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ABSTRACT

This thesis treats several topics in ramification theory. LetK be a complete discrete valuation

field whose residue field is perfect and of positive characteristic.

The first topic treated is ramification of étale cohomology. More precisely, let X be a

connected, proper scheme over OK , and U be the complement in X of a divisor with simple

normal crossings. Assume that the pair (X,U) is strictly semi-stable over OK of relative

dimension one and K is of equal characteristic. We prove that, for any smooth `-adic sheaf

G on U of rank one, at most tamely ramified on the generic fiber, if the ramification of G

is bounded by t+ for the logarithmic upper ramification groups of Abbes-Saito at points of

codimension one of X, then the ramification of the étale cohomology groups with compact

support of G is bounded by t+ in the same sense.

The second topic treated is ramification in transcendental extensions of local fields. Let

L/K be a separable extension of complete discrete valuation fields. The residue field of L

is not assumed to be perfect. We prove a formula for the Swan conductor of the image of a

character χ ∈ H1(K,Q/Z) in H1(L,Q/Z) for χ sufficiently ramified.

Finally, we treat generalized Hasse-Herbrand ψ-functions. We define generalizations

ψab
L/K

and ψAS
L/K

of the classical Hasse-Herbrand ψ-function and study their properties.

In particular, we prove a formula for ψab
L/K

(t) for sufficiently large t ∈ R.

vi



CHAPTER 1

INTRODUCTION

Ramification theory flourished as an area of number theory in the 19th century, when Hilbert

first introduced the concept of higher ramification groups. Subsequent developments were

achieved by several authors, such as Hasse and Herbrand, who defined the classical ψ-

function, and Artin, who defined the conductor of a character of the Galois group of a

local or global field. The classical theory is strongly related to the study of local fields,

nomenclature here used to describe complete discrete valuation fields with perfect residue

fields. Modern ramification theory seeks to generalize the classical theory in settings that

often involve the study of complete discrete valuation fields with imperfect residue fields.

Examples are Kato’s Swan conductor of an abelian character of the Galois group G(L/K),

where L/K is a finite extension of complete discrete valuation fields with imperfect residue

fields ([8]), Abbes and Saito’s upper filtrations of this Galois group ([1, 2, 23]), and Kedlaya’s

([13, 14]) and Xiao’s ([26, 27]) works on ramification for p-adic differential modules.

From classical ramification theory, if L/K is a finite Galois extension of local fields and

G = G(L/K) is the Galois group, we know that there are lower and upper ramification

filtrations Gt and Gt of G, where t ∈ [0,∞), related to each other by the Hasse-Herbrand

ψ-function:

Gt = GψL/K(t).

This function is a continuous, piecewise linear, increasing and convex function on [0,∞).

In parallel, there is the notion of ramification of characters: one can measure the ramifi-

cation of a character χ of G by its Swan conductor Swχ. This invariant plays an important

role in the Grothendieck–Ogg–Shafarevich formula, which allows us to compute the Euler-

Poincaré characteristic of an `-adic sheaf on a curve under certain assumptions.

Modern advances include Kato’s definition of the Swan conductor and refined Swan

conductor of an abelian character of G when the residue field of K is no longer assumed to
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be perfect ([8]), as well as the notion of Swan divisor ([9]). In the 2000’s, Abbes and Saito

used rigid geometry to construct a generalization of the upper ramification filtration of G

without assuming that the residue field of K is perfect ([1, 2, 23]). The connection between

Kato’s invariants and the filtration of Abbes and Saito has been established in characteristic

p > 0 ([3]), but remains open in mixed characteristic.

In this work, we explore these modern concepts to provide further advances to rami-

fication theory. In chapter 2, we investigate the ramification of étale cohomology groups.

Roughly, we use a conductor formula established by Kato and Saito in [11] and a twisting

argument to obtain the following result, which will be stated with more precision later. Let

K be local field of positive characteristic, and X a family of curves over OK . Let U be the

complement in X of a divisor with simple normal crossings. Under some hypotheses, if the

ramification of a smooth `-adic sheaf G on U of rank one is bounded by t+ in the sense of

Abbes and Saito, then the ramification of the étale cohomology groups with compact support

of G is also bounded by t+.

In chapter 3, we investigate ramification in transcendental extensions of local fields. More

precisely, we consider a separable extension L/K of complete discrete valuation fields, where

the residue field of K is perfect and of positive characteristic, but the residue field of L

may be imperfect. Then we prove a formula for the Swan conductor of the image of a

character χ ∈ H1(K,Q/Z) in H1(L,Q/Z) for χ sufficiently ramified. This formula has an

interpretation in terms of generalized Hasse-Herbrand ψ-functions, which are defined and

studied in chapter 4. In this chapter, we consider such (possibly transcendental) extension

L/K and define generalizations ψab
L/K

and ψAS
L/K

of the classical Hasse-Herbrand ψ-function.

Further, we obtain a formula for ψab
L/K

(t) for sufficiently large t ∈ R.

Part of this work has been published by the author in [17, 18].
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1.1 A taste of classical ramification theory

In this section, we give a very brief overview of classical ramification theory, which we hope

will provide the reader with feelings and intuitions that will help grasp the ideas behind our

non-classical definitions and results. For a more complete exposition, we refer to [25].

Let L/K be a finite Galois extension of local fields, i.e., complete discrete valuation fields

with perfect residue fields. Let G be the Galois group of L/K and x be an OK -generator of

OL. We can define, for i ∈ R≥0, the lower ramification subgroup

Gi = {σ ∈ G : vL(σx− x) ≥ i+ 1} .

We remark that the subgroup G0 is the inertia subgroup of G. Lower ramification groups

behave well under taking subgroups. More precisely, let H be a subgroup of G and recall

that, by Galois theory, H is the Galois group of the extension L/LH . We have, for every

i ∈ R≥0,

Hi = Gi ∩H.

These lower ramification groups are used to define the classical Hasse-Herbrand ψ-

function. More precisely, one first defines

ϕL/K(t) :=

∫ t

0

ds

(G0 : Gs)
.

This function ϕ : [0,∞) → [0,∞) is continuous, piecewise linear, increasing and concave.

The Hasse-Herbrand function ψL/K : [0,∞)→ [0,∞) is then defined to be ψL/K := ϕ−1
L/K

.

We make a few remarks about ψL/K . First, it satisfies a transitivity formula. More

precisely, for Galois extensions L/F/K, we have ψL/K = ψL/F ◦ ψF/K . Second, when the

extension L/K is tamely ramified, the Hasse-Herbrand function takes a very simple form:

ψL/K(t) = e(L/K)t.
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We can now introduce the upper ramification groups. For i ∈ R≥0, one defines

Gi := GψL/K(i).

One of the most fundamental properties of this upper ramification filtration is that it is

compatible with quotients. More precisely, let H be a normal subgroup of G. Then G/H is

the Galois group of the extension LH/K, and we have

(G/H)i = GiH/H.

Because of this property, we have an induced filtration on the absolute Galois group of K:

GiK = lim←−
L/K

G(L/K)i.

This upper ramification groups may be used to introduce the notion of ramification of a

character. More precisely, for an abelian character χ ∈ H1(K,Q/Z) = Homcont(G
ab
K ,Q/Z),

we can define a Swan conductor as follows. If χ(G0
K) 6= 0, put

Swχ = max
{
n ∈ Z≥0 : χ(GnK) 6= 0

}
,

and, if χ(G0
K) = 0 put Swχ = 0. The Swan conductor measures the wild ramification of χ;

when χ is unramified or tamely ramified, the Swan conductor is zero.

Remark 1.1.1. Our choice of domain for ψL/K is not usual. In most of the literature, ψL/K

is defined on [−1,∞).

1.2 Background

In this section we go over some concepts that will be necessary through the rest of this work.
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1.2.1 Higher dimensional local fields

In this section we give a quick overview of q-dimensional local fields (for more on this subject,

see [29, 20]). Subsequently, we shall use q-dimensional local fields to construct some residue

maps.

Let K be a complete discrete valuation field with valuation vK and residue field k. The

field K{{T}} is defined as the set

K{{T}} =
∞∑

i=−∞
aiT

i : ai ∈ K, inf vK(ai) > −∞, and vK(ai)→∞ as i→ −∞


with addition and multiplication as follows:

∞∑
i=−∞

aiT
i +

∞∑
i=−∞

biT
i =

∞∑
i=−∞

(ai + bi)T
i

and
∞∑

i=−∞
aiT

i
∞∑

i=−∞
biT

i =
∞∑

i=−∞

∞∑
j=−∞

ajbi−jT
i.

We can define a discrete valuation on K{{T}} by setting

vK{{T}}

 ∞∑
i=−∞

aiT
i

 = min vK(ai).

Endowed with this valuation, K{{T}} becomes a complete discrete valuation field with

residue field k((T )).

When K is a local field, the field

K{{T1}} · · · {{Tm}}((Tm+1)) · · · ((Tq−1)),
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where 1 ≤ m ≤ q − 1, is a q-dimensional local field. Fields of this form are called standard

q-dimensional local fields.

1.2.2 The Abbes-Saito upper ramification

For a complete discrete valuation field K, with possibly imperfect residue field, A. Abbes

and T. Saito constructed (logarithmic) upper ramification groups (GtK,log)t∈Q>0
⊂ GK .

When the residue field of K is perfect, (GtK,log)t∈Q>0
coincides with the classical upper

ramification. Furthermore, (GtK, log)t∈Q>0
is stable under tame base change; more precisely,

if L is a finite separable extension of K of ramification index e that is tamely ramified, we

have GetL, log = GtK, log. In general, for a finite separable extension L/K of ramification index

e, not necessarily tamely ramified, we have GetL, log ⊂ GtK, log. For a real number s ≥ 0, the

authors also defined

Gs+K, log =
⋃

t∈Q,t>s
GtK, log.

These groups satisfy the following property:

Lemma 1.2.1 ([2], Lemma 5.2). Let K be a complete discrete valuation field with residue

field k of characteristic p. Assume that there is a map of complete discrete valuation fields

K → L inducing a local homomorphism OK → OL, that the ramification index is prime to

p, and that the induced extension of residue fields is separable. Then, for t ∈ Q>0, the map

GL → GK induces a surjection GetL, log → GtK, log.

As a consequence, we also have surjections Get+L, log → Gt+K, log.

1.2.3 Ramification of characters

In this subsection, assume that the residue field k of K has characteristic p > 0 and is not

necessarily perfect.

We recall the definition of the k-vector space Ωk(log). There exists a canonical map

d log : K× → Ωk, and Ωk(log) is the amalgamate sum of the differential module Ωk with
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k⊗ZK
× over k⊗ZO×K with respect to d log : O×K → Ωk and O×K ↪→ K×. There is a residue

map Res : Ωk(log)→ k induced by the valuation map of K and an exact sequence

0 Ωk Ωk(log) k 0.Res

In [8], Kato constructs an increasing filtration (FrH
1(K,Q/Z))r∈N and defines, putting

GrrH
1(K,Q/Z) = FrH

1(K,Q/Z)/Fr−1H
1(K,Q/Z) for r ≥ 1, an injection

rswr,K : GrrH
1(K,Q/Z)→ Homk(mrK/m

r+1
K ,Ωk(log)),

where mK denotes the maximal ideal of OK . For χ ∈ FrH1(K,Q/Z)\Fr−1H
1(K,Q/Z), the

injection

rswr,K(χ) : mrK/m
r+1
K → Ωk(log)

is denoted by rswK(χ) and called the refined Swan conductor of χ.

In [3], Corollary 9.12, Abbes and Saito relate Kato’s construction to the upper ramifica-

tion groups defined in [1]. More specifically, they prove that, when K is of equal character-

istic, χ ∈ FrH1(K,Q/Z) if and only if χ kills Gr+K, log.

Remark 1.2.2. The comparison between Kato’s filtration and the Abbes-Saito logarithmic

upper ramification groups remains open in the mixed characteristic case, but is expected by

experts.

Consider now the following case. Let S = SpecOK and X be a regular flat separated

scheme over S. Let D =
n⋃
i=1

Di be a divisor with simple normal crossings, where Di denotes

the irreducible components of D. For each i let ξi be a generic point for Di, OMi
= OhX, ξi

the henselization of the local ring at ξi, Mi its field of fractions, and ki the residue field of

Mi. Let U = X − D and χ ∈ H1(U,Q/Z). For each i, denote by χi ∈ H1(Mi,Q/Z) the

restriction of χ, and by ri the Swan conductor SwMi
χi. Define the Swan divisor

Dχ =
∑
i

riDi
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and let

E =
∑
ri>0

Di

be the support of Dχ. It’s shown by [8, (7.3)], that there exists an injection

rswχ : OX(−Dχ)⊗OX OE → Ω1
X/S(logD)⊗OX OE

inducing rswMi
(χi) at ξi. We say that χ is clean if rswχ is a locally splitting injection.

1.2.4 Semi-stable pairs

In this subsection, we let K be a complete discrete valuation field with perfect residue field

k of characteristic p > 0, X a proper scheme of finite presentation over OK , and U an open

and dense subscheme of X. We recall the definition of a semi-stable pair ([22, Definition

1.6]):

Definition 1.2.3. The pair (X,U) is said to be semi-stable over OK of relative dimension

d if, étale locally on X, X is étale over SpecOK [T0, . . . , Td]/(T0 · · ·Tr − π) and U is the

inverse image of SpecOK [T0, . . . , Td, T
−1
0 , . . . , T−1

m ]/(T0 · · ·Tr − π) for some 0 ≤ r ≤ m ≤ d

and prime π of K.

When (X,XK) is semi-stable over OK , we say that X is semi-stable over OK .

If we substitute the condition “étale locally” by “Zariski locally”, the pair (X,U) is then

said to be strictly semi-stable.

We shall need the following property of strictly semi-stable pairs, which is a consequence

of [22, Theorem 2.9]:

Theorem 1.2.4. Let (X,U) be a strictly semi-stable pair over OK and L be a finite separable

extension of K. Then there exists a proper birational morphism X ′ → XOL inducing an

isomorphism U ′ → UOL, where U ′ is the inverse image of UOL, and such that (X ′, U ′) form

a strictly semi-stable pair over OL.
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CHAPTER 2

RAMIFICATION OF ÉTALE COHOMOLOGY GROUPS

Let K be a complete discrete valuation field with perfect residue field k of characteristic

p > 0. Let X be a connected, proper scheme over OK , D a divisor with simple normal

crossings on X, and U = X − D. Assume that the pair (X,U) is strictly semi-stable over

OK of relative dimension d (see Definition 1.2.3).

Let ` be a prime number different from p and G be a smooth `-adic sheaf on U , by which

we mean a smooth Q`-sheaf on U . Assume that G is at most tamely ramified on the generic

fiber XK . Write D =
n⋃
i=1

Di, where Di are the irreducible components of D. Let ξi be the

generic point of Di, OMi
= OhX,ξi the henselization of the local ring at ξi, Mi its field of

fractions, and ηi = SpecMi.

Let GMi
and GK denote the absolute Galois groups of Mi and K, respectively, and

(GtMi, log)t∈Q≥0 , (GtK, log)t∈Q≥0 the corresponding Abbes-Saito logarithmic upper ramifica-

tion filtrations (see [1]). Put, for a real number s ≥ 0, Gs+Mi, log =
⋃

t∈Q,t>s
GtMi, log and

Gs+K, log =
⋃

t∈Q,t>s
GtK, log. We are interested in exploring to what extent the following con-

jecture holds:

Conjecture 1. Under the assumptions above, if Gt+Mi, log acts trivially on Gηi for every i,

then Gt+K, log acts trivially on H
j
c (UK ,G ) for every j.

Our main result in from this chapter is Theorem 2.3.1, in which we prove the conjecture

in the special case where G is of rank 1, K has characteristic p, and the relative dimension

is d = 1.

The structure of this chapter is as follows: In the first section, we give a criterion for

Gt+K, log to act trivially on an `-adic sheaf. In the second section, we provide an application

of the Kato-Saito conductor formula. In the third section, we present and prove the main

result of this chapter.
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2.1 The action of Gt+
K, log

In this section, we let K be a complete discrete valuation field of equal characteristic with

perfect residue field k of characteristic p > 0, ` be a prime different than p, and M,N

be finite-dimensional representations of GK over Q` which come from finite-dimensional

continuous representations of GK over a finite extension of Q` contained in Q`. We shall

provide a criterion for Gt+K, log to act trivially on M .

There is a canonical slope decomposition (see [12, Proposition 1.1], or [4, Lemma 6.4])

M =
⊕
r∈Q≥0

M (r)

characterized by the following properties: if P is the wild inertia subgroup of GK , then

MP = M (0). Further, for all r > 0,

(M (r))
GrK, log = 0

and

(M (r))
Gr+K, log = M (r).

We have M (r) = 0 except for finitely many r. The values of r for which M (r) 6= 0 are called

slopes of M .

Definition 2.1.1. We say that M is isoclinic if it has only one slope.

The following proposition gives our criterion:

Proposition 2.1.2. Let t be a nonnegative real number. Assume that, for any totally tamely

ramified extension L/K of degree e prime to p, we have the following: if ML denotes the

representation of GL induced by M , then, for any character χ : GL → Q`
×

for which

SwL(χ) > et, we have

SwL(ML ⊗ χ) = rk(ML)SwL(χ).

10



Then Gt+K acts trivially on M .

The proof will be presented shortly. The general strategy is the following:

– We first show that the behavior of the tensor product of isoclinic M and N is similar

to that of the tensor product of characters;

– Next, we use the previous result to understand the slope decomposition of the tensor

product M ⊗ χ and prove the proposition.

We start with the lemma:

Lemma 2.1.3. If M is isoclinic of slope r and N is isoclinic of slope s, where r > s, then

M ⊗N is isoclinic of slope r.

Proof. We have

MGrK = 0,

MGr+K = M,

NGsK = 0,

and

NGs+K = N.

Since r > s, (M ⊗ N)G
r+
K = M ⊗ N . On the other hand, GrK acts trivially on N and

MGrK = 0, so (M ⊗N)G
r
K = 0. Hence M ⊗N is isoclinic of slope r.

Proof of Proposition 2.1.2. We need to show that, if r > t, then M (r) = 0. Let R be the

maximum slope of M . Assume, by contradiction, that R > t. Let m, e be positive integers

such that:

(i) e is prime to p,

(ii) m
e < R,

11



(iii) m
e is strictly greater than any other slope of M ,

(iv) m
e > t.

Let L be a totally tamely ramified extension of degree e of K. By [1, Proposition 3.15],

GsK, log = GesL, log for any s ∈ Q≥0, so the slopes of ML are of the form er, where r is a slope

of M . Take χ with SwL(χ) = m. Then, by assumption,

SwL(ML ⊗ χ) = rk(ML)SwL(χ) = rk(ML)m.

By Lemma 2.1.3, for all r < m we have that M
(r)
L ⊗χ is isoclinic of slope m, while M

(eR)
L ⊗χ

is isoclinic of slope eR. It follows that

SwL(ML ⊗ χ) =
∑

r∈Q≥0

SwL(M
(r)
L ⊗ χ) =

∑
r∈Q≥0,r<m

rk(M
(r)
L )m+ rk(M

(eR)
L )eR.

Combining the two expressions we get

rk(M
(eR)
L )eR = rk(M

(eR)
L )m,

which is a contradiction, since, by assumption, m < eR and M
(eR)
L 6= 0.

2.2 The Kato-Saito conductor formula

Let K be a complete discrete valuation field with perfect residue field k of characteristic

p > 0. Let ` be a prime number different from p, U be a smooth separated scheme of finite

type over K, and F be a smooth `-adic sheaf of constant rank on U . In [11], Kato and

Saito defined the Swan class SwUF , a 0-cycle class with coefficients in Q supported on the

special fiber of a compactification of U over OK , and proved the conductor formula

SwKRΓc(UK ,F ) = deg SwUF + rk(F )SwKRΓc(UK ,Q`),
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where SwKRΓc(UK ,F ) denotes the alternating sum
∑
j

(−1)jSwKH
j
c (UK ,F ).

In this section, assume that X is a regular flat separated scheme of finite type over

S = SpecOK . Let D ⊂ X be a divisor with simple normal crossings and write D =
n⋃
i=1

Di,

where Di are the irreducible components of D. Put U = X − D and consider a smooth

`-adic sheaf F of rank 1 on U , at most tamely ramified on XK and with clean ramification

with respect to X.

The Swan 0-cycle class cF of F is defined as follows. Let E be the support of the Swan

divisor DF =
∑
riDi. Then define cF ∈ CH0(E) as

cF = {c(Ω1
X/S(logD)⊗OX OE)∗ ∩ (1 +DF )−1 ∩DF }dim 0.

Under the assumption that dimUK ≤ 1, by Corollary 8.3.8 of [11], the Kato-Saito con-

ductor formula becomes simply

SwKRΓc(UK ,F ) = deg cF + SwKRΓc(UK ,Q`).

The following proposition is an application of this formula that will be useful in the next

section:

Proposition 2.2.1. Let X, S and U = X −D be as above. Let F1 and F2 be two smooth

`-adic sheaves on U of rank one, F2 having clean ramification with respect to X. Write

DF1
=
∑
riDi and DF2

=
∑
siDi. Assume that ri < si for every i. Then F1 ⊗F2 has

clean ramification and

cF1⊗F2
= cF2

.

Proof. Since ri < si for every i, we have DF1⊗F2
= DF2

and the refined Swan conductors

of F1⊗F2 and F2 coincide. Denote by Ei the support of DFi
and by E be the support of

13



DF1⊗F2
. We have E = E2, so

cF1⊗F2
= {c(Ω1

X/S(logD)⊗OX OE)∗ ∩ (1 +DF1⊗F2
)−1 ∩DF1⊗F2

}dim 0

= {c(Ω1
X/S(logD)⊗OX OE2

)∗ ∩ (1 +DF2
)−1 ∩DF2

}dim 0

= cF2
.

2.3 Ramification and étale cohomology

In this section, we let K be a complete discrete valuation field with perfect residue field k

of characteristic p > 0 and of equal characteristic, S = SpecOK , and s = Spec k. We will

denote by X a proper, connected scheme of finite presentation over OK , and U an open and

dense subscheme of X. We assume that D = X−U is a divisor with simple normal crossings

and write
n⋃
i=1

Di, where Di are the irreducible components. We also assume that the pair

(X,U) is strictly semi-stable over OK of relative dimension 1, and that G is a smooth `-adic

sheaf on U , where ` is a prime number different from p. Further, we assume that G is of

rank 1 and at most tamely ramified on the generic fiber XK . Denote by ξi the generic point

of Di, OMi
= OhX,ξi the henselization of the local ring at ξi, Mi its field of fractions, ki the

residue field of Mi, and ηi = SpecMi.

We shall prove the following theorem:

Theorem 2.3.1. Conjecture 1 is true when G is of rank 1, the relative dimension is 1, and

K is of equal characteristic.

Remark 2.3.2. When the relative dimension is greater than 1, one should still be able to

prove Conjecture 1 using the same methods, as long as it is true that

SwKRΓc(UK ,F ) = deg cF + SwKRΓc(UK ,Q`)

for smooth `-adic sheaves F of rank 1 on U , at most tamely ramified on XK and with clean
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ramification with respect to X.

The proof is divided in two cases. First observe that, since the total constant field of XK

is a finite unramified extension of K, we may assume that K is the total constant field of

XK . Then there is an exact sequence of fundamental groups

1 π1(UK) π1(U) GK 1.

Let M be the function field of X and η = SpecM . We first consider the case in which

the action of π1(UK) is trivial on Gη̄, and then the case in which it is non-trivial.

To prove the first case, we shall need the following lemma:

Lemma 2.3.3. In addition to the assumptions of Theorem 2.3.1, assume that Gη̄ is the

pullback of some `-adic representation H of GK . If Gt+Mi, log acts trivially on Gηi, then Gt+K

acts trivially on H .

Proof. This follows from Lemma 1.2.1.

Proposition 2.3.4. Theorem 2.3.1 holds if π1(UK) acts trivially on Gη̄.

Proof. In this case, by the homotopy exact sequence of étale fundamental groups, we have

that Gη̄ is the pullback of some `-adic representation H of GK . Then

H
j
c (UK ,G ) = H

j
c (UK ,Q`)⊗H .

By Lemma 2.1.3, and the fact that H
j
c (UK ,Q`) is at most tamely ramified ([21, Corollary

2]), we have that the slope decomposition of H
j
c (UK ,G ) coincides with that of H , in the

following sense:

(H
j
c (UK ,G ))(r) = H

j
c (UK ,Q`)⊗H (r).

It follows that GtK, log acts trivially on H
j
c (UK ,G ) if and only if it acts trivially on H . By

Lemma 2.3.3, the result follows.
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We shall now prove Theorem 2.3.1 for the case in which π1(UK) does not act trivially on

Gη̄. The core of strategy is the following: using the Kato-Saito conductor formula and the

fact that H0
c (UK ,G ) = H2

c (UK ,G ) = 0, we show that H1
c (UK ,G ) satisfies the hypotheses

of Proposition 2.1.2.

Lemma 2.3.5. Keep the assumptions of Theorem 2.3.1. Let e be a natural number prime

to p and L be a totally tamely ramified extension of K of degree e. If χ : GL → Q`
×

is a

character such that SwL(χ) > et, then

SwL(RΓc(UL,G )⊗ χ) = rk(RΓc(UL,G ))SwL(χ).

Proof. First consider the following. By Theorem 1.2.4, there exists a proper birational

morphism X ′ → XOL inducing an isomorphism U ′ → UOL , where U ′ is the inverse image

of UOL , and such that (X ′, U ′) is strictly semi-stable over OL.

Let D′ = X ′ − U ′ and write D′ =
n′⋃
i=1

D′i, where D′i are the irreducible components of

D′. For each 1 ≤ i ≤ n′ let ξ′i be the generic point of D′i, OM ′i = Oh
X ′, ξ′i

the henselization of

the local ring at ξ′i, M
′
i its field of fractions, and η′i = SpecM ′i .

There is a composition of blowups of closed points X̃ → X and a point ξ̃i such that

O
X̃, ξ̃i

= OX ′, ξ′i ∩M . Let M̃i be the field of fractions of Oh
X̃, ξ̃i

. Put η̃i = Spec M̃i. Denote

by e′i and ẽi the ramification indices of M ′i/M̃i and M̃i/K, respectively. We have e = e′iẽi.

By [8, Theorem 8.1], and the fact that Gt+Mi, log acts trivially on Gηi for every 1 ≤ i ≤ n,

we have that Gẽit+
M̃i, log

acts trivially on Gη̃i
for every 1 ≤ i ≤ n′. Further, since we have

G
e′iẽit+
M ′i , log

⊂ Gẽit+
M̃i, log

, we get that Get+
M ′i , log

acts trivially on G
η′i

for all 1 ≤ i ≤ n′. Thus it is

enough to prove that

SwK(RΓc(UK ,G )⊗ χ) = rk(RΓc(UK ,G ))SwK(χ)

for χ : GK → Q`
×

such that SwK(χ) > t.
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Put r = SwK(χ) and denote by χ̃ the pullback of χ to U . χ̃ has clean ramification

because the following diagram

mrK/m
r+1
K Ωk(log)

mrMi
/mr+1

Mi
Ωki(log)

rswK χ

rswMi χ̃

is commutative. Indeed, since χ is clean and Ωk(log) ↪→ Ωki(log) is a splitting injection,

rsw χ̃ is a locally splitting injection. Further, by Lemma 1.2.1, SwMi
(χ̃) > t for every i. From

the Kato-Saito conductor formula, Proposition 2.2.1, and the fact that (X,U) is semi-stable

over OK , we have that G ⊗ χ̃ is clean and

SwKRΓc(UK ,G ⊗ χ̃) = deg cG⊗χ̃ = deg cχ̃.

Again by the Kato-Saito conductor formula,

SwKRΓc(UK , χ̃) = deg cχ̃.

Therefore, we have

SwKRΓc(UK ,G ⊗ χ̃) = SwKRΓc(UK , χ̃) = SwK(RΓc(UK ,Q`)⊗ χ).

Since

SwKRΓc(UK ,G ⊗ χ̃) = SwK(RΓc(UK ,G )⊗ χ)

and

SwK(RΓc(UK ,Q`)⊗ χ) = rk(RΓc(UK ,Q`))SwK(χ) = rk(RΓc(UK ,G ))SwK(χ),
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we conclude that

SwK(RΓc(UK ,G )⊗ χ) = rk(RΓc(UK ,G ))SwK(χ).

Lemma 2.3.6. Let the assumptions be the same as in Lemma 2.3.5, and assume further

that π1(UK) does not act trivially on G . Then

H
j
c (UL,G ) = 0

for every j 6= 1.

Proof. By Poincaré duality, it’s enough to show that H0(UL,G ) = 0. Since π1(UK) does

not act trivially on Gη̄ and rk(G ) = 1, we get that H0(UL,G ) = G
π(UL)
η̄ = 0.

Proof of Theorem 2.3.1. The theorem has already been proved in Proposition 2.3.4 for G

such that π1(UK) acts trivially on it, so we assume that π1(UK) does not act trivially. By

Lemma 2.3.6, it’s enough to prove that Gt+K, log acts trivially on H1
c (UK ,G ).

From Lemmas 2.3.5 and 2.3.6, it follows that

SwL(H1
c (UL,G )⊗ χ) = rk(H1

c (UL,G ))SwL(χ)

for any totally tamely ramified extension L of K of degree e prime to p and arbitrary

character χ : GL → Q`
×

satisfying SwL(χ) > et.

From Proposition 2.1.2, we have that Gt+K, log acts trivially on H1
c (UK ,G ). Hence Gt+K, log

acts trivially on H
j
c (UK ,G ) for every j.
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CHAPTER 3

RAMIFICATION IN TRANSCENDENTAL EXTENSIONS OF

LOCAL FIELDS

Let K be a complete discrete valuation field. Classical ramification theory has extensively

studied finite Galois extensions L/K when the residue field of K is perfect. Much progress

has also been achieved when the residue field is no longer assumed to be perfect, such as K.

Kato’s generalization of the classical Swan conductor Swχ ∈ Z≥0 for abelian characters χ :

G(L/K)→ Q/Z ([8]) and A. Abbes and T. Saito’s generalization of the upper ramification

filtration G(L/K) ([1]). Yet there are still many open questions, both when the residue field

of K is imperfect and when the extension L/K is transcendental.

Let L/K be a finite Galois extension of complete discrete valuation fields with perfect

residue fields. Denote by e(L/K) the ramification index of L/K and by D
log
L/K

the wild

different of L/K, i.e., D
log
L/K

= DL/K − e(L/K) + 1, where DL/K is the different of L/K.

It is classically known that, if χ ∈ H1(K,Q/Z) and χL is its image in H1(L,Q/Z), then,

when Swχ� 0,

SwχL = ψL/K(Swχ) = e(L/K) Swχ−Dlog
L/K

, (3.0.1)

where ψL/K is the classical ψ-function (see, for example, [25]).

In this chapter, we obtain a formula resembling (3.0.1) for (possibly transcendental)

separable extensions L/K of complete discrete valuation fields when the residue field of K

is perfect but the residue field of L is not necessarily perfect, and then define generalizations

of the classical ψ-function. More precisely, we first prove the two following results, the first

when L is of equal positive characteristic and the second when L is of mixed characteristic.

Here Ω̂1
OL/OK

(log) denotes the completed OL-module of relative differential forms with log

poles, δtor(L/K) the length of its torsion part, and eK the absolute ramification index of K.

For a character χ ∈ H1(L,Q/Z), Swχ denotes Kato’s Swan conductor of χ (defined in [8]).
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Main Result 1 (Theorem 3.1.12). Let L/K be a separable extension of complete discrete

valuation fields of equal characteristic p > 0. Assume that K has perfect residue field and

χ ∈ H1(K,Q/Z) is such that

Swχ >
p

p− 1

δtor(L/K)

e(L/K)
.

Denote by χL its image in H1(L,Q/Z). Then

SwχL = e(L/K) Swχ− δtor(L/K).

Main Result 2 (Theorem 3.3.13). Let L/K be an extension of complete discrete valuation

fields of mixed characteristic. Assume that K has perfect residue field of characteristic p > 0

and χ ∈ H1(K,Q/Z) is such that

Swχ ≥ 2eK
p− 1

+
1

e(L/K)
+

⌈
δtor(L/K)

e(L/K)

⌉
.

Denote by χL its image in H1(L,Q/Z). Then

SwχL = e(L/K) Swχ− δtor(L/K).

In the next chapter, we relate this discussion to the ψL/K function for L/K. More

precisely, we define two ψ-functions ψAS
L/K

and ψab
L/K

when K has perfect residue field but

L has residue field not necessarily perfect. We then show that, in the classical case of finite

L/K, both these definitions coincide with the classical ψL/K function. Finally, we prove

that we can regard our first two main theorems as formulas for ψab
L/K

(t) for t� 0:

Main Result 3 (Theorem 4.0.4). Let L/K be a separable extension of complete discrete

valuation fields. Assume that K has perfect residue field of characteristic p > 0. Let t ∈ R≥0
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be such that
t ≥ 2eK

p− 1
+

1

e(L/K)
+

⌈
δtor(L/K)

e(L/K)

⌉
if K is of characteristic 0,

t >
p

p− 1

δtor(L/K)

e(L/K)
if K is of characteristic p.

Then

ψab
L/K(t) = e(L/K)t− δtor(L/K).

Our methods for the proof of Main Result 1 differ greatly from those for the proof of Main

Result 2. In the equal characteristic case, we use Artin-Schreier-Witt theory. In the mixed

characteristic case, we use M. Kurihara’s exponential map ([16]) and a modified version of

higher dimensional local class field theory.

Notation. We introduce the following notation for Chapters 3 and 4. For a complete discrete

valuation field K, OK denotes its ring of integers, mK the maximal ideal, πK a prime

element, and GK the absolute Galois group. Lowercase k denotes the residue field of K, and

vK the discrete valuation. We write UnK = 1 + mnK .

When we say that K is a local field, we mean that K is a complete discrete valuation field

with perfect (not necessarily finite) residue field. Similarly, when we say K is a q-dimensional

local field, we mean that there is a chain of fields K = Kq, Kq−1, . . . , K1, K0 such that, for

each 1 ≤ i ≤ q, Ki is a complete discrete valuation field with residue field Ki−1 and K0 is a

perfect field. When the last residue field K0 is finite, we say that K is a q-dimensional local

field with finite last residue field.

We write

Ω̂1
OK (log) = lim←−

m
Ω1
OK (log)/mmKΩ1

OK (log),

where

Ω1
OK (log) = (Ω1

OK ⊕ (OK ⊗Z K
×))/(da− a⊗ a, a ∈ OK , a 6= 0).
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We shall denote by Ptor the torsion part of an abelian group P . Let L/K a separable

extension of complete discrete valuation fields (of either mixed characteristic or positive

characteristic p > 0). Throughout these chapters, e(L/K) shall denote the ramification

index of L/K and eK the absolute ramification index of K. When k is perfect, δtor(L/K)

shall denote the length of

(
Ω̂1
OL(log)

OL ⊗OK Ω̂1
OK (log)

)
tor

.

The r-th Milnor K-group of L shall be denoted by Kr(L). We denote by UnKr(L) the

subgroup of Kr(L) generated by elements {a, b1, . . . , br−1} where a ∈ UnL, bi ∈ L×, and we

write

K̂r(L) = lim←−
n
Kr(L)/UnKr(L)

and

UnK̂r(L) = lim←−
n′
UnKr(L)/Un

′
Kr(L).

Following the notation in [8], we write, for A a ring over Q or a smooth ring over a field

of characteristic p > 0, and n 6= 0,

H
q
n(A) = Hq((SpecA)et,Z/nZ(q − 1))

and

Hq(A) = lim−→
n
H
q
n(A).

3.1 Swan conductor in positive characteristic

Let L be complete discrete valuation field of equal characteristic p > 0. In this section, we

will study separable extensions L/K where K is a local field (and therefore k is perfect). To

be precise, we shall show that, if χ ∈ H1(K) has Swan conductor sufficiently large, then

SwχL = e Swχ− δtor(L/K),
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where χL is the image of χ in H1(L) and e = e(L/K). For that goal, we will use valuations

on differential forms and Witt vectors, as well as the notion of a Witt vector being “best”,

defined later.

First of all, we review some concepts necessary for our discussion. By completed free

OL-module with basis {eλ}λ∈Λ, we mean lim←−
m
M/mmLM , where M is the free OL-module

with basis {eλ}λ∈Λ. Write L = l((πL)) for some prime πL ∈ L, where l is the residue field

of L. Let {bλ}λ∈Λ be a lift of a p-basis of l to OL. Then Ω̂1
OL(log) is the completed free

OL-module with basis {dbλ, d log πL : λ ∈ Λ}. Write Ω̂1
L = L⊗OL Ω̂1

OL(log).

Recall that, when K is a local field of positive characteristic, Ω̂1
OK (log) is free of rank

one and, for an extension of complete discrete valuation fields L/K, δtor(L/K) is the length

of the torsion part of Ω̂1
OL/OK

(log).

Denote byWs(L) the Witt vectors of length s. There is a homomorphism d : Ws(L)→ Ω̂1
L

given by

a = (as−1, . . . , a0) 7→
∑
i

a
pi−1
i dai.

Remark 3.1.1. In the literature, the operator d : Ws(L) → Ω̂1
L(log) is often denoted by

F s−1d.

We can define valuations on Ω̂1
L and Ws(L) as follows. If ω ∈ Ω̂1

L and a ∈ Ws(L), let

v
log
L ω = sup

{
n : ω ∈ πnL ⊗OL Ω̂1

OL(log)
}
,

and

vL(a) = −max
i
{−pivL(ai)} = min

i
{pivL(ai)}.

These valuations define increasing filtrations of Ω̂1
L and Ws(L) by the subgroups

FnΩ̂1
L = {ω ∈ Ω̂1

L : v
log
L ω ≥ −n}
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and

FnWs(L) = {a ∈ Ws(L) : vL(a) ≥ −n},

respectively, where n ∈ Z≥0. The latter filtration was defined by Brylinski in [5].

By the theory of Artin-Schreier-Witt, there are isomorphisms

Ws(L)/(F − 1)Ws(L) ' H1(L,Z/psZ),

where F is the endomorphism of Frobenius. Kato defined in [8] the filtration FnH
1(L,Z/psZ)

as the image of FnWs(L) under this map. We recall that, for χ ∈ H1(L,Z/psZ), the Swan

conductor Swχ is the smallest n such that χ ∈ FnH1(L,Z/psZ).

We shall now define what it means for a Witt vector a ∈ Ws(L) to be “best”, as well as

the notion of relevance length.

Definition 3.1.2. Let a ∈ Ws(L), and n be the smallest non-negative integer such that

a ∈ FnWs(L). We say that a is best if there is no a′ ∈ Ws(L) mapping to the same element

as a in H1(L,Z/psZ) such that a′ ∈ Fn′Ws(L) for some non-negative integer n′ < n.

When vL(a) ≥ 0, a is clearly best. When vL(a) < 0, a is best if and only if there are no

a′, b ∈ Ws(L) satisfying

a = a′ + (F − 1)b

and vL(a) < vL(a′).

Observe that a ∈ FnWs(L)\Fn−1Ws(L) is best if and only if n = Swχ, where χ is the

image of a under FnWs(L)→ H1(L,Z/psZ). We remark that “best a” is not unique.

We shall start by deducing a simple criterion for determining when a is best. When s = 1

the characterization of “best a” is well-known: every a ∈ OL is best, and a ∈ L \OL is best

if and only if either p - vL(a) or p | vL(a) but ā /∈ lp, where ā denotes the residue class of

a/π
vL(a)
L for a prime element πL ∈ L. In this section we will characterize best a for arbitrary

s. We shall prove that a is best if and only if ai is best for some relevant position i, in the
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sense of the following definition.

Definition 3.1.3. We shall say that the i-th position of a is relevant if vL(a) = pivL(ai).

Let j = max{i : vL(a) = pivL(ai)}. Then j + 1 shall be called the relevance length of a.

Lemma 3.1.4. Let a ∈ Ws(L) be of negative valuation. We have vL(a) = v
log
L (da) if and

only if there is some relevant position k such that vL(ak) = v
log
L (dak).

Proof. Let I denote the subset of {0, . . . , s− 1} consisting of i such that the i-th position is

relevant and v(ai) = v
log
L (dai). Let j + 1 denote the relevance length of a. We have

da =
∑
i∈I

a
pi−1
i dai +

∑
i/∈I

a
pi−1
i dai.

Clearly

v
log
L

∑
i/∈I

a
pi−1
i dai

 > vL(a),

so it is enough to prove that

v
log
L

∑
i∈I

a
pi−1
i dai

 = vL(a)

if I is nonempty.

Assume I nonempty. Since the relevance length of a is j + 1, we get that pj | vL(a).

We have vL(a) = −npj for some n ∈ N. For each i ∈ I, we have vL(ai) = −npj−i. Write

ai = π
−npj−i
L ui, where ui ∈ OL is a unit.

Then ∑
i∈I

a
pi−1
i dai = π

−npj
L

∑
i∈I

u
pi−1
i dui − nu

pj

j

dπL
πL

 .

If p - n, then

v
log
L

∑
i∈I

a
pi−1
i dai

 = vL(a).
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On the other hand, if p | n,

∑
i∈I

a
pi−1
i dai = π

−npj
L

∑
i∈I

u
pi−1
i dui.

Let ūi denote the image of ui in the residue field l. Then

v
log
L

π−npjL

∑
i∈I

u
pi−1
i dui

 > vL(a)

if and only if ∑
i∈I

ū
pi−1
i dūi = 0.

If ∑
i∈I

ū
pi−1
i dūi = 0,

then, by repeatedly applying the Cartier operator, we see that ūi ∈ lp for every i ∈ I. This

implies vL(ai) < v
log
L (dai) for every i ∈ I, a contradiction. Hence we must have

v
log
L (da) = vL(a).

Lemma 3.1.5. Let a ∈ Ws(L) be of negative valuation. Assume that vL(a) < v
log
L (da) and

the relevance length of a is 1. Then a is not best.

Proof. Since the relevance length is 1, we have v
log
L (a

pi−1
i dai) ≥ pivL(ai) > vL(a0) for i > 0.

Therefore we must have vL(a0) < v
log
L (da0), which implies that there exist a′0, b0 ∈ L such

that a0 = a′0 + b
p
0 − b0 and vL(a0) < vL(a′0). Let a′ = (0, . . . , 0, a′0) and b = (0, . . . , 0, b0).

We have

a = a′ + (F − 1)b,

and vL(a) = vL(a0) < vL(a′), so a is not best.

Lemma 3.1.6. Let a ∈ Ws(L) be an element of negative valuation. Assume that vL(a) <
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v
log
L (da). Then a is not best.

Proof. We shall prove by induction on the relevance length. The case in which a has relevance

length 1 has been proven in Lemma 3.1.5. Assume now that a has relevance length j + 1.

From Lemma 3.1.4, v(aj) < v
log
L (daj), so there exist a′j , bj ∈ L such that aj = a′j+b

p
j−bj

and vL(aj) < vL(a′j). Observe that vL(aj) = pvL(bj). Let b = (0, . . . , 0, bj , 0, . . . , 0) and

a′ = a− (F − 1)b. Then

a′ = a− Fb+ b = (as−1, . . . , aj+1, a
′
j , ãj−1, . . . ã0),

where pivL(ãi) ≥ vL(a) for every 0 ≤ i ≤ j − 1.

We have two cases. If pivL(ãi) > vL(a) for all 0 ≤ i ≤ j − 1, then vL(a′) > vL(a), so a

is not best.

On the other hand, if vL(ãi) = vL(a) for some 0 ≤ i ≤ j − 1, then a′ has relevance

length at most j and vL(a′) = vL(a). Further, da′ = da + db. Since vL(a) < v
log
L (da) and

vL(a) = pvL(b) ≤ pv
log
L (db), we have vL(a) < v

log
L (da′). Thus vL(a′) < v

log
L (da′) and a′ is of

relevance length at most j. By induction, a′ is not best, i.e., there are a′′, c ∈ Ws(L) such

that

a′ = a′′ + (F − 1)c,

with v(a′) < v(a′′). Then

a = a′ + (F − 1)b = a′′ + (F − 1)(b+ c),

with vL(a) < vL(a′′). Thus a is not best.

Theorem 3.1.7. Let a ∈ Ws(L). The following conditions are equivalent:

(i) a is best.

(ii) There exists some relevant position i such that ai is best in the sense of length one.
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(iii) vL(a) = v
log
L (da).

Proof. Observe that, when a has non-negative valuation, (i), (ii) and (iii) are all simultane-

ously satisfied, so in the following we assume vL(a) < 0.

(ii)⇔ (iii) by Lemma 3.1.4.

Lemma 3.1.6 proves (i)⇒ (iii).

To prove (iii) ⇒ (i), assume that a is not best. Then there are a′, b ∈ Ws(L) such

that a = a′ + (F − 1)b and vL(a) < vL(a′). We have pv
log
L (db) ≥ pvL(b) = vL(a), so

both v
log
L (db) > vL(a) and v

log
L (da′) ≥ vL(a′) > vL(a). Since da = da′ − db, we get that

v
log
L (da) > vL(a).

The notion of “best a” allows us to construct a homomorphism FnH
1(L,Z/psZ) →

FnΩ̂1
L/Fbn/pcΩ̂

1
L satisfying some useful properties. Given an element of H1(L,Z/psZ), it is

easy to show the existence of a best a ∈ Ws(L) in its preimage. We then have the following

proposition:

Proposition 3.1.8.

(i) There is a unique homomorphism

rsw : FnH
1(L,Z/psZ)→ FnΩ̂1

L/Fbn/pcΩ̂
1
L,

called refined Swan conductor, such that the composition

FnWs(L) FnH
1(L,Z/psZ) FnΩ̂1

L/Fbn/pcΩ̂
1
L

coincides with

d : FnWs(L)→ FnΩ̂1
L/Fbn/pcΩ̂

1
L.

(ii) For bn/pc ≤ m ≤ n, the induced map

rsw : FnH
1(L,Z/psZ)/FmH

1(L,Z/psZ)→ FnΩ̂1
L/FmΩ̂1

L
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is injective.

Proof. To prove assertion (i), define rsw as follows. Given an element χ ∈ FnH1(L,Z/psZ),

take a ∈ FnWs(L) such that a is best and the image of a is χ. Then put rswχ = da.

We must show that this map is well-defined. Let a′ ∈ FnWs(L) be another element that

is best and maps to χ. Then

a = a′ + (F − 1)b

for some b ∈ Ws(L). We get that pv
log
L (db) ≥ pvL(b) ≥ −n, so db ∈ Fbn/pcΩ̂

1
L. Since

da = da′ − db, da and da′ define the same class in FnΩ̂1
L/Fbn/pcΩ̂

1
L. Uniqueness of the map

is clear.

We shall now prove (ii). Let χ ∈ FnH
1(L,Z/psZ) such that rswχ ∈ FmΩ̂1

L. Take

a ∈ FnWs(L) that is best and such that da = rswχ. Since a is best, we have

v
log
L (rswχ) = v

log
L (da) = vL(a) ≥ −m,

so a ∈ FmWs(L). It follows that χ ∈ FmH1(L,Z/psZ).

Remark 3.1.9. Related results were obtained by Y. Yatagawa in [28], where the author

compares the non-logarithmic filtrations of Matsuda ([19]) and Abbes-Saito ([1]) in positive

characteristic.

Remark 3.1.10. Our refined Swan conductor rsw is a refinement of the refined Swan conductor

defined by K. Kato in [8, §5].

Let L/K be a separable extension of complete discrete valuation fields of positive char-

acteristic p > 0, and assume that K has perfect residue field k. Let χ ∈ H1(K) and χL its

image in H1(L). We shall now use Proposition 3.1.8 to compute the Swan conductor of χL.

We will need the following lemma:

Lemma 3.1.11. Let L/K be a separable extension of complete discrete valuation fields of

equal characteristic p > 0. Write e = e(L/K) and assume that k is perfect.
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Let ω ∈ Ω̂1
K , and ωL be the image of ω in Ω̂1

L. Then

v
log
L (ωL) = ev

log
K (ω) + δtor(L/K).

Proof. Since the residue field k of K is perfect, Ω̂1
OK (log) = OK

dπK
πK

. Let {bλ}λ∈Λ be

a lift of a p-basis of l to OL, so that Ω̂1
OL(log) is the completed free module with basis

{dbλ, d log πL : λ ∈ Λ}. Write dπK
πK

=
∑
αλdbλ + αd log πL, where αλ, α ∈ OL. Then

δtor(L/K) = min{{vL(α)} ∪ {vL(αλ) : λ ∈ Λ}} = v
log
L

(
dπK
πK

)
.

Writing ω = γ dπKπK
for some γ ∈ K, we see that

v
log
L (ω) = vL(γ) + v

log
L

(
dπK
πK

)
= evK(γ) + δtor(L/K) = ev

log
K (ω) + δtor(L/K).

Theorem 3.1.12. Let L/K be a separable extension of complete discrete valuation fields of

equal characteristic p > 0. Assume that K has perfect residue field.

Denote by e(L/K) the ramification index of L/K. Assume that χ ∈ H1(K) is such that

Swχ >
p

p− 1

δtor(L/K)

e(L/K)
.

Let χL be its image in H1(L). Then

SwχL = e(L/K) Swχ− δtor(L/K).

Proof. Write e = e(L/K). It is enough to show that, for a character χ ∈ H1(K,Z/psZ)

corresponding to the Artin-Schreier-Witt equation (F − 1)X = a, we have that, if Swχ >

p(p− 1)−1e−1δtor(L/K), then

SwχL = e Swχ− δtor(L/K).
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To simplify notation, write n = Swχ, δtor = δtor(L/K). The case e = 1 is simple, so

we assume e > 1. Since Swχ > p(p − 1)−1e−1δtor(L/K), we have that en
p < en − δtor, so

benp c ≤ en−δtor−1. From that, Theorem 3.1.7, and Lemma 3.1.11, we get that the diagram

FnH
1(K,Z/psZ)/Fn−1H

1(K,Z/psZ) FnΩ̂1
K/Fn−1Ω̂1

K

FenH
1(L,Z/psZ)/Fen−δtor−1H

1(L,Z/psZ) FenΩ̂1
L/Fen−δtor−1Ω̂1

L

commutes, and the horizontal arrows are injective. Thus

SwχL = e(L/K) Swχ− δtor(L/K).

3.2 The example of a two-dimensional local field of mixed

characteristic with finite last residue field

In Section 3.1, we proved Main Result 1. We shall now focus on proving Main Result

2. Let L/K be an extension of complete discrete valuation fields of mixed characteristic,

and assume that K has perfect residue field. We will show that, if χ ∈ H1(K) has Swan

conductor sufficiently large, then

SwχL = e Swχ− δtor(L/K),

where χL is the image of χ in H1(L) and e = e(L/K) is the ramification index of L/K.

The proof of this result is based on two key ideas: the commutativity of a diagram of the

form

m
en′−δtor(L/K)
L Ω̂

q−1
OL (log) K̂q(L)

mn
′
K K×

expη

ResL/K ResL/K

expη

and a modified version of higher dimensional local class field theory. In order to facilitate

comprehension and illustrate the main ideas, in the present section we will consider, in a
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brief and expository way, the special case in which L is a two-dimensional local field with

finite last residue field. In this special case, the second key idea is simpler, since we can use

two-dimensional local class field theory without any modification. In Section 3.3 we consider

the general case in which L is a complete discrete valuation field of mixed characteristic.

Through this section, we let L be a two-dimensional local field of mixed characteristic

with residue field l of characteristic p > 0, and K ⊂ L a one-dimensional local field with

finite residue field k.

As a consequence of [20], there is a residue homomorphism

ResL/K : Ω̂1
OL → OK

which induces

ResL/K : Ω̂1
OL(log)⊗OL L→ K.

Example 3.2.1. When L = K{{T}} (see page 5),

ResL/K

 ∞∑
i=−∞

aiT
idT

T

 = a0.

From [16], if η ∈ OL is such that vL(η) ≥ 2eL
p− 1

+ 1, there exists an exponential map

expη : Ω̂1
OL(log)→ K̂2(L).

This map is used in the following theorem, which is the first key step in the proof of the

main result for the special case of a two-dimensional local field with finite last residue field.

Its proof is omitted due to similarity with that of Theorem 3.3.11.

Theorem 3.2.2. Let L be a two-dimensional local field of mixed characteristic and with

finite last residue field, and K ⊂ L a local field. Write e = e(L/K). Let η ∈ OK be such
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that

n = vK(η) ≥ 2eK
p− 1

+
1

e
.

Then, if n′ ∈ N satisfies

n′ ≥ δtor(L/K)

e
,

we have a commutative diagram

m
en′−δtor(L/K)
L Ω̂1

OL(log) K̂2(L)

mn
′
K K×

expη

ResL/K ResL/K

expη

where the right vertical arrow is the residue homomorphism from K-theory defined in [7] and

the top and bottom horizontal maps are, respectively, the exponential maps expη,2 and expη,1

defined in [16].

We observe that m
en′−δtor(L/K)
L Ω̂1

OL(log) → mn
′
K in the diagram above is surjective (see

Proposition 3.3.10) and the images of

expη : m
en′−δtor(L/K)
L Ω̂1

OL(log)→ K̂2(L)

and

expη : mn
′
K → K×

are, respectively, Ue(n+n′)−δtor(L/K)K̂2(L) and Un+n′
K (see Lemma 3.3.2).

Theorem 3.2.2 is then combined with two-dimensional local class field theory to prove

the main result in the particular case of a two-dimensional local field of mixed characteristic

with finite last residue field:

Theorem 3.2.3. Let L be a two-dimensional local field of mixed characteristic with finite

last residue field, and K ⊂ L be a local field. Assume that χ ∈ H1(K) is such that

Swχ ≥ 2eK
p− 1

+
1

e(L/K)
+

⌈
δtor(L/K)

e(L/K)

⌉
.
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Denote by χL its image in H1(L). Then

SwχL = e(L/K) Swχ− δtor(L/K).

Proof. Write e = e(L/K). Let n′ =
⌈
δtor(L/K)

e

⌉
and n = Swχ − n′. Pick η ∈ OK with

vK(η) = n. By two-dimensional local class field theory, the diagram

K̂2(L) Gab
L

K× Gab
K

ResL/K

commutes. Together with Theorem 3.2.2, this gives us a commutative diagram

m
en′−δtor(L/K)
L Ω̂1

OL(log) K̂2(L) Gab
L

mn
′
K K× Gab

K

expη

ResL/K ResL/K

expη

From Proposition 3.3.10, the left vertical arrow is surjective. We know that Swχ = m if

and only if χ kills Um+1
K but not UmK , and SwχL = m if and only if χL kills Um+1K̂2(L)

but not UmK̂2(L) (see the proof of Proposition 3.3.12 for details). Then it follows from the

commutative diagram above and Lemma 3.3.2 that

SwχL = e(n′ + n)− δtor(L/K) = e Swχ− δtor(L/K).

As a guide for Section 3.3, we will use Theorem 3.2.3 to get the same result for a complete

discrete valuation field of mixed characteristic L which has residue field that is a function

field in one variable over a finite field. In Section 3.3, Proposition 3.3.12 will be used to

obtain Theorem 3.3.13 in an analogous way.

Corollary 3.2.4. Let L be a complete discrete valuation field of mixed characteristic, and

K ⊂ L be a local field. Assume that the residue field l of L is a function field in one variable

over the finite residue field k of K.
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Assume that χ ∈ H1(K) is such that

Swχ ≥ 2eK
p− 1

+
1

e(L/K)
+

⌈
δtor(L/K)

e(L/K)

⌉
.

Denote by χL its image in H1(L). Then

SwχL = e(L/K) Swχ− δtor(L/K).

Proof. It is sufficient to prove that this case can be reduced to that of a two-dimensional

local field with finite last residue field.

Since l is a function field in one variable over k, l is a finite separable extension of k(T )

for some transcendental element T . Then there is an embedding of l into a finite separable

extension E of k((T )). Note that {T} is a p-basis for both l and E. Then there is a

complete discrete valuation field L(E) which is an extension of L satisfying OL ⊂ OL(E),

OL(E)mL = mL(E), and the residue field of L(E) is isomorphic to E over l.

From [8, Lemma 6.2], we get that SwχL(E) = SwχL. Further, since E is a one-

dimensional local field, L(E) is a two-dimensional local field. Finally, since E and l have the

same p-basis {T}, and πL is a prime for both L and L(E), the map OL(E)⊗OL Ω̂1
OL(log)→

Ω̂1
OL(E)

(log) is an isomorphism and we get OL(E)⊗OL Ω̂1
OL(log)tor ' Ω̂1

OL(E)
(log)tor. There-

fore, by definition, δtor(L(E)/K) = δtor(L/K).

Thus it is sufficient to prove that

SwχL(E) = e(L(E)/K) Swχ− δtor(L(E)/K),

which follows from Theorem 3.2.3.
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3.3 Swan conductor in the general mixed characteristic case

In this section, we shall generalize the results of the previous section to the more general

case in which L is any complete discrete valuation field of mixed characteristic. We start by

briefly reviewing some necessary background and proving some preliminary results.

Let L be a complete discrete valuation field of mixed characteristic. Let B be a lift of

a p-basis of the residue field l to OL. Write {eλ}λ∈Λ = {db : b ∈ B} ∪ {d log πL}. The

OL-module Ω̂1
OL(log) has the structure

M̂ ⊕OL/maLOL

for some a ∈ Z≥0 (see [15, Lemma 1.1] and [10, 4.3]). Here M̂ is the completed free OL-

module with basis {eλ}λ∈Λ−{µ}, i.e., M̂ = lim←−
m
M/mmLM where M is the free OL-module

with basis {eλ}λ∈Λ−{µ} for some µ ∈ Λ.

We have, from [16, Theorem 0.1], the existence of an exponential map

expη,r+1 : Ω̂rOL(log)→ K̂r+1(L)

when η ∈ OL satisfies

vL(η) ≥ 2eL
p− 1

+ 1.

This exponential map satisfies

a
db1
b1
∧ · · · ∧ dbr

br
7→ {exp(ηa), b1, . . . , br}

for a ∈ OL, bi ∈ O×L . We shall denote expη,r+1 simply by expη through this chapter.

Remark 3.3.1. More precisely, in [16], M. Kurihara proved the existence of an exponential

map

expη,r+1 : Ω̂rOL → K̂r+1(L)
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when η ∈ OL satisfies

vL(η) ≥ 2eL
p− 1

.

Considering the existence of a map Ω̂rOL(log)→ Ω̂rOL satisfying the commutative diagram

Ω̂rOL(log) Ω̂rOL

Ω̂rOL

πL

πL

we can define, for

vL(η) ≥ 2eL
p− 1

+ 1,

an exponential map

exp
log
η,r+1 : Ω̂rOL(log)→ K̂r+1(L)

by taking the composite

exp
log
η,r+1 = exp η

πL
,r+1 ◦πL.

To simplify the notation, we omit the superscript log when we write this exponential map.

Lemma 3.3.2. Let L be a complete discrete valuation field of mixed characteristic, with

residue field l of characteristic p > 0. Assume that η ∈ OL satisfies

n = vL(η) ≥ 2eL
p− 1

+ 1.

Then the image of the exponential map

expη : mn
′
L Ω̂rOL(log)→ K̂r+1(L)

is Un+n′K̂r+1(L).

Proof. Let a ∈ mn
′
L , bi ∈ O×L . Observe that, from the definition of the exponential map and
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[16, Proposition 3.2],

a
dπL
πL
∧ db1
b1
∧ · · · ∧ dbr−1

br−1
7→ {exp(paη), πL, b1, . . . , br−1}

and

a
db1
b1
∧ · · · ∧ dbr

br
7→ {exp(aη), b1, . . . , br}.

Then the image is contained in Un+n′K̂r+1(L). Let ñ ≥ n+ n′. Observe that the maps

mñL

mñ+1
L

⊗ ΩrOL(log)→ U ñKr+1(L)/U ñ+1Kr+1(L)

given by

α⊗ βdb1
b1
∧ · · · ∧ dbr

br
7→ {1 + αβ, b1, . . . , br},

where α ∈ mñL, β ∈ OL, bi ∈ L×, are surjective. Passing to the limit, we get that expη :

mn
′
L Ω̂rOL(log)→ Un+n′K̂r+1(L) is surjective.

We shall now construct some tools and intermediate steps necessary for the obtainment of

the main result. For an extension of complete discrete valuation fields of mixed characteristic

L/K, where k is not necessarily perfect, denote by δtor(L/K) the length of

Ω̂1
OL(log)tor

OL ⊗OK Ω̂1
OK (log)tor

.

Remark 3.3.3. When k is perfect, the OK -module Ω̂1
OK (log) is a torsion module, and there-

fore δtor(L/K) is simply the length of

(
Ω̂1
OL/OK (log)

)
tor

,

which coincides with the definition of δtor(L/K) introduced previously.

We have the following property:
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Lemma 3.3.4. Let L/M be a finite extension of complete discrete valuation fields of char-

acteristic zero. Assume that the residue field l of L has characteristic p > 0 and [l : lp] = pr.

Write e = e(L/M). Then

TrL/M

(
m
en−δtor(L/M)
L

Ω̂rOL(log)

Ω̂rOL(log)tor

)
= mnM

Ω̂rOM (log)

Ω̂rOM (log)tor

and

TrL/M

(
m
en−δtor(L/M)+1
L

Ω̂rOL(log)

Ω̂rOL(log)tor

)
= mn+1

M

Ω̂rOM (log)

Ω̂rOM (log)tor

for every integer n.

Proof. We shall prove the first equality. Let δ(L/M) be the length of the OL-module

Ω̂1
OL/OM

(log). Observe that
Ω̂1
OL(log)

Ω̂1
OL(log)tor

and
Ω̂1
OM (log)

Ω̂1
OM (log)tor

are free of rank r. We have

an exact sequence

0 OL ⊗
OM

Ω̂1
OM (log)

Ω̂1
OM (log)tor

Ω̂1
OL(log)

Ω̂1
OL(log)tor

Ω̂1
OL(log)

Ω̂1
OL(log)tor

OL ⊗
OM

Ω̂1
OM (log)

Ω̂1
OM (log)tor

0.

Since the length of
Ω̂1
OL(log)

Ω̂1
OL(log)tor

/(
OL ⊗OM

Ω̂1
OM (log)

Ω̂1
OM (log)tor

)

is δ(L/M)− δtor(L/M), we have that the length of

Ω̂rOL(log)

Ω̂rOL(log)tor

/(
OL ⊗OM

Ω̂rOM (log)

Ω̂rOM (log)tor

)

is also δ(L/M)− δtor(L/M). Since
Ω̂rOL(log)

Ω̂rOL(log)tor
and

Ω̂rOM (log)

Ω̂rOM (log)tor
are both free of rank one,

we have
Ω̂rOL(log)

Ω̂rOL(log)tor
= m

δtor(L/M)−δ(L/M)
L

Ω̂rOM (log)

Ω̂rOM (log)tor
.
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Therefore

TrL/M

(
m
en−δtor(L/M)
L

Ω̂rOL(log)

Ω̂rOL(log)tor

)
=

TrL/M

(
m
en−δtor(L/M)
L m

δtor(L/M)−δ(L/M)
L

Ω̂rOM (log)

Ω̂rOM (log)tor

)
=

TrL/M

(
m
en−δ(L/M)
L

) Ω̂rOM (log)

Ω̂rOM (log)tor
.

Let δ̃(L/M) be the length of the OL-module Ω̂1
OL/OM

. Since

TrL/M

(
m
e(n+1)−δ̃(L/M)−1
L

)
= mnM

and δ̃(L/M) = δ(L/M) + e− 1, we get

TrL/M

(
m
en−δ(L/M)
L

)
= mnM .

Hence

TrL/M

(
m
en−δtor(L/M)
L

Ω̂rOL(log)

Ω̂rOL(log)tor

)
= mnM

Ω̂rOM (log)

Ω̂rOM (log)tor
.

The second equality is obtained similarly.

We shall now make the constructions necessary for defining a residue map

ResL/K : Ω̂
q−1
OL (log)→ OK

for a finite extension L of K{{T1}} · · · {{Tq−1}}, where K is a local field of mixed charac-

teristic.

Definition 3.3.5. Let K be a complete discrete valuation field. Write L0 = K,L1 =
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K{{T1}}, . . ., L = Lq−1 = K{{T1}} · · · {{Tq−1}}. Define

cLi/Li−1 : Li → Li−1

by

cLi/Li−1

∑
k∈Z

akT
k
i

 = a0.

Then define cL/K = cL1/L0
◦ · · · ◦ cLq−1/Lq−2 .

Definition 3.3.6. Let K be a local field of mixed characteristic and L0 = K,L1 =

K{{T1}}, . . ., L = Lq−1 = K{{T1}} · · · {{Tq−1}}. Define the residue map ResLi/Li−1 as

the composition

Ω̂iOLi
(log)→ Ω̂iOLi/OLi−1

(log)→ Ω̂i−1
OLi−1

(log),

where Ω̂iOLi/OLi−1
(log)→ Ω̂i−1

OLi−1
(log) is the homomorphism that satisfies

ad log T1 ∧ · · · ∧ d log Ti 7→ cLi/Li−1(a)d log T1 ∧ · · · ∧ d log Ti−1

for a ∈ OLi . Then define

ResL/K : Ω̂
q−1
OL (log)→ OK

as the composition

ResL/K = ResL1/L0
◦ · · · ◦ ResLq−1/Lq−2 .

It induces

ResL/K : Ω̂
q−1
OL (log)⊗OL L→ K.

Definition 3.3.7. Let L be a finite extension of M = K{{T1}} · · · {{Tq−1}}, where K is a

local field of mixed characteristic. Define the residue map

ResL/K : Ω̂
q−1
OL (log)⊗OL L→ K
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by

ResL/K = ResM/K ◦TrL/M .

Remark 3.3.8. In Definition 3.3.7, ResL/K is expected to be independent ofM . Independence

has been proven when L is a two-dimensional local field ([20, 2.3.3]), but appears to remain

open in the general case. This property shall not be necessary for us.

We will now start to obtain some properties of the trace and residue maps that will be

necessary for the proof of the main theorem of this section.

Proposition 3.3.9. Let L be a complete discrete valuation field that is a finite extension

of M = K{{T1}} · · · {{Tq−1}}, where K is a local field of mixed characteristic. Write

e = e(L/K). Then, for any integer n,

ResL/K

m
ne−δtor(L/K)
L

Ω̂
q−1
OL (log)

Ω̂
q−1
OL (log)tor

 = mnK

and

ResL/K

m
ne−δtor(L/K)+1
L

Ω̂
q−1
OL (log)

Ω̂
q−1
OL (log)tor

 = mn+1
K .

Proof. We shall prove the first equality; the second is obtained in a similar way.

Observe that ResL/K = ResM/K ◦TrL/M . Further, Ω̂
q−1
OM (log) is generated by dTi and

d log πK , and its torsion part is generated by d log πK . Thus we have an isomorphism

OM ⊗OK Ω̂1
OK (log) ' Ω̂

q−1
OM (log)tor. We get, by definition,

δtor(L/K) = δtor(L/M).
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Then, using Lemma 3.3.4, we get

ResL/K

m
ne−δtor(L/K)
L

Ω̂
q−1
OL (log)

Ω̂
q−1
OL (log)tor

 =

ResM/K

TrL/M

m
ne−δtor(L/K)
L

Ω̂
q−1
OL (log)

Ω̂
q−1
OL (log)tor

 =

ResM/K

mnM

Ω̂
q−1
OM (log)

Ω̂
q−1
OM (log)tor

 = mnK .

Proposition 3.3.10. Let L, K, and e be as in Proposition 3.3.9. Then, if n ∈ N satisfies

n ≥ δtor(L/K)

e
,

we have

ResL/K

(
m
ne−δtor(L/K)
L Ω̂

q−1
OL (log)

)
= mnK

and

ResL/K

(
m
ne−δtor(L/K)+1
L Ω̂

q−1
OL (log)

)
= mn+1

K .

Proof. In this case en− δtor(L/K) ≥ 0, so this follows from Proposition 3.3.9.

We will now use the previous properties of residue and trace maps, the exponential

map defined by M. Kurihara ([16]), and a modification of higher dimensional class field

theory to prove that, when L is a q-dimensional local field that is a finite extension of

K{{T1}} · · · {{Tq−1}}, Main Result 2 holds. This will then be used to prove the general

result. We start with the following theorem:

Theorem 3.3.11. Let L be a q-dimensional local field that is a finite extension of M =

K{{T1}} · · · {{Tq−1}}, where K is a local field of mixed characteristic with residue field k
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of characteristic p > 0. Write e = e(L/K). Assume that n ∈ N satisfies

n ≥ 2eK
p− 1

+
1

e

and let n′ ∈ N be such that n′ ≥ δtor(L/K)
e . Take η ∈ OK such that vK(η) = n.

Then we have a commutative diagram

m
en′−δtor(L/K)
L Ω̂

q−1
OL (log) K̂q(L)

mn
′
K K×

expη

ResL/K ResL/K

expη

where the right vertical arrow is the residue homomorphism from K-theory defined in [7] and

the top and bottom horizontal maps are, respectively, the exponential maps expη,q and expη,1

defined in [16]. Further, the left vertical arrow is surjective.

Proof. First, observe that the condition

n ≥ 2eK
p− 1

+
1

e

implies

en ≥ 2eKe

p− 1
+ 1 =

2eL
p− 1

+ 1.

Therefore this condition guarantees the convergence of both the top and the bottom expo-

nential maps (by Theorem 0.1 in [16]). Furthermore, the condition

n′ ≥ δtor(L/K)

e

guarantees that we can apply Proposition 3.3.10.

We need to prove that the diagram
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m
en′−δtor(L/K)
L Ω̂

q−1
OL (log) K̂q(L)

mn
′
M Ω̂

q−1
OM (log) K̂q(M)

mn
′
K K×

expη

TrL/M NL/M

expη

ResM/K ResM/K

expη

commutes.

By Proposition 3.3.10, the map ResL/K : Ω̂
q−1
OL (log)→ OK induces a surjection

ResL/K : m
en′−δtor(L/K)
L Ω̂

q−1
OL (log) � mn

′
K ,

and the map ResM/K : Ω̂
q−1
OM (log)→ OK induces a surjection

ResM/K : mn
′
M Ω̂

q−1
OM (log) � mn

′
K .

A similar argument shows that TrL/M : Ω̂
q−1
OL (log)→ Ω̂

q−1
OM (log) induces a surjection

TrL/M : m
en′−δtor(L/K)
L Ω̂

q−1
OL (log) � mn

′
M Ω̂

q−1
OM (log).

The commutativity of the top square is shown in [16]. The commutativity of the bottom

square can be checked explicitly as follows. Let M0 = K,M1 = K{{T1}}, . . . ,Mq−1 = M =

K{{T1}} · · · {{Tq−1}}. It is enough to show that each one of the squares in the diagram

45



Ω̂
q−1
OM (log) K̂q(M)

Ω̂
q−2
OMq−2

(log) K̂q−1(Mq−2)

...
...

Ω̂1
OM1

(log) K̂2(M1)

OK K×

expη

ResM/Mq−2
ResM/Mq−2

expη

ResMq−2/Mq−3
ResMq−2/Mq−3

ResM2/M1
ResM2/M1

expη

ResM1/K
ResM1/K

expη

commutes.

Let a ∈ OMi
and write

a =
∑
k<0

akT
k
i + a0 +

∑
k>0

akT
k
i ,

where ak ∈ OMi−1 for every k ∈ Z. Put a− =
∑
k<0

akT
k
i and a+ =

∑
k>0

akT
k
i . Observe first

that, since

K̂i(Mi−1) K̂i+1(Mi) K̂i(Mi−1)
{ ,Ti} ResMi/Mi−1

is the identity map ([7, Theorem 1]), we get

ResMi/Mi−1 ◦ expη

(
a0
dT1

T1
∧ · · · ∧ dTi

Ti

)
=

ResMi/Mi−1{exp(ηa0), T1, . . . , Ti} = {exp(ηa0), T1, . . . , Ti−1} =

expη ◦ResMi/Mi−1

(
a0
dT1

T1
∧ · · · ∧ dTi

Ti

)
.
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Further, the same theorem gives

ResMi/Mi−1 ◦ expη

(
a+

dT1

T1
∧ · · · ∧ dTi

Ti

)
=

expη ◦ResMi/Mi−1

(
a+

dT1

T1
∧ · · · ∧ dTi

Ti

)
= 0.

We will now show that we also have

ResMi/Mi−1 ◦ expη

(
a−

dT1

T1
∧ · · · ∧ dTi

Ti

)
=

expη ◦ResMi/Mi−1

(
a−

dT1

T1
∧ · · · ∧ dTi

Ti

)
= 0.

From Theorem 1 in [7], we have, for k ∈ Z<0 and m ∈ N,

ResMi/Mi−1

{
1 + ηakT

k
i + · · ·+

(ηak)mTmki

m!
, T1, . . . , Ti

}
= 0.

Since vMi−1((ηak)m/m! )→∞ and the residue map is continuous, we have

ResMi/Mi−1

{
exp(ηakT

k
i ), T1, . . . , Ti

}
= 0. (∗)

Given k ∈ Z<0, write sk =
∑

k≤k′<0
ak′T

k′
i . From (∗) we have that

ResMi/Mi−1 {exp(ηsk), T1, . . . , Ti} = 0.

By continuity and sk → a−, we get

ResMi/Mi−1 {exp(ηa−), T1, . . . , Ti} = 0.
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Hence we conclude that

ResMi/Mi−1 ◦ expη

(
a
dT1

T1
∧ · · · ∧ dTi

Ti

)
=

expη ◦ResMi/Mi−1

(
a
dT1

T1
∧ · · · ∧ dTi

Ti

)
.

A similar argument shows that

ResMi/Mi−1 ◦ expη

(
a
dT1

T1
∧ · · · ∧ dTi−1

Ti−1
∧ dπK
πK

)
=

expη ◦ResMi/Mi−1

(
a
dT1

T1
∧ · · · ∧ dTi−1

Ti−1
∧ dπK
πK

)
= 0,

so we conclude that each square in the diagram is commutative.

We have now developed all the necessary tools in order to prove Proposition 3.3.12,

which states that Main Result 2 holds when L is a q-dimensional local field that is a finite

extension of K{{T1}} · · · {{Tq−1}}. We will then use Proposition 3.3.12 to prove Theorem

3.3.13, which gives Main Result 2 in full generality.

Proposition 3.3.12. Let L be a q-dimensional local field that is a finite extension of M =

K{{T1}} · · · {{Tq−1}}, where K is a local field of mixed characteristic with residue field k

of characteristic p > 0. Assume that χ ∈ H1(K) is such that

Swχ ≥ 2eK
p− 1

+
1

e(L/K)
+

⌈
δtor(L/K)

e(L/K)

⌉
.

Denote by χL its image in H1(L). Then

SwχL = e(L/K) Swχ− δtor(L/K).

Proof. Using the same argument as in [8, (7.6)], we can assume H1
p (k) 6= 0. Let L = Lq, l =

Lq−1, . . . , L1, L0 be the chain of residue fields of the q-dimensional local field L. Since there

48



are isomorphisms ([6, Theorem 3])

Hq+1(L){p} ' Hq(Lq−1){p} ' Hq−1(Lq−2){p} ' · · · ' H1(L0){p}

and

H2(K){p} ' H1(k){p},

we have a commutative diagram

H1(L) × K̂q(L) Hq+1(L){p} H1(L0){p}

H1(K) × K× H2(K){p} H1(k){p}

ResL/K

{ , }L '

{ , }K '

Here, the pairing H1(L) × K̂q(L) → Hq+1(L){p} is the one constructed in [8]. Denote the

composition H1(L) × K̂q(L) → Hq+1(L){p} → H1(k){p} by { , }k. Similarly, denote the

composition H1(L) × K̂q(L) → Hq+1(L){p} → Hq(l){p} by { , }l. Since the last arrow is

an isomorphism, {A,B}L = 0 if and only if {A,B}l = 0, where A ∈ H1(L) and B ∈ K̂q(L).

Observe that H1
p (L0) 6= 0. Indeed, H1

p (L0) ' L0/(x
p − x, x ∈ L0) and H1

p (k) ' k/(xp −

x, x ∈ k), so H1
p (L0) � H1

p (k) follows from the compatibility between the corestriction map

and the trace map. Since H1
p (k) 6= 0, we also have H1

p (L0) 6= 0.

From [8, Proposition 6.5], we have that

SwχL = m ≥ 1

if and only if

{χL, Um+1K̂q(L)}L = 0

but

{χL, UmK̂q(L)}L 6= 0.
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To simplify notation, put e = e(L/K), n′ =
⌈
δtor(L/K)

e

⌉
and n = Swχ−n′. Pick η ∈ OK

such that vK(η) = n. From Lemma 3.3.2, the commutative diagram

m
en′−δtor(L/K)
L Ω̂

q−1
OL (log) K̂q(L)

mn
′
K K×

expη

ResL/K ResL/K

expη

given by Theorem 3.3.11, and the surjectivity of the left vertical arrow, we have that

{χL, UeSwχ−δtor(L/K)+1K̂q(L)}k =

{χL, Uen
′−δtor(L/K)+en+1K̂q(L)}k = {χ, USwχ+1

K }k = 0

but

{χL, Ue Swχ−δtor(L/K)K̂q(L)}k =

{χL, Uen
′−δtor(L/K)+enK̂q(L)}k = {χ, USwχ

K }k 6= 0.

This clearly yields {χL, UeSwχ−δtor(L/K)K̂q(L)}L 6= 0, so SwχL ≥ e Swχ− δtor(L/K).

It remains to show that SwχL ≤ e Swχ− δtor(L/K).

Assume that s = SwχL > e Swχ− δtor(L/K). The key point is to show that

{χL, UsK̂q(L)}l ⊃ H
q
p(l).

Indeed, if {χL, UsK̂q(L)}l ⊃ H
q
p(l), then, from the isomorphisms

H
q
p(l) ' · · · ' H1

p (L0)

obtained in [6] and the surjectivity of H1
p (L0) � H1

p (k), we get that

{χL, UsK̂q(L)}k 6= 0.
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This is a contradiction because

{χL, UsK̂q(L)}k ⊂ {χL, UeSwχ−δtor(L/K)+1K̂q(L)}k = {χ, USwχ+1
K }k = 0.

We will now show that {χL, UsK̂q(L)}l ⊃ H
q
p(l). Since l is of characteristic p > 0, there

is an isomorphism

H
q
p(l) ' Coker

(
F − 1 : Ω

q−1
l −→ Ω

q−1
l /dΩ

q−2
l

)
.

Denote by δ1(ω) the class of ω ∈ Ω
q−1
l in H

q
p(l). Let [πsL]−1

(
α + β

d[πL]
[πL]

)
be Kato’s refined

Swan conductor ([8, Definition 5.3]) of χL, where α ∈ Ω1
l and β ∈ l, and (α, β) 6= (0, 0).

If β 6= 0, take u1, . . . , uq−1 ∈ l× and a ∈ l such that

δ1

(
aβ
du1

u1
∧ · · · ∧

duq−1

uq−1

)
6= 0.

Let ã ∈ OL, ũi be lifts of a, ui to OL. Then

{χL, 1 + ãπsL, ũ1, . . . , ũq−1}l = δ1

(
aβ
du1

u1
∧ · · · ∧

duq−1

uq−1

)
6= 0.

Since Ω
q−1
l is a one-dimensional vector space over l, we know that β du1u1 ∧ · · · ∧

duq−1
uq−1

is a

generator for Ω
q−1
l over l. Then

H
q
p(l) =

{
δ1

(
bβ
du1

u1
∧ · · · ∧

duq−1

uq−1

)
: b ∈ l

}
=
{
{χL, 1 + b̃πsL, ũ1, . . . , ũq−1}l : b̃ ∈ OL

}
⊂ {χL, UsK̂q(L)}l.

Similarly, if β = 0 and α 6= 0, take u1, . . . , uq−2 ∈ l× and a ∈ l such that

δ1

(
aα ∧ du1

u1
∧ · · · ∧

duq−2

uq−2

)
6= 0.
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We have that

{χL, 1 + ãπsL, ũ1, . . . , ũq−2, πL}l = δ1

(
aα ∧ du1

u1
∧ · · · ∧

duq−1

uq−2

)
6= 0,

and α ∧ du1
u1
∧ · · · ∧ duq−1

uq−2
is a generator for Ω

q−1
l over l. Then, using the same reasoning as

before, we get H
q
p(l) ⊂ {χL, UsK̂q(L)}l.

Theorem 3.3.13. Let L/K be an extension of complete discrete valuation fields of mixed

characteristic. Assume that K has perfect residue field of characteristic p > 0.

Denote by e(L/K) the ramification index of L/K. Assume that χ ∈ H1(K) is such that

Swχ ≥ 2eK
p− 1

+
1

e(L/K)
+

⌈
δtor(L/K)

e(L/K)

⌉
.

Denote by χL its image in H1(L). Then

SwχL = e(L/K) Swχ− δtor(L/K).

Proof. Following the same argument as [8, §10], we can assume that the residue field l of L

is finitely generated over the residue field k of K. Since we have proven Proposition 3.3.12,

it is enough to show that this case can be reduced to that of a q-dimensional local field that

is a finite extension of K{{T1}} · · · {{Tq−1}}.

Since l is finitely generated over k, there are T1, . . . , Tq−1 ∈ l such that l is a finite,

separable extension of k(T1, . . . , Tq−1). Since there is an embedding k(T1, . . . , Tq−1) ↪→

k((T1)) · · · ((Tq−1)), there is also an embedding l ↪→ E of l into a finite, separable extension

E of k((T1)) · · · ((Tq−1)). Since {T1, . . . , Tq−1} is a p-basis for both l and E, there is a

complete, discrete valuation field L(E) that is an extension of L satisfying OL ⊂ OL(E),

mL ⊂ mL(E), πL is still prime in L(E), and the residue field of L(E) is isomorphic to E over

l.

L(E) is a finite extension of K{{T1}} · · · {{Tq−1}}. Since e(L(E)/L) = 1, we get
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e(L(E)/K) = e(L/K). Further, since E and l have the same p-basis and πL is a prime

for both L and L(E), the map OL(E) ⊗OL Ω̂1
OL(log) → Ω̂1

OL(E)
(log) sends generators to

generators satisfying the same relations, so it is an isomorphism. In particular, OL(E) ⊗OL
Ω̂1
OL(log)tor ' Ω̂1

OL(E)
(log)tor. Therefore, by definition, δtor(L(E)/K) = δtor(L/K). From

[8, Lemma 6.2], since OL ⊂ OL(E), mL(E) = OL(E)mL, and the extension of residue fields

is separable, we have SwχL(E) = SwχL. Thus it is sufficient to prove that

SwχL(E) = e(L/K) Swχ− δtor(L(E)/K),

which follows from Proposition 3.3.12.
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CHAPTER 4

GENERALIZED HASSE-HERBRAND ψ-FUNCTIONS

Through this chapter, let L/K be an extension of complete discrete valuation fields such that

the residue field of K is perfect and of characteristic p > 0. We define generalizations of the

classical Hasse-Herbrand ψ-function for this case. More precisely, we will define functions

ψAS
L/K

: R≥0 → R≥0 and ψab
L/K

: R≥0 → R≥0 and show that, in the classical case of L/K

finite, they both coincide with the classical ψL/K : R≥0 → R≥0 (see Theorem 4.0.5). The

superscripts AS and ab refer, respectively, to Abbes-Saito and abelian. In the definition of

ψAS
L/K

we use the Abbes-Saito upper ramification filtrations of absolute Galois groups, while

in the definition of ψab
L/K

we use Kato’s ramification filtration of H1(L).

We also define functions ϕAS
L/K

: R≥0 → R≥0 and ϕab
L/K

: R≥0 → R≥0 and show that,

when ϕAS
L/K

and ϕab
L/K

are injective, ψAS
L/K

and ψab
L/K

are their respective left inverses (and

vice-versa).

Assume first that the residue field k of K is algebraically closed. Recall that the residue

field l of L may be imperfect.

For t ∈ Z(p), t ≥ 0, define ψab
L/K

(t) ∈ R≥0 as

ψab
L/K(t) =

inf

s ∈ Z(p)

∣∣∣∣∣∣∣∣∣∣
Im(Fe(K ′/K)tH

1(K ′)→ H1(LK ′)) ⊂ Fe(LK ′/L)sH
1(LK ′)

for all finite, tame extensions K ′/K of complete discrete

valuation fields such that e(LK ′/L)s, e(K ′/K)t ∈ Z

 ,

and then extend ψab
L/K

to R≥0 by putting

ψab
L/K(t) = sup{ψab

L/K(s) : s ≤ t, s ∈ Z(p)}.
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Similarly, for t ∈ Z(p), t ≥ 0, define ϕab
L/K

(t) ∈ R≥0 as

ϕab
L/K(t) =

sup

s ∈ Z(p)

∣∣∣∣∣∣∣∣∣∣
Im(Fe(K ′/K)sH

1(K ′)→ H1(LK ′)) ⊂ Fe(LK ′/L)tH
1(LK ′)

for all finite, tame extensions K ′/K of complete discrete

valuation fields such that e(LK ′/L)t, e(K ′/K)s ∈ Z

 ,

and then extend ϕab
L/K

to R≥0 by putting

ϕab
L/K(t) = sup{ϕab

L/K(s) : s ≤ t, s ∈ Z(p)}.

Let Gt+K, log denote the Abbes-Saito logarithmic upper ramification filtration defined in

[1]. We now define ψAS
L/K

and ϕAS
L/K

by putting, for t ∈ R≥0,

ψAS
L/K(t) = inf

{
s ∈ R : Im(Gs+L, log → GK) ⊂ Gt+K, log

}

and

ϕAS
L/K(t) = sup

{
s ∈ R : Im(Gt+L, log → GK) ⊂ Gs+K, log

}
.

When k is not necessarily algebraically closed, we define ψab
L/K

, ϕab
L/K

, ψAS
L/K

and ϕab
L/K

as follows. Let K̃ = K̂ur and L̃ = L̂Kur. Then define ψab
L/K

= ψab
L̃/K̃

, ϕab
L/K

= ϕab
L̃/K̃

,

ψAS
L/K

= ψAS
L̃/K̃

and ϕAS
L/K

= ϕAS
L̃/K̃

.

The above defined functions have properties similar to those of their classical counter-

parts. We will now prove some of these properties.

Proposition 4.0.1. If ϕab
L/K

(t) is injective, then ψab
L/K

(t) is its left inverse. Similarly, if

ψab
L/K

(t) is injective, then ϕab
L/K

(t) is its left inverse.

Proof. From the definitions of ϕab
L/K

(t) and ψab
L/K

(t), we can assume that k is algebraically

closed. We shall prove that if ϕab
L/K

(t) is injective, then ψab
L/K

(t) is its left inverse. The other
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statement is proved in an analogous way.

It is enough to show that, for t ∈ Z(p), t ≥ 0, we have t = ψab
L/K

(ϕab
L/K

(t)). If s ∈ Z(p) is

smaller or equal to ϕab
L/K

(t), then

Im(Fe(K ′/K)sH
1(K ′)→ H1(LK ′)) ⊂ Fe(LK ′/L)tH

1(LK ′)

for all finite Galois extensions K ′/K of complete discrete valuation fields such that K ′/K is

tame and e(LK ′/L)t, e(K ′/K)s ∈ Z. Then t ≥ ψab
L/K

(s), so t ≥ ψab
L/K

(ϕab
L/K

(t)).

Assume that we have t > ψab
L/K

(ϕab
L/K

(t)). Take t̃ ∈ Z(p) that satisfies ψab
L/K

(ϕab
L/K

(t)) <

t̃ < t. Let K ′/K be any finite Galois extension of complete discrete valuation fields that is

tame and such that e(LK ′/L)t̃ ∈ Z. Since t̃ > ψab
L/K

(ϕab
L/K

(t)),

Im(Fe(K ′/K)sH
1(K ′)→ H1(LK ′)) ⊂ Fe(LK ′/L)t̃H

1(LK ′)

for every s ≤ ϕab
L/K

(t) in Z(p) such that e(K ′/K)s ∈ Z. Then

ϕab
L/K(t̃) ≥ ϕab

L/K(t).

Since ϕab
L/K

is clearly increasing and t > t̃, we get

ϕab
L/K(t̃) = ϕab

L/K(t),

which contradicts the injectivity assumption. Therefore

t = ψab
L/K(ϕab

L/K(t))

for every t ≥ 0 and we conclude that ψab
L/K

(t) is the left inverse of ϕab
L/K

(t).

The analogous result for ψAS
L/K

and ϕAS
L/K

is also true:
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Proposition 4.0.2. If ϕAS
L/K

(t) is injective, then ψAS
L/K

(t) is its left inverse. Similarly, if

ψAS
L/K

(t) is injective, then ϕAS
L/K

(t) is its left inverse.

Proof. From the definitions of ϕAS
L/K

(t) and ψAS
L/K

(t), we can assume that k is algebraically

closed. We shall prove that if ϕAS
L/K

(t) is injective, then ψAS
L/K

(t) is its left inverse. The other

statement is proved in an analogous way.

If s ∈ R is less than or equal to ϕAS
L/K

(t), then

Im(Gt+L, log → GK) ⊂ Gs+K, log.

Hence t ≥ ψAS
L/K

(s) ≥ ψAS
L/K

(ϕAS
L/K

(t)).

Assume that we have t > ψAS
L/K

(ϕAS
L/K

(t)). Take t̃ ∈ R such that

ψAS
L/K(ϕAS

L/K(t)) < t̃ < t.

Then

Im(Gt̃+L, log → GK) ⊂ Gs+K, log

for every s ≤ ϕAS
L/K

(t). Thus

ϕAS
L/K(t̃) ≥ ϕAS

L/K(t).

Since ϕAS
L/K

is clearly increasing and t > t̃, we get

ϕAS
L/K(t̃) = ϕAS

L/K(t),

which contradicts the injectivity assumption. Therefore

t = ψAS
L/K(ϕAS

L/K(t))

for every t ≥ 0 and we conclude that ψAS
L/K

(t) is the left inverse of ϕAS
L/K

(t).
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These functions satisfy formulas similar to those satisfied by the classical ϕ and ψ-

functions, as we can see from the following lemma.

Lemma 4.0.3. Let K ′ be a finite Galois extension of K that is tamely ramified and L′ =

LK ′. Then

ϕab
L′/K ′(e(L

′/L)t) = e(K ′/K)ϕab
L/K(t),

ψab
L′/K ′(e(K

′/K)t) = e(L′/L)ψab
L/K(t),

ϕAS
L′/K ′(e(L

′/L)t) = e(K ′/K)ϕAS
L/K(t),

ψAS
L′/K ′(e(K

′/K)t) = e(L′/L)ψAS
L/K(t).

Proof. Follows from the definitions. For example,

ϕAS
L′/K ′(e(L

′/L)t) = sup
{
s ∈ R : Im(G

e(L′/L)t+
L, log → G′K) ⊂ Gs+

K ′, log

}
= sup

{
s ∈ R : Im(Gt+L, log → GK) ⊂ G

s
e(K′/K)

+

K, log

}
= e(K ′/K) sup

{
s ∈ R : Im(Gt+L, log → GK) ⊂ Gs+K, log

}
= e(K ′/K)ϕAS

L/K(t).

We relate this discussion with Chapter 3. The main results that we proved in the previous

chapter are, in reality, results about ψab
L/K

. More precisely, we have the following theorem:

Theorem 4.0.4. Let L/K be a separable extension of complete discrete valuation fields.

Assume that K has perfect residue field of characteristic p > 0. Let t ∈ R≥0 be such that


t ≥ 2eK

p− 1
+

1

e(L/K)
+

⌈
δtor(L/K)

e(L/K)

⌉
if K is of characteristic 0,

t >
p

p− 1

δtor(L/K)

e(L/K)
if K is of characteristic p.
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Then

ψab
L/K(t) = e(L/K)t− δtor(L/K).

Proof. Write

T (L/K) =
2eK
p− 1

+
1

e(L/K)
+

⌈
δtor(L/K)

e(L/K)

⌉
when K is of characteristic 0, and

T (L/K) =
p

p− 1

δtor(L/K)

e(L/K)

when K is of characteristic p. Let t ∈ R≥0 be such that t ≥ T (L/K) if K is of characteristic

0 and t > T (L/K) if K is of characteristic p.

If t ∈ Z, it follows from Theorems 3.1.12 and 3.3.13 that

ψab
L/K(t) = e(L/K)t− δtor(L/K).

If t ∈ Z(p), take a finite Galois extension K ′/K that is tamely ramified and such that

e(K ′/K)t ∈ Z. Observe that, if K is of characteristic 0,

e(K ′/K)T (L/K) =
2eK ′

p− 1
+

e(L′/L)

e(L′/K ′)
+ e(K ′/K)

⌈
δtor(L/K)

e(L/K)

⌉
≥ 2eK ′

p− 1
+

e(L′/L)

e(L′/K ′)
+

⌈
e(L′/L)δtor(L/K)

e(L′/K ′)

⌉
≥ 2eK ′

p− 1
+

1

e(L′/K ′)
+

⌈
δtor(L

′/K ′)
e(L′/K ′)

⌉
= T (L′/K ′).
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Similarly, if K is of characteristic p,

e(K ′/K)T (L/K) =
p

p− 1

e(K ′/K)δtor(L/K)

e(L/K)

=
p

p− 1

e(L′/L)δtor(L/K)

e(L′/K ′)

=
p

p− 1

δtor(L
′/K ′)

e(L′/K ′)
= T (L′/K ′).

Then we have e(K ′/K)t ≥ T (L′/K ′) if K is of characteristic 0 and e(K ′/K)t > T (L′/K ′)

if K is of characteristic p. It follows that

ψab
L′/K ′(e(K

′/K)t) = e(L′/K ′)e(K ′/K)t− δtor(L
′/K ′)

= e(L′/L)e(L/K)t− e(L′/L)δtor(L/K).

From Lemma 4.0.3, we conclude that

ψab
L/K(t) =

ψab
L′/K ′(e(K

′/K)t)

e(L′/L)
= e(L/K)t− δtor(L/K).

The result then follows from the definition of ψab
L/K

.

In the classical case, the functions we defined in fact coincide with the classical ϕ and

ψ-functions, as is shown in the following theorem.

Theorem 4.0.5. If L/K is a finite Galois extension and k is perfect, we have

ψL/K = ψab
L/K = ψAS

L/K .

Proof. From the definitions of the functions, we can assume that k is algebraically closed.

We shall first show that ψAS
L/K

= ψL/K . To show ϕL/K(t) ≤ ϕAS
L/K

(t), just observe that, if
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L′/L is a finite Galois extension over K, then

G(L′/L)t=G(L′/L)ψL′/K◦ϕL/K(t)⊂G(L′/K)ψL′/K◦ϕL/K(t) =G(L′/K)ϕL/K(t).

Since the Abbes-Saito filtration is left continuous with rational jumps, it remains to show

that ϕL/K(t) ≥ ϕAS
L/K

(t) for t ∈ Q≥0. Let K ′ be a finite Galois extension of K that is tame

and write L′ = LK ′. Since L′/L and K ′/K are tame extensions, we have

ϕL′/K ′(e(L
′/L)t) = e(K ′/K)ϕK ′/K ◦ ϕL′/K ′ ◦ ψL′/L(t)

= e(K ′/K)ϕL′/K ◦ ψL′/L(t)

= e(K ′/K)ϕL/K(t).

From Serre’s local class field theory for fields with algebraically closed residue field ([24]),

for every s ∈ Z≥0, the maps

(
Gab
L′

)ψL′/K′(s)(
Gab
L′

)ψL′/K′(s)+1
→

(
Gab
K ′

)s
(
Gab
K ′

)s+1

have images that are of finite index and nontrivial. Taking K ′ such that e(K ′/K)ϕL/K(t) is

an integer and setting s = ϕL′/K ′(e(L
′/L)t), we see that the image of (Gab

L′ )
e(L′/L)t = (Gab

L )t

is not contained in (Gab
K ′)

ϕL′/K′(e(L
′/L)t)+1

.

Since (Gab
K ′)

e(K ′/K)ϕL/K(t)+1 = (Gab
K )

ϕL/K(t)+ 1
e(K′/K) , we have that the image of (Gab

L )t

is not contained in (Gab
K )

ϕL/K(t)+ 1
e(K′/K) . We can choose tame extensions with e(K ′/K)

arbitrarily large, so we have that ϕL/K(t) ≥ ϕAS
L/K

(t). Hence ψAS
L/K

= ψL/K .

Now we shall prove that ψab
L/K

= ψL/K . Let K ′/K be a finite, separable extension

of complete discrete valuation fields that is tamely ramified and such that e(LK ′/L)t and

e(K ′/K)ϕL/K(t) are integers. Write L′ = LK ′. Observe that, taking into account that
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K ′/K and L′/L are tamely ramified, we have

ψL′/K ′(e(K
′/K)ϕL/K(t)) = ψL′/K ′ ◦ ψK ′/K ◦ ϕL/K(t) = ψL′/K ◦ ϕL/K(t)

= ψL′/L ◦ ψL/K ◦ ϕL/K(t) = ψL′/L(t) = e(L′/L)t.

Let

χ ∈ Fe(K ′/K)ϕL/K(t)H
1(K ′).

Denote by χL′ its image in H1(L′). Using the same argument as before we see that χL′ ∈

Fe(L′/L)tH
1(L′), so ϕL/K(t) ≤ ϕab

L/K
(t). Now, if s = ϕL/K(t) + 1

e(K ′/K)
, then

Fe(K ′/K)sH
1(K ′) = Fe(K ′/K)ϕL/K(t)+1H

1(K ′).

Since Fe(L′/L)tH
1(L′) does not contain the image of Fe(K ′/K)ϕL/K(t)+1H

1(K ′), we have

that s > ϕab
L/K

(t). Since we can take extensions K ′/K with arbitrarily large e(K ′/K), we

get that ϕL/K = ϕab
L/K

. Thus ψab
L/K

= ψL/K .

The properties we proved and Theorem 4.0.5 give evidence that the above defined func-

tions ψab
L/K

and ψAS
L/K

are good generalizations of the classical ψ-function. We can conjecture:

Conjecture 2. Let L/K be an extension of complete discrete valuation fields. Assume that

k is perfect of characteristic p > 0. Then

ψab
L/K = ψAS

L/K .

Conjecture 3. Let L/K be an extension of complete discrete valuation fields. Assume that

k is perfect of characteristic p > 0. Then ψab
L/K

and ψAS
L/K

are continuous, piecewise linear,

increasing, and convex.
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