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ABSTRACT

Mechanical properties of disordered networks can be significantly tailored by modifying a

small fraction of their bonds. This procedure has been used to design and build mechan-

ical metamaterials with a variety of responses. A long-range ‘allosteric’ response, where a

localized input strain at one site gives rise to a localized output strain at a distant site, has

been of particular interest. This work presents a novel approach to incorporating allosteric

responses in experimental systems by pruning disordered networks in-situ. Previous work

has relied on computer simulations to design and predict the response of such systems us-

ing a cost function where the response of the entire network to each bond removal is used

at each step to determine which bond to prune. It is not feasible to follow such a design

protocol in experiments where one has access only to local response at each site. This paper

presents design algorithms that allow determination of what bonds to prune based purely on

the local stresses in the network without employing a cost function; using only local infor-

mation, allosteric networks are designed in simulations and then built out of real materials.

The results show that some pruning strategies work better than others when translated into

an experimental system. A method is presented to measure local stresses experimentally in

disordered networks. This approach is then used to implement pruning methods to design

desired responses in-situ. Results from these experiments confirm that the pruning methods

are robust and work in a real laboratory material.
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CHAPTER 1

INTRODUCTION

Recent advances in the field of mechanical metamaterials have shown that disordered net-

works are extremely tunable so that their mechanical response can be altered dramatically

by modifying a small number of edges or bonds between nodes. This can be demonstrated

in the Poisson’s ratio, �, which is the negative of the ratio of the strain along the transverse

axes to an applied strain along a given axis. In an isotropic network material in d dimensions,

� can be varied between the two theoretical limits, � = �1 (auxetic) and � = +1=(d � 1)

(incompressible), by selectively removing a small fraction of the network bonds [4, 7, 6].

A more general property that can be incorporated into a disordered network is a long-

distance response, where applying an input strain at a local site in the system creates an

output strain at another distant localized site [13, 17, 16]. This is referred to as a mechanical

‘allosteric’ response because it is inspired by the property of allostery in protein molecules.

Both allosteric and auxetic responses have been successfully designed and incorporated

into physical networks by pruning selected bonds [13, 12]. An important difference between

auxetic and allosteric response is that the Poisson’s ratio is a monotonic function of the

ratio of the shear, G, and bulk, B, moduli of a material. In a disordered system, once

contributions of every bond to the bulk and shear moduli are known, it is straightforward

to change its Poisson’s ratio by pruning specific bonds.

On the other hand, in earlier works, allosteric systems have been designed by remov-

ing bonds from a disordered network using a cost function. This protocol succeeds well

for designing materials with multiple targets controlled by a single source using computer

simulations [13, 14]. A cost function calculates the global response of the system due to the

removal of each bond individually in the network in order to decide what bonds need to be

pruned to minimize the difference from a desired response. Such a cost function is difficult

to interpret or quantify in terms of simple local properties of the individual bonds in the

network. This makes it difficult to create such behavior in a network in situ so that the
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result can be achieved without recourse to prior design on a computer.

This paper takes an alternate approach for designing a pruning protocol; the aim is to

use only local information encoded in the stresses on each bond due to an externally applied

strain. This would allow the creation of allosteric responses in spring-network simulations by

using only local information before a bond is removed. This approach is a generalization of

the one used to incorporate auxetic response into networks [4]. In that case, the pruning was

based on the local stresses in the bonds due to an externally applied strain. In the case of

allostery, the procedure is extended to include the response to a set of separate, individually

applied, strains which are then combined. The results are then tested and validated in

experiments; I take the networks that were designed in simulations and build them out of

rubber sheets.

One problem encountered in using simulated networks to prune real materials is that

the simulations used, which have been of disordered central-spring networks derived from

jammed packings of spheres [8], are overly simplified models of the real materials. A physical

system is more complicated than such a spring network because it has forces other than those

derived from harmonic central-spring interactions. To circumvent this problem, I present an

experimental approach to measure the relative magnitude of stresses in networks under

any external strain and use it to prune the network systems in-situ. This is done using

photoelastic networks that are observed between pairs of cross-polarizers. In this approach,

no simulations are necessary for determining which bonds to prune.

I find that experimental networks that are designed in simulations have a drastically

different response than ones that are pruned in-situ using photoelastic stress measurements.

In addition, the different local pruning methods can produce different results in experiments

even when they are designed to give the same response in simulations. Taken together, this

work improves the understanding of the mechanisms that control allostery in mechanical

systems and opens up possibilities of building new and interesting mechanical responses in

real materials.
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CHAPTER 2

THEORETICAL APPROACH

The random disordered spring networks are created in two dimensions, 2D, with periodic

boundary conditions. These networks are derived from 2D jammed packings of soft discs

which are under force balance [8, 3, 9]. Each point of contact between the discs is replaced

by a harmonic spring that connects the centers of the two discs. The equilibrium length of

each spring is chosen to be the distance between the centers of the discs. This ensures that

the resultant network of nodes connected by bonds is under zero stress in its ground state.

The network coordination number, which is the average number of bonds coming out of a

node, is denoted by Z. In order for such a network to be rigid, it needs to have an average

Z � Zc, the critical coordination number. In d dimensions, and excluding finite-size effects,

Zc = 2d; the 2D networks used here have Z > Zc = 4.

In order to incorporate a long distance ‘allosteric’ response between two distant sites

within a network, two pairs of nodes are picked at random as the source and target respec-

tively. These are separated by typically half of the system size. One such network is shown

in Fig. 2.1. In order to have an allosteric interaction, there should be an output strain, �T , at

the target pair of nodes when an input strain, �S , is applied between the two source nodes.

The ratio of output to input strains is � � �T
�S

. The aim is to incorporate an allosteric re-

sponse, with a desired value of � in the network by removing specific bonds from the network

using a local pruning rule that uses only information that is available prior to the pruning

itself.

The general idea is to apply strains at both the input and output sites (in some cases

simultaneously and sometimes separately) to discover which bonds should be removed in

order to produce a stress at the target when the source is activated. One might be tempted

simply to minimize the energy for a specific mechanical behavior. That is, one might consider

removing the bonds that are under highest stress when both the source and target are

simultaneously put under the desired strains. This, however, would nearly always fail because
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Figure 2.1: A sample network with adjacent nodes chosen to be source and target sites.

the dominant energy for the strained system is often just due to the strains of the source

and target irrespective of whether the source and target are applied simultaneously. In case

of designing an allosteric response, the goal is not merely to lower the energy for the input

and output strains, but to create an interaction between the source and target sites. Thus,

the source and target sites must communicate with each other. In order to achieve this, one

needs to identify speci�cally the bonds that facilitate and the ones that hinder this allosteric

response. By identifying and pruning the right set of bonds, it is possible to minimize the

interaction energy (not just the total energy of distortion) of the input and output strains.

We apply a deformation to our system,� k . This � k could be a single strain applied

between two points in the system or a combination of strains applied at various locations.

Due to this applied strain � k , each bond in the system experiences some stress. The stress

in bond j that appears due to� k is Sk
j . For example,Ssource

j is de�ned as the stress in bond

j as a result of a the input strain applied at thesource.

Since all the calculations below are in the linear-response regime,

S� k
j = � Sk

j ; Sk+ l
j = Sk

j + Sl
j

One can calculate the energies in all the bonds of the network under any applied deformation:

The energy,Uk
j , in bond j when it is under a stressSk

j is:

Uk
j =

1
2

Sk
j  k

j (2.1)
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where k
j is the strain of the bondj under applied external strain� k . Since the total energy

of the network is simply the sum of the energies of all the individual springs, the total energy

stored in the network under an applied strain� k is Uk =
P

j Uk
j .

The modulusM k for any given deformation� k is de�ned asUk = 1
2M k(� k)2. It can be

decomposed into the contributions of each bond:M k =
P

j M k
j . M k

j is related to Sk
j as

follows:

Uk
j =

1
2

M k
j (� k)2 =

1
2

Sk
j  k

j (2.2)

For a linear spring,Sj and  j only di�er by a factor of the spring constant. This gives the

following:

M k
j / (Sk

j )2 (2.3)

M k
j is the contribution of bond j to M k , whereM k is the modulus for the deformation� k .

In section 4 it will be shown that M k
j is a quantity that can be measured experimentally.

Moreover, it is easier to measureM k
j than to measureSk

j or  k
j . Since the goal is to be able

to prune the networks in experiments, the pruning protocols presented below will be based

on measurements ofM k
j .

2.1 Pruning algorithm

In order to incorporate an allosteric response, it is not particularly important how much

energy is required to move thesource nodes apart as long as it results in an e�ect of the

correct sign and magnitude at thetarget site. Therefore, it is of little importance what

are the individual values of (Ssource
j ) and (Starget

j ); the important quantity is the product

of the two, (Ssource
j )(Starget

j ). This term identi�es which bonds are most relevant to both

source and target and pruning the bonds with the largest (Ssource
j Starget

j ) helps create an

interaction between thesourceand target sites.

Consider applying the input strain at sourceand output strain at target. This is repre-

sented asSs+ t .
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Ss+ t
j = Ssource

j + Starget
j : (2.4)

Similarly, applying the input strain at sourceand the negative of output strain attarget is

represented bySs� t .

Ss� t
j = Ssource

j � Starget
j : (2.5)

The moduli M j can be expressed in terms ofSj :

M s+ t
j / (Ss+ t

j )2 = ( Ssource
j + Starget

j )2 (2.6)

M s� t
j / (Ssource

j � Starget
j )2 (2.7)

and

M link
j � M s+ t

j � M s� t
j = 4( Ssource

j )(Starget
j ): (2.8)

Note that taking the di�erence of the in-phase and out-of-phase terms produces the

product of stresses due to applied strain at source and target sites. This term,M link , links

the e�ects of strains at both source and target and can be either positive or negative. One

pruning protocol that would create an allosteric interaction between the source and target

would be to prune those bonds in the network that have a maximum value ofM link .

BecauseM link
j = ( Ssource

j )(Starget
j ) is symmetric between source and target, the source

and the target have been treated on an equal footing. If this were the only criterion for

pruning bonds, then the e�ect on the target by activating the source would be the same

as the e�ect on the source by activating the target. Thus, such a criterion would produce

� � 1.
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However in many situations it might be preferable to have� 6= 1. For example one might

want to create a strain at the target that is twice as large as the strain at the source (i.e.,

� = 2). This would require that the symmetry between source and target be broken so that,

for example, the target nodes are easier to move than the source nodes. One e�ective way to

break the symmetry,is to bias the modulus by giving more weight toStarget
j than to Ssource

j .

One way to do this is to prune the bond with maximum value of (M link
j )(M target

j )n where

n > 0.

These combinations of moduli are referred to as the e�ective modulus,M ef f . In the

results presented in the next section below there are three examples:

1. (M ef f; 0) = M link ,

2. (M ef f; 1) = M link M target ,

3. (M ef f; 3) = M link (M target )3.

Our pruning algorithm is as follows:

1. CalculateM ef f
j for each bondj in the network;

2. Remove the bond with the maximum value ofM ef f
j ;

3. Calculate the new value of� ;

4. Repeat until the desired value of� is obtained.

By using e�ective moduli as the underlying quantity that controls a network's behavior,

it is possible to incorporate responses in disordered networks using local rules alone. The rest

of this paper explores the e�cacy of this pruning approach using spring network simulations

followed by an experimental method to measureM ef f in order to incorporate allosteric

responsesin-situ in physical systems.
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CHAPTER 3

SIMULATION RESULTS

In order to check the e�cacy of these algorithms, I simulate the response of networks as

the protocols are applied. The simulations can be performed on networks with periodic

boundaries as well as ones with free boundaries. A free boundary network is created by

cropping out a circular section from a periodic network. This often produces dangling bonds

or zero modes which are eliminated by removing the relevant bonds and nodes from the edges

of the cropped network. Since open boundary networks are easier to build in experiments, I

use these networks to compare the response between simulations and experiments.

The simulation results shown here are performed on networks that have periodic bound-

aries with � 500 particles and� 1080 bonds. Unpruned networks have� � 0:0 on average

between randomly chosen source and target sites. Networks are pruned until the desired

value of � is reached or until the process fails due to the creation of a zero mode in the

system. 50 di�erent networks are pruned for both positive and negative values of� . The

networks used in these simulations have an average �Z = Z � Zc � 0:32. This corresponds

to an excess of� 7% bonds more than necessary to maintain rigidity.

The success rate of each of the pruning methods is shown in Fig. 3.1(a). As one might

expect, if we prune for higherj� j, the success rate decreases. It is clear from this data that

using just M link to prune a network is not the best strategy because, due to the symmetry

between source and target, one can prune only to a maximum ofj� j � 1. Even this response

can be achieved only about half the time.

BiasingM ef f towards the target improves the e�ectiveness of pruning signi�cantly; using

M ef f; 3 = ( M link )(M target )3 makes it possible to reachj� j > 1000. However, it is important

to note that these calculations are performed in the linear-response regime of the network.

Such a very largej� j implies that the source strain must be extremely small in order for the

target strain to be 1000 times the source strain and still be in the linear regime. This makes

it highly impractical to measure such a response in a laboratory system.
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Figure 3.1: (a) Results from pruning in simulations. Success rate of pruning networks as
a function of j� j. Networks pruned to lower the e�ective moduliM ef f = M link (M target )3

(blue circles) have the highest success rate, followed byM link M target (black triangles), with
M link (red squares) being the least e�ective way to prune. (b) Average fraction of bonds
pruned as a function ofj� j for each of the threeM ef f (c) Performance of experimental
networks that were designed in simulations to have� � 1. Plot shows the fraction of
networks with a response higher than� � as a function of� � .
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Fig. 3.1(b) shows the average fraction of bonds that need to be pruned as a function of� .

We see that 100% of the networks fail after an average of� 6% bonds are removed. This is

when nearly all the excess bonds above the rigidity threshold have been removed; therefore

removing any subsequent bond has a high probability of creating a zero-energy mode.

3.1 E�ciency in experiments

It is known from previous studies that linear spring simulations do not capture all the

material details of a real network [12, 11]. There are other interactions, such as angle

bending forces, that are present in a real material. In order to test how well our pruning

algorithms translate to real networks, we design 2D networks with open boundaries using

the three mentioned protocols and then fabricate them in experiments.

We took networks with free boundaries ranging between 110 and 150 particles in size and

pruned each of them using our three protocols. We stopped pruning either once the network

has achieved� > 1 or once a zero mode is produced so that the pruning process failed.

Since not all of our algorithms have a 100% success rate, we chose 10 networks that could

be pruned successfully using the three e�ective moduli, (M ef f; 0), (M ef f; 1), and (M ef f; 3).

For consistency, in all three cases the same set of source and target nodes are used. For any

given starting network, each protocol removes a di�erent set of bonds. I then laser cut 30

realizations of these networks (10 networks� 3 algorithms) and measured their responses in

experiments.

Our networks were lasercut from 1:5mm thick sheets of silicone rubber with a hardness

of shore A70. The bonds were made thinner near the nodes to minimize angle-bending

interactions in the networks as was done in previous work [13]. The ratio of the width of a

bond to its average length is 1:6 with the bonds being half as wide near the nodes.

In order to measure the observed� of these lasercut networks, an input strain of 5% is

applied at the source and the output strain is measured at the target site. Figure 3.1(c)

shows the response of these networks. Since each designed network has a slightly di�erent
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value of � , we normalize our experimental results,� exp by the value of � produced in the

simulation, � sim : � � = � exp=� sim and plot it along the abscissa. The ordinate shows the

fraction of networks whose response exceeds a given� � . If our simulations were a perfect

model for the experimental systems, then the data in Fig. 3.1(c) would have been a horizontal

line at 1:0.

This data is surprising because some algorithms have much better agreement between

experiments and simulations than others. Interestingly, Fig. 3.1(a) shows that pruning with

M ef f; 0 = M link works only about 50% of the time but when these networks are trans-

lated to experiments, they have a very high success rate. On the other hand,M ef f; 3 =

M link (M target )3 works very well in simulations but not in experiments. This suggests that

the disparity between experiments and simulations increases as the complexity of the pruning

algorithm increases. I hypothesize that the inclusion of (M target )n, increases the e�ect of the

non-linear terms so that the predictions from simulation are farther from our experimental

results.
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CHAPTER 4

PRUNING IN-SITU

Our results show that linear spring models do not work perfectly for designing real materials.

In order to see what is going on in the laboratory material, we need a way to measure the

stresses in a physical network. This section presents experiments to measure the stress

distribution in physical networks and use that information to prune the networksin-situ.

4.1 Setup

The stresses in a transparent material can be quantitatively detected by measuring stress-

induced birefringence [5]. The linear polarization of a beam of light will not be a�ected as it

passes through an isotropic material; an analyzing polarizer with perpendicular orientation

on the exiting side of the material will block all the light. A photographic image would be

completely dark. However, if there are stresses in the photoelastic material, the polarization

axis of the light will be rotated depending on the orientation of the stress with respect to the

polarization axis. The relative phase shift, � between two principal directions is proportional

to the di�erence in the two principal stresses [5].

� / S1 � S2 (4.1)

If the stresses are small enough so that the rotation angle is small, the analyzing polarizer

will transmit the light in proportion to the stress. A photographic image will be bright in

those regions where the stress is large and completely dark where there is no net stress.

Using circularly polarized light allows the magnitude of the stress to be measured regard-

less of its orientation. The drawback of using circular polarization is that circular polarizers

are sensitive to the wavelength of the light. Thus monochromatic light must be used.

In the experimental measurements of stresses reported here, the disordered networks are

made out of molded urethane rubber (Smooth-on Clear Flex— 50) with a shore hardness
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Figure 4.1: (a) Setup for visualizing stresses in photoelastic networks (b) Sample image
when the network has no external strain (c) Image of the same network as in (b) with
applied strains between adjacent node pairs circled in yellow.
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