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ABSTRACT

Mechanical properties of disordered networks can be significantly tailored by modifying a

small fraction of their bonds. This procedure has been used to design and build mechan-

ical metamaterials with a variety of responses. A long-range ‘allosteric’ response, where a

localized input strain at one site gives rise to a localized output strain at a distant site, has

been of particular interest. This work presents a novel approach to incorporating allosteric

responses in experimental systems by pruning disordered networks in-situ. Previous work

has relied on computer simulations to design and predict the response of such systems us-

ing a cost function where the response of the entire network to each bond removal is used

at each step to determine which bond to prune. It is not feasible to follow such a design

protocol in experiments where one has access only to local response at each site. This paper

presents design algorithms that allow determination of what bonds to prune based purely on

the local stresses in the network without employing a cost function; using only local infor-

mation, allosteric networks are designed in simulations and then built out of real materials.

The results show that some pruning strategies work better than others when translated into

an experimental system. A method is presented to measure local stresses experimentally in

disordered networks. This approach is then used to implement pruning methods to design

desired responses in-situ. Results from these experiments confirm that the pruning methods

are robust and work in a real laboratory material.
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CHAPTER 1

INTRODUCTION

Recent advances in the field of mechanical metamaterials have shown that disordered net-

works are extremely tunable so that their mechanical response can be altered dramatically

by modifying a small number of edges or bonds between nodes. This can be demonstrated

in the Poisson’s ratio, ν, which is the negative of the ratio of the strain along the transverse

axes to an applied strain along a given axis. In an isotropic network material in d dimensions,

ν can be varied between the two theoretical limits, ν = −1 (auxetic) and ν = +1/(d − 1)

(incompressible), by selectively removing a small fraction of the network bonds [4, 7, 6].

A more general property that can be incorporated into a disordered network is a long-

distance response, where applying an input strain at a local site in the system creates an

output strain at another distant localized site [13, 17, 16]. This is referred to as a mechanical

‘allosteric’ response because it is inspired by the property of allostery in protein molecules.

Both allosteric and auxetic responses have been successfully designed and incorporated

into physical networks by pruning selected bonds [13, 12]. An important difference between

auxetic and allosteric response is that the Poisson’s ratio is a monotonic function of the

ratio of the shear, G, and bulk, B, moduli of a material. In a disordered system, once

contributions of every bond to the bulk and shear moduli are known, it is straightforward

to change its Poisson’s ratio by pruning specific bonds.

On the other hand, in earlier works, allosteric systems have been designed by remov-

ing bonds from a disordered network using a cost function. This protocol succeeds well

for designing materials with multiple targets controlled by a single source using computer

simulations [13, 14]. A cost function calculates the global response of the system due to the

removal of each bond individually in the network in order to decide what bonds need to be

pruned to minimize the difference from a desired response. Such a cost function is difficult

to interpret or quantify in terms of simple local properties of the individual bonds in the

network. This makes it difficult to create such behavior in a network in situ so that the
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result can be achieved without recourse to prior design on a computer.

This paper takes an alternate approach for designing a pruning protocol; the aim is to

use only local information encoded in the stresses on each bond due to an externally applied

strain. This would allow the creation of allosteric responses in spring-network simulations by

using only local information before a bond is removed. This approach is a generalization of

the one used to incorporate auxetic response into networks [4]. In that case, the pruning was

based on the local stresses in the bonds due to an externally applied strain. In the case of

allostery, the procedure is extended to include the response to a set of separate, individually

applied, strains which are then combined. The results are then tested and validated in

experiments; I take the networks that were designed in simulations and build them out of

rubber sheets.

One problem encountered in using simulated networks to prune real materials is that

the simulations used, which have been of disordered central-spring networks derived from

jammed packings of spheres [8], are overly simplified models of the real materials. A physical

system is more complicated than such a spring network because it has forces other than those

derived from harmonic central-spring interactions. To circumvent this problem, I present an

experimental approach to measure the relative magnitude of stresses in networks under

any external strain and use it to prune the network systems in-situ. This is done using

photoelastic networks that are observed between pairs of cross-polarizers. In this approach,

no simulations are necessary for determining which bonds to prune.

I find that experimental networks that are designed in simulations have a drastically

different response than ones that are pruned in-situ using photoelastic stress measurements.

In addition, the different local pruning methods can produce different results in experiments

even when they are designed to give the same response in simulations. Taken together, this

work improves the understanding of the mechanisms that control allostery in mechanical

systems and opens up possibilities of building new and interesting mechanical responses in

real materials.
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CHAPTER 2

THEORETICAL APPROACH

The random disordered spring networks are created in two dimensions, 2D, with periodic

boundary conditions. These networks are derived from 2D jammed packings of soft discs

which are under force balance [8, 3, 9]. Each point of contact between the discs is replaced

by a harmonic spring that connects the centers of the two discs. The equilibrium length of

each spring is chosen to be the distance between the centers of the discs. This ensures that

the resultant network of nodes connected by bonds is under zero stress in its ground state.

The network coordination number, which is the average number of bonds coming out of a

node, is denoted by Z. In order for such a network to be rigid, it needs to have an average

Z ≥ Zc, the critical coordination number. In d dimensions, and excluding finite-size effects,

Zc = 2d; the 2D networks used here have Z > Zc = 4.

In order to incorporate a long distance ‘allosteric’ response between two distant sites

within a network, two pairs of nodes are picked at random as the source and target respec-

tively. These are separated by typically half of the system size. One such network is shown

in Fig. 2.1. In order to have an allosteric interaction, there should be an output strain, εT , at

the target pair of nodes when an input strain, εS , is applied between the two source nodes.

The ratio of output to input strains is η ≡ εT
εS

. The aim is to incorporate an allosteric re-

sponse, with a desired value of η in the network by removing specific bonds from the network

using a local pruning rule that uses only information that is available prior to the pruning

itself.

The general idea is to apply strains at both the input and output sites (in some cases

simultaneously and sometimes separately) to discover which bonds should be removed in

order to produce a stress at the target when the source is activated. One might be tempted

simply to minimize the energy for a specific mechanical behavior. That is, one might consider

removing the bonds that are under highest stress when both the source and target are

simultaneously put under the desired strains. This, however, would nearly always fail because
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Source

Target

Figure 2.1: A sample network with adjacent nodes chosen to be source and target sites.

the dominant energy for the strained system is often just due to the strains of the source

and target irrespective of whether the source and target are applied simultaneously. In case

of designing an allosteric response, the goal is not merely to lower the energy for the input

and output strains, but to create an interaction between the source and target sites. Thus,

the source and target sites must communicate with each other. In order to achieve this, one

needs to identify specifically the bonds that facilitate and the ones that hinder this allosteric

response. By identifying and pruning the right set of bonds, it is possible to minimize the

interaction energy (not just the total energy of distortion) of the input and output strains.

We apply a deformation to our system, εk. This εk could be a single strain applied

between two points in the system or a combination of strains applied at various locations.

Due to this applied strain εk, each bond in the system experiences some stress. The stress

in bond j that appears due to εk is Skj . For example, Ssourcej is defined as the stress in bond

j as a result of a the input strain applied at the source.

Since all the calculations below are in the linear-response regime,

S−kj = −Skj ; Sk+lj = Skj + Slj

One can calculate the energies in all the bonds of the network under any applied deformation:

The energy, Ukj , in bond j when it is under a stress Skj is:

Ukj =
1

2
Skj γ

k
j (2.1)
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where γkj is the strain of the bond j under applied external strain εk. Since the total energy

of the network is simply the sum of the energies of all the individual springs, the total energy

stored in the network under an applied strain εk is Uk =
∑
j U

k
j .

The modulus Mk for any given deformation εk is defined as Uk = 1
2M

k(εk)2. It can be

decomposed into the contributions of each bond: Mk =
∑
jM

k
j . Mk

j is related to Skj as

follows:

Ukj =
1

2
Mk
j (εk)2 =

1

2
Skj γ

k
j (2.2)

For a linear spring, Sj and γj only differ by a factor of the spring constant. This gives the

following:

Mk
j ∝ (Skj )2 (2.3)

Mk
j is the contribution of bond j to Mk, where Mk is the modulus for the deformation εk.

In section 4 it will be shown that Mk
j is a quantity that can be measured experimentally.

Moreover, it is easier to measure Mk
j than to measure Skj or γkj . Since the goal is to be able

to prune the networks in experiments, the pruning protocols presented below will be based

on measurements of Mk
j .

2.1 Pruning algorithm

In order to incorporate an allosteric response, it is not particularly important how much

energy is required to move the source nodes apart as long as it results in an effect of the

correct sign and magnitude at the target site. Therefore, it is of little importance what

are the individual values of (Ssourcej ) and (S
target
j ); the important quantity is the product

of the two, (Ssourcej )(S
target
j ). This term identifies which bonds are most relevant to both

source and target and pruning the bonds with the largest (Ssourcej S
target
j ) helps create an

interaction between the source and target sites.

Consider applying the input strain at source and output strain at target. This is repre-

sented as Ss+t.
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Ss+tj = Ssourcej + S
target
j . (2.4)

Similarly, applying the input strain at source and the negative of output strain at target is

represented by Ss−t.

Ss−tj = Ssourcej − Stargetj . (2.5)

The moduli Mj can be expressed in terms of Sj :

Ms+t
j ∝ (Ss+tj )2 = (Ssourcej + S

target
j )2 (2.6)

Ms−t
j ∝ (Ssourcej − Stargetj )2 (2.7)

and

M link
j ≡Ms+t

j −Ms−t
j = 4(Ssourcej )(S

target
j ). (2.8)

Note that taking the difference of the in-phase and out-of-phase terms produces the

product of stresses due to applied strain at source and target sites. This term, M link, links

the effects of strains at both source and target and can be either positive or negative. One

pruning protocol that would create an allosteric interaction between the source and target

would be to prune those bonds in the network that have a maximum value of M link.

Because M link
j = (Ssourcej )(S

target
j ) is symmetric between source and target, the source

and the target have been treated on an equal footing. If this were the only criterion for

pruning bonds, then the effect on the target by activating the source would be the same

as the effect on the source by activating the target. Thus, such a criterion would produce

η ≈ 1.

6



However in many situations it might be preferable to have η 6= 1. For example one might

want to create a strain at the target that is twice as large as the strain at the source (i.e.,

η = 2). This would require that the symmetry between source and target be broken so that,

for example, the target nodes are easier to move than the source nodes. One effective way to

break the symmetry,is to bias the modulus by giving more weight to S
target
j than to Ssourcej .

One way to do this is to prune the bond with maximum value of (M link
j )(M

target
j )n where

n > 0.

These combinations of moduli are referred to as the effective modulus, Meff . In the

results presented in the next section below there are three examples:

1. (Meff,0) = M link,

2. (Meff,1) = M linkM target,

3. (Meff,3) = M link(M target)3.

Our pruning algorithm is as follows:

1. Calculate M
eff
j for each bond j in the network;

2. Remove the bond with the maximum value of M
eff
j ;

3. Calculate the new value of η;

4. Repeat until the desired value of η is obtained.

By using effective moduli as the underlying quantity that controls a network’s behavior,

it is possible to incorporate responses in disordered networks using local rules alone. The rest

of this paper explores the efficacy of this pruning approach using spring network simulations

followed by an experimental method to measure Meff in order to incorporate allosteric

responses in-situ in physical systems.
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CHAPTER 3

SIMULATION RESULTS

In order to check the efficacy of these algorithms, I simulate the response of networks as

the protocols are applied. The simulations can be performed on networks with periodic

boundaries as well as ones with free boundaries. A free boundary network is created by

cropping out a circular section from a periodic network. This often produces dangling bonds

or zero modes which are eliminated by removing the relevant bonds and nodes from the edges

of the cropped network. Since open boundary networks are easier to build in experiments, I

use these networks to compare the response between simulations and experiments.

The simulation results shown here are performed on networks that have periodic bound-

aries with ∼ 500 particles and ∼ 1080 bonds. Unpruned networks have η ≈ 0.0 on average

between randomly chosen source and target sites. Networks are pruned until the desired

value of η is reached or until the process fails due to the creation of a zero mode in the

system. 50 different networks are pruned for both positive and negative values of η. The

networks used in these simulations have an average ∆Z = Z − Zc ≈ 0.32. This corresponds

to an excess of ∼ 7% bonds more than necessary to maintain rigidity.

The success rate of each of the pruning methods is shown in Fig. 3.1(a). As one might

expect, if we prune for higher |η|, the success rate decreases. It is clear from this data that

using just M link to prune a network is not the best strategy because, due to the symmetry

between source and target, one can prune only to a maximum of |η| ≈ 1. Even this response

can be achieved only about half the time.

Biasing Meff towards the target improves the effectiveness of pruning significantly; using

Meff,3 = (M link)(M target)3 makes it possible to reach |η| > 1000. However, it is important

to note that these calculations are performed in the linear-response regime of the network.

Such a very large |η| implies that the source strain must be extremely small in order for the

target strain to be 1000 times the source strain and still be in the linear regime. This makes

it highly impractical to measure such a response in a laboratory system.
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(c)

(a)

(b)

Figure 3.1: (a) Results from pruning in simulations. Success rate of pruning networks as
a function of |η|. Networks pruned to lower the effective moduli Meff = M link(M target)3

(blue circles) have the highest success rate, followed by M linkM target (black triangles), with
M link (red squares) being the least effective way to prune. (b) Average fraction of bonds
pruned as a function of |η| for each of the three Meff (c) Performance of experimental
networks that were designed in simulations to have η ≈ 1. Plot shows the fraction of
networks with a response higher than η∗ as a function of η∗.
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Fig. 3.1(b) shows the average fraction of bonds that need to be pruned as a function of η.

We see that 100% of the networks fail after an average of ∼ 6% bonds are removed. This is

when nearly all the excess bonds above the rigidity threshold have been removed; therefore

removing any subsequent bond has a high probability of creating a zero-energy mode.

3.1 Efficiency in experiments

It is known from previous studies that linear spring simulations do not capture all the

material details of a real network [12, 11]. There are other interactions, such as angle

bending forces, that are present in a real material. In order to test how well our pruning

algorithms translate to real networks, we design 2D networks with open boundaries using

the three mentioned protocols and then fabricate them in experiments.

We took networks with free boundaries ranging between 110 and 150 particles in size and

pruned each of them using our three protocols. We stopped pruning either once the network

has achieved η > 1 or once a zero mode is produced so that the pruning process failed.

Since not all of our algorithms have a 100% success rate, we chose 10 networks that could

be pruned successfully using the three effective moduli, (Meff,0), (Meff,1), and (Meff,3).

For consistency, in all three cases the same set of source and target nodes are used. For any

given starting network, each protocol removes a different set of bonds. I then laser cut 30

realizations of these networks (10 networks × 3 algorithms) and measured their responses in

experiments.

Our networks were lasercut from 1.5mm thick sheets of silicone rubber with a hardness

of shore A70. The bonds were made thinner near the nodes to minimize angle-bending

interactions in the networks as was done in previous work [13]. The ratio of the width of a

bond to its average length is 1:6 with the bonds being half as wide near the nodes.

In order to measure the observed η of these lasercut networks, an input strain of 5% is

applied at the source and the output strain is measured at the target site. Figure 3.1(c)

shows the response of these networks. Since each designed network has a slightly different
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value of η, we normalize our experimental results, ηexp by the value of η produced in the

simulation, ηsim: η∗ = ηexp/ηsim and plot it along the abscissa. The ordinate shows the

fraction of networks whose response exceeds a given η∗. If our simulations were a perfect

model for the experimental systems, then the data in Fig. 3.1(c) would have been a horizontal

line at 1.0.

This data is surprising because some algorithms have much better agreement between

experiments and simulations than others. Interestingly, Fig. 3.1(a) shows that pruning with

Meff,0 = M link works only about 50% of the time but when these networks are trans-

lated to experiments, they have a very high success rate. On the other hand, Meff,3 =

M link(M target)3 works very well in simulations but not in experiments. This suggests that

the disparity between experiments and simulations increases as the complexity of the pruning

algorithm increases. I hypothesize that the inclusion of (M target)n, increases the effect of the

non-linear terms so that the predictions from simulation are farther from our experimental

results.
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CHAPTER 4

PRUNING IN-SITU

Our results show that linear spring models do not work perfectly for designing real materials.

In order to see what is going on in the laboratory material, we need a way to measure the

stresses in a physical network. This section presents experiments to measure the stress

distribution in physical networks and use that information to prune the networks in-situ.

4.1 Setup

The stresses in a transparent material can be quantitatively detected by measuring stress-

induced birefringence [5]. The linear polarization of a beam of light will not be affected as it

passes through an isotropic material; an analyzing polarizer with perpendicular orientation

on the exiting side of the material will block all the light. A photographic image would be

completely dark. However, if there are stresses in the photoelastic material, the polarization

axis of the light will be rotated depending on the orientation of the stress with respect to the

polarization axis. The relative phase shift, ∆ between two principal directions is proportional

to the difference in the two principal stresses [5].

∆ ∝ S1 − S2 (4.1)

If the stresses are small enough so that the rotation angle is small, the analyzing polarizer

will transmit the light in proportion to the stress. A photographic image will be bright in

those regions where the stress is large and completely dark where there is no net stress.

Using circularly polarized light allows the magnitude of the stress to be measured regard-

less of its orientation. The drawback of using circular polarization is that circular polarizers

are sensitive to the wavelength of the light. Thus monochromatic light must be used.

In the experimental measurements of stresses reported here, the disordered networks are

made out of molded urethane rubber (Smooth-on Clear Flex™ 50) with a shore hardness
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Camera

Bandpass filter (500±10 nm)

Linear polarizer
Quarter wave plate (500nm)

Photoelastic network
Index matched fluid
Transparent acrylic container

Quarter wave plate (500nm)
Linear polarizer
Diffuser

    
LED panel

(a)

(b) (c)

Figure 4.1: (a) Setup for visualizing stresses in photoelastic networks (b) Sample image
when the network has no external strain (c) Image of the same network as in (b) with
applied strains between adjacent node pairs circled in yellow.
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of A50. This material is highly sensitive to stresses and allows measurement of stresses in

the range of 4kPa − 20kPa in the current setup. The liquid urethane material is poured

into molds in the shape of the desired networks. The molds are 3D printed in a soft rubber

material with a shore hardness of A28. Before each use, the molds were coated with a release

agent (EaseRelease™ 200) to ensure that the molded urethane networks are easy to remove

from the molds. The networks were cured in the mold at room temperature for a duration of

12 hours. After removal from the mold, they were cured for an additional 2-3 days at room

temperature to reduce the tackiness of the surfaces of the molded networks.

A schematic of the experimental setup is shown in Fig. 4.1(a). Data is collected by the

camera at wavelength λ = 500±10nm. The initially unpolarized white light is first polarized

using a linear polarizer and then converted to circular polarization using a quarter-wave plate

for λ = 500nm. The light then passes through the sample. On the other side of the sample,

another quarter-wave plate converts the light back to linearly polarized light followed by a

linear polarizer that is oriented perpendicular to the polarization of the initial light. The

total stress at each point in the material can be measured by the intensity of the light in the

photographic image.

Even after letting the molded photoelastic networks cure for a few days, their surfaces

are still tacky enough to stick to a glass or acrylic surface. This produces extraneous stresses

in the material that are unrelated to those caused simply by placing strains at the source or

target nodes. Additionally, because of a high surface tension of the molding liquid, the top

surface of the network has a meniscus so that it is not completely flat. As a result, a ray of

light going through such a curved surface is reflected and refracted in various directions and

gives rise to unwanted signals in our data.

Both of these problems can be eliminated by submerging the networks in an index-

matched fluid. I used mineral oil with a refractive index of 1.47, which is very close to the

refractive index of the photoelastic networks which is 1.48. Sample images from this setup

with and without an applied strain are shown in Fig. 4.1(b) and (c) respectively. The image

14



Figure 4.2: Success rate of networks pruned in-situ as a function of η. Follow-
ing the same trend as the simulations, networks pruned to lower the effective mod-
uli Meff = M link(M target)3 (blue circles) have the highest success rate, followed by
Meff = M linkM target (black triangles), and Meff = M link (red squares).

in Fig. 4.1(b) shows that when the network is under no stress, the image of the network in

the camera is dark and nearly undetectable.

When an external strain is applied to the network as shown in Fig. 4.1(c), different bonds

in the network are stressed by different amounts as a reaction to the input strain. These

stressed regions now appear as bright spots in our image.

The intensity of light, I(x, y) at any point in the material (x, y) is related to the electric

field, E(x, y), and the phase shift, ∆(x, y):

I(x, y) ∝ E(x, y)2 ∝ sin(∆(x, y))2 ∝ sin(S(x, y))2. (4.2)

As long as the input strain is sufficiently small, the resultant stresses are in the regime where

sin(S) ≈ S. In this limit, the brightness of a bond is proportional to the square of stress.

Hence, the intensity I averaged over the length of bond j is proportional to Mj in Eq. 2.3.
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4.2 Experimental results

I conduct the in-situ pruning experiments on photoelastic networks that are between 110

and 150 nodes in size. The photoelastic networks are molded to be 5mm thick with an

average bond length of 12mm. The ratio of the width of a bond to its average length is

1 : 4 with the bonds being a third as wide near the nodes than in their middle. This slight

difference in geometry makes the middle part of the bonds wider than in the experiments

described above that pruned bonds according to the algorithm based on simulation results.

It ensures that the effect of noise from the edges of photoelastic bonds is minimized. In

order to measure the response of these pruned networks, I remake them in silicone rubber

using the same specifications as in section 3.1. This is done to avoid any differences arising

from the material properties while comparing the response of designed and experimentally

pruned networks.

In order to prune these networks, I take images where a strain is applied (i) at the

source and target in phase (Ms+t), (ii) out of phase (Ms−t), and (iii) only at the target

site (M target). By computing combinations of these images, I obtain a measure of the same

three effective moduli as defined in section 2.1: Meff = M link, Meff = M linkM target,

and Meff = M link(M target)3. The experiments were conducted on 10 different networks

for each Meff . In each pruning step, I first calculate Meff for all the bonds, remove the

bond with maximum Meff , and then measure η of the pruned network. As the bonds are

pruned sequentially, the signal-to-noise ratio drops steadily; when the signal is too low to

be reliable, the pruning is halted. The recorded η for a particular sample is the maximum η

that the network exhibits at any point during the pruning process.

The results from in-situ pruning experiments are shown in Fig. 4.2. To some extent, all

pruning methods show an allosteric response. In particular, by sequentially removing the

bond with the largest value of Meff,3 = M link(M target)3 at each step, networks can often

be successfully pruned to produce η = 1. The three different pruning methods have very

different success rates. This was also seen in the simulation results shown in Fig. 3.1(a). The
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results from the experiments and from the simulations follow the same trend.

The same network design pruned to minimize the same Meff leads to the removal of

very different sets of bonds in simulations versus those pruned in the photoelastic experi-

ments. This is not surprising since the simulations only considered central, harmonic springs,

whereas the experiments had all the interactions inherent in an elastic sheet such as angle-

bending forces at each node and non-linear stress/strain curves for all the bonds. However,

it is surprising that, compared to the experimental results shown in Fig. 3.1(c), the trend for

networks pruned in-situ is completely reversed. This suggests that the simulation models

are too simple to capture all the stresses in a real material.

These results reinforce the conclusion that in order to make a physical system with an

allosteric response, a simplified model is not sufficient and it is important to visualize and

measure all the interactions in the system. Using an experimental procedure to detect the

stresses in physical networks, it is possible to create allosteric networks in experiments with

a high success rate.
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CHAPTER 5

CONCLUSIONS

The emphasis of this work has been to understand the local pruning rules that control

allosteric response in mechanical networks as well as to fabricate these networks in real

(physical) experimental systems. In order to create a robust response, it is important to

identify the relevant parameters that govern allosteric behavior. The effective moduli in-

troduced here are the bond-level contributions to allostery. The simulations show that this

approach is very effective at designing allosteric responses with minimal computational cost.

In some cases, the results of these simulations can be directly translated into experimental

realizations. These local pruning rules are more efficient than previous methods for incor-

porating allosteric behavior into experimental systems [13]. Similar local pruning rules can

also be used to create more general responses such as multiple pairs of allosteric source and

target sites, or a single source site controlling multiple target sites. As expected, when the

complexity of the incorporated response increases, the efficiency of such pruning algorithms

goes down.

As expected, however, the simulations of networks connected by linear, central-force

springs do not capture all the details of a real material. In order to create allosteric responses

efficiently in experiments, it is necessary to be able to measure stress distributions in the

physical networks. I have presented an experimental procedure to visualize and measure

the stresses in these systems and use them to prune the appropriate bonds in the networks

in-situ to achieve a desired response.

The experimental technique to measure local stresses provides a pathway for modifying

physical systems with more complex interactions. It would be interesting to see if it can be

used to create other mechanical responses, such as auxetic behavior. This protocol can also

be applied to other disordered systems that are not based on spring networks. The pruning

methods explored here could be extended to 3D systems and to smaller length scales by using

stimuli responsive materials that can detect stresses in polymers at the molecular level [1, 2].
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Recent work has shown that stress-induced aging can be used to modify material proper-

ties [10]. An externally imposed strain can direct the evolution of a material and determine

its mechanical response. Our understanding of local pruning rules that control allostery in

combination with directed aging protocols can be very useful in designing allosteric systems

while eliminating the need to manipulate the material manually at the microscopic level. Lo-

cal learning rules, such as the ones presented here, are also of interest in supervised learning

of elastic and flow networks [15]

In conclusion, local pruning rules that allow the manipulation of material response com-

bined with the ability to measure stress distributions in-situ, enable the modification of

materials that are more complex than the linear spring networks that have been the focus

of previous simulation studies. This approach opens up novel ways to build mechanical

metamaterials with a desired function without relying on computer simulations.
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