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ABSTRACT

This thesis treats several topics in ramification theory. Let K be a complete discrete valuation
field whose residue field is perfect and of positive characteristic.

The first topic treated is ramification of étale cohomology. More precisely, let X be a
connected, proper scheme over O, and U be the complement in X of a divisor with simple
normal crossings. Assume that the pair (X, U) is strictly semi-stable over O of relative
dimension one and K is of equal characteristic. We prove that, for any smooth (-adic sheaf
¢ on U of rank one, at most tamely ramified on the generic fiber, if the ramification of ¢
is bounded by ¢+ for the logarithmic upper ramification groups of Abbes-Saito at points of
codimension one of X, then the ramification of the étale cohomology groups with compact
support of ¢4 is bounded by t+ in the same sense.

The second topic treated is ramification in transcendental extensions of local fields. Let
L/K be a separable extension of complete discrete valuation fields. The residue field of L
is not assumed to be perfect. We prove a formula for the Swan conductor of the image of a
character y € H'(K,Q/Z) in HY(L,Q/Z) for x sufficiently ramified.

Finally, we treat generalized Hasse-Herbrand i-functions. We define generalizations
zb%? K and wé/SK of the classical Hasse-Herbrand v-function and study their properties.

In particular, we prove a formula for w%l; K (t) for sufficiently large t € R.

vi



CHAPTER 1
INTRODUCTION

Ramification theory flourished as an area of number theory in the 19th century, when Hilbert
first introduced the concept of higher ramification groups. Subsequent developments were
achieved by several authors, such as Hasse and Herbrand, who defined the classical -
function, and Artin, who defined the conductor of a character of the Galois group of a
local or global field. The classical theory is strongly related to the study of local fields,
nomenclature here used to describe complete discrete valuation fields with perfect residue
fields. Modern ramification theory seeks to generalize the classical theory in settings that
often involve the study of complete discrete valuation fields with imperfect residue fields.
Examples are Kato’s Swan conductor of an abelian character of the Galois group G(L/K),
where L/K is a finite extension of complete discrete valuation fields with imperfect residue
fields ([8]), Abbes and Saito’s upper filtrations of this Galois group ([1, 2, 23]), and Kedlaya’s
([13, 14]) and Xiao’s ([26, 27]) works on ramification for p-adic differential modules.

From classical ramification theory, if L/K is a finite Galois extension of local fields and
G = G(L/K) is the Galois group, we know that there are lower and upper ramification
filtrations Gy and G of G, where t € [0, 00), related to each other by the Hasse-Herbrand

-function:
t__
G = GdJL/K(t)‘

This function is a continuous, piecewise linear, increasing and convex function on [0, o).
In parallel, there is the notion of ramification of characters: one can measure the ramifi-
cation of a character y of G by its Swan conductor Sw x. This invariant plays an important
role in the Grothendieck-Ogg—Shafarevich formula, which allows us to compute the Euler-
Poincaré characteristic of an /-adic sheaf on a curve under certain assumptions.
Modern advances include Kato’s definition of the Swan conductor and refined Swan

conductor of an abelian character of G when the residue field of K is no longer assumed to
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be perfect ([8]), as well as the notion of Swan divisor ([9]). In the 2000’s, Abbes and Saito
used rigid geometry to construct a generalization of the upper ramification filtration of G
without assuming that the residue field of K is perfect ([1, 2, 23]). The connection between
Kato’s invariants and the filtration of Abbes and Saito has been established in characteristic
p > 0 ([3]), but remains open in mixed characteristic.

In this work, we explore these modern concepts to provide further advances to rami-
fication theory. In chapter 2, we investigate the ramification of étale cohomology groups.
Roughly, we use a conductor formula established by Kato and Saito in [11] and a twisting
argument to obtain the following result, which will be stated with more precision later. Let
K be local field of positive characteristic, and X a family of curves over O . Let U be the
complement in X of a divisor with simple normal crossings. Under some hypotheses, if the
ramification of a smooth f-adic sheaf & on U of rank one is bounded by ¢+ in the sense of
Abbes and Saito, then the ramification of the étale cohomology groups with compact support
of ¢ is also bounded by t+.

In chapter 3, we investigate ramification in transcendental extensions of local fields. More
precisely, we consider a separable extension L/K of complete discrete valuation fields, where
the residue field of K is perfect and of positive characteristic, but the residue field of L
may be imperfect. Then we prove a formula for the Swan conductor of the image of a
character y € HY(K,Q/Z) in H'(L,Q/Z) for y sufficiently ramified. This formula has an
interpretation in terms of generalized Hasse-Herbrand i-functions, which are defined and
studied in chapter 4. In this chapter, we consider such (possibly transcendental) extension
L/K and define generalizations w%l; 5 and 1/}%/SK of the classical Hasse-Herbrand v-function.
Further, we obtain a formula for w%l} () for sufficiently large ¢ € R.

Part of this work has been published by the author in [17, 18].



1.1 A taste of classical ramification theory

In this section, we give a very brief overview of classical ramification theory, which we hope
will provide the reader with feelings and intuitions that will help grasp the ideas behind our
non-classical definitions and results. For a more complete exposition, we refer to [25].

Let L/K be a finite Galois extension of local fields, i.e., complete discrete valuation fields
with perfect residue fields. Let G be the Galois group of L/K and x be an Op-generator of

Opr. We can define, for i € R>(, the lower ramification subgroup
Gi={oceG:vp(ox—x)>i+1}.

We remark that the subgroup Gg is the inertia subgroup of G. Lower ramification groups
behave well under taking subgroups. More precisely, let H be a subgroup of G and recall
that, by Galois theory, H is the Galois group of the extension L/ L We have, for every
1 € R>,

Hz':GiﬂH.

These lower ramification groups are used to define the classical Hasse-Herbrand -

function. More precisely, one first defines

(t) / t ds

© = .

L/x 0 (Go:Gs)

This function ¢ : [0,00) — [0,00) is continuous, piecewise linear, increasing and concave.

. . 1

The Hasse-Herbrand function ¢,/ : [0,00) — [0, 00) is then defined to be ¢, /g := YLK
We make a few remarks about v /K- First, it satisfies a transitivity formula. More

precisely, for Galois extensions L/F/K, we have z/JL/K = wL/F o wF/K- Second, when the

extension L/K is tamely ramified, the Hasse-Herbrand function takes a very simple form:

Ui (t) = e(L/K)t.



We can now introduce the upper ramification groups. For i € R>(, one defines

G = GwL/K(i)'

One of the most fundamental properties of this upper ramification filtration is that it is
compatible with quotients. More precisely, let H be a normal subgroup of G. Then G/H is

the Galois group of the extension LH /K, and we have
(G/H)' = G'H/H.
Because of this property, we have an induced filtration on the absolute Galois group of K:

b= Jim G(L/K)".
L/K

This upper ramification groups may be used to introduce the notion of ramification of a
character. More precisely, for an abelian character y € HY(K,Q/Z) = Homcont(G%D ,Q/Z),

we can define a Swan conductor as follows. If X(G(])() # 0, put
Swx =max {n € Z>q: x(G%) #0},

and, if X(G%) = 0 put Sw x = 0. The Swan conductor measures the wild ramification of y;

when y is unramified or tamely ramified, the Swan conductor is zero.

Remark 1.1.1. Our choice of domain for ¢ /- is not usual. In most of the literature, ¢y, /g

is defined on [—1, 00).

1.2 Background

In this section we go over some concepts that will be necessary through the rest of this work.



1.2.1 Higher dimensional local fields

In this section we give a quick overview of g-dimensional local fields (for more on this subject,
see [29, 20]). Subsequently, we shall use g-dimensional local fields to construct some residue
maps.

Let K be a complete discrete valuation field with valuation vy and residue field k. The

field K{{T'}} is defined as the set

K{T}} =
w .
Z a;T" :a; € K, infog(a;) > —o0, and v (a;) = 00 as i — —o0

1=—00

with addition and multiplication as follows:

oo

Z CLZ'TZ-F Z biTZ: Z (az-—{—bi)TZ

1=—00 1=—00 1=—00

and

ST Y bT = > Y aibi T

1=—00 1=—00 1=—00 j=—00

We can define a discrete valuation on K{{T'}} by setting

VK T} Z a;T" | = minvg(a;).

Endowed with this valuation, K{{T'}} becomes a complete discrete valuation field with
residue field k((7)).
When K is a local field, the field

KE{T} - {Tn H(Tng1) - - (Tg-1)),



where 1 < m < g — 1, is a g-dimensional local field. Fields of this form are called standard

g-dimensional local fields.

1.2.2 The Abbes-Saito upper ramification

For a complete discrete valuation field K, with possibly imperfect residue field, A. Abbes
and T. Saito constructed (logarithmic) upper ramification groups (GtK,log)tGQ>0 C Gg.
When the residue field of K is perfect, <GtK,lo g)t€Q>O coincides with the classical upper
ramification. Furthermore, (G’}(’ o g)te(@>o is stable under tame base change; more precisely,
if L is a finite separable extension of K of ramification index e that is tamely ramified, we
have GeLt’ log = G%K, log" In general, for a finite separable extension L/K of ramification index
e, not necessarily tamely ramified, we have GeLt) log GtK log* For a real number s > 0, the

authors also defined

s+ _ t
GK, log U GK, log"
teQ,t>s

These groups satisfy the following property:

Lemma 1.2.1 ([2], Lemma 5.2). Let K be a complete discrete valuation field with residue
field k of characteristic p. Assume that there is a map of complete discrete valuation fields
K — L inducing a local homomorphism O — Ojp,, that the ramification index is prime to
p, and that the induced extension of residue fields is separable. Then, for t € Q~, the map
G, — G induces a surjection GeLt, log GtK’ log"

st et+ t+
As a consequence, we also have surjections G Llog G K log’

1.2.3  Ramification of characters

In this subsection, assume that the residue field k of K has characteristic p > 0 and is not
necessarily perfect.
We recall the definition of the k-vector space €;(log). There exists a canonical map

dlog : K* — Qp, and Q. (log) is the amalgamate sum of the differential module ;. with
6



k®y K> over k®y (’)}; with respect to dlog : O;(( — . and O}(( — K. There is a residue

map Res : ;.(log) — k induced by the valuation map of K and an exact sequence

0 —— Q —— Qp(log) 25 &

v
e

In [8], Kato constructs an increasing filtration (FrH1(K,Q/Z)),cy and defines, putting
Cr,HY(K,Q/Z) = F,HY(K,Q/Z)/F,_{HY(K,Q/Z) for r > 1, an injection

ISW,. | Gr,HY (K, Q/Z) — Homk(mrK/mrKJrl, Q. (log)),

where mp denotes the maximal ideal of O For x € F.H'(K,Q/Z)\F,_1H'(K,Q/Z), the
injection

rsw, (1) < mh fmid! > Q. (log)

is denoted by rswy (x) and called the refined Swan conductor of .
In [3], Corollary 9.12, Abbes and Saito relate Kato’s construction to the upper ramifica-
tion groups defined in [1]. More specifically, they prove that, when K is of equal character-

istic, x € FTHl(K, Q/Z) if and only if y kills G}ﬂélog'

Remark 1.2.2. The comparison between Kato’s filtration and the Abbes-Saito logarithmic
upper ramification groups remains open in the mixed characteristic case, but is expected by

experts.

Consider now the following case. Let S = Spec O and X be a regular flat separated
n

scheme over S. Let D = |J D; be a divisor with simple normal crossings, where D; denotes
=1

the irreducible components of D. For each ¢ let §; be a generic point for D;, Oy, = ng &

the henselization of the local ring at &;, M; its field of fractions, and k; the residue field of
M;. Let U = X — D and x € H'(U,Q/Z). For each i, denote by x; € H'(M;,Q/Z) the

restriction of x, and by r; the Swan conductor Swyy, x;. Define the Swan divisor

DX = Z T’Z'DZ'

7
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and let

E=>_ D,

r;>0

be the support of D,. It’s shown by [8, (7.3)], that there exists an injection
rswx : Ox(—Dy) ®0, O — Qﬁ(/s(logD) ®oy OF
inducing rsw . (x;) at §;. We say that x is clean if rswy is a locally splitting injection.

1.2.4 Semi-stable pairs

In this subsection, we let K be a complete discrete valuation field with perfect residue field
k of characteristic p > 0, X a proper scheme of finite presentation over O, and U an open
and dense subscheme of X. We recall the definition of a semi-stable pair ([22, Definition

1.6)):

Definition 1.2.3. The pair (X, U) is said to be semi-stable over O of relative dimension
d if, étale locally on X, X is étale over Spec O[Ty, ..., Ty]/(To---Tr — 7) and U is the
inverse image of Spec Ok [T, . . . ,Td,To_l, LT /(Th Ty — ) for some 0 < r <m < d
and prime 7 of K.

When (X, Xf) is semi-stable over O, we say that X is semi-stable over O

If we substitute the condition “étale locally” by “Zariski locally”, the pair (X, U) is then

said to be strictly semi-stable.

We shall need the following property of strictly semi-stable pairs, which is a consequence

of [22, Theorem 2.9]:

Theorem 1.2.4. Let (X, U) be a strictly semi-stable pair over O and L be a finite separable
extension of K. Then there exists a proper birational morphism X' — Xo, nducing an
isomorphism U’ — Uo, , where U’ is the inverse image of Uo, , and such that (X", U") form

a strictly semi-stable pair over Or,.



CHAPTER 2
RAMIFICATION OF ETALE COHOMOLOGY GROUPS

Let K be a complete discrete valuation field with perfect residue field k& of characteristic
p > 0. Let X be a connected, proper scheme over O, D a divisor with simple normal
crossings on X, and U = X — D. Assume that the pair (X, U) is strictly semi-stable over
O of relative dimension d (see Definition 1.2.3).

Let ¢ be a prime number different from p and ¢4 be a smooth ¢-adic sheaf on U, by which
we mean a smooth Qg-sheaf on U. Assume that ¢ is at most tamely ramified on the generic
fiber Xg. Write D = Lnj D;, where D, are the irreducible components of D. Let &; be the
generic point of Dj, OZMi = Oélﬂfi the henselization of the local ring at &;, M; its field of
fractions, and 7; = Spec M;.

Let Gy, and G denote the absolute Galois groups of M; and K, respectively, and

(Gﬁ\éfi,log)te(@zo’ (G"}(y log)tEon the corresponding Abbes-Saito logarithmic upper ramifica-

tion filtrations (see [1]). Put, for a real number s > 0, Gi\};,log = U G?\Ji,log and
teQ,t>s
G?lo o = U GtK’ log" We are interested in exploring to what extent the following con-

teQ,t>s
jecture holds:

Conjecture 1. Under the assumptions above, if G%}L, log acts trwially on 9 for every i,

then thg— log acts trivially on Hg(Uf, G) for every j.

Our main result in from this chapter is Theorem 2.3.1, in which we prove the conjecture
in the special case where ¢ is of rank 1, K has characteristic p, and the relative dimension
isd=1.

The structure of this chapter is as follows: In the first section, we give a criterion for
GtI}L’ log to act trivially on an f-adic sheaf. In the second section, we provide an application
of the Kato-Saito conductor formula. In the third section, we present and prove the main

result of this chapter.



2.1 The action of G?’bg

In this section, we let K be a complete discrete valuation field of equal characteristic with
perfect residue field k of characteristic p > 0, ¢ be a prime different than p, and M, N
be finite-dimensional representations of G over @, which come from finite-dimensional
continuous representations of G over a finite extension of Q, contained in Qy. We shall
provide a criterion for G? log to act trivially on M.

There is a canonical slope decomposition (see [12, Proposition 1.1], or [4, Lemma 6.4])

M= M

r€Q>o

characterized by the following properties: if P is the wild inertia subgroup of G, then
MP = MO, Further, for all r > 0,

(M(T))Gwlq(, log — ()

and

(M) CRoox — pp(r).

We have M (") =0 except for finitely many r. The values of r for which M (r) # 0 are called

slopes of M.
Definition 2.1.1. We say that M is isoclinic if it has only one slope.
The following proposition gives our criterion:

Proposition 2.1.2. Lett be a nonnegative real number. Assume that, for any totally tamely
ramified extension L/K of degree e prime to p, we have the following: if My, denotes the
representation of G induced by M, then, for any character x : Gy — @X for which
Swr,(x) > et, we have

Swr, (M, ® x) = rk(Mp)Swr,(x).
10



Then Gtg acts trivially on M.
The proof will be presented shortly. The general strategy is the following;:

— We first show that the behavior of the tensor product of isoclinic M and N is similar

to that of the tensor product of characters;

— Next, we use the previous result to understand the slope decomposition of the tensor

product M ® x and prove the proposition.
We start with the lemma:

Lemma 2.1.3. If M s isoclinic of slope r and N 1is isoclinic of slope s, where r > s, then

M ® N 1is isoclinic of slope r.

Proof. We have

MCk =0,
MO =M,
NY% =0,
and
NGK = N,

Since r > s, (M ® N)GTKJr = M ® N. On the other hand, G acts trivially on N and

MCK =0, so (M ® N)®K = 0. Hence M ® N is isoclinic of slope 7. O

Proof of Proposition 2.1.2. We need to show that, if r > ¢, then M) = 0. Let R be the
maximum slope of M. Assume, by contradiction, that R > t. Let m,e be positive integers

such that:

(i) e is prime to p,

11



(iii) " is strictly greater than any other slope of M,
(iv) & >t

Let L be a totally tamely ramified extension of degree e of K. By [1, Proposition 3.15],
Gﬁﬂ log = Gejj log for any s € Q>, so the slopes of M}, are of the form er, where 7 is a slope

of M. Take x with Swy (x) = m. Then, by assumption,

Swr (M @ x) = rtk(Mp)Sw(x) = rk(Mp)m

By Lemma 2.1.3, for all » < m we have that Mg) ®x is isoclinic of slope m, while MéeR) b2
is isoclinic of slope eR. It follows that
SwyMpex)= 3 swMT o= Y kM ym+ k(M )er.
TEQZO TEQZ(),?“<m
Combining the two expressions we get
k(M e = k(M )m,
which is a contradiction, since, by assumption, m < eR and M }JeR) # 0. O

2.2 The Kato-Saito conductor formula

Let K be a complete discrete valuation field with perfect residue field k& of characteristic
p > 0. Let £ be a prime number different from p, U be a smooth separated scheme of finite
type over K, and .# be a smooth (-adic sheaf of constant rank on U. In [11], Kato and
Saito defined the Swan class Swir.#, a 0-cycle class with coefficients in Q supported on the

special fiber of a compactification of U over O, and proved the conductor formula

SWKRFC(UF,J) = deg SwyyF# + 1k(F)Sw R (U e @),
12



where Sw ¢ RI'¢(Uzz, .7 ) denotes the alternating sum Z(—l)jSWKHg(UF, F).

In this section, assume that X is a regular flat sjeparated scheme of finite type over
S = Spec Ok . Let D C X be a divisor with simple normal crossings and write D = 6 D,
where D; are the irreducible components of D. Put U = X — D and consider a slrjli)oth
(-adic sheaf .# of rank 1 on U, at most tamely ramified on X and with clean ramification
with respect to X.

The Swan 0O-cycle class cg of .% is defined as follows. Let E be the support of the Swan

divisor D = > r;D;. Then define c g € CHy(F) as
¢z ={c(Q5(log D) ®0y Op)* N (L+ D7)~ N Dz }aimo-

Under the assumption that dim Ux < 1, by Corollary 8.3.8 of [11], the Kato-Saito con-

ductor formula becomes simply
Swi RT (U, F) = degcg + Swg RUe(Ugz, Q).

The following proposition is an application of this formula that will be useful in the next

section:

Proposition 2.2.1. Let X, S and U = X — D be as above. Let F1 and F9 be two smooth
(-adic sheaves on U of rank one, %9 having clean ramification with respect to X. Write
Dg, = > riD; and Dg, = Y s5;D;. Assume that r; < s; for everyi. Then F1 @ F has
clean ramification and

CFI0 Ty = CFy-
Proof. Since r; < s; for every i, we have Dz 4 %, = D g, and the refined Swan conductors

of #1 ® F9 and F3 coincide. Denote by Ej; the support of D g and by E be the support of

13



D z,%.7,- We have E = E», so

1 -1
crag = {c(Qx/g(log D) @0y Op) N1+ Dgez,) N Dzez, dimo

= {C(Q}X/s(log D)®oy Op,)* N1+ Dgz,) N Dz, dimo
=CZ,. L]

2

2.3 Ramification and étale cohomology

In this section, we let K be a complete discrete valuation field with perfect residue field &
of characteristic p > 0 and of equal characteristic, S = Spec O, and s = Speck. We will
denote by X a proper, connected scheme of finite presentation over O, and U an open and
dense subscheme of X. We assume that D = X —U is a divisor with simple normal crossings
and write CJ D;, where D, are the irreducible components. We also assume that the pair
(X,U) is S‘E:itljtly semi-stable over O of relative dimension 1, and that ¢ is a smooth f-adic
sheaf on U, where ¢ is a prime number different from p. Further, we assume that ¢ is of
rank 1 and at most tamely ramified on the generic fiber Xz-. Denote by &; the generic point
of D;, Oy, = O‘})L(agi the henselization of the local ring at &;, M; its field of fractions, k; the
residue field of M;, and n; = Spec M;.

We shall prove the following theorem:

Theorem 2.3.1. Conjecture 1 is true when ¢ is of rank 1, the relative dimension is 1, and

K is of equal characteristic.

Remark 2.3.2. When the relative dimension is greater than 1, one should still be able to

prove Conjecture 1 using the same methods, as long as it is true that
Swig Rl (U, ) = degcg + Swg RU(Uze, Qp)

for smooth /-adic sheaves .# of rank 1 on U, at most tamely ramified on Xy and with clean

14



ramification with respect to X.

The proof is divided in two cases. First observe that, since the total constant field of X g
is a finite unramified extension of K, we may assume that K is the total constant field of

Xp. Then there is an exact sequence of fundamental groups
l —— mUz) — m({U) — Gg —— L.

Let M be the function field of X and n = Spec M. We first consider the case in which
the action of 71(Us) is trivial on %5, and then the case in which it is non-trivial.

To prove the first case, we shall need the following lemma:

Lemma 2.3.3. In addition to the assumptions of Theorem 2.3.1, assume that 95 is the
pullback of some (-adic representation 7€ of Gy. If G?\Z,log acts trivially on %z, then thg'

acts trivially on €.

Proof. This follows from Lemma 1.2.1. O
Proposition 2.3.4. Theorem 2.3.1 holds if m(Ugz) acts trivially on %y.

Proof. In this case, by the homotopy exact sequence of étale fundamental groups, we have
that ¢ is the pullback of some f-adic representation 7 of G g-. Then

H (U, 9) = HL (U, Q) © A

By Lemma 2.1.3, and the fact that Hg(UF, Qy) is at most tamely ramified ([21, Corollary
2]), we have that the slope decomposition of Hg(UF,% ) coincides with that of J#, in the

following sense:

(HL(Uz,9)") = HL (U#,Qp) @ 217,

It follows that GtK log ACtS trivially on Hg (U7, 9) if and only if it acts trivially on 5. By

Lemma 2.3.3, the result follows. O]
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We shall now prove Theorem 2.3.1 for the case in which 71 (Ug) does not act trivially on
“5. The core of strategy is the following: using the Kato-Saito conductor formula and the
fact that Hg(UF, G) = Hg(UF,g) = 0, we show that HCI(UF, ) satisfies the hypotheses

of Proposition 2.1.2.

Lemma 2.3.5. Keep the assumptions of Theorem 2.53.1. Let e be a natural number prime
to p and L be a totally tamely ramified extension of K of degree e. If x : G, — @X s a

character such that Swry,(x) > et, then
Swr(RTe(Ur, 9) © x) = tk(RUe(Ur, 9))Swr(X).

Proof. First consider the following. By Theorem 1.2.4, there exists a proper birational
morphism X’ — X @, inducing an isomorphism U = Uo,, where U ""is the inverse image
of Up, , and such that (X', U’) is strictly semi-stable over Op,.

/

Let D' = X' — U’ and write D' = 6 Dg, where D; are the irreducible components of
D' Foreach 1 <i < n/ let le' be the geerZrlic point of Dg, @) M= (9?(,, ¢ the henselization of
the local ring at 5;, MZ’ its field of fractions, and 77; = Spec MZ’

There is a composition of blowups of closed points X — X and a point EZ such that

OX,& = OX’,Q'- N M. Let Ml be the field of fractions of (9;‘2 & Put 7j; = Spec MZ Denote
by el and é; the ramification indices of M!/ M; and M;/ K, respectively. We have e = elé;.

By [8, Theorem 8.1], and the fact that G’}\}f log acts trivially on % for every 1 <i < n,

we have that G/ acts trivially on gﬁ for every 1 < i < n/. Further, since we have
i, 108 v
14 ~
ezezt“!_ elt+ et+ . . 7 . / ey e
GM{,log M log” we get that GM{,log acts trivially on g??é for all 1 < ¢ <n'. Thus it is

enough to prove that
Swi (RUe(Uz, 9) ® x) = tk(RT (U, 9))SWk ()

for v : G — Q@ such that Swg(x) > t.
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Put r = Swg(x) and denote by X the pullback of x to U. x has clean ramification

because the following diagram

m, /midt S ) (log)

l

ISWs X
my, fmirt —— Oy (log)

is commutative. Indeed, since x is clean and Qj(log) — €. (log) is a splitting injection,
rsw X is a locally splitting injection. Further, by Lemma 1.2.1, Swyy. (X) > ¢ for every i. From
the Kato-Saito conductor formula, Proposition 2.2.1, and the fact that (X, U) is semi-stable

over O, we have that ¢4 ® x is clean and
Swi RU'c(U, 9 ® X) = deg cggy = degcy.
Again by the Kato-Saito conductor formula,
Swx RUc(Uz, X) = deg cy;.
Therefore, we have
Swi RTe(Ug, 4 ® X) = Swig RLe(Uge, X) = Swi (RTe(Uze, Q) ® x)-

Since

Swi RU (U % ® ¥) = Swi (RUo(Uz %) @ X)

and

Swic (RLe(Uzz, Q) ® x) = tk(RTe(Uzz, Qp))Sw (x) = tk(RT (U, 9))Sw i (x),
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we conclude that
Swi (RUe(Uz, 9) ® x) = tk(RT (U, 9))SwWk (X)- O

Lemma 2.3.6. Let the assumptions be the same as in Lemma 2.3.5, and assume further

that 1 (Uzz) does not act trivially on 9. Then
Hl(U£,9) =0

for every j # 1.

Proof. By Poincaré duality, it’s enough to show that H 0(Uf7 ¢) = 0. Since 71 (Ug) does

Uf)

not act trivially on ¢; and rk(%) = 1, we get that HO(UZ, 9) = %;r( = 0. O

Proof of Theorem 2.3.1. The theorem has already been proved in Proposition 2.3.4 for 4
such that 71 (Ug) acts trivially on it, so we assume that m (Uz) does not act trivially. By
Lemma 2.3.6, it’s enough to prove that G?’ log acts trivially on HCl(U?7 9).

From Lemmas 2.3.5 and 2.3.6, it follows that
Swr(He (U, %) @ x) = tk(He (U, 9))Swr(x)

for any totally tamely ramified extension L of K of degree e prime to p and arbitrary
character y : Gj — @X satisfying Swy (x) > et.

From Proposition 2.1.2, we have that thé log ACtS trivially on H g(UF, ¢). Hence G?’ log
acts trivially on H? (U, 9) for every j. ]
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CHAPTER 3
RAMIFICATION IN TRANSCENDENTAL EXTENSIONS OF
LOCAL FIELDS

Let K be a complete discrete valuation field. Classical ramification theory has extensively
studied finite Galois extensions L/K when the residue field of K is perfect. Much progress
has also been achieved when the residue field is no longer assumed to be perfect, such as K.
Kato’s generalization of the classical Swan conductor Sw x € Zx>( for abelian characters x :
G(L/K) — Q/Z ([8]) and A. Abbes and T. Saito’s generalization of the upper ramification
filtration G(L/K) ([1]). Yet there are still many open questions, both when the residue field
of K is imperfect and when the extension L/K is transcendental.

Let L/K be a finite Galois extension of complete discrete valuation fields with perfect
residue fields. Denote by e(L/K) the ramification index of L/K and by DlLO/gK the wild
different of L/ K, i.e., DILO/gK = Dp i —e(L/K) + 1, where Dy, /f¢ is the different of L/K.
It is classically known that, if y € H! (K,Q/Z) and Xy, is its image in Hl(L, Q/Z), then,
when Swy > 0,

Swixg, =tk (Swx) = e(L/K) Swx — D%, (3.0.1)

where 7 /g is the classical ¢-function (see, for example, [25]).

In this chapter, we obtain a formula resembling (3.0.1) for (possibly transcendental)
separable extensions L/K of complete discrete valuation fields when the residue field of K
is perfect but the residue field of L is not necessarily perfect, and then define generalizations
of the classical ¢)-function. More precisely, we first prove the two following results, the first
when L is of equal positive characteristic and the second when L is of mixed characteristic.
Here QéL 10k (log) denotes the completed Op-module of relative differential forms with log
poles, dtor(L/K) the length of its torsion part, and eg the absolute ramification index of K.

For a character x € H'(L,Q/Z), Sw x denotes Kato’s Swan conductor of y (defined in [8]).
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Main Result 1 (Theorem 3.1.12). Let L/K be a separable extension of complete discrete
valuation fields of equal characteristic p > 0. Assume that K has perfect residue field and

x € HY(K,Q/7Z) is such that

Denote by xj, its image in Hl(L,Q/Z). Then

Swxp = e(L/K)Swx — dtor(L/K).

Main Result 2 (Theorem 3.3.13). Let L/K be an extension of complete discrete valuation
fields of mized characteristic. Assume that K has perfect residue field of characteristic p > 0

and x € HY(K,Q/Z) is such that

2ef 1 [(&OY(L/K)-‘

WX Z T TR T | e/ R

Denote by x , its image in H'(L,Q/Z). Then
Swxp, = e(L/K)Swx — dtor(L/K).

In the next chapter, we relate this discussion to the 9, /K function for L/K. More
precisely, we define two ¥-functions wé/SK and w%l} 5 When K has perfect residue field but
L has residue field not necessarily perfect. We then show that, in the classical case of finite
L/K, both these definitions coincide with the classical 1, /K function. Finally, we prove

that we can regard our first two main theorems as formulas for w%l; 5 (t) for t > 0:

Main Result 3 (Theorem 4.0.4). Let L/K be a separable extension of complete discrete

valuation fields. Assume that K has perfect residue field of characteristic p > 0. Lett € R>
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be such that

2 1 dtor(L/ K
t> » e_Kl + (L/K) [ t;(ré/é{) )-‘ if K is of characteristic 0,
L/K
t> D f 1 5)560&(//2) ) if K s of characteristic p.

Then

Y30 (6) = (L) Kt = Bron(L/ ).

Our methods for the proof of Main Result 1 differ greatly from those for the proof of Main
Result 2. In the equal characteristic case, we use Artin-Schreier-Witt theory. In the mixed
characteristic case, we use M. Kurihara’s exponential map ([16]) and a modified version of

higher dimensional local class field theory.

Notation. We introduce the following notation for Chapters 3 and 4. For a complete discrete
valuation field K, O denotes its ring of integers, my the maximal ideal, mg a prime
element, and G g the absolute Galois group. Lowercase k denotes the residue field of K, and
v the discrete valuation. We write U = 1 4+ mi..

When we say that K is a local field, we mean that K is a complete discrete valuation field
with perfect (not necessarily finite) residue field. Similarly, when we say K is a g-dimensional
local field, we mean that there is a chain of fields K = Ky, K;_1,..., K, Ky such that, for
each 1 <i <gq, K; is a complete discrete valuation field with residue field K; 1 and K is a
perfect field. When the last residue field Ky is finite, we say that K is a ¢-dimensional local
field with finite last residue field.

We write

Qb (log) = 1'%1%]{ (log)/m Q¢ (log),

where

Q%/)K(log) = (Q%/)K ® (O @7 K*))/(da —a®a, a € O, a #0).
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We shall denote by P the torsion part of an abelian group P. Let L/K a separable
extension of complete discrete valuation fields (of either mixed characteristic or positive
characteristic p > 0). Throughout these chapters, e(L/K) shall denote the ramification

index of L/K and ep the absolute ramification index of K. When k is perfect, dgor(L/K)

QL (log)
shall denote the length of ( O <1 )
OL ®OK QOK (log) tor
The r-th Milnor K-group of L shall be denoted by K,(L). We denote by UK, (L) the

subgroup of K (L) generated by elements {a,b1,...,b._1} where a € U}, b; € L™, and we
write

K?“(L) = @KT<L)/UnKr(L)

n
and

UMK (L) = lim U™ K, (L) /U™ K (L),

Following the notation in [8], we write, for A a ring over Q or a smooth ring over a field

of characteristic p > 0, and n # 0,
Hy(A) = HY((Spec A)et, Z/nZ(q — 1))

and

3.1 Swan conductor in positive characteristic

Let L be complete discrete valuation field of equal characteristic p > 0. In this section, we
will study separable extensions L/K where K is a local field (and therefore & is perfect). To

be precise, we shall show that, if y € H 1(K ) has Swan conductor sufficiently large, then

Swxr, =eSwx — dtor(L/K),
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where x is the image of y in H!(L) and e = e(L/K). For that goal, we will use valuations
on differential forms and Witt vectors, as well as the notion of a Witt vector being “best”,
defined later.

First of all, we review some concepts necessary for our discussion. By completed free
Or-module with basis {e)}\ca, We mean @M/m?M, where M is the free Op-module
with basis {e)} ep. Write L = [((rg,)) for sqz)lme prime 7y, € L, where [ is the residue field
of L. Let {by}rep be a lift of a p-basis of [ to Op. Then Q}QL(log) is the completed free
Or-module with basis {dby,dlogm : A € A}. Write Q}: =L®o, Q%,)L(log).

Recall that, when K is a local field of positive characteristic, Q%QK (log) is free of rank
one and, for an extension of complete discrete valuation fields L/K, dtor(L/K) is the length
of the torsion part of Q}QL/OK(log).

Denote by Wy(L) the Witt vectors of length s. There is a homomorphism d : Ws(L) — Q};
given by

-1
a:(as_l,...,ao)r%Zaf da;.
)

Remark 3.1.1. In the literature, the operator d : Wg(L) — Qi(log) is often denoted by

Fs—14.

We can define valuations on Qi and Wg(L) as follows. If w € Qi and a € Ws(L), let

vlLng = sup {n twE T ®o, Q}QL (log)} :

and

vr(a) = — m?X{—pivL(az‘)} = ml.in{pivL(az')}‘

These valuations define increasing filtrations of Qi and Ws(L) by the subgroups

FnQi ={we Qi ; vlLng > —n}
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and

F,Ws(L) ={a € Ws(L) : vg,(a) > —n},

respectively, where n € Z>q. The latter filtration was defined by Brylinski in [5].

By the theory of Artin-Schreier-Witt, there are isomorphisms
Wy(L)/(F — OWi(L) = HN(L,Z/p'Z),

where F is the endomorphism of Frobenius. Kato defined in [8] the filtration F, H (L, Z/p°Z)
as the image of F,Ws(L) under this map. We recall that, for y € H'(L,Z/p*Z), the Swan
conductor Sw x is the smallest n such that y € F, H'(L, Z/p°7Z).

We shall now define what it means for a Witt vector a € W(L) to be “best”, as well as

the notion of relevance length.

Definition 3.1.2. Let a € Wg(L), and n be the smallest non-negative integer such that
a € F,Ws(L). We say that a is best if there is no a’ € Wg(L) mapping to the same element

as a in Hl(L, Z/p°Z) such that o’ € F,yW(L) for some non-negative integer n’ < n.

When v (a) > 0, a is clearly best. When vy (a) < 0, a is best if and only if there are no
a’,b € Wg(L) satisfying
a=d +(F—1)b

and vy (a) < vp(d').

Observe that a € F,Wg(L)\F,—1Ws(L) is best if and only if n = Sw x, where y is the
image of a under F,,Ws(L) — HY(L,Z/p°Z). We remark that “best a” is not unique.

We shall start by deducing a simple criterion for determining when a is best. When s =1
the characterization of “best a” is well-known: every a € Oy, is best, and a € L\ O, is best
if and only if either p { vy (a) or p | vy (a) but a ¢ [P, where a denotes the residue class of
a/ WZL(Q) for a prime element 77, € L. In this section we will characterize best a for arbitrary

s. We shall prove that a is best if and only if a; is best for some relevant position 4, in the
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sense of the following definition.

Definition 3.1.3. We shall say that the i-th position of a is relevant if vy (a) = p'vr(a;).

Let j = max{i : vz(a) = p'vr(a;)}. Then j + 1 shall be called the relevance length of a.

Lemma 3.1.4. Let a € Ws(L) be of negative valuation. We have vy (a) = vlLOg(da) if and

only if there is some relevant position k such that vy (ay,) = vlLog(dak).

Proof. Let I denote the subset of {0,...,s — 1} consisting of i such that the i-th position is

relevant and v(a;) = vlLOg(dai). Let j + 1 denote the relevance length of a. We have

271 1'71
da = Z af da; + Z af da;.
iel 1¢l

Clearly
1 -1
vfg Za]; da; | > vp(a),
il

so it is enough to prove that

1 i1
vi)g Zaf da; | =vg(a)
el
if I is nonempty.
Assume I nonempty. Since the relevance length of a is j 4 1, we get that p/ | vy (a).

We have vy, (a) = —np’ for some n € N. For each i € I, we have vy (a;) = —np/ ™. Write

—npj*i . .
a; =7y u;, where u; € O is a unit.
Then
pi—1 " pi—1 pidmg
Zai da; =mp Zul dui—nuj E
1€l el
If p1n, then

vlLOg Zafz_ldai =wvr(a).
1€l
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On the other hand, if p | n,

p'=1,  _ _—np! Pl
Zai da; =mp Zuz du;.
el el

Let u; denote the image of u; in the residue field {. Then

vlLog WZPJZufz_ldui > vy (a)
el

if and only if

S a ldu; = 0.

el

If

S a w0,

el
then, by repeatedly applying the Cartier operator, we see that u; € [P for every i € I. This

implies vy (a;) < vlLog (da;) for every ¢ € I, a contradiction. Hence we must have
vlLOg(da) =wvr(a). O

Lemma 3.1.5. Let a € Ws(L) be of negative valuation. Assume that vy (a) < vlLog(da) and

the relevance length of a is 1. Then a is not best.

Proof. Since the relevance length is 1, we have vlLOg(aledai) > plug(a;) > vr(ag) for i > 0.
Therefore we must have vy (ag) < v}?g (dag), which implies that there exist ag, by € L such
that ag = afy + b — by and vy, (ag) < vy (ap). Let a’ = (0,...,0,a)) and b = (0,...,0,b).
We have

a=d + (F—1)b,

and vy, (a) = vy, (ag) < vr(d'), so a is not best. O

Lemma 3.1.6. Let a € Ws(L) be an element of negative valuation. Assume that vy (a) <
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vlLog(da). Then a is not best.

Proof. We shall prove by induction on the relevance length. The case in which a has relevance
length 1 has been proven in Lemma 3.1.5. Assume now that a has relevance length j + 1.

From Lemma 3.1.4, v(a;) < UILOg(daj), so there exist a}, bj € L such that a; = a; —l—b?—bj
and v (aj) < vL(a;). Observe that vr,(a;) = pvr(bj). Let b = (0,...,0,b4,0,...,0) and
a' =a— (F —1)b. Then

J =a—Fb+b= (as_l,...,ajJrl,a},dj,l,...do),
where p'vy,(a;) > vy (a) for every 0 <4 < j — 1.

We have two cases. If ploy (d;) > vy (a) for all 0 < i < j — 1, then vy (a') > vy(a), so a
is not best.

On the other hand, if vy (a;) = vr(a) for some 0 < i < j — 1, then @ has relevance
length at most j and vy (a') = vy (a). Further, da’ = da + db. Since vy (a) < vlLOg(da) and
vr(a) = pup(b) < jovlLog(db)7 we have vy (a) < vlLOg(da’). Thus vy,(a’) < v}?g(da/) and a’ is of
relevance length at most j. By induction, a’ is not best, i.e., there are a”,c € Wy(L) such
that

d=d +(F—-1)

with v(a’) < v(a”). Then
a=d +(F-1)b=d +(F-1)(b+c),

with vy, (a) < vy (a”). Thus a is not best. O
Theorem 3.1.7. Let a € W(L). The following conditions are equivalent:
(i) a is best.

(i) There exists some relevant position i such that a; is best in the sense of length one.
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(iii) vy (a) = v 8 (da).

Proof. Observe that, when a has non-negative valuation, (i), (i4) and (i) are all simultane-
ously satisfied, so in the following we assume vy (a) < 0.

(i1) < (iii) by Lemma 3.1.4.

Lemma 3.1.6 proves (i) = (7it).

To prove (iii) = (i), assume that a is not best. Then there are a’,b € Wy(L) such
that @ = o' + (F — 1)b and vp(a) < vp(a’). We have pvlLOg(db) > pur(b) = vr(a), so
both vlLOg(db) > vr(a) and U}?g(da') > vr(a’) > vp(a). Since da = da’ — db, we get that

1
v]?g(da) > v (a). O

The notion of “best a” allows us to construct a homomorphism Fy, H 1(L,Z/pSZ) —
Fnﬂi /F 1n/p) Qi satisfying some useful properties. Given an element of H1! (L, Z/p°Z), it is
easy to show the existence of a best a € W(L) in its preimage. We then have the following

proposition:
Proposition 3.1.8.

(i) There is a unique homomorphism
rsw: FpH' (L, Z/p*Z) — FuSp ) Flp /) O
called refined Swan conductor, such that the composition

FaWs(L) —— FoHY (L, Z/p*Z) —— FoQp [F Q%

coincides with

d: FyWs(L) = FoQp /Flpp QL

(ii) For |n/p| < m <n, the induced map

vsw : Fyp HY(L, Z/p*Z) | Fpu H (L, Z/p°Z) — FpQk /Fpd
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1S 1njective.

Proof. To prove assertion (1), define rsw as follows. Given an element x € F, H 1(L, 7.]p°7),
take a € Fj,Ws(L) such that a is best and the image of a is x. Then put rsw x = da.
We must show that this map is well-defined. Let a’ € F;,Ws(L) be another element that
is best and maps to x. Then
a=d +(F—1)b

for some b € Wg(L). We get that pv}?g(db) > pur(b) > —n, so db € FLn/pJQf Since
da = da’ — db, da and da’ define the same class in anllL /F 1n/p] QlL Uniqueness of the map
is clear.

We shall now prove (ii). Let x € F,H'(L,Z/p*Z) such that rswy € Fin Take

a € F,,Ws(L) that is best and such that da = rsw x. Since a is best, we have

vlLog(rsw X) = UlLOg(da) =wvr(a) > —m,

so a € FpWs(L). Tt follows that x € F,, H' (L, Z/p°Z). O

Remark 3.1.9. Related results were obtained by Y. Yatagawa in [28], where the author
compares the non-logarithmic filtrations of Matsuda ([19]) and Abbes-Saito ([1]) in positive

characteristic.

Remark 3.1.10. Our refined Swan conductor rsw is a refinement of the refined Swan conductor

defined by K. Kato in [8, §5].

Let L/K be a separable extension of complete discrete valuation fields of positive char-
acteristic p > 0, and assume that K has perfect residue field k. Let y € H 1(K ) and x, its
image in H'(L). We shall now use Proposition 3.1.8 to compute the Swan conductor of 7.

We will need the following lemma:

Lemma 3.1.11. Let L/K be a separable extension of complete discrete valuation fields of

equal characteristic p > 0. Write e = e(L/K) and assume that k is perfect.
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Let w € Q}(, and wy, be the itmage of w in QE Then
1 1
U]?g(wL) = evl(;g(w) + Otor (L/K).

Proof. Since the residue field k of K is perfect, Q%,)K(log) = (’)Kcﬁf—ff. Let {by}rep be
a lift of a p-basis of [ to Op, so that Q}DL(log) is the completed free module with basis

{dby,dlogmy : A € A}. Write CZT—KK =Y aydby + adlog m, where ay,a € Op,. Then

bon(L/K) = min{ (o1 @)} U {up (o) : 3 € A)) = o (5).

Writing w = 76?—? for some 7 € K, we see that

V1%8(w) = vy (7) + 1% (f—}f) = coge(1) + Sror(L/K) = 0!%B(w) + bion(L/K). T

Theorem 3.1.12. Let L/K be a separable extension of complete discrete valuation fields of
equal characteristic p > 0. Assume that K has perfect residue field.
Denote by e(L/K) the ramification index of L/K. Assume that x € HY(K) is such that

Let x1, be its image in HY(L). Then

Swxr = e(L/K)Swx = dtor (L/ K).

Proof. Write e = e(L/K). It is enough to show that, for a character x € HY(K,Z/p°Z)
corresponding to the Artin-Schreier-Witt equation (F' — 1)X = a, we have that, if Swy >
p(p—1)"te 161 (L/K), then

Swxp = eSw x — dtor(L/K).
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To simplify notation, write n = Sw x, dtor = dtor(L/K). The case e = 1 is simple, so
we assume e > 1. Since Swyx > p(p — 1)_16_15t0r(L/K>, we have that % < en — Otor, SO

L%J < en —dtor — 1. From that, Theorem 3.1.7, and Lemma 3.1.11, we get that the diagram

FoHY(K, Z/p*Z) | Fp 1 H (K, Z/p*Z) ————— FufQ}/Fp1Q

l l

FenH\ (L, 2/0°D) Far 5,01 H (L. 20 2) —— Fen€0l/Fup gy 10}

commutes, and the horizontal arrows are injective. Thus

Swxr, = e(L/K)Swx — dtor(L/K). O

3.2 The example of a two-dimensional local field of mixed
characteristic with finite last residue field
In Section 3.1, we proved Main Result 1. We shall now focus on proving Main Result
2. Let L/K be an extension of complete discrete valuation fields of mixed characteristic,

and assume that K has perfect residue field. We will show that, if y € H(K) has Swan

conductor sufficiently large, then
Swxr, =eSwx — dtor(L/K),

where x7, is the image of y in H!(L) and e = ¢(L/K) is the ramification index of L/K.

The proof of this result is based on two key ideas: the commutativity of a diagram of the

form
en’ —dtor(L/K) Aqg—1 XPp o
" e IOT  log) 1 Fey(L)
lReSL/K lResL/K
/! expn
mi- > K

and a modified version of higher dimensional local class field theory. In order to facilitate

comprehension and illustrate the main ideas, in the present section we will consider, in a
31



brief and expository way, the special case in which L is a two-dimensional local field with
finite last residue field. In this special case, the second key idea is simpler, since we can use
two-dimensional local class field theory without any modification. In Section 3.3 we consider
the general case in which L is a complete discrete valuation field of mixed characteristic.

Through this section, we let L be a two-dimensional local field of mixed characteristic
with residue field [ of characteristic p > 0, and K C L a one-dimensional local field with
finite residue field k.

As a consequence of [20], there is a residue homomorphism
R‘eSL/K : Q}DL — OK

which induces

Resp ) QéL(log) ®o, L = K.

Ezample 3.2.1. When L = K{{T}} (see page 5),

2e
Ll + 1, there exists an exponential map

From [16], if n € Oy, is such that vy (n) >

expy, : Q%,)L(log) — Ko(L).

This map is used in the following theorem, which is the first key step in the proof of the
main result for the special case of a two-dimensional local field with finite last residue field.

Its proof is omitted due to similarity with that of Theorem 3.3.11.

Theorem 3.2.2. Let L be a two-dimensional local field of mized characteristic and with

finite last residue field, and K C L a local field. Write e = e(L/K). Letn € Ok be such
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that

Then, if n’ € N satisfies

e
we have a commutative diagram
en' —Sior (L/K) A1 €XPp  »
" e RIQL (log) < Ky (L)
lReSL/K lR'eSL/K
/ eXp'r]

y K~

my
where the right vertical arrow is the residue homomorphism from K-theory defined in [7] and
the top and bottom horizontal maps are, respectively, the exponential maps expy 9 and exp;, 1
defined in [16].

/_ ~
We observe that mzn tor(L/ K)Q}QL(log) — m}’{/ in the diagram above is surjective (see

Proposition 3.3.10) and the images of

I_ ~ ~
expy, : meLn 5t°r(L/K)Q}9L(log) — Ko(L)
and

/
expn:m"K—>K><

are, respectively, Ue(”Jr”I)*‘;tOf(L/K)KQ(L) and U}?‘n/ (see Lemma 3.3.2).
Theorem 3.2.2 is then combined with two-dimensional local class field theory to prove
the main result in the particular case of a two-dimensional local field of mixed characteristic

with finite last residue field:

Theorem 3.2.3. Let L be a two-dimensional local field of mixed characteristic with finite

last residue field, and K C L be a local field. Assume that x € Hl(K) 1s such that

e 1 5tor(L/K)
Sz i ta { e(L/K) 1
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Denote by x, its image in H'(L). Then

Swxp = e(L/K)Swx — dtor(L/K).

Proof. Write e = e(L/K). Let n' = {Ltor(L/K)

e

—‘ and n = Swy —n/. Pick n € O with
v (n) = n. By two-dimensional local class field theory, the diagram
Ky(L) — G3b
lReSL/K l
KX————>G%

commutes. Together with Theorem 3.2.2, this gives us a commutative diagram

en’ —8ior(L/K) A €XPp
" oI (log) 2 Ry(L) —— G
lR,eSL/K lReSL/K l
/ eXp,,7 . . b
mi- » K~ y GY

From Proposition 3.3.10, the left vertical arrow is surjective. We know that Swy = m if
and only if x Kkills U}(nJrl but not U}, and Sw x;, = m if and only if y, kills Um+1K2(L)
but not U™ Ky (L) (see the proof of Proposition 3.3.12 for details). Then it follows from the

commutative diagram above and Lemma 3.3.2 that
Swxr = e(n’ +n) = dtor(L/K) = e Swx — Stor(L/K). ]

As a guide for Section 3.3, we will use Theorem 3.2.3 to get the same result for a complete
discrete valuation field of mixed characteristic L which has residue field that is a function
field in one variable over a finite field. In Section 3.3, Proposition 3.3.12 will be used to

obtain Theorem 3.3.13 in an analogous way.

Corollary 3.2.4. Let L be a complete discrete valuation field of mized characteristic, and
K C L be a local field. Assume that the residue field | of L is a function field in one variable

over the finite residue field k of K.
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Assume that x € H(K) is such that

2e L [&or(L/KW

WX Z T Y QLR | eL/K)

Denote by x, its image in H'(L). Then
Swxr = e(L/K)Swx — dtor(L/K).

Proof. 1t is sufficient to prove that this case can be reduced to that of a two-dimensional
local field with finite last residue field.

Since [ is a function field in one variable over k, [ is a finite separable extension of k(T)
for some transcendental element T'. Then there is an embedding of [ into a finite separable
extension E of k((T)). Note that {T'} is a p-basis for both [ and E. Then there is a
complete discrete valuation field L(E) which is an extension of L satisfying Or, C Oy,
OL(E)mL =mr g, and the residue field of L(FE) is isomorphic to E over .

From [8, Lemma 6.2], we get that Sw XL(E) = Swxr. Further, since E is a one-
dimensional local field, L(F) is a two-dimensional local field. Finally, since E and [ have the
same p-basis {T'}, and 7, is a prime for both L and L(E), the map Opp) ®0, Q}QL (log) —
Q%,)L(E) (log) is an isomorphism and we get OL(E) ®o, QéL(log)tor ~ QéL(E) (log)tor- There-
fore, by definition, dtoy(L(E)/K) = dtor(L/K).

Thus it is sufficient to prove that
Sw XL(E) = e(L(E)/K)Swx — 0tor(L(E)/K),

which follows from Theorem 3.2.3. O
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3.3 Swan conductor in the general mixed characteristic case

In this section, we shall generalize the results of the previous section to the more general
case in which L is any complete discrete valuation field of mixed characteristic. We start by
briefly reviewing some necessary background and proving some preliminary results.

Let L be a complete discrete valuation field of mixed characteristic. Let B be a lift of
a p-basis of the residue field I to Op. Write {e)}yep = {db : b € B} U {dlogny}. The

Or-module QéL (log) has the structure
M & OL/m%OL

for some a € Z>( (see [15, Lemma 1.1] and [10, 4.3]). Here M is the completed free Of-

module with basis {ex}yen—,) i€, M = @M/m?M where M is the free Op-module
m

with basis {e)} ep—(,) for some p € A

We have, from [16, Theorem 0.1], the existence of an exponential map

EXPp,r41 - QTOL(IOg) - Kr—i—l(L)

when n € Oy, satisfies

26L
> 1.
vp(n) > P
This exponential map satisfies
db db
ab—l/\---/\—r — {exp(na),by,..., by}
1 r

fora € Oy, b; € (’)z. We shall denote expy, .41 simply by exp,, through this chapter.

Remark 3.3.1. More precisely, in [16], M. Kurihara proved the existence of an exponential
map
. Or 2
expy 411 o, = Kri1(L)
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when n € Oy, satisfies
2€L
p—1

vr(n) =
Considering the existence of a map Q@L(log) — Q%L satisfying the commutative diagram

A i A
QE,)L(log) —L Q’bL

1

we can define, for

an exponential map

l A A~
expl%®, Ol (log) — Ky 41 (L)

by taking the composite

log o
eXpn7T+1 — eXp%,r_’_l 7TL
To simplify the notation, we omit the superscript log when we write this exponential map.

Lemma 3.3.2. Let L be a complete discrete valuation field of mixed characteristic, with

residue field | of characteristic p > 0. Assume that n € Op, satisfies

2€L
p—1

n=vr(n) >
Then the image of the exponential map
!l A~ A~

exp,, : mp, Q%L (log) = K,41(L)

is U Ky 4 (L).

Proof. Let a € m%,, b; € (’)}j. Observe that, from the definition of the exponential map and
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[16, Proposition 3.2],

d db db,._
a’ﬂ/\_l/\/\ r-l '—>{eXp(pCL’f]),ﬂ'L7b1,...,br_l}
L] br_1
and
db db
AN A {exp(an),by,...,bp}.
bl br

Then the image is contained in U”+”/KT+1(L). Let 7 > n + n’. Observe that the maps

m” - .
—Lr @, (log) = UKy 1 (L) /UM K14 (L)
mr,
given by
db db
a®B—L A A— s {1+aB,by,..., b}
bl b',"

where a € m%, B € Op,b; € L™, are surjective. Passing to the limit, we get that expy;

m%/Q%L(log) — U”+”/Kr+1(L) is surjective. O

We shall now construct some tools and intermediate steps necessary for the obtainment of
the main result. For an extension of complete discrete valuation fields of mixed characteristic

L/K, where k is not necessarily perfect, denote by dtor(L/K) the length of

Q%’)L (log)tor
Or RO Q}QK (log)tor

Remark 3.3.3. When k is perfect, the O -module Q%/)K(log) is a torsion module, and there-
fore dgor(L/K) is simply the length of

(Q%’)L/(’)K (log)> 5

tor

which coincides with the definition of ooy (L/K) introduced previously.

We have the following property:
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Lemma 3.3.4. Let L/M be a finite extension of complete discrete valuation fields of char-

acteristic zero. Assume that the residue field | of L has characteristic p > 0 and [l : [P] = p".

Write e = e(L/M). Then

SAZ (lOg>
@)
mTL _ M

en—dion(L/M) 20, (108)
QTbM (log)tor

TI'L M m =
/ ( L O, (108)tor

and
TrL M 1&(.L@”*5tor(L/]\/[)Jrl Q7(:)L (log) _ mn+1 Q7(:)M <10g>
/ L QE,)L (log)tor M QE/)M (log)tor

for every integer n.

Proof. We shall prove the first equality. Let d(L/M) be the length of the Op-module

04, (log) 0 (log)
%,) e (log). Observe that AloL— an AloM—
LM Q(’)L(log)tor Q@M(log)‘cor

N

Q are free of rank r. We have

an exact sequence

Q%,)L(log)
g, (log) 04, (log) 04, (log)s
007 ® AloM - AloL - OLAl > - 0.
Oum Q(QM (log)tor Q(/)L(log)tor QOM (log)

L =1 . .
Om Q%QM (log)tor

Q%,)L (log) Q%,)M(log)
A oo/ \F O L (ioghn
(/)L( 0g)tor (/)M( 08 )tor

is 0(L/M) — dtor(L/ M), we have that the length of

Qpy, (log) Qp,, (log)
ar (1 OL®ou gr
OL( 0g)tor OM( 0g)tor

O (log) €, (log)
is also 6(L/M) — oyor(L/M). Since 9L g M
Q%L (log)tor Q?QM (log)tor

Since the length of

are both free of rank one,

we have ) )
Q%L (log) _ m5tor(L/M)—5(L/M) QTOM (log) |
Q?QL (log)tor L Q%M (log)tor
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Therefore

Tey men—étor(L/M) QTOL(log)
AT O, (108)tor

TI'L/M (min—étor(L/M)mél:cor

(/a0 -az /)20, 108) )
Q%M(log)tor
_ 2, (log)
en—6(L/M) Om
Tr m .
s (w4 >%M<1og>tor

~ A 1 .
Let 6(L/M) be the length of the Op-module Q(’)L/@M' Since
Trp s <meL(n+1)S(L/M)1) ot

and 0(L/M) = 6(L/M) + e — 1, we get

TrL/M (mzn—(S(L/M)) _ m%
Hence . .
en—sior(L/M) 20, (108) . o, (log)
QOL (log)tor QOM (log)tor
The second equality is obtained similarly. O

We shall now make the constructions necessary for defining a residue map
q—1
Resp ¢ Q%L (log) = Ok

for a finite extension L of K{{T1}}---{{Ty—1}}, where K is a local field of mixed charac-

teristic.

Definition 3.3.5. Let K be a complete discrete valuation field. Write Ly = K, L1 =
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K{{T1}},..., L =Ly = K{{T}}---{{Ty-1}}. Define

CLz’/Li—l : Li — Li—l

2 .
€Li/Li Z a Ty | = ao.
keZ

Then define CLJK = CLy/LyC " ©CLy_1/Ly_o"

Definition 3.3.6. Let K be a local field of mixed characteristic and Ly = K,L] =
K{T}},.... L = Lg—1 = K{{I1}}--- {{T4-1}}. Define the residue map Resy /1. | as
the composition

0L (log) — O log) — Qi (lo ,
OL¢< g) OLi/OLiq( g) OLi—1< g)

where QZ(’)L 10, (log) — sz_; (log) is the homomorphism that satisfies

i—1 i—1

adlogTy A --- ANdlogT; — cLi/Li_l(a)dlong A---NdlogT;_4

for a € Op,. Then define

el
Resp, /i QOL (log) — Ok
as the composition
Resp /g = Resp jpo0---0 Requ_l/Lq_2 .

It induces

Ag—1
Resp /i Q%L (log) ®p, L — K.
Definition 3.3.7. Let L be a finite extension of M = K{{T1}}---{{T,-1}}, where K is a

local field of mixed characteristic. Define the residue map

Resr, /g Q‘g;(log) ®o, L = K
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Resp /¢ = Resyp/g oTrp/py-

Remark 3.3.8. In Definition 3.3.7, ResL/K is expected to be independent of M. Independence
has been proven when L is a two-dimensional local field (20, 2.3.3]), but appears to remain

open in the general case. This property shall not be necessary for us.

We will now start to obtain some properties of the trace and residue maps that will be

necessary for the proof of the main theorem of this section.

Proposition 3.3.9. Let L be a complete discrete valuation field that is a finite extension
of M = K{{Th}} --{{Ty-1}}, where K is a local field of mized characteristic. Write

e =e(L/K). Then, for any integer n,

Qq_l(log)
ReSL/K mzeiétor(L/K) ~ q?lL = mnK
QOL (log)tor
and 1
Ag—
R ne—dtor (L/K)+1 QOL (log_) — mnl
eSL/K m, ~g—1 =Mg -
QOL (log)tor

Proof. We shall prove the first equality; the second is obtained in a similar way.
Observe that Resy, /i = Resyy g oTry /py. Further, Q((JQ_]\; (log) is generated by dT; and
dlogmy, and its torsion part is generated by dlogmg. Thus we have an isomorphism

On @0y, Q}QK(log) ~ Q?D_]Wl(log)tor. We get, by definition,

Stor(L/K) = Syor(L/M).
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Then, using Lemma 3.3.4, we get

~

q—1
Res mne_‘stor(L/K) QOL (log_) _
LA TE 0%l
Oy, ( Og)tor

A

Gt (log)
N B AL |

Ag—1
Q?QL (log)tor
qul(log)
Om _
R‘eSM/K m%W = m’}( L]
OM( Og)tor

Proposition 3.3.10. Let L, K, and e be as in Proposition 3.3.9. Then, if n € N satisfies

N> dtor(L/K)

Y

e
we have
Resy i (mze—(stor(L/K)ch; (log)) -
and
Resp /¢ (mze_(;tor(L/KHlQ(ng (log)> = m?;rl.
Proof. In this case en — dtor(L/K) > 0, so this follows from Proposition 3.3.9. O

We will now use the previous properties of residue and trace maps, the exponential
map defined by M. Kurihara ([16]), and a modification of higher dimensional class field
theory to prove that, when L is a ¢-dimensional local field that is a finite extension of
K{{T}}---{{Ty-1}}, Main Result 2 holds. This will then be used to prove the general

result. We start with the following theorem:

Theorem 3.3.11. Let L be a g-dimensional local field that is a finite extension of M =

K{{Th}}---{{Ty-1}}, where K is a local field of mized characteristic with residue field k
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of characteristic p > 0. Write e = e(L/K). Assume that n € N satisfies

2e 1
K !

n >
“p—1 e

and let n’ € N be such that n' > M . Take n € O such that v (n) = n.

Then we have a commutative diagram

'—6tor(L/K) Aq—1 Py 2
mS" 0ot log) < Ky(L)

lReSL/K lResL/K

ex
Pn y K~

!/
m
where the right vertical arrow is the residue homomorphism from K-theory defined in [7] and

the top and bottom horizontal maps are, respectively, the exponential maps expy, , and expy 1

defined in [16]. Further, the left vertical arrow is surjective.

Proof. First, observe that the condition

n 2> 20K Jr1
p—1 e
implies
2 2
en>"HKC - L4
p—1 p—1

Therefore this condition guarantees the convergence of both the top and the bottom expo-

nential maps (by Theorem 0.1 in [16]). Furthermore, the condition

s Bl L/E)

&

guarantees that we can apply Proposition 3.3.10.

We need to prove that the diagram
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en' —0tor(L/K) Aqg—1 €XPy
mf" e IQL L log) —1 Ky(L)
lTrL/M Npjm
~ exp. .
wlt 0% (log) ———— Ky(M)
lReSM/K Resp/k
, expn v
mi- » K~

commutes.

By Proposition 3.3.10, the map ResL/K : Q?;Ll (log) — Of induces a surjection

r_ A (—
ReSL/K : mzn 5t0r(L/K)Q((]9L1 (log) —» mnKla

and the map Resy;/f : Q%_Ml(log) — O induces a surjection
! ~ -1 !/
Resyr/k m%Q%M(log) — M.

A similar argument shows that Try /5 : Q?Q_Ll (log) — Q%_Ml(log) induces a surjection

en’ —dtor(L/K)

A _1 ! A _1
Trr i my, Q%L (log) — m%Q%M(log).

The commutativity of the top square is shown in [16]. The commutativity of the bottom
square can be checked explicitly as follows. Let My = K, My = K{{T1}},...,My_1 =M =

K{{T1}}---{{T;-1}} It is enough to show that each one of the squares in the diagram
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Ag—1 exp A
0% Hlog) — s Ky(M)

ReSM/Mq_2 ReSM/Mq_2
g—2 exp, -
Q@M (log) — Kg—1(Mg—2)
q—2
Resyr o/M, 3 Resag,_o/M, 3
VReSM2/M1 VReSM2/M1

1 expy, R
Qp,,, (log) ——— Ky(M)

ReSMl/K
4 expy,

commutes.

Let a € Oy, and write

a= Z akTik + ag + Z ak,Tik,
k<0 k>0

where aj, € Oy, for every k € Z. Put a— = } aka and ay = > akTik. Observe first
k<0 k>0
that, since

> {.T;} o Resa /v,y &
Ki(M;—1) ————— Kj11(M;) ————— K;(M;_q)

is the identity map ([7, Theorem 1]), we get

R a4
CS O eX an—— cee p—

Resyg v, {exp(nag), Th, ... Ti} = {exp(nag), T1, ..., Ti—1} =

Ty T}
eXpnO];{GS]M?;/]Wi_1 OJOTI/\"'/\? .
2
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Further, the same theorem gives

R ( LS dTi)
esyr v L oexpy, | ar— A A — ) =
Mz/Mz—l n Tl 772
dT: dT;
expnoResMi/Miil <G+T—11/\/\TZ) =0.
1
We will now show that we also have
dT dTZ)
Resy /., oexp (a_—/\---/\— =
M'L/szl n Tl 172
dT dTi)
exp, o Resar./ar. <a—/\---/\— =0.
n Mz/szl Tl ﬂ

From Theorem 1 in [7], we have, for k € Z. and m € N,

(nag)" T

ResMi/Mi_l{l—l—naka—i—..._i_ —

Since vz, | ((nag)™/m!) — oo and the residue map is continuous, we have
k
ReSMi/Mi—l {exp(nakTi ), 11, ... ,TZ} =0.
Given k € Z, write s, = > ak/Tikl. From (%) we have that
k<k'<0

Resyp ag,_ {exp(nsg), T, ... Ti} = 0.

By continuity and s;, — a—, we get

ReSMi/Mifl {eXp(UG—), 1y, ... 7T’L} = 0.
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Hence we conclude that

R dTy Aeon dr;
es oexp, a—— A N—] =
M/ My © 5Py \ @ T

dTy drl;
expnoResMi/Miil CZTl/\/\T .
2

A similar argument shows that

dT dT; 1  dmg
Resyr/ar o€ a— N+ AN—— N\ —— | =
Mz/szl Xpﬂ ( Tl 177;_1 TK
dT dl; 1  dmg
exp, o Resar. /ar. a—— NN\ N———| =0,
P ROM: M-y ( Ty Tisp 7k
so we conclude that each square in the diagram is commutative. O

We have now developed all the necessary tools in order to prove Proposition 3.3.12,
which states that Main Result 2 holds when L is a g-dimensional local field that is a finite
extension of K{{T1}}---{{T;—1}}. We will then use Proposition 3.3.12 to prove Theorem

3.3.13, which gives Main Result 2 in full generality.

Proposition 3.3.12. Let L be a q-dimensional local field that is a finite extension of M =
K{Th}} - {{Ty-1}}, where K is a local field of mized characteristic with residue field k

of characteristic p > 0. Assume that x € Hl(K) is such that

2ek 1 ’75‘501*([//[()-‘

WX 2 T TR | el R

Denote by xj, its image in HI(L). Then
Swxr =e(L/K)Swx — dtor(L/K).

Proof. Using the same argument as in [8, (7.6)], we can assume H;(k) #0. Let L=1Lg,l =

Ly1,..., L1, Loy be the chain of residue fields of the g-dimensional local field L. Since there
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are isomorphisms ([6, Theorem 3])

HINL){p} = HY(Lg—1){p} = HT NLy—2){p} = - ~ H' (Lo){p}
and
H*(K){p} ~ H'(k){p},

we have a commutative diagram

HY(L)  x Ky(L) —2s merin)py —= 5 HY(Lo){p}

R |

(k)  x o KX U g0 — = g k) {p)

Here, the pairing H1(L) x Kq(L) — HITY(L){p} is the one constructed in [8]. Denote the

composition H(L) x f(q(L) — HITYL){p} — HY(k){p} by {, };. Similarly, denote the

composition H'(L) x Kq(L) — HITY(L){p} — HI(1){p} by {, };. Since the last arrow is

an isomorphism, {A, B}r, = 0 if and only if {A, B}; = 0, where A € H'(L) and B € Kq(L).

Observe that H]%(Lo) # 0. Indeed, HZ])'(LO) ~ Lo/(aP —x,x € Lg) and H;(k;) ~ k/(zP —

z,x € k), S0 H;(LO) — H]%(k‘) follows from the compatibility between the corestriction map

and the trace map. Since Hg(k‘) # 0, we also have H]%(LO) # 0.

From (8, Proposition 6.5], we have that
Swyxr=m2>1

if and only if
{xp, UM Ky (L)} =0

but

{x0. U™Kq(L)}p # 0.

49



Otor(L/ K i
¢ (e/ )W and n = Swy—n'. Pickn € O

To simplify notation, put e = e(L/K), n’ = [

such that vg(n) = n. From Lemma 3.3.2, the commutative diagram

en' —Sior(L/K) Ag—1 eXPp
lRes L/K lReSL /K
/ expy,
mi s KX

given by Theorem 3.3.11, and the surjectivity of the left vertical arrow, we have that

{X[n e Sw X—5tor(L/K)+1R-q(L)}k _

g, U e IR Ry (L) = (o U™ = 0

but

{X UeSWX 5t0r(L/K ( )}k_

{x, U =OorLE) en g (D) = {x, URY X}y # 0,

This clearly yields {x, U¢S% X 0tor(L/E) Ky(L)}r # 0, s0o Swxp, > eSwx — Stor(L/K).
It remains to show that Swx; < eSw x — dtor(L/K).

Assume that s = Sw xy, > e Sw x — dtor(L/K). The key point is to show that
{x2, U*Kq(L)}1 > Hj(D).
Indeed, if {xy, USKQ(L)}Z > H(1), then, from the isomorphisms
YD) = - = H)(Lo)
obtained in [6] and the surjectivity of H; (Lg) — H]%(k:), we get that

{xL. U Kq(L)};, # 0.
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This is a contradiction because

{x2, UKg(L) Y C {xp, USSVX O LR R (D) = (U X = 0.

We will now show that {x7,, USKq(L)}l O HJ(1). Since [ is of characteristic p > 0, there

is an isomorphism

HJ(1) = Coker (F—1: 0" — of /a0 %)

Denote by d1(w) the class of w € qu_l in HJ(l). Let [Wi]_l ( C%Ef;ﬂ) be Kato’s refined
Swan conductor ([8, Definition 5.3]) of xr,, where o € Qll and 5 € [, and («, B) # (0,0).

If g # 0, take uq,...,uq—1 € 1™ and a € [ such that

(aﬁdﬂ . A%) 40,

Let a € Oy, u; be lifts of a, u; to Of,. Then

~ ~ ~ dU1 du 1
{XLal‘l‘aﬂ—i,U,l,...,uq_l}l:51(ﬁ_/\ uql)#o
q—

. _ dug—1 .
Since Q? is a one-dimensional vector space over [, we know that ﬁdul AREEWA tZ q_11 is a

generator for Q?_ over [. Then

du du,_
401y — a1 &) b l}
Hy(1) { ( Ié] ARRRW - €

= {{XL 1 +57Ti,ﬁ1, coilig1} b e OL} C {x5, USKy(L)};.

Similarly, if 3 = 0 and a # 0, take uq,...,uq—2 € I and a € [ such that

d dug_
51 (aa/\%/\---/\ Y 2)#0.
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We have that

du dug_
Gt ang i dgamh =0 (a0 n S0 A A S ) 20,
uj Ug—2

dug—1 . — . .
and a A du_ul1 ARRRWAY u%; is a generator for Q? L over 1. Then, using the same reasoning as

Uq

before, we get H (1) C {x, USKy(L)Y. O

Theorem 3.3.13. Let L/K be an extension of complete discrete valuation fields of mized
characteristic. Assume that K has perfect residue field of characteristic p > 0.

Denote by e(L/K) the ramification index of L/K. Assume that x € HY(K) is such that

2ek 1 ’75‘501*([//[()-‘

WX 2 T TR | el R

Denote by xj, its image in HI(L). Then
Swxr =e(L/K)Swx — dtor(L/K).

Proof. Following the same argument as [8, §10], we can assume that the residue field [ of L
is finitely generated over the residue field k£ of K. Since we have proven Proposition 3.3.12,
it is enough to show that this case can be reduced to that of a ¢g-dimensional local field that
is a finite extension of K{{T1}}---{{Ty—1}}.

Since [ is finitely generated over k, there are T7,...,T;_1 € [ such that [ is a finite,
separable extension of k(T%,...,T;—1). Since there is an embedding k(T1,...,T;—1) —
k((T1)) - ((Ty—1)), there is also an embedding [ < E of [ into a finite, separable extension
E of k((T1))---((Ty=1)). Since {T71,...,T4—1} is a p-basis for both [ and E, there is a
complete, discrete valuation field L(E) that is an extension of L satisfying O C OL( E)>
my, C mpp), 7z, is still prime in L(E), and the residue field of L(E) is isomorphic to £ over
l.

L(E) is a finite extension of K{{T1}}---{{T,-1}}. Since e(L(E)/L) = 1, we get
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e(L(E)/K) = e(L/K). Further, since E and [ have the same p-basis and 7y, is a prime
ol! 51

for both L and L(E), the map Op g ®0o, 20, (log) — QOL(E)(log) sends generators to

generators satisfying the same relations, so it is an isomorphism. In particular, O L(E) Q0o

Q}QL (log)tor =~ Q%DL(E)(log)tor. Therefore, by definition, dtor(L(E)/K) = 0tor(L/K). From

[8, Lemma 6.2], since Of, C OL(E)7 mp gy = OL(E)mD and the extension of residue fields

is separable, we have Sw y L(E) = Sw x7. Thus it is sufficient to prove that
Swxr(g) = e(L/K)Swx — 0tor (L(E)/K),

which follows from Proposition 3.3.12. ]
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CHAPTER 4
GENERALIZED HASSE-HERBRAND ¢-FUNCTIONS

Through this chapter, let L /K be an extension of complete discrete valuation fields such that
the residue field of K is perfect and of characteristic p > 0. We define generalizations of the
classical Hasse-Herbrand w-function for this case. More precisely, we will define functions
wLA/SK : R>p = R>p and w%I}K : R>¢p = R>( and show that, in the classical case of L/K
finite, they both coincide with the classical ¢y /i : R>9 — Rx>g (see Theorem 4.0.5). The
superscripts AS and ab refer, respectively, to Abbes-Saito and abelian. In the definition of
¢LA/SK we use the Abbes-Saito upper ramification filtrations of absolute Galois groups, while
in the definition of 10 1)K We use Kato’s ramification filtration of H1(L).

We also define functions @%/SK i R>p — R>p and gp%l;K : R>p — R>( and show that,
when @%/SK and goaLl; 5 are injective, PAS LK and 2P 1)K are their respective left inverses (and
vice-versa).

Assume first that the residue field & of K is algebraically closed. Recall that the residue
field [ of L may be imperfect.

For ¢ € Z,), t 2 0, define w%k}K(t) € R>p as

U3 (1) =
Im(Fy gy HY (K') = HY (LK) C FyprypysH' (LK)
inf §'s € Z,) | for all finite, tame extensions K'/K of complete discrete ¢

valuation fields such that e(LK'/L)s,e(K'/K)t € Z

and then extend 1/)%]7]( to R>( by putting

@/}L/K( )= sup{¢%?K(s) 15 < t,s € Ly b
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Similarly, for ¢t € Ly, t =0, define gO%t;K(t) € R>p as

wil}K(t)
Im(F, g/ gy HH(K') = HY (LK) C Fyp gy (LK)

sup § s € Z(p) for all finite, tame extensions K’/K of complete discrete ¢ »

valuation fields such that e(LK'/L)t,e(K'/K)s € Z

and then extend go%b/ i 1o R>qg by putting

Pk (8) = sup{) e (s) 5 < 1,5 € Zy ).

Let G?l denote the Abbes-Saito logarithmic upper ramification filtration defined in

[1]. We now define ¢L/K and SOL/K by putting, for t € R>q,

U = inf {s € R (G5, = Gr) € G

and

QD%?K(t) = sup {s eR: Im(GtL—t_log — Gg) C G?log}

When £ is not necessarily algebraically closed, we define w%l; 1% gpaL? e wLA/SK and 90%17 %

as follows. Let K = I/(; and L = ﬁ(; Then define ;D%?K ¢L/K’ QOL/K = 90L/K’

¢L/K wL/K and ‘pL/K (pL/K

The above defined functions have properties similar to those of their classical counter-

parts. We will now prove some of these properties.

Proposition 4.0.1. If SOL/K( ) is injective, then Qﬁ%?K(t) is its left inverse. Similarly, if

wL/K( ) is injective, then (pL/K(t) is its left inverse.

Proof. From the definitions of <paL]7 (1) and wik} (1), we can assume that k is algebraically

closed. We shall prove that if % ) K( ) is injective, then %ZJ%? () is its left inverse. The other
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statement is proved in an analogous way.
It is enough to show that, for ¢ € Z,), t > 0, we have t = z/JL/K(goL/K( ). If s € Ly is

smaller or equal to gpaLk} 5 (1), then
Tn(Fyer 0y s H (K') = HYLK")) € FypgorypyH (LK)

for all finite Galois extensions K’/K of complete discrete valuation fields such that K'/K is
tame and e(LK'/L)t,e(K'/K)s € Z. Then t > @Di};K(s), sot> Qb%?K(goaLl;K(t)).

Assume that we have t > w%l;K(ap%b/K(t)). Take t € Zp) that satisfies wi?[(@%l}[((t)) <
t < t. Let K'/K be any finite Galois extension of complete discrete valuation fields that is

tame and such that e(LK’/L)t € Z. Since t > d’L/K(SOL/K( ),
Tm(F, g0y H' (K') = H'(LK")) F gyt (LK)
for every s < cpaLl;K(t) in Z,) such that e(K'/K)s € Z. Then
‘P%k}[(( ) > SOL/K(t)
Since go%t} i Is clearly increasing and ¢ > t, we get
P (E) = O3 (1),
which contradicts the injectivity assumption. Therefore
E= 0 (3 ()

for every t > 0 and we conclude that w%l; 5 () is the left inverse of o7 ) K(t) O

The analogous result for zZ) LK and gp T / 7 1s also true:
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Proposition 4.0.2. If "DL/K( ) is injective, then ¢LA/SK(t) is its left inverse. Similarly, if

wL/K( ) is injective, then @L/K(t) is its left inverse.

Proof. From the definitions of @%/SK(t) and wiA/SK(t), we can assume that k is algebraically
closed. We shall prove that if gp L/ K( ) is injective, then wé?K(t) is its left inverse. The other
statement is proved in an analogous way.

If s € R is less than or equal to (piA/SK(t), then
t+
(GL , log - GK) C GK log”

Hence t > wL/K( 5) > wL/K(goL/K(t))
Assume that we have ¢t > wL/K(@L/K(t)). Take t € R such that

Then

t+ s+
(GL log — GK) C GK log

for every s < @L/K( ). Thus

AS
QOL/K( ) > SOL/K( )-
Since go T / 1 1s clearly increasing and ¢ > t, we get

AS AS
@L/K(t) = QOL/K(t)?
which contradicts the injectivity assumption. Therefore
t= 7ﬁL/K(SOL/K(t))

for every ¢ > 0 and we conclude that ¢4 L/ K( ) is the left inverse of @4 L/ K(t) O
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These functions satisfy formulas similar to those satisfied by the classical ¢ and -

functions, as we can see from the following lemma.

Lemma 4.0.3. Let K be a finite Galois extension of K that is tamely ramified and L' =

LK'. Then

P g (e(L [ L)1) = e(K' [ K)3) e (1),
VI o (e(K' [KO)) = e(L /L)Y e (0),
opr(e(L' /D)) = e(K' [ K)pp (1),

W g (e(K! /K1) = e(L' [ LYo P (0):

Proof. Follows from the definitions. For example,

L'/L)t+
5o (e(L /D)) = sup {s € R s (G 7/ —+GK)CGKW%}
—— =+
= sup {s eR: Im(Gtﬂ'1 og Gg) C G;éﬁo/gm }

=e(K'/K)sup {s € R : Im(GH"

g = GK) C G }

K, log

AS
= e(K'/K)gpL/K(t). O
We relate this discussion with Chapter 3. The main results that we proved in the previous
chapter are, in reality, results about w%]; - More precisely, we have the following theorem:

Theorem 4.0.4. Let L/K be a separable extension of complete discrete valuation fields.

Assume that K has perfect residue field of characteristic p > 0. Let t € R>( be such that

2€K 1 Ftor(L/K)

t> + (LK)

p—1 e(L/K) -‘ if K is of characteristic 0,

P Otor(L/K)
p—1 e(L/K)

t> if K is of characteristic p.
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Then

Ui (0) = e(L/K)t = dor(L/K).

Proof. Write

2 1 dtor(L/K)
T = 25 e |

when K is of characteristic 0, and

- S

when K is of characteristic p. Let t € R>q be such that ¢t > T'(L/K) if K is of characteristic
0 and ¢t > T(L/K) if K is of characteristic p.

If t € Z, it follows from Theorems 3.1.12 and 3.3.13 that

U3 (1) = (L) Kt = Bior(L/ ).

Ifte Z(p), take a finite Galois extension K'/K that is tamely ramified and such that
e(K'/K)t € Z. Observe that, if K is of characteristic 0,

, _ 2egr | e(L'/L) (K dtor(L/K)
(/RN = 75 + oy oK) [ e(L/K) W
degr  e(I'JL)  [e(L!/L)bor(L/K)
Z o1 ew/E) " { e(L'/K") 1
2€K/ 1 5tor(L//K/) . / !/
> e | S| = TR

29



Similarly, if K is of characteristic p,

b e(K'/K)0ion(L/K)

1 d(L/K)

_p /D)ol LK)
p-1 /K

p 5t0r(L//K/)

= AR T T(L'/K").

e(K'/K)T(L/K) = )

Then we have e(K'/K)t > T(L'/K') if K is of characteristic 0 and e(K'/K)t > T(L'/K')

if K is of characteristic p. It follows that

U3 (eI I = e 'K el [K)t = bion (I /)

— o(L'/L)e(L/K)t — e(L' /L)Stor (LK),

From Lemma 4.0.3, we conclude that

_ 770%}/)/[(/ (6(K//K)t)

V() = = L = ¢(L/K)t — Sor(L/K).

The result then follows from the definition of ¢ O

ab
L/K
In the classical case, the functions we defined in fact coincide with the classical ¢ and

-functions, as is shown in the following theorem.

Theorem 4.0.5. If L/K is a finite Galois extension and k is perfect, we have

Uk = V8 = ViiK

Proof. From the definitions of the functions, we can assume that k is algebraically closed.

We shall first show that wé/SK = ¢y - To show SOL/K(t) < @%?K(t), just observe that, if
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L'/L is a finite Galois extension over K, then

G(L'/L)=G(L'/L) CG(L/K) L/ K)eLE®),

Vi oPL) K (1) Y oer k(b)) G(

Since the Abbes-Saito filtration is left continuous with rational jumps, it remains to show
that o7 /() = @%/SK(t) for t € Q>q. Let K’ be a finite Galois extension of K that is tame

and write L' = LK’. Since L'/L and K'/K are tame extensions, we have

pr (el L)) = e(K' /K)oy i © oryr 0 V()
= e(K'[K)pp i o ¥rs(t)

= e(K'/K)pp k(1)

From Serre’s local class field theory for fields with algebraically closed residue field ([24]),

for every s € Z>(, the maps

(G%‘?) Vi (5) (G?B)
(G%?)wLI/K/(S)—H (GK19/>8+1

have images that are of finite index and nontrivial. Taking K’ such that e(K'/K)pp i (t) is
an integer and setting s = @L;/K/(e(L’/L)t), we see that the image of (GaLl,’)e(L//L)t = (GaLb)t
/
is not contained in (G%’,)@L’/K’@(L D+
t 1
Since (G%}),)G(KI/K)SOL/K(t)Jrl = (G%P)wL/K( )+6(K’/K), we have that the image of (G%b)t
t 1

is not contained in (G%?)cPL/K( He(K’/K). We can choose tame extensions with e(K’/K)
arbitrarily large, so we have that ¢p /5 (¢) > go‘é/SK(t). Hence ¢%/SK =YK

Now we shall prove that w%l}K = ¢L/K- Let K'/K be a finite, separable extension
of complete discrete valuation fields that is tamely ramified and such that e(LK’/L)t and

e(K’/K)gpL/K(t) are integers. Write L' = LK’. Observe that, taking into account that
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K'/K and L'/L are tamely ramified, we have

b rr(e(K' ) K)op () =Y 0 g i o e k() = Yk o ok (t)

=Y ok o enk () =¥ p(t) = e(L'/L)t.
Let
X € Fo(r /K)oy e (K).

Denote by xj/ its image in H 1([/ ). Using the same argument as before we see that x/ €

Fe(L’/L)tH1<L/>7 so ¢/ (t) < @%BK(t). Now, if s = ¢ /() + (K’/K) then
Foreryiys H (K') = Fe(K’/K)wL/K(t)—&—lHl(K/)-

Since F, (L’/L)tH1<L/> does not contain the image of Fe(K’/K)goL/K(t)JrlHl(K/)v we have
that s > SOL/K( ). Since we can take extensions K’/K with arbitrarily large e(K'/K), we

get that (,DL/K:QO%};K. Thus ¢%?K:¢L/K' O

The properties we proved and Theorem 4.0.5 give evidence that the above defined func-

tions 2P LK and w LK are good generalizations of the classical 1-function. We can conjecture:

Conjecture 2. Let L/K be an extension of complete discrete valuation fields. Assume that

k 1s perfect of characteristic p > 0. Then

Vg = ¢L/K

Conjecture 3. Let L/K be an extension of complete discrete valuation fields. Assume that
k 1s perfect of characteristic p > 0. Then @Z)L/K and @Z)é/SK are continuous, piecewise linear,

increasing, and convex.
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