attention). In the next chapter of this thesis, we investigated whether the SC is more

generally involved in non-spatial cognition during an abstract visual motion categorization

task.
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CHAPTER 2

PRIMATE SUPERIOR COLLICULUS IS ENGAGED IN

ABSTRACT HIGHER-ORDER COGNITION

Barbara Peysakhovich, Stephanie M. Tetrick, Alessandra A. Silva, Sihai Li, Ou

Zhu, Guilhem Ibos, W. Jeffrey Johnston, and David J. Freedman

Author contributions: BP, GI and DJF conceived of the project. BP

supervised animal training, and BP, SMT, AAS, OZ, GI, and WJJ performed

animal training and handling. BP and SMT collected electrophysiological

recording data. BP collected inactivation data with assistance from AAS and SL.

BP performed all data analysis and visualization. BP and DJF wrote the

manuscript with input from AAS, SL, OZ, GI, and WJJ.

Abstract

The superior colliculus (SC) is an evolutionarily conserved midbrain region that

is traditionally thought to mediate spatial orienting, including saccadic eye move-

ments and covert spatial attention. Here, we reveal a novel role of the SC in abstract

cognition, independent of its role in spatial orienting. We compared neural activity

in the primate SC and the lateral intraparietal area (LIP), a cortical region previ-

ously shown to causally contribute to category decisions, during an abstract visual

categorization task. We found that the SC exhibits stronger and shorter-latency

encoding of learned categories than the LIP. Moreover, reversible pharmacological

inactivation of the SC markedly caused marked impairments in animals’ perfor-

mance on the categorization task. These results demonstrate that the SC mediates

abstract, higher-order cognitive processes that have traditionally been attributed

to the neocortex.
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2.1 Introduction

The superior colliculus (SC), a brainstem region that is evolutionarily conserved across ver-

tebrates, has long been known to play a crucial role in directing orienting movements of the

eyes and head (Adamük, 1870; Apter, 1946; Wurtz and Goldberg, 1971; Schiller and Koerner,

1971; Schiller and Stryker, 1972; Robinson, 1972; Wurtz and Goldberg, 1972; Sparks, 1978;

Hikosaka and Wurtz, 1985, 1986; Lee et al., 1988). Although traditionally thought to be

a reflexive structure that receives and implements motor instructions from upstream brain

areas, the SC is involved in the selection of which target to orient to (Basso and Wurtz,

1997, 1998; McPeek and Keller, 2004; Carello and Krauzlis, 2004), and has been shown to

be engaged in complex behavioral tasks that involve either overt target selection, such as

decision-making tasks in which animals report their choice with a saccade to a particular

target (Horwitz and Newsome, 1999, 2001; Ratcliff et al., 2003; Horwitz et al., 2004; Ratcliff

et al., 2007; Crapse et al., 2018; Jun et al., 2021; Stine et al., 2022), or covert target selec-

tion, such as tasks that require animals to attend to stimuli at particular spatial locations

(Ignashchenkova et al., 2004; Cavanaugh and Wurtz, 2004; Müller et al., 2005; Cavanaugh et

al., 2006; Lovejoy and Krauzlis, 2010; Zénon and Krauzlis, 2012; Krauzlis et al., 2013, 2014).

However, it is unknown whether the involvement of the SC in cognitively demanding tasks

is restricted to contexts involving spatial orienting or target selection.

Here, we investigated whether the primate SC is more generally involved in abstract

cognition. We trained monkeys to perform an abstract visual categorization task that dis-

sociates sensory, cognitive, and motor components, and compared neuronal activity in the

SC and the lateral intraparietal area (LIP), a cortical region in the posterior parietal cortex

that is anatomically interconnected with the SC (Fries, 1984; Lynch et al., 1985; Asanuma

et al., 1985; Andersen et al., 1990; Paré and Wurtz, 1997; Clower et al., 2001) and has been

previously shown to causally contribute to category processing (Zhou and Freedman, 2019).

We also reversibly inactivated the SC to assess its causal contribution to category decisions.
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We show that the SC exhibits robust, short-latency encoding of abstract categories and that

inactivation of the SC markedly impairs animals’ categorization task performance. These

results indicate that the primate SC plays an unexpected key role in higher-order cogni-

tion, independent of its role in spatial orienting. In addition, we show that category and

saccade-related signals are encoded in near-orthogonal subspaces in population activity in

the SC, providing an explanation for how a motor structure like the SC can be recruited to

participate in more flexible cognitive behaviors.

2.2 Results

2.2.1 Behavior

Two monkeys performed a delayed match-to-category (DMC) task in which they grouped

360° of motion directions into two categories based on an arbitrary category rule. The cate-

gories were defined by two perpendicular boundaries that produced four 90°-wide quadrants

(Fig. 2.1a). To disambiguate neuronal encoding of direction vs. category, opposite quad-

rants were assigned to the same category, so that motion directions that are 180° apart

belonged to the same category while nearby directions were often in different categories.

Monkeys viewed sample and test dot-motion stimuli separated by a 1.2 sec memory delay

(Fig. 2.1b). On each trial, they received a fluid reward for releasing a manual touch bar

when the category of the test stimulus matched the category of the sample stimulus (Match

trials). If the test stimulus category did not match the sample stimulus category (Non-

match trials), the monkeys were shown a second test stimulus, which always matched the

sample category (and required release of the touch bar in order to receive a reward). The

monkeys were required to maintain gaze on a central fixation spot throughout the trial (see

Methods). The monkeys’ decisions about the sample category were abstract because the

two categories were defined by the learned arbitrary boundaries, and because they were not
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linked to different motor actions or plans.
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Figure 2.1: Monkeys learn to categorize motion stimuli based on an arbitrary cat-
egory rule. a, Stimulus geometry of the two-boundary delayed match-to-category (DMC)
task. 12 directions of motion are grouped into two categories based on two orthogonal cate-
gory boundaries (dashed lines), such that directions that are 180° apart belong to the same
category. Directions within the same quadrant are 22.5° apart, and near-boundary directions
are 22.5° from the boundary. b, Trial structure of the DMC task. Monkeys were required to
maintain gaze within a small window centered on a central fixation cue, and reported their
decisions with a hand movement (holding or releasing a lever). c, Behavioral performance
across recording sessions for each of the 12 sample stimulus directions for Monkey N (left)
and Monkey S (right). Horizontal dashed line indicates chance performance. d, Behavioral
performance across sessions on Match trials in which the sample and test stimuli were in
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= 84.9 ± 7.4%, Opp. quad. = 83.8 ± 5.2%, P = .580, permutation test). e, Schematic
of neural recording locations in the lateral intraparietal area (LIP) and superior colliculus
(SC).
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Following long-term training, both monkeys performed the DMC task with >85% mean

accuracy during neural recording sessions (Monkey N: 89.40 ± 3.43%, Monkey S: 88.20 ±

3.34%; Fig. 2.1c), with no significant difference in mean performance between LIP and SC

recording sessions (Monkey N: P = .094, Monkey S: P = .229, permutation test; Extended

Fig. 2.5). Monkeys performed similarly on Match trials in which sample and test stimuli

were in the same vs. opposite quadrants (Monkey N: P = .094, Monkey S: P = .580, per-

mutation test; Fig. 2.1d), indicating that they learned to categorize stimuli across opposite

quadrants.

2.2.2 Robust encoding of sample category in the SC

We analyzed spiking activity during the DMC task from 555 LIP neurons (Monkey N: 228,

Monkey S: 327) and 604 SC neurons (Monkey N: 362, Monkey S: 242; Fig. 2.1e). Individual

LIP neurons often showed binary-like category selectivity during the sample and delay task

periods, with distinct activity for directions in different categories and similar activity for

directions in the same category (Fig. 2.2a), consistent with previous studies that used a

similar categorization task with a simpler linear category boundary (Freedman and Assad,

2006; Swaminathan and Freedman, 2012; Rishel et al., 2013; Sarma et al., 2016; Mohan

et al., 2021). This category selectivity extended even to stimuli in opposite quadrants that

belong to the same category. Remarkably, individual SC neurons also showed strong category

selectivity during sample stimulus presentation and the subsequent delay and test periods

(Fig. 2.2b).
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We quantified the strength, trial-by-trial reliability, and time course of category tuning

in individual neurons using an ROC-based category tuning index (rCTI), which compares

neuronal discrimination between pairs of directions in the same vs. different categories

(Extended Fig. 2.6a; see Methods). rCTI values can range from -0.5 to 0.5, with positive

values indicating larger differences in firing rates between pairs of directions in different

vs. same categories (and thus strong category tuning) and negative values indicating the

opposite. Fig. 2.2c and d show the time course of rCTI for the single-neuron examples in

Fig. 2.2a and b, and Fig. 2.2f shows a heatmap of rCTI values for all neurons in LIP and

SC. We classified neurons as category-tuned if they showed significantly elevated rCTI values

relative to a null rCTI distribution for at least 30 consecutive ms; Extended Fig. 2.6; see

Methods).

In the LIP, 69.5% of neurons were category-tuned (Monkey N: 80.7%, Monkey S: 61.8%),

and in the SC, 60.3% of neurons were category-tuned (Monkey N: 66.0%, Monkey S: 51.7%).

In both LIP and SC, mean rCTI across neurons was shifted toward positive values at nearly

every time point of the DMC task following sample onset (Fig. 2.2e). The increase in

mean rCTI above baseline levels during the sample period of the task occurred significantly

earlier in the SC than in the LIP (LIP: 245 ms, SC: 160 ms, P = .008, permutation test;

Fig. 2.2e, yellow and blue symbols above panel). Moreover, rCTI values were significantly

greater in the SC than the LIP throughout much of the trial (Fig. 2.2e, black symbols

above panel), indicating stronger category encoding in the SC than LIP. During the sample

epoch, a significantly greater percentage of LIP neurons were direction tuned compared to

SC (LIP: 30.2%, SC: 20.4%; X 2 = 7.65, P = .006, X 2 test). To determine whether the

earlier and stronger category tuning in the SC compared to LIP can be explained by the

difference between brain areas in the proportion of direction-tuned neurons, we computed

the mean rCTI in each area only on direction-untuned neurons (see Methods). This analysis

again revealed shorter-latency category selectivity in SC compared to LIP (LIP: 195 ms, SC:
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155 ms; P = .042, permutation test).

We next used linear support vector machine (SVM) classifiers to quantify the amount

and timing of direction-independent category encoding in the LIP and SC neural popula-

tions. To evaluate the strength of category encoding in a direction-independent manner, the

classifiers were trained on trials from two quadrants (one from each category) and validated

on the remaining two quadrants (Fig. 2.2g). The logic behind this classifier is that, if the

neural populations robustly encode category in a binary-like format, the classifier will be

able to generalize between the two quadrants within the same category. In addition, this

approach prevents direction tuning from contributing to category decoding performance by

decorrelating direction and category between the sample and test sets; note that we find

below-chance classifier performance when the population shows strong direction tuning. We

also assessed the strength and time course of motion direction encoding in the neural popu-

lations from both brain areas using a category-independent direction classifier, as shown in

Extended Fig. 2.7.

In the SC, category classifier accuracy rapidly increased above chance levels within ap-

proximately 170 ms of sample stimulus onset, and remained at almost 100% throughout

the rest of the trial (Fig. 2.2h). In the LIP, category classifier accuracy was below chance

shortly after sample stimulus onset, indicating that direction tuning was more dominant

than category tuning during the early sample epoch. Sample category information could be

decoded more reliably from SC than LIP activity throughout the sample, delay, and early

test phases of the task (Fig. 2.2h, black symbols above panel), indicating stronger sample

category encoding in the SC neural population than the LIP population.

Results regarding the strength and timing of category selectivity for the rCTI and de-

coding analyses were qualitatively similar in the two animals (Extended Fig. 2.8). The

remarkably strong and short-latency encoding of abstract category in the SC is surprising,

since primate SC is strongly associated with oculomotor control, orienting, and target selec-
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tion, as opposed to higher-order non-spatial cognitive functions like categorization, and the

animals here had to maintain central gaze fixation and did not report their decisions with

saccadic eye movements.

2.2.3 Category encoding in the SC cannot be explained by eye movements

Given SC’s well-established role in directing saccadic eye movements (Adamük, 1870; Apter,

1946; Wurtz and Goldberg, 1971; Schiller and Koerner, 1971; Schiller and Stryker, 1972;

Robinson, 1972; Wurtz and Goldberg, 1972; Sparks, 1978; Hikosaka and Wurtz, 1985, 1986;

Lee et al., 1988), one explanation for the unexpected presence of category selectivity in

the SC is that the reported category signals could be a result of distinct patterns of mi-

crosaccades during different conditions of the DMC task. Interestingly, we observed that

the monkeys produced idiosyncratic, category-specific eye movements (within the allowed

fixation window) that were highly stereotyped across sessions (Extended Fig. 2.9). The

category-specific microsaccades occurred only during the memory delay epoch in Monkey N

and primarily during the memory delay epoch in Monkey S, indicating that the monkeys’

eye movements reflect their working memory contents, consistent with results from past

work in monkeys performing a delayed matching task (Dotson et al., 2018). To understand

whether these eye movements can explain the observed category signals in the SC, we first

compared the time course of neuronal category selectivity in the SC and the time course of

category-specific eye position. This revealed that the two time courses were highly decoupled

in time (Extended Fig. 2.10a), with category selectivity preceding category-specific eye

position by several hundred milliseconds (Monkey N: neural decoder = 175 ms, eye decoder

= 1075 ms; Monkey S: neural decoder = 170 ms, eye decoder = 865 ms). We next built

linear encoding models (Musall et al., 2019) to determine whether firing rates of individual

neurons (across trials and time within trial) are better predicted by stimulus category or

eye movements (see Methods). In the majority of SC neurons, firing rates during the DMC
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task were better predicted by the stimulus than by eye movements (Extended Fig. 2.10f).

These results indicate that category selectivity in the SC cannot be accounted for by the

category-specific eye movements during the DMC task, and raise the possibility that the eye

movements may rather be a consequence of the presence of category selectivity in the SC.

2.2.4 Preferential encoding of category in visual SC neurons

The SC is a core stage of oculomotor processing and contains a diversity of neuronal re-

sponse types based on firing rate modulation to visual, visuomotor, and motor aspects of

visually- and memory-guided saccade (MGS) tasks. We were interested in understanding

whether abstract category encoding in the SC was more prevalent among SC neurons with

particular patterns of visual or motor selectivity. At the beginning of each DMC recording

session, monkeys performed a block of the MGS task (Extended Fig. 2.11a,b), allowing a

comparison of neuronal activity and selectivity from the same neurons during the two tasks.

We analyzed activity from a subset of 423 SC neurons (Monkey N: 259, Money S: 164)

from which we recorded during both the DMC and MGS tasks. Examples of single-neuron

responses from SC during the MGS task are shown in Extended Fig. 2.11c and d).

The short-latency category encoding in the SC raises the possibility that the SC plays a

direct role in the rapid bottom-up categorization of incoming visual stimuli (i.e., the trans-

formation of direction information into category representations). One piece of evidence that

would support such a role is if the category signal first emerges in visually-responsive neu-

rons whose receptive fields match the position of the DMC stimuli. We therefore examined

whether SC category selectivity varied between three groups of neurons: (1) those that are

visually responsive during the MGS task to stimuli presented at locations that overlap with

the stimulus position in the DMC task (Vis neurons), (2) neurons that are visually unrespon-

sive at the DMC stimulus location but visually responsive at other locations (Vis-other), and

(3) visually unresponsive neurons (Non-vis; see Methods for details). We compared mean
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rCTI for 115 Vis neurons (Monkey N: 82, Monkey S: 33), 178 Vis-other neurons (Monkey N:

97, Monkey S: 81), and 130 Non-Vis SC neurons (Monkey N: 80, Monkey S: 50). Category

selectivity emerges significantly earlier in Vis neurons than in Vis-other neurons (Vis: 145

ms, Vis-other: 195 ms, P = .036, permutation test) or Non-vis neurons (Non-vis: 800 ms, P

< .001, permutation test; Fig. 2.2i), and mean rCTI is significantly higher in Vis neurons

compared to the other two groups throughout much of the trial (Fig. 2.2i, black symbols

above panel).

2.2.5 Orthogonal encoding of saccades and stimulus category in the SC

Next, we sought to understand the structure of population activity that allows motor and

non-motor representations to coexist within a core oculomotor region like the SC. How is it

that the SC can be strongly modulated by stimulus category (or visual information in general)

without producing task-interfering saccades, given that injection of even a small amount of

electrical current into intermediate and deep layers of the SC can reliably generate large-

amplitude eye movements (Robinson, 1972; Schiller and Stryker, 1972)? One explanation

is that independent populations of SC neurons might participate in saccade and category

encoding. To investigate this possibility, we characterized the amount of overlap in neural

populations that are category-selective during the DMC task and saccade direction-selective

during the MGS task (see Methods). We observed substantial overlap in the population of

SC neurons that are category-selective during the DMC task and saccade-direction-selective

during the MGS task (Fig. 2.3a). In addition, we compared neuronal responses during the

peri-saccade period of the MGS task and sample period of the DMC task, and calculated

a task-preference index to quantify the ratio of how much each neuron is modulated by the

two tasks (see Methods). If there are separate populations of neurons that encode saccade

parameters and category, the distribution of task-preference indices across neurons would

be bimodal. However, this was not observed in the data: the distributions peaked near
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zero, indicating that a majority of neurons participated in both tasks (Fig. 2.3a), with no

evidence for bimodality (Hartigan’s dip test, Monkey N: P = 0.984, Monkey S: P = 0.988).

Another possibility is that the structure of population activity in the SC is organized to

maintain approximately orthogonal neural representations during category processing and

saccade planning, such that projection of category-related neural activity onto the saccade-

encoding neural axis produces minimal eye movements (Fig. 2.3c). To investigate this idea,

we quantified the degree of alignment between the neural activity space from the sample

period of the DMC task (from +150 to +550 ms relative to sample onset) and the peri-

saccade period of the MGS task (from -200 to 0 ms relative to saccade onset). This approach

(Elsayed et al., 2016) compares the percentage of DMC data variance explained when the

DMC data are projected onto DMC-defined vs. MGS-defined neural axes, and produces

a single alignment index (AI) value that ranges from 0 (indicating perfect orthogonality

between the two subspaces) and 1 (indicating perfect alignment). To determine whether the

resulting indices are more or less aligned than random, we compared the AI computed from

the data to a null distribution of AI values between subspaces drawn from a random space

that shares a covariance structure with the real data (see Methods).

In both monkeys, alignment between the category and saccade subspaces was near-

orthogonal; projection of the DMC data onto the MGS axes captured minimal DMC data

variance (Fig. 2.3d), and the resulting alignment index was significantly closer to 0 than

expected by chance (Fig. 2.3e; Monkey N: AI = .159, P < .001, Money S: AI = .222,

P < .001). This result is unlikely due to neural fluctuations over time in the session; in

both monkeys, DMC activity from the beginning of the sessions was closely aligned to DMC

activity from end of the sessions (Extended Fig. 2.12a), and alignment to MGS activity

was similarly low for DMC activity from the beginning vs. end of the sessions (Extended

Fig. 2.12b).

To determine whether this misalignment between category and saccade subspaces may
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Figure 2.3: Orthogonal population-level encoding of saccade and category in the
SC. a, Venn diagrams showing the overlap of neurons that are category-tuned during the
DMC task (dark green) and neurons that are saccade-direction-modulated during the MGS
task (light green; see Methods). b, Distributions of task preference indices across neurons for
Monkey N (bottom) and Monkey S (top). Positive values indicate preference for the DMC
task, and negative values indicate preference for the MGS task. c, Schematic of hypothesized
orthogonal saccade and category activity subspaces. d, The percentage of variance of DMC
sample period data explained when projected onto its own top 12 principal components
(solid dark green line) or onto the top 12 principal components defined by activity during
the peri-saccade period (-200 to 0 from saccade onset) of the MGS task (dotted light green
line). e, Alignment index between the DMC sample epoch data and MGS peri-saccade data.
The alignment index, which is the ratio of the two traces shown in d, equals 1 when two
subspaces are perfectly aligned and equals 0 when two subspaces are perfectly orthogonal.
Blue: alignment indices for the real data. Grey: 95% confidence intervals of alignment indices
between pairs of random vector projections from data (see Methods). For both monkeys, the
real data are significantly more orthogonal than expected by chance (P < .001). f and g,
same as d and e but for the fixation epochs (-500 to 0 ms relative to stimulus onset) for
the DMC and MGS tasks. The data are significantly more aligned than expected by chance
(Monkey N: P = .004, Monkey S: P < .001).
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be due to general differences in behavioral state in the two task contexts, we quantified the

degree of alignment between the baseline neural activity during the fixation epochs (from

-500 to 0 ms relative to stimulus onset) for the two tasks. During this baseline period,

the task demands (i.e., maintaining fixation) are shared between the two tasks, but the

overall behavioral context is different. In both monkeys, fixation epoch activity during the

DMC and MGS tasks was significantly more aligned than expected by chance (Fig. 2.3f-

g; Monkey N: AI = .451, P = .007, Money S: AI = .460, P < .001), indicating that the

misalignment between category and saccade subspaces cannot be explained by differences in

behavioral state between the two tasks, and suggesting that the SC may selectively use an

orthogonal-coding strategy to minimize motor interference.

Together, these results suggest a mechanism by which neural populations in the SC can

multiplex motor signals and the higher-order, non-motor cognitive signals that we report

here. The SC may use a similar mechanism to encode visual information during contexts in

which animals do not need to produce (or are required to withhold) eye movements. These

results also provide a possible explanation for the stereotyped, category-specific microsac-

cades that emerge several hundred ms after neural category selectivity onset during the DMC

task (Extended Fig. 2.9); these category-specific eye movements may reflect “leak” from

the category subspace to the saccade subspace. During learning of the DMC task, the SC

network may arrive at a solution (i.e., a particular geometry of population activity) that

is sufficiently (though not perfectly) orthogonal to the saccade subspace, such that any re-

sulting eye movements are within the behavioral constraints of the task (i.e., fall within the

allowed fixation window).
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2.2.6 Reversible pharmacological inactivation of the SC impairs performance

on DMC task

Finally, we sought to determine whether category-correlated neural activity in the SC plays a

causal role in the DMC task by infusing muscimol, a GABAA agonist, to reversibly inactivate

the SC (Fig. 2.4a). We compared monkeys’ behavior during SC inactivation with that

during control sessions collected on the same day before injection.

We first verified the efficacy of SC inactivation by monitoring changes in saccade ve-

locity for saccades towards the inactivated hemifield during a memory-guided (Monkey N)

or visually-guided (Monkey S) saccade task. With the small dose of muscimol injected

into SC (see Extended Table 2.2), both monkeys were able to successfully perform the

memory/visually-guided saccade task following injection, even for targets in the inactivated

hemifield. However, both monkeys exhibited a large reduction in accuracy and peak velocity

of saccades to targets contralateral to the inactivated hemisphere (Fig. 2.4b-d), an effect

that is characteristic of reversible SC inactivation (Hikosaka and Wurtz, 1985, 1986; Lee et

al., 1988). This difference in mean peak velocity between the control and post-treatment

blocks was significant for data combined across all muscimol injection sessions (Monkey N:

control = 418 ± 90°/s, treatment = 249 ± 51°/s, P < .001; Monkey S: control = 420 ±

106°/s, treatment = 193 ± 92°/s, P < .001, permutation test; Fig. 2.4d), and was consistent

(and significant) for all individual muscimol injection sessions (Extended Table 2.3). This

effect was absent for data across sessions in which the SC was infused with saline (Monkey

N: control = 432 ± 90°/s, treatment = 438 ± 95°/s, P = .673, Monkey S: control = 415 ±

84°/s, treatment µ= 413 ± 87°/s, P = .848, permutation test) and for all individual saline

injection sessions (Extended Table 2.3).

Both monkeys showed a marked impairment in DMC task performance during muscimol

injection sessions (Fig. 2.4e-f). We observed a significant reduction in accuracy on the

DMC task in every experimental session in which SC was injected with muscimol, and no
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Figure 2.4: SC is causally involved in categorization task performance. a, We
reversibly inactivated the SC using muscimol, a GABAA agonist (left). Shortly following
injection of muscimol, spiking activity markedly decreased in the surrounding tissue (right).
b, Trajectories of eye movements in Monkey S during the visually-guided saccade task for
an example session before (left) and after (right) muscimol injection. Individual traces
represent eye gaze trajectories for individual trials and are color-coded by condition. Small
colored squares indicate the position of saccade targets for different conditions. c, Changes
in peak saccade velocity during the memory/visually-guided saccade task before and after
SC inactivation at each of the eight stimulus locations used in the task. Grey background
shading indicates conditions in which the target location was in the inactivated hemifield. d,
Peak saccade velocity for trials (across all sessions) in which the target was in the inactivated
hemifield during control blocks (black) and treatment blocks (pink) for muscimol and saline
injection sessions. Horizontal black lines indicate mean of distributions. e, Overall session
accuracy for the DMC task before vs. during SC inactivation. Unfilled: saline injection,
Filled: muscimol, Circles: Monkey N, Triangles: Monkey S. Error bars: 95% multinomial
confidence intervals for each session. f, Mean performance on the DMC task on each of the
12 sample motion stimuli during control behavior (dark grey) and SC inactivation (pink).
*** P < .001, permutation test.

change in accuracy for saline injection sessions (Extended Table 2.4). These results are

consistent with SC being causally involved in performance of the DMC task.

The behavioral impairment on the DMC task during SC inactivation is unlikely to be

entirely due to deficits in low-level visual processing of stimuli presented in the inactivated

hemifield. The DMC deficit is not purely an attentional/hemispatial neglect-like impairment,
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as the monkeys are still able to perceive, attend to, and respond to stimuli presented in the

inactivated hemifield during the MGS task, and still attempt the DMC task and respond at

appropriate times in the trial (i.e., release the lever only during the test epochs). The DMC

deficit is also unlikely due to an impairment in the sensory processing of motion stimuli,

as previous studies using similar experimental protocols have shown that SC inactivation

produces only very slight impairments in direction discrimination of high-coherence motion

stimuli like those used in our DMC task (Lovejoy and Krauzlis, 2010).

It is important to note that our experimental design cannot isolate the precise nature

of the deficit caused by SC inactivation, as the DMC task requires several complex com-

putations, including the transformation of sample direction into category, the maintenance

of sample category information in working memory, the computation of the test stimulus

category, and the comparison of sample and test stimulus categories. Future experiments

with additional control tasks can more precisely characterize the nature of the deficit(s)

caused by SC inactivation during this task. Despite this limitation, our study reveals that

the functions of primate SC extend beyond those ascribed to it by current models.

2.3 Discussion

Our results demonstrate that the role of the primate SC extends beyond sensorimotor func-

tions and spatial orienting to abstract, higher-order cognitive processing, even in a task that

does not involve reporting decisions with saccades. The SC robustly encodes the learned

categories of visual stimuli during all DMC task phases (including stimulus presentation,

short-term memory, and comparison periods), and category signals in the SC arose with a

shorter latency and were stronger than in LIP, an area previously shown to be causally in-

volved in a similar categorization task. Moreover, reversible inactivation of the SC markedly

impairs category task performance, indicating that activity in the SC is causally involved in

abstract categorization.
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Our findings also suggest that the SC neural population multiplexes category and sac-

cade information by projecting those variables into distinct and near-orthogonal activity

subspaces. This can explain how a motor structure like the SC can encode other task vari-

ables without producing task-interfering eye movements, closely related to the mechanism

proposed to explain motor planning activity (without motor output) in the primary motor

cortex (Elsayed et al., 2016). Even more broadly, this could be a general principle of neural

coding through which a single neural population can efficiently and robustly encode multiple

factors.

Previous studies that observed cognitive and/or abstract encoding in the SC used tasks in

which animals either spatially orient to a particular target to indicate their choices (Horwitz

and Newsome, 1999, 2001; Ratcliff et al., 2003; Horwitz et al., 2004; Ratcliff et al., 2007;

Crapse et al., 2018; Jun et al., 2021; Stine et al., 2022; Duan et al., 2021, 2015; Felsen and

Mainen, 2008), or tasks in which animals need to covertly orient to stimuli at distinct cued

locations in different task conditions (Ignashchenkova et al., 2004; Cavanaugh and Wurtz,

2004; Müller et al., 2005; Cavanaugh et al., 2006; Lovejoy and Krauzlis, 2010; Zénon and

Krauzlis, 2012; Krauzlis et al., 2013, 2014). By contrast, in the current study, monkeys did

not report their decisions with a saccade or orient attention to different locations for different

categories. Thus, it is difficult to account for our results based on differences in covert spatial

attention. The DMC task also required monkeys to maintain gaze fixation throughout the

trial, and category encoding in SC could not be explained by the animals’ patterns of eye

movements during the task.

We investigated SC during the DMC task because of evidence that cortical areas that

are closely involved in oculomotor functions, such as LIP and the frontal eye fields (FEF),

are also engaged in abstract categorization and flexible decision tasks (Ferrera et al., 2009).

Our previous work shows that LIP plays a causal role in abstract categorization (Zhou and

Freedman, 2019), and that it preferentially encodes motion categories compared both to
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visual cortical areas MT and MST (Freedman and Assad, 2006; Zhou et al., 2022), and

executive control areas such as the lateral prefrontal cortex (Swaminathan and Freedman,

2012). Anatomical connections between LIP and SC also motivated examining SC (Fries,

1984; Lynch et al., 1985; Asanuma et al., 1985; Andersen et al., 1990; Paré and Wurtz, 1997;

Clower et al., 2001), as well as the similar patterns observed in SC and LIP during saccade-

based tasks. We were also inspired by work showing that SC activity reflects higher-order

functions such as attention and perceptual decisions (Jun et al., 2021; Duan et al., 2021;

Crapse et al., 2018; Stine et al., 2022; Horwitz and Newsome, 1999, 2001; Ratcliff et al.,

2003; Horwitz et al., 2004; Ratcliff et al., 2007; Ignashchenkova et al., 2004; Cavanaugh and

Wurtz, 2004; Müller et al., 2005; Cavanaugh et al., 2006; Lovejoy and Krauzlis, 2010; Zénon

and Krauzlis, 2012; Krauzlis et al., 2013, 2014). Our results highlight the need to directly

and simultaneously compare encoding across the SC-FEF-LIP network to determine their

contributions to computing abstract category information from sensory representations in

upstream visual cortical regions (e.g. MT and MST) (Freedman and Assad, 2006; Zhou et

al., 2022; Born and Bradley, 2005).

Monkeys were trained on the DMC task for hundreds of training sessions, spanning a

period of many months, prior to neuronal recordings. It will be interesting to investigate

whether abstract encoding in subcortical or motor structures such as the SC emerges only

after prolonged training on a task. Task-related encoding might emerge at different rates or

at different learning stages in the LIP and the SC; the SC may be recruited to participate in

a cognitive task only once it is highly familiar. Alternatively, the SC might participate more

broadly in learning and performing complex tasks and behaviors than previously appreciated,

even during early stages of learning a task.

Our findings are interesting to consider from an evolutionary perspective, and highlight

the importance of considering the functions of the SC between mammals and other verte-

brates. In order to respond appropriately to stimuli, animals must rapidly combine sensory
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encoding with more abstract, learned knowledge. While previous work in mammalian SC has

emphasized its role in simple sensory-motor mapping, our work raises the prospect SC also

mediates more flexible, and even cognitive, behaviors. This could be mediated by learning-

dependent plasticity within SC and/or contextual/cognitive inputs from higher brain centers.

Indeed, it could be advantageous for an area like the SC, which is close to both sensory input

and motor output brain centers, to play such a role in order to facilitate rapid yet flexible

behaviors. The idea that the SC is involved in mediating complex behaviors is especially

plausible in non-mammalian vertebrate species that lack a neocortex, in which the tectum

occupies a much larger fraction of brain volume and is known to play a major role in visual

processing. Indeed, studies have found innate spatial encoding of stimulus size category in

the optic tectum of untrained barn owls (Mysore and Knudsen, 2011; Mysore et al., 2011). In

mammals and primates, this spatial orienting circuit may have evolved to rapidly compute

more complex types of information (like the visual categories described here), while cortical

pathways developed to allow for slower, but even more sophisticated processing.

2.4 Methods

2.4.1 Subjects

Two adult (13-15 years old) male rhesus macaques (Macaca mulatta) participated in the

experiment (Monkey N: ∼12 kg, Monkey S: ∼13 kg). All procedures were in accordance with

the University of Chicago Institutional Animal Care and Use Committee and the National

Institutes of Health guidelines and policies.

2.4.2 Behavioral tasks

For the behavioral tasks described below, the monkeys were head restrained and seated in

a primate chair inserted inside an isolation box (Crist Instrument), facing a 24-inch LCD
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monitor on which stimuli were presented (1,920 x 1,080 resolution, refresh rate 60 Hz, 57

cm viewing distance). Reward delivery, stimulus presentation, behavioral signals, and task

events were controlled by MonkeyLogic software (Asaad et al., 2013), running under MAT-

LAB on a Windows-based PC. Gaze position was measured with an optical eye tracker

(Eyelink 1000; SR Research, Ottowa, Canada) with a 1.0 kHz sample rate. For both tasks,

monkeys initiated trials by holding a manual touch bar.

Delayed match-to-category task

We trained monkeys to perform a delayed match-to-category (DMC) task in which they

grouped twelve dot-motion stimuli into two categories based on two orthogonal boundaries,

such that motion directions that are 180° apart belong to the same category. Motion direc-

tions were separated into quadrants with three directions per quadrant, and stimuli within

the same quadrant were 22.5° apart and near-boundary directions were 22.5° away from the

boundary. The stimuli were 6°-diameter circular patches of white dots moving at a speed

of 10°/s with 100% coherence, presented at 6.5-7.5° eccentricity in the contralateral visual

field. Animals were required to fixate within a 2.5-3.5° window.

Memory-guided saccade task

We used a memory-guided saccade (MGS) task to identify visual and motor receptive fields

of LIP and SC neurons (Extended Fig. 2.11). At the start of a trial, monkeys had to

maintain fixation on the central cue for 500 ms, after which a white square target briefly

appeared for 300 ms at one of eight peripheral locations (equally spaced and concentric at

6.5° eccentricity; see Extended Fig. 2.11b). The target presentation was followed by a

1000-ms delay period, after which the fixation cue disappeared and monkeys had to saccade

to the remembered location of the visual target presented earlier in the trial.
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2.4.3 Surgical procedures and electrophysiological recordings

Monkeys were implanted with a titanium headpost and a single recording chamber posi-

tioned over LIP and SC. Stereotaxic coordinates for chamber placement were determined

from magnetic resonance imaging (MRI) scans obtained before implantation of recording

chambers. LIP and SC recordings were conducted in separate sessions, typically using 16-

and 24-channel linear Plexon V-probes (in which channels span 1.5-2.0 mm of tissue), a dura-

piercing guide tube, and a NAN microdrive system (NAN Instruments). A small subset of

recording sessions from one monkey were conducted using single epoxy-insulated tungsten

electrodes (FHC, Inc). We used anatomical landmarks and responses during the MGS task

to guide recordings. For SC recordings, we primarily targeted neurons in superficial and

intermediate layers, although we also recorded neurons in deep layers as well due to the

~2mm span of recording channels on our probes. Neurophysiological signals were amplified,

digitized, and stored for offline spike sorting (Plexon) to verify the quality and stability of

neuronal isolation.

2.4.4 SC inactivation

We infused muscimol, a GABAA agonist, to unilaterally inactivate the SC. We built a

microfluidic injectrode system to deliver small amounts of the drug or saline (0.25-0.5 µL;

see Extended Table 2.2) using the protocol developed by (Vanegas et al., 2019). To

ensure that we precisely injected the drug into superficial and intermediate layers of the SC,

we used a custom 16-channel Plexon S-probe with a fluid delivery channel that allowed us to

monitor neural activity during probe lowering and before injection. Before drug injection on

each session, monkeys first completed a control behavioral session in which they performed

at least 200 correct trials of the DMC task and at least 100 correct trials of the MGS

task (Monkey N) or visually-guided saccade task (Monkey S). After monkeys completed the

control behavioral session, we infused the drug and waited 15-25 minutes to begin the post-
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treatment behavioral session. To verify success of SC inactivation, we compared saccade

metrics (peak saccade velocity) during the MGS/VGS tasks during the control and post-

treatment trials. We analyzed data from 12 muscimol injections sessions (Monkey N: 6

sessions, Monkey S: 6 sessions) and six control saline injection sessions (Monkey N: 2 sessions,

Monkey S: 4 sessions). Extended Table 2.2 provides information for each injection session,

including muscimol and saline concentration, injection volume, and number of completed

DMC trials.

2.4.5 Behavioral inclusion criteria

For electrophysiological recordings and inactivation experiments, we included sessions in

which behavioral performance on each category for the DMC task was at least 75% (crite-

rion applied only to control blocks for the inactivation experiments). We excluded six LIP

recording sessions (four in Monkey N and two in Monkey S) from analyses due to poor be-

havioral performance. For the inactivation experiments, we excluded two sessions in Monkey

S (one saline injection session with 66% accuracy for category 2 during the control block, and

one muscimol injection session with 53% accuracy for category 2 during the control block).

For DMC analyses, we included well-isolated neurons for which we had data recorded

during at least five correct trials for each sample direction. We analyzed spiking data during

the DMC task from 555 LIP neurons recorded over 49 recording sessions (Monkey N: N

neurons = 228, N sessions = 36; Monkey S: N neurons = 327, N sessions = 13) and 604 SC

neurons recorded over 38 recording sessions (Monkey N: N neurons = 362, N sessions = 26;

Monkey S: N neurons = 242, N sessions = 12). We collected and analyzed spiking activity

during the MGS task in a subset of 423 SC neurons (Monkey N: N = 259, Monkey S: N =

164) for which we recorded data from least two correct trials for each MGS condition.
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2.4.6 Data analysis

All analyses were performed in Python v3.7.3. Behavioral analyses for the DMC task (in-

cluding those for inactivation) were performed on all completed trials (i.e., correct trials,

misses on match trials, and false alarms on non-match trials). Unless otherwise specified,

all neural analyses for the DMC task were performed only on correct trials. Behavioral and

neural analyses for the MGS/VGS tasks were performed only on correct (completed) trials.

All P -values are two-tailed unless otherwise specified. For neural analyses, spike trains for

each neuron were smoothed using Gaussian kernel (σ = 30 ms). Eye tracker gaze position

data were low-pass filtered to reduce noise using a 2nd-order Butterworth filter with a 70-Hz

cutoff.

Behavioral performance

To compare differences in mean behavioral accuracy (across all sample directions) between

LIP and SC recording sessions in each monkey (Extended Fig. 2.5a), we used a permu-

tation test in which we randomly permuted mean accuracy values between the two brain

areas (while preserving the number of sessions per area). We repeated this procedure for

5000 unique iterations to generate a null distribution of accuracy differences. To compare

differences in behavioral performance on match trials in which the sample and test stimuli

were in the same vs. opposite quadrants, we computed the difference in mean accuracy

for same vs. opposite quadrant match trials for each session and used a permutation test

(with 5000 iterations) to randomly permute the per-session accuracy values between the two

conditions.

Quantifying single-neuron category tuning

We quantified the strength, reliability, and time course of single-neuron category tuning

using a receiver operating characteristic (ROC)-based category tuning index (rCTI)(Rishel
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et al., 2013). For each neuron, we applied ROC analysis to distributions of trial-by-trial firing

rates and compared area under the ROC curve (AUC) values for eight pairs of sample motion

directions that are in the same category (Within-Category; WC) and eight pairs of directions

that are in different categories (Between-Category; BC). To ensure equalized angle differences

between WC and BC pairs (and thus prevent direction tuning from contaminating rCTI),

the WC and BC groups each included four direction pairs spaced 45° apart and four direction

pairs spaced 135° apart (Extended Fig. 2.6a). We quantified rCTI at each timepoint as

the mean rectified WC AUC subtracted from the mean rectified BC AUC:

rCTI = 1
8

8∑
p=1

0.5+

∣∣∣∣0.5− AUC(BCp1, BCp2)

∣∣∣∣
− 1

8

8∑
p=1

0.5+

∣∣∣∣0.5− AUC(WCp1,WCp2)

∣∣∣∣
(2.1)

where BCp1 and BCp2 are the two directions in the pth BC pair, and WCp1 and WCp2 are

the two directions in the pth WC pair.

We applied the rCTI analysis to smoothed spike trains (see above) across 5-ms time steps

in the trial. To generate the error shading shown in Fig. 2.2c and d, we calculated rCTI for

each neuron over 500 bootstraps using 15 trials per sample motion direction (with replace-

ment). We generated null distributions of rCTI values for each neuron using a bootstrap

analysis (repeated 5000 times) in which we randomly assigned (with replacement) eight di-

rection pairs (four 45°-spaced and four 135°-spaced pairs) to each of the shuffled BC and WC

groups (Extended Fig. 2.6). We defined category-tuned “runs” as time bins at which rCTI

values significantly exceed the null distribution for a minimum of six consecutive analysis

time bins (30 ms). We considered neurons to be category-tuned if they had at least one

significant run, and defined latency of category selectivity for each category-tuned neuron as

the first time bin of the earliest significant run.
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To test for significant above-chance mean rCTI in each brain area (as shown in Fig. 2.3f),

we used a permutation procedure in which we computed a null mean rCTI across neurons

for each WC/BC-label-shuffling iteration. To test for a significant difference between brain

areas in the onset time of category selectivity for mean rCTI, we compared the observed

between-area latency difference to a null distribution of latency differences. For each of 5000

iterations, we randomly permuted neurons between the two brain areas (while preserving

the number of neurons in each area) and we computed the difference in latency of category

selectivity onset in the two shuffled groups. To test for differences in onset time of category

selectivity between Vis and Vis-other SC neurons, we used a similar procedure in which we

randomly permuted neurons between the two groups instead of between brain areas.

Support vector machine (SVM) analyses

We used SVM classifiers (with a linear kernel) to quantify the strength and timing of sample

stimulus category encoding in populations of LIP and SC neurons. To quantify category

encoding in a direction-independent manner, we constructed cross-quadrant classifiers for

which training sets consisted of trials in which the sample motion directions were from two

of the four quadrants (one from each category), and testing sets consisted of sample motion

direction trials from the other two quadrants (Fig. 2.2g). The training and testing quadrants

were randomly chosen on each iteration. The analysis was applied in 5-ms steps across time

in the trial and repeated for 200 iterations. For each neuron, we included 15 trials from each

of six sample motion directions for training (as described above) and 15 trials from each

of the remaining six sample motion directions for testing. To reduce the biases in classifier

performance across brain areas due to an unequal number of neurons, for each iteration

of the analysis, we randomly selected N neurons for inclusion, where N is the number of

neurons in the brain area with the lower number of neurons. We generated null distributions

of decoder performance values at each time using a permutation procedure (repeated 1000
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times) in which we shuffled the sample direction label assigned to each trial.

We also used linear SVM classifiers to decode sample direction from LIP and SC pop-

ulation activity. To quantify the amount of direction encoding in a category-independent

manner, the training/validation sets for each iteration of the classifier only included data

from one of the two categories. The classifiers were trained on 48 trials (8 trials from each

of the six directions from one of the two categories, randomly chosen) and validated on 12

held-out trials (2 trials from each of the six motion directions). This analysis was applied in

5-ms steps across the trial and repeated for 200 iterations.

Identifying task-responsive neurons

To identify neurons that are task-responsive during the DMC task, we used a bin- and

parameter-free statistical test to detect any consistent time-locked modulations in firing rate

for each neuron (Montijn et al., 2021). In brief, this analysis consists of the following steps

(applied separately for each sample direction): (1) aligning the spike trains for all correct

trials to the onset of the sample stimulus, (2) stacking these spike train to create a single

vector of spikes relative to sample onset, (3) calculating the cumulative distribution of spikes

over trial time using this spike vector, and (4) comparing this cumulative distribution to a

linear baseline (which represents an unvarying firing rate over time), producing a deviation

value for each timepoint. To generate a null distribution of 5000 deviation-from-baseline

values, we shuffled the spike trains in each trial to destroy any time-locked activity patterns

across trials while preserving the total number of spikes, and computed the maximum devi-

ation (across time) for these shuffled data. For this analysis, we included data for each trial

from 500 ms before sample stimulus onset (i.e., the start of the pre-sample fixation period)

until the end of the first test stimulus epoch. We also computed the peak mean firing across

time (in the period from the beginning of the sample epoch until the end of the first test

epoch) for each sample direction. We classified each neuron as task-responsive if it satisfied
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the following two criteria: (1) if it showed a significant modulation in firing rate (i.e., had

significantly elevated deviation-from-linear-baseline values) at any timepoint from the start

of the sample epoch until the end of the test epoch, and (2) if its maximum peak mean

firing rate (across sample directions) was at least 3 sp/s. In LIP, 506/555 (91.2%) of neurons

were task-responsive (Monkey N: 210/228, 92.1%; Monkey S: 296/327, 90.5%), and in SC,

504/604 (83.4%) of neurons were task-responsive (Monkey N: 300/362, 82.9%; Monkey S:

204/242, 84.3%).

Identifying direction-tuned neurons during the DMC task

To identify neurons that are significantly direction tuned during the sample epoch of the

DMC task, we computed a direction tuning index (DTI) for each neuron using the circular

variance method introduced in (Mazurek et al., 2014). We calculated neurons’ mean firing

rate for each sample stimulus direction in a direction vector space, and quantified DTI as

the normalized length of the sum of these vectors:

DTI =

∣∣∣∣∣
12∑
k=1

f(θk)e
iθk

12∑
k=1

f(θk)

∣∣∣∣∣ (2.2)

where f(θk) is a neuron’s mean firing rate for direction θk.

To test for significant direction tuning , we compared the true DTI to a distribution of 5000

null DTIs generated by randomly shuffling the direction labels assigned to each mean firing

rate. We applied this analysis to firing rates in three non-overlapping 200-ms windows from

0 to +600 ms relative to sample stimulus onset. We classified neurons as direction tuned

if they showed significant direction tuning during at least one of the three time windows

and if they were identified as responsive during the DMC task (see above). In LIP, 153/506

(30.2%) of neurons were significantly direction-tuned (Monkey N: 79/210, 39.5%; Monkey
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S: 74/296, 25.0%), and in SC, 103/504 (20.4%) of neurons were significantly direction-tuned

(Monkey N: 53/300, 17.7%; Monkey S: 50/204, 24.5%).

Identifying visually-responsive neurons during the MGS task

We analyzed neuronal activity during the MGS task in order to characterize the visual

and motor response fields of SC neurons. For each neuron, we determined whether the

DMC stimulus was presented in its visual receptive field by identifying the MGS condition

(MGSDMCloc) whose location overlapped with the DMC stimulus location on that session.

We then determined whether the neuron was significantly modulated during the MGS visual

epoch for that condition. For each of the eight MGS conditions, we computed the mean

firing rate (per trial) for each non-overlapping 25-ms bin from 0 ms to +400 ms relative to

stimulus onset. We used the Kruskal–Wallis H-test to compare the firing rate distributions

across these windows, and compared the resulting H-statistic to a distribution of 5000 null

H-statistics. To generate the null H distribution, we shuffled the neuron’s time-varying firing

rates (from 0 to +400 ms relative to stimulus onset) for each trial, calculated the mean

firing in non-overlapping 25-ms windows for these permuted trials, and computed a shuffled

H-statistic. Neurons were classified as “Vis” neurons if they was significantly modulated

across the visual stimulus period for the MGSDMCloc condition and if their maximum firing

rate across analysis windows and conditions was above 3 sp/s. Neurons were classified as

“Vis-other” if they were significantly modulated across the visual stimulus period for another

MGS condition (and if their maximum firing rate was above 3 sp/s). Neurons were classified

as “Non-vis” if they were not significantly modulated across the visual period for any of the

MGS conditions, or if their maximum firing rate across analysis windows and conditions was

below 3 sp/s. 115 (27.2%) neurons were classified as Vis neurons (Monkey N: 82 [31.7%],

Monkey S: 33 [20.1%]), 178 (42.1%) as Vis-other neurons (Monkey N: 97 [37.5%], Monkey

S: 81 [49.4%]), and 130 (30.7%) as non-Vis neurons (Monkey N: 80 [30.9%], Monkey S: 50
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[30.5%]).

Identifying saccade-modulated neurons during the MGS task

We analyzed activity of SC neurons during the saccade period of the MGS task (-200 ms

to +50 ms relative to saccade onset) to identify neurons that are significantly modulated

by saccade direction. For each neuron, we computed its mean firing rate across the saccade

period window for each trial. We used the Kruskal–Wallis H-test to compare the neuron’s

the firing rate distributions across the eight MGS conditions, and compared the resulting

H-statistic to a distribution of 5000 null H-statistics generated by shuffling condition labels

among trials. 145/423 (34.3%) neurons were significantly modulated by saccade direction

(Monkey N: 96/259 [37.1%], Monkey S: 49/164 [29.9%]).

Task modulation index

To quantify differences in modulation during the MGS and DMC tasks for each SC neuron,

we computed a task-preference index (Fig. 2.3b). We defined amount of MGS modulation

as the range of mean firing rates across conditions during the peri-saccade period of the

MGS task (-200 to +50 relative to saccade onset), and the amount of DMC modulation

as the range of mean firing rates across sample directions during the sample epoch of the

DMC task (+150 to + 550ms relative to stimulus onset). We then normalized these ranges

for each neuron by the neuron’s overall firing rates across all times/conditions/tasks. The

task-preference index was defined as the ratio of DMC modulation to MGS modulation. We

used a Hartigan’s dip test to test for bimodality in the distribution of task-preference indices

across all SC neurons.
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Linear encoding models

We constructed linear encoding models (Musall et al., 2019) to quantify how much firing

rates of individual neurons (across trials and time within trials) are modulated by stimulus

category vs. microsaccades. The linear models contained regressors related to stimulus cat-

egory and microsaccade parameters. For the category regressors, we constructed a binary

vector containing a pulse at the time of the sample stimulus onset, and created copies of this

vector shifted in time by 1ms for every point until the end of the trial. The microsaccade

regressors included two analog regressors: horizontal and vertical eye velocity at each time-

point throughout the trial, shifted in time by -50 relative to neural activity to account for

lag between neural activity and saccades. We also included two types saccade event kernel

regressors: (1) a binary vector containing a pulse at every timepoint at which a microsaccade

occurred, and (2) a vector containing microsaccade direction at every timepoint at which a

microsaccade occurred and zeros at every other timepoint. We created time-shifted copies

of the binary saccade vector and saccade direction vector, spanning from -500 until +100 ms

(relative to saccade onset) in 10-ms steps. The design matrix of the full model included all

of the category and saccade regressors. We also built reduced models that contained shuf-

fled saccade regressors and unshuffled category regressors, or shuffled category regressors

and unshuffled saccade regressors. For each neuron, we fit the models using ridge regres-

sion (with L2 regularization and 10-fold cross validation) and computed an R2 for the full

model and each of the reduced models. To quantify how well category or saccade regressors

predict neural activity in each neuron, we computed the change in cross-validated R2 from

the full model to each reduced model. A large (negative) change in R2 indicates a strong

contribution of the excluded variables.
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Subspace alignment analysis

We used a subspace alignment analysis introduced in (Elsayed et al., 2016) to quantify the

degree of alignment between neural activity in the SC during the MGS and DMC tasks.

For this analysis, we constructed matrices D and M of neural activity during the DMC and

MGS tasks, respectively. D and M were size N by cxt, where N is the number of neurons,

c the number of conditions (12 for DMC and 8 for MGS), and t is the number of time

points per condition. Each row of D and M contains the concatenated mean firing rates

(per condition and across time points) of one neuron. We normalized the firing rates of each

neuron by its range (across all included DMC and MGS conditions and time points) plus a

constant, chosen as 10 sp/s. We then performed principal components analysis (PCA) on the

matrix D to obtain the top 12 DMC PCs, and on matrix M to obtain the top 12 MGS PCs.

We then projected the DMC activity D onto both the DMC and MGS PCs and calculated

sum of the percent of variance explained (relative to total variance of D) for each of the

projections. We quantified the alignment index (AI) between the two subspaces as the ratio

of these two sums. The logic behind this analysis is that if the DMC and MGS subspaces

are approximately orthogonal, the projection of D onto the MGS PCs will capture minimal

D variance. AI ranges from 0 (indicating perfect orthogonality between two subspaces) and

1 (indicating perfect alignment).

To determine whether measured AI values are more (or less) misaligned than expected by

chance, we calculated the alignment between pairs of random subspaces sampled from the full

covariance structure of the data to generate a null distribution of alignment values (Elsayed

et al., 2016). To create the random subspaces, we first computed the covariance matrix C

from the concatenated D and M matrices, and obtained the left singular vectors (U) and

singular values (s) of C using singular value decomposition. For each of 5000 iterations per

comparison, we computed the AI between two random subspaces (vrand). We sampled each
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random subspace vrand as follows:

vrand = orth

(
U
√
Sv

||U
√
Sv||2

)
(2.3)

where v is an N x 12 matrix in which each element is drawn from a normal distribution with

mean 0 and variance 1, and orth(X) returns the orthonormal basis of X defined by its left

singular values.

For the main alignment analysis (shown in Fig. 2.3c-d), we included DMC task data from

150-550 ms after sample stimulus onset (during stimulus presentation) and MGS task data

from 200 before saccade onset until saccade onset. Data for both tasks were sampled in

10-ms steps. Note that results were equivalent when we used time windows of equal length

for the two tasks (MGS: -200 ms to +0 ms relative to saccade onset, DMC: +350 to +550

ms relative to sample onset; Monkey N: AI = .134, P < .001, Money S: AI = .233, P <

.001).

SC inactivation analyses

To verify efficacy of SC inactivation, we quantified the difference in peak saccade velocity for

saccades towards the inactivated hemifield during the MGS/VGS task between the control

and post-treatment blocks. For each trial, we computed the maximum eye gaze velocity from

200 ms before go cue onset until successful target fixation initiation. We excluded one trial

for Monkey N (session 2, muscimol treatment, upper-center condition) in which we could not

accurately quantify peak saccade velocity because the monkey blinked during the response

period. For each session, we combined trials from the three conditions in which the target was

in the inactivated hemifield (“Contralateral”), and the three conditions in which the target

was out of the inactivated hemifield (“Ipsilateral”). We tested for significant differences in

mean peak saccade velocity between the control and treatment blocks for Contralateral and
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Ipsilateral trials on each session using a bootstrap test with 5000 iterations (Extended

Table 2.3). We also tested for significant differences in mean peak saccade velocity between

control and treatment blocks for Contralateral trials pooled across all muscimol sessions and

pooled across all saline sessions, as shown in Fig. 2.4d. For the muscimol sessions, this

analysis included 270 (470) control (treatment) trials in Monkey N and 320 (376) control

(treatment) trials in Monkey S, and for saline sessions included 72 (103) control (treatment)

trials in Monkey N and 207 (215) control (treatment) trials in Monkey S.

We used a two-sided Fisher exact test to quantify differences in behavioral performance

on the DMC task between control and post-treatment blocks for each session. The statistics

for the test are shown in Extended Table 2.4.
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2.5 Supplemental Figures and Tables
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Figure 2.5: No difference in behavioral performance between LIP and SC record-
ing sessions a, Distributions of overall session accuracy for LIP and SC recording sessions
in Monkey N. There was no difference in mean accuracy between brain areas (LIP: 88.8 ±
3.9%, SC: 90.3 ± 2.3%, P = .094, permutation test). b, same as a but for Monkey S (LIP:
87.4 ± 3.5%, SC: 89.1 ± 2.9%, P = .229, permutation test). c, Mean accuracy by sample
direction for LIP (left) and SC (right) recording sessions. d, same as c but for Monkey S.
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Figure 2.6: rCTI method and shuffling procedure a, Schematic of the rCTI analysis
used to quantify strength of category tuning in each neuron. rCTI compares ROC values
between pairs of sample directions that are in the same category (Within-Category; WC)
vs. different categories (Between-Category; BC). WC and BC groups each consisted of
eight sample directions (four pairs spaced 45° apart and four pairs spaced 135° apart. b,
We generated null distributions of rCTI values across timepoints for each neuron using a
shuffling procedure in which we reshuffled the labels (between- vs. within-category) assigned
to each pair of directions, such that each shuffled group contained four 45°-apart direction
pairs and four 135°-apart direction pairs. The permutation procedure was repeated 4900
times, once for every combination of shuffled direction pairs that conformed to the criterion
above. Bracket colors denote true group assignment of a direction pair (light purple =
between-category, dark purple = within-category).
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Figure 2.7: Direction classifier accuracy in LIP and SC Time course of category-
independent direction classifier accuracy across LIP and SC neurons. Lines and shading
indicate mean ± s.d.
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Figure 2.8: rCTI and category classifier accuracy in LIP and SC by monkey
a, Mean Time course of rCTI across LIP and SC neurons in Monkey N. Lines and shading
indicate mean ± s.d. rCTI. b, same as a but for Monkey S. c, Time course of cross-quadrant
category decoding accuracy in LIP and SC for Monkey N. Lines and shading indicate mean ±
s.d. decoding accuracy. d, same as c but for Monkey S. In all panels, yellow (blue) symbols
above plot indicate timepoints at which LIP (SC) values are significantly above chance, and
black symbols indicate time points at which there is a significant difference between LIP and
SC values when either or both area are significantly above chance (permutation test, all P<
.050).
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Figure 2.9: Monkeys’ eye movements reflect working memory contents during
delay period of DMC task a, Top left: Mean horizontal eye position across trial time
for each sample motion direction during an example session. Bottom left: Mean vertical eye
position across trial time. Top right: Mean horizontal vs. vertical eye position. Black circles
indicate mean eye position at the begining of the trial, and colored circles indicate the mean
eye position at the beginning of the delay period. Bottom right: Accuracy of cross-quadrant
category classifier trained on eye position. Black symbols above panel indicate time points
at which the category classifier performs significantly above chance (P <0.05, permutation
test). Shading indicate s.d. b, Same as a but for Monkey S. c, d Same as a and b but for
another example session.
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Figure 2.11: SC responses during the memory-guided saccade (MGS) task a,
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2.5.1 Supplemental Tables

Table 2.1: SC and LIP firing rates by epoch

Monkey Epoch LIP firing rate (sp/s) SC firing rate (sp/s) P -value
median ± mad median ± mad

N Baseline 3.39 ± 2.38 2.36 ± 2.03 .021*

N Sample 4.45 ± 3.41 2.64 ± 2.37 .003*

N Early Delay 4.34 ± 2.65 2.53 ± 2.15 <.001*

N Late Delay 4.15 ± 2.73 2.49 ± 2.24 .003*

N Test 5.42 ± 3.91 3.29 ± 2.68 <.001*

S Baseline 1.810 ± 1.086 2.079 ± 1.573 .343
S Sample 2.009 ± 1.246 2.368 ± 1.757 .168
S Early Delay 1.793 ± 1.099 1.826 ± 1.369 .800
S Late Delay 2.022 ± 1.233 1.997 ± 1.592 .912
S Test 2.027 ± 1.353 2.397 ± 1.814 .331

* P < .05
** P < .005
* P < .001
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Table 2.2: SC inactivation session information

Monkey Exp Treatment Concentr. Injection vol. # DMC trials # DMC trials
(µg/µL) (µL) (control) (treatment)

N 1 Saline 8 0.50 288 292
N 2 Muscimol 5 0.33 308 222
N 3 Muscimol 5 0.33 275 353
N 4 Muscimol 5 0.33 251 510
N 5 Muscimol 5 0.25 331 456
N 6 Muscimol 5 0.25 294 385
N 7 Muscimol 5 0.25 359 218
N 8 Saline 8 0.25 273 369

S 1 Saline 8 0.25 285 427
S 2 Muscimol 5 0.25 302 278
S 3 Muscimol 5 0.25 403 104
S 4 Muscimol 5 0.25 217 138
S 5 Saline 8 0.25 258 285
S 6 Saline 8 0.25 281 547
S 7 Muscimol 5 0.25 258 164
S 8 Muscimol 5 0.25 282 182
S 9 Saline 8 0.25 305 312
S 10 Muscimol 5 0.25 290 240

Details of injection experiments in two monkeys. Each row contains an individual
experimental session, and each column contains the details of that session. The column
descriptions are as follows: “Monkey:” indicates which monkey the experiment was performed
with; “Exp:” session number by animal; “Treatment:” indicates whether the injection was
saline or muscimol; “Concentr.:” concentration of muscimol or saline (in µg/µL); “Injection
vol.:” total injection volume (in µL); “N DMC trials (control):” total number of completed
trials (correct and incorrect) for the DMC task during the control (pre-treatment) block; “N
DMC trials (treatment):” total number of completed trials (correct and incorrect) for the
DMC task during the treatment block.
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Table 2.3: MGS peak saccade velocity (PSV) during SC inactivation experiments

Contralateral PSV (°/s) Ipsilateral PSV (°/s)

Monkey Exp Ctrl Inject P - Ctrl Inject P -
(µ ± σ) (µ ± σ) val (µ ± σ) (µ ± σ) val

N 1† 434 ± 105 459 ± 96 .318 314 ± 75 300 ± 64 .370
N 2 387 ± 96 232 ± 47 <.001* 282 ± 45 334 ± 45 <.001⊛

N 3 381 ± 68 237 ± 38 <.001* 273 ± 43 329 ± 44 <.001⊛

N 4 447 ± 108 243 ± 51 <.001* 260 ± 51 302 ± 46 <.001⊛

N 5 432 ± 94 257 ± 49 <.001* 269 ± 54 307 ± 62 <.001⊛

N 6 443 ± 79 264 ± 52 <.001* 264 ± 46 297 ± 55 <.001⊛

N 7 416 ± 62 270 ± 57 <.001* 245 ± 59 310 ± 57 <.001⊛

N 8† 431 ± 79 421 ± 90 .579 252 ± 67 264 ± 60 .344

S 1† 273 ± 51 292 ± 65 .123 287 ± 65 299 ± 76 .317
S 2 260 ± 111 193 ± 84 <.001* 452 ± 55 592 ± 108 <.001⊛

S 3 430 ± 67 174 ± 100 <.001* 446 ± 70 494 ± 60 <.001⊛

S 4 457 ± 62 209 ± 109 <.001* 464 ± 67 533 ± 89 <.001⊛

S 5† 444 ± 46 465 ± 30 .008⊛ 426 ± 73 416 ± 47 .336
S 6† 435 ± 40 426 ± 43 .276 469 ± 60 458 ± 56 .280
S 7 440 ± 62 221 ± 107 <.001* 504 ± 89 700 ± 173 <.001⊛

S 8 471 ± 63 185 ± 97 <.001* 488 ± 77 571 ± 98 <.001⊛

S 9† 465 ± 48 465 ± 62 .982 427 ± 74 452 ± 67 .078
S 10 465 ± 64 188 ± 54 <.001* 439 ± 75 568 ± 108 <.001⊛

† Saline session
* Treatment PSV < Control PSV (all P < .050)
⊛ Treatment PSV > Control PSV (all P < .050)

Peak saccade velocity (PSV) during the MGS task for the SC inactivation ex-
periments. Rows contain individual experimental sessions and columns contain details for
each session. The column descriptions are as follows: “Exp:” session number by monkey
(saline injection sessions are indicated with a dagger superscript); “Contralateral PSV Ctrl:”
PSV (°/s) for correct trials in which the monkey made a saccade towards one of the three
targets that are in the inactivated hemifield (i.e., contralateral to the injected hemisphere)
during the control block; “Contralateral PSV Inject:” same as “Contralateral PSV Ctrl” but
for the treatment block; “P -value:” two-tailed p-value from a non-parametric permutation
test (5000 permutations) to assess whether there was a significant difference in mean PSV
between control and treatment blocks for the contralateral saccade trials; “Ipsilateral PSV
Ctrl:” PSV (°/s) for correct trials in which the monkey made a saccade towards one of the
three targets that are in the inactivated hemifield during the control block; “Ipsilateral PSV
Inject’: same as “Ipsilateral PSV Ctrl” but for the treatment block; “P -value:” two-tailed
p-value from a non-parametric permutation test (5000 permutations) to assess whether there
was a significant difference in mean PSV between control and treatment blocks for the ipsi-
lateral saccade trials.
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Table 2.4: DMC performance during SC inactivation experiments

Monkey Exp Control perf. Inact. perf. Fisher-exact Fisher-exact
(µ ± σ) (µ ± σ) odds ratio P -value

N 1† 86.81 ± 3.91 85.27 ± 4.06 1.136 .633
N 2 81.82 ± 4.31 53.15 ± 6.56 3.966 <.001*

N 3 83.64 ± 4.37 50.99 ± 5.21 4.912 <.001*

N 4 89.64 ± 3.77 56.08 ± 4.31 6.778 <.001*

N 5 80.06 ± 4.30 67.76 ± 4.29 1.910 <.001*

N 6 88.10 ± 3.70 73.25 ± 4.42 2.703 <.001*

N 7 89.97 ± 3.11 45.41 ± 6.61 10.785 <.001*

N 8† 92.67 ± 3.09 89.43 ± 3.14 1.495 .170

S 1† 78.95 ± 4.73 82.44 ± 3.61 0.799 .283
S 2 88.41 ± 3.61 64.03 ± 5.64 4.286 <.001*

S 3 87.84 ± 3.19 70.19 ± 8.79 3.068 <.001*

S 4 92.63 ± 3.48 56.52 ± 8.27 9.663 <.001*

S 5† 86.05 ± 4.23 84.56 ± 4.19 1.126 .716
S 6† 93.95 ± 2.79 93.05 ± 2.13 1.159 .662
S 7 95.74 ± 2.47 75.00 ± 6.63 7.485 <.001*

S 8 98.58 ± 1.38 75.82 ± 6.22 22.159 <.001*

S 9† 92.46 ± 2.96 94.87 ± 2.45 0.663 .248
S 10 97.24 ± 1.89 73.33 ± 5.59 12.818 <.001*

† Saline session
* Treatment perf. < Control perf. (all P < .050)

Details of performance on the DMC task for the SC inactivation experiments.
Each row contains an individual experimental session, and each column contains the details of
that session. The column descriptions are as follows: “Monkey:” indicates which monkey the
experiment was performed with; “Exp:” session number by animal (saline injection session
are indicated with a dagger superscript); “Control perf.:” Mean ± SD accuracy (in %) for
DMC trials during the control block; “Inact. perf.:” Mean ± SD accuracy (in %) for DMC
trials during the treatment block; “Fisher-exact odds ratio:” odds ratio for Fisher-exact test
to compare performance on control vs. treatment blocks.; “Fisher-exact P -value:” p-value
for Fisher-exact test to compare performance on control vs. treatment blocks.
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Abstract

Neurons in the primate lateral intraparietal area (LIP) and superior colliculus (SC)

reliably encode the learned categories of stimuli during visual motion categorization

tasks. Moreover, neurons in the LIP, the SC, and the middle temporal are sensitive

to the direction of movement of motion stimuli, even when stimuli are passively

presented. However, it is unknown how task context modulates the encoding of

category-related information in these areas, particularly when stimulus and cate-

gory information is irrelevant for behavior. Here, we investigated how behavioral

task demands affect category and sensory encoding in the SC, LIP, MT. We trained

monkeys to alternate between blocks of the motion categorization task and blocks

in which they passively viewed the same stimuli as for the categorization task and

received a reward for maintaining fixation. The physical stimulus and stimulus lo-

cation was identical in the two blocks, but only the categorization task required the

monkeys to use the stimulus information to obtain a reward. We could therefore

compare, in the same neurons, how behavioral context affects stimulus encoding.
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We observed significantly weaker stimulus direction encoding during passive view-

ing than during the categorization task in all three brain areas. Moreover, although

both LIP and SC encoded stimulus category during the categorization task, cat-

egory encoding was largely absent during passive viewing in both areas. These

results indicate that neural populations in the LIP and the SC can flexibly route

sensory input based on current behavioral demands.

Keywords: middle temporal area, lateral intraparietal area, superior

colliculus, cognition, categorization, direction encoding, subcortical, vision,

parietal, decision making, primate, electrophysiology

3.1 Introduction

Behavioral demands and task contexts can profoundly affect how animals interact with

stimuli in their environment, as well as how the brain responds to these stimuli. Previous

studies have compared the neural encoding of stimuli during active task contexts in which

animals are required to engage with stimuli, and contexts in animals are passively presented

with the same stimuli. In primates, task engagement has been shown enhances encoding of

stimulus-related information in several brain regions, including the prefrontal cortex (Hussar

and Pasternak, 2009, 2012, 2010), V4 (Popovkina and Pasupathy, 2022; Zamarashkina et

al., 2020), and middle temporal area (MT) (Scott et al., 2022). In ferrets trained on a

tone detection task, transition from an active detection task to a passive listening task

rapidly changes the spectrotemporal response properties of neurons in the primary auditory

cortex (Fritz et al., 2003; Fritz, 2005) and inferior colliculus (Shaheen et al., 2021; Slee and

David, 2015). Task engagement is closely related to attention, which has been shown to

have widespread effects on neural responses, including enhanced neural responses, increased

discriminability between stimuli, and reduced variability (Martinez-Trujillo and Treue, 2002;
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Treue and Maunsell, 1996; Martinez-Trujillo and Treue, 2004; Cohen and Newsome, 2008;

Reynolds and Chelazzi, 2004; Yantis and Serences, 2003; Maunsell and Cook, 2002; Cohen

and Maunsell, 2009).

In this study, we investigated how behavioral demands affect encoding of sensory and

cognitive information in the lateral intraparietal area (LIP), superior colliculus (SC), and

middle temporal area (MT). The LIP, located located in the lateral bank of the intraparietal

sulcus (Blatt et al., 1990), has been shown to exhibit binary-like category tuning during

visual categorization tasks (Swaminathan et al., 2013; Swaminathan and Freedman, 2012;

Sarma et al., 2016; Mohan et al., 2021; Freedman and Assad, 2006; Rishel et al., 2013).

The SC is a midbrain structure that is involved in spatial orienting and has been recently

shown to play a causal role in abstract visual categorization (Peysakhovich et al., 2023) (as

discussed in Chapter 2 ). The middle temporal area (MT) is an the extrastriate visual region

located on the posterior bank of the superior temporal sulcus (Maunsell and van Essen,

1983a). MT receives direct input from the primary visual cortex (V1) (Cragg, 1969), and

a large percentage of neurons in MT respond selectively to the direction of motion stimuli

((Maunsell and Van Essen, 1983b)).

We compared the activity of the same populations of neurons in MT, LIP, and SC across

two tasks (a motion categorization task and a passive viewing task) in which animals viewed

the same physical stimulus, but only one of the tasks required the monkeys to use the stimulus

information to obtain a reward. We trained two monkeys to perform a delayed match-to-

category (DMC) task in which they grouped 360° of motion directions into two categories

based on an arbitrary category rule. The categories were defined by two perpendicular

boundaries that produced four 90°-wide quadrants (Fig. 3.1a). To disambiguate neuronal

encoding of direction vs. category, opposite quadrants were assigned to the same category,

so that motion directions that are 180° apart belonged to the same category while nearby

directions were often in different categories. Monkeys viewed sample and test dot-motion
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stimuli separated by a 1.2 sec memory delay (Fig. 3.1b). On each trial, they received a fluid

reward for releasing a manual touch bar when the category of the test stimulus matched the

category of the sample stimulus (Match trials). If the test stimulus category did not match

the sample stimulus category (Non-match trials), the monkeys were shown a second test

stimulus, which always matched the sample category (and required release of the touch bar

in order to receive a reward).

Monkeys also performed interleaved blocks of a passive viewing (PV) task during the same

recording sessions as the DMC task. In the PV task, the monkeys viewed 3-5 motion stimuli

presented for 400 ms each and separated by a 200-ms delay (Fig. 3.1c). Monkeys received

a visual cue (a blue fixation circle instead of a white fixation circle as for the DMC task)

to indicate the start of a PV trial. For both tasks, the monkeys were required to maintain

gaze on a central fixation spot throughout the trial (see Methods). For the PV task, the

monkeys received a reward for maintaining fixation on the central cue for the duration of

the trial. The stimuli used in the PV task were identical to those shown in the DMC task

and were presented in the same peripheral location as for the DMC task. In the DMC task,

the monkeys needs to use the information provided by the stimulus (i.e., the direction and

category of the stimulus) to guide behavior and make decisions, while in the PV task, the

direction and category of the stimulus is irrelevant for obtaining a reward.

Following long-term training, both monkeys performed the DMC task with >85% mean

accuracy during neural recording sessions (Monkey N: 89.76 ± 3.29%, Monkey S: 88.14 ±

3.57%; Fig. 3.1c). Monkeys performed similarly on Match trials in which sample and test

stimuli were in the same vs. opposite quadrants (Monkey N: Same quad. = 88.30 ± 4.21%,

Opp. quad. = 87.06 ± 4.85%, P = .124, Monkey S: Same quad. = 85.08 ± 6.85%, Opp.

quad. = 84.66 ± 5.29%, P = .778, permutation test; Fig. 3.1d), indicating that they learned

to categorize stimuli across opposite quadrants.

We recorded spiking activity during the DMC and PV tasks from 434 MT neurons (Mon-
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Release lever

 Test Nonmatch 
(550 ms)
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Fixation
(500 ms) Sample

(550 ms) Delay
(1200 ms)

Delay
(175 ms) Test Match

Release lever

Passive viewing (PV) taskc
Fixation 
(500 ms) Stimulus 

(400 ms) Off
(200 ms) Stimulus 

(400 ms) Off
(200 ms) Stimulus 

(400 ms)

Figure 3.1: Schematics of the DMC and PV paradigms. a, Stimulus geometry
of the two-boundary delayed match-to-category (DMC) task. 12 directions of motion are
grouped into two categories based on two orthogonal category boundaries (dashed lines),
such that directions that are 180° apart belong to the same category. Directions within the
same quadrant are 22.5° apart, and near-boundary directions are 22.5° from the boundary.
b, Trial structure of the DMC task. Monkeys were required to maintain gaze within a
small window centered on a central fixation cue, and reported their decisions with a hand
movement (holding or releasing a lever). c, Trial structure of the passive viewing (PV)
paradigm. Monkeys view a series of 3-5 motion stimuli presented for 400 ms each and
separated by 200 ms.

key N: 215, Monkey S: 219), 496 LIP neurons (Monkey N: 169, Monkey S: 327) and 539 SC

neurons (Monkey N: 312, Monkey S: 227). The neurons recorded in LIP and SC are a

subsample of neurons described in Primate superior colliculus is engaged in abstract higher-

order cognition. Because recorded data from all neurons during both tasks, we could compare
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response properties between the two tasks on a neuron-by-neuron basis.

3.2 Results

3.2.1 Differences in firing rates between the DMC and PV task

We first compared the firing rates of individual neurons during the DMC and PV task. For

each neuron, we calculated the mean firing rate for both tasks for each stimulus direction,

as well as across all directions. We then computed the difference in firing rate between tasks

(FRDMC-FRPV) and determined whether the resulting distribution of difference values across

neurons was shifted significantly above or below 0 (with shifts above 0 indicating higher firing

rates during DMC task). In all three brain areas, the distribution of FRDMC-FRPV values

was significantly above 0 when considering both the mean responses across all directions

(median ± m.a.d: MT = .061 ± .273, LIP = .071 ± .337, SC = .061 ± .283; all P < .001,

permutation test; Fig. 3.2 a-b) and the responses for each neuron’s preferred direction

(identified during the DMC task; (median ± m.a.d: MT = .216 ± .373, LIP = .253 ± .435,

SC = .315 ± .416; all P < .001, permutation test.; Fig. 3.2 c-d). However, in all brain

areas, the firing rate difference distribution were significantly below 0 for the least-preferred

direction (median ± m.a.d: MT = -.124 ± .399, LIP = -.169 ± .502, SC = -.184 ± .551;

all P < .001, permutation test; Fig. 3.2 e-f), indicating higher firing rates during the PV

task than the DMC task. In Fig. 3.2g, we plotted the firing rate modulation index ([DMC-

PV]/[DMC+PV]; positive values indicate higher DMC firing rates) as a function of preferred

direction rank, revealing that responses during the PV task are most attenuated for preferred

directions, while responses for least-preferred directions are amplified.
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Figure 3.2: Task context modulates firing rates in MT, LIP, and SC neurons. a,
Scatter plots showing mean firing rates during the DMC (x-axis) vs. PV (y-axis) task for
all neurons in MT (left), LIP (middle), and SC (left). Error bars indicate s.d. across trials
per neuron. Text in the top left corner of each subplot indicates the % of cells that have
significantly higher firing rates during the DMC task than the PV task, and the % of cells
that have significantly higher firing rates during the PV task. b, Distribution of firing rate
modulation index values (DMC-PV/DMC+PV) across neurons in each area. Horizontal
solid black lines indicate median. c, d Same as a and b but for each neuron’s preferred
direction (defined during the DMC task). e, f Same as a and b but for each neuron’s least-
preferred direction (defined during the DMC task). g, Mean firing rate modulation index
as a function of preferred direction rank (defined during the DMC task). *** indicates P <
.001.
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3.2.2 Neurons in MT, LIP and SC encode stimulus direction more reliably

during the categorization task than the passive viewing task

We then investigated the direction tuning properties of neurons during the DMC and PV

task in all three brain areas by comparing the peristimulus time histograms (PSTHs) and

mean response tuning curves in individual neurons. Many MT neurons showed strong mo-

tion direction tuning, with high response rates for a preferred direction and firing rates

decreasing as a function of distance from the preferred direction (Extended Fig. 3.10).

Some MT neurons had remarkably similar response tuning curves in during the DMC and

PV tasks (Extended Fig. 3.10 a-b), although many MT neurons showed considerably

weaker direction tuning during the PV task compared to during the DMC task; some neu-

rons had markedly lower firing rates for their preferred direction during the PV vs. DMC

task (Extended Fig. 3.10 c-d), and others had both lower firing rates for their preferred

direction and increased firing rates for non-preferred directions (Extended Fig. 3.10 e-f).

Some LIP and SC neurons were also direction-tuned during the DMC task, and many of

these neurons showed markedly reduced (or absent) direction tuning during the PV task

(Extended Fig. 3.11 and Extended Fig. 3.12).

Single-neuron direction encoding during the DMC and PV tasks

To quantify the strength of direction encoding in each neuron during the visual epoch (from

50 to 400 ms after stimulus onset), we used three complementary methods: (1) a receiver

operating characteristic (ROC)-based method in which we quantified how discriminable each

stimulus direction is based on a neuron’s responses by computing area-under-the-ROC-curve

values for each of the 12 stimulus direction vs. all other directions and calculating the

mean and maximum ROC across conditions for each neuron; (2) the mutual information

(MI) between spike counts and motion direction, which quantifies how much information (in

bits) a neuron’s activity provides about stimulus direction; and (3) a direction tuning index
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(DTI) that quantifies (on a scale of 0 to 1) the magnitude of a neuron’s unimodal direction

tuning based on the circular variance method introduced in (Mazurek et al., 2014). Neurons

that have unimodal, cosine-like response tuning curves have DTI close to 1, while neurons

that have either uniform tuning curves or bimodal tuning curves with similar responses to

directions that are 180° apart (i.e., category-tuned neurons during the DMC task) have

DTI close to 0. The MI and ROC methods are applied to distributions of trial-by-trial

firing rates and are thus sensitive to differences in trial-to-trial variability, while the DTI

method is applied on trial-average responses for each motion direction. See Methods for

additional details about the three direction tuning measures. We identified neurons that

had significantly elevated DTI, direction ROC, and MI values (relative to null distributions

of shuffled values for each neuron obtained by permuting direction labels for each trial; see

Methods). Extended Table 3.1 shows the percentage of neurons in each brain area with

significantly above-chance DTI, direction ROC, and MI values, as well as the percentage of

neurons with significantly higher direction-encoding values in the DMC vs. PV task.

To investigate whether there are differences in the strength of direction encoding during

the DMC vs. PV task in each brain area, we computed the difference in direction ROC and

MI between tasks for each neuron (e.g., ROCDMC-ROCPV) and determined whether the

resulting distribution of difference values across neurons was shifted significantly above or

below 0 (with shifts above 0 indicating stronger direction encoding during the DMC task).

In all three brain areas, the distribution of ROCDMC-ROCPV values was significantly above

0 for both the mean ROC across stimulus directions for each neuron (median ± m.a.d: MT

= .006 ± .018, LIP = .007 ± .020, SC = .005 ± .017; all P < .001, permutation test; Fig. 3.3

a-b) and the maximum ROC across directions (median ± m.a.d: MT = .013 ± .046, LIP =

.014 ± .051, SC = .014 ± .045; all P < .001, permutation test; Fig. 3.3 c-d). In all three

brain areas, the distribution of MIDMC-MIPV values was also significantly above 0 (median

MIDMC-MIPV ± m.a.d: MT = .045 ± .155, LIP = .010 ± .116, SC = .034 ± .116; MT and
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SC: P < .001, LIP: P = .013, permutation test; Fig. 3.3 e-f). These results indicate that

in a majority of neurons in all three brain areas, direction encoding is stronger during the

DMC task than the PV task.
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Figure 3.3: Stronger single-neuron direction encoding during the DMC task than
the PV task. a, Scatter plots showing mean ROC (across stimulus directions) for each
neuron during the DMC task (x-axis) vs. the PV task (y-axis) in MT (left), LIP (middle),
and SC (left). Filled circles: neurons in which values differ significantly between tasks.
Unfilled circle: neurons in which values do not differ significantly between tasks. Error bars
indicate s.d. across trials for each neuron, computed via bootstrapping. Text in the top left
corner of each subplot indicates the % of cells that have significantly higher ROC during the
DMC task than the PV task and the % of cells that have significantly higher ROC during the
PV task. b, Distribution of ROC differences values (DMC-PV) across neurons in each area.
Horizontal solid black lines indicate median. c, d, Same as a and b but for maximum ROC
across stimulus directions for each neuron. e, f Same as a and b but for mutual information
between spike count and motion direction. * indicates P <.05, *** indicates P < .001.

To investigate whether there are differences in the strength of unimodal/cosine-like direc-

tion tuning during the DMC and PV tasks, we computed the difference in DTI between tasks

for each neuron. In all three brain areas, the distribution of DTIDMC-DTIPV values was
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significantly above 0 in direction-tuned neurons (i.e., neurons that had significantly above-

chance DTI during the DMC task; median ± m.a.d: MT = .052 ± .097, LIP = .040 ± .097,

SC = .049 ± .127; P < .001 in MT, LIP and SC, permutation test; Fig. 3.4 a-b). However,

in all three brain areas, the distribution of DTIDMC-DTIPV values was significantly below 0

in direction un-tuned neurons, indicating weaker direction tuning during the DMC task in

these neurons (MT = -.012 ± .071, LIP = -.013 ± .085, SC = -.007 ± 0.083; all P < .001,

permutation test; Fig. 3.4 c-d). Neurons can have low DTI (even if ROC/MI values are

high) if their response tuning curves are bi- or multimodal. The direction-untuned neurons

may therefore have lower DTI during the DMC task if their tuning curves become more

bimodal due to an increase in category tuning strength during the DMC task.
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subsubsectionPopulation-level direction encoding during the DMC and PV tasks

To quantify population-level encoding of direction in MT, LIP and SC, we trained linear

support vector machine (SVM) classifiers to decode sample direction from neural population

activity. The classifiers were trained on a subset of trials per direction for each neuron and

tested on held-out trials (see Methods). We applied the direction classifiers to data across

time in the trial (Fig. 3.5a) as well as to epoch-average spike rates (from 50- to 400 ms

after stimulus onset) for both tasks (Fig. 3.5b). In all three brain areas, direction classifiers

trained on DMC data significantly outperformed classifiers trained on PV data (MT: DMC

= 92.3 (µ) ± 7.7% (s.d.), PV = 70.0 ± 12.3%; LIP: DMC = 69.6 ± 12.3%, PV = 32.8

± 13.3%; SC: DMC = 25.5 ± 12.5%, PV = 19.0 ± 10.9, all P < .001, permutation test).

Performance was significantly higher for classifiers trained on DMC vs. PV data even when

we included only neurons that had significant DTI direction tuning during either task (MT:

N = 189 neurons, DMC = 94.3 ± 7.0%, PV = 73.9 ± 12.3%, P = .002; LIP: N = 174,

DMC = 71.1 ± 12.4%, PV = 35.7 ± 14.0%, P < .001; SC: N = 144, DMC = 30.3 ± 14.2%,

N = X neurons, PV = 20.9 ± 11.58, P = .014, permutation test; Extended Fig. 3.14).

Correlations between DMC-PV tuning curves are strongest in area MT

We also characterized how correlated each neuron’s tuning curves are between the DMC

and PV tasks. We applied the Spearman rank correlation to the two vectors containing a

neuron’s mean firing rate for each of the twelve motion stimuli, separately for direction-tuned

and untuned neurons (based on DTI). DMC and PV tuning curves were significantly more

correlated in direction-tuned MT neurons than in tuned LIP and SC neurons (MT vs. LIP:

P < .001; MT vs. SC: P < .001, permutation test), a tuning curves were more correlated in

tuned LIP neurons than tuned SC neurons. (P = 0.013, permutation test). In all three brain

areas, correlations between DMC/PV tuning curves were significantly stronger in direction-

tuned vs. untuned neurons (median r ± m.a.d.: MT tuned = .511 ± .389, MT untuned =
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Figure 3.5: Stronger population-level direction encoding during the DMC task
than the PV task. a, Time course of mean accuracy of stimulus direction classifiers
trained on DMC (dark grey) or PV (light grey) trials for MT (left), LIP (middle), and
SC (right) neural populations. Shading indicates s.d. across bootstraps. b, Accuracy of
direction classifiers trained on whole-epoch data (from 50 to 400 ms after stimulus onset).
*** indicates P < .001. In e and f, horizontal dashed lines indicate chance level.

.084 ± .332; LIP tuned = .362 ± .381 LIP untuned = .112 ± .342; SC tuned = .224 ± .402

SC untuned = .036 ± .337; all P < .001, permutation test; Fig. 3.6). We observed similar

results when we identified neurons as direction-tuned based on the ROC direction tuning

measure (Fig. 3.15).

Taken together, these results reveal that task demands deferentially affect stimulus di-

rection encoding in MT, LIP, and SC. During the DMC task (when direction information is

necessary for obtaining a reward), neuronal responses carry more information about stimulus

direction and direction-untuned neurons show weaker cosine-like direction tuning compared

to the passive context in which stimulus direction is irrelevant for behavior. Correlations be-

tween DMC and PV tuning curves were strongest in MT, followed by LIP, and were stronger

in direction-tuned than untuned populations of neurons in each area.
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Figure 3.6: Stronger correlations between DMC-PV tuning curves in MT than
in LIP and SC. a, Distributions of tuning curve correlation r values for neurons that are
significantly direction-tuned (filled circles) and untuned to direction (unfilled circles) in each
brain area. Horizontal dashed line indicates an r value of 0. Horizontal solid black lines
indicate the median for each distribution. b, Empirical cumulative distribution plots for
direction-tuned neurons (solid traces) and untuned neurons (dashed traces) in each brain
area. Vertical gray line indicates an r value of 0. * indicates P <.05, *** indicates P < .001.

3.2.3 Category encoding is largely absent in LIP and SC during the passive

viewing task

Single-neuron category tuning during the DMC and PV tasks

Next, we investigated differences in stimulus category encoding during the DMC and PV

tasks. As reported in Primate superior colliculus is engaged in abstract higher-order cogni-
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tion, many neurons in LIP and SC exhibited strong, binary-like category tuning during the

DMC task, with distinct activity for directions in different categories and similar activity for

directions in the same category (Extended Fig. 3.16 and Extended Fig. 3.17). During

the PV task, many of these neurons were not selective for category and had uniform tuning

curves; in some neurons, mean firing rates during the PV task were similar to firing rates

for the non-preferred category during the DMC task (Extended Fig. 3.11c-f, Extended

Fig. 3.12c-d), and in others, mean firing rates during the PV task were similar to firing

rates for the preferred category during the DMC task (Extended Fig. 3.11f, Extended

Fig. 3.12e-f).

We quantified the strength of category tuning in individual neurons during both tasks

using an ROC-based category tuning index (rCTI) that compares neuronal discrimination

between pairs of directions in the same vs. different categories (see Methods). rCTI can range

from -0.5 to 0.5, with positive values indicating larger differences in firing rates between pairs

of directions in different vs. same categories (and thus strong category tuning) and negative

values indicating the opposite. We computed the rCTI for each neuron using the mean

response across the late visual epoch (from 200 to 400 ms after stimulus) for each trial.

We then compared rCTI values between the DMC and PV task. In MT, there was no

difference in rCTI between tasks (mean rCTIDMC-rCTIPV = .000, s.d. = .021, P = .675,

permutation test), as expected given that category tuning is largely absent in MT during the

visual epoch of the DMC task. In LIP and SC, the distributions of rCTIDMC-rCTIPV values

across neurons were significantly above 0 (LIP = .005 ± .026; SC = .006 ± .033; both P

< .001, permutation test; Fig. 3.7a, indicate stronger single-neuron category tuning during

the DMC task.
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Single-neuron quadrant tuning during the DMC and PV tasks

However, only a small proportion of neurons in LIP and SC showed significantly elevated

epoch-averaged rCTI even during the DMC task, indicating that rCTI may be too strict

of a measure for detecting subtle changes between tasks in a neuron’s category selectivity.

We therefore developed an additional measure to quantify single-neuron quadrant tuning,

or selectivity for the three directions in one of the four quadrants of motion directions. For

each of the eight near-boundary directions, we compared the similarity of neural responses

for that reference direction and for the two directions that are 45° away, one of which is in the

same quadrant (and therefore the same category as the reference direction), and the other of

which is in a different quadrant Fig. 3.7b. We computed the difference in ROC between the

same-quadrant and different-quadrant pairs (ROCdiff-ROCsame, as well as the differences in

firing rates between the two pairs (FRdiff-FRsame). We computed a quad-ROC and quad-

FR value for each neurons by average the ROC and firing rate difference values across the

eight near-boundary conditions. A quadrant-tuned neuron will consistently respond more

similarly to same-quad direction pairs (i.e., ROCsame will be lower than ROCdiff) and will

therefore have above-zero quad-ROC and quad-FR values.

To quantify differences in single-neuron quadrant tuning between the DMC and PV tasks,

we computed the difference in quad-ROC and quad-FR between tasks for each neuron. In LIP

and SC, the distributions of quad-ROCDMC-quad-ROCPV and quad-FRDMC-quad-FRPV

values were significantly above 0 (LIP: ROC = .004 ± .016, P < .001, FR = .416 ± .975,

P < .001; SC: ROC = .010 ± .001, P = .013, FR = .364 ± .973, P = .002, permutation

test; Fig. 3.7 c-d), indicating stronger quadrant during the DMC task than the PV task.

In MT, the distribution of quad-ROC differences values was not significantly different from

0 (median = .000 ± .016, P = .535, permutation test), although the distribution of quad-FR

rates was significantly above 0 (median = .285 ± .877, P = .003, permutation test).
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Figure 3.7: Comparison of single-neuron category tuning during the DMC and
PV tasks. a, Scatter plots showing mean category tuning indices (rCTI) during the DMC
task (x-axis) vs. the PV task (y-axis). b, Schematic of the quadrant-tuning analysis. We
compute the ROC and difference in firing rate between the example direction in bold and the
two highlighted directions, and substract the ROC and FR difference for the same-quadrant
pair from the different-quadrant pair. To compute a single quad-ROC and quad-FR value
per neuron, we average the values across all eight near-boundary motion directions c, Scatter
plots showing mean wuad-ROC during the DMC task (x-axis) vs. the PV task (y-axis). d,
same as c but for quad-FR values.

Population-level category encoding during the DMC and PV tasks

We next used linear support vector machine (SVM) classifiers to quantify the amount of

category encoding in the MT, LIP and SC neural populations during the DMC and PV

tasks. To evaluate the strength of category encoding in a direction-independent manner, the
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classifiers were trained on trials from two quadrants (one from each category) and validated

on the remaining two quadrants (see Methods), as the will be able to generalize between the

two quadrants within the same category if neural populations encode category in a binary-like

manner. In addition, this approach prevents direction tuning from contributing to category

decoding performance by decorrelating direction and category between the sample and test

sets. Note that we find below-chance classifier performance when the population shows

strong direction tuning.

In MT, there was no difference in performance between cross-quadrant category classifers

trained on DMC or PV data; for the two tasks, classifer performance was similarly below

below chance, indicating that direction signals dominated population activity (DMC = 17.01

± 8.27%, PV = 15.57 ± 7.11%; P = .327, permutation test). In LIP and SC, DMC classifier

performance was significantly higher than that of the PV classifiers (LIP: DMC = 62.10 ±

10.35%, PV = 37.11 ± 5.54%; SC: DMC = 92.96 ± 3.99%, PV = 56.38 ± 6.71%, both P <

.001, permutation test; Fig. 3.8b). We performed the same category decoding analysis on

a subpopulation of neurons that excluded all significantly direction-tuned neurons (based on

DTI) to minimize the effect of direction encoding on classifier performance (Fig. 3.8c). In

MT, accuracy of category classifiers trained only non-tuned neurons was at chance level and

not significantly different for DMC vs. PV (DMC = 53.38 ± 6.33%, PV = 51.16 ± 6.57%; P

= .549, permutation test). IN LIP and SC, results were similar to those for classifiers trained

on all neurons; performance was significantly higher for classifiers trained on DMC vs. PV

data (LIP: DMC = 70.51 ± 5.41%, PV = 54.63 ± 6.71%; SC: DMC = 79.57 ± 5.35%, PV

= 60.51 ± 5.40%), both P < .001, permutation test).

3.3 Discussion

In this study, we investigated how task demands affect responses of neurons in MT, LIP,

and SC. We trained monkeys to alternate between blocks of two tasks: (1) a visual cate-
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Figure 3.8: Stronger population-level category encoding during the DMC task
compared to the PV task. a, Time course of mean accuracy of cross-quadrant stimulus
category classifiers trained on DMC (dark grey) or PV (light grey) data for all neurons in
MT (left), LIP (middle), and SC (right). Shading indicates s.d. across bootstraps. Because
classifiers were trained on directions from two quadrants (one from each category) and tested
on the other two quadrants (see Methods), classifier performance can be below chance if there
is strong direction encoding in the population. b, Accuracy of category classifiers trained
on whole-epoch data (from 200 to 400 ms after stimulus onset). c, same as b but for
subpopulations of neurons without significant direction tuning indices in each area (MT: N
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indicate chance level.

gorization task in which they had to correctly group motion stimuli into categories based

on an arbitrarily rule in order to receive a reward, and (2) a passive viewing task in which
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they viewed the same motion stimuli as for the categorization task but only had to maintain

fixation on a central cue in order to receive a reward. Monkeys performed both tasks in the

same session, and we could therefore compare how behavioral context affects responses to

the visual stimuli during the two tasks.

We compared firing rates of individual neurons between the DMC and PV tasks, and

observed that task context significantly modulates response rates in all three brain areas.

We observed significantly lower firing rates for the PV task compared to the DMC task for

neurons’ preferred motion direction, but significantly higher firing rates for the PV task vs.

the DMC task for neurons’ least preferred directions. Additionally, we observed significantly

weaker direction encoding during the PV task than the DMC task, both on the single-neuron

and neural population level. The observation of enhanced firing rates for the preferred di-

rection in the DMC task and increased direction encoding in the DMC task is consistent

with a large body of work showing that spatial attention enhances neuronal responses and

throughout the brain (Reynolds and Chelazzi, 2004; Yantis and Serences, 2003; Maunsell and

Cook, 2002; Martinez-Trujillo and Treue, 2004; Treue and Maunsell, 1996; Moran and Desi-

mone, 1985; Ignashchenkova et al., 2004; Zénon and Krauzlis, 2012). This attention-related

modulation of response gain (as well as other attention-related modifications in responses,

such as reductions in noise correlations between neighboring neurons) has been hypothesized

to increase the discriminability of behaviorally-relevant information (Cohen and Maunsell,

2009; Cohen and Newsome, 2008). In our study, monkeys are motivated attend to the stimuli

during the DMC in order to receive a reward, but do not need to actively attend to stimuli

during the PV task. The difference between our experiment and previous work on spatial

attention is that in the latter, there are typically multiple competing stimuli, while our tasks

presented a single stimulus at a time.

Neurons in MT were not significantly category-tuned even during either the DMC task or

the PV task, and DMC-PV tuning curve correlations were significantly higher in MT than in
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LIP or SC. There results are consistent with previous studies showing that motion direction

selectivity of MT neurons does not change as a result of perceptual or category learning (e.g.,

(Law and Gold, 2008; Freedman and Assad, 2006)) and suggests that neuronal characteristics

of MT are not altered (or are minimally altered) by extensive training. However, MT neurons

had significantly higher quadrant tuning in the DMC vs. the PV task, indicating that

selectivity of MT neurons may shift slightly to accommodate current behavioral demands,

although additional controls are needed to verify these results. This task-related change in

single-neuron responses is compatible with work showing that stimulus context modulates

patterns of noise correlations between pairs of neurons in MT (Cohen and Newsome, 2008).

Importantly, we observed markedly reduced category tuning during the PV task relative

to the DMC task in LIP and SC, especially on the neural population level. It was unknown

before this experiment whether category tuning in either brain area would persist even when

the animals were not required to categorize the stimuli. In LIP, task experience and train-

ing can produce considerable changes in neural activity. For example, one study recorded

from LIP neurons before and after monkeys learned to perform a motion categorization task

(Sarma et al., 2016). Prior to training on the categorization task, monkeys performed a

delayed match-to-sample task in which they compared the direction of two sequentially pre-

sented motion stimuli separated by a delay period. During this task, LIP neurons encoded

the direction of the stimuli during the visual epoch (i.e., while the stimulus was bring pre-

sented), but not during the memory delay period. Monkeys were then trained on a delayed

match-to-category task that used the same motion stimuli. After training, a high percentage

of LIP neurons responded in a binary-like manner to motion categories, and, importantly,

now showed sustained task-related delay period activity, indicating that category learning

can profound change the representations within the LIP. The animals alternated between

blocks of the PV and DMC tasks multiple times on each session. Every time they switched

between tasks, the responses of neurons in LIP and SC flexibly shifted. These results indicate
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that the neural networks that the LIP and SC are embedded in can flexibly route sensory

input based on current behavioral demands.

This study has several limitations. The first limitation is that the trial structure of the

PV and DMC tasks is very different: in the PV task, monkeys viewed each stimulus for 400

ms, and viewed up to 5 stimuli per trial, while in the DMC task, the sample stimulus was

presented for 550 ms and was followed by a delay period during which the monkeys had

remember information about the sample stimulus. Previous work has shown that neural

populations in LIP form stable fixed-point attractors during a categorization task with a

delay period, but not in a categorization task without a delay period (Mohan et al., 2021).

The attractors compressed neural responses into a more binary-like format during the visual

epoch, even before the start of the delay period, indicating that the presence of a working

memory period can affect neural responses even while the stimulus is still present. Therefore,

a more ideal comparison of DMC vs. PV data would have identical trial structures for the

two tasks.

Another limitation of this task is that the PV task did not require animals to attend to the

motion stimulus, making it difficult to distinguish between task context-related differences

in neural responses from those related to the differential attentional engagement between

the two tasks. One to improve on this limitation would be to require animals to perform a

task on the motion stimulus that is orthogonal to the category computation. For example,

animals could be trained to detect changes in luminance or motion speed of the stimuli

during the PV task, although this can also introduce additional confounds in which animals

attend to different features of the stimulus in the two task.

76



3.4 Methods

3.4.1 Subjects

Two adult (13-15 years old) male rhesus macaques (Macaca mulatta) participated in the

experiment (Monkey N: ∼12 kg, Monkey S: ∼13 kg). All procedures were in accordance with

the University of Chicago Institutional Animal Care and Use Committee and the National

Institutes of Health guidelines and policies.

3.4.2 Behavioral tasks

For the behavioral tasks described below, the monkeys were head restrained and seated in

a primate chair inserted inside an isolation box (Crist Instrument), facing a 24-inch LCD

monitor on which stimuli were presented (1,920 x 1,080 resolution, refresh rate 60 Hz, 57

cm viewing distance). Reward delivery, stimulus presentation, behavioral signals, and task

events were controlled by MonkeyLogic software (Asaad et al., 2013), running under MAT-

LAB on a Windows-based PC. Gaze position was measured with an optical eye tracker

(Eyelink 1000; SR Research, Ottowa, Canada) with a 1.0 kHz sample rate. For both tasks,

monkeys initiated trials by holding a manual touch bar.

Delayed match-to-category task

We trained monkeys to perform a delayed match-to-category (DMC) task in which they

grouped twelve dot-motion stimuli into two categories based on two orthogonal boundaries,

such that motion directions that are 180° apart belong to the same category. Motion direc-

tions were separated into quadrants with three directions per quadrant, and stimuli within

the same quadrant were 22.5° apart and near-boundary directions were 22.5° away from the

boundary. The stimuli were 6°-diameter circular patches of white dots moving at a speed

of 10°/s with 100% coherence, presented at 6.5-7.5° eccentricity in the contralateral visual
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field. Animals were required to fixate within a 2.5-3.5° window.

Passive viewing paradigm

Monkeys also performed a passive viewing (PV) paradigm in which they passively viewed the

same motion stimuli used in the DMC task (and presented at the same peripheral location).

At the start of a trial, a blue fixation circle appeared to indicate a PV trial to monkeys (as

opposed to a white fixation circle for the DMC task). Monkeys had to maintain gaze fixation

on this central cue for 500 ms, after which 3-5 motion stimuli appeared in succession for 400

ms each and separated by 200 ms. Monkeys received a fluid reward at the end of the trial

for maintaining gaze fixation on the central cue.

3.4.3 Surgical procedures and electrophysiological recordings

Monkeys were implanted with a titanium headpost and a single recording chamber positioned

over MT, LIP and SC. Stereotaxic coordinates for chamber placement were determined

from magnetic resonance imaging (MRI) scans obtained before implantation of recording

chambers. MT, LIP and SC recordings were conducted in separate sessions, typically using

16- and 24-channel linear Plexon V-probes (in which channels span 1.5-2.0 mm of tissue), a

dura-piercing guide tube, and a NAN microdrive system (NAN Instruments). A small subset

of recording sessions from one monkey were conducted using single epoxy-insulated tungsten

electrodes (FHC, Inc). We used anatomical landmarks and responses during the MGS task

to guide recordings (for LIP and SC recordings). For SC recordings, we primarily targeted

neurons in superficial and intermediate layers, although we also recorded neurons in deep

layers as well due to the ~2mm span of recording channels on our probes. Neurophysiological

signals were amplified, digitized, and stored for offline spike sorting (Plexon) to verify the

quality and stability of neuronal isolation.
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3.4.4 Behavioral inclusion criteria

For electrophysiological recordings and inactivation experiments, we included sessions in

which behavioral performance on each category for the DMC task was at least 75% (crite-

rion applied only to control blocks for the inactivation experiments). We excluded six LIP

recording sessions (four in Monkey N and two in Monkey S) and four MT sessions (two in

Monkey N and two in Monkey S) from analyses due to poor behavioral performance.

For neural analyses, we included well-isolated neurons for which we had data recorded

during at least five correct trials for each of the twelve sample stimulus directions during

both the DMC and PV tasks. We analyzed spiking data from 434 MT neurons recorded over

19 recording sessions (Monkey N: N neurons = 215, N sessions = 15; Monkey S: N neurons

= 219, N sessions = 14), 496 LIP neurons recorded over 43 recording sessions (Monkey N:

N neurons = 169, N sessions = 30; Monkey S: N neurons = 327, N sessions = 13) and 539

SC neurons recorded over 33 recording sessions (Monkey N: N neurons = 312, N sessions =

21; Monkey S: N neurons = 227, N sessions = 11).

3.4.5 Data analysis

All analyses were performed in Python v3.7.3. Behavioral analyses for the DMC task were

performed on all completed trials (i.e., correct trials, misses on match trials, and false alarms

on non-match trials), and neural analyses for the DMC task were performed only on correct

trials. To maximize the number of repetitions per motion direction for the PV task, we

included all completed trials as well as completed stimulus presentations during aborted

trials (i.e., when the monkey failed to maintain fixation until the end of the trial). All P -

values are two-tailed unless otherwise specified. For sliding window decoder analyses, spike

trains for each neuron were smoothed using Gaussian kernel (σ = 30 ms).
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Behavioral performance

To compare differences in behavioral performance on the DMC task on match trials in which

the sample and test stimuli were in the same vs. opposite quadrants (Extended Fig. 3.9b),

we computed the difference in mean accuracy for same vs. opposite quadrant match trials

for each session and used a permutation test (with 5000 iterations) to randomly permute the

per-session accuracy values between the two conditions.

Quantifying single-neuron direction encoding

We used three complementary methods to quantify the strength of single-neuron direction

tuning or encoding. All three methods were applied on spike counts during the visual epoch

from 50 to 400 ms after stimulus onset.

ROC-based direction tuning

We quantified the strength of single-neuron direction encoding using a receiver operating

characteristic (ROC)-based measure. For each neuron, we applied ROC analysis to distri-

butions of trial-by-trial epoch-average firing rates for each of the twelve stimulus conditions

vs. all other conditions. We repeated this procedure 100 times for each stimulus condition,

each time randomly sampling (with replacement) 10 trials per comparison, and obtained a

mean rectified ROC per condition by averaging the 100 bootstrapped ROC values.

For each neuron, we computed the mean and the maximum ROC across conditions for

the DMC and PV tasks and tested for significant ROC direction encoding (independently

for the DMC and PV tasks) by comparing the neuron’s measured ROC to a distribution

of 5000 null ROC values generated by permuting the direction labels assigned to each trial.

We compared each neuron’s mean and maximum ROC between the DMC and PV tasks by

comparing the observed difference between tasks (ROCDMC-ROCPV) to a null distribution

of ROC difference values. To obtain the null distribution, we permuted the task labels
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assigned to each trial and re-computed the difference in mean and max ROC between the

two resulting shuffled groups. We repeated this procedure 1000 times per neuron.

Mutual information

Mutual information (MI) was calculated for each neuron from the sum of spike counts for

each trial across the twelve stimulus directions during each task. The MI (in bits per spike)

between spike count k and stimulus direction θ is calculated as

I(k; θ) =
∑
θ

p(θ)
∑
k

p(k|θ) log2
p(k|θ)
p(k) (3.1)

We tested each neuron for significant MI (independently for the DMC and PV tasks) by

comparing the neuron’s measured MI to a distribution of 5000 null MI values generated by

permuting the direction labels assigned to each trial. We tested each neuron for differences

in MI between the DMC and PV tasks by comparing the observed difference in MI between

tasks (MIDMC-ROCPV) to a null distribution of MI difference values obtained by permuting

the task labels assigned to each trial. We repeated this procedure 1000 times per neuron.

Direction tuning index

We computed a direction tuning index (DTI) for each neuron using the circular variance

method introduced in (Mazurek et al., 2014). We calculated neurons’ mean firing rate

for each sample stimulus direction in a direction vector space, and quantified DTI as the

normalized length of the sum of these vectors:

DTI =

∣∣∣∣∣
12∑
k=1

f(θk)e
iθk

12∑
k=1

f(θk)

∣∣∣∣∣ (3.2)

where f(θk) is a neuron’s mean firing rate for direction θk.
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DTI ranges from 0 (no direction tuning) to 1. Neurons that have unimodal, cosine-like

response tuning curves have DTI values close to 1, while neurons that have either uniform

tuning curves or bimodal tuning curves with similar responses to directions that are 180°

apart (i.e., category-tuned neurons during the DMC task) have DTI values close to 0. See

Extended Fig. 3.13 for example simulated tuning curves and the resulting DTI.

We tested each neuron for significant DTI tuning by comparing the measured DTI to a

distribution of 5000 null DTIs generated by randomly shuffling the direction labels assigned

to each trial. We visually verified the tuning curves of significantly direction-tuned and

untuned neurons identified using this method. To further verify the validity of DTI for

identifying direction-tuned neurons, we trained support vector machine (SVM) classifiers

(see below) to decode stimulus direction separately on populations of neurons with significant

direction tuning (during either the DMC or PV task) and on populations of neurons without

significant direction tuning. In all three brain areas, performance was significantly higher

for classifiers trained on DMC task activity from direction-tuned than untuned neurons

(Extended Fig. 3.14, filled outlines). We also observed significantly higher performance

on classifiers trained on PV activity from direction-tuned than untuned neurons in MT and

LIP (Extended Fig. 3.14, unfilled outlines). To test for significant differences in DTI

between the DMC and PV tasks for each neuron, we compared the observed difference

(DTIDMC-ROCDTI) to a null distribution of DTI difference values obtained by the task

label assigned to each trial and re-computed the difference in DTI between the two resulting

shuffled groups. We repeated this procedure 1000 times per neuron.

For each neuron, we computed the difference between the DMC and PV data for each

of these measures (i.e., ROCDMC-ROCPV, MIDMC-MIPV, and DTIDMC-DTIPV. We tested

for significant differences between the DMC and PV tasks across neurons in each brain area

by comparing, for each measure, the median of the distribution of task difference values

to a distribution of 5000 null difference values, computed by randomly shuffling task labels
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assigned to DMC and PV values for each neuron. Extended Table 3.1 shows the percentage

of neurons in each brain area with significantly above-chance DTI, direction ROC, and MI

values, as well as the percentage of neurons with significantly higher direction-encoding

values in the DMC vs. PV task.

Quantifying single-neuron category tuning

We quantified the strength and reliability of single-neuron category tuning using a receiver

operating characteristic (ROC)-based category tuning index (rCTI) (Rishel et al., 2013). For

each neuron, we applied ROC analysis to distributions of trial-by-trial firing rates (average

across the epoch from 200 to 400 ms after stimulus onset) and compared area under the

ROC curve (AUC) values for eight pairs of sample motion directions that are in the same

category (Within-Category; WC) and eight pairs of directions that are in different categories

(Between-Category; BC). To ensure equalized angle differences between WC and BC pairs

(and thus prevent direction tuning from contaminating rCTI), the WC and BC groups each

included four direction pairs spaced 45° apart and four direction pairs spaced 135° apart

(Extended Fig. 2.6a). We quantified rCTI as the mean rectified WC AUC subtracted

from the mean rectified BC AUC:

rCTI = 1
8

8∑
p=1

0.5+

∣∣∣∣0.5− AUC(BCp1, BCp2)

∣∣∣∣
− 1

8

8∑
p=1

0.5+

∣∣∣∣0.5− AUC(WCp1,WCp2)

∣∣∣∣
(3.3)

where BCp1 and BCp2 are the two directions in the pth BC pair, and WCp1 and WCp2 are

the two directions in the pth WC pair.

We applied the rCTI analysis to smoothed spike trains (see above) across 5-ms time steps

in the trial. To generate the error shading shown in Fig. 3.7a we calculated rCTI for each
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neuron over 500 bootstraps using 15 trials per sample motion direction (with replacement).

We generated null distributions of rCTI values for each neuron using a bootstrap analysis

(repeated 5000 times) in which we randomly assigned (with replacement) eight direction

pairs (four 45°-spaced and four 135°-spaced pairs) to each of the shuffled BC and WC groups

(Extended Fig. 2.6).

Support vector machine (SVM) analyses

We used SVM classifiers (with a linear kernel) to quantify the strength and timing of sample

stimulus category encoding in populations of MT, LIP and SC neurons. To quantify category

encoding in a direction-independent manner, we constructed cross-quadrant classifiers for

which training sets consisted of trials in which the sample motion directions were from two

of the four quadrants (one from each category), and testing sets consisted of sample motion

direction trials from the other two quadrants (Fig. 2.2g). The training and testing quadrants

were randomly chosen on each iteration. The analysis was applied in 5-ms steps across time

in the trial and repeated for 200 iterations. For each neuron, we included 15 trials from each

of six sample motion directions for training (as described above) and 15 trials from each

of the remaining six sample motion directions for testing. To reduce the biases in classifier

performance across brain areas due to an unequal number of neurons, for each iteration

of the analysis, we randomly selected N neurons for inclusion, where N is the number of

neurons in the brain area with the lower number of neurons. We generated null distributions

of decoder performance values at each time using a permutation procedure (repeated 1000

times) in which we shuffled the sample direction label assigned to each trial.

We also used linear SVM classifiers to decode sample direction from MT, LIP and SC

population activity. The classifiers were trained on 96 trials (8 trials from each of the 12

directions stimulus directions) and validated on 24 held-out trials (2 trials from each of the

six motion directions). This analysis was applied in 5-ms steps across the trial and repeated
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for 200 iterations.

3.5 Supplemental Figures and Tables
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Figure 3.9: Behavioral accuracy during DMC task. a, Behavioral performance across
recording sessions for each of the 12 sample stimulus directions for Monkey N (left) and
Monkey S (right). Horizontal dashed lines indicate chance performance. b, Behavioral
performance across sessions on Match trials in which the sample and test stimuli were in
the same or opposite quadrants. There was no significant difference in mean performance
on trials in which sample and test stimuli were in the same or different quadrants (Monkey
N: Same quad. = 88.30 ± 4.21%, Opp. quad. = 87.06 ± 4.85%, P = .124, Monkey S: Same
quad. = 85.08 ± 6.85%, Opp. quad. = 84.66 ± 5.29%, P = .778, permutation test.
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Figure 3.10: Examples of direction-tuned MT neurons that are modulated by
task context. a, Example MT neuron recorded in Monkey N. Left : Peri-stimulus time
histograms during the DMC (top) and PV (bottom) tasks. Color indicates stimulus category.
Dotted grey lines indicate stimulus onset time. Right : Tuning curves showing mean firing
rate (from 200-400 ms after stimulus onset) for each stimulus direction during the DMC
(dark grey) and PV (light grey) tasks. Background color indicates stimulus category. Error
bars indicate s.e.m. across trials. b, Same as a but for a neuron recorded in Monkey S. c,
e Same as a but for two additional example MT neurons recorded in Monkey N. d, f Same
as b but for two additional example MT neurons recorded in Monkey S.
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Figure 3.11: Examples of direction-tuned LIP neurons that are modulated by
task context. a, Example LIP neuron recorded in Monkey N. Left : Peri-stimulus time
histograms during the DMC (top) and PV (bottom) tasks. Color indicates stimulus category.
Dotted grey lines indicate stimulus onset time. Right : Tuning curves showing mean firing
rate (from 200-400 ms after stimulus onset) for each stimulus direction during the DMC
(dark grey) and PV (light grey) tasks. Background color indicates stimulus category. Error
bars indicate s.e.m. across trials. b, Same as a but for a neuron recorded in Monkey S. c,
e Same as a but for two additional example LIP neurons recorded in Monkey N. d, f Same
as b but for two additional example LIP neurons recorded in Monkey S.
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Figure 3.12: Examples of direction-tuned SC neurons that are modulated by task
context. a, Example SC neuron recorded in Monkey N. Left : Peri-stimulus time histograms
during the DMC (top) and PV (bottom) tasks. Color indicates stimulus category. Dotted
grey lines indicate stimulus onset time. Right : Tuning curves showing mean firing rate (from
200-400 ms after stimulus onset) for each stimulus direction during the DMC (dark grey)
and PV (light grey) tasks. Background color indicates stimulus category. Error bars indicate
s.e.m. across trials. b, Same as a but for a neuron recorded in Monkey S. c, e Same as a
but for two additional example SC neurons recorded in Monkey N. d, f Same as b but for
two additional example SC neurons recorded in Monkey S.
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DTI = 0.00 DTI = 0.25 DTI = 0.50 DTI = 0.75 DTI = 1.00

Figure 3.13: Example tuning curves and resulting direction tuning index (DTI)
values. Five simulated neurons with different direction tuning properties. Each panel
shows the neuron’s simulated response (top) for each of the motion directions shown below.
The resulting direction tuning index (DTI) value is shown below each panel. Neurons that
would be category-tuned during the DMC task (i.e., respond strongly to motion directions
in opposite quadrants) have DTI values close to zero (left-most neuron), while neurons that
have classic Gaussian-like tuning response curve have DTI values close to 1. Figure from
(Mazurek et al., 2014)
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Figure 3.14: Performance of direction classifiers trained separately on direction-
tuned and untuned neurons. To verify the validity of the direction tuning index (DTI) to
identify direction-tuned neurons, we compared the performance of direction classifiers trained
separately on neurons that had significant DTI direction tuning (during either the DMC or
PV task; filled outlines, MT: N = 189, LIP: N = 174, SC: N = 144) and neurons without
significant direction tuning during both tasks (unfilled outlines; MT: N = 245, LIP: N =
352, SC: N = 395). For the DMC task, performance was significantly higher for classifiers
trained on tuned than untuned neurons in all three brain areas (µ ± s.d. in all areas: MT
tuned = 94.25 ± 6.99%, MT untuned = 22.88 ± 13.39%; LIP tuned = 71.08 ± 12.36%,
LIP untuned = 24.92 ± 12.58%; SC tuned = 30.25 ± 14.17%, SC untuned = 20.00 ± 10.37;
all P < .001, permutation test). For the PV task, performance was significantly higher
for classifiers trained on tuned vs. untuned neurons in MT and LIP (MT tuned = 73.92
± 12.31%, MT untuned = 18.54 ± 11.97%; LIP tuned = 35.71 ± 14.0%, LIP untuned =
17.83 ± 11.52%; both P < .001, permutation test), but not in SC (tuned = 20.88 ± 11.58%,
untuned = 15.21 ± 11.01%; P = .266, permutation test). Moreover, in all three brain areas,
performance was significantly lower for classifiers trained on PV vs. DMC data even when
only direction-tuned neurons were included (MT: P = .002, LIP: P < .001, SC: P = .014,
permutation test). Horizontal dashed lines indicate chance performance. *** indicates P <
.001.
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Figure 3.15: Direction-tuned neurons have more similar tuning curves during
the DMC and PV tasks than untuned neurons. a, Distributions of tuning curve
correlation r values for neurons that are significantly direction-tuned (filled circles) and
untuned to direction (unfilled circles) in each area. Horizontal dashed line indicates an
r value of 0. Horizontal solid black lines indicate median for each distribution. In all
three brain areas, median DMC-PV tuning curve correlations were higher in direction-tuned
vs. untuned neurons (MT tuned = .375 ± .493, MT untuned = .084 ± .325, P = .008,
permutation test; LIP tuned = .213 ± .378 LIP untuned = .114 ± .345, P = .009; SC tuned
= .112 ± .435 SC untuned = .019 ± .262, P = .018). b, Empirical cumulative distribution
plots for direction-tuned neurons (solid traces) and untuned neurons (dashed traces) in each
area. Vertical gray line indicates an r value of 0. ** indicates P < .01, * indicates P <.05.
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Figure 3.16: Examples of category-tuned LIP neurons that are modulated by
task context. a, Example LIP neuron recorded in Monkey N. Left : Peri-stimulus time
histograms during the DMC (top) and PV (bottom) tasks. Color indicates stimulus category.
Dotted grey lines indicate stimulus onset time. Right : Tuning curves showing mean firing
rate (from 200-400 ms after stimulus onset) for each stimulus direction during the DMC
(dark grey) and PV (light grey) tasks. Background color indicates stimulus category. Error
bars indicate s.e.m. across trials. b, Same as a but for a neuron recorded in Monkey S. c,
e Same as a but for two additional example LIP neurons recorded in Monkey N. d, f Same
as b but for two additional example LIP neurons recorded in Monkey S.
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Figure 3.17: Examples of category-tuned SC neurons that are modulated by task
context. a, Example SC neuron recorded in Monkey N. Left : Peri-stimulus time histograms
during the DMC (top) and PV (bottom) tasks. Color indicates stimulus category. Dotted
grey lines indicate stimulus onset time. Right : Tuning curves showing mean firing rate (from
200-400 ms after stimulus onset) for each stimulus direction during the DMC (dark grey)
and PV (light grey) tasks. Background color indicates stimulus category. Error bars indicate
s.e.m. across trials. b, Same as a but for a neuron recorded in Monkey S. c, e Same as a
but for two additional example SC neurons recorded in Monkey N. d, f Same as b but for
two additional example SC neurons recorded in Monkey S.
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Table 3.1: Percentage of direction-encoding neurons during the DMC and PV tasks

Direction ROC

% DT overall % DT by task % Higher DTI

Area Monkey DMC PV DMC only PV only DMC & PV DMC PV

N 54.88 37.67 42.55 16.31 41.13 60.28 15.6
MT

S 62.56 47.95 37.5 18.45 44.05 57.74 25.0

N 55.03 43.79 35.65 19.13 45.22 67.83 15.65
LIP

S 59.63 43.73 41.39 20.08 38.52 54.1 25.0

N 53.53 31.09 52.68 18.54 28.78 57.07 25.37
SC

S 54.63 31.28 53.29 18.42 28.29 59.87 25.0

Mutual Information

% DT overall % DT by task % Higher DTI

Area Monkey DMC PV DMC only PV only DMC & PV DMC PV

N 24.65 22.33 29.41 22.06 48.53 33.82 1.47
MT

S 29.22 17.35 49.33 14.67 36.0 40.0 2.67

N 35.5 13.61 67.61 15.49 16.9 14.08 8.45
LIP

S 17.43 13.46 47.62 32.14 20.24 22.62 3.57

N 14.1 8.01 59.02 27.87 13.11 24.59 3.28
SC

S 14.54 11.45 50.94 37.74 11.32 33.96 5.66

Direction tuning index (DTI)

% DT overall % DT by task % Higher DTI

Area Monkey DMC PV DMC only PV only DMC & PV DMC PV

N 35.81 32.56 25.53 18.09 56.38 15.96 9.57
MT

S 33.79 24.66 43.16 22.11 34.74 30.53 21.05

N 38.46 20.71 53.33 13.33 33.33 24.0 13.33
LIP

S 23.24 18.04 40.4 23.23 36.36 16.16 15.15

N 13.78 14.1 42.11 43.42 14.47 25.0 19.74
SC

S 20.26 15.86 47.06 32.35 20.59 17.65 16.18

Percentage of neurons with significant direction encoding for each of the three
direction-encoding measures (DTI, ROC, and MI). Column descriptions: “% DT
overall:” % of neurons that have significant direction-tuned during the DMC and PV tasks;
“% DT by task:” % of tuned neurons that are tuned only in the DMC task (DMC only),
only in the PV task (PV only), or in both tasks (DMC & PV); “% Higher DTI:” % of tuned
neurons that have significantly higher tuning values during the DMC or PV tasks. For each
comparison in each row, the task with the higher proportion is highlighted in bold.
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CHAPTER 4

DISCUSSION

4.1 Summary of results

In this thesis, we investigated the subcortical and cortical contributions to visual category

processing. We trained monkeys on an abstract visual motion categorization task in which

they learned to group motion directions into category based on an arbitrary category rule.

Based on previous investigations of the neural mechanisms underlying categorization be-

haviors, the cortical lateral intraparietal area (LIP) has emerged as a leading candidate for

where the direction-to-category computation may take place.

In the first chapter of this thesis, we compared the activity of the LIP and the superior

colliculus (SC) during the categorization task. The SC has previously been understood

to mediate spatial orienting functions, such as saccadic eye movements or covert spatial

attention. We observed the superior colliculus encodes learned categories more reliably

and with a shorter latency than the LIP, and that reversible inactivation of the SC causes

significant deficits in animals’ performance on the categorization task. In addition, we show

that category and eye movement-related signals are encoded in near-orthogonal subspaces in

population activity in the SC, providing an explanation for how a motor structure like the

SC can be recruited to participate in more flexible cognitive behaviors. Our results reveal a

novel role of the primate SC in non-spatial cognitive functions.

In the second chapter of this thesis, investigated the effects of behavioral demands on

encoding of sensory and cognitive variables in the LIP, SC, and the middle temporal area

(MT), an extrastriate visual area that is important for motion processing. We trained

monkeys to alternate between blocks of the visual motion categorization task and a passive

task in which they viewed the same motion stimuli but were not required to categorize the

stimuli. In all three brain areas, the firing rates of neurons were strongly modulated by task
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context, and direction encoding was significantly weaker during the PV task than the DMC

task. Moreover, category encoding was largely absent in LIP and SC, indicating that neural

circuits can flexibly modulate the processing of sensory information based on current task

demands.
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