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ABSTRACT

We compute the RO(G)-graded cohomology of various G-equivariant classifying spaces,

where G is a cyclic 2-group. We then relate these descriptions to �genuine" G-equivariant

characteristic class and power operations. Depending on the context, we take coe�cients R in

the constant Green functors Z, F2 or the rational Burnside Green functor AQ. The classifying

spaces we study are BGL for L a compact connected Lie group such as U(m), SO(m), Sp(m).

For certain combinations of G,L and R, we compute H
⋆
G (BGL;R) as an RO(G)-graded

Green functor algebra over the cohomology of a point H
⋆
G (∗;R). We also develop a computer

program to partially verify and automate these computations. The results in this dissertation

�rst appeared in the author's preprints [3, 4, 5, 6, 7].
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CHAPTER 1

INTRODUCTION

Equivariant algebraic topology has classical origins, going back to the work of P.A. Smith

in [25]. Classically, one considers a group G acting on a space X and the �rst algebraic

invariant of interest is the Borel equivariant cohomology given by:

H∗
G,Borel(X;R) = H∗(EG×G X;R)

where EG is a contractible free G-space and R is our ring of coe�cients. In the modern

language of spectra, this corresponds to the homotopy �xed points of the associated function

spectrum:

H∗
G,Borel(X;R) = π∗F (X+, HR)hG

In many cases however, the Borel equivariant theory is inadequate and does not provide

additional information compared to the nonequivariant theory ([20]). There is a more general

and powerful theory, called Bredon (or RO(G)-graded) equivariant cohomology that does

not su�er from this defect, and is given by the genuine �xed points of the function spectrum:

H
⋆
G (X;R) = π⋆F (X+, HR)G

The notation is somewhat loaded: First, the underlines indicate that instead of rings we

use Green functors: the data of a Green functor R consist of a ring R(G/H) for each orbit

G/H and maps between those rings satisfying certain axioms (see [24] for an introduction to

Green functors). Second, the ⋆ indicates that we are grading over the real representation

ring RO(G); in other words, ⋆ is a real virtual G-representation.

Bredon cohomology is not only a more complicated algebraic gadget compared to Borel

cohomology, but turns out to be notoriously di�cult to compute even when the space X is
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a point and the group G is cyclic (see [16, 29, 3] for sample computations when G is a cyclic

p-group).

On the other hand, there are signi�cant upsides to using Bredon cohomology, even when

the group G is as simple as possible, say G = C2. First, the RO(C2) graded cohomology

of C2-equivariant classifying spaces contains nontrivial characteristic classes for C2-bundles

that cannot be seen through lenses of the nonequivariant or Borel theory ([6]). Moreover, the

associated C2-equivariant Steenrod algebra features new power operations ([14, 28]) and there

are deep connections between RO(C2)-graded cohomology and motivic cohomology ([10]).

One can also not overstate the importance of the seminal work [11] which uses RO(C8)-

graded cohomology in an essential way to solve the Kervaire invariant problem in all but one

dimension. Even outside the strict con�nes of algebraic topology, Bredon cohomology has

been used in mathematical physics and in particular, string theory ([26]).

In this dissertation, we restrict ourselves to cyclic 2-groups G = C2n . The goal is to

compute

H
⋆
G (BGL;R)

for classical Lie groups L such as U(m), SO(m) and Sp(m). Here, L does not have aG-action,

but the equivariant classifying space BGL does (see section 1.2 for an example).

The coe�cients R vary from chapter to chapter. In chapter 4 we take rational Burn-

side Green functor coe�cients R = AQ and describe the associated theory of C2 Chern,

Pontryagin and symplectic characteristic classes. In chapter 3 we take R = F2 and compute:

H
⋆
C4

(BC4
O(1);F2)

generalizing the computation of ([14]) from G = C2 to G = C4. This speci�c computation

has particular signi�cance due to its connection to Steenrod operations and the dual Steenrod

algebra.
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By �computation", we mean the determination of H
⋆
G (X;R) as an RO(G)-graded Green

functor algebra over the cohomology of a point H
⋆
G (∗;R), in terms of generators and rela-

tions. Therefore, one �rst needs to compute:

H
⋆
G (∗;R)

which is a nontrivial undertaking in its own right. In the rational case, namely when R = AQ,

a result of [9] implies that all modules over R are projective and injective, which makes it

possible to give universal descriptions for all groups G = C2n (which we do in chapter 4).

That is not the case when using R = Z or F2 coe�cients, which is why we limit ourselves to

G = C4 computations in chapters 2 and 3.

With the exception of the rational case, all computations are done using spectral se-

quences. These spectral sequences generally have nontrivial di�erentials and lead to non-

trivial extensions. There is an alternative approach to spectral sequences that involves Tate

diagrams ([29]) but that also presents its own set of challenges. A seemingly elementary ap-

proach to all these problems is to set up a co-chain complex C∗(X;R) from the equivariant

CW-decomposition of our space X and compute its homology directly. Unfortunately, due

to the RO(G) grading, we must instead to use the larger co-chain complex:

C∗(X;R)⊠R C∗(SV ;R)

where V ranges over the real virtual G-representations. Owing to the lack of a Kunneth

formula, the homology of this box (tensor) product of co-chain complexes does not split into

the box (tensor) product of homologies. The option now is to either use spectral sequences

(which we do in section 2.5) or compute the box product and its homology directly. Direct

computation is infeasible for pen-paper calculations as we are presented with the problem of

diagonalizing matrices with no obvious patterns and dimensions that increase exponentially.
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This is not a problem for computers however, and we have created a computer program that

largely automates and partially veri�es these computations (see section 2.6).

All the author's work present in this thesis was �rst made publicly available on the arXiv,

in the form of 5 preprints: [3, 4, 5, 6, 7]. Due to the technical nature of the work, we have

opted not to include all the details from the 5 papers here. Instead, we are aiming for a more

readable presentation, citing the 5 papers when needed; the reader is advised to peruse the

references for more detailed statements and complete descriptions and proofs.

1.1 Organization

This dissertation is organized in three chapters:

� Chapter 2 is concerned with computing the cohomology of a point

H
⋆
C4

(∗;Z)

and partially covers the content of [3]. It also includes a section on the computer

program and a conjecture regarding

H
⋆
C2n

(∗;Z)

for all n ≥ 1.

� Chapter 3 is concerned with computing:

H
⋆
C4

(BC4
O(1);F2)

We also discuss its relevance to the genuine C4-equivariant dual Steenrod algebra, as

well as the computation of the Borel C2n-equivariant dual Steenrod algebra. This
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chapter partially covers the contents of [4] and [5].

� Chapter 4 is concerned with computing:

H
⋆
C2

(BC2
L;AQ)

where L = U(m), SO(m), Sp(m), and developing the associated theory of Chern,

Pontryagin and symplectic classes. We further investigate generalizations to groups

G = C2n . This chapter partially covers the contents of [6] and [7].

All chapters use the conventions and notations of section 1.2 which should be read �rst.

1.2 Background, Conventions and Notations

We will assume that the reader is familiar with the fundamentals of Mackey functors,

Green functors and RO(G)-graded Mackey functor-valued homology theories. Introductory

references for all that include [21], [24].

Henceforth G = C2n is a cyclic 2-group and X is an unbased G-space.

1.2.1 RO(G)-graded homology and cohomology

We consider the unreduced RO(G)-graded homology and cohomology of X in R coe�-

cients:

HG
⋆(X;R) , H

⋆
G (X;R)

The reduced versions feature an extra tilde:

HG
⋆(X;R) = H̃

G
⋆(X+;R) , H

⋆
G (X;R) = H̃

⋆
G (X+;R)

We shall generally suppress R from the notation when either R is understood from the
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context, or when the statement in question is true irrespective of R.

When X = ∗ is a point, homology and cohomology are the same up to a regrading:

HG
⋆ := πG⋆(HR) = HG

⋆(∗;R) = H
−⋆
G (∗;R)

This is an RO(G)-graded Green functor algebra over R. For general X, both

HG
⋆(X) , H

⋆
G (X)

are Mackey functor modules over HG
⋆. It is the cup-product structure that renders H

⋆
G (X)

into a Green functor algebra over the homology of a point, which is why we prefer to use

cohomology to homology for general spaces.

1.2.2 Mackey functors and Green functors

We write Res2
i

2i−1 ,Tr
2i

2i−1 for the restriction and transfer map along the subgroup inclusion

C2i−1 ⊆ C2i in a C2n-Mackey functor.

We shall use Lewis diagrams to represent Mackey functors. For example, a C4-Mackey

functor M has Lewis diagram:

M(C4/C4)

M(C4/C2)

M(C4/e)

Res
4
2 Tr

4
2

Res
2
1

C4/C2

Tr
2
1

C4

When G = C2n the Lewis diagram is always a tower with top level M(G/G) and bottom

level M(G/e). When G = C4 we shall refer to M(C4/C2) as the middle level.

The initial Green functor is the Burnside Green functor AZ. There are three associated
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Green functors that we shall use as our coe�cients throughout this dissertation:

� The rational Burnside Green functor AQ, obtained by rationalizing AZ.

� The constant Green functor Z, obtained by enforcing the relations

TrKH (1) = |K : H|

in AZ, for all subgroups H ⊆ K.

� The constant Green functor F2, obtained from Z by reducing modulo 2.

In every Green functor, we have the Frobenius relation:

TrKH (xResKH y) = TrKH (x)y (1.1)

1.2.3 The top level

We shall generally only be interested in the top level of HG
⋆(X). This is because all lower

levels can be computed by induction on the group G:

HG
⋆(X)(G/H) = HH

⋆(X)(H/H) , ⋆ ∈ RO(G)

for any subgroup H ⊆ G. So the computation of H
C2n

⋆ (X) by induction on n reduces to the

computation of the top level and the determination of the restriction/transfer maps between

the 2n, 2n−1 levels.

We denote the top level by:

HG
⋆(X) := HG

⋆(X)(G/G) = HG
⋆(X;R)(G/G)
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and when X = ∗ is a point:

HG
⋆ := HG

⋆(∗) = HG
⋆(G/G)

1.2.4 Rational Mackey functors

In this subsection, we use AQ coe�cients. [9] prove that

� All rational Mackey functors (i.e. AQ modules) are projective and injective, so we have

the Kunneth formula:

HG
⋆(X × Y ) = HG

⋆(X)⊠
HG

⋆
HG

⋆(Y )

and duality formula:

H
⋆
G (X) = HomHG

⋆
(HG

⋆(X), HG
⋆)

� When G = C2 we have the isomorphism of graded Green functors:

H∗
C2

(X) =

H∗(X)C2

H∗(X)

⊕
H∗(XC2)

0

(see section 4.9 for a generalization to all G = C2n).

The second bullet allows us to reduce equivariant computations to nonequivariant ones, as

long as we use integer grading ∗ ∈ Z. Using the �rst bullet, integer graded cohomology

together with the homology of a point recovers the RO(G)-graded cohomology:

H
⋆
G (X) = H∗

G(X)⊠AQ H
⋆
G

As such, once H
⋆
G is computed, we need only worry about integer grading.

8



The homology of a point in AQ itself has special signi�cance, as it agrees with the G-

equivariant rational stable stems:

πG⋆(S)⊗Q = πG⋆(HAQ) = HG
⋆

1.2.5 The real representation ring of C2n

The real representation ring RO(C2n) is spanned by the irreducible representations

1, σ, λs,k where σ is the 1-dimensional sign representation and λs,k is the 2-dimensional

representation given by rotation by 2πs(k/2n) degrees for 1 ≤ k dividing 2n−2 and odd

1 ≤ s < 2n/k. Note that 2-locally, Sλs,k ≃ Sλ1,k as C2n-equivariant spaces, by the s-

power map. Therefore, to compute H
C2n

⋆ (X), it su�ces to only consider ⋆ in the span of

1, σ, λk := λ1,2k for 0 ≤ k ≤ n− 2 ([11]). Note that λn−1 = 2σ and λn = 2. When G = C4

we write λ for λ0. We shall use ρ to denote the real regular representation of G.

1.2.6 Euler and orientation classes

We shall now de�ne some very useful classes in the RO(G)-graded homology of a point.

We �rst have Euler classes aσ : S0 ↪→ Sσ and aλk : S0 ↪→ Sλk given by the inclusion of

the north and south poles; under the Hurewicz map these classes become elements in the

homology of a point irrespective of coe�cients:

aσ ∈ HG
−σ , aλk ∈ HG

−λk

The orientation classes are slightly trickier to de�ne as they depend on the coe�cients.

If R is a ring and R is the corresponding constant Mackey functor, then to any R-orientable

9



real representation V we have by [11]:

HG
|V |−V (∗;R) = R

We denote a generator of the top level of this Mackey functor by uV (this is uniquely

determined upon choosing an R-orientation for V ). By [6] this result also holds for R = AQ.

For G = C2n , we have the following orientation classes:

� When R = Z or AQ there are orientation classes:

uσ ∈ HG
1−σ(∗;R)(G/C2n−1) , u2σ ∈ HG

2−2σ(∗;R) , uλk ∈ HG
2−λk

(∗;R)

� When R = F2 there are orientation classes:

uσ ∈ HG
1−σ(∗;R) , uλk ∈ HG

2−λk
(∗;R)

Essentially, the di�erence between integral (or rational Burnside) and modulo 2 coe�-

cients is that the representation σ is only orientable over F2 while 2σ is orientable over any

choice of coe�cients. Thus, uσ does not exist as an element in the top level of the homology

of a point for R = Z or AQ coe�cients but does for R = F2. In the latter case, u2σ = u2σ.

1.2.7 Quotients

Suppose we have elements x ∈ HG
V and y ∈ HG

W that are not both 0. We will say that

y/x exists if HG
W−V has a cyclic subgroup C such that multiplication by x maps C ⊆ HG

W−V

isomorphically onto the cyclic subgroup ⟨y⟩ ⊆ HG
W generated by y:

HG
W−V HG

W

C ⟨y⟩

x

x
≈
10



If C is unique with this property, then the preimage of y under multiplication by x is a single

element in HG
W−V denoted by y/x or by:

y

x

For example, 1/x exists i� x is invertible, and in that case 1/x = x−1 (and we will

continue to use the x−1 notation for inverses).

However in general, y/x is less ambiguous than y−1x as the latter notation might suggest

that y−1 exists by itself and is multiplied with x. For instance, when using G = C2 and

R = Z coe�cients, 2/u2σ exists because HC2
2σ−2

u2σ−−→ HC2
0 = Z is an isomorphism onto

2Z ⊆ Z. On the other hand, 1/u2σ does not exist.

Let us note here that if the subgroup C in the de�nition above is not unique, then there

are multiple candidates for y/x. This raises a subtle and technical point further expounded

upon in [3, 4].

1.2.8 Equivariant classifying spaces

If K is any group, the G-classifying space of K is de�ned by

BGK = EGK/K

where EGK is a G × K space that's K-free and (EGK)Γ is contractible for any subgroup

Γ ⊆ G×K with Γ ∩ ({1} ×K) = {1} (a graph subgroup). We will usually take K = L to

be a classical Lie group such as U(m), O(m), SO(m), Sp(m).

We do not assume any action of G on K; instead BGK derives a G action from the action

on EGK. The underlying space of BGK is a model for the usual classifying space BK; in

other words, BGK is BK with an appropriate G-action. For example, if K = S1 then

BS1 = CP∞ and BC4
S1 = CP∞ρ is the complex projective plane in C∞ρ = C∞(1+σ+λ),
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namely a generator g ∈ C4 acts on the homogeneous coordinates by:

g(z0 : z1 : z2 : z3 : z4 : · · · ) = (z0 : −z1 : −z3 : z2 : z4 : · · · )

1.2.9 Borel vs Bredon cohomology

Borel cohomology is given by the homotopy �xed points of a function spectrum:

H∗
G,Borel(X;Z) = π∗F (X+, H Z)hG = π0F (Σ−∗X+, H Z)hG

This de�nition is equivalent to H∗
G,Borel(X;Z) = H∗(EG×G X;Z) because

F (EG+ ∧G Y, Z) ≃ F (EG+ ∧ Y, Z)G ≃ F (EG+, F (Y, Z))G = F (Y, Z)hG

for any G-spectra Y, Z with Z split ([21, pg. 198]). In our case, we take Y = Σ∞X+ and

Z = HZ.

We can extend the integer grading to RO(G) grading by:

H
⋆
G,Borel(X;Z) := π0F (Σ−⋆X+, H Z)hG

By comparison, Bredon cohomology is given by the genuine �xed points of the same function

spectrum:

H
⋆
G (X;Z) = π0F (Σ−⋆X+, HZ)G

For a general G-spectrum Y , there is always a map Y G → Y hG which in our case, induces a

map from Bredon to Borel cohomology. This map is localization on all orientation classes:

H
⋆
G,Borel(X;Z) = S−1H

⋆
G (X;Z)
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where S = {u2σ, uλk , 0 ≤ k ≤ n−2}. This is also true when using F2 coe�cients (replacing

Z by F2 and u2σ by uσ).

1.2.10 The Tate diagram

We can better understand the di�erence between Y G and Y hG for a G-spectrum Y using

the Tate diagram.

Let ẼG be the co�ber of the collapse map EG+ → S0. We use the notation Yh =

EG+ ∧ Y , Ỹ = ẼG ∧ Y , Y h = F (EG+, Y ) and Y t = Ỹ h.

The Tate diagram ([9]) then takes the form:

Yh Y Ỹ

Yh Y h Y t

≃

The square on the right is a homotopy pullback diagram and is called the Tate square.

Applying πG⋆ on the Tate diagram gives:

YhG⋆ Y G
⋆ Ỹ G

⋆

YhG⋆ Y hG
⋆ Y tG

⋆

≈

The rows give long exact sequences and there is another long exact sequence coming from

the square on the right (homotopy pullback).
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CHAPTER 2

THE RO(C4) INTEGRAL HOMOLOGY OF A POINT

2.1 Introduction

This chapter partially covers the results of [3]; the reader is referred to [3] for more details

and complete proofs.

The computation of the RO(G)-graded homology of a point

HG
⋆ := πG⋆(HR) = HG

⋆(∗;R) = H
−⋆
G (∗;R)

has been historically a very di�cult problem. Stong and Lewis completely determined it for

G = Cp, the cyclic group of prime order p, using coe�cients R = AZ ([16]).

In this chapter we take G = C4 and R = Z. Since RO(C4) is spanned by 1, σ, λ this boils

down to computing

H̃
C4
k (Snσ+mλ)

for k, n,m ∈ Z.

When n,m ≥ 0, we have an explicit and simple equivariant cellular decomposition for

the space Snσ+mλ and we can compute the homology using the cellular chain complex

C∗S
nσ+mλ. When n,m ≤ 0, we can appeal to Spanier Whitehead Duality:

H̃
C4
k (Snσ+mλ) = H̃

−k
C4

(S−nσ−mλ)

This is the homology of the cochain complex C−∗(S|n|σ+|m|λ) dual to the chain complex

C−∗(S
|n|σ+|m|λ) we had before.

The more di�cult part of the computation is when nm < 0, for example when n >

14



0,m < 0. In this case, we could in principle work with the box product of chain complexes

C∗S
nσ ⊠ C−∗S|m|λ

but these complexes get intractably large for calculations by hand as n, |m| get large. In

place of that, we instead make use of three algebraic spectral sequences associated to these

complexes: Two Atiyah-Hirzebruch spectral sequences and a Kunneth spectral sequence.

Comparison of these three allows us to get the answer through fairly intuitive (if lengthy)

arguments ([3]). A complication is that everything needs to be performed on the Mackey

functor level: for example, the Tor terms in the Kunneth spectral sequence are computed in

the symmetric monoidal category of Z-modules.

The main result is that HC4
⋆ is generated, in a generalized sense, by the Euler and

orientation classes aσ, aλ, u2σ, uλ. These classes, under the operations of multiplication,

division, restriction and transfer, don't quite generate the entire HC4
⋆ , missing the generator

s of

H̃C4
−3(S

−2λ) = Z /4

However, it turns out that this Z /4 �ts in a short exact sequence of abelian groups

0 → Z /2 → Z /4 → Z /2 → 0

where the generators of the Z /2's are obtainable using just the Euler and orientation classes.

So if we include this group extension into our list of �operations", then the closure of the

Euler and orientation classes under said operations is the entire HC4
⋆ . To be more precise,

since we are interested in the homology as a Mackey functor, we shouldn't adjoin a group

extension but rather the Mackey functor extensions that induce it.

At this point, we should mention earlier work by Zeng on this topic. [29] calculates the

integer coe�cient RO(Cp2)-graded homology of a point for all primes p, using the associated

15



Tate-square diagram as opposed to the cellular chains approach we use here. His descrip-

tion for the multiplicative structure is in terms of the connecting homomorphism of certain

co�ber sequences, while our description is solely in terms of the Euler and orientation classes.

Modulo this di�erence, our results agree with his for the case p = 2.

Another novelty in this work is the computerization of this computation, not just for G =

C4 but indeed for any G = Cpn . We have devised a computer program that automatically

produces the answer for both the additive and multiplicative structures of πG⋆(HZ) or more

generally πG⋆(HR) where R is constant coe�cients in a user speci�ed ring such as Fp or Q. It

can also compute the Massey products present in πG⋆(HR) together with their indeterminacy.

Of course the program can only work in a �nite range, i.e. it can produce the answer for SV

where the dimension of V is bounded.

We have used the program to verify our results in a �nite range, predict/verify a d2

di�erential in the spectral sequence of section 3.5 and formulate a conjecture for π
C2n

⋆ (HZ)

and all n = 1, 2, ... based on computational data gathered for groups G = C2, C4, C8, C16

and C32 (see section 2.4).

The source code is publicly available on github.com/NickG-Math/Mackey, where the in-

terested reader can not only inspect it, but also contribute to its improvement and expansion,

which we highly encourage.

In this chapter, we always use Z coe�cients.

2.2 Organization

This chapter is organized as follows:

� Section 2.3 gives a brief description of HC4
⋆ (see [3] for the complete answer and some

subtleties we do not go into here).

� Section 2.4 contains a conjecture for H
C2n

⋆ , n = 1, 2, ...
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� Section 2.5 gives an overview of the method used in [3] to compute HC4
⋆ .

� Section 2.6 describes how the computer program works on a high level and gives an

example of typical usage.

2.3 Generators and Relations

The Euler and orientation classes generate the following homology groups:

� aσ generates HC4
−σ = Z /2

� aλ generates HC4
−λ = Z /4

� u2σ generates HC4
2−2σ = Z

� uλ generates HC4
2−λ = Z

� uσ generates HC4
1−σ(C4/C2) = Z−; the minus indicates that the Weyl group action of

C4/C2 = ⟨g⟩ is given by g · uσ = −uσ.

We have Res42(u2σ) = u2σ.

Apart from the Frobenius relation (1.1) which holds for every Green functor, we have the

Gold relation ([11]):

a2σuλ = 2u2σaλ (2.1)

The Euler and orientation classes generate multiplicatively all of H̃C4∗ (Snσ+mλ) for n,m ≥ 0

under the Gold relation.
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To generate H̃C4∗ (S−nσ−mλ) we must also include the elements:

2

ui2σ
,

4

u
j
λ

,
4

ui2σu
j
λ

wn := Tr42(u
−n
σ ) , n ≥ 3 and n odd

xn,m := Tr41

(
Res21(uσ)

−nRes41(uλ)
−m

)
, n,m ≥ 1 and n odd

wn

aiσa
j
λu

k
λ

,
xn,m

aiσ

Here, i, j, k ≥ 0. We don't consider w1 because Tr
4
2(u

−1
σ ) = 0. The wn, xn,m are all 2-torsion

elements.

The �rst element in H̃C4∗ (S−nσ−mλ) not obtained by Euler and orientation classes

through the operations of multiplication, division (wherever possible), transfers and restric-

tions is the generator

s ∈ HC4
2λ−3 = H̃C4

−3S
−2λ = Z /4

The remaining elements of HC4
⋆ are:

s

ui2σa
j
λu

k
λ

,
uλ
ui2σ

,
2aλ

aσui2σ
,

2u2σ
uλ

,
4u2σ

uiλ
,

a2σ
aλ

,
a3σ
amλ

We also have the relations:

2s = w3
a3σ
a2λ

aσs = Tr42

( 2uσ

Res42(u
2
λ)

)

In the second equation, multiplication by aσ is the projection Z /4 → Z /2 so by reducing
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modulo 2 we can write:

s ≡
Tr42

(
2uσ

Res
4
2(u

2
λ)

)
aσ

mod 2

We have expressed 2s and s mod 2 in terms of Euler and orientation classes which means

that s is obtained from Euler and orientation classes through the extension

0 → Z /2 → Z /4 → Z /2 → 0

This actually arises from an extension of Mackey functors ([3]).

As we have observed, every element can be written in terms of the Euler and orientation

classes under the operations of multiplication, division, transfer, restriction and the extension

giving s. Moreover, the only relation is the Gold relation (2.1), in the sense that all other

relations can be obtained from it, the Frobenius relation (1.1) and relations of the form:

x
y

x
= y

See [3] for a precise formulation of this �presentation" of HC4
⋆ in terms of generators and

relations.

2.4 A conjecture for G = C2n

For G = C2n , the Mackey functor H̃
G
−3S

−2λn is on each orbit:

H̃
G
−3S

−2λn(G/C2k) = Z /2k

for k > 0 and H̃
G
−3S

−2λn(G/e) = 0. Transfers are the usual inclusion maps Z /2k ↪→ Z /2l

for k ≤ l, while restrictions are the projection maps Z /2l → Z /2k for k ≤ l.
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If sn denotes a generator of HG
2λn−3 = Z /2n then

snaσ = Tr2
n

1 [(Res2
n−1

1 uσ)(Res
2n
1 uλn)

−2]

generating a Z /2. Furthermore, 2sn is the transfer of the C2n−1 generator sn−1.

Therefore, by induction, sn is generated by the Euler and orientation classes of C2k for

2 ≤ k ≤ n through the extension

0 → Z /2n−1(2sn) → Z /2n(sn) → Z /2(snaσ) → 0

Conjecture: For all G = C2n , the Euler classes, orientation classes and sn together

generate HG
⋆ under the operations of multiplication, division, transfer and restriction.

This conjecture has been veri�ed in a �nite range for n ≤ 5. We further expect the Gold

relation (2.1) to generate all relations; see [3] for a more precise formulation.

2.5 The computation of HC4

⋆

In this section, G = C4. To compute HG
⋆ we �rst need to compute the additive structure,

namely the Mackey functors

H̃
G
∗ (S

V ) = H̃
G
∗ (S

nσ+mλ)

for n,m ∈ Z. When n,m ≥ 0 this is easy: Snσ+mλ is a G-space and has an explicit G-CW

structure with skeletal �ltration X0 ⊆ · · · ⊆ Xn+2m = Snσ+mλ where:

� If i ≤ n or i = n+2k for 1 ≤ k ≤ m, Xi consists of coordinates (x1, ..., xi+1, 0, ..., 0) ∈

Rn+2m+1 with
∑

j x
2
j = 1.

� If i = n+ 2k + 1 for 1 ≤ k ≤ m− 1, Xi consists of coordinates (x1, ..., xi+2, 0, ..., 0) ∈

Rn+2m+1 with xi+1xi+2 = 0 and
∑

j x
2
j = 1.
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The cells we attach, namely the co�bers of Xi−1 ↪→ Xi, are C4+/C2+ ∧ Si when i ≤ n and

C4+ ∧ Si when n < i ≤ n+ 2m. This means that we have a simple and explicit description

of the chains

C∗(S
nσ+mλ)

from which we can compute the homology.

When n,m ≤ 0, Snσ+mλ is not a space, but we can appeal to Spanier-Whitehead duality:

H̃
G
∗ (S

nσ+mλ) = H̃
−∗
G (S−nσ−mλ)

is the cohomology of the cochain complex

C∗(S|n|σ+|m|λ)

up to a regrading. This is computed directly from the equivariant CW decomposition of

S|n|σ+|m|λ.

The problematic cases are then H̃
G
∗ (S

nσ−mλ) and H̃
G
∗ (S

−nσ+mλ) for n,m ≥ 0. Without

loss of generality, let us only deal with H̃
G
∗ (S

nσ−mλ), which is the homology of

C∗(S
nσ−mλ) ≃ C∗(S

nσ)⊠ C−∗(Smλ) (2.2)

Such box products get intractably large to compute by hand (see section 2.6), so we instead

�lter them by smaller subcomplexes and get spectral sequences. In general, for any tensor

product of chain complexes C⊗D in a su�ciently good symmetric monoidal abelian category

(like that of Mackey functors), we have three spectral sequences converging to H∗(C⊗D). If

we �lter the double complex underlying the tensor product either horizontally or vertically,
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we get two spectral sequences with E2 terms

E2 = H∗(C;H∗D) =⇒ H∗(C ⊗D)

E2 = H∗(D;H∗C) =⇒ H∗(C ⊗D)

Using Cartan-Eilenberg resolutions we obtain a Kunneth spectral sequence

E2 = Tor∗,∗(H∗C,H∗D) =⇒ H∗(C ⊗D)

See [27] and [22] for more details on these spectral sequences. In our case of C∗(S
V ) ⊠

C−∗(SW ) (where V = nσ,W = mλ) the spectral sequences take the form:

E2
p,q = HG

p (S
V , H

−q
G SW ) =⇒ HG

p+qS
V−W (2.3)

E
p,q
2 = H

p
G(S

W , HG
−qS

V ) =⇒ HG
p+qS

V−W

E2
p,q = Torp,q(HG

p S
V , HG

q S
−W ) =⇒ HG

p+qS
V−W

These are all spectral sequences of Z-modules and the �nal one uses the Tor in the symmet-

ric monoidal category of Z-modules. These three spectral sequences can also be obtained

topologically: the �rst two are the Atiyah-Hirzebruch spectral sequences for the homology

theory HV and the �nal one is the topological Kunneth spectral sequence. See also [17].

These spectral sequences are computed in [3]. The idea is to use all three and compare

them as needed: vanishing in a certain degree may be trivial for one but nontrivial for

the other. In this way, we can leverage partial information from each to complete the

computation. This work is too technical to present here, so we refer the reader to [3] for full

details.
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2.5.1 The three spectral sequences: an example

We include here an example for how the method in general works. We use the abbrevi-

ations HSS, CSS, KSS for the three spectral sequences in (2.3) in that order. We also use

[3]'s notation of C4-Mackey functors explained in table 2.6.2.

We depict the E2 page of the HSS for S4σ−3λ in �gure 2.1 using the Serre (p, q) grading.

The E2 terms are computed directly, the arrows denote possible nontrivial di�erentials and

the dashed lines indicate possible extensions (if these terms survive to the E∞ page). We

shall prove that the d2's are nontrivial; this leads to �gure 2.2 for the E3 page. The indicated

d3 turns out to be nontrivial as well leading to �gure 2.3 for the E4 = E∞ page.

0 1 2 3 4

−6

−5

−4

−3 ⟨Z /2⟩ ⟨Z /2⟩ ⟨Z /2⟩ Q♯

⟨Z /2⟩ ⟨Z /2⟩ ⟨Z /2⟩ Q♯

⟨Z /2⟩ L♯

Figure 2.1: E2 page of the HSS for S4σ−3λ

0 1 2 3 4

−6

−5

−4

−3 ⟨Z /2⟩ ⟨Z /2⟩ ⟨Z /2⟩ Q♯

⟨Z /2⟩ Q♯

L

Figure 2.2: E3 page of the HSS for S4σ−3λ
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0 1 2 3 4

−6

−5

−4

−3 ⟨Z /2⟩ ⟨Z /2⟩ Q♯

Q♯

L

Figure 2.3: E∞ = E4 page of the HSS for S4σ−3λ

To prove that all three di�erentials are nontrivial, we can assume otherwise and compare

the answer given here with that given by the CSS that we've drawn in �gures 2.4 and 2.5

(using again the Serre grading).

0 1 2 3 4 5 6

−4

−3

−2

−1

0 ⟨Z /2⟩

⟨Z /2⟩

⟨Z /4⟩ ⟨Z /4⟩ L

Figure 2.4: E3 page of the CSS for S4σ−3λ
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0 1 2 3 4 5 6

−4

−3

−2

−1

0 ⟨Z /2⟩

Q♯ ⟨Z /4⟩ L

Figure 2.5: E∞ = E4 page of the CSS for S4σ−3λ

In the E2 page of the HSS, if the di�erential out of L♯ were to vanish, we would obtain

an extension of L♯, ⟨Z /2⟩ at degree −2 and such an extension can never be L (which is what

the CSS predicts is the answer at degree −2). So this di�erential has to be nontrivial. The

other two di�erentials in the HSS are analogously shown to be nontrivial. The di�erential

in the CSS is nontrivial as we must get Q♯ at degree −1 and ⟨Z /2⟩ at degree 0 by the HSS.

The KSS is depicted in �gure 2.6.

0 1 2

−2

−1 Q♯

L ⟨Z /4⟩ ⟨Z /2⟩

Figure 2.6: E2 = E∞ page of the KSS for S4σ−2λ ∧ S−λ

2.6 The C++ library mackey

The computations in section 2.5 depend on �ltering box products such as (2.2) in di�erent

ways and comparing the resulting spectral sequences. Ideally, we would be working directly

with that box product, but there are two major complications that prohibit this: Firstly,

the box product of Mackey functors is not the level-wise tensor product. Instead, only the
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bottom level (corresponding to the orbit G/e) can be obtained as the tensor product, while

all the higher levels are obtained by transferring (our chains consist solely of free Mackey

functors). Secondly, the bottom level tensor product itself gets arbitrarily large as we increase

n,m in (2.2), making it impractical to compute with it.

The idea underlying computer computations is that our chains consist solely of free

Mackey functors over Z, so every di�erential can be completely described by a matrix with

integer entries. The operations of transfer, restriction and group action can all be performed

algorithmically for free Mackey functors, and their e�ect can be described in terms of these

matrices. Similarly, the tensor product can also be computed algorithmically, and then the

box product is just obtained by transferring it to higher levels. At the �nal step, we need to

take homology and that can be achieved via a Smith Normal Form algorithm over Z.

There are a few more technicalities in this procedure that we haven't addressed here,

but once these details are dealt with, this process allows us to algorithmically compute the

additive structure of the RO(G) homology, in any given range for our representations (for

G = C4, this amounts to a given range for n,m in Snσ+mλ).

For the multiplicative structure we need to be able to compute the product of any two

generators. Just like with tensor products, this can be directly performed only on the

bottom level. If the generators live in a higher level, the idea is to �rst restrict them to

the bottom level, multiply these restrictions, and then invert the restriction map. This is

possible because in free Mackey functors, restrictions are injective, and our chain complexes

consist exclusively of such Mackey functors.

There is a �nal algorithm that allows us to automatically write our generators in terms

of Euler and orientation classes (like in sections 2.3 and 3.3). This �factorization" algorithm

works by forming a multiplication table for the RO(G) homology, and then turning this table

into a colored graph, somewhat analogous to the Cayley graph of a group. There are two

colors, corresponding to multiplication and division, and traversing this graph is equivalent
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to factorizing elements.

This chains-based approach also works remarkably well with Massey products. And

indeed, our program can compute Massey products, and their indeterminacy, directly from

their de�nition. Finally, we can replace Z with other constant Green functors such as F2.

From an implementation standpoint, a signi�cant challenge is memory usage: the naive

approach to storing chain complexes requires extreme amounts of memory for groups G = C8

and beyond. It is thus critical to use a sparse matrix format to store the di�erentials: these

di�erential matrices are extremely sparse in the sense that 99% of their entries are 0 and

thus we need not waste memory storing said zeros. We also use a variant of algebraic Morse

theory (see [15]) that preserves equivariance. This allows us to reduce our chain complexes to

smaller ones in the same equivariant homotopy type. With this reduction, we can compress

box products of chain complexes anywhere between 30% to 90%, with larger chain complexes

leading to better compression ratios.

The interested reader can �nd these details and much more, together with the source

code, documentation and demo binaries on github.com/NickG-Math/Mackey. Subsection

2.6.1 includes a short tutorial for the curious reader to get an idea of the input/output of

the program. A much more detailed tutorial is present on nickg-math.github.io/Mackey/

html/index.html.

2.6.1 A typical use case

First we set up our C++ working environment as explained in nickg-math.github.io/

Mackey/html/tuto.html.

Next, we can compute the additive structure of H̃
C4
∗ (Snσ+mλ) in a range, say for −1 ≤

n ≤ 5,−4 ≤ m ≤ 6, using:

std::cout � mackey::AdditiveStructure<C4<int64_t�({-1,-4},{5,6});
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Here the template C4<int64_t> indicates that we are using group C4 and constant Z coef-

�cients (with 64bit precision).

Running the code will print the result to the console in the following format:

The k=-9 homology of the -1,-4 sphere is 112#01

which means:

H̃
C4
−9(S

−σ−4λ) = 112#01 =

Z /2

Z

Z

1

2

−1

1

−1

See subsection 2.6.2 for an explanation of the computer notation 112#01.

If we want to multiply two top level generators together, say

H̃C4
0 (S2σ−2λ)⊗ H̃C4

−4(S
−2σ−λ) → H̃C4

−2(S
−2σ)

we can use the code:

std::cout � mackey::ROGreen<C4<int64_t�(2, {-4, -2, -1}, {2, 0, 1});

Here the �rst input 2 signi�es that we are using the top level C4/C4 (4 = 22). Running the

code will print 2 to the console, which indicates

ab = 2c

where a, b, c are the generators of

H̃C4
0 (S2σ−2λ), H̃C4

−4(S
−2σ−λ), H̃C4

−2(S
−2σ)
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respectively. And indeed, we have:

4

u2σuλ
· uλ = 2 · 2

u2σ

See nickg-math.github.io/Mackey/html/tuto.html for more examples including printing

factorizations of all elements (in a range) in terms of Euler and orientation classes, computing

Massey products and much more.

2.6.2 Mackey functor notation

The library mackey uses the notation

a0 · · · an♯b0 · · · bm

to describe the following C2n-Mackey functor M :

M(C2n/C2i) =


Z/ai if ai ̸= 1

Z if ai = 1

Tr2
i+1

2i
(x) =


x if i = bj for some j

2x otherwise

Res2
i+1

2i
(x) =


2x if i = bj for some j

x otherwise

where 0 ≤ b0 < · · · < bm < n. The Weyl group actions are determined by the double coset

formula. Every Mackey functor appearing in H
C2n

⋆ is a sum of Mackey functors of the above

form when n ≤ 2; if n > 2 there are �exceptional" Mackey functors that cannot be written
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in this notation.

There are various notations for C4 Mackey functors in the literature and the following

table provides a glossary for them.

Table 2.1: Glossary of C4-Mackey functor notations

Lewis Diagram Notation in [12] Notation in [3] Computer notation

Z

Z

Z

1 2

1 2

□ Z 111

0

Z

Z

1

−1

2

−1

□ Z− 110

Z /4

Z /2

0

1 2

◦ ⟨Z /4⟩ 024

Z /2

0

0

• ⟨Z /2⟩ 002

0

Z /2

0

• ⟨Z /2⟩ 020
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Glossary of C4-Mackey functor notations (continued)

Z

Z

Z

2 1

2 1

◪ L 111#01

Z

Z

Z

2 1

1 2

⬕ p∗L = L♭ 111#1

Z /2

Z

Z

1

2

−1

1

−1

⬕̇ L− 112#01

Z /2

Z

Z

1

1

−1

2

−1

□̇ p∗L− = L♭
− 112#1

Z /2

Z /2

0

0 1

▼ Q 022#1

Z /2

Z /2

0

1 0

▲ Q♯ 022
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Glossary of C4-Mackey functor notations (continued)

Z

Z

Z

1 2

2 1

⬒ L♯ 111#0

0

Z

Z

2

−1

1

−1

⬕ Z♭
− 110#0
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CHAPTER 3

THE RO(C4) COHOMOLOGY OF BC4
O(1)

3.1 Introduction

This chapter partially covers the content of [4, 5]; the reader is referred to [4, 5] for more

details and complete proofs.

The computation of the classical (nonequivariant) dual Steenrod algebra

(H F2)∗(H F2) = F2[ξi]

relies on the construction of the Milnor generators ξi. These generators can be de�ned

through the completed coaction of the dual Steenrod algebra on the cohomology of the

classifying space BO(1) = BΣ2 = RP∞: H∗(BΣ2;F2) = F2[x] and the completed coaction

F2[x] → (H F2)∗(H F2)[[x]] is:

x 7→
∑
i

x2
i
⊗ ξi

In the C2-equivariant world, the space replacing BΣ2 is the equivariant classifying space

BC2
Σ2. This is still RP∞ but now equipped with a nontrivial C2 action, given in homoge-

neous coordinates by:

g · (x0 : x1 : x2 : x3 : · · · ) = (x0 : −x1 : x2 : −x3 : · · · )

Over the homology of a point, we no longer have a polynomial algebra on a single generator

x, but rather a polynomial algebra on two generators c, b modulo a single relation:

H
⋆
C2

(BC2
Σ2;F2) =

H
⋆
C2

(∗;F2)[c, b]
c2 = aσc+ uσb

([14]). As a module, this is still free over the homology of a point, and the completed coaction
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is given by:

c 7→ c⊗ 1 +
∑
i

b2
i
⊗ τi

b 7→
∑
i

b2
i
⊗ ξi

The τi, ξi are the C2-equivariant analogues of the Milnor generators, and Hu-Kriz show that

they span the genuine dual Steenrod algebra under the family of relations:

τ2i = τi+1aσ + ξi+1(uσ + τ0aσ)

Attempting to do the same for C4 involves computing the cohomology of BC4
Σ2 which turns

out to be signi�cantly more complicated (see section 3.4) and most importantly is not a free

module over the homology of a point. In fact, it's not even �at (Proposition 3.4.1) bringing

into question whether we even have a coaction by the dual Steenrod algebra in this case.

There is another related reason to consider the space BC4
Σ2. In [28], Wilson describes a

framework for equivariant total power operations over an H F2 module A equipped with a

symmetric multiplication. The total power operation is induced from a map of spectra

A → AtΣ[2]

where (−)tΣ[2] is a variant Tate construction de�ned in [28].

In the nonequivariant case, A → AtΣ[2] induces a map Q : A∗ → A∗((t)) and the Dyer-

Lashof operations Qi can be obtained as the components of this map:

Q(x) =
∑
i

Qi(x)ti

In the C2 equivariant case, we have a map Q : AC2
⋆ → AC2

⋆ [c, b±]/(c2 = aσc + uσb) and
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we get power operations

Q(x) =
∑
i

Qiρ(x)bi +
∑
i

Qiρ+σ(x)cbi

When A = H F2, A
C2
⋆ [c, b±]/(c2 = aσc + uσb) is the cohomology of BC2

Σ2 localized at the

class b.

For C4 we would have to use the cohomology of BC4
Σ2 (localized at a certain class)

but that is no longer free, meaning that the resulting power operations would have extra

relations between them and further complicating the other arguments in [28].

In this chapter, we always use F2 coe�cients.

3.2 Organization

This chapter is organized as follows:

� Section 3.3 gives a brief description of HC4
⋆ (see [4] for the complete answer and some

subtleties we do not go into here).

� Section 3.4 summarizes the result of the computation of H
⋆
C4

(BC4
Σ2) and explains the

problem with �atness.

� Section 3.5 gives an overview of the proof of the computation of H
⋆
C4

(BC4
Σ2) in [4].

� Section 3.6 computes the C2n equivariant Borel dual Steenrod algebra in characteristic

2. We also compare with the dual description in [8]. This section is independent of the

rest of the chapter and partially covers the content of [5].
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3.3 The RO(C4) homology of a point in F2 coe�cients

The reader should compare the description in this section with the integral case of section

2.3.

The classes aσ, aλ, uσ, uλ live in degrees ⋆ = −σ,−λ, 1 − σ, 2 − λ of HC4
⋆ respectively.

The Gold Relation (2.1) takes the form:

a2σuλ = 0

To generate HC4
⋆ we use, in addition to the Euler and orientation classes, the following

quotients:

uλ
uiσ

,
a2σ
aiλ

,
θ

aiσu
j
σa

r
λ

,

θ
aλ
a1+ϵ
σ

uiσa
j
λ

,

θ
aλ
a1+ϵ
σ

urσa
j
λu

1+m
λ

(3.1)

where the indices i, j,m range in 0, 1, 2, ..., r ranges in Z and ϵ ranges in 0, 1.

The class θ of (3.1) is de�ned as

θ = Tr42

(
Res42(uσ)

−2
)

We further introduce the elements:

xn,m = Tr42

(
Res42(uσ)

−nRes42(uλ)
−m

)
=

x0,1

unσu
m−1
λ

, m ≥ 1

where

x0,1 = a2σ
θ

aλ
= θ

a2σ
aλ

With this notation, the �nal two families of elements in (3.1) take the form:

xn,1

aϵσa
i
λ

,
xn,m

aiλ
,
xn,m+1

aσaiλ
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The mod 2 reduction of the element s from section 2.3 is:

s :=

θ
aλ
aσ

uλ
uσ =

x0,2uσ

aσ

3.4 The cohomology of BC4
Σ2

Proposition 3.4.1. There exist elements ea, eu, eλ, eρ in degrees σ + λ, σ + λ − 2, λ, ρ of

H
⋆
C4

(BC4
Σ2) respectively, such that

H
⋆
C4

(BC4
Σ2) =

H
⋆
C4

[
ea,

eu

uiσ
,
eλ

uiσ
, eρ

]
i≥0

S

See [4] for an explicit description of the relation set S (which contains both module and

multiplicative relations), as well as a description of the Mackey functor H
⋆
C4

(BC4
Σ2). As a

module over H
⋆
C4
, H

⋆
C4

(BC4
Σ2) is not �at.

Proof. See [4].

We can describe the restrictions of the classes ea, eu, eλ, eρ in terms of the Hu-Kriz gen-

erators c, b of H
⋆
C2

(BC2
Σ2) (see (3.1)):

Res42(e
a) = Res42(uσ)(aσC2

b+ bc)

Res42(e
u) = Res42(uσ)uσC2

c

Res42(e
λ) = c2

Res42(e
ρ) = Res42(uσ)b

2

Here, we write σC2
for the C2 sign representation to distinguish it from the C4 sign repre-

sentation σ.

We can also express the map to Borel cohomology terms of our generators:
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Proposition 3.4.2. There is a choice of the degree 1 element w in

H
⋆
C4,Borel(BC4

Σ2) = H
⋆
C4,Borel(∗)[w] = F2[aσ, aλ, u±σ , u±λ , w]/a

2
σ

so that the localization map from Bredon to Borel cohomology is:

eu 7→ uσuλw

eλ 7→ uλw
2

ea 7→ uσuλw
3 + uσaλw

eρ 7→ uσuλw
4 + aσuλw

3 + uσaλw
2 + aσaλw

Proof. See [4].

In other words, the one dimensional Stiefel-Whitney class w1 = Res41(w) splits into 4 C4-

equivariant Stiefel-Whitney classes eu, eλ, ea, eρ, whose restrictions are w1, w
2
1, w

3
1, w

4
1 (up to

multiplication with Res41(uσ),Res
4
1(uλ)).

3.5 An overview of the computation of H⋆
C4
(BC4

Σ2)

3.5.1 A G-CW decomposition of BC4
Σ2

The space BC4
Σ2 = RP∞ρ is RP∞ with nontrivial C4 action:

g(x0, x1, x2, x3, x4, ...) = (x0,−x1,−x3, x2, x4, ...)

in homogeneous coordinates. It is an in�nite dimensional C4-equivariant CW complex with

skeletal �ltration X0 ⊆ X1 ⊆ · · · ⊆ ∪Xi = BC4
Σ2 where:

� If i ̸≡ 2 mod 4 then Xi consists of coordinates (x0, ..., xi, 0, ...).
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� If i ≡ 2 mod 4 then Xi consists of coordinates (x0, ..., xi, xi+1, 0, ...) with xixi+1 = 0.

The equivariant cells, namely the co�bers of Xi−1 ↪→ Xi, are:

� Sjρ when i = 4j

� Sjρ+σ when i = 4j + 1

� C4+/C2+ ∧ Sjρ+λ when i = 4j + 2

� C4+/C2+ ∧ Sjρ+λ+1 when i = 4j + 3

Applying the homology theory H
⋆
C4

(−) on this �ltration gives an Atiyah-Hirzebruch spectral

sequence of H
⋆
C4
-modules converging to H

⋆
C4

(BC4
Σ2). This spectral sequence has nontrivial

di�erentials and extensions ([4]).

This is in contrast to the C2 case, where there are no di�erentials and all extensions are

trivial [28]. The reason for this discrepancy is as follows: A CW decomposition similar to the

one above for BC2
Σ2 has cells of the form SjρC2 , SjρC2

+σC2 which means that the resulting

E1 page is free as a module over the homology of a point. There are no di�erentials for purely

degree reasons so E1 = E∞; by freeness, all extensions are trivial. By comparison, the CW

decomposition of BC4
Σ2 uses induced cells C4+/C2+∧SV where V = jρ+λ, jρ+λ+1. This

means that the middle level of the E1 page features 2 dimensional vector spaces F22; since

that middle level computes H
⋆
C2

(BC2
Σ2), we must get only 1 dimensional vector spaces in

E∞ by the C2 computation. This means that there are nontrivial di�erentials in the middle

level, which transfer to give nontrivial di�erentials in the top level.

The di�erentials obtained by the above argument are all d1's (the middle level spectral

sequence collapses in E2 = E∞). We shall now discuss the existence of nontrivial d2's which

is much more subtle (see also [4]).
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2σ − 2 2σ − 1 2σ 2σ + 1 2σ + 2 2σ + 3

0

1

2

3

4

5

u2σ aσuσ a2σ

uσe
σ aσe

σ

a2σ
aλ

eλ

a2σ
aλ

eλ+1

0

x0,1e
ρ+σ

· · ·

...

Figure 3.1: The E1 page of the spectral sequence computing H
⋆
C4

(BC4
Σ2)

In �gure 3.1 the nontrivial d2 appears as a red arrow. The vertical axis is the �ltration

degree, while the horizontal axis is the total degree (dimension ⋆ in H
⋆
C4

(BC4
Σ2)). The

elements eσ, eλ, eλ+1, eρ+σ correspond to the 1, 2, 3, 5 dimensional cells respectively in the

C4-CW structure of BC4
Σ2.

As we can see from the �gure, the existence of the dashed d2 is equivalent to the vanishing

of H2σ+1
C4

(BC4
Σ2) which can be veri�ed using the computer program of chapter 2 (see also

subsection 3.5.2). There is a di�erent argument given in [4] that does not use computer

calculations.

The existence of di�erentials implies that the resulting E∞ page is not free, and indeed

there are many extension problems one needs to deal with. The work is too technical to

present here, so we refer the reader to [4] for details.
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3.5.2 A decomposition using trivial spheres

The cellular decomposition of BC4
Σ2 established in subsection 3.5.1, consists of one cell in

every dimension, whereby �cell" we mean a space of the form (C4/H)+∧SV forH a subgroup

of C4 and V a real non-virtual C4-representation; let us call this a �type I" decomposition.

It is also possible to obtain a decomposition using only �trivial spheres", namely with cells

of the form (C4/H)+ ∧ Sn; we shall refer to this as a �type II" decomposition. A type

I decomposition can be used to produce a type II decomposition by replacing each type

I cell (C4/H)+ ∧ SV with its type II decomposition. This is useful for computer-based

calculations, since type II decompositions lead to chain complexes as opposed to spectral

sequences (H∗((C4/H)+ ∧ SV ) is concentrated in a single degree if and only if V is trivial).

Equipped with a type II decomposition, the computer program of chapter 2 can calculate

the additive structure of H
⋆
C4

(BC4
Σ2) in a �nite range.

We note however that a minimal type I decomposition may expand to a non-minimal

type II decomposition; this is the case for BC4
Σ2, where the minimal type II decomposition

uses 2d + 3 cells in each dimension d ≥ 1, while the one obtained by expanding the type I

decomposition uses 3d + 3 cells in each dimension d ≥ 1. It is the minimal decomposition

that we have used as input for the computer program of chapter 2.

3.6 The C2n Borel equivariant dual Steenrod algebra

In this section let k = H F2 be the naive G = C2n spectrum with trivial action. We

compute the Borel dual Steenrod algebra (k∧k)hG⋆ as an RO(G)-graded Hopf algebroid over

the Borel homology of a point khG⋆ .
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3.6.1 The Borel homology of a point

Proposition 3.6.1. When n > 1,

khG⋆ = F2[aσ, aλ0 , u
±
σ , u

±
λ0
, ..., u±λn−2

]/a2σ

while for n = 1:

khC2
⋆ = F2[aσ, u±σ ]

Proof. The homotopy �xed point spectral sequence becomes:

H∗(G;F2)[u±σ , u±λ0 , ..., u
±
λn−2

] =⇒ khG⋆

We have H∗(G;F2) = k∗BG = F2[a]/a2 ⊗ F2[b] where |a| = 1 and |b| = 2. The spectral

sequence collapses with no extensions and we can identify a = aσu
−1
σ and b = aλ0u

−1
λ0

.

3.6.2 The Borel dual Steenrod algebra

We will implicitly be completing Borel dual Steenrod algebra

(k ∧ k)hG⋆

at the ideal generated by aσ for G = C2, and at the ideal generated by aλ0 for G = C2n ,

n > 1 (see [14] pg. 373 for more details in the case of G = C2).

Proposition 3.6.2 (Hu-Kriz). The C2-Borel dual Steenrod algebra is:

(k ∧ k)hC2
⋆ = khC2

⋆ [ξi]
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for |ξi| = 2i − 1 (ξ0 = 1). The generators ξi restrict to the Milnor generators in the

nonequivariant dual Steenrod algebra and

∆(ξi) =
∑

j+k=i

ξ2
k

j ⊗ ξk

ϵ(ξi) = 0 , i ≥ 1

ηR(aσ) = aσ

ηR(uσ)
−1 =

∞∑
i=0

a2
i−1
σ u−2i

σ ξi

Proposition 3.6.3. For G = C2n, n > 1,

(k ∧ k)hG⋆ = khG⋆ [ξi]

for |ξi| = 2i − 1 (ξ0 = 1). The generators ξi restrict to the C2n−1 generators ξi, with

∆(ξi) =
∑

j+k=i

ξ2
k

j ⊗ ξk

ϵ(ξi) = 0 , i ≥ 1

ηR(aσ) = aσ , ηR(aλ0) = aλ0

ηR(uσ) = uσ + aσξ1

ηR(uλm) = uλm , m > 0

ηR(uλ0)
−1 =

∑
i

a2
i−1

λ0
u−2i

λ0
ξ2i

Proof. The computation of (k ∧ k)hG∗ = (k ∧ k)∗(BG) follows from the computation of

khG∗ = k∗(BG) = F2[a]/a2 ⊗ F2[b] and the fact that nonequivariantly, k ∧ k is a free k-

module. To see that the homotopy �xed point spectral sequence for k∧k converges strongly,

let F iBG be the skeletal �ltration on the Lens space BG = S∞/C2n ; we can then compute
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directly that lim1
i (k ∧ k)∗(F iBG) = lim1

i F2[a]/a
2 ⊗ F2[b]/bi) = 0.

Thus we get (k∧k)hG⋆ = khG⋆ [ξi] and the diagonal∆ and augmentation ϵ are the same as in

the nonequivariant case. The Euler classes aσ, aλ0 are maps of spheres so they are preserved

under ηR. The action of ηR on uσ, uλ0 can be computed through the right coaction on

khG⋆ : The (completed) coaction of the nonequivariant dual Steenrod algebra on k∗(BG) =

F2[a]/a2 ⊗ F2[b] is

a 7→ a⊗ 1

b 7→
∑
i

b2
i
⊗ ξ2i

To verify the formula for the coaction on b we need to check that Sq1(b) = 0 (the alternative

is Sq1(b) = ab). From the long exact sequence associated to 0 → Z /2 → Z /4 → Z /2 → 0,

we can see that the vanishing of the Bockstein on b follows from H2(C2n ;Z /4) = Z /4

(n > 1).

After identifying a = aσu
−1
σ and b = aλ0u

−1
λ0

we get the formula for ηR(uλ0) and also

that

ηR(uσ) = uσ + ϵaσξ1

where ϵ is either 0 or 1. This is equivalent to

ηR(u
−1
σ ) = u−1

σ + ϵaσu
−2
σ ξ1

and to see that ϵ = 1 we use the map khC2 = kh(C2n/C2n−1) → khC2n that sends aσ, uσ to

aσ, uσ respectively. Finally, to compute ηR(uλm) for m > 0 note that

khC2n−m = khC2n/C2m → khC2n

sends aλ0 , uλ0 to aλm = 0, uλm respectively.
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3.6.3 Comparison with Greenlees's description

We now compare with the dual description given in [8].

In our notation, the G-spectrum b of [8] is b = kh = F (EG+, k) and bV (X) corresponds to

(kh)
|V |
G (X); to get (kh)VG(X) we need to multiply with the invertible element uV ∈ khG|V |−V

.

The Borel Steenrod algebra is b
⋆
G b = (kh)

⋆
G (kh) and the Borel dual Steenrod algebra is

bG⋆b = (kh)G⋆(kh) = (k ∧ k)hG⋆ .

Greenlees proves that the Borel Steenrod algebra is given by the Massey-Peterson twisted

tensor product ([19]) of the nonequivariant Steenrod algebra k∗k and the Borel cohomology

of a point (kh)
⋆
G = khG−⋆. The twisting has to do with the fact that the action of the Borel

Steenrod algebra on x ∈ (kh)
⋆
G (X) is given by:

(θ ⊗ a)(x) = θ(ax)

where θ ∈ k∗k and a ∈ khG⋆ . The product of elements θ⊗a and θ′⊗a′ in the Borel Steenrod

algebra is not θθ′ ⊗ aa′, since θ does not commute with cup-products, but rather satis�es

the Cartan formula:

θ(ab) =
∑
i

θ′i(a)θ
′′
i (b) , ∆θ =

∑
i

θ′i ⊗ θ′′i

Therefore:

(θ ⊗ a)(θ′ ⊗ a′)(x) = θ(aθ′(a′x)) =
∑
i

θ′i(a)(θ
′′
i θ

′)(a′x)

so

(θ ⊗ a)(θ′ ⊗ a′) =
∑
i

θ′i(a)(θ
′′
i θ

′ ⊗ a′) (3.2)

(we have ignored signs as we are working in characteristic 2).

So the Borel Steenrod algebra is k∗k⊗khG⋆ with twisted algebra structured de�ned by (3.2).

Moreover, Greenlees expresses the action of k∗k on (kh)
⋆
G (X) in terms of the action of k∗k

on the orientation classes uV and the usual (nonequivariant) action of k∗k on (kh)∗G(X) =
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k∗(X ∧G EG+). This is done through the Cartan formula: If x ∈ (kh)VG(X) then u−1
V x ∈

(kh)
|V |
G (X) and

θ(x) = θ(uV u
−1
V x) =

∑
i

θ′i(uV )θ
′′
i (u

−1
V x)

What remains to compute is θ′i(uV ), namely the action of k∗k on orientation classes.

In our case, for G = C2n , we can see that:

Proposition 3.6.4. The action of k∗k on orientation classes is determined by:

Sqi(uσ) =


uσ i = 0

aσ i = 1

0 otherwise

Sqi(uλm) =


uλm i = 0

aλ0 i = 2,m = 0

0 otherwise

Proof. Compare with the proof of Proposition 3.6.3.

The twisting in the case of the Borel dual Steenrod algebra corresponds to the fact that

(k ∧ k)hG⋆ is a Hopf algebroid and not a Hopf algebra; computationally this amounts to the

formula for ηR of Proposition 3.6.3.
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CHAPTER 4

RATIONAL EQUIVARIANT CHARACTERISTIC CLASSES

4.1 Introduction

This chapter partially covers the content of [6, 7]; the reader is referred to [6, 7] for more

details and complete proofs.

Characteristic classes are classical and invaluable tools for understanding and distinguish-

ing bundles over spaces. If we have a compact Lie group G acting on a space X, there is a

corresponding theory of G-equivariant bundles and G-equivariant characteristic classes.

May proves in [20] that when Borel cohomology is used, the theory of Borel equivariant

characteristic classes reduces to the nonequivariant one, in the sense that

H∗
G,Borel(BGL) = H∗(BG)⊗H∗(BL)

for any compact Lie group L (using �eld coe�cients).

Equivariant characteristic classes in RO(G)-graded equivariant cohomology are much less

understood, owing to the signi�cant complexity involved in computing it. A way to simplify

the algebra involved is to use coe�cients in the rational Burnside Green functor AQ. Indeed,

a result by Greenlees-May reduces the computation of the RO(G)-graded cohomology of a

space X in AQ coe�cients to nonequivariant rational cohomology of the �xed points XH

where H ranges over the subgroups of G ([9]). This allows us to compute explicit descriptions

of the Green functors H
⋆
G (BGU(n);AQ) , H

⋆
G (BGSO(n);AQ), H

⋆
G (BGSp(n);AQ) and so

on.

However, those explicit descriptions are rather ine�cient: For G = C2, the ring

H
⋆
G (BGU(n);AQ)
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according to the Greenlees-May decomposition, has n2+2n many algebra generators over the

homology of a point, which is just under double the minimal amount n2+2n
2 +1 of generators

that we can obtain (see the remarks after Proposition 4.4.2).

Our method for obtaining minimal generating characteristic classes rests on equivariant

generalizations of the following nonequivariant arguments: By a classical Theorem of Borel

([1]), if L is a connected compact Lie group, T ⊆ L a maximal torus and WLT = NLT/T is

the Weyl group then, at least rationally,

H∗(BL) = H∗(BT )WLT

Through this result, the characteristic classes in H∗(BL) can be computed from H∗(BS1),

as long as the Weyl group action is understood. For example, if we take L = U(n) then T =

(S1)n and WLT = Σn acts on H∗(BT ;Q) = Q[a1, ..., an] by permuting the generators ai.

The �xed points under this permutation action are minimally generated by the elementary

symmetric polynomials on the ai, which are by de�nition the Chern classes ci. In this way,

H∗(BU(n);Q) = Q[c1, ..., cn].

The same method can be performed equivariantly for G = C2 and coe�cients in AQ.

There is an extra degree of complexity owing to the fact that H
⋆
G (BGS

1;AQ) is not polyno-

mial on one generator over H
⋆
G (∗;AQ), but rather on two generators, one of which is idempo-

tent (see (4.1)). As such, in the L = U(n) example, the elementary symmetric polynomials ci

must be replaced by a family of more complicated polynomials α, ci, γs,j (Proposition 4.4.3).

Moreover, while this family of generators is minimal, it is not algebraically independent i.e.

there are relations within this family. It is true however that H
⋆
G (BGU(n);AQ) is a �nite

module over H
⋆
G (∗;AQ)[c1, ..., cn] where the ci are C2-equivariant re�nements of the classical

Chern classes.

We use this method to obtain explicit minimal descriptions of H
⋆
C2

(BC2
L;AQ) where

L = U(n), SO(n), Sp(n). We also examine the cases of L = O(n), SU(n) and of the non-
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compact Lie groups L = U, SO, Sp,O, SU . The resulting equivariant Chern, Pontryagin and

symplectic classes are compared using the complexi�cation, quaternionization and forgetful

maps between the aforementioned Lie groups. We also compute the e�ect of these character-

istic classes on the direct sum of bundles and on the tensor product of line bundles. Finally,

we give an explicit formula for the C2-equivariant Chern character that is an isomorphism

between rational C2-equivariant complex K-theory and C2-equivariant Bredon cohomology

in AQ coe�cients.

In this chapter we always use AQ coe�cients.

4.2 Organization

� Section 4.3 contains facts about rational Mackey functors and the description of H
⋆
C2
.

� Sections 4.4-4.8 contain a summary of all our results on C2 characteristic classes. See

[6] for more details and proofs.

� Section 4.9 attempts to generalize these results from group C2 to all groups C2n ,

n = 1, 2, .... See [7] for more details.

4.3 The RO(C2) homology of a point in AQ coe�cients

The rational C2-Burnside Green functor AQ has Lewis diagram:

AQ =

Q[x]
x2=2x

Q
x 7→2 17→x

=

Qx

Q
x 7→2 17→x ⊕

Q y

0

where x = Tr(1) and y = 1 − x/2. We shall use AQ with no underline to denote the top

level of AQ.
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The generating classes for HC2
⋆ are the Euler and orientation classes. The Euler class aσ

generates a Mackey functor that we denote by M1:

M1{aσ} =

Q aσ

0

The orientation class uσ generates a Mackey functor that we denote by M−
0 :

M−
0 {uσ} =

0

Quσ C2

The orientation class u2σ generates Mackey functor that we denote by M0:

M0{u2σ} =

Qu2σ

Qu2σ

1 2

The fact that Res(u2σ) = u2σ follows from the fact M−
0 ⊠AQ M−

0 = M0 and by the Kunneth

formula for S2σ = Sσ ∧ Sσ. Note that aσu2σ = 0 since M1 ⊠AQ M0 = 0.

We also have classes y/aσ, u
−1
σ and x/u2σ spanning M1,M

−
0 and M0 respectively. In

summary:
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Proposition 4.3.1. The C2 equivariant rational stable stems are:

HC2
k+nσ =



M0 if k = −n : even and ̸= 0

M−
0 if k = −n : odd

M1 if k = 0 , n ̸= 0

AQ if k = n = 0

0 otherwise

and:

� u
j
2σ, x/u

j
2σ generate a copy M0 for each j = 1, 2, ....

� u
2j+1
σ generate a copy M−

0 for each j ∈ Z.

� a
j
σ, y/a

j
σ generate a copy of M1 for each j = 1, 2, ....

� 1 generates AQ.

4.4 Rational C2 Chern classes

As explained in section 1.2, it su�ces to compute H
⋆
G (X) over integer grading ⋆ = ∗.

We view H∗
G(BGU(n)) as an augmented algebra over H∗(BU(n)) with the augmentation

being restriction.

Proposition 4.4.1. The augmentation

Res : H∗
G(BGU(n)) → H∗(BU(n))

is a split surjection, so the nonequivariant Chern classes have C2 equivariant re�nements.

We �x a section of the augmentation, i.e. equivariant re�nements c1, ..., cn of the Chern

classes, according to Proposition 4.4.4.
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Proposition 4.4.2. There exist elements α ∈ H0
G(BGU(n)) and γs,j ∈ H2s

G (BGU(n)) for

1 ≤ s < n and 1 ≤ j ≤ n − s, generating H∗
G(BGU(n)) as an augmented algebra over

H∗(BU(n))⊗ AQ:

H∗
G(BGU(n)) =

(H∗(BU(n))⊗ AQ)[α, γs,j ]

Res(α),Res(γs,j), S

where the �nite set of relations S ⊆ Q[α, ci, γs,j ] is described in [6]

The ci are algebraically independent and H∗
G(BGU(n)) is a �nitely generated module over

Q[c1, ..., cn].

The generating family {α, ci, γs,j} has cardinality n2+2n
2 +1 and is a minimal generating set

of H∗
G(BGU(n)) as an AQ algebra, in the sense that any other generating set has at least

n2+2n
2 + 1 many elements.

Substituting H∗(BU(n)) = Q[c1, ..., cn] in the formula for H∗
G(BGU(n)) gives:

Proposition 4.4.3. As an algebra over AQ,

H∗
G(BGU(n)) =

AQ[α, ci, γs,j ]

xα, xγs,j , S

Two observations:

� The relations xα = 0, xγs,j = 0 are equivalent to α, γs,j having trivial restrictions (i.e.

augmentations) respectively. This completes the description of the Mackey functor

structure of H∗
G(BGU(n)).

� The n2+2n
2 + 1 many generators of the generating set {α, ci, γs,j} are just over half

of the n2 + 2n many generators given by the idempotent decomposition ([9]) of the

Mackey functor H∗
G(BGU(n)).

For n = 1 the computation takes a simpler form:

H∗
G(BGU(1)) = AQ[α, c1]/(α

2 = α, xα) (4.1)

52



To simplify the notation in the next Proposition, we set u = c1 ∈ H2
G(BGU(1)).

Proposition 4.4.4. The maximal torus inclusion U(1)n ↪→ U(n) induces an isomorphism

H∗
G(BGU(n)) = (H∗

G(BGU(1))⊗n)Σn

Explicitly:

AQ[α, ci, γs,j ]/(xα, xγs,j , S) = (AQ[αi, ui]/(α
2
i = αi, xαi))

Σn

under the identi�cations:

α = σ1(α1, ..., αn) =
∑

1≤m≤n

αm

ci = σi(u1, ..., un) =
∑

m∗∈Ki

um1 · · ·umi

γs,j =
∑

(m∗,l∗)∈Ks,j

um1 · · ·umsαl1 · · ·αlj

where Ki consists of all partitions 1 ≤ m1 < · · · < mi ≤ n and Ks,j ⊆ Ks×Kj consists of all

pairs of disjoint partitions. The polynomial σi is the i-th elementary symmetric polynomial.

The family of generators α, ci, γs,j is determined upon choosing α, u = c1 in the vector

spaces H0
G(BGU(1)), H2

G(BGU(1)) respectively, with:

H∗
G(BGU(1)) = AQ[α, u]/(α

2 = α, xα)

The choice of u is unique under the additional requirement that its restriction is the nonequiv-

ariant Chern class c1 (in this way, the equivariant ci are all canonically determined). There

are two equally good candidates for α however: α and y−α. They can only be distinguished

upon �xing a model for BGU(1). As such, there is no canonical choice of α ∈ H0
G(BGU(1)).
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Proposition 4.4.5. The map BGU(n) → BGU(n + 1) given by direct sum with a trivial

complex representation induces on cohomology:

α 7→ y + α

ci 7→ ci

γs,j 7→ γs,j + γs,j−1

using the convention γs,0 = ycs.

The map BGU(n) → BGU(n + 1) given by direct sum with a σ representation induces on

cohomology:

α 7→ α

ci 7→ ci

γs,j 7→ γs,j

For both maps we use the conventions that cn+1 = 0 and γs,n+1−s = 0.

Proposition 4.4.6. The direct sum of bundles map BGU(n) × BGU(m) → BGU(n + m)

induces on cohomology:

α 7→ α⊗ 1 + 1⊗ α

ci 7→
∑

j+k=i

cj ⊗ ck

γs,j 7→
∑

s′ + s′′ = s , j′ + j′′ = j

γs′,j′ ⊗ γs′′,j′′

using the conventions c0 = 1, γs,0 = ycs, γ0,j = (j!)−1α(α− 1) · · · (α− j + 1) in every RHS.

Proposition 4.4.7. The tensor product of line bundles map BGU(1)×BGU(1) → BGU(1)
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induces on cohomology:

α 7→ y − α⊗ 1− 1⊗ α + 2α⊗ α

c1 7→ c1 ⊗ 1 + 1⊗ c1

The C2-equivariant Chern character is induced by the Hurewicz map:

KUC2
→ KUC2

∧HAQ

Let v be the Bott element in πC2
2 (KUC2

).

Proposition 4.4.8. Under the equivalence KUC2
∧HAQ = HAQ[v

±] the Chern character

KUC2
(X)⊗Q →

∏
n

H2n
C2

(X;AQ)

is the isomorphism determined on line bundles by:

L 7→ x

2
ec1(L) + (2α(L)− y)ec1(L)

4.5 Rational C2 symplectic classes

The theory of C2 symplectic characteristic classes is entirely analogous to Chern classes,

by replacing BGU(n) with BGSp(n) and the generators ci, γs,j with generators ki, κs,j of

double degree. Propositions 4.4.1-4.4.3 become:

Proposition 4.5.1. There exist classes α, ki, κs,j ∈ H∗
G(BGSp(n)) of degrees 0, 4i, 4s re-

spectively, where 1 ≤ i, s ≤ n and 1 ≤ j ≤ n− s, such that

H∗
G(BGSp(n)) =

AQ[α, ki, κs,j ]

xα, xκs,j , S
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where the relation set S is the same as that for H∗
G(BGU(n)) with ci, γs,i replaced by ki, κs,i.

The generators ki restrict to the nonequivariant symplectic classes ki, so the restriction

map H∗
G(BGSp(n)) → H∗(BSp(n)) is a split surjection.

The maximal torus inclusion U(1)n ↪→ Sp(n) induces an isomorphism

H∗
G(BGSp(n)) = (H∗

G(BGU(1))⊗n)C2≀Σn

Explicitly:

AQ[α, ki, κs,j ]/(xα, xκs,j , S) = (AQ[αi, ui]/(xαi))
C2≀Σn

under the identi�cations:

α =
∑

1≤m≤n

αm

ki =
∑

m∗∈Ki

u2m1
· · ·u2mi

κs,j =
∑

(m∗,l∗)∈Ks,j

u2m1
· · ·u2ms

αl1 · · ·αlj

where Ki and Ks,j are as in Proposition 4.4.4.

Propositions 4.4.5-4.4.7 have analogous statements in the symplectic case, replacing

BGU(n) by BGSp(n) and ci, γs,j with ki, κs,j respectively.
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Proposition 4.5.2. The forgetful map BGSp(n) → BGU(2n) induces on cohomology:

α 7→ α

c2i+1, γ2s+1,j 7→ 0

c2i 7→ (−1)iki

γ2s,j 7→ (−1)sκs,j

The quaternionization map BGU(n) → BGSp(n) induces:

α 7→ α

ki 7→
∑

a+b=2i

(−1)a+icacb

The e�ect of quaternionization on the κs,j is explained [6].

4.6 Rational C2 Pontryagin and Euler classes

The results are analogous to the symplectic classes, but we need to distinguish between

BGSO(2n) and BGSO(2n + 1). The following Proposition contains the shared aspects of

both cases:

Proposition 4.6.1. The restriction map H∗
G(BGSO(n)) → H∗(BSO(n)) is a split surjec-

tion. The maximal torus inclusion T ↪→ SO(n) induces an isomorphism

H∗
G(BGSO(n)) = (H∗

G(BGT ))
W

where W is the corresponding Weyl group.

This gives us C2 equivariant re�nements pi, χ of the Pontryagin and Euler classes respec-

tively. Recall that for BSO(2n) the characteristic classes are p1, ...,pn−1, χ (and pn = χ2)
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while for BSO(2n+ 1) they are p1, ..., pn.

Proposition 4.6.2. There exist classes α, πs,j ∈ H∗
G(BGSO(2n)) of degrees 0, 4s respec-

tively for 1 ≤ s < n and 1 ≤ j ≤ n− s, such that

H∗
G(BGSO(2n)) =

AQ[α, pi, πs,j , χ]

xα, xπs,j , S

where the relation set S is the same as that for H∗
G(BGU(n)) with ci, γs,i replaced by pi, πs,i

and using that pn = χ2.

Under the maximal torus isomorphism:

α =
∑

1≤m≤n

αm

pi =
∑

m∗∈Ki

u2m1
· · ·u2mi

πs,j =
∑

(m∗,l∗)∈Ks,j

u2m1
· · ·u2ms

αl1 · · ·αlj

χ = u1 · · ·un

where Ki and Ks,j are as in Proposition 4.4.4.

Proposition 4.6.3. The map BGSO(2n) → BGSO(2n + 1) induces an injection in coho-

mology and:

H∗
G(BGSO(2n+ 1)) =

AQ[α, pi, πs,j ]

xα, xπs,j , S

where i = 1, ..., n.

Propositions 4.4.5-4.4.7 have analogous statements in this context. The action on the

Euler class χ is the same as in the nonequivariant case; for example, under BGSO(n) ×
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BGSO(m) → BGSO(n+m) we get:

χ 7→ χ⊗ χ

Proposition 4.6.4. The complexi�cation map BGSO(2n) → BGU(2n) induces on coho-

mology:

α 7→ α

c2i+1, γ2s+1,j 7→ 0

c2i 7→ (−1)ipi

γ2s,j 7→ (−1)sπs,j

The forgetful map BGU(n) → BGSO(2n) induces on cohomology:

α 7→ α

pi 7→
∑

a+b=2i

(−1)a+icacb

χ 7→ cn

and the action on πs,j is explained in [6].

4.7 Stable characteristic classes

In the C2-equivariant case, there are di�erent notions of stability for complex bundles,

represented by the following spaces:

� B+
GU = colimit(BGU(1)

⊕1−−→ BGU(2)
⊕1−−→ · · · ). This is the usual equivariant classify-

ing space BGU = EGU/U and is a G-equivariant Hopf space using the direct sum of

bundles maps BGU(n)×BGU(m) → BGU(n+m).
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� B−
GU = colimit(BGU(1)

⊕σ−−→ BGU(2)
⊕σ−−→ · · · ). This is equivalent to B+

GU .

� B±
GU = colimit(B+

GU
⊕σ−−→ B+

GU
⊕σ−−→ · · · ) = colimit(B−

GU
⊕1−−→ B−

GU
⊕1−−→ · · · ). This

becomes a G-equivariant Hopf space using the direct sum of bundles, and is the group

completion of B+
GU (and B−

GU). Moreover, B±
GU ×Z represents equivariant K-theory.

Computing H∗
G(B

−
GU) in terms of the generators α, ci, γs,j is more complicated compared to

the nonequivariant case because for �xed degree ∗, the Q-dimension of H∗
G(BGU(n)) does

not stabilize as n → +∞ and as a result, H∗
G(B

−
GU) is in�nite dimensional (dimension is

2ℵ0). In degree ∗ = 0, H0
G(B

−
GU) is linearly spanned over AQ by series of the form

a−1 +
∑
i≥0

aiα(α− 1) · · · (α− i)

Generally, the graded algebra H∗
G(B

−
GU) is generated over H0

G(B
−
GU)[c1, c2, ...] by series of

the form
∞∑
j=1

ajγs,j ∈ H2s
G (B−

GU)

for aj ∈ Q and s = 1, 2, .... See [6] for more details.

For the ring H∗
G(B

±
GU) we also have to compute the e�ect of the ⊕1 map on the series

in H∗
G(B

−
GU). If we restrict our attention to �nite series, we are in essence dealing with

characteristic classes that are stable under addition of both the ⊕1 and ⊕σ representations.

Since the ⊕1 map takes the form γs,j 7→ γs,j + γs,j−1 (and γs,0 = ycs, γ0,1 = α) we can

immediately see that for i ≥ 1, the elements

ci , γi := ciα− γi,1

are stable under both ⊕1 and ⊕σ. We conjecture that all classes with this property are poly-

nomially generated by ci, γi; this is equivalent to the elements γ1, γ2, ... being algebraically

independent over Q[c1, c2, ...].
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In any case, the elements ci, γi span sub-Hopf-algebras of H
∗
G(B

−
GU) and H∗

G(B
±
GU) with

γs 7→
∑

i+j=s

(ci ⊗ γj + γi ⊗ cj)

using the conventions c0 = 1 and γ0 = 0.

The spaces B+
GU,B−

GU,B±
GU are equivariant Hopf spaces, hence their equivariant homol-

ogy is a Green functor dual to their equivariant cohomology. This homology can be expressed

in terms of the classes ai, bi, d ∈ HG
∗ (BGU(1)) dual to αci1, c

i
1, x/2+α ∈ H∗

G(BGU(1)) respec-

tively, where i ≥ 1. Note that the γi1 ∈ H∗
G(BGU(2)) map to αci1 under H∗

G(BGU(2))
⊕1−−→

H∗
G(BGU(1)) so the ai can be thought of as duals to the γi1.

Proposition 4.7.1. We have:

HG
∗ (B−

GU) =
AQ[d, ai, bi]

xai, xd = x

HG
∗ (B±

GU) =
AQ[d

±, ai, bi]

xai, xd = x

and for the coalgebra structure:

d 7→ d⊗ d

ai 7→
∑

j+k=i

aj ⊗ ak

bi 7→
∑

j+k=i

(bj ⊗ bk − bj ⊗ ak − bk ⊗ aj + 2aj ⊗ ak)

using the conventions a0 = d− x/2 and b0 = 1.

The case of stable symplectic classes is entirely analogous: We can distinguish between

B+
GSp,B−

GSp and B±
GSp and we have classes ki, κi = kiα − κi,1 that are stable under both

⊕1,⊕σ maps. Moreover,
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Proposition 4.7.2. The forgetful map Sp → U induces

c2s+1, γ2s+1 7→ 0

c2s 7→ (−1)sks

γ2s 7→ (−1)sκs

while quaternionization U → Sp induces

ki 7→
∑

a+b=2i

(−1)a+icacb

κi 7→
∑

a+b=2i

(−1)a+icaγb

The dual homology result can be expressed in terms of the classes

a
sp
i , b

sp
i , d ∈ HG

∗ (BGSp(1))

dual to αki1, k
i
1, x/2 + α ∈ H∗

G(BGSp(1)) respectively, for i ≥ 1 (the a
sp
i are dual to κi1).

The analogue of Proposition 4.7.1 holds, and:

Proposition 4.7.3. The forgetful map Sp → U induces

d 7→ d

a
sp
i 7→

∑
2i=j+k

(−1)kajak

b
sp
i 7→

∑
2i=j+k

(−1)k(bjbk − ajbk − akbj + 2ajak)
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while quaternionization U → Sp induces

d 7→ d

a2i+1 7→ 0 , a2i 7→ a
sp
i

b2i+1 7→ 0 , b2i 7→ b
sp
i

The case of stable Pontryagin classes is entirely analogous, replacing Sp by SO (the

forgetful map Sp → U is replaced by complexi�cation SO → U and the quaternionization

map U → Sp is replaced by the forgetful map U → SO). In brief, setting πi = piα − πi,1

gives the analogue of 4.7.2. Moreover, we have classes asoi , bsoi , d ∈ HG
∗ (BGSO(2)) dual to

αpi1, p
i
1, x/2 + α ∈ H∗

G(BGSO(2)) respectively, for i ≥ 1, and the analogues of Propositions

4.7.1 and 4.7.3 also hold.

4.8 The cases of orthogonal and special unitary groups

4.8.1 Orthogonal groups

Unlike their nonequivariant counterparts, the C2-equivariant classifying spaces of the

orthogonal groups O(n) do not generally satisfy the maximal torus isomorphism, namely

the map H∗
G(BGO(n)) → H∗

G(BGT )
W is not generally an isomorphism, where T is the

maximal torus in O(n) and W the Weyl group. Moreover, H∗
G(BGO(2n)) is not isomorphic

to H∗
G(BGO(2n+ 1)), but rather, the inclusion-induced map

H∗
G(BGO(2n+ 1)) → H∗

G(BGO(2n))

is always a surjection with nontrivial kernel. The spaces BGO(2n + 1) can be put into our

framework using the splitting O(2n+ 1) = SO(2n+ 1)×O(1):
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Proposition 4.8.1. There is a generator β ∈ H0
G(BGO(1)) such that

H∗
G(BGO(2n+ 1)) =

AQ[α, β, pi, πs,j ]

xα, xβ, xπs,j , S

The H∗
G(BGO(2n)) can then be understood as quotients of H∗

G(BGO(2n+ 1)) (see [6]).

The stable case similarly reduces to BGSO by use of the fact that BGO = BGSO×BGO(1).

4.8.2 Special unitary groups

For SU(n) we have the maximal torus isomorphism equivariantly:

Proposition 4.8.2. The maximal torus inclusion U(1)n−1 → SU(n) induces an isomor-

phism

H∗
G(BGSU(n)) → H∗

G(BGU(1)n−1)Σn

We prove that for any n, the inclusion induced map

H∗
G(BGU(n)) → H∗

G(BGSU(n))

is a surjection, and c1 = γ1,n−1 = 0 in H∗
G(SU(n)). There are more relations however; for

example, if n = 2 there is an additional relation α2 = 2α since SU(2) = Sp(1).

In the stable case, we can distinguish between B+
GSU,B−

GSU and B±
GSU and we have

c1 = γ1 = 0.

4.9 C2n-equivariant rational characteristic classes

In this section, we attempt to generalize the work summarized in sections 4.4-4.8 from

G = C2 to all groups G = C2n , n ≥ 1. There are three fundamental components that must

be generalized:
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� The computation of the G-equivariant rational stable stems:

HG
⋆

� The G-equivariant maximal torus isomorphism:

H
⋆
G (BGL) = H

⋆
G (BGT )

W

where T is a maximal torus of a compact connected Lie group L and W the associated

Weyl group.

� The computation of minimal generating sets for R = H∗
G(BGT ) and RW .

It turns out that ([7]):

� HG
⋆ is generated by Euler and orientation classes (see [7] for the explicit description).

� The maximal torus isomorphism is true for G = C2n , L = U(m) and any n,m ≥ 1,

namely:

H
⋆
G (BGU(m)) = (⊗mH

⋆
G (BGU(1)))Σm

However, it is not true for G = C2n , L = SU(2) = Sp(1) and n > 1, namely the map:

H
⋆
G (BGSp(1)) → H

⋆
G (BGS

1)Σ2

is not an isomorphism.

Let us restrict to the case G = C2n and L = U(m), m ≥ 1. The issue now lies is in

computing a minimal generating set for the ring of symmetric polynomials with relations

RΣn , which is more complicated than in the case G = C2. The fundamental building block

is:
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Proposition 4.9.1. As a Green functor algebra over the homology of a point:

H
⋆
G (BGS

1) =
H

⋆
G [u, αm,j ]1≤m≤n,1≤j<2m

αm,jαm′,j′ = δmm′δjj′αm,j , Res2
n

2m−1(αm,j) = 0

for |u| = 2 and |αm,j | = 0.

Proof. See [7].

The α classes actually come from BGΣ2:

Proposition 4.9.2. We have an isomorphism of Green functor algebras over H
⋆
G :

H
⋆
G (BGΣ2) =

H
⋆
G (BGS

1)

u

where the quotient map H
⋆
G (BGS

1) → H
⋆
G (BGΣ2) is induced by complexi�cation: BGΣ2 =

BGO(1) → BGU(1) = BGS
1.

The set of generators {u, αm,j} for H∗
G(BGS

1) is not minimal. Indeed, whenever we have

generators e1, ..., es with eiej = δijei, we can replace them by a single generator de�ned by

e = e1 + 2e2 + · · ·+ ses:

Q[e1, ..., es]

eiej = δijei
=

Q[e]

e(e− 1) · · · (e− s)

This isomorphism follows from the fact that any polynomial f on e1, ..., en satis�es:

f(e) = f(0) + (f(1)− f(0))e1 + · · ·+ (f(s)− f(0))es

and thus

ei =
fi(e)

fi(i)
where fi(x) =

x(x− 1) · · · (x− s)

x− i
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In this way, H∗
G(BGS

1) is generated as an AQ algebra by two elements u, α but now with

α satisfying some rather complicated relations. If n = 1 i.e. G = C2, we only have one αm,j

element, namely α = α1,1, and it satis�es: α2 = α.

For G = C2, the description

H∗
G(BGS

1) = AQ[u, α]/(xα = 0, α2 = α)

is simple enough to allow an explicit computation of a minimal presentation of H∗
G(BGU(m))

through the maximal torus isomorphism. Due to the greater algebraic complexity of the

fundamental building block H∗
G(BGS

1) for G = C2n and n ≥ 2, we do not attempt to

generalize the rest of sections 4.4-4.8 to cyclic 2-groups beyond C2.
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