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Abstract

Many patterns found in natural language syntax have multiple possible explanations or

structural descriptions. Even within the currently dominant Minimalist theoretical frame-

work (Chomsky 1995, 2000), it is not uncommon to encounter multiple analyses for the same

phenomenon proposed in the literature. A natural question, then, is whether one could eval-

uate and compare syntactic proposals from a quantitative point of view. Taking this line

of reasoning further, I aim to capture, formalize, and subsequently automate the intuition

behind the process of developing a syntactic analysis.

The contributions of this dissertation are threefold. First, I show how an evaluation

measure inspired by the Minimum Description Length principle (Rissanen 1978) can be used

to compare accounts of syntactic phenomena implemented as minimalist grammars (Stabler

1997), and how arguments for and against a given analysis translate into quantitative differ-

ences. Next, I build upon Kobele’s (2018, to appear) notion of lexical item decomposition

to propose a principled way of making linguistic generalizations by detecting and eliminat-

ing syntactic and phonological redundancies in the data. Finally, I design and implement

an optimization algorithm capable of transforming a naive minimalist grammar over unseg-

mented words into a grammar over morphemes. As proof of concept, I conduct a number of

experiments on fragments of the English grammar, including the auxiliary system, passives,

and raising verbs; l-selection of prepositional phrases; and allomorphy in verb stems. The

experiments demonstrate how optimizing a quantitative measure can produce linguistically

plausible analyses similar to those proposed in theoretical literature.

xv



Chapter 1

Introduction

1.1 Discovering grammars

How do linguists construct analyses of syntactic phenomena? In more concrete

terms, this question can be stated as the problem of producing a grammar – a finite descrip-

tion of a natural language’s syntax – in a principled way, based on some set of sentences

drawn from the language.

Different views can be found in the literature of what counts as an acceptable grammar

and what is represented by the process of constructing one. Harris (1951) formalizes and

catalogues linguistic research methods as explicit procedures of analysis in order to make

precise the decisions that a linguist makes in the process of constructing a description of

language data. These procedures draw generalizations from the distribution of linguistic

elements, which is defined as the set of contexts in which they are found. Importantly, Harris’

approach is not designed to produce a unique analysis of a given language phenomenon; two

linguists using the procedures of analysis to work on the same data may arrive at different

solutions. There does not have to be an optimal or best description, however that might

be defined; although some may well be more convenient than others for specific purposes

(Harris 1954, p. 148).

1



For Chomsky (1957), on the other hand, there exists a single correct grammar for every

natural language, and the goal of a linguist is to find this unique grammar based on a given

data set (corpus of utterances) drawn from the language in question. In this regard, the

following three tasks are outlined, from the most to the least demanding:

• discovery procedure: a “practical and mechanical” way to obtain the correct grammar;

• decision procedure: a method of determining whether a given grammar is the best one;

• evaluation procedure: a method of determining which of two given grammars is better,

given a data corpus.

While the discovery procedure is initially dismissed as unfeasible and impractical, a similar

idea reappears, along with the evaluation procedure, in (Chomsky 1965). An explanatory

theory of language is defined there as one capable of selecting a descriptively adequate

grammar based on linguistic data. The components of such a theory mirror those of an

acquisition model, or how a child learns a language, and are listed below:

i. a universal phonetic theory that defines the notion “possible sentence”

ii. a definition of “structural description”

iii. a definition of “generative grammar”

iv. a method for determining the structural description of a sentence, given a grammar

v. a way of evaluating alternative proposed grammars

(Chomsky 1965, p. 31)

The last requirement (v) is described as being twofold: it calls for a formal evaluation mea-

sure, some sort of quantitative indication of how good a grammar is, but also demands that

the class of possible grammars be small enough so the evaluation measure can realistically

select between them. In this framework, a precise and rich definition of “generative grammar”
2



serves to tighten the class of grammars. However, the theory still permits multiple gram-

mars compatible with the same data set; the choice of grammar is under-determined by the

language data alone. This is where the evaluation measure comes in: the correct grammar

is the highest-valued one among those that describe the data correctly. Of course, exactly

how to construct a reasonable evaluation measure is a major issue by itself. Chomsky and

Halle (1968) make some concrete steps in this direction (for phonological rules), including a

specific suggestion for the evaluation procedure based on rule length measured in symbols.

Chomsky’s later work takes the idea of restricting what counts as a candidate grammar

much further. By (Chomsky 1986), the description of a grammar has shifted away from

rule systems and is split into two components: an innate universal system of principles and

parameters and a language-specific lexicon of items defined by their phonological form and

semantic properties, with the former getting most of the attention. Assuming a finite number

of principles, parameters, and parameter values, the number of possible languages (apart

from the lexicon) is also finite. This move sharply reduces the role of the evaluation measure

or even dispenses with it altogether, as long as the universal grammar can be designed to

permit only a single grammar compatible with the data.1 The most recent and currently

dominant iteration of generative grammar, the Minimalist Program (Chomsky 1995, 2000),

continues this trend. Much of the system is assumed to be universal and innate, leaving

no need or place for an evaluation measure; and language-specific properties that must be

learned are largely shifted into the features of lexical items.

To summarize, the distinctions between approaches to grammar discovery mentioned so

far boil down to the following:

• Harris (1951): the framework allows for multiple descriptions of a given language.

Although some of them may be better for certain purposes, there is no explicit notion

of the best grammar;

1. The strong learning approach of (Clark 2013, 2015) can be thought of as a formalization of this idea.
For each set of strings, it requires the existence of a unique description called the canonical grammar. A
strong learning algorithm is required to converge to this target grammar for each (formal) language.
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• Chomsky (1965): the framework allows for multiple descriptions of a given language,

one of which is the correct grammar, and these descriptions can be compared based on

some quantitative measure;

• Chomsky (1986) and later work: the framework allows for a small number of descrip-

tions of a given language, or even a single one; the correct grammar follows from the

formal properties of the system and the language data. This stance can be considered

a special case of the previous one, where the set of candidate grammars is sufficiently

small to eliminate the need for an evaluation measure.

Approaches based on learning and those relying primarily on a rich, restrictive innate com-

ponent are often thought of as mutually exclusive. However, as Katzir (2014) points out,

the two can (and should) be reconciled. Different theoretical proposals often seem equally

capable of capturing observed linguistic phenomena, necessitating an additional criterion to

choose between them. At the same time, any theory of universal grammar already comes

with a cognitively plausible evaluation measure, based on the principle of Minimum De-

scription Length (Rissanen 1978) – as long as the grammars permitted by it are capable of

parsing, or assigning structural descriptions to sentences as per (iv), and their description

length can be compared.

In line with (Katzir 2014), this dissertation combines the learning focus of (Chomsky

1965) with the simplifying developments of the Minimalist approach, applying an evaluation

measure to Minimalist lexical items. In what follows, I treat the definition in (i–v) as a

rough roadmap. More specifically, it can be straightforwardly reworded as a search problem,

defined by two primary components:

• a hypothesis space;

• a method of examining this space to find the best candidate.

In our case, (i–iv) define the hypothesis space of candidate grammars and (v) encompasses

the task of navigating this space using the evaluation measure. The rest of this chapter
4



serves to clarify this approach: Section 1.2 narrows down the former, whereas Section 1.3

gives a high-level overview of the latter. Section 1.4 provides a detailed outline of the rest

of the dissertation.

1.2 Encoding syntactic proposals

Marr’s (1982) approach to understanding complex cognitive systems, including language,

distinguishes between three levels of description:

• Computational: abstract specification of what the system computes;

• Algorithmic: structures representing the data and algorithms that manipulate them;

• Implementational: concrete realization of the algorithms in the hardware or wetware.

Johnson (2017) considers linguistic theories to be computational-level, while Peacocke (1986)

places them at a “level 1.5”, between the computational and algorithmic level. Syntactic lit-

erature in particular tends towards a big-picture outlook, abstracting away from algorithmic-

level details such as full specifications of lexical items involved in derivations or syntactic

features being checked by each application of a structure-building operation. At the same

time, differences between competing analyses of the same phenomenon seem to fall closer to

the algorithmic level.

For a concrete example, consider the double object construction (e.g. John gave Mary

a book) in English (1.1). Any analysis of a syntactic phenomenon encodes two kinds of in-

formation: relatively theory-neutral, high-level facts that directly follow from the data, such

as relations between words based on argument structure and linear order; and a proposed

explanation of these facts – for instance, a specific configuration of lexical items constructed

by structure-building operations. Descriptively, ditransitive verbs such as give appear in ac-

tive sentences with three arguments: a subject, a direct object, and an indirect object. This
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is (apparently) non-controversial. On the lower level,2 disregarding the subject, one option

is to combine the two internal arguments together and have the verb select the resulting

constituent as its complement (1.1a). The arguments are described in terms of Williams’

(1975) “small clauses” or taken to be connected by a silent preposition-like element (Kayne

1984; Pesetsky 1996; Harley 2002; Harley and Jung 2015). The alternative is to have the verb

form a constituent with one of its internal arguments and then select the other one (1.1b).

This option gives rise to VP-shells (Larson 1988) and analyses inspired by them (Kawakami

2018).

VP

V’

PP

P’

DP

a book

P

ε

DP

Mary

V

give

...

(a) Null P (adapted from Pesetsky 1996)

VP

V’

VP

V’

DP

a book

V’

tV

give

DP

Mary

V

...

(b) VP-shells (adapted from Larson 1988)

Figure 1.1: The double object construction

Existing treatments of the double object construction generally fall into one of the two

categories mentioned above, as there are only so many conceivable ways to form a binary-

branching structure containing a verb and two arguments. That said, the abundance of recent

literature on the topic indicates that this is far from a closed question. This and similar cases

2. Work concerning these structures also tends to assume and try to explain a connection between them
and prepositional constructions, as in John gave a book to Mary. This too is a nontrivial analytical choice;
see (Goldsmith 1980).
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naturally lead to the follow-up question of this dissertation: when there is disagreement

in the literature over a specific linguistic puzzle, how can the candidates be compared in

terms of Chomsky’s evaluation procedure? In other words, how can one choose between

different structures that could underlie the same linguistic construction based

on quantitative considerations?

In order to take on this question, one needs to capture precisely what makes the com-

peting solutions different. This requires formalizing syntactic proposals at the algorithmic

level, expressing them as a clearly defined set of building blocks and rules for putting them

together. This dissertation adopts the formalism known as minimalist grammars, intro-

duced by Stabler (1997). On the one hand, minimalist grammars were expressly designed

as an implementation of Chomsky’s Minimalist Program and offer a way to state analyses

of syntactic phenomena in terms familiar to a linguist: lexical items defined by features and

structure-building operations that combine them. On the other hand, they are explicit in

spelling out assumptions about syntactic units and operations, and their formal properties

– such as the complexity of string languages they generate and relation to other grammar

formalisms – are relatively well understood. A semi-formal, example-driven description of

minimalist grammars is given in Section 2.3.

1.3 Grammar optimization

In the literature, selecting a grammar to represent a language is usually framed as a learning

problem. In terms of Gold (1967), a learner is a function that is presented with sentences

from the target language and makes a guess about the language (in the form of one of its

names, or grammars) after each example. The learner succeeds if after some point all its

guesses are the same and a name of the correct language, regardless of the order in which

examples are presented.
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Within this paradigm, there is a substantial body of previous work concerned with learn-

ing grammars from unstructured strings; see e.g. an overview in (Clark 2017). These tech-

niques are based around the notion of distributional similarity, not unlike that of Harris

(1951); in short, words that occur in the same contexts are assigned the same syntactic

category. Resulting algorithms can make linguistically plausible generalizations based on

observable data. For example, Clark and Eyraud (2007) present an algorithm for learning a

subclass of context-free grammars purely from positive data. It is capable of making certain

generalizations – such as correctly generating sentences with both auxiliary fronting and a

relative clause (Is the man who is hungry ordering dinner? ) despite having only seen these

phenomena separately in the training data. Yoshinaka (2011) generalizes this approach to a

number of subclasses of multiple context-free grammars.

One question to ask at this point is whether the learner has to start with nothing but

unstructured strings. Extralinguistic context of the input sentences as a source of information

is central to the semantic bootstrapping theory of language acquisition laid out in (Pinker

1984, 1987). It works under the assumption that the learner can acquire meanings of many

content words and construct a semantic representation of many input sentences (based on

entities such as “thing”, “true in the past”, “predicate-argument relation”) independently of

learning grammatical rules. A more recent take on this idea (Siskind 1996; Stabler et al. 2003;

Kobele et al. 2003) is that the learner can start the process of grounding, or mapping linguistic

units to atoms of meaning, before learning the syntactic structure. Thus, it is plausible

that the learner can identify relations between words of each sentence before knowing what

lexical items or syntactic features are involved. This idea aligns with a different line of work,

which focuses on producing grammars from annotated language data. Kobele et al. (2002)

and Stabler et al. (2003) introduce a dependency-based approach: the learner is given a

corpus of dependency structures – sentences segmented into morphemes and annotated with

argument-structure and linear-order relations – and must generalize over separate instances

of the same unit, converting the dependencies into a set of lexical items. Indurkhya (2019,
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2020) proposes a method of inferring minimalist grammars from sentences annotated with

semantic roles of arguments and agreement relations.

Approaches discussed so far aim to produce a description of a (typically infinite) language

based on a finite sample drawn from that language. Using de la Higuera’s (2010) terminology,

such tasks can be referred to as grammar induction (when the primary goal is to obtain a

grammar that explains the data) or grammatical inference (when a true target grammar is

expected to exist, and the focus is on the quality of the learning process itself). In this

dissertation, I take on a learning problem of a different kind. The goal is to compare and

evaluate specific proposals of theoretical syntax, which is heavily reliant on highly abstract

concepts. Two broad considerations are particularly illustrative in this respect:

• Empty categories. Phonetically empty lexical items (null DPs of various flavors,

null heads such as complementizers, traces/unpronounced copies) are commonplace in

the syntactic literature, even though they cannot be directly observed in the raw data.

For example, a straightforward way to account for that being optional in sentences

such as Mary thinks that John is smart vs. Mary thinks John is smart is to postulate

a silent complementizer that introduces the subordinate clause John is smart in the

latter case. While some recent methods of learning from annotated data can generate

empty heads (Indurkhya 2019), works on learning from strings tend to prohibit silent

elements altogether (Clark and Eyraud 2007; Yoshinaka 2011).

• Morphology. Many crucial generalizations require words to have internal structure.

For example, the standard analysis of active constructions (Mary praises John) vs.

passive constructions (John is praised) assumes they both use the same lexical verb

praise, and the passive is derived by promoting the object (John) into the subject

position. In order for this to work, the verb has to consist of at least two elements: the

root, which is constant in the active and passive; and the suffix, which accounts for the

contrast in the number and behaviour of arguments. A learning algorithm incapable
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of manipulating units smaller than a word may be able to generate passive and active

sentences correctly, but it will miss the generalization.

In order to zoom in on these and similar issues, I adopt a learning setting that emphasizes

differences between weakly equivalent grammars. The input consists of a corpus of sentences

and a minimalist grammar capable of generating them, defined over unsegmented words and

in a maximally theory-neutral way. The learner’s role is to refine the input grammar and

produce a linguistically plausible description accounting for the original data. The focus

is on capturing generalizations within the grammar rather than generalizing beyond the

corpus; in fact, the output grammar may generate the same string language as the input. To

distinguish this task from grammar induction or grammatical inference, I will use the term

grammar optimization.

My proposal builds upon the notion of lexical item decomposition (Kobele 2018, to ap-

pear) to develop a systematic way to identify and eliminate redundancies across words. For

example, the following observations – that jumping, jumps, laughed, and walk are intransi-

tive verbs; that jumping and jumps share the same root; and that jumps and laughed are

both finite – all translate into quantifiable similarities in their phonological and/or syntactic

features. The atomic word jumping can then be split into two new lexical items: the root

jump, which has the same syntactic properties as other intransitive roots, and the suffix

-ing, which is shared by other gerund forms in the grammar. Units formed in this way may

or may not have phonological content – in fact, empty lexical items play a crucial role in

encoding distinctions between homophones and relations between syntactic categories. In

essence, lexical decomposition factors out linguistic generalizations across the grammar and

expresses them as new lexical items, transforming a grammar over unsegmented words into

one of morphemes.

With this general strategy in mind, I define an evaluation metric for minimalist gram-

mars and a set of operations over (sets of) lexical items based around the notion of lexical

decomposition. These results are then used to design a procedure for grammar optimization.
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As proof of concept, I also develop a Python implementation of this learning procedure and

use it to perform a series of experiments optimizing descriptions of syntactic phenomena.

This work focuses on English as the best-studied language with the largest available body

of syntactic literature. That said, applying lexical decomposition to a language with richer

morphology, such as Turkish or Swahili, may be an interesting task for the future. All ma-

terials used in the experiments, including the code for the optimization algorithm and input

datasets, can be found online at https://github.com/mermolaeva/mg-optimizer.

The immediate goal of this work is to offer an additional tool to linguists. However,

its higher-level intent is to capture a more general insight about the way syntactic analy-

ses are structured and developed. From a broader perspective, I aim to demonstrate how

the mainstream study of natural language syntax might benefit from a formally explicit ap-

proach, and ultimately help build a stronger connection between theoretical linguistics and

the mathematical theory of formal languages.

1.4 Dissertation outline

Chapter 2: Background provides necessary mathematical preliminaries and an introduc-

tion to minimalist grammars, in order to keep the dissertation self-contained. An important

caveat of the formal approach adopted here is that any results will be contingent on the

selected formalism and its (by necessity very specific) assumptions about syntax. Therefore,

I also briefly discuss how faithful the machinery of minimalist grammars is to theoretical

proposals, and how it can be extended to better accommodate them.

Chapter 3: Comparing proposals addresses the problem of quantifying what makes a

grammar good. It discusses the Minimum Description Length principle (Rissanen 1978)

and the way it can be used to obtain an evaluation measure for minimalist grammars.

It also provides a case study of a concrete language phenomenon, which shows how this
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evaluation measure takes into account specific arguments from theoretical literature and

reflects predictions of various competing analyses.

Chapter 4: Deconstructing syntactic generalizations introduces the concept of lexical

item decomposition as the driving force behind syntactic analysis and unpacks this intuitive

idea into a toolkit of elementary operations over (sets of) lexical items. This is followed

up with a fully worked out sample transformation of a small grammar to demonstrate how

complex generalizations can arise through repeated application of small, easily interpretable

steps.

Chapter 5: Towards a learning algorithm develops an optimization procedure based on

the evaluation measure and operations outlined in previous chapters. It introduces additional

machinery required to apply lexical decomposition in a systematic way, form and evaluate

hypotheses, and navigate the search space of grammars to converge to an optimal solution.

Chapter 6: Experiments reports the results of applying the optimization procedure to

various datasets. It also examines different quantitative metrics and the effects they have on

the behaviour of the learner. The experiments cover a wide range of syntactic phenomena

including passives, complement clauses, and raising constructions; l-selection of prepositional

phrases; and allomorphy of verb stems, and help to evaluate the algorithm’s ability to con-

verge on a concise, linguistically motivated description of (a nontrivial fragment of) the

English grammar.

Chapter 7: Conclusions takes a step back to summarize the results and outline a number

of directions for future work.

12



Chapter 2

Background

2.1 Mathematical preliminaries

2.1.1 Tuples, sets, relations, and functions

A tuple is defined as an ordered collection of objects. A tuple of two elements is called a

pair, and a tuple of three elements a triple. Tuples are written in angle brackets. For any

tuple T “ xt1, ..., tny of n elements, for i, j P r1, ns, T ris denotes ti, the i-th component of T ,

and T ri, js denotes xti, ..., tjy, the tuple containing the i-th to j-th components of T . The

number i is called the index of ti.

A set is defined as an unordered collection of distinct objects. Elements of a set are

written in curly braces. Let A “ ta1, ..., anu denote a set. Its size, |A| “ n, is the number of

elements in A. The set of all subsets of A, PpAq, is called its power set. The empty set of

size 0 is denoted H. N is the set of natural numbers, including 0. An unordered collection

that allows multiple instances of objects is called a multiset.

Given two sets A and B, their cross-product AˆB is defined as the set of all pairs xa, by

such that a P A and b P B. Generalizing the notion of cross-product, the finite product

of sets A1, A2, ..., An is the set of all tuples of length n such that the i-th element of each
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tuple is chosen from Ai, for i P r1, ns: A1 ˆ A2 ˆ ... ˆ An “ txa1, a2, ..., any : a1 P A1, a2 P

A2, ..., an P Anu. The rest of usual set operations are defined below:

AYB “ tx : x P A or x P Bu punionq

AXB “ tx : x P A and x P Bu pintersectionq

A´B “ tx : x P A and x R Bu pdifferenceq

For any set or tuple X, Xrx1 ÞÑ y1, ..., xk ÞÑ yks denotes the structure (set or tuple) that

is identical to X except for each occurrence of xi which is replaced with yi, for i P r1, ks.

A relation on sets A and B is a subset of A ˆ B. A (partial) function f from A (its

domain) to B (its codomain), written as f : A Ñ B, is a relation f Ď A ˆ B such that for

every xa, by P f , for any b1 such that xa, b1y P f , b1 “ b.

A relation R on a set A and itself is called a partial order over A if it has the following

properties:

for any x P A, xx, xy P R preflexivityq

for any x, y P A, if xx, yy P R and xy, xy P R, then x “ y pantisymmetryq

for any x, y, z P A, if xx, yy P R and xy, zy P R, then xx, zy P R ptransitivityq

For any x, y P A, we say that x and y are comparable in X if xx, yy P R or xy, xy P R.

An n-ary operation over a set A is defined as a function from Aˆ ...ˆ A
looooomooooon

n times

to A. The

closure of A under an operation f is the smallest set containing A such that f returns a

member of the set when applied to members of the set.

2.1.2 Strings and languages

An alphabet Σ is a finite set of symbols. A string over Σ is a finite sequence of elements of

Σ. Similar to the size of a set, the length of a string w is the numbers of symbols it contains,

written as |w|. For any two strings u and v, u ¨ v or uv denotes their concatenation. If

w “ uv, then u is a prefix of w and v is a suffix of w.
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For any n P N, Σn is the set of all strings over Σ of length n. Σ˚ is the set of all finite

strings of elements of Σ, including the unique empty string ε of length 0, whereas Σ` is the

set of all non-empty strings over Σ. A language over Σ is a subset of Σ˚. A grammar is

a finite set of rules describing how to form, or generate, strings in some (finite or infinite)

language.

2.1.3 Graphs and trees

A graph is defined as a pair xV,Ey, where V is a set of vertices (or nodes) and E is a set

of edges connecting pairs of vertices. In a directed graph, edges have orientations and are

defined as ordered pairs such that E Ď V ˆV . A path from v1 to vn in a directed graph xV,Ey

is a sequence of distinct vertices v1, v2, ..., vn such that xvi, vi`1y P E, for all i P r1, n ´ 1s.

A cycle is a path from a vertex to itself. A subgraph xV 1, E1y of a graph xV,Ey is a graph

whose vertex set V 1 and edge set E1 are subsets of V and E, respectively. A multigraph

is permitted to have multiple edges connecting the same nodes; that is, E is defined as a

multiset rather than a set. Edges that connect the same pair of nodes are called parallel

edges.

An unordered tree is a directed graph xN,P y which has no cycles and for which the

following hold:

• For any xn1, n2y P P , n1 is a parent of n2, and n2 is a child of n1. Every node in N

has at most one parent;

• Every node dominates itself and its children, and for any n1, n2, n3 P N , if n1 dominates

n2 and n2 dominates n3, then n1 dominates n3. N contains a single root node which

does not have a parent and which dominates all nodes in N .

A node n1 strictly dominates n2 if it dominates n2 and n1 ‰ n2. A node is called a leaf if it

has no children, and an internal node otherwise. For any n1, n2 P N , n1 and n2 are called

siblings if they have the same parent.
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An ordered tree is a triple xN,P,Ry where xN,P y is an unordered tree and R is a partial

order such that two nodes are comparable in R if and only if they are siblings. The yield of

an ordered tree rooted in node t is defined as follows:

yieldptq “

$

’

’

&

’

’

%

t if t is a leaf

yieldpc1q ¨ ... ¨ yieldpcnq
otherwise, where c1, ..., cn are children of t
and for i, j P r1, ns, xci, cjy P R iff i ď j

2.2 Context-free grammars

Context-free grammars, also called phrase-structure grammars (Chomsky 1956), are a gram-

mar formalism developed for describing syntactic structure in natural language, which serves

as the starting point of Chomsky’s (1965) Standard Theory. A context-free grammar is de-

fined by specifying the following components:

• N , a finite set of nonterminal symbols. By convention, S P N is the start symbol ;

• Σ, a finite set of terminal symbols disjoint from N ;

• R, a finite set of (rewrite) rules. Each member of R is a pair xα, βy (usually written as

αÑ β), where α P N and β is a (potentially empty) string of terminal and nonterminal

symbols.

Rules are applied by replacing the nonterminal symbol on the left-hand side with the sequence

on the right-hand side. The derivation begins with the start symbol and proceeds by applying

rules until no nonterminal symbols are left in the string.

For a concrete example, consider a CFG withN “ tS, DP, VP, D, N, AUX, VGu, Σ “ tthis, boy,

laughs, is, laughingu, and R as given in 2.1. CFGs are often represented simply as a list of

rewrite rules, since N and Σ are recoverable from R.
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SÑ DP VP
DPÑ D N
DÑ this
NÑ boy

VPÑ laughs
VPÑ AUX VG

AUXÑ is
VGÑ laughing

Figure 2.1: A toy context-free grammar

A derivation of the string this boy is laughing and the associated phrase-structure tree, or

parse tree, are shown in 2.2a and 2.2b respectively. In a phrase-structure tree for a context-

free derivation, each internal node corresponds to the left-hand side of a rule, and its children

to symbols on the rule’s right-hand side.

SÑ DP VPÑ D N VPÑ this N VPÑ

this boy VPÑ this boy AUX VGÑ

this boy is VGÑ this boy is laughing
(a) Derivation

S

VP

VG

laughing

AUX

is

DP

N

boy

D

this

(b) Parse tree

Figure 2.2: Generation of this boy is laughing using 2.1

Context-free grammars have been shown by Shieber (1985) to be insufficiently powerful

to describe some patterns found in natural language syntax. Nevertheless, they have useful

connections to other grammar formalisms that will come in handy in Subsection 2.3.4.

17



2.3 Minimalist grammars

2.3.1 Lexical items, Merge, and Move

Minimalist grammars (MGs, Stabler 1997) provide a formal implementation of Minimal-

ist syntax (Chomsky 1995, 2000), which is used throughout the dissertation. This section

introduces the MG formalism and provides examples of derivations.

An MG specifies a finite set of lexical items and encodes their selectional properties in

the form of syntactic features. A feature of the form x corresponds to a syntactic category,

whereas =x and x= are selecting features which indicate that an expression is looking to

merge (on the right or on the left, respectively3) with something of that category. Similarly,

-x indicates the requirement to move, and +x means that the expression attracts a sub-

expression with that feature into its specifier position. In order to define an MG, one has

to specify the following:

• Base, a finite set of syntactic categories. The set Syn of syntactic features is defined

as the union of Base and the following sets:

Sel “t=x : x P Baseu Y pright selectorsq

tx= : x P Baseu pleft selectorsq

Lic “t+x : x P Baseu Y povert licensorsq

t*x : x P Baseu pcovert licensorsq

Lee “t-x : x P Baseu plicenseesq

Each syntactic feature is then characterized by its name (drawn from Base) and type

(category, right/left selector, overt/covert licensor, or licensee). Selectors and licensors

together are called attractors, and categories and licensees are called attractees ;

3. The choice to distinguish between left and right selection puts linear order under lexical control. One
alternative, commonly adopted in the literature on MGs, is to have the first dependent of a head merge on
the right, and all subsequent dependents on the left – a version of the Linear Correspondence Axiom (Kayne
1994).
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• Σ, a finite alphabet of phonological segments;

• Lex, a lexicon, or finite set of lexical items. Each lexical item (LI) is a pair xs, δy

(written as s :: δ), where s P Σ˚ is a (phonological) string component and δ P Syn˚ is a

list of syntactic features, or feature bundle. We will sometimes refer to specific lexical

items by their string components, where it does not lead to ambiguity.

MGs are commonly defined by simply stating a lexicon, which also implicitly fixes a set of

categories and an alphabet of segments. Because of this, and for the sake of convenience,

we will use the terms “grammar” and “lexicon” interchangeably when referring to MGs. An

example grammar of five lexical items is given below:

this :: =n d -k
boy :: n

is :: =g +k t

laughing :: =d g

laughs :: =d +k t

Figure 2.3: A toy MG

Syntactic expressions generated by an MG are binary trees whose terminal nodes are

labeled with LIs (which themselves are referred to as atomic expressions). The first feature

of each LI is syntactically active, i.e. accessible to structure building operations. These oper-

ations, merge and move, consume matching attractors and attractees to generate complex

expressions from Lex. The set of expressions Exp is defined as the closure of Lex under

merge and move.

• merge : pExpˆ Expq Ñ Exp is a binary function that targets selectors and categories

and combines two syntactic expressions into a new one. The dependent is merged on

the left if the selector is of the form x=, and on the right if it is of the form =x.
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Figure 2.4: Left and right merge

• move : ExpˆExp is a relation that matches a licensor with a licensee within the same

expression. Overt licensors (+x) cause the moving subtree to become a (left) sister

of the head, leaving behind an empty node4 without a string component or syntactic

features. Covert move (*x) leaves the string component behind.5
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Figure 2.5: Overt and covert move

While there are many ways to limit the number of features which may be syntactically active

at any given time, a simple one with desirable computational properties stipulates that only

one feature of each name may be the first feature of any feature bundle in an expression. In

particular, this means that the number of movable subtrees in any expression is limited by

the size of Base. This restriction is known as the Shortest Move Constraint, or SMC. With

the SMC in place, move becomes a function.

A single lexical item (atomic expression) is considered its own head. For complex struc-

tures formed by merge or move, the expression with the attractor becomes the head of the

new expression; and the one with the attractee becomes its dependent. We label the parent

4. We indicate a moved string t as t. This is a notational convenience; formally, the empty node contains
ε, the empty string.

5. This version of covert movement, which displaces syntactic features but leaves the string component
in its base position, is in line with (Stabler 1997). It fixes the position of a sub-expression once it has been
covertly moved, rendering its string component inaccessible to future instances of (overt) move. Though
restricted, this implementation has been used in previous work on MGs; see e.g. (Torr and Stabler 2016)
and is sufficient for our purposes.
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node with ă if the head is on the left or ą if the head is on the right. The dependent intro-

duced by the first attractor of an LI is its complement, and all subsequent dependents are

specifiers. Matched features are checked, or deleted, making the next feature in the bundle

accessible for syntactic operations. Checked features are no longer visible to syntax. We will

sometimes keep them in representations for clarity, in which case they will be marked as x.

An expression with no unchecked features except for some category x on its head is

called a complete expression of that category. We will be primarily concerned with complete

expressions of category t (for Tense) or c (for Complementizer) and their yields (sentences).

By the definition of merge, a lexical item can only check its attractors as long as it is the

head of the expression; and by the definition of move, it can only check its licensees after

being selected and having its category checked by another lexical item. Therefore, in order

to arrive at a complete expression of any category, each lexical item in the expression must

have a feature bundle of the form pSelY Licq˚ Base pLeeq˚.

The lexicon in 2.3 generates, among others, the four expressions in 2.6. In 2.6a, merge

applies to this and boy, whose feature bundles start with the matching features =n and n,

respectively. Both =n and n are deleted. In 2.6b, merge once again targets two expressions:

laughing ’s feature bundle starts with =d, and 2.6a has d as its first feature. Another merge

step (2.6c) checks the =g and g features, combining is with 2.6b.

In 2.6d, the matching features are +k on is and -k on this. The DP is moved into the

specifier position of is, which becomes the head of the new expression.
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Figure 2.6: Derivation of this boy is laughing using 2.3

We have arrived at a complete expression of category t, yielding the sentence this boy is

laughing. Another sentence, this boy laughs, can be produced by applying merge to laughs

and 2.6d, and then move to the resulting structure. These are the only two sentences

generated by this example lexicon.

At a glance, MGs appear rather different from mainstreamMinimalist syntax in numerous

ways – with respect to the feature calculus, implementation of movement, locality, and other

issues. However, many of these seeming points of disagreement are a matter of convenience

and can be tweaked without altering the crucial computational properties of the formalism,

and much of the machinery employed by Minimalist syntax can be implemented as extensions

of MGs or translated into the bare-bones formalism. For an in-depth discussion of how

faithful MGs are to Minimalist syntax, see (Graf 2013, pp. 96–125). Here, I will briefly focus

on one example: the hierarchy of syntactic categories.

In order to bridge the apparent gap, let us consider an explicit theory of feature structures

compatible with Chomsky’s framework, proposed by Adger (2010). Lexical items are defined
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as sets of category features (T, V, N, D, ...) and morphosyntactic features (case, number,

person, ...), each specified as bearing a value (drawn from some finite set) or being unvalued.

Category features are ordered according to a number of universal Hierarchies of Projection

(HoPs). The definition of a well-formed syntactic object specifies that the projecting head

must bear a higher-valued category feature than the dependent; HoPs thus constrain the

building of structure.

As an illustration, consider three lexical items: the, many, men. In Adger’s system, there

is a HoP in the nominal domain specifying N ă Num ă D. By assigning the categories D,

Num, and N to lexical items the, many, and men respectively, the system ensures that the

many men and the men are well-formed, while *many the men is ruled out.

How would such a constraint translate into MGs? One option is to extend the formalism

to include an explicit partial order relation over Base, the set of categories. However, an

implicit ordering is already present in the bare-bones MGs. Consider the lexicon in 2.7.

the :: =num d -k
many :: =n num

ε :: =n num

men :: n

Figure 2.7: An MG ensuring the correct ordering of nominal projections

Since merge is feature-driven, the ordering of lexical items within expressions generated by

this grammar is already constrained by their feature bundles: the can select an expression

headed by many, but not vice versa. Finally, all we need to ensure the optionality of many

is a phonologically empty lexical item, ε :: =n num.6 It represents the idea that expressions

of category num have a more limited distribution than those of category n; that is, any

expression that selects a num can also select an n, but not the other way around.

6. Silent lexical items whose only contribution to the expression is changing its category are of special
interest to our goal and will be discussed more extensively in Section 4.2.
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Having no explicit machinery to encode HoPs significantly increases the size of a lexicon.

This is an example of a trade-off: the conceptual simplicity of bare-bones MGs is preserved

at the cost of a less elegant solution to a specific problem, with the understanding that the

formalism can be extended, if necessary, to accommodate this additional machinery,7 and

that doing so would not change its core computational properties.

2.3.2 Complex words

The basic formalism outlined so far does not offer a way of recognizing structure within

words, and the derivation in 2.6 treats each word as an inseparable unit. This is an oversim-

plification, which leads to considerable redundancy and missed generalizations. For instance,

the grammar does not reflect the fact that laughing and laughs have a common root, or that

laughs shares certain syntactic properties with is.

To remedy this, we need a way to combine multiple syntactic heads into complex units

corresponding to multimorphemic words. This gives rise to a number of questions regarding

the syntax-morphology interface and morphology proper:

1. Where in the sentence are the complex syntactic heads pronounced?

2. How is morphological information transmitted between words?

3. How are the complex heads mapped to strings?

With respect to (1), multiple options have been explored in the literature. Head movement

creates a chain of heads that is pronounced in the highest head position (2.8a). Lowering

or affix hopping, on the other hand, allows an affix to attach to the head of its complement,

with the whole word being pronounced in the lower position (2.8b).

7. An extension adding a hierarchy of projections to MGs is implemented in (Fowlie 2013), which augments
the formalism with a partial order over selectors to handle adjunction in a concise and explicit way.
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Figure 2.8: Building complex heads

Both processes are widely taken to be present in English. In particular, finite auxiliaries

undergo head movement to T, while finite lexical verbs have affixes lowered onto them.

Evidence of this is presented by Pollock (1989): finite auxiliaries precede sentential negation

and undergo subject-auxiliary inversion in questions, whereas lexical verbs do not.

Unification of head movement and lowering is one of the defining features of Brody’s

(2000) Mirror Theory. This operation creates morphological dependencies between heads

(lexical items), combining them into a morphological word. Each head is characterized as

weak or strong. A complex morphological word is pronounced in the position of its highest

strong head, or the lowest head if it does not contain any strong head. In a similar vein,

Arregi and Pietraszko (2018) propose a generalized account of head movement and lowering

as high and low spellouts of a single syntactic operation, unified head movement, supporting

it with evidence of successive cyclic lowering as well as lowering feeding head movement. This

proposal differs from Mirror Theory in that the default position of a complex word, in the

absence of strong heads, is the highest head position. Among other things, this immediately

offers an analysis for the English data. Tense, auxiliary be, and auxiliary have are weak

heads, whereas lexical verbs are strong. As a result, finite have and be are pronounced in

the highest position, since they don’t contain any strong heads, but finite lexical verbs are

pronounced in the lowest position.

Some approaches to complex heads have been adapted for the MG formalism. Stabler

(2001) incorporates both head movement and lowering into MGs as subtypes of selector

features. This formalization renders the material in a lowered complex head inaccessible
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for any future head movement or lowering. Brody’s framework was adapted into minimalist

grammars by Kobele (2002), and was proven not to affect the weak generative capacity of

the formalism. Arregi and Pietraszko’s (2018) proposal is similarly implemented in (Kobele

to appear).

Question (2) deals with local and long-distance flow of information between words and its

morphological manifestation. Chomsky’s Minimalist program (2000; 2001) considers these

phenomena an effect of a general mechanism called Agree, which is driven by feature match-

ing and forms relations between lexical items. The standard version of Agree takes place

between a probe and a goal with matching features, such that the probe c-commands the

goal and there is no other eligible goal that is closer to the probe. To establish an Agree

relation, the probe look downwards into its domain (sister), and the goal transmits feature

values upwards to the probe. In Adger’s (2010) system, this is made explicit as a standalone

operation which targets morphosyntactic features and establishes dependencies within ex-

isting structure – in contrast to Merge and Move, which operate on category features and

build new structure.

A framework for agreement compatible with MGs is outlined in (Ermolaeva 2018; Ermo-

laeva and Kobele 2019). This line of work utilizes a more refined definition of lexical items:

instead of a string component, each LI is associated with a set of morphological features

and values, which encode information needed to realize the head as a string. Morphologi-

cal features are then valued in the course of the derivation, using dependencies formed by

merge and move. For instance, rather than the string boy, the corresponding LI would be

represented by a set containing, among others, the features number:singular, person:3, and

case:unvalued, whereas the lexical item be would carry number:unvalued, person:unvalued,

and case:nominative. Their respective -k and +k features would be marked as allowing

transmission of feature values along the move dependency. Like many other modifications

of MGs, operating over sets of morphological features provides a succinct way of formulating
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generalizations but does not change the core properties of the formalism.8 More generally, as

shown by Graf (2013), restrictions on LI compatibility can be added to MGs as long as they

are definable in monadic second-order logic. In this case, the constraints can be built into

standard MGs by refining syntactic categories. These results are used directly, for instance,

in (Laszakovits 2018) to implement dependent case in MGs.

Finally, (3) falls outside the domain of syntax, or even the syntax-morphology interface,

and into morphology proper. While this issue is largely outside the scope of this dissertation,

it represents another decision which must be made to ensure that the syntax formalism we

are using is capable of supporting complex words. Generally speaking, this requires an

MG-compatible theory of morphology, understood as a function mapping words (simple or

complex heads output by an MG) to phonological strings. This function may be as simple as

string concatenation or as involved as a faithful formalization of a morphological framework

proposed in the literature.9

The various options available with respect to each of the three questions are meaningful

and worth exploring in the context of grammar optimization. That said, just as with syntax

proper, one needs to strike a balance between faithfulness and conceptual simplicity when

making additions to the formalism. In order to focus on the issues outlined in Section 1.3,

8. For example, subject-verb agreement in English can be expressed, in a straightforward but cumbersome
fashion, as a bare-bones MGs over immutable strings:

I :: d -k1SG
this :: =n3SG d -k3SG

these :: =n3PL d -k3PL
boy :: n3SG

boys :: n3PL

am :: =g +k1SG t

is :: =g +k3SG t

are :: =g +k3PL t

walking :: =d g

Figure 2.9: Subject-verb agreement in an MG

This lexicon enforces agreement, as only lexical items with compatible string components may combine via
merge or move. This is made possible by introducing a separate syntactic feature for each configuration of
morphological properties resulting in a distinct morphological form.

9. For example, Ermolaeva and Edmiston (2018) propose a formalization of Distributed Morphology
(Halle and Marantz 1993) that is explicitly designed to operate over expressions generated by chain-based
minimalist grammars.
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and keeping in mind English as the primary case study, I make the following simplifying

assumptions:

• All complex heads are formed by head movement;

• Lexical items carry string components rather than sets of morphological features;

• Morphology is concatenative, and all affixation is suffixation.

Following Stabler (2001), this is implemented as an additional subtype of selector features,

=>x, which triggers right merge accompanied by head movement. We will call these fea-

tures morphological selectors. This version of head movement is defined in terms of head-

complement relations, which means that the new type is restricted to the first feature in the

bundle. More precisely, we add the set t=>x : x P Baseu to Sel and define a new operation

targeting these attractors:

• merge with head movement is triggered by selectors of the form =>x. It proceeds as

right merge and concatenates the string component of the head of the complement

with that of the resulting expression.

s
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`

t
xδ

ñ

ă

ts
γ

t
δ

Figure 2.10: merge with head movement

We will refer to lexical items bearing these selector features as affixes and write their string

components starting with a hyphen, following a common notational convention.

With this modification, our toy lexicon can be updated to reflect structure within inflected

verbs. Instead of two atomic words, this grammar has a single lexical item representing the

root, laugh, that can be selected by either of two affixes, -ing or -s.

28



this :: =n d -k
boy :: n

is :: =g +k t

laugh :: =d v

-ing :: =>v g

-s :: =>v +k t

Figure 2.11: An MG with head movement
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Figure 2.12: Derivation of this boy is laugh-ing using 2.11

29



Let us compare the derivation in 2.6 with its counterpart using the updated lexicon (2.12).

The first two steps, 2.12a and 2.12b proceed in the same way. Next, we merge in -ing.

Its selector feature, =>v, triggers head movement, concatenating laugh and -ing together

(2.12c). The two remaining steps, merge and move, proceed as normal, resulting in the

complete expression in 2.12e and yielding this boy is laugh-ing.

2.3.3 Representing minimalist grammars and expressions

So far, we have been using phrase-structure trees, or derived trees (2.12), to visualize syntactic

expressions generated by MGs. Derived trees convey the linear order of lexical items; for a

complete expression of category t, a sentence can be obtained from such a tree by computing

its yield. On the other hand, a derivation tree (2.13) is a compact record of how the expression

was generated. In a derivation tree, each internal node corresponds to a step in the derivation,

an instance of merge or move, and the order of its children reflects their role in that step:

the head precedes its dependent regardless of their relative order in the derived structure.

move

merge

merge

merge

merge

boy :: nthis :: =n d -k

laugh :: =d v

-ing :: =>v g

is :: =g +k t

Figure 2.13: Derivation tree of this boy is laugh-ing

When it comes to representing an entire grammar, the default option is to list all lexical

items, as in 2.11. As mentioned before, such a list contains all information required to

define an MG. However, it does not provide a good overview of expressions generated by

the grammar in question. While it works for very small toy examples, larger grammars with
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dozens or hundreds of LIs can become difficult to read at a glance. A convenient alternative

for visualizing head-complement relations within a set of lexical items is a directed multigraph

whose vertices correspond to category features, and edges to lexical items. As an illustration,

consider the graph of 2.11 below:

t g v d nthislaugh-ingis

-s

Figure 2.14: Head-complement relations within 2.11

This graph does not reflect all relations in the lexicon, since it ignores any move relations

as well as any specifiers formed by merge. Lexical items without any selectors (such as

boy :: n) don’t contribute an edge to the graph. Instead, it focuses on a subset of relations

which are relevant for morphologically complex words. Each path from n to t indicates a

possible sequence of LIs along the clausal spine. Multiple paths between vertices indicate

that there is more than one option available at that point in the derivation. For instance,

there is an edge connecting v and t, as well as an alternative path between these categories.

This reflects the fact that an expression of category v can be selected either by -s :: =>v +k t

or by -ing :: =>v g, in the latter case producing a valid complement for is :: =g +k t.

2.3.4 Relation to CFGs

By definition, the two structure-building operations of MGs – merge and move – can only

target subtrees whose heads bear an unchecked syntactic feature. Therefore, much of the

derived structure is syntactically inert : once all features of a lexical item have been deleted,

its position in the structure is fixed. The only elements that matter for syntax are those still

capable of rearranging with respect to each other – namely, the head of the entire expression

(via head movement) and any movers, or subtrees headed by lexical items with an unchecked

licensee feature. With the SMC in place, the number of such subtrees in any given expression

is finite, limited by the number of distinct licensee features in the grammar. Thus, a derived
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tree can be flattened into a much more compact structure containing all information relevant

for merge and move – a sequence of strings annotated with unchecked features.

This insight gives rise to the so-called chain notation for MGs (Stabler 2001; Stabler and

Keenan 2003). In short, each expression sans movers is represented as an initial chain – a

triple of strings corresponding to the head and material to its left and right, annotated with

features of the head. Movers within the tree are represented by separate non-initial chains,

the number of which cannot be greater than the size of Base.

pleft, head, rightq : features
loooooooooooooooooomoooooooooooooooooon

Initial chain

, mover1 : licensees, mover2 : licensees, ...
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

Non-initial chains

Figure 2.15: Schematic representation of a chain-based expression

Lexical items consist of only an initial chain, whose first and last components are empty

strings, as shown in 2.15.

xε, this, εy :: =n d -k
xε, boy, εy :: n

xε, is, εy :: =g +k t

xε, laugh, εy :: =d v

xε, -ing, εy :: =>v g

xε, -s, εy :: =>v +k t

Figure 2.16: Chain-based version of 2.11

The structure-building operations are redefined in terms of string tuples. Informally, the

outcome of merge depends on whether the dependent has reached its final position in the

structure or is going to move later in the derivation. In the former case, its initial chain is

concatenated together and attached to the leftmost (for left merge) or rightmost (for right

merge) component of the initial chain. In the latter case, the dependent forms a non-initial

chain ready to be targeted by move. Similarly, move comes in multiple varieties depending

on whether the moving subtree has reached its surface position. A complete expression of

category x consists of just an initial chain annotated with only the feature x.
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Figure 2.17: Derivation steps of this boy is laugh-ing as chain-based expressions
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The derivation of this boy is laugh-ing, shown before in 2.12, is repeated in 2.17, with

each derivation step given as a derived tree and in chain notation side by side. In 2.17a, this

and boy are merged, and the string component of the latter is concatenated into the third

component of the initial chain. Next, laugh is merged with the resulting structure (2.17b).

Since the dependent still carries a licensee feature (-k), it forms a non-initial chain this boy

annotated with -k. The next two steps continue building up the initial chain, leaving the

single non-initial chain unaffected. Finally, 2.17e moves this boy into the first component of

the initial chain, arriving at a complete expression of category t.

Because chain notation is so compact, all intermediate steps in a derivation can be visual-

ized as a single derivation tree by labeling each internal node with the chain-based expression

corresponding to the step in question, as shown in 2.18.

move
xthis boy, is, laugh-ingy : t

merge
xε, is, laugh-ingy : +k t, this boy : -k

merge
xε, laugh-ing, εy : g, this boy : -k

merge
xε, laugh, εy : v, this boy : -k

merge
xε, this, boyy : d -k

xε, boy, εy :: nxε, this, εy :: =n d -k

xε, laugh, εy :: =d v

xε, -ing, εy :: =>v g

xε, is, εy :: =g +k t

Figure 2.18: Chain-based derivation tree of this boy is laugh-ing
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As mentioned before, derivation trees don’t reflect displacement of leaves caused bymove

in the way derived trees do. For any MG, its derivation trees are parse trees of a CFG; a clear

presentation of this result is given in (Hale and Stabler 2005). Intuitively, constructing this

CFG can be thought of as pre-computing all possible derivation steps that can be performed

by the MG. The central concept here is that of a feature configuration, which is obtained

from a chain-based expression by omitting string components;10 the SMC guarantees that

the number of such configurations is finite. The set of feature configurations is obtained as

the closure of the lexicon under merge and move. Informally, the conversion process is as

follows:

• Each feature configuration (written in round brackets) becomes a nonterminal symbol;

• For each feature configuration formed by merge or move, there is a rule rewriting it

as the operation’s argument or arguments;

• For each LI, there is a rule rewriting its feature configuration as its string component;

• An additional rule rewrites the start symbol S as ptq.

Derivation is then viewed as proceeding in the top-down manner of CFGs (starting with

t and rewriting until lexical items in the leaves are reached), rather than the bottom-up

manner characteristic of MGs. The CFG obtained from 2.11 is as follows:

SÑ ptq

ptq Ñ p+k t, -kq
p+k t, -kq Ñ p=g +k tq pg, -kq
p+k t, -kq Ñ p=>v +k tq pv, -kq
pg, -kq Ñ p=>v gq pv, -kq
pv, -kq Ñ p=d vq pd -kq
pd -kq Ñ p=n d -kq pnq

p=n d -kq Ñ this
pnq Ñ boy

p=g +k tq Ñ is
p=d vq Ñ laugh
p=>v gq Ñ -ing

p=>v +k tq Ñ -s

Figure 2.19: CFG counterpart of 2.11

10. For covert movement, feature configurations should also indicate the non-initial chains whose string
components have been left behind.
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The method given in (Hale and Stabler 2005) is itself an adaptation of (Michaelis 1998),

which shows how to convert an MG into an equivalent multiple context-free grammar

(MCFG) generating the same language of sentences – yields of derived trees. MCFGs are

a generalization of CFGs which operates on tuples instead of strings. Converting an MG

into an equivalent MCFG is similar to constructing a CFG for yields, with a few differences.

First, terminal rules rewrite feature bundles as triples of strings, corresponding to initial

chains. Second, each non-terminal rule comes with a map describing how components of the

argument tuples are rearranged and/or concatenated, in a way closely following chain-based

merge and move.
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Chapter 3

Evaluating proposals

3.1 The Minimum Description Length principle

Minimum Description Length (MDL, Rissanen 1978) is a principle for selecting a model to

explain a dataset, which takes into account the simplicity of both the model itself and the

explanation of the dataset it offers. In the MDL framework, the best grammar to describe a

corpus is the one that minimizes the sum of the following:

• the length of the grammar, measured in bits;

• the length of the description assigned by the grammar to the corpus, measured in bits.

Within linguistics, MDL has been used, for example, for induction of phonological constraints

(Rasin and Katzir 2016) and ordered rules (Rasin et al. 2018), morphological segmentation

(Goldsmith 2001, 2006), and inferring syntactic categories given known morphological pat-

terns (Hu et al. 2005).

To demonstrate this idea in action, let us examine a concrete example using CFGs.

Consider a corpus of three strings over Σ “ tthis, boy, girl, laughs, jumps, andu:

this boy laughs;
this girl jumps;
this boy jumps and this girl laughs.
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The three CFGs in 3.1 all generate these strings but assign different phrase-structure trees to

them (3.2). The first one (3.1a) is too permissive and overgenerates by producing every non-

empty string in Σ˚, including those that are not grammatical sentences of English, such as

*laughs jumps girl and this this. In linguistic terms, 3.1a assigns the same syntactic category

to every word without regard to their distribution. The second grammar (3.1b) is too tight

and overfits the corpus: it generates the three sentences above and nothing else. Finally,

3.1c strikes a balance by making a number of correct generalizations – for instance, that

boy and girl have the same distribution and should be generated by the same nonterminal

symbol. This grammar generates every sentence in the corpus, but also an infinite set of

grammatical sentences absent from the corpus such as this boy laughs and this girl jumps

and this girl laughs.

SÑ X S
SÑ X
XÑ this
XÑ boy
XÑ girl
XÑ laughs
XÑ jumps
XÑ and

(a) Overgenerating

SÑ S1 CONJ S2
SÑ S3
SÑ S4
S1 Ñ DP1 VP2
S2 Ñ DP2 VP1
S3 Ñ DP1 VP1
S4 Ñ DP2 VP2

DP1 Ñ D N1
DP2 Ñ D N2
DÑ this
N1 Ñ boy
N2 Ñ girl

VP1 Ñ laughs
VP2 Ñ jumps

CONJÑ and

(b) Overfitting

SÑ S CONJ S
SÑ DP VP

DPÑ D N
DÑ this
NÑ boy
NÑ girl

VPÑ laughs
VPÑ jumps

CONJÑ and

(c) Balanced

Figure 3.1: Three context-free grammars
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S

S

S

X

laughs

X

boy

X

this

(a) Overgenerating

S

S3

VP1

laughs

DP1

N1

boy

D

this

(b) Overfitting

S

VP

laughs

DP

N

boy

D

this

(c) Balanced

Figure 3.2: Phrase-structure trees for this boy laughs

We will now see how this intuition translates into MDL values. For the sake of exposition,

I adopt a straightforward encoding scheme after Katzir (2014). The first step is to convert

each terminal symbol in N and each nonterminal symbol in Σ, along with an additional

delimiter symbol, #, into a binary string. Then the number of bits needed to represent each

symbol is
P

log2p|N | ` |Σ| ` 1q
T

,

where r s indicates rounding up to the nearest integer. It takes four bits to encode a symbol

in 3.1a or 3.1c, while symbols of 3.1b require five bits each (3.3).

We can now use these binary representations to encode each grammar. Since context-free

rewrite rules follow a very specific format (one nonterminal symbol on the left-hand side, a

sequence of terminal and nonterminal symbols on the right-hand side), a grammar can be

unambiguously represented by concatenating all symbols in each rule and concatenating all

rules together, separated by delimiters, as shown in 3.4.
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# 0000

S 0001

X 0010

this 0011

boy 0100

girl 0101

laughs 0110

jumps 0111

and 1000

(a) Overgenerating

# 00000

S 00001

S1 00010

S2 00011

S3 00100

S4 00101

DP1 00110

DP2 00111

D 01000

N1 01001

N2 01010

VP1 01011

VP2 01100

CONJ 01101

this 01110

boy 01111

girl 10000

laughs 10001

jumps 10010

and 10011

(b) Overfitting

# 0000

S 0001

DP 0010

D 0011

N 0100

VP 0101

CONJ 0110

this 0111

boy 1000

girl 1001

laughs 1010

jumps 1011

and 1100

(c) Balanced

Figure 3.3: Encoding tables for symbols

S
loomoon

0001

Ñ X
loomoon

0010

S
loomoon

0001

#
loomoon

0000

S
loomoon

0001

Ñ X
loomoon

0010

#
loomoon

0000

X
loomoon

0001

Ñ this
loomoon

0011

#
loomoon

0000

...

Figure 3.4: Encoding of the overgenerating grammar (3.1a)

This step converts a grammar into a single binary string. Formalizing, the length of this

string equals
ÿ

xα,βyPR

`

|α| ` |β| ` 1
˘

ˆ
P

log2p|N | ` |Σ| ` 1q
T

and represents the size of the entire grammar in bits.
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Our next step is to encode the data, which is done by using phrase-structure trees of

sentences in the corpus. We start at the root (labeled with the start symbol, S) and traverse

the tree in preorder – i.e. read the current node, then recursively traverse its children in the

same way, from left to right. At each internal node, the number of possible choices equals

the number of different rules whose left-hand side corresponds to the node’s label. Formally,

given the left-hand side α, the cost of encoding a rule in bits is
P

log2p|tβ : xα, βy P Ru|q
T

.

Using the overfitting grammar (3.1b) as an example, the cost of using the rule SÑ S3 given

the left-hand side S equals rlog2 3s “ 2 bits, because there are 3 different rules whose left-

hand side is S. If there is only one possible right-hand side, as with the rule S3 Ñ DP1 VP1,

the cost is 0 bits because there is no choice to make, and the corresponding encoding is ε,

the empty string.

SÑ X S 0

SÑ X 1

XÑ this 000

XÑ boy 001

XÑ girl 010

XÑ laughs 011

XÑ jumps 100

XÑ and 101

(a) Overgenerating

SÑ S1 CONJ S2 00

SÑ S3 01

SÑ S4 10

S1 Ñ DP1 VP2 ε

S2 Ñ DP2 VP1 ε

S3 Ñ DP1 VP1 ε

S4 Ñ DP2 VP2 ε

DP1 Ñ D N1 ε

DP2 Ñ D N2 ε

DÑ this ε

N1 Ñ boy ε

N2 Ñ girl ε

VP1 Ñ laughs ε

VP2 Ñ jumps ε

CONJÑ and ε

(b) Overfitting

SÑ S CONJ S 0

SÑ DP VP 1

DPÑ D N ε

DÑ this ε

NÑ boy 0

NÑ girl 1

VPÑ laughs 0

VPÑ jumps 1

CONJÑ and ε

(c) Balanced

Figure 3.5: Encoding tables for rules
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In this way, we can now give binary string representations to all rules, as shown in 3.5. To

encode a tree, we concatenate all rule encodings in the order in which the nodes are traversed

(3.6).

SÑ X S
looomooon

0

XÑ this
looomooon

000

SÑ X S
looomooon

0

XÑ boy
looomooon

001

SÑ X
loomoon

1

XÑ laughs
looooomooooon

011

(a) Overgenerating

SÑ S3
loomoon

01

S3 Ñ DP1 VP1
looooooomooooooon

ε

DP1 Ñ D N1
looooomooooon

ε

DÑ this
looomooon

ε

N1 Ñ boy
loooomoooon

ε

VP1 Ñ laughs
loooooomoooooon

ε

(b) Overfitting

SÑ DP VP
loooomoooon

1

DPÑ D N
loooomoooon

ε

DÑ this
looomooon

ε

NÑ boy
looomooon

0

VPÑ laughs
loooooomoooooon

0

(c) Balanced

Figure 3.6: Encoding of this boy laughs

This explicit encoding scheme highlights the differences in how each grammar describes

the data. Overall costs for the three grammars and data are given in Table 3.1. The

overgenerating grammar (3.1a) is very short but requires a lengthy encoding for the corpus.

The overfitting grammar (3.1b) makes describing the corpus extremely easy at the cost of a

long encoding of the grammar itself.

Grammar Corpus MDL

Overgenerating (3.1a) 100 52 152

Overfitting (3.1b) 265 6 271

Balanced (3.1c) 124 13 137

Table 3.1: Encoding costs for 3.1a–3.1c (bits)

The sum of the grammar and corpus encoding favors the balanced grammar (3.1c) – which

aligns with a linguist’s intuition of which of the three grammars is best.
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3.2 Encoding minimalist grammars

A similar approach can be used to implement an MDL-based metric for MGs. Consider the

following four sentences:

Mary laughs;
Mary laughed;

Mary jumps;
Mary jumped.

There are multiple (in fact, infinitely many) ways to construct a minimalist grammar ac-

counting for this small corpus. Three of them are given in 3.7a, 3.7b, and 3.7c.

Mary :: d -k
laughs :: =d +k t

laughed :: =d +k t

jumps :: =d +k t

jumped :: =d +k t

(a)

Mary :: d -k
laugh :: =d v

jump :: =d v

-s :: =>v +k t

-ed :: =>v +k t

(b)

Mary :: x -k
laugh :: =x x

jump :: =x x

-s :: =>x +k t

-ed :: =>x +k t

(c)

Figure 3.7: Three minimalist grammars

The first two grammars, 3.7a and 3.7b, generate the four sentences above and no others.

While they are are weakly equivalent, i.e. generate exactly the same set of strings, the

structures they assign to these strings are different. In linguistic terms, the former treats

each sentence as a single tP headed by an unsegmented verb (3.8a). The latter reanalyzes

each finite verb form as a complex head formed by head movement. The lexical verb directly

selects its argument and forms a vP, while the affix takes the vP as its complement and

is responsible for the movement of the subject into its specifier position (3.8b). The third

grammar, 3.7c, is also capable of generating inflected verbs in two derivation steps (3.8c).

However, it conflates the category feature of lexical verbs with that of DPs, producing

ungrammatical strings like *Mary-ed and *Mary laugh-s pjumpq` (3.9).
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ą

ă

Marylaughs
=d +k t

Mary
d -k

(a)

ą

ă

ă

Marylaugh
=d v

laugh-s
=>v +k t

Mary
d -k

(b)

ą

ă

ă

Marylaugh
=x x

laugh-s
=>x +k t

Mary
x -k

(c)

Figure 3.8: Structural differences between 3.7a, 3.7b, and 3.7c

ą

ă

MaryMary-ed
=>x +k t

Mary
x -k

(a)

ą

ă

ą

laugh
=x x

ă

Maryjump
=x x

laugh-s
=>x +k t

Mary
x -k

(b)

Figure 3.9: Overgeneration by 3.7c

To further help visualize the differences between these grammars, their graph represen-

tations are given in 3.10.

t d

laughs

laughed

jumps

jumped

(a)

t v d
laugh

jump

-ed

-s

(b)

t x

laugh

jump

-ed

-s

(c)

Figure 3.10: Graph representations of 3.7a, 3.7b, and 3.7c
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For instance, laughed in 3.7a corresponds to one of the edges from d to t in the graph 3.10a.

Its counterpart in 3.7b is a bimorphemic word, which translates into a pair of adjacent edges:

laugh from d to v and -ed from v to t (3.10b). In 3.7c, lexical verbs correspond to loops.

Intuitively, 3.7b is an improvement over 3.7a. By recognizing internal structure within

verbs, it captures the similarities within verbal paradigms (laughs, laughed vs. jumps,

jumped) and across paradigms (laughs, jumps vs. laughed, jumped). On the other hand,

3.7a misses all these generalizations. For each new verbal paradigm encountered in the cor-

pus (e.g. walks, walked), we would need to add two new lexical items to 3.7a, but only one to

3.7b. Finally, 3.7c is a subpar choice: it shares the desirable generalizations of 3.7b but also

conflates a crucial distinction between two syntactic categories, leading to overgeneration.

What quantitative data can be used to back up this intuition? We can define an encoding

scheme for MGs closely mirroring the one for context-free rules from Section 3.1. Since we

are interested in the length of the encoding but don’t need to calculate the binary string

itself, we no longer round up to the nearest integer. Let Types “ tcategory, right selector,

left selector, morphological selector, overt licensor, covert licensor, licenseeu denote the set of

syntactic feature types, and let Σ be the set of English letters. Then the size of a minimalist

lexicon Lex over a set of categories Base is given by
ÿ

s::δ PLex

`

|s| ` 2ˆ |δ| ` 1
˘

loooooooooooooooomoooooooooooooooon

total number of symbols

ˆ log2p|Σ| ` |Types| ` |Base| ` 1q

loooooooooooooooooooomoooooooooooooooooooon

cost of encoding per symbol

.

Assuming that both Σ and Types are fixed (with |Types| “ 7 and |Σ| “ 2611), this is a

function of the number of LIs and the following three metrics:

• |Base|, the number of unique category features in Lex ;

•
ř

syn “
ř

s::δ PLex
`

|δ|
˘

, the total count of syntactic features in Lex;

•
ř

phon “
ř

s::δ PLex
`

|s|
˘

, the total length of all string components in Lex.

11. For simplicity, uppercase and lowercase letters are treated as the same symbol.
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Regardless of the specific encoding scheme,12 all three values above contribute to the size

difference between grammars. The following table summarizes the differences between 3.7a,

3.7b, and 3.7c with respect to individual metrics, as well as grammar size:

|Base|
ř

syn

ř

phon Grammar (bits)

3.7a 3 14 28 317.78

3.7b 4 12 16 236.16

3.7c 3 12 16 234.43

Table 3.2: Grammar metrics

All three grammars have the same number of lexical items. However, splitting verbs into

roots and affixes in 3.7b comes at the cost of an extra category feature. This pays off by

eliminating redundant strings, which almost halves
ř

phon. Moreover, four instances of +k are

collapsed into two, yielding a small reduction of
ř

syn. The differences would be much more

noticeable with larger datasets, especially with respect to open-class words, since adding a

new verb to 3.7a would have a higher cost (in both syntactic features and string components)

compared to 3.7b.

It is also easy to see how a complexity measure based solely on grammar encoding would

fail to penalize overgeneration. It would incorrectly favor 3.7c over 3.7b, given that it achieves

the same reduction of
ř

phon and
ř

syn without increasing |Base|. Similar to the results

observed with CFGs, the MDL component expected to rule out the overgenerating grammar

is the corpus size given the grammar. In order to calculate it, for each MG we construct

a CFG generating its derivation trees, as we did in Subsection 2.3.4, and then reuse the

encoding scheme from Section 3.1. The CFGs are given in 3.11. Parse trees for Mary laughs

as well as 3.11c’s ungrammatical structures are shown in 3.12 and 3.13 respectively .

12. The solution used here is a naive one and serves to keep the example straightforward. The choice of
an encoding scheme is a meaningful decision that can lead to different grammars being optimal for the same
corpus.
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SÑ ptq

ptq Ñ p+k t, -kq
p+k t, -kq Ñ p=d +k tq pd -kq

pd -kq Ñ Mary
p=d +k tq Ñ laughs
p=d +k tq Ñ laughed
p=d +k tq Ñ jumps
p=d +k tq Ñ jumped

(a)

SÑ ptq

ptq Ñ p+k t, -kq
p+k t, -kq Ñ p=>v +k tq pv, -kq
pv, -kq Ñ p=d vq pd -kq
pd -kq Ñ Mary
p=d vq Ñ laugh
p=d vq Ñ jump

p=>v +k tq Ñ -s
p=>v +k tq Ñ -ed

(b)

SÑ ptq

ptq Ñ p+k t, -kq
p+k t, -kq Ñ p=>x +k tq px, -kq
p+k t, -kq Ñ p=>x +k tq px -kq
px, -kq Ñ p=x xq px -kq
px, -kq Ñ p=x xq px, -kq
px -kq Ñ Mary
p=x xq Ñ laugh
p=x xq Ñ jump

p=>x +k tq Ñ -s
p=>x +k tq Ñ -ed

(c)

Figure 3.11: CFG counterparts of 3.7a, 3.7b, and 3.7c
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S

pt)

p+k t, -k)

pd -k)

Mary

p=d +k t)

laughs

(a)

S

pt)

p+k t, -k)

pv, -k)

pd -k)

Mary

p=d v)

laugh

p=>v +k t)

-s

(b)

S

pt)

p+k t, -k)

px, -k)

px -k)

Mary

p=x x)

laugh

p=>x +k t)

-s

(c)

Figure 3.12: CFG parse trees: structural differences between 3.11a, 3.11b, and 3.11c

S

pt)

p+k t, -k)

px -k)

Mary

p=>x +k t)

-ed

(a)

S

pt)

p+k t, -k)

px, -k)

px, -k)

px -k)

Mary

p=x x)

jump

p=x x)

laugh

p=>x +k t)

-s

(b)

Figure 3.13: CFG parse trees: overgeneration by 3.11c

The cost of encoding the corpus given 3.11a is straightforward to calculate: there is only

one choice with four options to be made in the derivation, namely rewriting p=d +k t) as
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laughs, laughed, jumps, or jumped. In 3.11b this corresponds to two binary choices: rewriting

p=d v) as laugh or jump, and p=>x +k t) as -s or -ed. Both cost 2 bits per sentence. The

third grammar (3.11c), however, has two options for rewriting p+k t, -k) and two ways to

expand px, -k). These are the choices that make possible the ungrammatical strings in 3.13,

but they also drive up the cost of encoding each grammatical sentence to 4 bits. This is

summarized below:

Grammar Corpus MDL

3.7a 317.78 8 325.78

3.7b 236.16 8 244.16

3.7c 234.43 16 250.43

Table 3.3: Encoding costs (bits)

Once we take the length of corpus encoding into account, the overgenerating grammar 3.7c

is outperformed by the intuitively superior grammar 3.7b.

3.3 Double object construction revisited

We will now take a step up from toy examples towards more interesting applications of

the technique introduced above and re-examine the double object construction in the light

of MDL. As pointed out in Section 1.2, there are two groups of approaches to sentences

like John gave Mary a book : those which postulate a small clause complement of give, and

those which maintain that the double object construction is monoclausal. Enumerating and

analyzing all known arguments from both sides in a comprehensive way falls outside of the

scope of this dissertation. Instead, this section serves as proof of concept; in what follows,

I convert a small sample of these arguments into the MG formalism and examine how the

predictions of each analysis translate into higher or lower MDL values.
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Let us focus on two facts regarding the English double object construction coming from

two different sources. The first one is Harley and Jung (2015), who point out multiple

parallels between double object structures with give and sentences with have. These are used

to motivate an analysis where both have and give contain a possessive small clause headed

by the abstract silent element Phave. One of there parallels is an animacy restriction. Both

possessors in have-clauses (1a, 1c) and Goal arguments in give-clauses (1b, 1d) are required

to be animate, as long as the possession is inalienable.

(1) a. John has a book.

b. Brenda gave John a book.

c. #The car has a flyer.

d. #The advertiser gave the car a flyer.

(Harley and Jung 2015, p. 704)

The second source is Kawakami (2018), who argues against the small-clause analysis,

citing a number of discrepancies between the properties of known small clause constructions

(e.g. John considers Mary angry) and those of give-clauses. One of the arguments supporting

this stance comes from wh-movement and ambiguity. For sentences with consider (2a),

both the matrix clause and the small clause can be modified by why, yielding two different

interpretations. On the other hand, the double object construction behaves as monoclausal,

allowing only one reading where why modifies the matrix clause (2b).

(2) a. Why did John consider Mary angry at Bill?

READING: asking the reason of considering

asking the reason of being angry

b. Why did John give Mary a book?

READING: asking the reason of giving

#asking the reason of having

(Kawakami 2018, pp. 220–221)
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Which of these two arguments is stronger with respect to encoding costs? We start by

translating each of them into an MG. Assuming a consensus on all issues other than the

double object construction, the two grammars should share most of their LIs. Since this

example involves wh-movement, we consider complete expressions of category c rather than

t. The shared lexical items are given in 3.14a, and the additional LIs for have and give in the

monoclausal and SC account are presented in 3.14b and 3.14c respectively. In accordance

with the simplifying assumptions stated in Subsection 2.3.2, we ignore non-concatenative

morphology and assume a separate set of morphological rules which realize have-s as has

and do-s as does.

John :: da -k
Mary :: da -k

the car :: d -k
a flyer :: d -k

ε :: =da +k d -k

consider :: =sc V

-ε :: =>V +k d= v

-ε :: =>v x

do :: =x do

-ε :: =>x do

-s :: =>do +k t

angry :: a

ε :: =a d= sc

why :: w -wh
ε :: =sc w= sc

-ε :: =>t +wh c

ε :: =t c

(a) Shared lexical items

ε :: =d +k da= sc

have :: =sc v

give :: =d +k d= V

(b) Monoclausal give

ε :: =d +k da= sc

have :: =sc v

give :: =sc V

(c) Uniform SC give

ε :: =d +k da= scposs

-ε :: =>scposs sc

have :: =scposs v

give :: =scposs V

(d) Refined SC give

Figure 3.14: MG implementations of the double object construction

The simple solution in 3.14c views all small clauses as having the same syntactic category,

sc. This validates Kawakami’s (2018) objections to the small clause analysis based on mul-

tiple differences between small clauses selected by consider and arguments of give. However,

Harley and Jung (2015, p. 718) point out a way to reconcile the two groups of phenom-

ena, suggesting a typology of small clauses. Under this view, small clauses embedded under
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consider (unlike those under give) include an additional projection, which explains different

properties. Translating this idea into MGs yields the set of LIs given in 3.14d. Possessive

small clauses (scposs) are selected by both have and give, and may merge with an empty LI

to form expressions of category sc, which are selected by consider.

The animacy restriction is implemented by giving animate DPs a category feature distinct

from d, da. An animate DP can freely become a normal DP by merging with ε :: =da +k d -k,

but the opposite is not possible. In other words, da occurs in all contexts that allow d, and

also in some contexts where d is prohibited. The restriction on modification by why is added

by only allowing why to merge with small clauses – expressions of category sc. This is done

via two LIs: why :: w -wh and ε :: =sc w= sc. This fragment allows why to modify small

clauses but not matrix clauses, since only the former are relevant for the example.13

Note that all three grammars are associated with some overgeneration. First, there is no

restriction requiring do-support in interrogative contexts, which gives rise to examples like

*why consider-s John Mary angry. In addition, all grammars except refined SC (3.14d) treat

all small clauses as uniform, producing strings like *John have-s angry (and, in the case

of the uniform small clause analysis, *John give-s Mary angry). As we have seen before,

overgeneration does not affect grammar encoding, but will contribute to a higher cost of

encoding some grammatical sentences.

Consider the head-complement graphs in 3.15. The monoclausal give (3.15a) selects its

arguments directly, whereas the uniform SC give (3.15b) takes as its complement the same

small clause as have and shares its restriction on animacy. On the other hand, the loop at

the sc vertex represents the position modifiable by why. The monoclausal give bypasses the

category sc, unlike have; the latter, but not the former, is compatible with why. However, the

uniform SC have merges with expressions of category sc, incorrectly allowing modification

13. For the sake of completeness, it would be easy to add modification of matrix clauses by introduc-
ing one more empty lexical item: -ε :: =>v w= v. Then the grammar would generate different struc-
tures corresponding to different readings of consider -clauses: why rdo-s John consider rMary angrys whys
vs. why rdo-s John consider rMary angry whyss (cf. 2a).
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by why. Finally, the refined SC analysis (3.15c) gets around both problems by distinguishing

between sc and scposs.

c t do x v V sc d da

a

do

-ε

-s -ε -ε
-ε

ε

-ε
-ε

-ε-εconsider

have give

(a) Monoclausal

c t do x v V sc d da

a

do

-ε

-s -ε -ε
-ε

ε

-ε
-ε

-ε-εconsider

have

give

(b) Uniform SC

c t do x v V sc scposs d da

a

do

-ε
-s -ε -ε

-ε

ε

-ε
-ε

-ε-ε-εconsider

have

give

(c) Refined SC

Figure 3.15: Head-complement graphs of MGs in 3.14

As a further illustration, some derived tree examples are given in 3.16.
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ă

ą

ă

ą

ą

ă

a flyergive
=d +k d= V

a flyer
d -k

Mary

-ε
=>V +k d= v

ą

ă

Maryε
=da +k d -k

Mary
da -k

John

-ε
=>v x

-ε
=>x do

give-s
=>do +k t

ą

ă

Johnε
=da +k d -k

John
da -k

ε
=t c

(a) Monoclausal
ă

ą

ă

ă

ă

ą

ą

ă

ă

ą

ą

ă

a flyerε
=d +k da= sc

a flyer
d -k

Mary

give
=sc V

-ε
=>V +k d= v

Mary
da -k

John

-ε
=>v x

-ε
=>x do

give-s
=>do +k t

ą

ă

Johnε
=da +k d -k

John
da -k

ε
=t c

(b) Uniform SC

Figure 3.16: Derived trees for John give-s Mary a flyer

Grammar encoding costs (Table 3.4) reflect generalizations made by each grammar, as

well as the number of category distinctions it makes. Both monoclausal and uniform SC
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approaches require 13 distinct categories; however, the latter has a lower cost as it reuses

the abstract element heading a small clause, ε :: =d +k da= sc, to provide arguments to both

have and give. Refined SCs require an extra category, scposs, as well as an additional lexical

item, ε :: =scposs sc, so this grammar ends up having the highest encoding cost.

|Base|
ř

syn

ř

phon Grammar (bits)

Monoclausal 13 51 50 955.39

Uniform SC 13 49 50 933.17

Refined SC 14 51 50 966.20

Table 3.4: Grammar metrics for the double-object construction

In order to see how individual analysis choices contribute to corpus encoding, consider

the costs of four different sentences shown in Table 3.5. In addition, partial CFGs are given

in 3.17. For space reasons, I only include rules with nonzero cost, i.e. those which share the

left-hand side with at least one other rule.

Monoclausal Uniform SC Refined SC

John give-s Mary a flyer 6 log2 2` 3 log2 3

« 10.75

7 log2 2` 2 log2 3

« 10.17

6 log2 2` 2 log2 3

« 9.17

Mary have-s a flyer 5 log2 2` log2 3

« 6.58

5 log2 2` log2 3

« 6.58

4 log2 2` log2 3

« 5.58

John consider-s Mary angry 7 log2 2` 2 log2 3

« 10.17

7 log2 2` 2 log2 3

« 10.17

7 log2 2` 2 log2 3

« 10.17

why do-s John consider Mary angry 6 log2 2` 2 log2 3

« 9.17

7 log2 2` 2 log2 3

« 10.17

5 log2 2` 2 log2 3

« 8.17

Table 3.5: Sentence encoding costs for the double-object construction (bits)
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pd -kq Ñ the car
pd -kq Ñ a flyer
pd -kq Ñ p+k d -k, -kq
pda -kq Ñ John
pda -kq Ñ Mary
psc, -kq Ñ pd= scq pd -kq
pv, -kq Ñ pd= vq pd -kq
pdo, -kq Ñ p=x doq px, -kq
pdo, -kq Ñ p=>x doq px, -kq

pcq Ñ p=t cq ptq

pcq Ñ p+wh c, -whq
pdo, -wh, -kq Ñ p=x doq px, -wh, -kq
pdo, -wh, -kq Ñ p=>x doq px, -wh, -kq

(a) Shared rules

psc, -kq Ñ pda= scq pda, -kq
pV, -kq Ñ p=sc Vq psc, -kq
pV, -kq Ñ pd= Vq pd -kq
pv, -kq Ñ p=sc vq psc, -kq

pdo, -k, -whq Ñ p=x doq px, -k, -whq
pdo, -k, -whq Ñ p=>x doq px, -k, -whq

pt, -whq Ñ p+k t, -k, -whq
pt, -whq Ñ p+k t, -wh, -kq

(b) Monoclausal

p=sc Vq Ñ give
p=sc Vq Ñ consider
psc, -kq Ñ pda= scq pda, -kq
pv, -kq Ñ p=sc vq psc, -kq

pdo, -k, -whq Ñ p=x doq px, -k, -whq
pdo, -k, -whq Ñ p=>x doq px, -k, -whq

pt, -whq Ñ p+k t, -k -whq
pt, -whq Ñ p+k t, -wh -kq

(c) Uniform SC

psc, -kq Ñ p=>scposs scq pscposs, -kq
pV, -kq Ñ p=sc Vq psc, -kq
pV, -kq Ñ p=scposs Vq pscposs, -kq
pv, -kq Ñ p=scposs vq pscposs, -kq

(d) Refined SC

Figure 3.17: Nonzero-cost CFG rules for 3.14
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As expected, the monoclausal approach pays a higher cost to encode examples with give,

because of its lack of animacy restrictions, whereas the uniform SC grammar overpays for

grammatical sentences involving modification by why. The third option, refined SCs, does

not overpay in either case. In addition, it pays a lower cost to encode Mary has a flyer,

because of its distinction between small clause types. This corresponds to the fact that this

grammar, unlike the other two, does not generate strings like *John has angry.

For a closer look at individual rules’ contribution to these values, let us examine detailed

costs of encoding a double object construction, provided in Table 3.6:

Rule Cost Total

Shared rules

pcq Ñ p=t cq ptq log2 2

« 6.58

pv, -kq Ñ pd= vq pd -kq log2 2

pdo, -kq Ñ p=x doq px, -kq log2 2

pda -kq Ñ John log2 2

pda -kq Ñ Mary log2 2

pd -kq Ñ a flyer log2 3

Monoclausal
pd -kq Ñ p+k d -k, -kq 2 log2 3

« 4.17
pV, -kq Ñ pd= Vq pd -kq log2 2

Uniform SC

pd -kq Ñ p+k d -k, -kq log2 3

« 3.58psc, -kq Ñ pda= scq pda, -kq log2 2

p=sc Vq Ñ give log2 2

Refined SC
pd -kq Ñ p+k d -k, -kq log2 3

« 2.58
pV, -kq Ñ p=scposs Vq log2 2

Table 3.6: Nonzero-cost rules deriving John give-s Mary a flyer and their costs (bits)

All three grammars must pay the cost of picking a flyer as the object. The monoclausal

approach, which lacks animacy restrictions, pays the extra cost of picking an animate Goal,

in the form of an additional use of pd -kq Ñ p+k d -k, -kq. Next, all three grammars
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use a rule to select the right complement type for the verb. However, since the uniform SC

grammar assigns the same feature bundle to give and consider, it has to pay an additional bit

to use p=sc Vq Ñ give and pick the former. Refined SCs pay for each distinction only once,

resulting in the lowest cost of encoding the sentence. Thus, the cost of this more complex

grammar is offset by the lower cost of encoding the data.

Essentially, what the two positions exemplified by (Harley and Jung 2015) and (Kawakami

2018) disagree on is exactly what properties have shares with give. MGs can represent these

shared properties as syntactic features within LIs which are reused in multiple constructions.

This technique offers a way to consider and directly compare insights from multiple literature

sources while accounting for possible overgeneration. That said, the grammars examined

in this section were constructed by hand. The following chapter takes the next logical

step: starting with a naive, theory-neutral grammar and factoring out commonalities shared

between lexical items, step by step, to arrive at a better analysis in a principled way.
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Chapter 4

Deconstructing syntactic generalizations

4.1 Decomposition of lexical items

Let us re-examine two of the previously discussed minimalist grammars, repeated below:

Mary :: d -k
laughs :: =d +k t

laughed :: =d +k t

jumps :: =d +k t

jumped :: =d +k t

(a)

Mary :: d -k
laugh :: =d v

jump :: =d v

-s :: =>v +k t

-ed :: =>v +k t

(b)

Figure 4.1: Two minimalist grammars (=3.7a, 3.7b)

What does it take to transition from a grammar over words such as 4.1a to a grammar over

morphemes such as 4.1b? Given the explicit nature of the formalism, it is relatively easy to

keep track of how changes made to a specific LI affect all structures that contain it.

For example, given the lexical item laughed :: =d +k t (4.2a), we can split the string

component into two substrings: laugh and ed. Similarly, the feature bundle can be split

into two subsequences: =d and +k t. We then assemble two useful lexical items from these

elements by introducing x, a category feature that is fresh (i.e. not used in any lexical item
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in the grammar), and combine them into a morphological word with head movement. These

lexical items replace the original, as shown in 4.2b. The same operation can be applied even

if some or all of the splits result in empty sequences. We can split laugh :: =d x by assigning

its entire string component to one lexical item, and its feature bundle to another (4.2c). This

move creates an acategorial root, with only the new feature y in its bundle,14 and shifts its

selectional properties to an empty head.

ą

ă

...d...laughed
=d +k t

...-k...

laughed :: =d +k t

(a)

ą

ă

ă

...d...laugh
=d x

laugh-ed
=>x +k t

...-k...

laugh :: =d x

-ed :: =>x +k t

(b)

ą

ă

ă

...d...ă

laugh
y

-ε
=>y =d x

laugh-ed
=>x +k t

...-k...

laugh :: y

-ε :: =>y =d x

-ed :: =>x +k t

(c)

Figure 4.2: Decomposition of laughed

Lexical item decomposition is a generalization of this idea proposed by Kobele (2018, to

appear). Consider an arbitrary lexical item w :: αβxγ, where w P Σ˚, α, β P pSel Y Licq˚,

x P Base, and γ P Lee˚. Note that one or both of α, β can be empty. Then decomposition

can proceed as shown in 4.3. The original LI is replaced with two new ones, whose string

components are u and v, along with a morphological rule generating w from u and v via some

morphological operation ‘. The simple model of morphology we adopted in 2.3.2 treats ‘

as string concatenation, eliminating the need to state morphological rules explicitly.

14. The idea that roots are category-neutral and must merge with a category-defining functional head
(so every word is at least bimorphemic) is a general assumption in Distributed Morphology adopted, for
instance, in (Marantz 1997; Embick and Marantz 2008).
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ą

ă

αw
αβxγ

β

w :: αβxγ

ù

ą

ă

ă

αu
αy

u-v
=>yβxγ

β

u :: αy
-v :: =>yβxγ
w “ u‘ -v

Figure 4.3: Generalized lexical item decomposition

We will refer to the lexical item carrying the fresh category feature as the lower LI, and the

one selecting it as the upper LI.

Recall that every useful lexical item must have a syntactic feature bundle of the following

form: pSel Y Licq˚ Base pLeeq˚. Since the resulting structure has to behave as a single unit

with respect to move, the split must take place to the left of the category feature. An

additional restriction arises from our definition of head movement. Since morphological

selectors (of type =>x) can introduce complements but not specifiers, they are limited to the

first feature in the bundle, which means that β may not contain a feature of this type; in other

words, the split must occur to the right of the morphological selector, if it is present. Finally,

α may not contain any left selectors (x=) or overt licensors (+x). A decomposition step

violating this condition would not produce unusable lexical items, but may cause arguments

which originally surfaced to the left of the head to be pronounced to the right instead, as

the complex head surfaces in a higher position.15

15. This condition preserves linear order by prohibiting any such arguments from being left with the
lower LI. A more sophisticated implementation could allow such moves just in case every argument that
can possibly be introduced by these features is guaranteed to move further to the left at some point in the
derivation.
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Lexical decomposition formalizes the process of discovering structure within words. How-

ever, it cannot transform a grammar like 3.7a into one like 3.7b on its own. First, decomposi-

tion as defined in 4.3 does not generalize. Since every split is associated with a fresh category

feature, each newly formed affix is only compatible with a single stem. To remedy this, we

need some way of unifying existing categories. Second, decomposing items in isolation is ex-

tremely permissive. String components can be split anywhere, and feature bundles anywhere

between the =>x-type selector (if present) and the category. For example, laughed :: =d +k t

can be decomposed in 24 ways (assuming concatenative morphology), of which only a few

are linguistically reasonable. Whether a given decomposition step is worthwhile depends on

other items in the lexicon.

In order to recognize useful steps and make generalizations, decomposition needs to

process multiple lexical items simultaneously, using similarities between them to inform its

decisions. We will refer to this strategy as batch decomposition. Consider the transition in

4.4. It starts with a batch of four lexical items and factors out the elements they have in

common: the prefix laugh and the syntactic feature =d. These repeated elements are then

expressed as a new lexical item, laugh :: =d x, which is reused for every word in the batch,

adding only one new feature to Base. This is an example of left decomposition, as the shared

part of both the string component and feature bundle is on the left-hand side.

laugh :: =d v

laughing :: =d g

laughs :: =d +k t

ù laugh :: =d x

-ε :: =>x v

-ing :: =>x g

-s :: =>x +k t

Figure 4.4: Left decomposition

We can also obtain meaningful generalizations via right decomposition, by factoring out

right-hand side commonalities (4.5). In a (primarily) suffixal language, left decomposition

can be used to identify stems, and right decomposition to identify affixes.
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wills :: =v +k t

bes :: =g +k t

dances :: =d +k t

laughs :: =d +k t

ù

will :: =v x

be :: =g x

dance :: =d x

laugh :: =d x

-s :: =>x +k t

Figure 4.5: Right decomposition

Note that all previously defined restrictions on decomposition must still apply to every lexical

item in a batch. In particular, left decomposition does not necessarily require the batch to

have anything in common, as both u and α can be empty. Right decomposition, on the other

hand, is only applicable if the batch shares at least the category and postcategorial features.

Definition 4.1: Left decomposition

Let lphon, lsyn P N. Let Batch “ tuv1 :: αβ1, ..., uvn :: αβnu Ď Lex, where u, v1...vn P Σ˚;

α P pSel Y Licq˚, β1...βn P Syn˚, such that |u| “ lphon and |α| “ lsyn. Then left

decomposition of Batch in Lex at lphon and lsyn produces the following lexicon:

ldecpLex,Batch, lphon, lsynq “ pLex ´ Batchq Y tu :: αy, v1 :: =>yβ1, ..., vn :: =>yβnu,

where y R Base.

Definition 4.2: Right decomposition

Let lphon, lsyn P N. Let Batch “ tu1v :: α1β, ..., unv :: αnβu Ď Lex, where u1...un, v P

Σ˚; α1...αn P pSel Y Licq˚; β P Syn˚, such that |v| “ lphon and |β| “ lsyn. Then right

decomposition of Batch in Lex at lphon and lsyn produces the following lexicon:

rdecpLex,Batch, lphon, lsynq “ pLex ´ Batchq Y tu1 :: α1y, ..., un :: αny, v :: =>yβu,

where y R Base.

Since both left and right batch decomposition introduce new head-complement relations

by creating complex words, their effect can be easily seen on graphs, as shown in 4.6.
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x1

xn

uv1

uvn

... ù

x1

y

xn

v1

vn

...u

(a) Left

x

u1v

unv

... ù y x

u1

un

v...

(b) Right

Figure 4.6: Generalized batch decomposition

Left decomposition (4.6a) replaces a set of edges (which may or may not share the start

and/or end vertex) with paths which all pass through the same vertex corresponding to the

new feature. Right decomposition (4.6b) is similar, except the original edges are required to

share the end vertex.

4.2 Auxiliary operations

Consider a certain type of silent LIs that can be formed by decomposition – namely, those

of the form -ε :: =>x y, for any x, y P Base. We will refer to them as category changers. As

mentioned in Subsection 2.3.1, such LIs encode the idea that some syntactic categories have

a more limited distribution than others. Having -ε :: =>x y in the lexicon means that any

expression of category x can freely become one of category y without additional changes to

its phonetic or syntactic content, whereas the opposite is not necessarily possible. A common

use of category changers is to implement a hierarchy of projections in a minimalist grammar

without additional machinery.

That said, in certain cases category changers are redundant in a way that cannot be

eliminated by further decomposition steps. This happens if one of the following is true:
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• there is no reason to distinguish between x and y;

• the relationship between x and y is already expressed elsewhere in the lexicon.

To examine the first type of redundancy, consider the minimalist grammar in 4.7 which

includes, among other LIs, the decomposed batch shown in 4.4. In this case, the distinction

between x and v is an unnecessary one. The two categories can be unified, and the category

changer removed from the lexicon, without any changes to the weak generative capacity of

the grammar.

Mary :: d -k
bes :: =g +k t

wills :: =v +k t

-ε :: =>x v

-ing :: =>x g

-s :: =>x +k t

laugh :: =d x
t g v x dlaugh

-s

-ε

-ing

wills

bes

Figure 4.7: MG containing the batch from 4.4

In general, we can eliminate a category changer -ε :: =>x y by removing it from the

grammar and replacing all remaining instances of x and y with a fresh category z. This

essentially reverses the effects of decomposition for a specific lexical item in the batch. In

graph terms, this is edge contraction, an operation which removes an edge and merges the

two vertices it previously joined.
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Definition 4.3: Feature renaming

Let x1, ..., xk, y1, ..., yk P Base, δ P Syn˚. Then δrx1 ÞÑ y1, ..., xk ÞÑ yks is the feature

bundle which is identical to δ except for each xi replaced with yi, for i P r1, ks.

Extending this definition to grammars, let Lex “ ts1 :: δ1, ..., sn :: δnu, where

s1, ..., sn P Σ˚, δ1, ..., δn P Syn˚. Then Lexrx1 ÞÑ y1, ..., xk ÞÑ yks “ ts1 :: δ1rx1 ÞÑ

y1, ..., xk ÞÑ yks, ..., sn :: δnrx1 ÞÑ y1, ..., xk ÞÑ yksu.

Definition 4.4: Edge contraction

Let c “ -ε :: =>x y P Lex, where x, y P Base. Then edge contraction of c in Lex produces

the following lexicon:

conpLex, cq “ pLex´ tcuqrx ÞÑ z, y ÞÑ zs, where z R Base.

Unlike decomposition, edge contraction comes with an important caveat. Without re-

strictions, this operation can create new paths in the grammar, potentially causing it to

overgenerate. An obvious example is the case when there exists another path from x to y.

If both are replaced with z, it becomes a cycle. Figure 4.8 offers a more general description

of the problem:

x y

s1

...

sk

v1

...

vn

-ε

t1

tm

...

u1

ul

...

ù z

s1

...

sk

v1

...

vn

t1

tm

...

u1

ul

...

Figure 4.8: Generalized edge contraction
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Let s1, ..., sk and u1, ..., ul represent the string components of lexical items corresponding to

edges whose destination is, respectively, x and y. Similarly, let t1, ..., tm and v1, ..., vn stand

for edges with origin in x and y. Any of the s1, ..., sk may be selected (directly or via the

category changer -ε :: =>x y) by any of the v1, ..., vn; however, only s1, ..., sk may be selected

by t1, ..., tm. Once the category changer is contracted and both x and y renamed to z, this

asymmetry is eliminated. All of u1, ..., ul become compatible with t1, ..., tm, producing new

paths and potentially new words.

The second source of redundancy is found in grammars where the same relationship

between categories is expressed by multiple lexical items. Consider the following abstract

example:

-ε :: =>x y

-ε :: =>x z

-ε :: =>z y

Regardless of any other LIs that may be present in the lexicon, any expression selected by

-ε :: =>x y can instead be selected by -ε :: =>x z, forming, in turn, a valid complement for

-ε :: =>z y. Because of this, -ε :: =>x y is unnecessary and can be safely removed from

the lexicon. This can be extended to cases where the alternative to a given LI contains any

number of other category changers, including the special case of a pair of completely identical

LIs, one of which may be deleted. We formalize this as another auxiliary operation, edge

deletion, which targets category changers whose usage can be emulated with one or more

other category changers also present in the lexicon. Unlike edge contraction, edge deletion

does not involve feature conflation or renaming and poses no risk of overgeneration.

Definition 4.5: Edge deletion

Let c “ -ε :: =>x1 xn P Lex, where x1, ..., xn P Base and for i P r1, n´ 1s, -ε :: =>xi xi`1

distinct from c is in Lex. Then edge deletion of c in Lex produces the following lexicon:

delpLex, cq “ Lex´ tcu.
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From the graph perspective, a category changer -ε :: =>x1 xn is a candidate for edge

deletion if there is another path from x1 to xn where all edges are category changers as well.

This condition ensures that any word using -ε :: =>x1 xn can also be generated without it.

x1 x2 xn´1 xn-ε -ε

-ε

ù x1 x2 xn´1 xn-ε -ε

Figure 4.9: Generalized edge deletion

4.3 Transforming a grammar

The following example shows how the three operations introduced in the previous section can

transform a naive word-based grammar into a linguistically motivated grammar over mor-

phemes. We start with a corpus of eight sentences below. As before, we abstract away from

morphological irregularities of English and replace each word with a sequence of morphemes

formed by string concatenation; is is rendered as bes, and will as wills.

Mary laughs;
Mary jumps;
Mary bes laughing;
Mary bes jumping;
Mary wills laugh;

Mary wills jump;

Mary wills be laughing;
Mary wills be jumping.

These sentences are generated by the small lexicon of unsegmented words encoding a frag-

ment of the English auxiliary system shown in 4.10. For the sake of space, LIs with identical

feature bundles in the graph representation are depicted as a single edge labeled with all

relevant string components separated with |. We will continue using metrics introduced in

Chapter 3 to keep track of changes introduced by each transition.

68



Mary :: d -k
bes :: =g +k t

wills :: =v +k t

be :: =g v

laughs :: =d +k t

laughing :: =d g

laugh :: =d v

jumps :: =d +k t

jumping :: =d g

jump :: =d v

t v g d

laughs|jumps

laugh|jump

laughing|jumping

bes

wills be

|Base|
ř

syn

ř

phon Grammar Corpus

5 24 49 565.54 24.68

Figure 4.10: Original lexicon

This grammar’s full CFG counterpart is given in 4.11, with some sample derivations

provided in 4.12.

SÑ ptq

ptq Ñ p+k t, -kq
p+k t, -kq Ñ p=d +k tq pd -kq
p+k t, -kq Ñ p=g +k tq pg, -kq
p+k t, -kq Ñ p=v +k tq pv, -kq
pg, -kq Ñ p=d gq pd -kq
pv, -kq Ñ p=d vq pd -kq
pv, -kq Ñ p=g vq pg, -kq

pd -kq Ñ Mary
p=g +k tq Ñ bes
p=v +k tq Ñ wills
p=g vq Ñ be

p=d +k tq Ñ laughs
p=d gq Ñ laughing
p=d vq Ñ laugh

p=d +k tq Ñ jumps
p=d gq Ñ jumping
p=d vq Ñ jump

Figure 4.11: CFG counterpart of 4.10

In this particular case, all choices made in the course of the derivation are limited to

complement selection. Because of this, the cost of each sentence can also be read off the

head-complement graph by following the path from t to d (i.e. in the top-down direction)

and assigning an appropriate cost in bits to each node that has more than one incoming

arc. For example, it is easy to see that each sentence has to pay log2 3 « 1.58 bits to
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rewrite p+k t, -kq – which corresponds to the three arcs entering the vertex t on the graph.

In addition, each sentence pays one bit to select between the two lexical verbs (laugh vs.

jump). However, any sentence that uses wills also pays an extra bit to rewrite pv, -kq.

Because this grammar operates over unsegmented words, the auxiliary be is implemented as

two distinct lexical items, bes :: =g +k t and be :: =g v. The cost of having the progressive

construction as an option is paid twice: first by each sentence in the corpus as bes :: =g +k t

necessitates the CFG rule p+k t, -kq Ñ p=g +k tq pg, -kq, and again by sentences involving

wills as be :: =g v necessitates the CFG rule pv, -kq Ñ p=g vq pg, -kq. This straightforward

implementation is therefore suboptimal with respect to the corpus cost.

ą

ă

Maryjumps
=d +k t

Mary
d -k

S

pt)

p+k t, -k)

pd -k)

Mary

p=d +k t)

jumps

(a) Mary jumps

ą

ă

ă

ă

Marylaughing
=d g

be
=g v

wills
=v +k t

Mary
d -k

S

pt)

p+k t, -k)

pv, -k)

pg, -k)

pd -k)

Mary

p=d g)

laughing

p=g v)

be

p=>v +k t)

wills

(b) Mary wills be laughing

Figure 4.12: Sample derived trees and CFG parse trees (4.10, 4.11)
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We begin by decomposing lexical verbs. The following lexical items are a good target for

left decomposition, as they share the prefix laugh and the first syntactic feature =d:

laughs :: =d +k t

laughing :: =d g

laugh :: =d v

By factoring out these phonological and syntactic commonalities and associating them with

the fresh feature f1, we arrive at the lexicon in 4.13.

Mary :: d -k
bes :: =g +k t

wills :: =v +k t

be :: =g v

-s :: =>f1 +k t

-ing :: =>f1 g

-ε :: =>f1 v

laugh :: =d f1

jumps :: =d +k t

jumping :: =d g

jump :: =d v

t v g f1 dlaugh

-s

-ε

-ing

jumps

jump

jumping
bes

wills be

|Base|
ř

syn

ř

phon Grammar Corpus

6 26 39 542.84 26.34

Figure 4.13: Decomposition of laugh

In a similar way, we target the other verbal paradigm in the lexicon and factor out the

prefix jump and the feature =d via left decomposition:

jumps :: =d +k t

jumping :: =d g

jump :: =d v

This move introduces another fresh feature, f2, and results in two copies each of the affixes

-s, -ε, and -ing (4.14).
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Mary :: d -k
bes :: =g +k t

wills :: =v +k t

be :: =g v

-s :: =>f1 +k t

-ing :: =>f1 g

-ε :: =>f1 v

laugh :: =d f1

-s :: =>f2 +k t

-ing :: =>f2 g

-ε :: =>f2 v

jump :: =d f2

t v g f1 d

f2

laugh

-s

-ε

-ing

jump

-s

-ε

-ing
bes

wills be

|Base|
ř

syn

ř

phon Grammar Corpus

7 28 31 530.40 26.34

Figure 4.14: Decomposition of jump

Note that the corpus cost has increased. There are now four arcs entering t, which translate

to two bits paid by each sentence. Sentences that involve the category v still pay the log2 3

bits, and those involving g pay an extra bit to pick one of the two paths labeled with -ing.

Next we unify -ing :: =>f1 g and -ing :: =>f2 g by making a right decomposition step.

Since these lexical items share the entire string component, we can associate their syntactic

differences, =>f1 vs. =>f2, with empty heads (4.15). Each of these transitions immediately

pays off in terms of
ř

phon, but adds a new category feature to Base and increases
ř

syn.

At this point, both -ε :: =>f1 f3 and -ε :: =>f2 f3 are valid targets for edge contraction.

This move collapses remaining distinctions between laugh and jump, assuming that they

have identical syntactic distribution. The new projection introduced by f4 now hosts both

lexical verbs (4.16). Even though jump can now be selected by affixes previously compatible

only with laugh, and vice versa, no new morphological words are created.16

16. Not every possible contraction step has this property. For example, contracting -ε :: =>f1 v instead
would create a path from v back to f3, produce a cycle in morphotactics, and generate the infinite set of
ungrammatical sentences *Mary will-s be pbe-ingq` laugh-ing.
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Mary :: d -k
bes :: =g +k t

wills :: =v +k t

be :: =g v

-s :: =>f1 +k t

-ing :: =>f3 g

-ε :: =>f1 f3

-ε :: =>f1 v

laugh :: =d f1

-s :: =>f2 +k t

-ε :: =>f2 v

-ε :: =>f2 f3

jump :: =d f2

t v g f3 f1 d

f2

laugh

-s

-ε

-ε-ing

jump

-s

-ε

-ε
bes

wills be

|Base|
ř

syn

ř

phon Grammar Corpus

8 30 28 544.62 26.34

Figure 4.15: Decomposition of -ing

Mary :: d -k
bes :: =g +k t

wills :: =v +k t

be :: =g v

-s :: =>f4 +k t

-ing :: =>f4 g

-ε :: =>f4 v

laugh :: =d f4

-s :: =>f4 +k t

-ε :: =>f4 v

jump :: =d f4

t v g f4 dlaugh|jump

-s|-s

-ε|-ε

-ing

bes

wills be

|Base|
ř

syn

ř

phon Grammar Corpus

6 26 28 484.30 28.68

Figure 4.16: Contraction of f1Ñ f3 and f2Ñ f3

This move reduces the grammar cost; however, the corpus cost sees an increase. This is

due to two pairs of parallel edges, or duplicate lexical items. The distinctions between the

lexical verbs have been collapsed, but the grammar still contains a separate -ε :: =>f4 v and
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-s :: =>f4 +k t contributed by each of them. In short, any sentence involving these LIs has

to pay the 1-bit cost of picking the lexical verb twice.

We can remove one copy of -ε :: =>f4 v as an instance of edge deletion (4.17).

Mary :: d -k
bes :: =g +k t

wills :: =v +k t

be :: =g v

-s :: =>f4 +k t

-ing :: =>f4 g

laugh :: =d f4

-ε :: =>f4 v

-s :: =>f4 +k t

jump :: =d f4

t v g f4 dlaugh|jump

-s|-s

-ε

-ing

bes

wills be

|Base|
ř

syn

ř

phon Grammar Corpus

6 24 28 457.69 26.68

Figure 4.17: Deletion of a duplicate edge f4 Ñ v

This reduces both
ř

syn and the corpus cost. Our definition of this operation only extends

to category changers, which prevents it from targeting -s :: =>f4 +k t at this time.

We turn next to the following four items, two of which are identical:

bes :: =g +k t

wills :: =v +k t

-s :: =>f4 +k t

-s :: =>f4 +k t

This batch shares the common suffix s and the sequence of syntactic features +k t. By

factoring out these similarities, we create what is essentially a dedicated Tense projection

(4.18). Since the batch shares more than one syntactic feature, this decomposition step

immediately reduces
ř

syn as well as
ř

phon.

This move reduces the two duplicate items we have had since 4.16 to category changers.

We are now in position to get rid of one of the copies by deleting one of the parallel edges

from f4 to f5 (4.19).
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Mary :: d -k
-s :: =>f5 +k t

be :: =g f5

will :: =v f5

be :: =g v

-ε :: =>f4 f5

-ing :: =>f4 g

-ε :: =>f4 v

laugh :: =d f4

-ε :: =>f4 f5

jump :: =d f4

t f5 v g f4 dlaugh|jump

-ε|-ε

-ε

-ing

be

-s will be

|Base|
ř

syn

ř

phon Grammar Corpus

7 23 25 439.32 26.68

Figure 4.18: Decomposition of Tense

Mary :: d -k
-s :: =>f5 +k t

be :: =g f5

will :: =v f5

be :: =g v

-ε :: =>f4 f5

-ing :: =>f4 g

-ε :: =>f4 v

laugh :: =d f4

jump :: =d f4

t f5 v g f4 dlaugh|jump

-ε

-ε

-ing

be

-s will be

|Base|
ř

syn

ř

phon Grammar Corpus

7 21 25 412.53 24.68

Figure 4.19: Deletion of a duplicate edge f4 Ñ f5

Once again, both
ř

syn and the corpus cost go down without increases to other metrics. The

corpus cost drops back to that of the original, 24.68 bits.

The grammar still contains two partially redundant lexical items:

be :: =g f5

be :: =g v

75



As before, we apply batch decomposition to deal with them (4.20).

Mary :: d -k
-s :: =>f5 +k t

-ε :: =>f6 f5

be :: =g f6

will :: =v f5

-ε :: =>f6 v

-ε :: =>f4 f5

-ing :: =>f4 g

-ε :: =>f4 v

laugh :: =d f4

jump :: =d f4

t f5 v g f4 d

f6

laugh|jump

-ε

-ε

-ing

-ε

-s will

be
-ε

|Base|
ř

syn

ř

phon Grammar Corpus

8 23 23 431.39 24.68

Figure 4.20: Decomposition of be

We then contract the category changer -ε :: =>f6 v (4.21).17 This move brings |Base|

back to 7 and
ř

syn back to 21 – same as before we started decomposing the paradigm of be

(4.19), while retaining the reduced
ř

phon.

Mary :: d -k
-s :: =>f5 +k t

-ε :: =>f7 f5

be :: =g f7

will :: =f7 f5

-ε :: =>f4 f5

-ing :: =>f4 g

-ε :: =>f4 f7

laugh :: =d f4

jump :: =d f4

t f5 f7 g f4 dlaugh|jump

-ε

-ε

-ing

-ε

-s will be

|Base|
ř

syn

ř

phon Grammar Corpus

7 21 23 401.82 26.68

Figure 4.21: Contraction of f6 Ñ v

17. Note that we should not do the same to -ε :: =>f6 f5, since that would result in an undesirable cycle
generating *Mary will-s pwillq` be laugh-ing.
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Collapsing f6 and v into f7 has created a path of category changers from f4 to f5.

Having two paths leading to the same output string increases the corpus cost yet again. At

the same time, -ε :: =>f4 f5 now meets the condition for edge deletion (4.22).

Mary :: d -k
-s :: =>f5 +k t

-ε :: =>f7 f5

be :: =g f7

will :: =f7 f5

-ing :: =>f4 g

-ε :: =>f4 f7

laugh :: =d f4

jump :: =d f4

t f5 f7 g f4 dlaugh|jump

-ε

-ing

-ε

-s will be

|Base|
ř

syn

ř

phon Grammar Corpus

7 19 23 375.03 24.00

Figure 4.22: Deletion of f4 Ñ f5

This last step does not change |Base| or
ř

phon, but finally pushes
ř

syn below the value it

had in 4.19. In addition, the total corpus cost is reduced to 24 bits. Thus, the decision made

in 4.20 to decompose the two instances of be rather than leave them intact took two steps

to fully pay off.

The final lexicon (4.22) captures a number of correct generalizations, to the extent they

can be encoded with a minimalist grammar. In particular, the roots in both verbal paradigms

have been identified and separated from inflectional morphology, and they share the same

syntactic category. The grammar also contains three category changers, silent lexical items

which impose a hierarchy on category features – for instance, a lexical verb can be selected

(directly or via category changers) by -ing, the modal will, or the Tense marker -s, whereas a

phrase headed by will can only be selected by -s. These changes to the lexicon are reflected

in the metrics, as shown in Table 4.1.
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|Base|
ř

syn

ř

phon Grammar Corpus MDL

Original (4.10) 5 24 49 565.54 24.68 590.22

Final (4.22) 7 19 23 375.03 24.00 399.03

Table 4.1: Original lexicon vs. final lexicon

SÑ ptq

ptq Ñ p+k t, -kq
p+k t, -kq Ñ p=>f5 +k tq pf5, -kq
pf5, -kq Ñ p=>f7 f5q pf7, -kq
pf5, -kq Ñ p=f7 f5q pf7, -kq
pf7, -kq Ñ p=>f4 f7q pf4, -kq
pf7, -kq Ñ p=g f7q pg, -kq
pg, -kq Ñ p=>f4 gq pf4, -kq
pf4, -kq Ñ p=d f4q pd -kq

pd -kq Ñ Mary
p=>f5 +k tq Ñ -s
p=>f7 f5q Ñ -ε
p=g f7q Ñ be
p=f7 f5q Ñ will
p=>f4 gq Ñ -ing
p=>f4 f7q Ñ -ε
p=d f4q Ñ laugh
p=d f4q Ñ jump

Figure 4.23: CFG counterpart of 4.22

The final grammar is an improvement over the original in terms of both
ř

syn and
ř

phon,

at the cost of two new features added to Base. Most of the derivations take more steps

than their counterpart in the original grammar (4.24). However, the cost of encoding each

sentence is now exactly three bits (cf. 4.23), which brings the total corpus cost down to 24

bits.
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ą

ă

ă

ă

ă

Maryjump
=d f4

-ε
=>f4 f7

-ε
=>f7 f5

jump-s
=>f5 +k t

Mary
d -k

S

pt)

p+k t, -k)

pf5, -k)

pf7, -k)

pf4, -k)

pd -k)

Mary

p=d f4)

jump

p=>f4 f7)

-ε

p=>f7 f5)

-ε

p=>f5 +k t)

-s

(a) Mary jump-s

ą

ă

ă

ă

ă

ă

Marylaugh
=d f4

laugh-ing
=>f4 g

be
=g f7

will
=f7 f5

will-s
=>f5 +k t

Mary
d -k

S

pt)

p+k t, -k)

pf5, -k)

pf7, -k)

pg, -k)

pf4, -k)

pd -k)

Mary

p=d f4)

laugh

p=>f4 g)

-ing

p=g f7)

be

p=f7 f5)

will

p=>f5 +k t)

-s

(b) Mary will-s be laugh-ing

Figure 4.24: Sample derived trees and CFG parse trees (4.22, 4.23)

4.4 Interim summary

As mentioned earlier, the task undertaken in this dissertation can be characterized as a

search problem, which has two main components:

• identify the search space of possible solutions;

• examine the search space to find the best solution.
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Focusing primarily on the former, this chapter introduced a set of operations over grammars

centered around the idea of batch decomposition, which formalizes the intuition behind

linguistic generalizations. If decomposing a single LI captures discovering morphological

structure within a word, batch decomposition identifies redundancies within the lexicon and

factors them out as shared morphemes. With this in mind, denoting the starting lexicon as

Lexstart, we can define the search space as the closure of tLexstartu under batch decompo-

sition, edge contraction, and edge deletion. This set is infinite thanks to decomposition; for

example, an arbitrary lexical item s :: α x γ can be trivially decomposed into s :: α y and

-ε :: =>y x γ.

The main question associated with the first component of the search problem is whether

the solution we are looking for is, in fact, in the search space – in this case, whether there

exists a sequence of batch decomposition, edge contraction, and edge deletion steps leading to

the desired result. As demonstrated by 4.10–4.22, these operations do allow one to transform

a grammar over words into a linguistically motivated grammar over morphemes through a

series of well-defined steps. In this example, the final grammar (4.22) was produced by using

left decomposition to identify members of the same paradigm and right decomposition to

make generalizations across paradigms, while letting edge contraction and deletion take care

of any redundancies arising in the process.

Turning to the second component, in Chapter 2 we discussed a way of measuring the

complexity of a minimalist grammar with respect to a given dataset: the three basic metrics

(Base,
ř

syn, and
ř

phon), the cost of encoding the corpus represented as a set of CFG

derivations, and the MDL measure which takes all of these into account. This approach

makes explicit a trade-off: a grammar over morphemes contains more complex structures

and a greater number of unique features (i.e. greater |Base|) that a naive grammar over

unsegmented words that generates the same sentences. However, this pays off in terms of

other metrics: a lexicon that treats words as complex structures rather than atomic LIs can
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avoid syntactic and phonological redundancies (represented by
ř

syn and
ř

phon respectively)

by reusing lexical items in multiple words.
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Figure 4.25: Step-by-step metrics

That said, changes undergone by these measures are not necessarily monotonic. Consider

the plots across transformation steps in 4.25. The only metric that decreases monotonically

is
ř

phon. Each batch decomposition step increases |Base| by one and, depending on the

syntactic similarity within the batch, may increase
ř

syn as well. At the same time, decom-
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position may produce category changers, feeding both edge contraction and edge deletion,

which in their turn reduce
ř

syn (and, in the case of edge contraction, also |Base|) with-

out incurring any additional cost to the grammar. For example, while
ř

syn hits a local

maximum after decomposition of be in 4.20, this move feeds the subsequent contraction and

deletion steps and ultimately allows
ř

syn to reach the minimum in 4.22. On the other hand,

the corpus cost goes up as the grammar cost falls at 4.13, 4.16, and 4.21, and does not reach

the minimum of 24 bits until 4.22. The corpus cost in this example is very small compared

to the grammar, so the effect on MDL is negligible. However, it offers an insight into how it

can contribute to the overall MDL measure.

The following chapter identifies and addresses a number of problems inherent in the

task of navigating the search space of grammars, takes a closer look at the complexity

measure, and outlines an automated procedure for grammar optimization based on lexical

item decomposition.
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Chapter 5

Towards a learning algorithm

5.1 Overall architecture

In order to automate grammar optimization, we need a way of searching the space of candi-

date grammars. Even if lexical item decomposition is limited to non-trivial batches within

the lexicon, the number of steps available for a single input grammar is so large that checking

all possible candidate grammars is generally unfeasible. To mitigate this problem, the pro-

cedure for MG optimization developed here uses a heuristic known as beam search (Reddy

1977). This technique revolves around keeping track of a (relatively small) number of best

hypotheses in the search space, expanding them to obtain new candidates, and discarding

the rest. This parameter, beam size, is referred to as bs.

The flowchart in 5.1 provides a high-level description of the procedure. In our case, the

system maintains two sets of MGs: K, which includes all grammars generated so far, and C,

which contains up to bs candidate grammars to be processed. At each step, these candidates

are used to produce new grammars via batch decomposition, edge construction, and edge

deletion. Between steps, only bs best candidates are retained in C. Once a specified stopping

condition is met, the procedure outputs the best known grammar selected from K and halts.
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Start

Preprocessing:
initialize candidate set C “ tLexstartu;

initialize known grammar set K “ tLexstartu

Input:
grammar Lexstart;

dataset D

Decomposition:
apply all possible steps to candidates;

add new grammars to C and K;
keep bs best candidates in C

Edge contraction:
apply all possible steps to candidates;

add new grammars to C and K;
keep bs best candidates in C

Any targets
for edge contraction

left in C?
Cost calculation

Edge deletion:
apply greedily to candidates;

add new grammars to C and K;
keep bs best candidates in C

Stopping condition met?

Select best grammar Lexbest from K
Output:

grammar Lexbest

End

no

yes

yes

no

Figure 5.1: Flowchart of MG optimization
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The main components of the procedure outlined in 5.1 operate as follows.

• Preprocessing. The input to grammar optimization consists of a single grammar

Lexstart and a dataset D represented as a list of derivation trees generated by Lexstart.

The procedure starts by initializing both C and K as singleton sets containing the

input grammar.

• Cost calculation. Whenever a new grammar is constructed, the MDL-based evalu-

ation measure is calculated and stored along with the grammar. This includes both

the grammar cost and the cost of the corpus given the grammar. The latter is more

problematic given the time and memory demands inherent in re-processing the entire

dataset at each step; this issue is addressed in Section 5.2.

• Decomposition. Because there is no limit to how many decomposition steps can be

performed on a given grammar, this operation proceeds one step at a time. Each candi-

date grammar is expanded into a set of grammars obtained from it through application

of ldec or rdec. The main problem related to decomposition is selecting promising

batches, which is further discussed in Section 5.3.

• Edge contraction. Unlike decomposition, the number of edge contraction steps is

limited by how many category changers there are in a given grammar. This allows all

possible steps to be performed on the same candidate before moving on to the next

operation. At the same time, edge contraction has to be constrained to avoid over-

generalization; see Section 6.1 for more details. Because of this, the operation proceeds

in a cycle, targeting and eliminating eligible category changers within each candidate

grammar one by one and storing the newly formed grammars, until there are no targets

left.

• Edge deletion. This operation proceeds in a greedy fashion. For each candidate

grammar in C, this operation constructs a subgraph of the head-complement graph,
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which only includes edges representing category changers. Any edge xx, yy is deleted

and its corresponding LI ε :: =>x y is removed from the grammar as long as the graph

contains another path from x to y.

• Stopping condition. The procedure keeps track of a specified number of best gram-

mars in K. If these costs remain unchanged after an iteration, the procedure halts.

For all experiments throughout this and next chapter, this parameter was set to 50.

A Python implementation of the optimization procedure, along with input grammars used

for experiments, is available at https://github.com/mermolaeva/mg-optimizer.

5.2 Corpus encoding

5.2.1 From derivation trees to annotated CFGs

The corpus encoding scheme introduced in Chapter 3 assumes that the data is represented

as a set of CFG trees (which correspond to MG derivation trees). In order to calculate

the cost of a sentence, we have to traverse its derivation tree, adding up the costs of CFG

rules used in it. Whenever the MG is modified (via batch decomposition, edge contraction,

or edge deletion), all derivation trees that contain LIs involved in the operation change as

well. In addition, since the number of CFG rules sharing the left-hand side may also become

different, cost changes are not necessarily limited to sentences containing decomposed items.

Consider the left decomposition step from 4.10–4.13, repeated in 5.2, and the pair of sam-

ple CFG trees in 5.3. Before decomposition, the cost of Mary laughs (5.6a) and Mary jumps

is the same, log2 3 « 1.58 bit encoding the choice to rewrite p+k t, -kq as p=d +k tq pd -kq

plus log2 2 “ 1 bit to encode the selection of laughs or jumps. Decomposition of the laugh

batch adds an extra derivation step for each occurrence of laugh, laughing, or laughs in the

corpus. After decomposition, Mary laugh-s (5.6b) contains only one rule with nonzero cost:

p+k t, -kq Ñ p=>f1 +k tq pf1, -kq.
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Mary :: d -k
bes :: =g +k t

wills :: =v +k t

be :: =g v

laughs :: =d +k t

laughing :: =d g

laugh :: =d v

jumps :: =d +k t

jumping :: =d g

jump :: =d v

(a) Original

Mary :: d -k
bes :: =g +k t

wills :: =v +k t

be :: =g v

-s :: =>f1 +k t

-ing :: =>f1 g

-ε :: =>f1 v

laugh :: =d f1

jumps :: =d +k t

jumping :: =d g

jump :: =d v

(b) Decomposition of laugh

Figure 5.2: MGs from Chapter 4 (=4.10, 4.13)

S

pt)

p+k t, -k)

pd -k)

Mary

p=d +k t)

laughs

(a) Mary laughs (using 5.2a)

S

pt)

p+k t, -k)

pf1, -k)

pd -k)

Mary

p=d f1)

laugh

p=>f1 +k t)

s

(b) Mary laugh-s (using 5.2b)

Figure 5.3: CFG derivation trees: decomposition

With this new rule in place, there are now four rules with the left-hand side p+k t, -kq.

This affects both Mary laugh-s and Mary jumps, even though the latter uses exactly the

same rules as before decomposition. Each of the sentences costs 2 log2 2 “ 2 bits.

How can we keep track of these changes through the process of grammar optimization?

A straightforward but naive approach would be to recalculate the cost of each sentence from

scratch. This would involve re-parsing the entire corpus to obtain new derivation trees and
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re-generating the CFG each time the MG is tweaked, as well as recording and storing the

modified corpus for each candidate grammar. For larger corpora, the time and memory

demands would be prohibitively high. To circumvent most of these problems, I propose an

alternative approach which relies on the following three observations:

• All trees containing the same decomposed, contracted, or deleted lexical item undergo

the same exact changes;

• Corpus cost calculations do not rely on structural information; it is sufficient to know

which rules have been used and how many times;

• Changes to CFG rules are always local and limited to expressions headed by the LI

which is being modified.

By definition, decomposition takes place before the category feature. Since each CFG rule

marks an instance of MG feature checking, the number of rules affected by a single decom-

position step is limited by the number of features to the left of the category in the original

LI’s feature bundle. Edge contraction and deletion exclusively target category changers –

lexical items which make no contribution to the syntactic expression beyond changing it

head’s category feature. Thus, all changes to the CFG rules are confined to the initial chains

of the left-hand side expression and the first expression on the right-hand side.

With this in mind, the set of derivation trees can be collapsed into a CFG with usage

data. In such a CFG, rules are annotated with the number of occurrences associated with

each LI that can head the expression on the left-hand side, as well as a number indicating

which feature of the LI is checked by the derivation step associated with the rule. This

concept is made precise in Definition 5.1.
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Definition 5.1: CFG with usage data

Let Lex be a minimalist grammar, R the set of rules in the CFG generating the set of Lex’s

derivation tree yields, and D a dataset of trees generated by R. Then the corresponding

CFG with usage data with respect to D is the set of all triples xleft, right, usagey such

that xleft, righty P R and usage is the set of all triples xs :: δ, i, ny such that:

• s :: δ P Lex is a lexical item that can head a syntactic expression whose sequence

of feature bundles in chain notation is left. Extending the MG terminology, we say

that the CFG rule xleft, righty can be headed by s :: δ P Lex;

• i is the index of the feature in δ that is checked by the merge or move step

corresponding to the rule xleft, righty. For terminal rules, i “ 0. The initial rule

SÑ ptq is considered checking of the t feature for this purpose;

• n is the number of times the rule xleft, righty headed by s :: δ P Lex occurs in D.

An annotated CFG contains less information than the original corpus and does not

uniquely identify it; for instance, Mary praises John and John praises Mary would be indis-

tinguishable by their usage data. However, it still has all information required for the task.

Given a CFG with usage data G, the corpus cost is calculated as follows:
ÿ

xleft,right,usagey P G

´

log2
`

|tright1 : xleft, right1, usage1y P Gu|
˘

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

rule cost

ˆ
ÿ

xs::δ,i,ny P usage
n

looooooooomooooooooon

# of occurrences

¯

.

CFGs with usage data for 5.2a and 5.2b are given in Table 5.1 and Table 5.2, respectively.

Note that only rules originally headed by laugh, laughing, or laughs undergo changes in the

left-hand side, right-hand side, and/or usage. These rules, as well as the newly constructed

terminal rules for laugh and -s and the rule representing merge of the latter, are highlighted

in the tables with a checkmark symbol (3). However, many unrelated rules sharing the left-

hand side with them end up having a different cost.
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Rule Head Index Uses Cost (bits)

SÑ ptq

bes :: =g +k t 3 2

8 log2 1 “ 0 3
wills :: =v +k t 3 4

laughs :: =d +k t 3 1

jumps :: =d +k t 3 1

ptq Ñ p+k t, -kq

bes :: =g +k t 2 2

8 log2 1 “ 0 3
wills :: =v +k t 2 4

laughs :: =d +k t 2 1

jumps :: =d +k t 2 1

p+k t, -kq Ñ p=d +k tq pd -kq
laughs :: =d +k t 1 1

2 log2 3 « 3.17 3
jumps :: =d +k t 1 1

p+k t, -kq Ñ p=g +k tq pg, -kq bes :: =g +k t 1 2 2 log2 3 « 3.17

p+k t, -kq Ñ p=v +k tq pv, -kq wills :: =v +k t 1 4 4 log2 3 « 6.34

pg, -kq Ñ p=d gq pd -kq
laughing :: =d g 1 2

4 log2 1 “ 0 3
jumping :: =d g 1 2

pv, -kq Ñ p=d vq pd -kq
laugh :: =d v 1 1

2 log2 2 “ 2 3
jump :: =d v 1 1

pv, -kq Ñ p=g vq pg, -kq be :: =g v 1 2 2 log2 2 “ 2

pd -kq Ñ Mary Mary :: d -k 0 8 8 log2 1 “ 0

p=g +k tq Ñ bes bes :: =g +k t 0 2 2 log2 1 “ 0

p=v +k tq Ñ wills wills :: =v +k t 0 4 4 log2 1 “ 0

p=g vq Ñ be be :: =g v 0 2 2 log2 1 “ 0

p=d +k tq Ñ laughs laughs :: =d +k t 0 1 log2 2 “ 1 3

p=d gq Ñ laughing laughing :: =d g 0 2 2 log2 2 “ 2 3

p=d vq Ñ laugh laugh :: =d v 0 1 log2 2 “ 1 3

p=d +k tq Ñ jumps jumps :: =d +k t 0 1 log2 2 “ 1

p=d gq Ñ jumping jumping :: =d g 0 2 2 log2 2 “ 2

p=d vq Ñ jump jump :: =d v 0 1 log2 2 “ 1

Total « 24.68

Table 5.1: CFG rule usage before decomposition (5.2a)
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Rule Head Index Uses Cost (bits)

SÑ ptq

bes :: =g +k t 3 2

8 log2 1 “ 0 3
wills :: =v +k t 3 4

-s :: =>f1 +k t 3 1

jumps :: =d +k t 3 1

ptq Ñ p+k t, -kq

bes :: =g +k t 2 2

8 log2 1 “ 0 3
wills :: =v +k t 2 4

-s :: =>f1 +k t 2 1

jumps :: =d +k t 2 1

p+k t, -kq Ñ p=>f1 +k tq pf1, -kq -s :: =>f1 +k t 1 1 log2 4 “ 2 3

p+k t, -kq Ñ p=d +k tq pd -kq jumps :: =d +k t 1 1 log2 4 “ 2

p+k t, -kq Ñ p=g +k tq pg, -kq bes :: =g +k t 1 2 2 log2 4 “ 4

p+k t, -kq Ñ p=v +k tq pv, -kq wills :: =v +k t 1 4 4 log2 4 “ 8

pf1, -kq Ñ p=d f1q pd -kq laugh :: =d f1 1 4 4 log2 1 “ 0 3

pg, -kq Ñ p=>f1 gq pf1, -kq -ing :: =>f1 g 1 2 2 log2 2 “ 2 3

pg, -kq Ñ p=d gq pd -kq jumping :: =d g 1 2 2 log2 2 “ 2

pv, -kq Ñ p=>f1 vq pf1, -kq -ε :: =>f1 v 1 1 1 log2 3 « 1.58 3

pv, -kq Ñ p=d vq pd -kq jump :: =d v 1 1 1 log2 3 « 1.58

pv, -kq Ñ p=g vq pg, -kq be :: =g v 1 2 2 log2 3 “« 3.17

pd -kq Ñ Mary Mary :: d -k 0 8 8 log2 1 “ 0

p=g +k tq Ñ bes bes :: =g +k t 0 2 2 log2 1 “ 0

p=v +k tq Ñ wills wills :: =v +k t 0 4 4 log2 1 “ 0

p=g vq Ñ be be :: =g v 0 2 2 log2 1 “ 0

p=d f1q Ñ laugh laugh :: =d f1 0 4 4 log2 1 “ 0 3

p=>f1 +k tq Ñ -s -s :: =>f1 +k t 0 1 log2 1 “ 0 3

p=>f1 gq Ñ -ing -ing :: =>f1 g 0 2 2 log2 1 “ 0 3

p=>f1 vq Ñ -ε -ε :: =>f1 v 0 1 1 log2 1 “ 0 3

p=d +k tq Ñ jumps jumps :: =d +k t 0 1 log2 1 “ 0

p=d gq Ñ jumping jumping :: =d g 0 2 2 log2 2 “ 0

p=d vq Ñ jump jump :: =d v 0 1 log2 1 “ 0

Total « 26.34

Table 5.2: CFG rule usage after decomposition (5.2b)
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The original dataset of derivation trees D is converted into a CFG with usage data

as part of the preprocessing component. From a high-level viewpoint, whenever an LI is

modified, the algorithm obtains the new corpus cost from the annotated CFG by performing

the following steps:

• Identify which CFG rules are associated with this LI, and how many times they were

used throughout the original corpus;

• Construct new CFG rules reflecting the change to the original MG;

• Reassign usage data associated with the LI from the original rules to the new rules;

delete any rules that no longer have any usage data;

• Recalculate the corpus cost with respect to the new CFG.

In what follows, I outline in more detail the algorithms modifying the CFG with usage data in

response to lexical item decomposition, edge contraction, and edge deletion. For simplicity,

all algorithms are defined for a single LI rather than a set or batch.

5.2.2 Decomposition of lexical items

During lexical item decomposition, a single original LI is split into two new items: the lower

LI, carrying a fresh category feature, and the upper LI, which selects the former. Each rule

that can be headed by the original LI is modified depending on which of the newly formed

LIs becomes its new head. This operation is carried out by CFG-Decompose of Algorithm 5.1.

It assumes an additional auxiliary function CFG-Add, which takes as input a CFG with usage

data and a rule and updates the rule’s usage data if it is already present in the grammar, or

adds the rule to the grammar if it is not.
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1 Function CFG-Decompose(G, i, sold :: δold, supper :: δupper, slower :: δlower)

Data: CFG with usage data G, index i, old LI sold :: δold, new LIs

supper :: δupper, slower :: δlower

Result: CFG with usage data G1

2 Initialize G1 “ H

3 foreach xleft, right, usagey in G do

4 if xsold :: δold, j, ny in usage, where j, n P N then

5 if j ą i then // headed by the upper LI

6 usage1 = usage[xsold :: δold, j, ny ÞÑ xsupper :: δupper, j ´ i` 1, ny]

7 G1 = CFG-Add(G1, xleft, right, usage1y)

8 else // headed by the lower LI

9 Let left1 be identical to left, except for the first feature bundle replaced

with δlowerrj ` 1, |δlower|s

10 if xleft, right, usagey is a terminal rule then

11 right1 “ slower // lower terminal rule

12 else

13 Let right1 be identical to right, except for the first feature bundle

of the first nonterminal replaced with δlowerrj, |δlower|s

14 G1 = CFG-Add(G1, xleft1, right1, txslower :: δlower, j, nyuy)

15 G1 = CFG-Add(G1, xleft, right, usage´ txsold :: δold, j, nyuy)

16 if j “ i then // merge and upper terminal rules

17 G1 = CFG-Add(G1, xleft, xδupper, left1y, txsupper :: δupper, 1, nyuy)

18 G1 = CFG-Add(G1, xδupper, supper, txsupper :: δupper, 0, nyuy)

19 else // unrelated rule

20 G1 = CFG-Add(G1, xleft, right, usagey)

21 return G1

Algorithm 5.1: Changing a CFG in response to decomposition
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The function determines how to process each rule by comparing the index i at which the

original LI was decomposed to the index j of the checked feature stored as part of the usage

data triple. In the case of left decomposition, i “ lsyn. In the case of right decomposition,

for each LI s :: δ in the batch, i “ |δ| ´ lsyn. If j ą i, the rule is headed by the upper

LI. Both the left-hand side and the right-hand side remain unchanged, whereas the usage

data is tweaked to reflect the new index and head LI. If j ď i, the algorithm constructs a

modified rule headed by the lower LI, modifying both the left-hand side and right-hand side.

In addition, if j “ i, a new rule is formed to represent the merge step combining the upper

LI with the expression headed by the lower LI. Finally, terminal rules for both new LIs are

added to the grammar.

Consider again the decomposition example from the previous section. The CFG trees

are repeated once more in 5.4, annotated with head and index information.

S

pt)

p+k t, -k)

pd -k)

Mary

head: Mary
index: 0

p=d +k t)

laughs

head: laughs
index: 0

head: laughs
index: 1

head: laughs
index: 2

head: laughs
index: 3

(a) Mary laughs (using Table 5.1)

S

pt)

p+k t, -k)

pf1, -k)

pd -k)

Mary

head: Mary
index: 0

p=d f1)

laugh

head: laugh
index: 0

head: laugh
index: 1

p=>f1 +k t)

-s

head: -s
index: 0

head: -s
index: 1

head: -s
index: 2

head: -s
index: 3

(b) Mary laugh-s (using Table 5.2)

Figure 5.4: CFG derivation trees (=5.3) annotated with usage data

The old LI laughs :: =d +k t is decomposed at index i “ 1. The lower LI is laugh :: =d f1,

and the upper LI is -s :: =>f1 +k t. Then CFG-Decompose proceeds as follows.
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• The usage of S Ñ ptq includes the old LI (index j “ 3). In G1, this is replaced with

the upper LI (index j ´ i` 1 “ 3), and the rest of the rule stays the same;

• The usage of ptq Ñ p+k t, -kq includes the old LI (index j “ 2). In G1, this is replaced

with the upper LI (index j ´ i` 1 “ 2), and the rest of the rule stays the same;

• The usage of p+k t, -kq Ñ p=d +k tq pd -kq includes the old LI (index j “ 1).

‚ The original rule is added to G1 with the old LI removed from its usage data;

‚ A new rule headed by the lower LI is added to G1: pf1, -kq Ñ p=d f1q pd -kq

(index j “ 1). Its left-hand side is based on δlowerrj ` 1, |δlower|s “ δlowerr2, 2s “

f1, and its right-hand side is based on δlowerrj, |δlower|s “ δlowerr1, 2s “ =d f1;

‚ Since j “ i “ 1, the following new rule headed by the upper LI represents the

merge step: p+k t, -kq Ñ p=>f1 +k tq pf1, -kq (index 1);

‚ Finally, we add a terminal rule for the upper LI: p=>f1 +k tq Ñ -s (index 0);

• The usage of p=d +k tq Ñ laughs includes the old LI (index j “ 0). Since this is a

terminal rule, we add a terminal rule for the lower LI to G1: p=d f1q Ñ laugh (index

j´i`1 “ 0). Its left-hand side is based on δlowerrj`1, |δlower|s “ δlowerr1, 2s “ =d f1.

• All other rules, which cannot be headed by the old LI, are irrelevant to this decompo-

sition step. They are added to G1 unchanged.

5.2.3 Auxiliary operations

The auxiliary operations of edge contraction and edge deletion apply to category changers.

Since these LIs have exactly two syntactic features, a morphological selector and a category,

the only rules headed by a given category changer are those that merge it with its comple-

ment. For example, the edge contraction step in 5.5 gets rid of the LI -ε :: =>f6 v, replacing

all occurrences of both f6 and v with a new feature f7. The only change for affected struc-

tures such as 5.6 is that any LI that originally selected an expression of category v headed
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by the category changer will now instead select its complement (formerly of category f6)

directly.

t f5 v g f4 d

f6

laugh|jump

-ε

-ε

-ing

-ε

-s will

be
-ε

(a) Before

t f5 f7 g f4 dlaugh|jump

-ε

-ε

-ing

-ε

-s will be

(b) After

Figure 5.5: Contraction of f6 Ñ v (=4.20, 4.21)

S

pt)

p+k t, -k)

pf5, -k)

pv, -k)

pf6, -k)

pg, -k)

pf4, -k)

pd -k)

Mary

p=d f4)

laugh

p=>f4 g)

-ing

p=g f6)

be

p=>f6 v)

-ε

p=v f5)

will

p=>f5 +k t)

-s

(a) Mary will-s be laughing (using 5.5a)

S

pt)

p+k t, -k)

pf5, -k)

pf7, -k)

pg, -k)

pf4, -k)

pd -k)

Mary

p=d f4)

laugh

p=>f4 g)

-ing

p=g f7)

be

p=f7 f5)

will

p=>f5 +k t)

-s

(b) Mary will-s be laughing (using 5.5b)

Figure 5.6: CFG derivation trees: edge contraction
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Algorithm 5.2 exploits this observation to deal with LIs eliminated through edge con-

traction in a straightforward way. The function CFG-Contract takes as input a CFG with

usage data, an LI to be contracted -ε :: =>f1 f2, and a fresh category feature fnew. For

each rule, all occurrences of f1 and f2 are replaced with fnew; and any usage triple associ-

ated with -ε :: =>f1 f2 is removed from its usage data. The modified rule is added to the

new grammar as long as its usage data is not empty. Finally, the algorithm generates any

missing CFG rules by applying merge and move to the existing expressions in a process

identical to conversion of MGs to CFGs, informally described in Subsection 2.3.4. For any

new rules, possible heads are identified and assigned 0 occurrences. This is represented in

the pseudocode as an auxiliary function CFG-Closure.

1 Function CFG-Contract(G, -ε :: =>f1 f2, fnew)

Data: CFG with usage data G, old LI -ε :: =>f1 f2, new category feature fnew

Result: CFG with usage data G1

2 Initialize G1 “ H

3 foreach xleft, right, usagey in G do

4 usage1 “ usage´ tx-ε :: =>f1 f2, j, ny for any j, n P Nu

5 if usage1 ‰ H then

6 left1 “ left rf1 ÞÑ fnew, f2 ÞÑ fnews

7 right1 “ right rf1 ÞÑ fnew, f2 ÞÑ fnews

8 G1 = CFG-Add(G1, xleft1, right1, usage1y)

9 return CFG-Closure(G1)

Algorithm 5.2: Changing a CFG in response to edge contraction

To provide a concrete illustration, CFG-contract makes the following changes to CFG rules

involved in 5.6:

• The rule pf5, -kq Ñ p=v f5q pv, -kq cannot be headed by the old LI. Its usage

remains unchanged, and the rule itself changes to pf5, -kq Ñ p=f7 f5q pf7, -kq;
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• The rule pv, -kq Ñ p=>f6 vq pf6, -kq can only be headed by the old LI. Since this

usage triple is removed, the entire rule is not added to G1;

• The terminal rule p=>f6 vq Ñ -ε can only be headed by the old LI. Since this usage

triple is removed, the entire rule is not added to G1;

• The rule pf6, -kq Ñ p=g f6q pg, -kq cannot be headed by the old LI. Its usage

remains unchanged, and the rule itself changes to pf7, -kq Ñ p=g f7q pg, -kq;

• None of the other rules in G can be headed by the old LI. They are added to G1

unchanged, except for all occurrences of f6 and v, which are replaced by f7.

Finally, edge deletion replaces a category changer with a sequence of other category

changers already present in the minimalist grammar. A nontrivial edge deletion step (also

discussed earlier in Chapter 4) is shown in 5.7. Before the operation is applied (5.7a),

-ε :: =>f4 f5 occurs twice in the corpus – in the derivation of Mary laugh-s (shown in 5.8a)

and Mary jump-s. Similarly, -ε :: =>f4 f7 and -ε :: =>f7 f5 are used two times each –

in Mary will-s laugh | jump and Mary be-s laughing | jumping, respectively. Edge deletion

(5.7b, 5.8b) removes -ε :: =>f4 f5 from the grammar. Both sentences in the dataset that

contain it are restructured to use -ε :: =>f4 f7 and -ε :: =>f7 f5 instead.

t f5 f7 g f4 dlaugh|jump

-ε

-ε

-ing

-ε

-s will be

(a) Before

t f5 f7 g f4 dlaugh|jump

-ε

-ing

-ε

-s will be

(b) After

Figure 5.7: Deletion of f4 Ñ f5 (=4.21, 4.22)
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S

pt)

p+k t, -k)

pf5, -k)

pf4, -k)

pd -k)

Mary

p=d f4)

laugh

p=>f4 f5)

-ε

p=>f5 +k t)

s

(a) Mary laugh-s (using 5.7a)

S

pt)

p+k t, -k)

pf5, -k)

pf7, -k)

pf4, -k)

pd -k)

Mary

p=d f4)

laugh

p=>f4 f7)

-ε

p=>f7 f5)

-ε

p=>f5 +k t)

s

(b) Mary laugh-s (using 5.7b)

Figure 5.8: CFG derivation trees: edge deletion

With respect to CFG rules, edge deletion is similar to lexical item decomposition in that

it replaces each rule associated with a single LI with those encoding multiple other LIs.

Unlike decomposition, rather than create new CFG rules, it reassigns occurrences to existing

rules. This intuition is formalized in Algorithm 5.3. To reassign occurrences of the merge

rules involving the old LI -ε :: =>f1 fm, the function CFG-Delete-Edge iterates over the new

category changers -ε :: =>f1 f2, ..., -ε :: =>fn´1 fm. For each -ε :: =>fi fi`1, it identifies

the relevant rule. Its left-hand side is the same as the original merge rule, except for the

first feature replaced by fi. On the right-hand side, the first nonterminal symbol is the new

LI in question, and the second nonterminal symbol is the left-hand side of the previous rule.

Similarly, all occurrences of the terminal rule introducing -ε :: =>f1 fm are removed, and the

same number of occurrences is added to each of the terminal rules introducing the new LIs.
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1 Function CFG-Delete-Edge(G, -ε :: =>f1 fm, t-ε :: =>f1 f2, ..., -ε :: =>fn´1 fmu)

Data: CFG with usage data G, old LI -ε :: =>f1 fm, new LIs

t-ε :: =>f1 f2, ..., -ε :: =>fn´1 fmu

Result: CFG with usage data G1

2 Initialize G1 “ H

3 foreach xleft, right, usagey in G do

4 if x-ε :: =>f1 fm, j, ny in usage, where j, n P N then

5 usage1 “ usage´ tx-ε :: =>f1 fm, j, nyu

6 if xleft, right, usagey is a nonterminal rule then

7 right2 “ rightr2s

8 foreach i P r1,m´ 1s do // merging in the new LIs

9 Let left1 be identical to left, except for the first feature replaced

with fi`1

10 right1 “ p=>fi fi`1q pright2q

11 G1 = CFG-Add(G1, xleft1, right1, t-ε :: =>fi fi`1, j, nuy)

12 right2 “ left1

13 if usage1 ‰ H then

14 G1 = CFG-Add(G1, xleft, right, usage1y)

15 else // terminal rule for the old LI

16 foreach i P r1,m´ 1s do // terminal rules for the new LIs

17 G1 = CFG-Add(G1, x p=>fi fi`1q, -ε, tx-ε :: =>fi fi`1, j, nyuy)

18 else // unrelated rule

19 G1 = CFG-Add(G1, xleft, right, usagey)

20 return G1

Algorithm 5.3: Changing a CFG in response to edge deletion

In the example 5.8, the old LI is -ε :: =>f4 f5, and the new LIs are -ε :: =>f4 f7 and

-ε :: =>f7 f5. CFG-Delete-Edge processes the associated CFG rules as follows:
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• The nonterminal rule pf5, -kq Ñ p=>f4 f5q pf4, -kq has 2 occurrences, both headed

by the old LI. This rule is removed, and:

‚ The rule pf7, -kq Ñ p=>f4 f7q pf4, -kq is added to G1 with 2 occurrences

headed by -ε :: =>f4 f7;

‚ The rule pf5, -kq Ñ p=>f7 f5q pf7, -kq is added to G1 with 2 occurrences

headed by -ε :: =>f7 f5;

• The rule p=>f4 f5q Ñ -ε is terminal and headed by the old LI. We add 2 occurrences

to each of the following terminal rules: p=>f4 f7q Ñ -ε and p=>f7 f5q Ñ -ε;

• All other rules, which cannot be headed by the old LI, are added to G1 with their

original usage data. If a rule is already in G, the occurrences are added together.

5.3 Batches and metabatches

A major issue related to automating lexical item decomposition is batch selection. This is

the problem of how to efficiently determine which words in the lexicon likely have a shared

morpheme, taking into account both syntactic and phonological similarities. Our definitions

of left and right batch decomposition introduced in Section 4.1 don’t put many restrictions on

what subsets of a lexicon are valid batches, so simply attempting all possible decomposition

steps is not a viable option.

Consider the lexicon in 5.9.18 Left decomposition does not require the LIs within the

batch to have any syntactic features other than the =>x selector, if present. By the definition

of ldec (Definition 4.1), any subset of the lexicon in 5.9 is a valid batch, producing a

number of options equal to the size of the powerset of the lexicon, |PpLexq| “ 2|Lex|. Even

18. In this and subsequent examples, wherever possible, arguments are merged on the right and later
moved (if necessary) to achieve the correct linear order. Introducing arguments of the same category with
different features (e.g. =d and =d) would effectively give the learner additional distinctions (e.g. internal vs.
external DP arguments) to draw on. While the effects of this information may be interesting in their own
right, for now we avoid them in the interest of keeping the input grammar as theory-neutral as possible.
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considering only subsets of size two and greater, this lexicon of thirty LIs contains p230´31q “

1, 073, 741, 793 potential batches. Only a few of these options are linguistically reasonable

or worth exploring. Because of this, we need a way of selecting promising batches: sets of

LIs which have some phonological and/or syntactic similarity between them.

Mary :: d -k
willd :: =v +k t

wills :: =v +k t

have :: =perf v

haved :: =perf +k t

haves :: =perf +k t

be :: =prog v

bed :: =prog +k t

ben :: =prog perf

bes :: =prog +k t

dance :: =d v

danced :: =d +k t

danceing :: =d prog

dancen :: =d perf

dances :: =d +k t

laugh :: =d v

laughd :: =d +k t

laughing :: =d prog

laughn :: =d perf

laughs :: =d +k t

hug :: =d *k =d v

hugd :: =d *k =d +k t

huging :: =d *k =d prog

hugn :: =d *k =d perf

hugs :: =d *k =d +k t

praise :: =d *k =d v

praised :: =d *k =d +k t

praiseing :: =d *k =d prog

praisen :: =d *k =d perf

praises :: =d *k =d +k t

Figure 5.9: English auxiliaries and lexical verbs

One way to home in on redundancies within a lexicon is to use a type of data structure

known as a trie (Fredkin 1960). A (prefix) trie is a tree structure for storing a set of strings

drawn from some alphabet. It contains one internal node for every prefix of any of the strings,

with the root node labeled with ε and other internal nodes storing individual symbols from

the alphabet. Leaf nodes store the strings themselves. For any subset of strings, the leaves

that contain them are dominated by all nodes corresponding to their common prefixes.

Similarly, one can construct a suffix trie whose nodes contain suffixes of strings instead of

prefixes. For example, the set of strings tpat, pie, ram, rat, ryeu would produce the prefix

and suffix tries in 5.10a and 5.10b, respectively.
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Figure 5.10: Tries storing tpat, pie, ram, rat, ryeu

Each minimalist lexical item is a pair of strings, one drawn from Σ and one from Syn.

Thus, a set of lexical items can be represented as a trie with respect to either syntax (5.11)

or phonology (5.12), with leaves containing LIs. Prefix tries are useful for left decomposition,

while right decomposition relies on suffix tries.
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Figure 5.11: Lexicon 5.9 as a prefix trie w.r.t. syntax
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Figure 5.12: Lexicon 5.9 as a prefix trie w.r.t. phonology

Each internal node t in a syntactic prefix trie (such as 5.11) stands for a sequence of syntactic

features shared by all leaves dominated by it. The feature sequence can be split anywhere

as long as it does not produce unusable LIs. Using tree terms, t must not strictly dominate

any node labeled with a morphological selector or be dominated by a category node. Thus,

internal nodes define subsets of LIs sharing a part of their syntactic feature bundle. Simi-

larly, phonological prefix tries (5.12) define subsets of LIs whose string components have a

common prefix. To identify promising batches, we first obtain subsets of lexical items with

phonological and syntactic similarities independently, and then compare them pairwise to

104



find lexical items present in both. For instance, prefix tries in 5.11 and 5.12 yield the batches

listed in Table 5.3.

# Batch Shared syntax Shared phonology

1 be, bed, ben, bes =prog be-

2 bed, bes =prog +k be-

3 dance, danced, danceing, dancen, dances =d dance-

4 dance, danced, danceing, dancen, dances, hug, hugd,

huging, hugn, hugs, laugh, laughd, laughing, laughn,

laughs, praise, praised, praiseing, praisen, praises

=d ε

5 danced, dances =d +k dance-

6 danced, dances, laughd, laughs =d +k ε

7 have, haved, haves =perf have-

8 have, haved, haves, hug, hugd, huging, hugn, hugs ε h-

9 haved, haves =perf +k have-

10 hug, hugd, huging, hugn, hugs =d *k =d hug-

11 hug, hugd, huging, hugn, hugs, praise, praised, praise-

ing, praisen, praises

=d *k =d ε

12 hugd, hugs =d *k =d +k hug-

13 hugd, hugs, praised, praises =d *k =d +k ε

14 laugh, laughd, laughing, laughn, laughs =d laugh-

15 laughd, laughs =d +k laugh-

16 praise, praised, praiseing, praisen, praises =d *k =d praise-

17 praised, praises =d *k =d +k praise-

18 willd, wills =v +k will-

Table 5.3: Batches obtained from 5.11 and 5.12

Many batches in Table 5.3 represent full paradigms of lexical verbs (##3, 10, 14, 16) or

auxiliary verbs (##1, 7, 18), which are precisely what left decomposition is expected to
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target. While some batches group multiple paradigms together (e.g. #8) or include only a

part of a paradigm (e.g. #2), the number of obviously bad moves is relatively small.

Algorithm 5.4 formalizes the first step of this process for left decomposition. The function

Prefix-Phon collects phonological batches of size two and greater from a trie. Prefix-Syn

works in a similar manner for syntactic batches, ensuring a valid split of the feature sequence.

1 Function Prefix-Phon(L)

Data: Set of lexical items L

Result: Set of phonological batches Bphon

2 Let Tphon be the phonological prefix trie of L

3 Initialize Bphon “ H

4 foreach node t of Tphon do

5 if t has more than one child then

6 Add tc : c is a leaf dominated by tu to Bphon

7 return Bphon

8 Function Prefix-Syn(L)

Data: Set of lexical items L

Result: Set of syntactic batches Bsyn

9 Let Tsyn be the syntactic prefix trie of Lex

10 Initialize Bsyn “ H

11 foreach node t of Tsyn do

12 if t has more than one child and

13 t does not strictly dominate any node labeled =>x, x P Base and

14 t is not dominated by any node labeled x, x P Base then

15 Add tc : c is a leaf dominated by tu to Bsyn

16 return Bsyn

Algorithm 5.4: Obtaining phonological and syntactic batches from trees
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The second step is represented by Algorithm 5.5. The final set of batches is obtained via

Make-Batches-Left by considering the cross-product of phonological and syntactic batches

and taking the intersection of each pair of sets.

1 Function Make-Batches-Left(Lex)

Data: Lexicon Lex

Result: Set of batches B

2 Initialize B “ H

3 Bsyn “ Prefix-Syn(Lex)

4 Bphon “ Prefix-Phon(Lex)

5 foreach bi in Bsyn do

6 foreach bj in Bphon do

7 Add bi X bj to B

8 return B

Algorithm 5.5: Batch formation

In its turn, Algorithm 5.6 performs left decomposition for each b “ ts1 :: δ1, ..., sn ::

δnu in the set of batches produced by Make-Batches-Left. On the phonological side, it

proceeds in a greedy fashion, assigning the longest common prefix of ts1, ..., snu as the string

component to the newly formed shared lexical item. On the syntactic side, it explores all ways

of splitting tδ1, ..., δnu that comply with restrictions on ldec. This algorithm assumes an

auxiliary function Syn-Range, which enforces all restrictions on lexical item decomposition

and supplies the range of valid decomposition indices (values of lsyn) for a given set of

syntactic feature bundles. New grammars resulting from decomposition are added to the set

of candidates C and the set of known grammars K.
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1 Function Decompose-Batches-Left(C,K,Lex)

Data: Set of candidates C, set of known grammars K, lexicon Lex

Result: Updated C and K

2 B = Make-Batches-Left(Lex)

3 foreach b “ ts1 :: δ1, ..., sn :: δnu in B do

4 Let lphon be the length of the longest common prefix of ts1, ...snu

5 foreach lsyn in Syn-Range(tδ1, ...δnu) do

6 Lexb “ ldecpLex, b, lphon, lsynq

7 Add Lexb to C

8 Add Lexb to K

9 return C,K

Algorithm 5.6: Left decomposition over batches

Returning to the lexicon in 5.9, using tries has brought the number of options considered

for decomposition down to the much more manageable eighteen batches, each of which is a

set of lexical items all sharing some phonological and/or syntactic properties.

This, however, uncovers a problem with our strategy of making a single decomposition

step at a time. Even if multiple good moves are available, like in Table 5.3, only one can

be picked at a time for a given candidate grammar. If the input lexicon contains multiple

paradigms of open-class LIs (such as lexical verbs), it will take multiple steps to decompose

all of them, even if all required moves are already available at the first step. For example,

the subset of the lexicon 5.9 shown in 5.13 contains the paradigms of dance and laugh.

Each of them has been identified as a batch (#3 and #14, respectively). While their string

components are different, the feature bundles in these two batches are identical: =d +k t, =d

perf, =d prog, =d v. This pattern spans across both intransitive verbs in the lexicon.
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dance :: =d v

danced :: =d +k t

danceing :: =d prog

dancen :: =d perf

dances :: =d +k t

laugh :: =d v

laughd :: =d +k t

laughing :: =d prog

laughn :: =d perf

laughs :: =d +k t

Figure 5.13: A subset of 5.9

To capture this intuition, we introduce the concept of metabatches. A metabatch is a pair

whose first component is a set of syntactic feature bundles, and whose second component is

a set of batches formed from LIs with these feature bundles. Starting with the batches from

Table 5.3, the set of (non-singleton) metabatches is as follows:

# Metabatch Shared syntax Shared phonology

1 dance, danced, danceing, dancen, dances;

laugh, laughd, laughing, laughn, laughs

=d dance-; laugh-

2 danced, dances;

laughd, laughs

=d +k dance-; laugh-

3 praise, praised, praiseing, praisen, praises;

hug, hugd, huging, hugn, hugs

=d *k =d praise-; hug-

4 praised, praises;

hugd, hugs

=d *k =d +k praise-; hug-

Table 5.4: Metabatches obtained from 5.11 and 5.12

To implement this, we modify the batch formation algorithm as shown in Algorithm 5.7.

Just like its predecessor, the new function Make-Metabatches-Left utilizes pairwise inter-
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section to form batches. However, sets of batches are organized into metabatches according

to their syntactic feature bundles.

1 Function Make-Metabatches-Left(Lex)

Data: Lexicon Lex

Result: Set of metabatches M

2 Initialize M “ H

3 Bsyn “ Prefix-Syn(Lex)

4 Bphon “ Prefix-Phon(Lex)

5 foreach bi “ ts1 :: γ1, ..., sn :: γnu in Bsyn do

6 Initialize B “ H

7 foreach bj in Bphon do

8 Add bi X bj to B

9 Add xtγ1, ..., γnu, By to M

10 return M

Algorithm 5.7: Metabatch formation

Algorithm 5.8 takes care of metabatch decomposition proper. All batches within a

metabatch are processed in parallel, producing a single new lexicon but creating a sepa-

rate fresh category feature and shared morpheme for each batch. The syntactic split point

is the same for all batches, whereas the split on the phonological side is decided separately

for each. That said, metabatch decomposition steps are greedier, riskier options. In case a

metabatch turns out to be a bad step, but some batches within it are good, the algorithm re-

tains ordinary batches and makes separate decomposition steps for each of them. This way,

metabatch decomposition steps serve as additional, high-risk and high-reward candidates

added to the overall pool.
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1 Function Decompose-Metabatches-Left(C,K,Lex)

Data: Set of candidates C, set of known grammars K, lexicon Lex

Result: Updated C and K

2 M = Make-Metabatches-Left(Lex)

3 foreach m “ xtγ1, ..., γnu, By in M do

4 foreach lsyn in Syn-Range(tγ1, ...γnu) do

5 Lexm “ Lex // initialize metabatch candidate

6 foreach b “ ts1 :: δ1, ..., sn :: δnu in B do

7 Let lphon be the length of the longest common prefix of ts1, ...snu

8 Lexb “ ldecpLex, b, lphon, lsynq // single batch decomposition

9 Add Lexb to C

10 Add Lexb to K

11 Lexm “ ldecpLexm, b, lphon, lsynq // metabatch decomposition

12 Add Lexm to C

13 Add Lexm to K

14 return C,K

Algorithm 5.8: Left decomposition over metabatches

This chapter has provided a high-level overview of an optimization algorithm for mini-

malist grammars based on lexical item decomposition and auxiliary operations, followed by a

more in-depth discussion of several specific issues. The following chapter reports the results

of applying the algorithm to a number of test grammars, as well as the effects of tweaking

the method of cost calculation and other parameters.
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Chapter 6

Experiments

6.1 Corpus cost and constraints on contraction

As the first line of testing, we use the lexicon introduced in Section 5.3, repeated below. It

generates 64 sentences (16 configurations of auxiliaries ˆ 4 lexical verb paradigms), so it is

practical to use the entire language as the dataset D.

Mary :: d -k
willd :: =v +k t

wills :: =v +k t

have :: =perf v

haved :: =perf +k t

haves :: =perf +k t

be :: =prog v

bed :: =prog +k t

ben :: =prog perf

bes :: =prog +k t

dance :: =d v

danced :: =d +k t

danceing :: =d prog

dancen :: =d perf

dances :: =d +k t

laugh :: =d v

laughd :: =d +k t

laughing :: =d prog

laughn :: =d perf

laughs :: =d +k t

hug :: =d *k =d v

hugd :: =d *k =d +k t

huging :: =d *k =d prog

hugn :: =d *k =d perf

hugs :: =d *k =d +k t

praise :: =d *k =d v

praised :: =d *k =d +k t

praiseing :: =d *k =d prog

praisen :: =d *k =d perf

praises :: =d *k =d +k t

Figure 6.1: English auxiliaries and lexical verbs (=5.9)

We start by automatically generating the head-complement graph (for visualization pur-

poses) and calculating the grammar and corpus cost of the input. For the sake of being
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explicit, the graph in 6.2 and the rest of head-complement graphs throughout this chapter

represent lexical items with no selector features as edges from unlabeled nodes to category

features; and edges themselves are labeled with both string components and feature bundles

of relevant LIs.

Figure 6.2: Graph of 6.1 before optimization. Grammar: 2001.04 bits, corpus: 410.05 bits

Running the optimization procedure on this input, as described in Chapter 5, yields 6.3a

at bs “ 100 and 6.3b at bs “ 10. In both cases, the algorithm does achieve significant

compression compared to the original in terms of grammar cost: 600.05 and 649.67 bits

vs. 2001.04 bits. However, the corpus costs of 499.51 and 464.31 bits are higher than the

initial cost of 410.05 bits. This result is reminiscent of the overgenerating grammar from

Section 3.2. Some crucial distinctions present in the original have been collapsed into a

single category feature, and the hierarchical relationship between v, perf, and prog has

been altered. In addition to the original corpus, both new grammars have cycles which

lead to the generation of ungrammatical sentences such as *Mary be-s pbe-ingq` laugh-ing

and *Mary have-s phave-nq` laugh-n. In addition, 6.3a has another cycle involving the LI

will :: =v v, which allows it to generate *Mary will-s pwillq` laugh.
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(a) bs “ 100, grammar: 600.05 bits, corpus: 499.51 bits

(b) bs “ 10, grammar: 649.67 bits, corpus: 464.31 bits

Figure 6.3: Optimizing the sum of corpus and grammar

Why did this happen? With respect to the grammar cost, collapsing as many distinctions

as possible is indeed the optimal strategy. As we have seen before with both CFGs and

MGs, it is the corpus cost that pushes back against overgeneration. However, our dataset

– the entire language generated by the original grammar – is finite and relatively small.

Because of this, the increase of the corpus cost associated with collapsing too many category

distinctions is insufficient to offset the massive reduction to the grammar cost. The result is

effectively decided by the grammar cost alone – an unsurprising consequence of using a very

small grammar generating a finite language.

If we were to approximate a real-life dataset, the opposite should be the case. A grammar

faithfully representing the syntax of a natural language would generate an infinite set of

sentences. Since the algorithm would have to work with only a finite subset of this language,
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this could be mimicked either by supplying a sufficiently large corpus to balance out the

grammar cost, or by calculating the overall cost as an ordered pair of the corpus and grammar

cost. In the latter case, the corpus cost is explicitly the primary target of optimization, while

the grammar cost serves to break the ties. Applying this strategy to the same input with

varying beam sizes produces the grammars in 6.4.

(a) bs “ 100, grammar: 774.35 bits, corpus: 384.00 bits

(b) bs “ 10, grammar: 1038.71 bits, corpus: 400.16 bits

Figure 6.4: Optimizing the corpus and grammar as an ordered pair

In general, 6.4a is a reasonable result. This grammar generates the same corpus as the

original. Both the grammar and the corpus are compressed compared to the input. The

auxiliaries and lexical verbs have been decomposed, and the redundancies mostly eliminated.

The somewhat counter-intuitive presence of ε :: =>4 2 is an artifact of the corpus encoding

scheme.19 That said, wills and willd were not decomposed in the same way as in the previous

experiment, leading to incomplete unification of the Tense suffixes -s and -d. This was a

19. More specifically, the final CFG contains four rules whose left-hand side is p2q, one per lexical verb.
Because each of the four lexical verbs is used in 16 sentences, the total cost of using these rules is 64 log2 4 “
128 bits. If -ε :: =>4 2 was eliminated by edge contraction, the initial choice would have only three options
and cost log2 3 « 1.58 bits per use. However, hug and praise would end up with identical feature bundles,
and their terminal rules would share the left-hand side, incurring an additional 1 bit per sentence involving
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suboptimal choice, as it did not decrease the corpus size and prevented the grammar size

from being reduced. The under-generalization is even more prominent at bs “ 10 (6.4b). In

both cases, the procedure ended up stopping at a local minimum.

What we want, ideally, is a compromise between the two modes of optimization. The

learner should focus on optimizing the grammar cost, like 6.3a, while retaining important

feature distinctions and avoiding overgeneration, like 6.4a. To address this problem, let

us take a closer look at what causes overgeneration and which properties of the lexicon are

indicative of it. We can visualize the entire set of morphological words produced by a lexicon

in a way partially similar to a head-complement graph. In a word graph, the set of vertices

contains all categories in Base as well as the designated start and end vertices vstart and

vend, and each path from vstart to vend corresponds to a morphological word.

Definition 6.1: Word graphs and words

Let Lex be a minimalist grammar. The word graph of Lex is a directed multigraph

xV,Ey, where V “ Base Y tvstart, vendu, vstart, vend R Base; xt, vendy P E; and for each

s :: αxβ P Lex, x P Base:

• If the first feature in α is =>y, for some y P Base, then xy, xy P E is an edge labeled

with s :: αxβ. Otherwise, xvstart, xy P E is an edge labeled with s :: αxβ;

• For each z such that z P Base and =z or z= is in α, xz, vendy P E.

A word in Lex is the tuple of all edge labels on some path from vstart to vend in the

word graph of Lex.

either of these verbs. The cost of these rules across the corpus would be 64 log2 3` 32 « 133.44 bits, which
is higher than that of 6.4a.
This could be amended with the following tweak to corpus encoding. For each nonterminal symbol α in the
CFG, we would replace the set of all terminal rules α Ñ s1, ..., α Ñ sn with an intermediate rule α Ñ α1

and new terminal rules α1 Ñ s1, ..., α
1 Ñ sn. The intermediate rule would be annotated with the sum of

occurrences of αÑ s1, ..., αÑ sn, while the new terminal rules would retain their original usage data. This
modification would negate the difference in corpus costs caused by -ε :: =>4 2, leaving the algorithm free to
eliminate it and reduce the grammar cost.
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In an input grammar over unsegmented words, the set of morphological words is (trivially)

the set of string components of its lexical items. Compare the words in the original lexicon

(5.9) to the word graphs of 6.3a and 6.4a.

d

vstart 0 v t vend

perf

prog

Mary
laugh|dance

-ε hug|praise

be

will

have
-ing

-n

-s|-d

(a) Optimizing the sum of corpus and grammar (6.3a)
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vstart 4 2 3 1 v t vend
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-ε -ε -ε

-ing

-ε

-n

-ε
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(b) Optimizing the corpus and grammar as an ordered pair (6.4a)

Figure 6.5: Word graphs
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The overgenerating lexicon in 6.5a produces a number of morphological words not present

in the original grammar: have-n, have-ing, be-ing, will-n, and will-ing. On the other hand,

the set of words in 6.5b is identical to the original.

Recall that overgeneration is caused by unconstrained application of edge contraction.

With the above observation is mind, we can mimic the effect of optimizing for corpus size

by adding the following heuristic:

• At the preprocessing step, record the set of words in the original lexicon;

• Whenever the MG is modified, update each of the original words to reflect its new path

through the word graph;

• Edge contraction is allowed just in case the words in the new lexicon are sufficiently

similar to the original words.

The intuitive notion of sufficient similarity can be formalized in a number of ways. A straight-

forward option pursued here is to require each new word to have identical pronunciation and

exhibit similar syntactic behavior20 to some original word.

With this heuristic in place, it is possible to optimize lexica without consulting the corpus

cost at all. Even with a small beam size (bs “ 10), this configuration leads to the grammar

in 6.6. This is the best result so far, with no overgeneration and all redundancies in lexical

and auxiliary verbs properly eliminated.

Figure 6.6: Optimizing only the grammar with constraints on edge contraction, bs “ 10.
Grammar: 682.43 bits, corpus: 389.44 bits

20. Roughly, the new word may consist of different morphemes and take a different path through the graph
as long as it selects dependents of the same categories in the same order, and the highest morpheme in the
word carries the same category as some original word.
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In the previous experiments (6.4), overgenerating grammars are added to the candidate pool

and eventually ruled out, as they cause an increase in the corpus cost that never pays off.

In the setup exemplified by 6.6, the constraint on edge contraction prevents overgenerating

grammars from being considered in the first place. This means more promising candidates

in the pool, making more efficient use of the limited beam size.

All experiments reported throughout this section are summarized in Table 6.1, with the

lowest value of each metric highlighted in bold.

Optimization target bs Grammar Corpus MDL

6.2 Original – 2001.04 410.05 2411.09

6.3a Corpus + grammar 100 600.05 499.51 1099.56

6.3b Corpus + grammar 10 649.67 464.31 1113.98

6.4a xCorpus, grammary 100 774.35 384.00 1158.35

6.4b xCorpus, grammary 10 1038.71 400.16 1438.87

6.6 Grammar with constraints 10 682.43 389.44 1071.87

Table 6.1: Comparison of cost calculating methods (bits)

To recap, the MDL value (sum of corpus and grammar costs) is sensitive to relative sizes

of the grammar and corpus; picking it as the optimization target is prone to overgeneration

if the corpus is very small. Optimizing for the corpus size first and the grammar second

yields better results and resists overgeneration, but the procedure is likely to halt at a local

minimum, requiring a larger beam size. The best result was achieved by optimizing for the

grammar size in conjunction with a heuristic constraining the application of edge contraction.

Note that in this case the MDL value is the lowest; the corpus cost is close to the minimum

observed in 6.4a,21 even though it is not part of the optimization target. This configuration

is used in the rest of experiments throughout this chapter.

21. The slightly larger corpus size of 389.44 bits, compared to the minimum of all experiments (384 bits),
is caused by a quirk of the encoding scheme; see Footnote 19.
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6.2 Passives, complement clauses, raising, and it

For the next experiment, we consider a larger fragment of the English grammar. The input

MG (6.7) generates a wider range of constructions:

• Multiple proper nouns, common nouns, and determiners;

• The auxiliary system, as in Section 6.1;

• Lexical verbs with different argument structures: intransitive, transitive, and selecting

clausal complements (e.g. Mary declares that John is jumping);

• Passive constructions with transitive verbs;

• Raising (Mary seems to smile) and expletive it (it seems that Mary smiles).

Figure 6.7: Extended fragment before optimization. Grammar: 7572.80 bits
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Alice :: d -k

Bob :: d -k

John :: d -k

Mary :: d -k

a :: =n d -k

some :: =n d -k

the :: =n d -k

this :: =n d -k

boy :: n

girl :: n

(a) Nouns and determiners

willd :: =v +k t

wills :: =v +k t

have :: =perf v

haved :: =perf +k t

haves :: =perf +k t

be :: =prog v

bed :: =prog +k t

ben :: =prog perf

bes :: =prog +k t

be :: =pass v

bed :: =pass +k t

being :: =pass prog

ben :: =pass perf

bes :: =pass +k t

it :: e -k

that :: =t =e c1

that :: =t c2

to :: =v to

(b) Closed-class LIs

dance :: =d v

danced :: =d +k t

danceing :: =d prog

dancen :: =d perf

dances :: =d +k t

jump :: ...

laugh :: ...

smile :: ...

(c) Intransitive verbs

declare :: =c2 v

declared :: =c2 +k t

declareing :: =c2 prog

declaren :: =c2 perf

declares :: =c2 +k t

explain :: ...

think :: ...
say :: ...

(d) Verbs with clausal complements

hug :: =d *k =d v

hugd :: =d *k =d +k t

huging :: =d *k =d prog

hugn :: =d *k =d perf

hugn :: =d pass

hugs :: =d *k =d +k t

kiss :: ...
like :: ...

praise :: ...

(e) Transitive verbs

appear :: =to v

appear :: =to +k t

appear :: =to prog

appear :: =to perf

appear :: =to +k t

seem :: ...

appear :: =c1 v

appear :: =c1 +k t

appear :: =c1 prog

appear :: =c1 perf

appear :: =c1 +k t

seem :: ...

(f) Raising verbs

Figure 6.8: Lexical items of 6.7
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The LIs of this grammar are listed in 6.10, with some syntactically identical paradigms

omitted for space reasons. As before, the input MG is over unsegmented words. Each verb

starts out as a full paradigm of unrelated lexical items. In addition, if there are multiple

homophones with different syntactic properties, each has to start out as a separate LI. In

particular, there are two separate paradigms of be (passive and progressive), two paradigms

of each raising verb (accounting for raising and expletive it), and two copies of that (enabling

complement clauses and structures with it).

As expected, the procedure achieves a significant compression of the grammar. The

output grammar is almost four times smaller than the original: 1964.68 bits vs. 7572.80

bits at bs “ 100. The output graph and lexical items are given in 6.9 and 6.10 respectively;

derived trees in 6.11–6.14 provide a number of side-by-side concrete examples before and

after optimization.

Figure 6.9: Extended fragment after optimization, bs “ 100. Grammar: 1964.68 bits

The optimized auxiliary system is consistent with previous experiments: all paradigms are

decomposed, and hierarchical relations between categories are enforced by category changers.

Each lexical verb (6.10c–6.10f) has collapsed into a single LI carrying one of four syntactic

feature bundles according to its distribution: 2 for intransitives, 5 for transitives, 6 for

raising verbs, and =c2 2 for verbs with clausal complements. Argument-structure differences

between verbs of different categories are encoded as empty LIs. In the nominal domain
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(6.10a), the original feature sequence associated with DPs ( d -k) has been split off into an

empty LI, with proper nouns and determiners left with a new feature, 0. Similarly, most

homophonous items have been unified, and their syntactic differences are handled by empty

heads. This includes raising verbs in various constructions and the two varieties of that. The

only homophones (apart from the ones with an empty string component) are the pairs of

be :: =pass 3 vs. be :: prog 4 and -n :: =>4 perf vs. -n :: =>5 =d pass.

Alice :: 0

Bob :: 0

John :: 0

Mary :: 0

a :: =n 0

some :: =n 0

the :: =n 0

this :: =n 0

-ε :: =>0 d -k

boy :: n

girl :: n

(a) Nouns and determiners

-d :: =>1 +k t

-s :: =>1 +k t

will :: =v 1

-ε :: =>v 1

have :: =perf v

-n :: =>4 perf

-ε :: =>4 v

be :: =prog 4

-ing :: =>3 prog

-ε :: =>3 4

be :: =pass 3

-n :: =>5 =d pass

it :: e -k

that :: =t c2

-ε :: =>c2 =e c1

-ε :: =>6 =c1 3

to :: =v to

-ε :: =>6 =to 3

-ε :: =>2 =d 3

-ε :: =>5 =d *k 2

(b) Closed-class LIs

dance :: 2

jump :: 2

laugh :: 2

smile :: 2

(c) Intransitive verbs

declare :: =c2 2

explain :: =c2 2

think :: =c2 2

say :: =c2 2

(d) Verbs with clausal complements

hug :: 5

kiss :: 5

like :: 5

praise :: 5

(e) Transitive verbs

appear :: 6

seem :: 6

(f) Raising verbs

Figure 6.10: Lexical items of 6.9
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ą

ă

ă

ă

Maryjumping
=d prog

ben
=prog perf

haves
=perf +k t

Mary
d -k

(a) Mary haves ben jumping (using 6.7)

ą

ă

ă

ă

ă

ă

ă

ă

Maryă

jump
2

-ε
=>2 =d 3

jump-ing
=>3 prog

-n
=prog 4

be-n
=>4 perf

have
=>perf v

-ε
=>v 1

have-s
=>1 +k t

ă

Mary
0

Mary
=>0 d -k

(b) Mary have-s be-n jump-ing (using 6.9)

Figure 6.11: Before and after: auxiliaries
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ą

ă

ă

Marypraisen
=d pass

bed
=pass +k t

Mary
d -k

(a) Mary bed praisen (using 6.7)

ą

ă

ă

ă

ă

ă

ă

Maryă

praise
5

praise-n
=>5 =d pass

be
=pass 3

-ε
=>3 4

-ε
=>4 v

-ε
=>v 1

be-d
=>1 +k t

ă

Mary
0

Mary
=>0 d -k

(b) Mary be-d praise-n (using 6.9)

Figure 6.12: Before and after: passives
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ą

ă

ă

ă

Marysmile
=d v

to
=v to

seems
=to +k t

Mary
d -k

(a) Mary seems to smile (using 6.7)

ą

ă

ă

ă

ă

ă

ă

ă

ă

ă

Maryă

smile
2

-ε
=>2 =d 3

-ε
=>3 4

smile
=>4 v

to
=v to

ă

seem
6

-ε
=>6 =to 3

-ε
=>3 4

-ε
=>4 v

-ε
=>v 1

seem-s
=>1 +k t

ă

Mary
0

Mary
=>0 d -k

(b) Mary seem-s to smile (using 6.9)

Figure 6.13: Before and after: raising
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ą

ă

ă

ită

ą

ă

Marysmiles
=d +k t

Mary
d -k

that
=t =e c1

seems
=c1 +k t

it
e -k

(a) it seems that Mary smiles (using 6.7)
ą

ă

ă

ă

ă

ă

ă

ită

ă

ą

ă

ă

ă

ă

ă

Maryă

smile
2

-ε
=>2 =d 3

-ε
=>3 4

-ε
=>4 v

-ε
=>v 1

smile-s
=>1 +k t

ă

Mary
0

Mary
=>0 d -k

ε
=t c2

that
=>c2 =e c1

ă

seem
6

-ε
=>6 =c1 3

-ε
=>3 4

-ε
=>4 v

-ε
=>v 1

seem-s
=>1 +k t

it
e -k

(b) it seem-s that Mary smile-s (using 6.9)

Figure 6.14: Before and after: expletive it
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In general, the learner tends to push syntactic differences between original LIs into empty

functional heads. In a number of cases this is taken to the logical conclusion: all proper

nouns and most lexical verbs carry a bundle of one category feature, and their syntactic

requirements are supplied by categorizing heads which they are selected by. This is consistent

with the idea of acategorial roots having to merge with a categorizing head carrying the rest of

features, which is a general assumption in Distributed Morphology Marantz (1997); Embick

and Marantz (2008). From the quantitative perspective, associating a large number of string

components with the shortest possible feature bundle is a beneficial strategy. In a larger

grammar, we can expect this strategy to be pursued especially aggressively with open-class

items, since they would make up the bulk of words with identical syntactic distribution.

Many of the decisions made by the algorithm in this experiment align with a linguist’s

intuition. That said, the output grammar does present some instances of counter-intuitive

lack of decomposition. One example is an inconsistency in how lexical verbs are decomposed:

while all others end up reduced to single-feature roots, verbs with clausal complements select

their complements directly, each retaining a feature bundle of =c2 2. Another is the presence

of two suffixes which select transitive verbs and independently supply their internal argument,

-ε :: =>5 =d *k 2 and the passive -n :: =>5 =d 2.

Nothing in the procedure prohibits the generation of a grammar where both of these

apparent issues are resolved. A single ldec step would suffice to reduce declare :: =c2 2,

explain :: =c2 2, think :: =c2 2, say :: =c2 2 to declare :: x, explain :: x, think :: x, say :: x,

selected by -ε :: =>x =c2 2. Another would ensure that the internal argument of the verb is

merged in by a separate head -ε :: =>5 =d y, which in turn would be selected by -ε :: =>y *k 2

for active constructions and by -ε :: =>y pass for passives. However, each of these steps

would slightly increase the grammar size (to 1994.57 bits if both are implemented) rather

than reduce it. Both problems boil down to a single issue: any decomposition step has to

be worth it in the quantitative sense.
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6.3 Lexical selection of PPs

In the experiments reported so far, we have seen the optimizing algorithm consistently iden-

tify syntactic and/or phonological differences between words and instantiate them as separate

(sometimes silent) lexical items, in order to factor out what the words had in common. An

interesting test case for this behavior comes from lexical selection (l-selection, Pesetsky 1991)

of prepositional phrases.

As reported by Merchant (2019), idiosyncratic selectional properties of most roots in

English remain uniform across different realizations of the root. For example, the root
?

reli appears with a PP complement headed by the preposition on whether it is realized

as the verb rely (3a), noun reliance (3b), or adjective reliant (3c). However, some roots

break this pattern. There is a large class of cases, such as
?

fear, where the verb takes a

direct object (4a) while the noun and adjective select a PP with of (4b, 4c). Furthermore,

selectional properties of a number of roots vary across multiple realizations. This is the case

with
?

prd, which takes an on-PP as the verb pride oneself (5a), an in-PP as the noun

pride (5b), and an of -PP as the adjective proud (5c).

(3) a. They rely on oil.

b. Their reliance on oil is well-known.

c. They are reliant on oil.

(4) a. Abby fears dark spaces.

b. Abby’s fear of dark spaces is well known.

c. Abby is fearful of dark spaces.

(5) a. She prides herself on/*in/*of her thoroughness.

b. Her pride *on/in/*of her thoroughness is understandable.

c. She is proud *on/*in/of her thoroughness.

(Merchant 2019, pp. 327, 329)
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Regular examples like (3) provide an argument for roots being acategorial. They can

be captured with an analysis like (6.15a), where the root itself selects for its complement,

and the resulting structure is in turn selected by a head categorizing it as a noun, verb,

or adjective. This analysis, however, does not work for roots with non-uniform selectional

properties such as those in (4) and (5), where the choice of a complement alternates across

realizations. To account for these, Merchant proposes a solution illustrated by 6.15b. Under

this analysis, categorizing heads come with two pieces of information about selection: which

roots they can combine with, and which PPs are compatible with those roots. For instance,

the nominalizer Nin first selects for a compatible root (such as
?

prd) and then for an in-PP.

PP

DPon

?
reli

(a) Root selects for its complement PP

Nin

in

DPin

Nin

?
prdNin

(b) Nominalizer selects for the root and PP

Figure 6.15: Two possible structures for l-selection of PPs (adapted from Merchant 2019)

Root V N A (-ful)

boast of, about of, about of, about

disdain
DO for of

respect

doubt (DO) of, about of, about

fear

(DO) of ofneglect

scorn

hope for for for

Table 6.2: V-N-A tuples and argument types

130



Will a similar analysis emerge in the process of grammar optimization? In order to focus

on l-selection, let us consider a small grammar fragment featuring (mostly) concatenative

morphology. Table 6.2 presents a sample of complete xverb, noun, adjectivey triples selected

from examples and database information presented in (Merchant 2019). The verbs and nouns

don’t carry any overt categorizing morphology, whereas the adjectives are formed with the

suffix -ful. The sample includes roots with uniform complements (boast, hope); members of

the large class alternating between direct objects for verbs and of -PPs for everything else

(doubt, fear, neglect, scorn); and other non-uniform roots (disdain, respect, doubt). An MG

over unsegmented words including realizations of these roots is given below, with all lexical

items listed in 6.16.

Figure 6.16: l-selection before optimization. Grammar: 6716.65 bits
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John :: da -k

John’s :: poss

Mary :: da -k

Mary’s :: poss

the cause :: d -k

about :: =d *k about

for :: =d *k for

of :: =d *k of

(a) Nouns and prepositions

willd :: =v +k t

wills :: =v +k t

have :: =perf v

haved :: =perf +k t

haves :: =perf +k t

be :: =prog v

bed :: =prog +k t

ben :: =prog perf

bes :: =prog +k t

be :: =a =da v

bed :: =a =da +k t

being :: =a =da prog

ben :: =a =da perf

bes :: =a =da +k t

(b) Auxiliaries and copulas

boast :: =about =da v

boastd :: =about =da +k t

boasting :: =about =da prog

boastn :: =about =da perf

boasts :: =about =da +k t

boast :: =about poss= d -k

boastful :: =about a

boast :: =of =da v

boastd :: =of =da +k t

boasting :: =of =da prog

boastn :: =of =da perf

boasts :: =of =da +k t

boast :: =of poss= d -k

boastful :: =of a

(c) boast

disdain :: =d *k =da v

disdaind :: =d *k =da +k t

disdaining :: =d *k =da prog

disdainn :: =d *k =da perf

disdains :: =d *k =da +k t

disdain :: =for poss= d -k

disdainful :: =of a

respect :: ...

(d) disdain, respect

doubt :: =d *k =da v

doubtd :: =d *k =da +k t

doubting :: =d *k =da prog

doubtn :: =d *k =da perf

doubts :: =d *k =da +k t

doubt :: =about poss= d -k

doubtful :: =about a

doubt :: =of poss= d -k

doubtful :: =of a

(e) doubt

fear :: =d *k =da v

feard :: =d *k =da +k t

fearing :: =d *k =da prog

fearn :: =d *k =da perf

fears :: =d *k =da +k t

fear :: =of poss= d -k

fearful :: =of a

neglect :: ...
scorn :: ...

(f) fear, neglect, scorn

hope :: =for =da v

hoped :: =for =da +k t

hopeing :: =for =da prog

hopen :: =for =da perf

hopes :: =for =da +k t

hope :: =for poss= d -k

hopeful :: =for a

(g) hope

Figure 6.17: Lexical items of 6.16

The language generated by this grammar is infinite, since complex DPs can, in turn, be

selected by verbs or prepositions. Some sentences from this language are given below:
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Mary hopes for the cause;
Mary haves ben respectful of the cause;
Mary bes boasting about John’s fear of the cause;
Mary wills be disdainful of the cause;
Mary doubts John’s respect for the cause;
Mary bes scornful of John’s neglect of Mary’s hope for the cause.

Optimization with a large beam size (bs “ 500) yields the following compressed grammar.

(a) Full graph

(b) Close-up of verbs and categorizers

Figure 6.18: l-selection after optimization, bs “ 500. Grammar: 2200.30 bits
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John :: 0

Mary :: 0

-’s :: =>0 poss

-ε :: =>0 da -k

the cause :: d -k

about :: =d *k about

for :: =d *k for

of :: =d *k of

(a) Nouns and prepositions

-d :: =>1 +k t

-s :: =>1 +k t

will :: =v 1

-ε :: =>v 1

have :: =perf v

-n :: =>4 perf

-ε :: =>4 v

be :: =prog 4

-ing :: =>3 prog

-ε :: =>3 4

be :: =a 2

-ε :: =>a =da 3

(b) Auxiliaries and copulas

boast :: 9

disdain :: 13

doubt :: 14

fear :: 12

hope :: =for 5

neglect :: 12

respect :: 13

scorn :: 12

(c) Lexical verbs

-ful :: =>7 a

-ε :: =>5 7

-ε :: =>9 =about 7

-ε :: =>10 =of 7

-ε :: =>14 =about 7

-ε :: =>2 =da 3

-ε :: =>11 =d *k 2

-ε :: =>5 2

-ε :: =>8 2

-ε :: =>9 =about 2

-ε :: =>6 poss= d -k

-ε :: =>5 6

-ε :: =>8 6

-ε :: =>9 =about 6

-ε :: =>12 =of 6

-ε :: =>13 =for 6

-ε :: =>14 =about 6

-ε :: =>9 =of 8

-ε :: =>9 10

-ε :: =>12 11

-ε :: =>12 10

-ε :: =>13 11

-ε :: =>13 10

-ε :: =>14 12

(d) Categorizers and category changers

Figure 6.19: Lexical items of 6.18

Apart from expected changes in the nominal and auxiliary domains (6.19a, 6.19b), this

grammar features extensive modifications to how roots are categorized. All roots except hope

have been reduced to a single category (6.19c). Among the remaining LIs, three are easily

identifiable as categorizing heads. The verbalizer -ε :: =>2 =da 3 is responsible for the verb’s

external argument, the nominalizer -ε :: =>6 poss= d -k merges in a possessive phrase such

as John’s and assigns the entire structure the typical DP feature sequence of d -k, and the

adjectivizer -ful :: =>7 a provides the overt affix and the category a.
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The rest of LIs in 6.19d fall into two broad classes: category changers and empty heads

selecting first one of the new categories, then a PP with a specific preposition. To form a

clearer picture of what role each of them plays, we need to consider what these newly created

features stand for. A brief summary is provided in Table 6.3.

Category Interpretation

5 hope

9 boast

12 fear, neglect, scorn

13 disdain, respect

14 doubt

2 compatible with the verbalizer -ε :: =>2 =da 3

6 compatible with the nominalizer -ε :: =>6 poss= d -k

7 compatible with the adjectivizer -ful :: =>7 a

8 verbal and nominal boast with an of -PP argument

10 adjectives with an of PP argument

11 verbs with a direct object

Table 6.3: Interpretation of features in 6.18

The first major group of features (5, 9, 12, 13, 14) stands for roots. Reducing open-class

items to shorter feature bundles is an optimization strategy we have encountered before.

Roots with identical selectional properties (fear, neglect, scorn; disdain, respect) have been

assigned the same category. Most of the roots don’t select their arguments directly, instead

relying on whatever LIs select them to provide the necessary features. The only exception

is hope :: =for 5. This root uniformly selects for -PPs across all realizations, and is the only

one in the sample to do so – which makes it a suboptimal decision to decompose it further.

That said, not all cases of uniform l-selection are treated in the same way. The other such

root (boast :: 9) carries a single category, and its selectional properties are handled by other
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LIs. One plausible explanation is that the dataset is very small, and every root is effectively

treated as idiosyncratic. With a larger grammar, we might be able to see a more uniform

treatment of frequently occurring patterns.

The second group (2, 6, 7) is responsible for categorization. Any expression of category

2, whatever LI it is headed by, is compatible with (i.e. can be selected by) the verbalizing

head. This includes verbs which take a direct object, as well as those taking a PP argument,

such as boast and hope. Similarly, 6 represents nouns, and 7 adjectives. Finally, the third

group (8, 10, 11) picks up on more minor patterns, which are nevertheless quantitatively

worthy of a separate category.

With this in mind, any valid configuration of a root, category, and argument type can be

assembled with a specific combination of empty LIs introducing PPs and category changers,

summarized in Table 6.4. Note that there are multiple heads selecting PPs, rather than

only one per preposition type. Under Merchant’s (2019) analysis, each categorizing head

is annotated with its argument type and a list of compatible roots. Minimalist grammars

encode this type of choice by having a separate lexical item for each option.22

Similarly, category changers are the MGs’ way of encoding distributional similarities

and differences between roots. For example, doubt can take dependents of the same type

as fear/neglect/scorn, and additionally can select an about-PP when realized as a noun or

adjective – unlike fear -type roots. This difference warrants a separate category 14 for doubt.

However, the presence of -ε :: =>14 12 allows doubt to piggy-back on the system in place for

fear -type verbs (of category 12) for the shared part of its selectional options. Essentially,

this category changer encodes the statement that doubt can be found in all contexts of fear,

as well as some of its own.

For a concrete illustration, trees in 6.20 demonstrate how the optimized grammar derives

the three realizations of respect and their non-uniform selectional properties.

22. A good question to ask is whether we could leverage the idea of a list to inform our encoding scheme.
For example, it may be possible to encourage multiple LIs which only differ in one syntactic feature by
recording everything they share only once, making them cheaper to encode.
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Root Argument Category Implementation in LIs

boast

about

V boast :: 9, -ε :: =>9 =about 2

N boast :: 9, -ε :: =>9 =about 6

A boast :: 9, -ε :: =>9 =about 7

of

V boast :: 9, -ε :: =>9 =of 8, -ε :: =>8 2

N boast :: 9, -ε :: =>9 =of 8, -ε :: =>8 6

A boast :: 9, -ε :: =>9 10, -ε :: =>10 =of 7

disdain

DO V disdain :: 13, -ε :: =>13 11, -ε :: =>11 =d *k 2

for N disdain :: 13, -ε :: =>13 =for 6

of A disdain :: 13, -ε :: =>13 10, -ε :: =>10 =of 7

respect

DO V respect :: 13, -ε :: =>13 11, -ε :: =>11 =d *k 2

for N respect :: 13, -ε :: =>13 =for 6

of A respect :: 13, -ε :: =>13 10, -ε :: =>10 =of 7

doubt

DO V doubt :: 14, -ε :: =>14 12, -ε :: =>12 11, -ε :: =>11 =d *k 2

about
N doubt :: 14, -ε :: =>14 =about 6

A doubt :: 14, -ε :: =>14 =about 7

of
N doubt :: 14, -ε :: =>14 12, -ε :: =>12 =of 6

A doubt :: 14, -ε :: =>14 12, -ε :: =>12 10, -ε :: =>10 =of 7

fear

DO V fear :: 12, -ε :: =>12 11, -ε :: =>11 =d *k 2

of N fear :: 12, -ε :: =>12 =of 6

of A fear :: 12, -ε :: =>12 10, -ε :: =>10 =of 7

neglect

DO V neglect :: 12, -ε :: =>12 11, -ε :: =>11 =d *k 2

of N neglect :: 12, -ε :: =>12 =of 6

of A neglect :: 12, -ε :: =>12 10, -ε :: =>10 =of 7

scorn

DO V scorn :: 12, -ε :: =>12 11, -ε :: =>11 =d *k 2

of N scorn :: 12, -ε :: =>12 =of 6

of A scorn :: 12, -ε :: =>12 10, -ε :: =>10 =of 7

hope

for V hope :: =for 5, -ε :: =>5 2

for N hope :: =for 5, -ε :: =>5 6

for A hope :: =for 5, -ε :: =>5 7

Table 6.4: Verbs and categorizing heads in 6.18
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ă

ą

ă

the cause
d -k

ă

ă

respect
13

-ε
=>13 11

-ε
=>11 =d *k 2

the cause

respect
=>2 =da 3

(a) Verb

ă

ă

ą

ă

the cause
d -k

for
=d *k for

the cause

ă

respect
13

-ε
=>13 =for 6

respect
=>6 poss= d -k

(b) Noun

ă

ă

ą

ă

the cause
d -k

of
=d *k of

the cause

ă

ă

respect
13

-ε
=>13 10

-ε
=>10 =of 7

respect-ful
=>7 a

(c) Adjective

Figure 6.20: Selectional variability of respect (using 6.18)
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Some properties of this optimized grammar stem from those of the formalism. Selection

in (our chosen version of) MGs is symmetric, which means roots cannot be truly acategorial;

as long as heads selecting them are compatible with some roots but not all of them, the roots

themselves must carry different category features to enable this distinction. Similarly, each

categorizer is represented as a combination of multiple lexical items, where in a theoretical

work it might be a single head assigned different surface realizations by additional vocabulary

insertion rules. However, modulo these (largely notational) differences, the emerging MG is

fundamentally similar to the proposal of (Merchant 2019). The algorithm has arrived at the

conclusion that (most) roots don’t select, whereas categorizing heads do; and it did so by

optimizing a quantitative measure.

6.4 Beyond pseudo-English

Throughout this dissertation, we have been working under the assumptions in Subsec-

tion 2.3.2, reducing all morphology to suffixation and simplifying English words to fully

concatenative strings. An interesting question to ask at this point is whether the same

procedure can find any patterns in natural, un-simplified English.

Table 6.5 shows some (orthographical) alternations in English verbs. It includes three

paradigm types: non-alternating (jump), with a stem-final alternating e (dance), and with

a stem-final consonant doubling before -ed and -ing (brag). Since these alternations are

concatenative, we can expect the optimization algorithm to be capable of picking up these

patterns.

Type Example paradigm

Non-alternating jump jumps jumped jumping

Alternating -e dance dances danced dancing

Alternating -g brag brags bragged bragging

Table 6.5: Allomorphy in English verbs
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The input grammar fragment includes verbal paradigms of the three types shown in

Table 6.5, three verbs per type, with both transitive and intransitive verbs represented.

For this experiment, the string components of both lexical verbs and auxiliaries are left

unmodified. The graph and LI list of the input are given in 6.21 and 6.22, respectively.

Figure 6.21: Natural English fragment before optimization. Grammar: 3666.81 bits
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Mary :: d -k

will :: =v +k t

would :: =v +k t

have :: =perf v

had :: =perf +k t

has :: =perf +k t

be :: =prog v

been :: =prog perf

is :: =prog +k t

was :: =prog +k t

(a) Nouns and auxiliaries

jump :: =d v

jumps :: =d +k t

jumped :: =d +k t

jumped :: =d perf

jumping :: =d prog

laugh :: ...

dance :: =d v

dances :: =d +k t

danced :: =d +k t

danced :: =d perf

dancing :: =d prog

smile :: ...

brag :: =d v

brags :: =d +k t

bragged :: =d +k t

bragged :: =d perf

bragging :: =d prog

jog :: ...

(b) Intransitive verbs

destroy :: =d *k =d v

destroys :: =d *k =d +k t

destroyed :: =d *k =d +k t

destroyed :: =d *k =d perf

destroying :: =d *k =d prog

like :: =d *k =d v

likes :: =d *k =d +k t

liked :: =d *k =d +k t

liked :: =d *k =d perf

liking :: =d *k =d prog

hug :: =d *k =d v

hugs :: =d *k =d +k t

hugged :: =d *k =d +k t

hugged :: =d *k =d perf

hugging :: =d *k =d prog

(c) Transitive verbs

Figure 6.22: Lexical items of 6.21

The output of this experiment (bs “ 500) is shown in 6.23 and 6.24. As before, the

grammar has been significantly compressed: from 3666.81 to 1414.03 bits. Auxiliaries (6.24a)

have been left mostly intact; unlike pseudo-English, in their natural form they do not have

enough in common phonologically to warrant decomposition. Lexical verbs, on the other

hand, have been decomposed.23 For each verbal paradigm, the algorithm has factored out a

stem shared by all words in the paradigm (6.24c). Similarly, it has split off the material on

the right edge of the verbs, forming a single set of suffixes compatible with all stems (6.24b).

23. This is reminiscent of the distinction drawn by Lasnik (1995) that auxiliary be and have are pulled
from the lexicon fully inflected, whereas English lexical verbs are bare in the lexicon.
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Figure 6.23: Natural English fragment after optimization, bs “ 500. Grammar: 1414.03 bits

Mary :: d -k

will :: =v 0

would :: =v 0

have :: =perf v

had :: =perf 0

has :: =perf 0

be :: =prog v

been :: =prog perf

is :: =prog 0

was :: =prog 0

-ε :: =>0 +k t

(a) Nouns and auxiliaries

-ε :: =>1 =d v

-s :: =>1 =d 0

-ed :: =>3 =d perf

-ed :: =>3 =d 0

-ing :: =>3 =d prog

(b) Suffixes

jump :: 1

jump :: 3

laugh :: 1

laugh :: 3

danc :: 2

smil :: 2

bra :: 5

jo :: 5

destroy :: =d *k 4

lik :: =d *k 2

hu :: =d *k 5

(c) Verbs

-e :: =>2 1

-ε :: =>4 1

-g :: =>5 1

-ε :: =>2 3

-ε :: =>4 3

-gg :: =>5 3

(d) Allomorphy

Figure 6.24: Lexical items of 6.23

Just as in Section 6.3, each of the newly formed categories has a distinct interpretation,

summarized in Table 6.6. The categories 2, 4, 5 encode three classes of verb stems grouped

by alternation pattern. Similarly, there are two classes of suffixes (1 and 3), which differ in
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what stems they are compatible with.24 For each stem type (2, 4, 5) there are two lexical

items (6.24d) which select the stem and are in turn selected by the suffixes, taking care of

allomorphy.

Category Interpretation

1 compatible with -ε, -s

3 compatible with -ed, -ing

2 stems followed by -ε, -s, -ed, -ing

4 stems followed by -e, -es, -ed, -ing

5 stems followed by -g, -gs, -gged, -gging

Table 6.6: Interpretation of features in 6.23

Note that two verbs, jump and laugh, have not been reduced to 4, even though they belong

to the same type as destroy :: =d *k 4. Instead, each appears as two copies bearing the

categories 1 and 3 that can be directly selected by the suffixes. This outcome exposes a

limitation of the batch formation algorithm, but also characterizes the two verbs as the

default case. These verbs are intransitive, and their paradigms are made distinct from

others by their lack of alternations. There is nothing they have in common, syntactically

or morphologically, that would enable jump and laugh to form a batch with destroy to the

exclusion of other verbs.

This experiment serves to show that the optimization algorithm is not limited to the

somewhat artificial pseudo-English data discussed earlier. When presented with natural,

un-simplified words, it did leave the highly suppletive auxiliaries intact. However, the con-

catenative elements of the input grammar – namely, lexical verbs – underwent decomposition,

resulting in a compressed description of allomorphy patterns.

24. The two-way distinction holds, because -ε and -s behave identically with respect to the nine verbs in
the lexicon, as do -ed and -ing. If the lexicon contained the paradigm of kiss – which exemplifies yet another
alternation pattern – we would expect the algorithm to draw an additional distinction between -s and -ε: in
the case of kiss, the alternating -e is present with the former, but not the latter.
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Chapter 7

Conclusions

Summary of results

In this dissertation I have investigated the possibility of comparing, evaluating, and improv-

ing syntactic analyses on quantitative grounds. The results reported here are threefold.

• Even within the same framework, such as Chomsky’s (1995, 2000) Minimalist Program,

there is enough room for alternative accounts of the same observed language data. I

have shown how specific proposals stated as minimalist grammars (Stabler 1997) can

be compared with the help of an evaluation measure inspired by Minimum Descrip-

tion Length (Rissanen 1978), and how different predictions made by these proposals

translate into quantifiable differences;

• Lexical item decomposition (Kobele 2018, to appear) offers a formal characterization

of linguistic generalizations, defined as phonological and/or syntactic commonalities

across multiple lexical items. Building upon this idea, I have defined a toolkit of

three basic operations over minimalist grammars, designed to identify redundancies

in a naive minimalist grammar over words, instantiating them as new lexical items.

With these operations feeding each other, I have demonstrated how concrete, familiar
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generalizations can be obtained through repeated application of easily interpretable

steps;

• Finally, I have implemented an optimization algorithm with the three operations at its

core. I have used this implementation on a fragment of English including the auxiliary

system, verbs with different argument structures, and raising. The resulting grammar

was both compressed with respect to the evaluation measure, and in alignment with a

linguist’s intuition. I have followed this up with experiments focusing on l-selection of

prepositional phrases and on verb stem alternations in natural English. In all cases,

the algorithm has shown a strong tendency to assign single-category feature bundles

to roots and to push phonological and/or syntactic differences into newly derived func-

tional heads.

MG optimization and previous work

The optimization procedure is a mostly self-contained module, ready to be plugged into a

larger system or combined with others to build a pipeline for processing linguistic data. This

is illustrated by 7.1. The scheme highlights two avenues for possible interaction with other

research in the field of grammatical inference: morphology and input generation.

Start Input generation

Linguistic
data

MG optimization

Input:
grammar Lexstart;

dataset D

Model of morphology

End

Output:
grammar Lexbest

Figure 7.1: The pipeline of MG optimization
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First, MG optimization starts with a grammar over unsegmented words. A natural next

step would be to pair it with a learning algorithm capable of producing such an input.

Two existing lines of research on acquiring knowledge of syntax (represented as a minimalist

lexicon) from psychologically plausible data exemplify the potential for synergy.

In a proposal by Kobele et al. (2002) and Stabler et al. (2003), the learner is given ordered

and directed dependencies, as well as words segmented into morphemes. The learner’s task is

to assign a (fresh) label to each relation, forming lexical items, and determine which feature

distinctions should be kept and which need to be unified. The pressure for unification comes

from a restriction on the number of homophonous lexical items (Kanazawa 1995). Without

the segmentation requirement, this approach would produce a naive MG, still capable of

generating the original corpus but agnostic of morphological structure.

More recently, work by Indurkhya (2019, 2020) focuses on a scenario with less supervi-

sion. The input consists of sentences annotated with syntactic relations, including predicate-

argument relations, semantic roles of arguments, and subject-verb agreement. This informa-

tion is encoded as constraints on the parse tree. Minimalist grammars inferred in this way

correctly establish relations between lexical items via move and head movement, postulat-

ing empty heads where necessary. This output could be fed as input to MG optimization to

target remaining redundancies in the lexicon and discover structure within words.

Second, MG optimization works best when there is enough syntactic information to

draw on. With respect to string components, it relies on a very rudimentary model of

morphology. All affixes are taken to be suffixes, and most of the experiments reported

here use simplified inputs in fully concatenative pseudo-English to let the procedure focus

on syntactic distinctions. Section 6.4 shows that decomposition is capable, to an extent, of

identifying and compressing allomorphy in natural English; but this is essentially an attempt

by syntax to analyze phenomena which belong in the domain of morphology. One direction
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of future work would involve plugging in a more sophisticated model of morphology to inform

both batch formation and cost calculation.25

Word segmentation and morpheme discovery based on corpus data, without syntactic

features to draw on, fall under the umbrella of unsupervised learning of morphology. Existing

work in this area (see e.g. an overview in Goldsmith et al. 2017) makes for a natural

complement to MG optimization. One example is the Linguistica algorithm (Goldsmith 2001,

2006). It relies on distributional information and the MDL principle to extract a description

of morphology from a corpus in an unsupervised scenario. This description is represented as

signatures, or pairs consisting of a set of stems and a set of suffixes such that every stem is

compatible with every suffix. For example, the full paradigms of jump and laugh could be

encoded as the set of stems tjump, laughu linked to the suffixes t-ε, -ed, -ing, -su. Linguistica

is capable of learning extensive morphology systems, such as the prefixes and suffixes of

Swahili (Goldsmith and Mpiranya to appear). Supplying a description of morphology to

MG optimization as part of input would take the pressure off the batch formation module,

allowing it to focus on what it is good at: identifying syntactically distinct lexical items.

The future

What are the next steps? In the previous section, I have outlined a few possibilities for

combining MG optimization with other work in the same field. Within the optimization

algorithm itself, there are two immediate areas with room for improvement:

• Syntax formalism. This dissertation uses a relatively simple, bare-bones version of

minimalist grammars for the sake of conceptual clarity. A more sophisticated imple-

mentation of MGs could be used to bring the results closer to those of theoretical

25. To depart from concatenation, we would need to revert to generalized lexical item decomposition as
shown in 4.3. Then each word in the original dataset would correspond to a morphological equation specifying
which LIs it contains, and our theory of morphology would supply the operation(s) for building the words
from the LIs’ string components.
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syntax. A natural starting point would be to extend the formalism with some variety

of generalized head movement, decoupling decomposition from linear order.

• Grammar encoding. The encoding scheme for MGs defined in Section 3.2 and

utilized throughout the dissertation is straightforward but naive: each LI is treated

as a sequence of symbols from the same encoding table. For the most part, this is

sufficient to produce results that are intuitively correct. However, the cost associated

with longer string components becomes (relatively) lower as more syntactic features are

added to Base. As we have seen in Section 6.4, this may lead to the algorithm failing

to unify what is clearly multiple instances of the same morpheme. Treating a lexical

item as a string of phonological segments (approximated by orthography) followed

by syntactic features is explicitly a simplification – which, for instance, completely

ignores the semantic component. This is a limitation which can potentially be lifted

by selecting a different encoding scheme. Further refinements may be put in place

to encourage higher level generalizations – for example, to lower the cost of reusing

existing syntactic feature bundles or type sequences.

More fundamentally, the next step is to improve the evaluation measure. Using a gram-

mar formalism and a quantitative metric is not guaranteed to produce results that are in line

with how linguists think of language structures; see e.g. de Marcken (1995) on stochastic

context-free grammars misinterpreting English phrase structure. In our case, there is no gold

standard for correct results, as long as one of our goals is to compare competing analyses.

Furthermore, in Chapter 6 we have seen quite a few discrepancies between intuition and op-

timized results, some of which could be attributed to the limitations of the encoding scheme,

the algorithm implementation, or the grammar formalism itself. However, there is a clear

correlation between grammars with lower MDL values and those that appear linguistically

plausible, which means that the approach reported here likely draws on the same information

linguists use to make their generalizations.
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Linguists put a lot of emphasis on obtaining independent evidence for their proposals

to justify the theoretical cost of postulating a new structure or operation. In an informal

setting, this evidence would be brought in as a set of examples. If the proposal is translated

into a formal grammar, reusing a lexical item in multiple structures would translate into

a quantifiable reduction to the grammar cost. With a sufficiently comprehensive grammar

fragment and a good evaluation measure, encoding cost can keep track of the strength of

every relevant argument and counter-argument. Theoretical devices can be factored into this

cost much in the same way as language data. For example, an analysis of English syntax that

made no use of covert movement might be cheaper to encode, because it would require fewer

syntactic feature types and therefore fewer distinct symbols to encode; or its cost might be

higher due to additional lexical items one might need to compensate for the lack of covert

movement.

This dissertation started with a rather general question: how do linguists construct

analyses of syntactic phenomena? Using it as a starting point, I have made a step towards

formalizing the notion of intuitive goodness of syntactic descriptions and connecting it to the

more easily definable notion of quantitative goodness. The next goal is to close the gap.
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