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ABSTRACT 

Despite the remarkable complexity of our hands, we effortlessly use them to grasp and 

manipulate objects. To achieve dexterous object manipulation requires not only a sophisticated 

motor system to move the hand but also a sensory system to provide sensory feedback ð 

proprioceptive and tactile ð about the consequences of those movements. While some progress 

has been made to understand the neural basis of touch in somatosensory cortex, much less is known 

about the neural basis of hand proprioception. To fill this gap, we simultaneously record time-

varying joint kinematics of the hand ð measured using a camera-based motion tracking system 

ð and neural activity from somatosensory and motor cortices of rhesus macaques ð using 

chronically implanted electrode arrays ð as they perform natural grasping movements and are 

subjected to passive hand movements. We find that somatosensory representations of kinematics 

are very similar to their motor counterparts, with spiking activity preferentially encoding the 

postures (not the velocities) of multiple joints spanning the entire hand. Preferential encoding of 

hand posture stands in stark contrast to models of kinematic encoding of the shoulder and elbow, 

where velocities are preferentially encoded. Moreover, we observe similar response properties in 

somatosensory and motor cortices during both active and passive movements of the wrist and 

digits. We conclude that hand shaping via movements of the digits and wrist relies on different 

neural mechanisms than does hand transport via movements of the arm. 
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CHAPTER 1: 

Introduction to haptic sensation 

Preface 

The goal of this dissertation, broadly speaking, is to determine the nature of how hand 

postures and movements are represented in somatosensory cortex. We discuss in this chapter the 

nature of the sense of touch and the computations performed by the nervous system as one ascends 

the neuraxis. We also discuss the more mysterious sense of proprioceptionðthe modality through 

which hand postures and movements are sensedðand how its neural code compares and contrasts 

with the comparatively more well-studied neural code for touch. This chapter on haptic sensation 

has been published as a book chapter (Goodman & Bensmaia, 2018). 

Introduction  

When we interact with an object, neural signals from the skin, joints, and muscles convey 

information about the shape, size, weight, and texture of the object. If the object is moving across 

the hand, information about its direction and speed is also available. The senses of touch and 

proprioception play a key role in our sense of embodiment, the sense that our bodies are a part of 

us. Somatosensation is also very important for affective communication: We touch the people we 

love. Finally, haptic feedback is critical to our ability to dexterously manipulate objects. Without 

it, we would struggle to perform the most basic activities of daily living, like buttoning a shirt or 

turning a door knob. Indeed, while vision is critical to identify objects and locate them in space, 

only somatosensory signals provide the information about contact with objects that allows us to 

interact with them effectively. 
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The sense of touch 

Cutaneous mechanoreceptors and associated nerve fibers 

The skin contains a variety of different types of receptors that respond to different types of 

stimulation. Thermoreceptors respond to non-painful changes in skin temperature, nociceptors 

(pain receptors) respond to strong mechanical, thermal, or chemical stimulation of the skin that is 

liable to damage it, and low-threshold cutaneous mechanoreceptors respond to small (non-painful) 

skin deformations. The palmar surface of the hand contains four types of mechanoreceptors, each 

of which responds to different aspects of skin deformations: Merkel cells, Meissner corpuscles, 

Pacinian corpuscles, and Ruffini endings (Figure 1-1). These receptors convert the mechanical 

deformations of the skin into neural signals, which are carried to the brain by large diameter Aɓ 

nerve fibers. Afferent signals convey information about objects grasped in the hand and are 

interpreted by downstream structures in the brain.  

Merkel cells are approximately 10 µm in diameter and located in the basal epidermal layer, 

generally grouped in complexes of 30 x 250 µm, most often at the base of sweat ducts (Nolano et 

al., 2003). They are innervated by slowly adapting type 1 (SA1) afferents, which have small 

receptive fields (RFs) and produce sustained response to sustained indentations of the skin 

(Knibestol, 1975). That is, SA1 afferents only respond to stimulation of a small patch of skin, and 

when that patch is indented, the response of the afferent will persist for tens of seconds or minutes. 

SA1 afferents are also sensitive to low-frequency skin vibrations (< 30 Hz) delivered through a 

small punctate probe centered on their RF (Freeman and Johnson, 1982, Muniak et al., 2007). 

Electrical stimulation of a single individual SA1 afferent elicits a sensation of pressure that is 

localized to a small patch of skin whose location coincides with that of the receptive field (Ochoa 

and Torebjork, 1983).  
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Figure 1-1. Medial lemniscal pathway for the sense of touch (illustration by Kenzie Green). 

 

Meissner corpuscles are oval in shape, composed of stacks of disc-like lamellae, about 50 

x 150 µm in total size, and located in the dermal papillae (Cauna, 1956, Bell et al., 1994, Pare et 

al., 2001, Nolano et al., 2003). They are innervated by rapidly adapting (RA) afferents, which also 

have small receptive fields (albeit larger than their SA1 counterparts) and produce transient 

responses at the onset and offset of skin indentations (Knibestol, 1973). That is, they only respond 

during dynamic indentations of the skin but not static ones. RA afferents respond best to skin 

vibrations at intermediate frequencies (peaking in sensitivity around 60 Hz) delivered through a 
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small punctate probe centered on their RF (Freeman and Johnson, 1982, Muniak et al., 2007). 

Electrical stimulation of an individual RA afferent elicits a sensation of skin flutter that is localized 

to a small patch of skin (again matching the afferentôs receptive field) (Ochoa and Torebjork, 

1983). 

Pacinian corpuscles have an oval, onion-like appearance, and are typically between 0.5 

and 2 mm in length in adults (Pease and Quilliam, 1957, Cauna and Mannan, 1958), and are located 

in the subcutaneous fat pads of the fingers and palms (Zelena, 1978), among other places. They 

are innervated by PC afferents, which have large diffuse receptive fields and, like their RA 

counterparts, produce transient responses at the onset and offset of skin indentations (Johansson, 

1978, Vallbo and Johansson, 1984). PC afferents are exquisitely sensitive to skin vibrations, 

particularly if these are delivered over a wide contact area (Brisben et al., 1999) and peak in 

sensitivity around 250 Hz, where detection thresholds can be as low as 100 nm. Electrical 

stimulation of individual PC fibers elicits sensations of skin vibrations that are far more confined 

than one might expect given the size of their RFs (Ochoa and Torebjork, 1983). 

Ruffini endings are 1.4-mm long spindle-shaped structures, located deep in the dermis and 

most densely situated around the nail (Pare et al., 2002, Pare et al., 2003, Birznieks et al., 2009). 

They are thought to be innervated by slowly adapting type 2 (SA2) fibers, which have large 

receptive fields and produce sustained responses to sustained skin stretch (Johansson, 1978). Like 

their PC counterparts, SA2 fibers respond to vibrations over a wide range of frequencies, albeit 

with lower sensitivity (Gynther et al., 1992). Electrical stimulation of individual SA2 fibers often 

produces no sensation; when a sensation is produced, it is of pulling of the skin, seemingly deep 

within the tissue (Ochoa and Torebjork, 1983).  
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Mechanosensitivity is conferred to the different mechanoreceptors by ion channels in their 

cell membrane that generate currents in response to mechanical perturbations. There are two 

mechanisms by which these ion channels might be opened (McCarter et al., 1999, Hu and Lewin, 

2006): Mechanosensitive channels in the cell membrane open either directly in response to 

membrane stretch (Sachs, 2010) or are tethered to fibers in the tissue surrounding the cell 

membrane, which pull the channels open when this tissue is deformed (Hu et al., 2010). Three ion 

channel families have been implicated in mammalian mechanotransduction: acid-sensing ion 

channels (ASIC), transient receptor potential (TRP) channels, and Piezo proteins (Tsunozaki and 

Bautista, 2009, Coste et al., 2010, Delmas et al., 2011, Coste et al., 2012, Woo et al., 2014, Volkers 

et al., 2015). While ASICs and TRPs likely mediate visceral and nociceptive mechanosensation 

(Liedtke and Friedman, 2003, Suzuki et al., 2003, Drew et al., 2004, Nagata et al., 2005, Lu et al., 

2009, Kremeyer et al., 2010), Piezo proteins are thought to be primarily responsible for 

mammalian touch (Delmas et al., 2011, Volkers et al., 2015). 

Mechanotransduction is shaped not only by the properties of mechanosensitive ion 

channels, but also by the mechanical properties of the nerve ending. For example, the Pacinian 

corpuscle consists of several neatly-arranged concentric lamellae with layers of viscous fluid 

between each (Pease and Quilliam, 1957). This structure shields the afferent in the center from 

static deformations while allowing very high-frequency components to pass through easily 

(Loewenstein and Skalak, 1966). As a result, PC afferents produce a slowly-adapting response to 

indentations when the Pacinian corpuscle is removed (Mendelson and Lowenstein, 1964, 

Loewenstein and Mendelson, 1965). Recent evidence suggests that Merkel cells synapse onto SA1 

afferents and contain vesicles filled with neuromodulators. Their removal substantially reduces the 

sustained response of SA1 afferents. Furthermore, isolated Merkel cells produce ion currents in 



6 

response to mechanical perturbation (Maksimovic et al., 2014). The role of Merkel cells appears 

to be to modulate the response of the mechanosensitive SA1 neurite endings. Meissner corpuscles 

consist of several irregularly-arranged lamellar discs with serrated edges that bend axon terminals 

of interstitial RA afferents during initial mechanical loading. During sustained loading, a smooth, 

viscoelastic region in the center of the discs absorbs the stress, allowing the edges of the discs to 

return to their original positions and, in turn, stop imposing deformation upon the nerve endings. 

In this way, the characteristic rapidly adapting response of these afferents arises (Takahashi-

Iwanaga and Shimoda, 2003). 

Mechanoreceptive afferents do not only differ in their response properties, but also in their 

distribution in the skin. RA and SA1 fibers innervate the glabrous skin of the hand most densely 

(~140 and 80 units per cm2 on the fingertip) while PC and SA2 afferents are far less prevalent (~20 

and 10 units per cm2) (Johansson and Vallbo, 1979). The density of RA and SA1 afferent decreases 

sharply as one proceeds proximally from the fingertips, whereas that of PC and SA2 afferents 

remains relatively constant. Note, however, that Pacinian receptors located in the palm of the hand 

and even in the forearm will respond robustly when the fingertips come into contact with an object 

(Westling and Johansson, 1987, Delhaye et al., 2012, Manfredi et al., 2012), so large numbers of 

PC afferents are recruited during interactions with objects, regardless of contact location. Indeed, 

these receptors are exquisitely sensitive to vibrations that propagate across the skin. 

Skin mechanics and afferent branching 

Forces applied to the skinôs surface propagate through the tissue and produce stresses and 

strains at the locations of the receptors, which cause the membranes of their neurites to depolarize, 

ultimately evoking spikes in the associated nerve fibers. Because the stimulus propagates through 

the tissue before reaching the receptors, these only experience a distorted version of the stimulus: 
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Certain features in the stimulus are enhanced while others are obscured simply due to skin 

mechanics (Phillips and Johnson, 1981b, Dandekar et al., 2003, Sripati et al., 2006). Specifically, 

external corners and edges in the object are strongly enhanced because these exert more force on 

the skinôs surface than do internal object features. Internal features are further obscured because 

they are filtered out as the forces exerted on the skinôs surface propagate through the tissue because 

of the presence of adjacent features. From one perspective, skin mechanics are valuable in that 

they enhance edges and corners, a process that requires specialized neural machinery in the retina 

(namely lateral inhibition). On the other hand, the sense of touch is poor at conveying complex 

and fine spatial structure due in part to this mechanical filtering of the skin (Apkarianstielau and 

Loomis, 1975, Cho et al., 2016). This limitation can be overcome to some extent when the skin 

moves across the spatial patterns (see section on texture coding).  

Because Merkel cells are located in the epidermis, forces applied to the skinôs surface do 

not have to propagate far to reach them. Moreover, various cellular structures tightly anchor 

Merkel Cells to the epidermis (Munger, 1965, Iggo and Muir, 1969, Halata et al., 2003). As a 

result, they respond only to local skin deformations and can therefore convey information about 

skin deformations with a high spatial resolution. Meissner corpuscles are also superficial, being 

located in the dermal papillae, which are protrusions of the dermis into the epidermis. However, 

the link between Meissner corpuscles and the epidermis consists of a network of collagen fibers, 

which is less rigid a coupling than that of Merkel cells (Cauna, 1956, Takahashi-Iwanaga and 

Shimoda, 2003) and may contribute to the reduced spatial acuity of RA afferents compared to their 

SA1 counterparts. Pacinian corpuscles are situated deep in the dermis, so forces applied to the skin 

must propagate long distances to reach them, thereby giving rise to the large and diffuse receptive 

fields of PC afferents. 
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The neural image carried by the nerve fibers is further distorted by afferent branching. 

Indeed, SA1 and RA afferents innervate multiple Merkel cells and Meissner corpuscles, 

respectively. Individual SA1 afferent and RA fibers may innervate as many as 100 Merkel cells 

(Johnson, 2001) and 15 to 30 Meissner corpuscles (Johansson, 1978), respectively. How signals 

from multiple neurite branches are combined to culminate in an afferent spike train remains a topic 

of debate. According to one view, inspired by work with non-mammals (Adrian and Zotterman, 

1926a, b), the afferent response reflects the sum of inputs across all of its neurites. According to 

the other view, dubbed the "driver" model (Lesniak et al., 2014), spike trains propagate along 

neurites to an intersection and, from the intersection, will propagate not only orthodromically along 

the nerve, but also antidromically along the adjoining neurites. Antidromic spike propagation leads 

to spike collisions along the other neurites, thereby canceling out their contributions to the afferent 

firing rate. That way, a single neurite "drives" the firing rate of the entire afferent by suppressing 

the influence of all the other neurites. Anatomical and electrophysiological data from mammals 

support the driver model (Horch et al., 1974, Lesniak et al., 2014).  

Regardless of which mechanisms mediates the integration of signals from the different 

branches, this branching structure leads to additional spatial filtering of the stimulus in the 

response. However, the more complex receptive field structures that result from this convergent 

input may also confer to afferents some preference for certain stimulus features over others. For 

example, nerve fibers with radially asymmetric receptive fields tend to respond more strongly to 

edges at some orientations than at others (Pruszynski and Johansson, 2014), which may pave the 

way for the strong orientation selectivity observed in cortex (see below). 
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Tactile coding in the somatosensory nerve 

Information about objects is multiplexed in the responses of the four cutaneous 

mechanoreceptive afferents that innervate the glabrous skin of the hand: Some aspects of the 

responses conveys information about shape, others about texture, and yet others about motion. 

Initially, the different afferent types were thought to play fundamentally different roles in touch 

(Johnson, 2001). SA1 fibers were thought to mediate tactile shape and texture perception, RA 

fibers tactile motion perception, PC fibers vibration perception, and SA2 fibers hand 

proprioception (the sense of the position and movements of the fingers). However, all afferents 

types are activated during contact with objects and, it turns out, signals from most or all of them 

convey information about any one object feature (Saal and Bensmaia, 2014). The different types 

of afferents differ in what features they preferentially respond to: SA1 afferents tend to respond to 

larger stimulus features (edges, coarse textural features) that are either static or move slowly across 

the skin; PC afferents are capable of responding to very small stimulus features (less than 1 micron 

in size) that move rapidly; RA afferents fall somewhere between those two extremes. Because 

most objects comprise elements whose size vary over orders of magnitude, all fiber types tend to 

be involved in touch sensations under most circumstances. Nonetheless, different aspects of the 

afferent responses convey different types of information about an object and the same responses 

from the same afferents are read out (decoded) in different ways to extract this disparate 

information. 

Stimulus magnitude 

Intensity is one of the most basic stimulus dimensions. In vision, it corresponds to 

brightness; in audition, to loudness; in olfaction, gustation, and touch, it is described using more 

generic terms: a weak/strong taste, smell, or touch (Bensmaia, 2008). The neural determinants of 
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tactile intensity were first investigated by Kenneth Johnson, who, along with his mentor Vernon 

Mountcastle, made the following observation: While the perceived intensity of a sinusoidal 

vibration applied to the skin grows smoothly as a function of the amplitude of the stimulus, the 

firing rate of individual mechanoreceptive fibers does not (Figure 1-2A). Instead, the function that 

relates firing rate of individual fibers to intensity is a piece-wise linear function, punctuated by 

long plateaus (Talbot et al., 1968a, Johnson, 1974). In contrast, the perceived intensity of a 

stimulus is a smooth monotonic function of its amplitude. This discrepancy between the responses 

of individual afferents and the resulting perceptual experience led to the conclusion that the 

perceived magnitude of a tactile stimulus is determined by the response of a population of 

afferents. Indeed, if perception were determined by a single afferent, perceptual magnitude would 

also be constant over large ranges of stimulus amplitude. Similarly, while both the firing rates of 

mechanoreceptive afferents (Werner and Mountcastle, 1965) and the perceived intensity of skin 

indentations (Lamotte, 1977) increase linearly with indentation depth, the perceived intensity of 

indentations depends on the rate of indentation and on the duration of the indentation plateau in 

ways that cannot be predicted from the responses of any one type of mechanoreceptive afferent 

(Poulos et al., 1984). 

In a psychophysical study (with human participants) paired with a neurophysiological one 

(with monkeys), using the same set of vibratory stimuli, the perceived intensity of a tactile stimulus 

was shown to be determined by the response of all afferents that respond to the stimulus (Muniak 

et al., 2007). While the spike rate of any one population of fibers could not predict how intense a 

stimulus felt, the total population response predicted with high precision the perceived intensity. 

Furthermore, spikes from the different populations did not contribute to sensory magnitude 

equally: SA1 spikes were contribute more to perceived intensity than do RA spikes, which in turn 
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are weighted more than PC spikes (Bensmaia, 2008). Thus, signals from the various sensory 

channels are integrated to determine how intense a stimulus will feel.  

Vibratory frequency  

Skin vibrations evoke sensations with distinct qualities (and mediate primarily by distinct 

populations of afferents) depending on what range of frequencies they fall in. Skin oscillations 

ranging in frequency from 1 to 50 Hz evoke a sensation of light flutter, which can be accurately 

localized and is mediated primarily by RA fibers. As the frequency increases beyond 60 Hz or so, 

the sensation changes to one of vibratory hum, emanating from deeper tissue and more poorly 

localized (Talbot et al., 1968a). Human observers can distinguish skin vibrations on the basis of 

their frequency across both flutter and vibration ranges (Goff, 1967, Franzen and Nordmark, 1975, 

LaMotte and Mountcastle, 1975, Salinas et al., 2000, Tommerdahl et al., 2005): In the flutter range 

(5ï50Hz), a 10% change in frequency can be perceived about 75% of the time; in the vibration 

range (>100Hz), a 30% change in frequency is required to achieve this level of discrimination 

performance. While the ability to discriminate changes in frequency might be in part attributable 

to the concomitant change in perceived magnitude (Verrillo et al., 1969, Hollins and Roy, 1996, 

Muniak et al., 2007), changes in vibratory frequency also result in changes in vibrotactile pitch, as 

evidenced by the fact that tactile frequency discrimination is not substantially impaired when the 

stimulus amplitude varies unpredictably from stimulus to stimulus (Yau et al., 2009b, Harvey et 

al., 2013). 

A striking feature of afferent responses to sinusoidal vibrations is their entrainment: an 

afferent tends to produce one spike or burst of spikes confined to a small portion of each stimulus 

cycle (Figure 1-2B) (Talbot et al., 1968b, Freeman and Johnson, 1982, Mackevicius et al., 2012). 

This patterning in the spiking response was thought to account for the ability to discern the 
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vibratory frequency. Indeed, over a range of amplitudes, sinusoidal vibrations evoke a response in 

afferents but this response is not entrained to the stimulus (LaMotte and Mountcastle, 1975). Over 

this so-called atonal interval, the vibrations are tangible, but their frequency is indiscernible. While 

this evidence was circumstantial, it was later confirmed that temporal patterning in afferent 

responses does convey information about stimulus frequency, not just for sinusoids but also for 

more complex (and ecological) skin vibrations (Mackevicius et al., 2012). Furthermore, the 

entrainment of the vibrations to the stimulus shapes the way skin vibrations are perceived and 

accounts for the perceptual experience of vibrotactile pitch.  

In the aforementioned experiments, skin vibrations were generated using vibratory motors, 

which allows for fine control of the stimulation waveform. These experiments provided insights 

into how information is encoded in the nerve, and specifically what role spike timing might play. 

One might ask what ecological role vibrotaction plays. In everyday life, skin vibrations caused by 

footsteps, as they propagate across the floor, convey information about someoneôs approach. When 

we interact with an object indirectly through other objectsðlike with paper through a writing 

utensil, with food through an eating utensil, or with the ground through a walking caneðvibrations 

propagating through the grasped object convey information about the other objects with which it 

comes into contact (Katz, 1925, Brisben et al., 1999). The transduction and processing of 

vibrations also plays an important role in the perception of texture, as detailed below. 

Shape 

When we grasp an object, cutaneous signals convey information about its shape. Cutaneous 

information about local features of the object at each contact point is integrated with information 

about the relative position of the contact pointsðthat is, information about the conformation of  
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Figure 1-2. (A) Firing rate evoked in an RA fiber by 40-Hz skin vibrations of varying amplitudes. The rate increases 

as a piece-wise linear function of amplitude, interspersed with entrainment plateaus over which the fiber fires an 

integer number of spikes per stimulus cycle (Johnson, 1974). (B) Responses of a PC fiber to a 400-Hz skin vibration 

at three amplitudes. The spiking response is highly patterned and repeatable and conveys information about the 

frequency of the stimulus (Mackevicius et al., 2012). (C) Reconstruction of the spatial pattern of activation evoked in 

a population of SA1 (top), RA (middle) and PC (bottom) afferents when embossed letters are scanned across the skin. 

The spatial pattern of activation reflects the spatial configuration of the stimulus (Phillips et al., 1988). 

 

the handðto achieve a three dimensional image of the object (see below) (Hsiao, 2008). First, we 

examine how this local feature information is encoded in the responses of mechanoreceptive 

afferents. When a spatial pattern is indented into or scanned across the skin, its spatial features are 

reflected in the spatial pattern of activation evoked in SA1 and RA afferents (Figure 1-2C)(Johnson 

and Lamb, 1981, Phillips et al., 1988, Goodwin et al., 1995, Wheat and Goodwin, 2000, 2001). 
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SA1 afferents convey the most spatially acute neural image and mediate our ability to discern the 

smallest tangible features. Tactile spatial acuity is most reliably measured using the grating 

orientation discrimination task, in which subjects identify the orientation of gratings indented into 

the skin (with the ridges and grooves parallel or perpendicular to the long axis of the finger). As 

the ridges and grooves get narrower, it becomes more and more difficult to make out their 

orientation (Craig and Johnson, 2000). The finest gratings whose orientations can be discerned ï 

with a spatial period of about 2 mm ï evoke spatially modulated responses in SA1 but not RA 

afferents (Phillips and Johnson, 1981a, Bensmaia et al., 2006b). In other words, SA1 fibers signal 

the presence of a fine grating while RA fibers respond to it as if it were a flat surface. In fact, at 

the limits of our tactile spatial acuity, RA input seems to interfere with SA1 input: We can better 

discern small spatial features if RA fibers do not respond (Bensmaia et al., 2006a). Note that this 

task become trivially easy regardless of groove width if the grating is scanned across the finger (as 

described below in the section on texture). 

However, RA signals do convey information about coarse spatial features. The most 

compelling evidence for this is provided by the successful use of the optical to tactile converter 

(Optacon)(Bliss et al., 1970). The Optacon consists of an array of pins that each can be made to 

vibrate. The idea was to convert the output of a camera scanned across text into patterned activation 

of the pins so that the letters scanned by the camera would be reproduced on the array. Subjects 

were able to recognize the letters with reasonable accuracy (Craig, 1980) despite the fact that the 

Optacon did not activate SA1 afferents at all (Gardner and Palmer, 1989). Thus, while SA1 fibers 

convey the most acute spatial signal, the spatial image carried by RA fibers can also convey 

information about the local spatial features of the object. Spatial information stemming from RA 
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fibers is probably more informative than that from their SA1 counterparts under certain 

circumstances, for example during dynamic contact with an object. 

Texture 

We are exquisitely sensitive to surface microstructure, and are able to discern surfaces 

whose elements differ in size by tens of nanometers and in inter-element spacing by hundreds of 

nanometers (Skedung et al., 2013). Surface texture morphs slowly into local shape as the elements 

grow larger and farther apart, but texture extends well into the millimeter range, so texture 

perception spans about six orders of magnitude in size. This remarkable sensitivity to surface 

microstructure is made possible by the different mechanoreceptive afferents and their different 

response properties. Texture perception relies on (at least) two distinct mechanisms. Coarse 

textural features are encoded in the spatial pattern of activation in SA1 and RA afferents, as are 

local spatial contours (Figure 1-3A) (Connor et al., 1990, Connor and Johnson, 1992, Blake et al., 

1997). At this scale, form and texture overlap. For example, a Braille word has both a form that 

defines it but also can be described as órough.ô This mechanism for texture perception, however, 

is inherently limited by innervation density. Combined, SA1 and RA afferents have resolutions on 

the order of half a millimeter or so. If this mechanism were the only one we used, the range of 

tangible textures would be much narrower than it is.  

Fortunately, the spatial mechanism is complemented by a temporal one: To make out fine 

textures, we do not simply press our fingers across a surface; we run our fingers across it 

(Lederman and Klatzky, 1993). Without this lateral movement between skin and surface, we are 

unable to make out fine surfaced features (Hollins and Risner, 2000). When we run our fingers 

across a textured surface, small vibrations are produced in the skin. These vibrations are shaped 

by the texture, the speed at which it is scanned, and geometry of the fingertip skin (BensmaIa and 
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Hollins, 2003, Bensmaia and Hollins, 2005, Delhaye et al., 2012, Manfredi et al., 2014). Indeed, 

the vibrations produced in the skin reflect the spatial layout of surface features, with features whose 

spatial period matches that of the fingerprint enhanced relative to others. Furthermore, the 

vibrations dilate or contract systematically (and so their frequency composition translates left and 

right along the frequency axis) with decreases or increases in scanning speed, respectively. The 

skin vibrations elicited during texture scanning activate vibrotactile afferents, namely RA and PC 

afferents (Lamb, 1983, Weber et al., 2013). Texture responses convey information about the 

stimulus in their temporal patterning, which reflects the temporal structure of the vibrations (Figure 

1-3B). In other words, the frequency composition of the skin vibrations is reflected in that of the 

spiking responses, and these patterns are highly informative about texture identity when decoded 

with a precision on the order of two to five milliseconds. Furthermore, texture-elicited vibrations 

propagate across the skin and excite PC afferents throughout the hand and even the forearm. 

Texture information therefore does not stem solely from the point of contact with the surface but 

from the entire hand, as evidenced by the fact that subjects can perform a roughness discrimination 

task even when their fingertip has been numbed with an anesthetic (Libouton et al., 2012). As 

might be expected, texture-specific spiking patterns also dilate or contract with decreases or 

increases in scanning speed, respectively (Weber et al., 2013). The temporal mode of texture 

perception in primates is analogous to the principal mode of texture perception in rodents, who 

sense texture from deflections produced in their whiskers as they scan them across surfaces 

(Diamond, 2010). 

The spatial and temporal mechanisms are seamlessly integrated to form a holistic percept 

of texture, shaped by the responses of all activated mechanoreceptive afferents. Texture can be 

broken down into a number of perceptual dimensions, the most salient of which are 
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roughness/smoothness, hardness/softness, stickiness/slipperiness, and warmth/coolness (Hollins et 

al., 1993, Hollins et al., 2000). Of these, the most prominent is roughness, which has received a 

lot of experimental attention (Hollins and Bensmaia, 2007). The perceived roughness cannot be 

predicted from the responses of any one population of fibers. Rather, the inhomogeneity in the 

spatial pattern of response in SA1 fibers combined with the inhomogeneity in the temporal pattern 

of response in RA and PC fibers accounts for the perceived roughness of surfaces spanning the 

range of tangible textures with remarkable accuracy (Weber et al., 2013). This makes sense 

because uneven surfaces, which are perceived as rougher, produce a spatially inhomogeneous 

response in SA1 fibers ï some SA1 fibers are activated by surface elements impinging upon the 

RFs while others are not ï and responses in RA and PC fibers wax and wane as coarse elements 

move across their RFs. 

Hardness/softness is the subjective continuum associated with the compliance of an object 

(Harper and Stevens, 1964). Softness perception has been shown to rely primarily on cutaneous 

cues: eliminating kinesthetic information has no effect on subjectsô ability to discriminate softness 

(Srinivasan and Lamotte, 1995). Indeed, a compliant surface is more liable to conform to the 

contour of the skin than is a hard one. Accordingly, the compliance of the object may be signaled 

by the growth of the area over which the skin contacts the object as the contact force increases, as 

well as by the more distribution of forces exerted by the object on the skin across the contact area. 

Softness perception has been thought to rely on signals from SA1 fibers (Srinivasan and LaMotte, 

1996). First, PC fibers are too sparse and their RFs too large to signal pressure gradients or contact 

area. Second, the response of RA fibers to a surface indented into the skin is not modulated by the 

compliance of the surface whereas the response of SA1 fibers is (Srinivasan and LaMotte, 1996). 

However, the neural code for softness cannot simply be dependent on the strength of the response 
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evoked in individual SA1 fibers as both the rate at which a surface is indented into the skin and its 

compliance modulate SA1 firing rates; in contrast, softness perception is independent of the 

indentation rate. Rather, compliance may be encoded in the spatial pattern of activation across SA1 

afferents or perhaps in relative activations of the three populations of afferents. 

 

Figure 1-3. (A) Reconstruction of the response in a population of SA1 afferents evoked by embossed dot patterns 

scanned across the skin. The spatial configuration of the dots is reflected in the pattern of activation evoked in the 

afferents. (B) Response of a PC fiber to three finely textured fabrics. Left: Microscope image of the texture; middle: 

spiking responses to 40 repeated presentations of the textured surface; right: power spectrum of the neural response. 

Each texture produces a different but highly repeatable temporal spiking pattern (Weber et al., 2013).  

Stickiness/slipperiness is the sensory continuum associated with the friction between skin 

and surface, i.e. the ratio between the force exerted normal to the surface to that exerted parallel 

to the plane of the surface (Smith and Scott, 1996). Furthermore, when judging stickiness, subjects 
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do not substantially vary the normal forces they apply on the surface, but the applied tangential 

forces tend to vary across surfaces, suggesting that tangential forces are critical in the perception 

of stickiness (Callier et al., 2015). As slowly adapting type 2 fibers are sensitive to skin stretch 

(Knibestol, 1975), this population of mechanoreceptive afferent fibers may provide the peripheral 

signals underlying stickiness perception, although recent evidence suggests that other 

mechanoreceptive afferents also convey information about tangential forces exerted on the skin 

(Birznieks et al., 2001). 

The warmth or coolness of a surface is another important textural dimension, one that is 

associated with the thermal conductivity of the material. Metals feel cool because they conduct 

heat out of the skin whereas plastics feel warm because they do not conduct heat. This sensory 

information about the thermal conductivity of a surface, which implicates warm and cool fibers in 

the skin (Ho and Jones, 2006, 2008), is integrated with information about surface microstructure 

to yield a holistic percept of texture. The perception of texture is thus a canonical example of the 

interplay of the different modalities, and of the exploitation of their disparate response properties 

(Saal and Bensmaia, 2014, Pirschel and Kretzberg, 2016). 

Motion 

The haptic exploration of objects typically involves movement between the hand and the 

object (Lederman and Klatzky, 1993). As discussed above, if we seek information about texture, 

we move our fingers across the surface. If we seek information about the shape of an object, we 

follow its contours with our fingertips. Furthermore, we need to sense how objects move across 

our skin to dexterously manipulate them. Information about tactile motion is thought to be 

conveyed by two different mechanisms (Pei and Bensmaia, 2014). One is the sequential activation 

of mechanoreceptive fibers with neighboring RFs (Gardner and Costanzo, 1980), a mechanism 
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that is akin to its visual counterpart (involving sequential activation of neighboring 

photoreceptors). The other is the activation of SA2 fibers, which are sensitive to skin stretch: The 

skin will tend to be pulled in the direction of the moving stimulus, so these stretch-related signals 

can convey information about movement direction (Olausson et al., 2000). Afferent firing rates 

increase monotonically with the speed at which an object moves across the skin, but they are also 

modulated by texture, so it is not clear how information about speed and texture can be 

disambiguated from the responses of afferents. In fact, while texture perception is consistent over 

a wide range of scanning speeds, speed perception is dependent on texture (Depeault et al., 2008). 

Nonetheless, information about scanning speed is perceptually available (if not veridical) so it 

remains unknown how this information is extracted from afferent responses. The evidence 

suggests that motion representations at the periphery involve multiple afferent types (Pei and 

Bensmaia, 2014). 

Peripheral signals during object manipulation 

The sense of touch plays a key role in our ability to interact with objects. Indeed, the 

dexterous manipulation of objects requires the rapid integration of motor commands, sensory cues, 

and internal predictions. A lack of cutaneous input from the fingertips results in a large 

compensatory increase in grip force that fails to adapt appropriately to object slips (Augurelle et 

al., 2003, Nowak et al., 2003). The importance of cutaneous input for object manipulation is 

underscored by the fact that patients with sensory nerve damage primarily complain of motor 

deficiencies rather than of the sensory loss itself (Moberg, 1962, Jones and Lederman, 2006).  

Information about the forces we exert on an object is critical to our ability to grasp and 

manipulate it: We apply enough force so that it will not slip from our grasp but not much more 

than that. Indeed, the safety margin, the amount of force exerted above the minimum necessary to 
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avoid slip ranges from 10 to 40 %, depending on the individual (Johansson and Westling, 1984, 

Westling and Johansson, 1984, Augurelle et al., 2003). Mechanoreceptive afferents, particularly 

SA1 and SA2 fibers, provide precise information not only about the magnitude but also about the 

direction of forces exerted on the skin (Birznieks et al., 2001, Wheat et al., 2010). Interestingly, 

SA2 afferents with RFs near the nail are particularly informative as to force direction (Birznieks 

et al., 2010). The importance of these cutaneous cues to object manipulation is demonstrated in 

experiments with digital anesthesia: When cutaneous cues are eliminated by anesthetizing the 

fingertips, subjects exert substantially more force on objects when grasping them (Augurelle et al., 

2003). 

Most of the classical work on somatosensory processing focuses on perceptual tasks with 

passively applied stimuli, in which ample time is provided to integrate sensory features at all levels 

of the somatosensory neuraxis, from periphery to cortex. However, object manipulation involves 

dynamic, multi-contact interactions. Furthermore, due to delays in the deployment of motor 

responses that are approximately 100 ms in duration, timely correction for unanticipated sensory 

signals requires that this information be conveyed within a very short time window (Johansson 

and Flanagan, 2009). Long motor output delays require the presence of feedforward in addition to 

feedback signals, implying the presence of an internal model. A broad question therefore emerges 

from these constraints: how does the somatosensory system manage to do everything it needs to 

do with so little time to integrate the incoming sensory information? 

Much work on peripheral cutaneous signals during object manipulation has focused on 

recordings of peripheral afferents during an object lifting task (Johansson and Westling, 1984) in 

which subjects grip a thin rod using the index finger and thumb. Subjects are then instructed to lift 

the rod, which is attached to a force transducer and a weight. The texture and mass of the 
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manipulandum can be varied from trial to trial, thereby manipulating the grip and load forces 

required to perform the task. The task is split into four phases: contact, load, lift, and hold (Figure 

1-4). The different types of afferent exhibit distinct response patterns during the task and respond 

differently during the various phases of the task. The most striking features of the neural signature 

of this task are the transient bursts of activity tightly coupled with the initiation of the contact and 

lift phases, which result in large scale deformations of the fingertip and activate afferents 

terminating all over the fingerpad, not just over the contact area (Bisley et al., 2000, Birznieks et 

al., 2001). Importantly, the timing of the first spike of these bursts, rather than solely the firing 

rates of these afferents, appears to be important for determining object properties useful for 

manipulation, particularly surface curvature (Johansson and Birznieks, 2004, Johansson and 

Flanagan, 2009, Saal et al., 2009). Arising from and supported by research on the information 

contained within first-spike timing is a model of how the timing of the responses distributed over 

the different afferent populations might be used to reliably signal object curvature. In this view, 

curvature could in principle be decoded by neurons that detect specific patterns of spike 

coincidence. Presumably, similar mechanisms could be used to extract other features, such as 

surface friction information vital for determining the amount of grip force needed to support object 

load (Edin et al., 1992) and the directions of forces applied to the fingertip (Jenmalm et al., 2003), 

which are useful for detecting object slip. One possibility is that these coincidence detectors exist 

in the cuneate nucleus in the brain stem, which receives cutaneous information from the hand and 

input from cortex (Johansson and Flanagan, 2009). 

While much information about the objectôs surface is available upon contact, information 

about its weight is only made available at the beginning of the lift phase, when the objectôs weight 

is supported by the hand. The most striking neural signature at this time is the bursting activity of 



23 

PC afferents (Figure 1-4)  (Johansson and Edin, 1993). As a subject initiates the load phase, an 

internal model for the weight of the object is constructed from memory and from information from 

other sensory modalities (e.g., visual associations between size and weight), which in turn 

manifests as a corollary discharge signaling the expected time of object lift (Gordon et al., 1993, 

Jenmalm and Johansson, 1997, Flanagan et al., 2008). The timing of bursting from PC afferents, 

which signals lift, is then compared with the information from this corollary discharge and a 

mismatch between the two results in a rapid adjustment of motor output. The notion that weight is 

computed based on a comparison between an internal model and sensory information is supported 

by fMRI results wherein bilateral cerebellum, contralateral somatosensory cortex and M1, and 

ipsilateral posterior parietal cortex are selectively active during mismatches between expected and 

actual weights (Jenmalm et al., 2006). 

The touch pathways 

The cuneate and gracile nuclei in the brainstem receive the first synapses from the 

periphery (Figure 1-1). At first glance, neurons from these nuclei seem to act as simple relays, with 

responses that reflect a high-fidelity, one-to-one copy of afferent input (Vickery et al., 1994, 

Gynther et al., 1995). The feedback projections to cuneate nucleus from thalamus (Fyffe et al., 

1986) and cortex (Cheema et al., 1983), however, suggests a more complex functional role for the 

dorsal column nuclei. Indeed, neurons in brainstem nuclei are inhibited by both afferent and 

cortical input (Andersen et al., 1964, Biedenbach et al., 1971, Marino et al., 2000), and these 

descending projections are thought to play a role in the movement-gating of cutaneous input 

(Coquery and Coulmance, 1971, Dyhre-Poulsen, 1975, Rushton et al., 1981, Chapman et al., 1987, 

Chapman et al., 1988, Chapman, 1994, Post et al., 1994, Wasaka et al., 2012).  
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Figure 1-4. Typical trial of the object lifting task. Vertical lines denote the boundaries of the task phases. The top two 

colored traces show the time-varying load force (upward lines in the diagram to the left) and grip force (inward arrows) 

during the trial. The black trace shows the vertical position of the object as it is lifted off the support surface. The 

bottom three traces show spike trains of RA, SA, and PC afferents, respectively. Bursts of spikes coinciding with 

specific task events are circled in magenta. (adapted from Johansson and Flanagan, 2009). 

Recent patch clamp studies in cats have revealed that the responses of individual cuneate neurons 

are dominated by a few primary afferents (4 to 8); as a result, cuneate neurons produce highly 

repeatable and idiosyncratic responses to tactile stimulation (Bengtsson et al., 2013, Hayward et 

al., 2014, Jorntell et al., 2014) However, while most of the work investigating the properties of 

neurons in the dorsal column nuclei has been carried out in a cat model, the neuronal morphology 

and microcircuitry of this structure and the descending projections it receives differ between 

primates and cats (Harris et al., 1965, Biedenbach et al., 1971, Molinari et al., 1996). Recent 

advances in chronic implants are poised to elucidate the organization of these elusive structures in 

awake, behaving primates (Richardson, 2015, Richardson et al., 2016). 
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The dorsal column nuclei then send the bulk of their projections to the ventral posterior 

lateral nucleus of the thalamus (VPL) (Figure 1-1), which has also been traditionally considered 

to be a simple sensory relay (in humans, the somatosensory nucleus is called Ventral Caudal). At 

a first approximation, the responses of individual thalamus neurons to tactile stimuli mirror the 

simple excitatory spatial receptive fields of their afferent input (Bushnell and Duncan, 1987) and 

are not modulated by attentional state or behavioral goals (in contrast to their counterparts in 

sensory cortex)(Camarillo et al., 2012, Vazquez et al., 2012). However, counter to this classical 

view, sensory thalamus exhibits a magnitude and variety of bidirectional interconnectivity with 

sensory cortex that imply a much more active processing role (Li et al., 2003, Reichova and 

Sherman, 2004, Van Horn and Sherman, 2004). Moreover, circuitry contained entirely within 

thalamus acts to modulate thalamic output to cortex. Although the most prominent cell type in 

thalamus is the relay cell projecting to somatosensory cortex, inhibitory interneurons from roughly 

twenty percent of neurons in thalamus and are commonly situated between afferents and relay cells 

in a common three-neuron motif (Penny et al., 1983, Bentivoglio et al., 1991, Arcelli et al., 1997). 

Inhibitory input from the thalamic reticular nucleus (TRN) also acts to modulate and gate the 

output of thalamocortical projections (Lee et al., 1994, McAlonan et al., 2008). The implications 

of this inhibitory thalamic circuitry in stimulus coding are unclear but it confers to thalamus an 

ability to refine and modulate, rather than merely relay, sensory information to cortex. 

In addition to the medial lemniscal pathway for low-threshold discriminative touch, the 

somatosensory system includes the anterolateral system, which carries information about pain, 

itch, temperature, and pleasant affective touch (Mendoza and Foundas, 2007, Davidson et al., 

2009, McGlone et al., 2014, Rea, 2015). This system receives afferent information from small-

diameter C fibers and A fibers that terminate in free nerve endings expressing high-threshold 
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mechanosensitive (pain), low-threshold mechanosensitive (pleasant affective touch), histamine-

sensitive (itch), and exhibit selective heat- and cold-sensitive responses. These afferents form 

synapses in the dorsal horn of the spinal cord, and these second-order neurons then decussate and 

ascend the eponymous anterolateral aspect of the spinal cord contralateral to the stimulation site. 

Emanating from these ascending spinal fibers are multiple axon branches. The spinothalamic 

pathway is one such branch that sends synaptic connections to third-order neurons in VPL, which 

in turn project to somatosensory cortex (see below). Other branches of the anterolateral system 

project to various nuclei in hypothalamus, brainstem, and midbrain responsible for the powerful 

autonomic and affective responses to painful stimuli. 

Tactile coding in somatosensory cortex 

Somatosensory cortex can be divided into four modules with differing cytoarchitecture, 

thalamocortical input, and response properties: Brodmannôs areas 3a, 3b, 1 and 2 (Figure 1-1). In 

fact, area 3 is technically primary somatosensory cortex proper, given the higher density of 

thalamocortical projections to its layer 4 relative to the rest of so-called S1 (Kaas, 1983). Neurons 

in area 3a are primarily sensitive to joint movements and seldom exhibit purely cutaneous 

responses. In contrast, neurons in area 3b and 1 are primarily sensitive to cutaneous stimulation. 

Note, however, that even cutaneous neurons often respond to joint movements in the absence of 

object contact (Bensmaia and Tillery, 2014, Kim et al., 2015) but whether or not this movement-

related activity contributes to proprioception remains to be elucidated. Neurons in area 2 exhibit 

both cutaneous and joint-related responses and are thought to be involved in the integration of 

cutaneous and proprioceptive information necessary for stereognosis (see below).  

One of the primary principles governing the organization of somatosensory cortex is 

somatotopy: Adjacent neurons (along the plane parallel to the cortical surface) respond to adjacent 
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patches of skin (Figure 1-1) (Pons et al., 1985). As a result, receptive fields progress systematically 

as one proceeds from the medial to lateral aspects of somatosensory cortex and each module 

contains a complete map of the body: The lower body is represented near the midline while the 

head is represented at the lateral extreme of the parietal cortex (Kaas et al., 1979). Furthermore, 

more cortical volume is devoted to certain body regions than others ï a phenomenon dubbed 

cortical magnification (Sur et al., 1980). Body regions are magnified in proportion to their 

innervation density and to the functional significance of touch in those regions. As we tend to 

explore and manipulate objects with our hands and not our backs, the skin of the hand is more 

densely innervated than is that of the back, and the hand representation in somatosensory cortex is 

much larger than that of the back, despite the much larger area of the back relative to the hand. For 

similar reasons, the fingertips are more magnified than is the palm, and large swaths of 

somatosensory cortex are devoted to the lips as well. 

Somatosensory cortical neurons project to the parietal ventral area (PV) and secondary 

somatosensory cortex (S2), located on the superior border of the lateral sulcus (Disbrow et al., 

2003). Very little is known about the RF properties of neurons in PV. S2 neurons have very large 

RFs, for example covering the entire hand, and often respond to stimulation on both sides of the 

body (unlike their counterparts in so-called S1). Some evidence suggests that S2 comprises 

multiple compartments, some exhibiting exclusively cutaneous responses, others both cutaneous 

and proprioceptive ones.   

As discussed above, individual mechanoreceptive afferents convey ambiguous information 

about a stimulus, which tends then to be distributed across the responses of a large number of 

fibers. Neurons in primary somatosensory cortex carry more explicit signals about behaviorally 

relevant stimulus features, such as the orientation of an edge indented into the skin or the motion 
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of an object across the skin. As has been shown in other sensory modalities and discussed in more 

detail below, neurons tend to be selective for increasingly complex stimulus features as one 

ascends the somatosensory neuraxis. Early in the processing hierarchy, neurons have small RFs 

and are sensitive to simple stimulus features, such as their orientation and direction of motion of 

local features. Higher up the hierarchy, neurons have larger RFs and are selective for more 

complex features such as curvature and global motion direction. Furthermore, neuronal responses 

are increasingly invariant with respect to other stimulus features at higher processing stages; that 

is, tuning for a given feature is consistent, no matter what the other features of the object are, a 

phenomenon that has been extensively documented in vision. 

Vibratory frequency  

As mentioned above, not only does the tactile perception of vibration have an ecological 

role but the study of the neural encoding of vibration can shed light into how the temporal 

properties of a stimulus are represented in the somatosensory system. Like their counterparts in 

the nerve, somatosensory cortical neurons produce entrained responses to skin vibrations; that is, 

they produce one spike or a burst of spikes within a restricted phase of each stimulus cycle. This 

entrainment is pervasive for low-frequency stimuli (< 50 Hz)(Mountcastle et al., 1969, Salinas et 

al., 2000), but is observed for vibrations at up to 800 Hz in a subpopulation of neurons in area 3b 

(Harvey et al., 2013). For low-frequency stimuli, frequency can be decoded both from the firing 

rate and from periodicity in the response, as both co-vary with frequency (Salinas et al., 2000, 

Luna et al., 2005). In contrast, somatosensory cortical firing rates are completely frequency 

independent at the higher frequencies (>100 Hz), so the only information about the spectral 

composition of a skin vibration is conveyed in the temporal patterning of the evoked spikes 

(Harvey et al., 2013). 
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The frequency-independence of somatosensory cortical firing rates evoked by high-

frequency stimuli stands in stark contrast to the strong frequency dependence of PC firing rates, 

which are primarily responsible for signaling high-frequency vibrations in the nerve. This seeming 

inconsistency suggests that the PC signals serve to modulate the timing of somatosensory cortical 

responses without affecting their strength. This phenomenon can be explained if the PC input is 

integrated over short periods of time and in such a way that it exerts an influence on somatosensory 

cortical neurons that is excitatory and inhibitory in equal parts (Saal et al., 2015). 

Shape 

As discussed in detail above, local spatial features of an object, which impinge upon 

individual fingerpads, are encoded in the spatial pattern of activation in RA and especially SA1 

fibers (Figure 1-3A), a representation that is qualitatively analogous to that in the retina. In light 

of this, it is perhaps not surprising that the representation of shape in somatosensory cortex is 

qualitatively analogous to its counterpart in primary visual cortex (V1). Indeed, in somatosensory 

cortex as in V1, a large proportion of neurons (~50%) are tuned for the orientation of an edge 

indented into or scanned across their RF (Figure 1-5A) (Bensmaia et al., 2008). That is, they 

respond maximally to an edge at a specific orientation and less so to edges at other orientations. 

Furthermore, in both sensory cortices, this orientation selectivity is shaped at least in part by the 

neuronsô RF structure: RFs comprise excitatory regions flanked by one or more inhibitory regions 

(DiCarlo et al., 1998, DiCarlo and Johnson, 2000, 2002). The configuration of the excitatory and 

inhibitory subfields determines the preferred orientation of the neuron (see inset in Figure 1-5A).  

While areas 3b and 1 exhibit comparable orientation selectivity, more complex feature 

selectivity emerges in area 2, namely selectivity for orientation and curvature (Yau et al., 2013). 

Neurons in area 2 not only encode the orientation of the stimulus but also its curvature, defined as 
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a contour with smoothly varying orientation (Figure 1-5B). This curvature tuning is also observed 

in secondary somatosensory cortex (S2) (Yau et al., 2009c), supporting the notion that feature 

selectivity gets more complex as one ascends the neuraxis.  

Neuronal responses to spatial patterns also become increasingly invariant with respect to 

stimulus position. Indeed, an orientation selective neuron in area 3b only responds when an edge 

at its preferred orientation impinges on its small RF. Neurons in area 1 have larger RFs and so are 

more tolerant to small changes in the position of the edge (Bensmaia et al., 2008). Neurons in S2 

can have RFs that cover the entire hand, or even the entire arm(Burton, 1986). Orientation selective 

neurons in S2 exhibit the same orientation preference over large swaths of their RFs (Figure 1-5C) 

(Fitzgerald et al., 2006). This positional invariance of the feature tuning draws an analogy to the 

responses of neurons in high-level visual areas. 

Motion 

Again, the representation of tactile motion in somatosensory cortex is remarkably 

analogous to its visual counterpart in V1 (Pack and Bensmaia, 2015a). A subpopulation of 

somatosensory cortical neurons is tuned for direction of motion. That is, they respond maximally 

to an edge moving across the skin in a particular direction, respond minimally or not at all to an 

edge moving in the opposite direction, and produce an intermediate response to edges moving in 

intermediate directions (Figure 1-6A). For edges, the direction tuning is stronger in areas 1 and 2 

than it is in area 3b, as might be expected given their relative positions in the somatosensory 

hierarchy (Pei et al., 2010). However, the difference is far more pronounced for spatial patterns 

that consist of edges at several orientations, a difference that can be attributed to the aperture 

problem.  
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Figure 1-5. (A) Orientation tuned neuron in area 3b (inset shows a Gaussian fit to its RF) (adapted from Bensmaia et 

al., 2008). (B) Curvature and orientation tuned neurons in area 2 (Yau et al., 2013). C| Orientation-tuned neuron in 

S2: This neuronôs receptive field spans four digits (D2-D5) and multiple pads in each. However, its preferred 

orientation remains consistent across its RF (approximately aligned with the long axis of the finger) (Fitzgerald et al., 

2006). 

 

The aperture problem refers to the geometrical fact that the only information available 

about the motion of a straight edge is from the component of the motion that is perpendicular to 

its orientation. That is, if an edge is moving in some direction D at speed S, it will seem to be 

moving in the direction perpendicular to its orientation D* , and its perceived speed will decrease 

as the angle between D*  and D increases. To discern the veridical direction of motion of an object, 

then, requires that information be integrated across different edges at different orientations or that 
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the motion of terminators ï edge endpoints or corners ï be observed; indeed, terminators convey 

unambiguous velocity information. Neurons in area 3b are subject to the aperture problem because 

they have small RFs and thus typically experience only a single edge at a time. As a result, 

individually neurons convey ambiguous information about stimulus motion and do not signal the 

direction of motion of objects comprising multiple edges at different orientations. 

 

 

Figure 1-6. (A) Direction tuning of a neuron in area 1 to scanned bars (adapted from Pei et al., 2010). (B) Responses 

of a ócomponentò neuron to plaids scanned in 12 directions. This neuron responds maximally when one of the plaidôs 

component gratings is moving in its preferred direction. C| Responses of a ñpatternò neuron to plaids. This neuron 

responds to the plaidôs global direction of motion. Such neurons are only found in area 1.(Pei et al., 2011) 

 

A fruitful paradigm to study motion integration has consisted of probing the perception of 

motion and its neural basis using plaids, which consist of superimposed gratings. Indeed, the 

component gratings of the plaid will drive the responses of neurons subject to the aperture problem 

(Figure 1-6B), but the perceptual experience of the plaid in both vision and touch (Pei et al., 2008) 

is of the global motion of the plaid, which depends on the velocities of both component gratings. 
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This implies that a population of neurons somewhere along the neuraxis is able to extract the 

veridical direction of motion of the stimulus. In vision, this computation is reflected in the 

responses of so-called ñpatternò neurons in medial temporal cortex, which are tuned to the 

direction of the plaid. In touch, such a population of neurons is found in area 1 (Figure 1-6C) (Pei 

et al., 2011). When presented with plaids, these neurons respond to the global motion of the 

stimulus and not the motion of its component gratings. The responses of this population of neurons 

in area 1 can account for the perceived direction of motion across a wide range of stimulus 

conditions (Pei et al., 2010, 2011). Pattern neurons are not found in area 3b, again highlighting the 

hierarchical relationship between areas 3b and 1.  

In summary, neurons in area 3b exhibit direction selectivity for edges but ñdo not see the 

forest for the treesò when presented with stimuli that consist of multiple contours. In contrast, 

neurons in area 1 ñsee the forest, not the trees,ò exhibiting consistent direction preference 

independent of the spatial configuration of the stimulus. These neurons can account for the 

perceived direction of all tactile motion stimuli, including those moving in an ambiguous direction. 

In fact, a simple model that describes the output of neurons in area 1 from a simple vector sum of 

inputs from area 3b accounts for both the neurophysiological and psychophysical data (Pei et al., 

2011).  

Texture 

Little is known about the cortical basis of texture perception, in part because all 

experiments to date investigating texture representations in cortex used gratings and embossed dot 

patterns as stimuli. As discussed above, these classes of stimuli engage primarily the spatial 

mechanism of texture processing and obscure the contribution of the temporal one, which accounts 

for much of the range of tangible textures. Moreover, because gratings and dot patterns involve 
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essentially a single parameter (spatial period), they do not provide a rich enough stimulus space to 

disentangle competing hypotheses about the underlying neural code (Connor et al., 1990).  

In experiments with scanned gratings (Darian-Smith et al., 1982, Sinclair and Burton, 

1991a, b, Burton and Sinclair, 1994) and embossed dot patterns (Chapman et al., 2002, Bourgeon 

et al., 2016), the response of the majority of cutaneous neurons in somatosensory cortex were 

found to be modulated by the spatial period of the stimuli. Furthermore, the responses of a subset 

of these neurons seems to track the perceived roughness of such textures (Chapman et al., 2002, 

Bourgeon et al., 2016), consistent with the hypothesis that they are causally implicated in texture 

perception. As lesions of area 1 result in specific deficits in texture discrimination (Randolph and 

Semmes, 1974, Semmes et al., 1974, Semmes and Turner, 1977), this area may be part of a 

pathway specialized for texture processing. 

In the somatosensory nerves, coarse and fine textural features are encoded based on spatial 

and temporal patterns of activation, respectively (as summarized above). The spatial structure of 

somatosensory cortical neurons ï comprising excitatory fields flanked by inhibitory ones (DiCarlo 

et al., 1998, DiCarlo and Johnson, 2000, 2002) ï is well suited to extract information from spatial 

patterns of afferent activation, and thus to represent coarse textural features. For example, these 

neurons respond maximally to spatially inhomogeneous stimuli applied to the finger and could 

thus encode surface roughness, which entails a computation of spatial inhomogeneity (Connor and 

Johnson, 1992). A subpopulation of somatosensory cortical neurons also responds to complex 

high-frequency vibrations of the skin of the sort that are produced when fine textures are scanned 

across the skin (Harvey et al., 2013). While these two properties of somatosensory cortical neurons 

can in theory mediate the representations of texture in cortex, no systematic experiments have been 

carried out to investigate the cortical representation of natural textures.  
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Parallels between vision and touch 

Traditionally, touch has been thought of as a spatial sense, drawing remarkable analogies 

with vision. First, the peripheral image in touch consists of a spatiotemporal pattern of activation 

across a sensory sheet ï the skin ï, as is the case with vision and the retina. Second, neurons in 

somatosensory cortex exhibit orientation and direction tuning, much like their counterparts in V1 

(Figure 1-5, Figure 1-6) (Bensmaia et al., 2008, Pack and Bensmaia, 2015b). Furthermore, the 

receptive field structure of somatosensory cortical and V1 neurons is similar, consisting of 

excitatory fields flanked by inhibitory ones (DiCarlo et al., 1998, Bensmaia et al., 2008), which 

can at least in part explain the similar functional properties. Third, higher order representations of 

both shape and motion are highly analogous in vision and touch, as detailed above (Yau et al., 

2009c, Pei et al., 2010, 2011, Yau et al., 2013). Fourth, the tactile perception of shape and motion 

is similar to its visual counterpart, as evidenced by, for example, similar patterns of errors in letter 

identification (Phillips et al., 1983) and similar perceptual biases in motion perception (Pei et al., 

2008). The similarities in processing make sense as both systems interact with a common 

environment, with statistical regularities that the two perceptual modalities have evolved to extract 

(Simoncelli and Olshausen, 2001). Furthermore, visual and tactile representations co-exist when 

we interact with objects and must therefore be integrated (Lacey and Sathian, 2012), a process that 

is simpler if the representations are analogous.  

Parallels between audition and touch 

Although similarities with hearing have not received the extensive experimental treatment 

as have those with vision, touch and hearing are similar in that both can operate as temporal senses. 

Indeed, some classes of mechanoreceptive afferents (RA, PC) are exquisitely sensitive to skin 

vibrations and produce highly repeatable and precise temporal spike patterns, the timing of which 
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reflects the frequency composition of the skin vibrations (Talbot et al., 1968b, Mackevicius et al., 

2012). A subpopulation of somatosensory cortical neurons exhibits sensitivity to high-frequency 

vibrations and produce responses to skin vibrations characterized by high temporal precision 

(Harvey et al., 2013). Furthermore, somatosensory cortex is even more sensitive to differences in 

spike timing than is primary auditory cortex (A1)(Yang and Zador, 2012), a difference that can be 

attributed to their different positions along their respective neuraxes ð somatosensory cortex is 

three synapses away from primary afferents whereas A1 is five synapses away. Moreover, stimulus 

information seems to be integrated across frequency bands in similar ways in touch and hearing 

(Marks, 1979, Makous et al., 1995). These findings together suggest that the somatosensory system 

is well suited to extract information from environmental oscillations, as is its auditory counterpart.  

The temporal mode of touch plays a critical role in texture perception: While coarse textural 

features are encoded in the spatial pattern of activation in SA1 afferents, the perception of fine 

features relies on the transduction and processing of skin vibrations that are produced in the skin 

during texture scanning. Fine features are encoded in the high-precision temporal spiking patterns 

in RA and PC fibers and these patterns dilate or contract with decreases or increases in scanning 

speed, respectively (Weber et al., 2013), which amounts to left and right translations of the 

frequency composition of the neural response along the frequency axis. In contrast, the perception 

of texture is almost completely independent of scanning speed. Somewhere along the 

somatosensory neuraxis, then, texture constancy must be extracted from a peripheral image that is 

highly dependent on scanning speed. This problem is identical to timbre constancy, which also 

involves translation of a harmonic stack along the frequency axis with changes in fundamental 

frequency (Yau et al., 2009a).  Given that the two problems ï texture and timbre constancy ï 

require similar computations, it is likely that they rely on similar neural mechanisms. A key 
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difference between audition and touch, however, is that the former benefits from a peripheral 

process akin to Fourier decomposition (in the basilar membrane) whereas the latter does not. 

However, in both systems, information about the acoustic or tactile stimulus is also encoded in the 

timing, and it is likely that similar neural mechanisms are involved in extracting this information.  

The remarkable analogies between vision, audition, and touch support the notion that the 

nervous system implements a limited number of strategies ï canonical computations ï to extract 

information from the environment, and that these computations span the different sensory 

modalities (Pack and Bensmaia, 2015b). 

Affective touch 

The way in which we touch people, for example the speed at which we stroke them, 

communicates distinct emotions, such as anger, fear, compassion, or love, and the accuracy with 

which this emotional information is transmitted through touch is comparable to that of vocal and 

facial expression (Hertenstein et al., 2009). In the somatosensory nerves, pleasant touch is 

mediated ï at least in part ï by specialized small-diameter fibers, namely C-tactile afferents, that 

innervate the hairy skin (Löken et al., 2009). Counterparts to these afferents have yet to be found 

in glabrous skin. Several regions in cortex are associated with the affective and social aspects of 

touch. For example, somatosensory cortical activation depends on who does the touching (Gazzola 

et al., 2012) and some neurons respond to the observation of touch and may support social 

communication through empathy, a phenomenon dubbed 'mirror-touch synesthesiaô (Keysers et 

al., 2010). The posterior insular cortex is implicated in the experience of pleasant touch and 

receives projections from C-tactile afferents (Björnsdotter et al., 2009). Affective touch is also 

represented in orbitofrontal cortex, which is generally associated with affective value 

(Kringelbach, 2005) and responds weakly to neutral touch (Rolls et al., 2003).  
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The sense of proprioception 

Proprioceptive receptors and their associated nerve fibers 

Proprioception is the sense of the location of the body, of its movement, and of the forces 

that it applies or are applied to it. Proprioception plays a critical role in our ability to plan and 

execute movements. Without it, we would struggle to perform the simplest activities of daily living 

(Cole and Sedgwick, 1992, Ghez et al., 1995, Ghez and Sainburg, 1995, Sainburg et al., 1995). 

Signals about the limb movements originate from receptors embedded in joints, muscles, tendons, 

and the skin.  

Muscle spindles are most numerous and sensitive proprioceptors (Prochazka, 1996). Each 

spindle consists of a bundle of intrafusal muscle fibers running in parallel with extrafusal fibers 

and contained within a spindle-shaped capsule (Figure 1-7A). Three different fiber types are 

present in a spindle: nuclear bag 2 and nuclear chain fibers are primarily sensitive to the strain they 

experience; nuclear bag 1 fibers respond primarily to the rate of change in strain. Primary spindle 

afferents (Ia) innervate all three types of fibers whereas secondary proprioceptive afferents (II) 

innervate only the bag 2 and chain fibers. As a result, primary spindle afferents are sensitive to 

muscle strain and its rate of change whereas secondary spindle afferents are sensitive primarily to 

the strain (Hulliger, 1984). Muscle spindles are unique somatosensory transduction organs in that 

their sensitivity can be adjusted by descending input from gamma motor neurons. Action potentials 

in gamma motor neurons cause contractions of the distal ends of intrafusal fibers, thereby adjusting 

their baseline tension and thus their mechanical sensitivity to strain. There are two sets of gamma 

motor neurons: gamma dynamic neurons innervate nuclear bag 1 fibers and modulate primary 

spindle afferent sensitivity to strain rate; gamma static neurons innervate bag 2 and chain fibers 

and modulate the sensitivity of both types of spindle afferents (Hulliger, 1984, Prochazka, 1996).  
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Golgi Tendon Organs (GTOs) are located at the musculotendon junction, in series with the 

contractile portion of the muscle. Each GTO consists of an encapsulated collagenous mesh 

innervated by several afferents (Figure 1-7B). Signals from GTOs track muscle tension, exhibit 

little sensitivity to tension rate, and do not adapt to sustained tension levels outside of a transient 

spike in firing rate at stimulus onset (Gregory and Proske, 1979). GTO afferents signal tension in 

a quantal manner (Edin and Vallbo, 1990), meaning that their firing rates ñstepò from one discrete 

level to another rather than varying smoothly over a continuum. The quantal nature of GTO 

afferent spiking arises from discrete increases in the number of motor units recruited, with each 

GTO afferent tracking a subset of motor units (Houk and Henneman, 1967).  

 

Figure 1-7. (A) Muscle Spindle. The spindle capsule contains three types of intrafusal muscle fiber: nuclear bag 1 

fibers, which are sensitive to rate of stretch; and nuclear bag 2 and nuclear chain fibers, which are sensitive to static 

stretch. The ɔ-dynamic fusimotor neurons selectively innervate bag 1 fibers and adjust sensitivity to the rate of stretch, 

whereas the ɔ-static fusimotor neurons selectively modulate the fibers that sense static stretch. Primary (Ia) spindle 

afferents innervate all three intrafusal fiber types and convey dynamic stretch information. Secondary (II) spindle 

afferents innervate and convey information from only the intrafusal muscle fibers that sense static stretch. (B) Golgi 

tendon organ (GTO). The outer tendon is resected to show the GTO (Ib) afferent and the interior collagenous mesh it 

innervates. A single GTO is situated in series with 10-20 motor units (bundles of muscle fibers, top). GTO afferents 

convey active muscle force by "counting" the number of recruited motor units (illustrations by Kenzie Green). 
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Joint receptors can be divided into three classes, each of which is analogous to one present 

in the skin or in muscles. GTOs located in the ligaments signal tension. Ruffini endings and 

Pacinian corpuscles located in the joint capsule track the level of strain applied to the joint and its 

dynamics, respectively (Zimny, 1988). These sensory organs are innervated by similar afferent 

types as those present in the muscle and the skin, but are distinct in their lack of sensitivity to 

muscle or skin palpation. Afferents that innervate joint receptors tend to only respond when joints 

are in extreme positions of flexion or extension (Burgess and Clark, 1969, Grigg, 1975). 

Proprioceptive afferents follow the same medial lemniscal pathway as their cutaneous 

counterparts and synapse onto neurons in the external (or accessory) cuneate and gracile nuclei in 

the brainstem, which in turn project to thalamus and ultimately to cortex. There are other 

somatosensory pathways of which little is known and that fall outside the scope of the present 

review. 

The cortical basis of proprioception 

As is the case with their cutaneous counterparts, proprioceptive afferents send projections 

to the Dorsal Root Ganglion (DRG) of the spinal cord, where their cell bodies are located. These 

fibers ultimately synapse onto neurons in the dorsal column nuclei, which in turn project to the 

ventral posterior lateral (VPL) nucleus of thalamus. In both the dorsal columns and thalamus, 

proprioceptive and cutaneous signals are segregated: The accessory cuneate receives 

proprioceptive input whereas the internal cuneate receives cutaneous input; in VPL, cutaneous 

neurons are located in the central region whereas proprioceptive neurons are located in the outer 

shell (Kaas, 1983). Little is known about proprioceptive representations in these structures. Note 

that both touch and proprioception comprise other tracts, which have received far less experimental 

attention than has the medial lemniscal pathway and that fall outside the scope of this review. 
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Neurons in thalamus then send projections to two regions of primary somatosensory cortex: 

Area 3a, located in the bank of the central sulcus, adjacent to motor cortex; and area 2 on the side 

of somatosensory cortex that borders the intraparietal sulcus. A hierarchical relationship between 

areas 3a and 2 is often assumed as proprioceptive receptive fields in the latter are larger and 

respond to more complex conjunctions of features than do those in the former (Sakata et al., 1973, 

London and Miller, 2013). However, the anatomical evidence for a hierarchical progression from 

area 3a to area 2 is curiously inconclusive. Although area 2 does receive projections from area 3a, 

these projections are not as dense as would be expected from other hierarchically coupled cortical 

areas (Porter, 1991). 

Neurons in area 3a exhibit a variety of responses to movements imposed on the limb, as 

might be expected from the response profiles of proprioceptive afferents. Some neurons respond 

only to joint movements, others to joint postures, and others produce a phasic response to 

movement and a tonic one that is posture dependent (Gardner and Costanzo, 1981). One consistent 

feature of neurons in 3a is that they respond to flexion or extension of a joint but not both. 

Area 3a neurons also exhibit sensitivity to forces applied to the limb. When the arm 

maintains its position against a load, neurons in area 3a will respond with firing rates proportional 

to the load (Fromm and Evarts, 1982). Just as responses to passive joint movements are 

unidirectional, so too are load responses of neurons in area 3a. Furthermore, during active 

movements, neurons in area 3a respond to perturbations that oppose movement in their anti-

preferred directionði.e., they respond to perturbations that apply force in their preferred direction, 

consistent with the hypothesis that area 3a is implicated in generating an ñerrorò signal useful for 

adjusting motor output in the presence of unanticipated perturbations. 
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While the proprioceptive properties of neurons in area 2 have received less experimental 

attention than have their counterparts in area 3a, area 2 is thought to play an important role in 

stereognosis, the haptic perception of the three dimensional structure of objects grasped in the 

hand. First, neurons in area 2 exhibit both cutaneous and proprioceptive responses, a prerequisite 

for stereognosis. Second, area 2 lesions cause specific deficits in object shape discrimination, while 

leaving surface texture discrimination relatively spared (Randolph and Semmes, 1974). Third, 

receptive fields in area 2 are large (Iwamura et al., 1980), often encompassing several digits and 

therefore well suited to carry representations of whole hand conformations necessary to support 

stereognosis (see below). In addition to its role in stereognosis, area 2 may also carry an internal 

model of intended movements, as evidenced by the fact that some neurons in area 2 respond to 

active movements prior to movement onset (London and Miller, 2013). 

Phenomenology of proprioception 

Human subjects can detect changes in joint angle of proximal joints of the upper limb better 

than changes in the angles of distal joints. When sensitivity is measured in terms of the muscle 

strains, however, joint angular acuity is constant across joints (Hall and McCloskey, 1983), 

suggesting that spindle and GTO afferents play a key role in the conscious proprioception as these 

afferents track muscle strains. Furthermore, humans are more sensitive to active movements than 

they are to passive ones (Gandevia et al., 1992). Presumably, this greater sensitivity for active 

movements might reflect the convergence of efference copy and sensory input in active 

movements, which does not occur for passive movements. Finally, some evidence suggests that 

the responses of cutaneous afferents to skin stretch may influence conscious proprioception. 

Indeed, when strain is applied to the skin on the dorsal surface of the hand, subjects report illusory 

movement of the fingers (Edin and Johansson, 1995, Collins and Prochazka, 1996). Although 
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cutaneous signals follow an anatomical pathway distinct from that followed by their proprioceptive 

counterparts, these psychophysical results suggest that proprioception involves the integration of 

cutaneous and proprioceptive signals. 

Multimodal integration and stereognosis 

The somatosensory system is unique in that it comprises a deformable sensory sheet: As 

our fingers move, the positions of cutaneous receptors change relative to one another. Thus, to 

interpret cutaneous signals emanating from each of the fingertips, it is necessary take into account 

the relative position of the fingers. When we grasp an object, we acquire information about its 

three dimensional structure, which relies on the integration of cutaneous and proprioceptive 

information (Berryman et al., 2006, Hsiao, 2008, Yau et al., 2016). As described above, cutaneous 

signals are first processed in area 3b then project to area 1, which in turn (presumably) sends 

projections to area 2; area 2 also receives proprioceptive signals, both from area 3a and from 

thalamus. It should also be noted that limb joint movements activate neurons in areas 3b and 1 in 

the absence of contact by virtue of the concomitant skin stretch or compression (Costanzo and 

Gardner, 1981, Gardner and Costanzo, 1981, Chapman and Ageranioti-Belanger, 1991, Nelson et 

al., 1991, Ageranioti-Belanger and Chapman, 1992, Iwamura et al., 1993, Kalaska, 1994, 

Krubitzer et al., 2004, Rincon-Gonzalez et al., 2011). Thus, many neurons across somatosensory 

cortex exhibit both proprioceptive and cutaneous responses. In most multimodal neurons, 

proprioceptive responses are superimposed on cutaneous ones, so the signals carried by these 

neurons are ambiguous (Kim et al., 2015). A subpopulation of neurons in somatosensory cortex 

exhibit more complex, non-linear interactions of the proprioceptive and cutaneous input (Figure 

1-8). While multimodal integration in somatosensory cortex has been documented, the resulting 

representational framework for stereognosis has yet to be discovered. As neurons in area 2 are the 
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first to receive convergent proprioceptive and cutaneous input, this area is likely implicated in 

stereognosis. Consistent with this hypothesis, lesions of area 2 produce selective deficits in shape 

recognition (Randolph and Semmes, 1974).  

As discussed above, the somatosensory system is the only modality to comprise a 

deformable sensory sheet. How cutaneous and proprioceptive information is integrated is one of 

the great challenges facing sensory neuroscience. 

 

Figure 1-8. Neuron in area 2 that exhibits both tactile and proprioceptive responses (courtesy of Sung Soo Kim). This 

neuronôs activity is modulated simply by moving the digits (left panel). However, responses are further modulated by 

cutaneous stimulation (right panel). The neuronôs response is a complex function of hand conformation and cutaneous 

input. 

 

Conclusions 

The sensors underlying the senses of touch and proprioception comprise an elaborate mesh 

of afferent types conveying information about skin, connective, and muscle tissue stress and strain 

at various spatial and temporal scales. These afferent types each constitute unique channels of 

information about objects that are being touched: SAI fibers give local spatial information about 
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skin deformations useful for detecting edges and coarse features; RA fibers trade spatial acuity for 

temporal precision and appear to convey clear signals related to object slips; PC fibers operate on 

spatial scales orders of magnitude larger than either SAI or RA fibers in exchange for the temporal 

precision to resolve the vibratory consequences of nano-scale spatial features of surfaces scanned 

across the skin or remote object interaction events such as a grasped object being lifted off a 

surface; and a variety of proprioceptive afferents, likely in conjunction with SAII afferents, convey 

information about tissue stretches arising from different configurations and movements of the 

hand. As one ascends the somatosensory neuraxis, the rule is that information from different 

afferents is integrated to give rise to filters detecting more and more elaborate features of tactile 

stimuli, akin to the emergence of more and more elaborate stimulus filters in visual and auditory 

cortices. Indeed, even information across different afferent types is integrated as early as 

somatosensory cortex to enable, among other things, a holistic perception of textures spanning 

eight orders of magnitude. Although this process has received some experimental attention in 

tactile somatosensory cortex, only basic properties of proprioceptive somatosensory cortical 

neurons have so far been studied. An understanding of the types of filters and elaborations used in 

the cortical processing of proprioceptive stimuli is essential to make further progress in 

understanding the somatosensory hierarchy, especially as both proprioceptive and somatosensory 

modalities eventually converge in Brodmannôs area 2. Moreover, to fully appreciate the roles these 

senses play during stereognosis, these senses need to be further investigated during grasps and 

manipulations of multiple objects that require different hand shapes, as opposed to the single object 

studied in the canonical object manipulation task so far described. 
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CHAPTER 2: 

Introduction to  shaping behavior and principles of its neural control 

Hand shaping behavior 

Introduction  

To understand neuronal representations of the hand, we must first describe the behaviors it 

engages in. However, the complexity of the hand defies an obvious, concise description. In this 

section, we briefly discuss advances in describing hand movements then, focusing on grasp, we 

enumerate features of grasp that, when combined, enable the manipulation of objects spanning 

myriad shapes and sizes. 

The gamut of hand function 

The complex anatomy of the hand allows it to perform a variety of different functions. 

Accordingly, one might wish to consider the space in which hand movements reside and determine 

where grasping ï the focus of the present study ï falls within this space. To this end, we first 

examine hand control along two axes: the degree of individuation among digits and the degree to 

which kinematics or forces are the relevant control parameter.  

At one extreme of the first axis, prehensile movements comprise hand behaviors classically 

considered to require the least individuation across digits. At the other extreme, (non-prehensile) 

skilled movements such as playing a musical instrument require the most individuation (Jones & 

Lederman, 2006). Along the second axis, functions are classified generally based on whether or 

not an object is in contact with the hand. On one side, behaviors involve pre-shaping the hand prior 

to object contact; on the other side, behaviors involve controlling applied force to maintain grip 

and prevent slip as the arm acts to lift a grasped object. The focus of this project will be the 

kinematic control of prehensile movements, in part because an important step in understanding the 
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neural basis of stereognosis is to understand the proprioceptive representation of prehensile 

kinematics giving rise to the shape of the hand. Ultimately, the resulting model of proprioceptive 

coding of hand posture will be fused with the model of tactile coding of object contact to develop 

a model of stereognosis. 

Early qualitative characterizations of hand shaping 

Perhaps the earliest attempt of note to characterize the behavior of the grasping hand comes 

from John Napier beginning in 1956 (Napier, 1956). He studied, in particular, the postures that 

people adopted when holding various objects and tools in their hands and made qualitative 

assessments of those grasps. The overarching theme of his line of research was that hand postures 

adopted for the grasps of different objects appeared to lie on a two-dimensional continuum: Along 

one dimension were grips of cylinders and hammers of various diameters that involved proximal 

contact points such as the palm and proximal phalanges, which he dubbed ñpower gripò; along the 

other dimension were grips of disks of various sizes that frequently involved contact points at the 

distal phalanges, which he dubbed ñprecision gripò. Hand grips could reside on one of 

infinitesimally spaced points on this continuum, unlike other theories of grip which presumed 

discrete grip types. 

However, Napierôs work focused primarily on the shape of the hand once it had adopted 

its final position. The movements undertaken by the hand after initial contact and prior to adopting 

its final posture, in addition to its relationship with the arm during coupled reach-to-grasp 

movements, remained unexplored. One of the most basic features of hand movement to be teased 

out was the nature of its typical coordination with reach, as shaping of the hand occurs in tandem 

during canonical reach-to-grasp movements (M Jeannerod, 1984). Lawrence and Kuypersô 

seminal lesion studies of the descending motor tracts in monkeys offered some insight into this 
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issue (Lawrence & Kuypers, 1968a, 1968b). In particular, the coordinated movements of the digits 

themselves were more profoundly impaired by the removal of the descending pyramidal tract than 

were movements of the shoulder and elbow responsible for transporting the hand to the appropriate 

location. This laid the groundwork in motor systems and motor behavioral research for the notion 

of separate pathways for the control of reaching and grasping, which paralleled the idea of separate 

dorsal and ventral streams of information about object location and identity in visual systems 

neuroscience (Goodale & Milner, 1992; Ungerleider & Haxby, 1994). 

Simple quantification of hand shaping behavior  

Subsequent research into reach-to-grasp movements sought to quantify the relative time 

courses and gross kinematic profiles of these presumably separate reach and grasp profiles. The 

consistent theme that arose from this body of literature was the presence of hand kinematic features 

that corresponded with the size of a target object and the interaction between hand transport and 

shaping under normal reach-to-grasp conditions. In particular, the notion of a ñmaximum hand 

apertureò arose from observed inflection points in video recordings of reaching and grasping hands 

(M Jeannerod, 1984). During normal reach-to-grasp, the digits of the hand consistently abduct and 

extend during the first half of hand transport to create a circle defined by fingertip locations, or 

ñapertureò, roughly 20% larger than required by the size of an object (Marc Jeannerod, 2009). This 

hand aperture is then reduced with flexions and adductions of the digits through the second half of 

limb transport, eventually terminating at grasp where object contact is established.  

Sophisticated quantification of hand shaping behavior: Synergies 

The set of features so far described offer a qualitative, rudimentary picture of the full range 

of function afforded by the hand. The notions of ñpowerò and ñprecisionò grip, in addition to the 

decision to treat the aperture of the hand as an important measure, are all based on qualitative 
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observations. As physiological recording techniques advanced to permit ever more detailed data, 

extracting meaningful information from these data required a more rigorous quantitative approach. 

One such approach, most notably adopted by Emilio Bizzi and colleagues to find 

ensembles of correlated muscle activity in the legs of the frog (dôAvella, Saltiel, & Bizzi, 2003), 

was to apply a variant of principal component analysis (PCA) to the time-varying electro-

myographic (EMG) traces recorded during a variety of behaviors such as leaping and kicking. The 

resultant weighted vectors of muscle activity (Figure 2-1) were dubbed ñmuscle synergiesò, and 

surprisingly simple structure could be extracted from this complex array of EMG activity by 

explaining them in terms of these synergies. Similarly to how Napier had attempted to qualitatively 

constrain the full range of hand movements to a planar power-precision continuum, a simple three-

dimensional continuum inferred systematically using PCA could explain over 60% of the cross-

validated variation in the time-varying EMG traces of 13 muscles (dôAvella et al., 2003). In other 

words, muscle activations often fell into patterns that could be discerned using simple 

dimensionality reduction algorithms. 

Applying this methodology to ever-larger EMG datasets and behaviors of different species, 

including grasping in primates (Overduin, dôAvella, Roh, & Bizzi, 2008; Weiss & Flanders, 2004), 

researchers have consistently found simple low-dimensional structure in high dimensional data 

sets. Similar methods had also been applied to grasping kinematic data of the hand (Santello, 

Flanders, & Soechting, 1998; Weiss & Flanders, 2004) to find superficially similar low-

dimensional structure across mimed grasps of a variety of different objects. A rapidly-emerging 

quantitative body of literature had come to support a widely held conclusion hitherto only 

qualitatively surmisedðnamely, that the control of movement was indeed constrained to a 

tractably simplified continuum comprising just a handful of dimensions. Thus, an effector as 



68 

complex as the hand, which would require many ñknobsò to control if every possible hand posture 

were accessible, was simplified such that only a subset of these postures could be achieved, 

therefore requiring fewer knobs. 

 

However, a number of limitations and conflicting results are evident in the body of 

literature on synergies (Tresch & Jarc, 2009). Foremost, behaviors used to assess the presence of 

synergies can often be very simple, such as two-dimensional planar reaches. When inferring 

 

Figure 2-1. Rectified low-pass filtered EMG activity (filled gray traces, a) is estimated (black traces, a) using 

combinations of patterns defined along three muscle synergies (b). A low-dimensional continuum appears at first 

glance to be a sufficient explanation of muscle activity. Figure from dôAvella, Saltiel, & Bizzi, 2003. 
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synergies from a low-dimensional behavior, it becomes difficult to disentangle constraints 

imposed by the task from putative ones imposed by the neural control system. Moreover, these 

synergies are inferred using PCA or a similar method which simply aims to explain a threshold 

amount of variance in the original data. While reasonable, it may not capture the aspects of hand 

movements that are most useful for discerning different object and grip types. When assessing 

synergies in terms of their ability to separate among numerous different object grip types rather 

than raw variance per se, the apparent dimensionality and therefore complexity of the multivariate 

grasp continuum appears to increase (Santello et al., 1998). As such, control of movements may 

reside on a higher-dimensional continuum than synergy based approaches typically describe. 

Conclusions 

The hand is a complex effector comprising numerous degrees of freedom. In light of this 

complexity, researchers have attempted to reduce prehensile behavior to a tractably small set of 

features such as the power-precision continuum of grip types, hand aperture, and distinct reach 

and grasp components. These concepts continue to dictate the discussion of hand shaping behavior 

even as more sophisticated methods have permitted the collection and analysis of increasingly high 

dimensional data. Indeed, these quantitative methods originally came to the conclusion that the 

neural control of movement was constrained to a small number of motor primitives, or ñsynergiesò, 

offering quantitative physiological support for dimensionality reduction as a fundamental strategy 

of motor control rather than merely an operation of convenience performed by investigators of 

motor behavior. However, a number of limitations in the study of such synergies cast doubt on just 

how simplified and low-dimensional the neural control of grasp truly is. 
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The cortical motor control of the arm and hand 

The basis of a neural ñcodeò for movement 

Since the work of Sherrington (Sherrington, 1910), the notion of a central motor system 

defined by an intricate web of divergent outputs onto peripheral effectors has been established. 

The complexity inherent to such a massively divergent scheme of innervation as far downstream 

as spinal interneurons, which is likely further exacerbated at the level of motor cortex, has inspired 

motor cortical neurophysiologists for decades to attempt to collapse this detail into a simple, 

tractable ñcodeò for movement parameters. Such efforts parallel those seen in attempts to collapse 

the anatomical complexity of the hand into a low-dimensional continuum of different grip types. 

They also parallel attempts to explain the neurophysiological consequences of massively 

convergent inputs onto visual and somatosensory cortical sensory neurons in terms of a simple 

ñcodeò for particular stimulus features (Pack & Bensmaia, 2015) such as neural coding of object 

orientation and edge detection. As we will soon see, however, attempts to impose a single over-

arching ñcodeò on the activity of M1 cortical neurons has proven more elusive than attempts to do 

so in sensory cortices, leading to no small amount of controversy (Omrani, Kaufman, Hatsopoulos, 

& Cheney, 2017).  

Somatotopy as an organizing principle? 

Among the first set of such codes considered to be supported by motor cortex is the notion 

of a spatial, somatotopic ñmapò of different parts of the body, wherein the numerous divergent 

projections of neurons in M1 are presumed to be constrained to some spatially-limited region of 

the body in a manner predicted by their location in cortex itself. The most famous early attempt to 

systematically infer a detailed somatotopic map of primary motor cortex (M1) came from Penfield 

and Boldrey (Penfield & Boldrey, 1937). Their work revealed, through electrical stimulation of 
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the surface of M1 and the resultant twitches of the body, a coarse somatotopic organization of M1 

that paralleled that of cortex posterior to the central sulcus, which he also mapped by electrical 

stimulation and asking patients the locations of resultant sensations. Subsequent work probing for 

more detail in this motor somatotopy, however, reveals an idiosyncratic map featuring overlapping 

representations of the digits (Schieber & Hibbard, 1993) (Figure 2-2A). In contrast, somatosensory 

cortex remains clearly somatotopic even at this level of detail: A reliable medial-to-lateral 

progression of cortical neurons with receptive fields (RFs) in digits progressing from 5 to 2 and 

then the thumb is seen (Pons, Garraghty, Cusick, & Kaas, 1985). 

 

One set of attempts to reconcile the idiosyncrasies of the detailed M1 somatotopic map 

include re-defining the types of somatotopic progressions one might expect to see. For example, 

whereas somatosensory cortex represents along its own medial-lateral axis portions of the arm and 

hand progressing from proximal to distal, the M1 representation of the arm and hand appears to 

radiate from a focal point that represents the fingers to progressively more proximal arm effector 

 

Figure 2-2. (A) Mapping the preferred digit of different locations on a patch of motor cortex (shown reconstructed 

on the left) gives rise to a lack of clear somatotopic separation among the digits (right, different colors represent 

different preferred digits). Figures from Schieber & Hibbard, 1993. (B) At a more coarsely-grained level of detail, 

separation of arm and hand representations in M1 appears to follow a general pattern of an arm-coding (Forelimb 

P) ñhorseshoeò surrounding a digit-coding (Forelimb D) nucleus. Figure from Park et al., 2001. 
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representations in surrounding patches of M1 (Figure 2-2B) (Kwan, MacKay, Murphy, & Wong, 

1978; Park, Belhaj-Saf, Gordon, & Cheney, 2001), albeit with a region of considerable overlap in 

between. Another attempt to reconcile these idiosyncrasies has been to forego the notion of 

somatotopy altogether: Work by Graziano and colleagues using long-form stimulation trains 

(Graziano, Aflalo, & Cooke, 2005), as opposed to the extremely brief stimuli typically applied to 

minimize the spread of current when attempting to determine a precise somatotopic map of M1, 

seemed to result in reliable spatial segregation of qualitatively different and behaviorally-relevant 

movement types to form what was dubbed an ñethological action mapò. A number of issues with 

this approach, ranging from the necessarily coarse resolution of such long-form stimulation and 

the qualitative nature by which movements were clustered, have rendered this a controversial take 

on the organization of M1. 

In summary, a coarse somatotopy in M1 appears to be present. However, at the level of 

detail needed to understand hand or even arm movements in isolation, M1 somatotopy begins to 

break down. Attempts to impose structure on the idiosyncrasies of M1 somatotopy at this level of 

detail are few in number and often contentious. 

A more detailed code for M1: time-varying limb forces or kinematics? 

In addition to seeking a whole-body map in M1, a vast body of literature has sought more 

detail: In particular, looking in the time-varying spiking activity of M1 neurons for a correlate with 

the precise time-varying forces or kinematics generated in the target limb. The vast majority of 

this literature focuses on muscle activations, forces, and kinematics pertaining of the proximal 

limb rather than the hand due to its greater experimental tractability. One of the earliest attempts 

to discover the code in M1 was undertaken by Evarts (Evarts, 1968). In this line of research, Evarts 

found that the force output at the wrist was most reliably related to M1 spiking activity than were 
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the wrist kinematics. Applying a constant weight acting against wrist flexion or extension 

systematically changed firing rate profiles in M1 neurons despite little change in wrist kinematics. 

However, non-monotonic relationships between force and firing rate and the incidence of some 

units that appeared to be preferentially responsive to wrist kinematics muddied the waters. 

In a subsequent, highly influential study, Georgopoulos and colleagues (Georgopoulos, 

Kalaska, Caminiti, & Massey, 1982) found cosine-tuned neurons for movement direction in a 

monkey performing reaching movements constrained to a plane and interpreted this as evidence 

for the kinematics coding. In subsequent experiments, it was shown that movement direction could 

be reliably read out from the activity of these neurons (based on a ñpopulation 

vectorò)(Georgopoulos, Schwartz, & Kettner, 1986). Later work also found that firing rates 

appeared to also be monotonically related to movement speed (Moran & Schwartz, 1999) and that 

the imposition of bias forces, which dissociated movement direction from the forces used to 

generate them, appeared to have a limited effect on neuronsô preferred directions (Georgopoulos, 

Ashe, Smyrnis, & Taira, 1992). These experiments differed in important ways from those in the 

aforementioned force-coding studies: First, reaches involved muscle forces and torques about both 

the shoulder and elbow joints, not just the wrist; moreover, directional tuning curves involved 

considerably more averaging, over a large time window, across trials, and even across neurons. 

The debate over whether forces or kinematics are represented in M1 continues to this day. 

The kinematic line of research has received more attention, and as such has been elaborated upon 

with observations of preferential encoding of limb velocity over limb position in M1 (Paninski, 

Fellows, Hatsopoulos, & Donoghue, 2004; Wang, Chan, Heldman, & Moran, 2007). However, 

preferred directions have been known to change direction during the execution of movement, 

which necessarily challenges the interpretation of M1 kinematic coding in terms of simple cosine-
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tuned neurons. Researchers have proposed that this may be evidence of preferential force coding 

instead (Sergio, Hamel-Pâquet, & Kalaska, 2005), evidence of the encoding of complex kinematic 

trajectories (Hatsopoulos, Xu, & Amit, 2007), or even evidence that such apparent codes for 

movement are idiosyncratic consequences of rotational structure that gives rise to M1 activity in 

the first place (Churchland et al., 2012).  

Coordinate frames in motor control 

Another line of such research aims to describe the relationship of M1 to muscular force in 

more detail, in particular recording from EMGs across many forearm muscles giving rise to net 

forces or movements of the wrist. This line of investigation made use of spike-triggered averaging 

to identify neurons with ñfacilitativeò or ñsuppressiveò actions on muscles (Cheney, Fetz, & 

Palmer, 1985; Fetz & Cheney, 1980). A consistent theme in this line of work is that antagonist 

pairs of flexors and extensors are frequently reciprocally facilitated and suppressed by M1 neurons, 

with outputs to forearm flexor muscles in particular seeming to be the preferred targets of 

suppressive outputs from M1.  

One may be inclined to wonder whether an ñintrinsicò muscle-centered code, where 

reciprocal agonist-antagonist innervation motifs rather than the net forces or movements they 

produce, may be a more appropriate coordinate frame in which to conceptualize M1 outputs. Work 

by Kakei, Hoffman, and Strick (Kakei, Hoffman, & Strick, 1999) aimed to answer the emerging 

question of whether an intrinsic ñmuscleò coordinate frame or an extrinsic ñCartesianò coordinate 

frame was most appropriate to explain M1 spiking activity. They were able to dissociate set 

correlations between the two coordinate frames and found separate clusters of preferentially 

intrinsic and preferentially extrinsic neurons are present in M1. Other attempts to dissociate 

intrinsic and extrinsic coordinate frames have advanced nuanced differences in interpretation 
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(Morrow, Jordan, & Miller, 2007). Regardless, the common thread is that M1 includes neurons 

that operate in both extrinsic and intrinsic coordinate framesðit is not, in fact, a monolith with a 

single uniform code for movement. 

The hand as potentially a special case of motor control 

Thus far, we have discussed the controversies of motor control as they pertain to the control 

of reaching and wrist movements. However, some evidence suggests that motor control of grasp 

and behaviors involving the hand might constitute a special case of motor control, subject to 

different principles. First, spinal lesions have different effects on monkeysô ability to reach and 

grasp (Lawrence & Kuypers, 1968a, 1968b). Moreover, anatomical studies have revealed 

important differences between the caudal and rostral subdivisions of M1 (Rathelot & Strick, 2009). 

Importantly, the caudal subdivision contains a much larger density of direct cortico-motoneuronal 

projections, a preponderance of which are sent to extrinsic and intrinsic muscles controlling 

movements of the digits. In addition, as mentioned above, while M1 is not as clearly 

somatotopically organized as is somatosensory cortex, the arm and hand representations do seem 

to be somewhat segregated in M1 (Kwan et al., 1978; Park et al., 2001). Finally, somatosensory 

feedback seems to play a greater role in grasp than in reaching. In particular, lesions of 

somatosensory and motor cortices appear at first glance to have similar effects on gross motor 

behavior, the most notable distinction being the reduction in overall grip strength resultant of M1 

inactivation and preferentially abolished coordination among the digits with somatosensory 

cortical inactivation (Brochier, Boudreau, Paré, & Smith, 1999).  

In addition to the anatomical and physiological evidence of a separate representation of 

arm and hand movements, intuitively the arm and hand support qualitatively different functions. 

Indeed, while rotations about the shoulder and elbow joints are required to transport the arm to a 
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target position, movements about the wrist and interphalangeal joints are generally coordinated to 

shape the hand to an object to establish contact points appropriate for object manipulation. The 

arm thus places the hand in some location in three dimensional space, whereas the hand must be 

formed into a specific configuration, two goals that would seem to require markedly different 

computations. 

M1 response properties during grasp 

Among the first systematic studies of the motor control of grasp was undertaken by Smith 

and colleagues in 1975 (Smith, Hepp-Reymond, & Wyss, 1975), who found that during a ramp-

and-hold isometric grip force behavior, motor cortical neurons tend to increase their firing rates 

with respect to the level of force applied, similar to what Evarts noted in the wrist. Subsequent 

work into precision grip mirrored the progression of wrist- and arm-movement study, in particular 

expanding into EMG recordings and spike-triggered averaging to work within a more detailed 

intrinsic coordinate frame. An emergent theme of this line of study is that individual M1 neurons 

appear to simultaneously facilitate and suppress multiple muscles, although the population of 

muscles facilitated was surprisingly small, with muscle fields generally comprising roughly 2 

muscles that was largely invariant to the number of muscles recorded (Buys, Lemon, Mantel, & 

Muir, 1986; Mckiernan, Marcario, Karrer, Cheney, & Kar, 1998). This was taken as evidence that 

M1 control of the hand in particular was well-suited to individual movements of digits by virtue 

of such apparently small muscle fields. However, it should be noted that the behavioral repertoire 

of the hand under study was typically fairly simple, either spanning just two grip typesðñpowerò 

and ñprecisionò, the latter of which only involved the thumb and index finger (Lemon, Mantel, & 

Muir, 1986)ðor involving grasps restricted to the apertures of the wells of a Klüver board 

(Mckiernan et al., 1998).  
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Research into the neural signatures of these more varied grasping behaviors is a fairly 

recent development. Varieties of different grasps give rise to a variety of different patterns of EMG 

activity (Brochier, Spinks, Umilta, & Lemon, 2004) and M1 activity (Umilta, Brochier, Spinks, & 

Lemon, 2007) specific to each object (Figure 2-3). One may intuit from these results that such 

variety arises from different preferences for specific small groups of muscles. However, work in 

another intrinsic coordinate frame, namely in terms of joint angles, seems to find that individual 

neurons exert control over the movements of far more than two joints. The best explanation of the 

sort of control exerted by M1 neurons, as assessed during a variety of different grasps, seems to 

be in terms of combinations of joint movements spanning multiple digits and indeed the entire 

hand (Saleh, Takahashi, Amit, & Hatsopoulos, 2010; Saleh, Takahashi, & Hatsopoulos, 2012). 

 

 

Figure 2-3. Firing rates of two different M1 neurons (left and right) during reach-to-grasp of different objects (far 

left) centered on the onset of the reach, demonstrating just a small sliver of the variety of hand-related responses 

in M1. Figure from Umilta, Brochier, Spinks, & Lemon, 2007. 
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Synergies to simplify hand control 

Given the complexity of the hand as an effector, some have questioned whether the brain 

can handle this complexity, suggesting instead that hand movements exist in a lower dimensional 

space. In particular, ñmotor primitivesò or ñmuscle synergiesò have been put forth as a simplified 

description of motor behavior in general, including grasping, which should then be reflected in the 

representation of hand movements in M1. Indeed, stimulation of M1 fails to reveal fractionated 

representations of digits, instead rise to movements of multiple digits at once. Moreover, the multi-

muscle response properties of M1 during grasp could perhaps be reflective of a simpler control 

scheme defined in terms of just a few multi-muscle synergies. 

In support of these ideas, M1 stimulation generates combined activations of muscles that 

seem constrained to the low-dimensional space inferred from recorded reach-to-grasp behavior 

(Overduin, dôAvella, Carmena, & Bizzi, 2012). Moreover, time-varying firing rates of ensembles 

of neurons in cortex appear to be strongly correlated to the synergies of reach-to-grasp movements 

(Overduin, dôAvella, Roh, Carmena, & Bizzi, 2015). 

These studies suffer from limitations that undermine the conclusions, however. The first is 

the common charge levied against such studies of muscle synergies, namely that the task constrains 

the complexity of both the movements and the underlying neuronal representation. Another 

critique is similar to most synergy-based literature, namely that variance explained is a 

questionable criterion to understand neural constraints. This critique is exacerbated by the presence 

of two separable behaviorsðreach and graspðwhich could give rise to a single axis of variance 

that dwarfs more subtle sources of behavioral variance such as reach direction and grip type. 

Finally, research into M1 coding of synergies has typically involved the application of smoothing 

and trial-averaging of neural and kinematic data, which obscures much of the fine structure in the 
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response and preserves only its coarse structure. With these limitations in mind, questions remain 

as to whether M1 preferentially encodes synergies. In fact, recent work has suggested that the 

discharge patterns of M1 cortical neurons are no better explained using synergies of hand 

movement rather than individual digits (Kirsch, Rivlis, & Schieber, 2014; Mollazadeh, Aggarwal, 

Thakor, & Schieber, 2014), which are themselves poor predictors of M1 spiking. 

Conclusions 

How M1 controls the arm and wrist remains elusive. The most consistent feature in the M1 

coding literature is that a variety of different kinematic and force parameters can be extracted from 

patterns of activity in populations of M1 neurons. Single neurons reveal a mosaic of different 

responses idiosyncratically related to different aspects of muscle activity, movement, and forces, 

and teasing apart a single ñpreferredò reference frame defining M1 responses seems impossible. 

Nonetheless, at least one important feature of M1 responses has been revealed: within a strictly 

kinematic reference frame, the velocity of the limb is preferentially encoded over the position of 

the limb. An important element of motor control of the arm and hand, however, is that the control 

of the two appears to be mediated by physiologically separable mechanisms, probably due to their 

fundamentally different biomechanical properties (inertial mass, e.g.) and functions (transport vs. 

object manipulation). It is fair to say that there are more questions than answers when it comes to 

our understanding of the neural basis for hand movements. 
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CHAPTER 3: 

The structure of hand shaping behavior and its population-level neuronal representation 

Introduction  

Given the surface-level complexity of the hand and its neural representation, we sought to 

answer the question of whether or not we could find structure in that complexity. Indeed, the 

number of objects we have monkeys grasp, and consequently the number of grasps they perform, 

span a gamut of hand shaping behaviors not frequently seen before. As such, simple structure in 

grasping behavior that has previously been reported may elude the hand in the broader contexts of 

hand movements that we study here. In particular, we analyze the data to ascertain 1) the degree 

to which different hand shapes and patterns of neural activity manifest for different objects, 2) the 

time course over which hand shapes and neural signatures thereof adopt object-specific states, and 

3) the complexityñi.e., underlying dimensionalityñgoverning both hand shape and the neural 

representation thereof. Overall, we find that hand shaping behavior is indeed not as simple as has 

been previously reportedði.e., time-varying hand kinematics do not merely span a two-

dimensional continuum. However, the time evolution of hand shaping and its neural representation 

mirrors that previously reported. Moreover, the distinctness of grasps on an object-by-object basis 

reveals that despite their complexity, the kinematics of the hand and the neural representation 

thereof are indeed structured in a principled manner. 

Data are complex yet structured 

To begin to visualize structure in hand-shaping kinematics, we analyze the time-varying 

angles of the joints of the hand during grasps of different objects (Figure 3-1A-B). Visualizing 

grasping behavior on a reduced-dimensional continuum, in this case the angles of three particular 

joints, reveals readily-discernable separation between hand shapes adopted for some objects. 
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Moreover, this separation among objects can be observed as early as maximum apertureðin other 

words, well before object contact is made, the shape of the hand has begun to conform to an object-

specific state. Nonetheless, we note that some objects tend to ñclusterò together on this low-

dimensional continuum, which will prompt the use of more principled methods below to identify 

further object-specific structure in the kinematics. 

 

 

Figure 3-1. Different objects give rise to a variety of different kinematics and neural activity. (A) A phase plot of 

three joint angles (flexion_l being wrist flexion angle, pro_sup_l being wrist supination angle, and 2mcp_flexion_l 

being second metacarpal flexion angle) during one monkeyôs grasp of two different objects. Each trace represents 

kinematics during a single grasp trial. Faded triangles (ñplayò symbols) indicate joint angles 750ms prior to 

maximum aperture, well before movement began. Dark squares (ñstopò symbols) indicate joint angles 750ms after 

maximum aperture, well after object contact where the hand adopted its final posture. Shown below the phase plot 

is a series of still frames of the skeletal model of the hand for one presentation of each object, illustrating the 

progression of the handôs conformation from a common ñstartò state to a fully differentiated ñgraspò state. (B) 

Separate plots of the same joints against time, this time for all objects. Each colored trace gives the mean 

kinematics for a grasp of a particular object. Shaded regions indicate ±1 S.E.M. at each sample time. (C) Peri-

event time histograms (PETHs) for three select M1 and proprioceptive somatosensory cortical neurons for all 

objects. PETHs are constructed by aligning each trial to the time of maximum aperture, calculating the average 

spike count in each 10ms bin on a per-trial basis, then smoothing the average trace with a centered Gaussian kernel 

with 35ms width parameter. Each colored trace gives the mean firing rate during grasping of a particular object. 

Shaded regions indicate ±1 S.E.M. at each sample time. 
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Figure 3-2. Sample PETHs and PC reconstructions from neurons across all areas of cortex from which we record. 

These show the temporal evolution of firing rates with respect to maximum aperture and the separation of firing 

rate patterns as a function of object identityñand presumably as a function of the corresponding grasp 

conformation. All PETHs are trial-averaged firing rates of neurons from Monkey 4 in response to different objects, 

sorted on a neuron-by-neuron basis, computed using similar trial averaging and smoothing procedures as those 

PETHs in Figure 3-1C. Note that the first 3 PC reconstructions preserve object-dependent variance for a few select 

neurons, but often fail to capture this structure for a large number of them. 
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The corresponding time-varying firing rates in sensory and primary motor cortices reveals 

a similar separation of objects at roughly the time of maximum hand aperture (Figure 3-1C) (Figure 

3-2). A number of themes emerge from the peri-event time histograms (PETHs) of these 

sensorimotor cortical neurons recorded across different monkeys: 1) neuronal responses often 

show preferentially high firing rates for one set of objects over other sets of objects; 2) response 

latencies with respect to a kinematic event such as maximum aperture can also vary on an object-

by-object basis; and 3) neurons frequently have activity patterns whereby increased or decreased 

spiking activity relative to baseline is sustained for several hundreds of milliseconds following the 

initial ramp in firing rate. Collectively, these suggest that these neurons are indeed responding 

during the task in a manner that varies with different hand shaping trajectories. 

Control of hand posture is higher-dimensional than previously thought 

Hand postures adopted during grasp are typified by high correlations among joints. Indeed, 

especially among the fingers, several pairs of joints in our kinematic data are highly correlated 

(Figure 3-3). To extract potentially meaningful canonical ñEigen-graspsò from these datañc.f. 

other work (Turk & Pentland, 1991) performing similar dimensionality reduction of face data to 

obtain ñEigen-facesòñwe use principal component analysis (PCA) to find which combinations of 

joint movements best explain the total variance of whole-hand movements.  

When using PCA, we find that roughly 6-9 dimensions are, on average, required to explain 

90% of the variance among hand postures adopted during grasp (Figure 3-4A), with 5-8 

dimensions appearing to be sufficient to reach this threshold on a monkey-by-monkey basis 

(Figure 3-5A). This figure is on the same order of magnitude as has previously been reported for 

comparably diverse hand movements (Ingram, Körding, Howard, & Wolpert, 2008; Marco 

Santello, Flanders, & Soechting, 1998, 2002; Thakur, Bastian, & Hsiao, 2008). Note that this 
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Figure 3-3. Kinematic correlation matrices. The absolute values of correlations among joint angular coordinates 

for (A) Monkey 1, (B) Monkey 2, (C) Monkey 3, and (D) Monkey 4. Correlations are assessed at zero lag, and 

the order of joints is determined for each monkey with hierarchical clustering so that large groups of highly 

correlated joints can better be visualized. Joint angular coordinate key: flexionðflexion or extension (ñpitchò) of 

the wrist joint | deviationðulnar or radial deviation (ñyawò) of the wrist joint | pro_supðpronation or supination 

(ñrollò) of the wrist joint| elbowðelbow joint | 1ï5ðdigits 1 through 5, respectively | CMCðcarpometacarpal 

joint | mcpðmetacarpophalangeal joint | ipðinterphalangeal joint (digit 1 only) | pmðproximal interphalangeal 

joint | mdðdistal interphalangeal joint | _flexion, _flex, _extðflexion or extension (ñpitchò) of the joint preceding 

the underscore | _abd, _abductionðabduction or adduction (ñyawò) of the joint preceding the underscore | 

_supinationðpronation or supination (ñrollò) of the joint preceding the underscore. 
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previous work will often report even lower-dimensional structure by virtue of a different 

benchmarkðe.g., 80% of the variance explained, or seeking an ñelbowò in the PCA scree plot. 

 

Figure 3-4. Analysis of kinematic structure and dimensionality. (A) Cumulative scree plot from principal 

component analysis (PCA) of joint postures, averaged across all four monkeys. The mean CVE first crosses the 

90% boundary at 6 principal components (PCs), but more conservatively, the circled point indicates the minimum 

number of PCs (9) for which the average CVE was significantly greater than 90% (one-tailed one-sample t-test, 

T(3) = 7.023, p = 2.965e-03, significance assessed across all 30 points on the abscissa with the Holm-Bonferroni 

method of multiple comparisons, FWER < 0.05). The cumulative scree plot is truncated at 12 components but a 

total of 30 components are present. Vertical lines at each point indicate ±1 S.E.M. across monkeys. (B) Cross-

validated (leave-one-out) accuracy of object classification (multi-class linear discriminant analysis, i.e., LDA) 

based on joint angular kinematics at different task epochs, averaged across monkeys. Vertical lines at each point 

indicate ±1 S.E.M. across monkeys. Dotted blue lines indicate classifiers using only the first 9 PCs, compared with 

solid blue lines that show results of classifiers using the full dimensionality of hand kinematics. The shaded regions 

indicate the mean difference ±1 S.E.M. between the two classifiers. As this difference arises from paired data 

(each monkey has one classifier of each type), its own standard error is indicated with the darkness of the shaded 

region. The darkest region indicates the mean difference minus 1 S.E.M., and the lightest region indicates +1 

S.E.M. When pooling across epochs, the cross-validated full kinematic classifier more accurately determines the 

object presented from out-of-sample kinematics than the one using only 9 PCs (two-tailed paired-samples t-test, 

T(59) = 9.136, p = 6.773e-13). 
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Moreover, dimensions found using PCA correspond to ñEigen-graspsò that bear qualitative 

similarity to those found in the aforementioned work (Figure 3-6). The naïve assumption 

underlying inferences of the dimensionality of the hand using such a 90% cumulative variance 

criterion is that the majority of the variance in hand movements constitutes motor ñsignalò under 

volitional control, with the remaining 10% of variance of hand movements reflecting motor noise 

not under volitional control. 

 

 

Figure 3-5. Analysis of kinematic structure and dimensionality by monkey. (A) Cumulative scree plots after 

applying principal component analysis (PCA) to the joint angular kinematics of each monkey. These scree plots 

were averaged across monkeys to obtain the plot in Figure 3A. Circles indicate the number of components at which 

the cumulative scree plot for each monkey exceeds 90% of kinematic variance explained. These traces are 

averaged to obtain the trace in Figure 3-4A (B) Accuracy of kinematic object classification (as in Figure 3B) for 

each monkey at different task epochs. Again, these accuracies were averaged across monkeys to obtain the mean 

accuracy curve in Figure 3B. Solid lines indicate full-kinematic accuracy; dashed lines, the accuracy of classifiers 

using only the first few dimensions to explain at least 90% of kinematic varianceðthe same number of components 

as the corresponding circle in (A). Vertical lines at each epoch indicate ±1 S.E.M. of classification accuracy. These 

tracesñone from each monkey, each given equal weightñare averaged to obtain the averaged time course of 

classification accuracy in Figure 3-4B. 
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We note that for standardized kinematic data, PCA reveals that more dimensions, 10-17, 

are required on average to explain 90% of the variance (Figure 3-7), which is considerably larger 

than the aforementioned consensus. Although the fact that PCA is not scale-invariant is well 

understood, this near-doubling of the number of dimensions suggests that previous attempts to 

quantify the dimensionality of hand movements may very well have underestimated it. Indeed, 

traditional PCA methods may merely reflect a vast disparity in the ranges of motion among 

individual joints of the hand rather than the limited repertoire of co-recruitments of those joints. 

 

 

Figure 3-6. Visualization of ñEigen-graspsò obtained from principal component analysis (PCA) applied to the 

joint angular data of Monkey 2. Each row depicts a different Eigen-grasp, with a progression from left to right 

through that Eigen-graspôs range of correlated joint angular movements. Although qualitative interpretations of 

these ñEigen-graspsò could be inferred, we find that such PCs that merely explain the largest fraction of variance 

fail to capture reliable yet subtle inter-object differences in grasp postures. 
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We then use patterns of movement spanning multiple joints to obtain a principled estimate 

of just how separated object-specific grasps are from one another. In particular, we use multi-class 

linear discriminant analysis (LDA) to classify objects on the basis of the hand shapes adopted  

during grasp. Hand postures can be used to correctly identify one of 35 objects with over 60% 

peak accuracy on average (Figure 3-4B), and with up to 90% accuracy in one monkey (Figure 3-

5B). Moreover, classification accuracy ramps gradually to this peak accuracy throughout the trial. 

Taken together, these results reiterate that the hand gradually conforms to an object-specific 

posture well prior to contact. However, time-varying classification accuracy using only the first 9 

kinematic PCs is significantly lowerðroughly 50% peak accuracy on average (Figure 3-4B)ð

than time-varying classification accuracy using the full kinematics. This seems to indicate that 

volitional control over the shape of the hand spans more dimensions than naïve interpretations of 

 

Figure 3-7. Cumulative scree plots for PCA run on standardized kinematic data (A) on a monkey-by-monkey 

basis and (B) averaged across monkeys. Apparent dimensionality increases when assessing kinematic 

dimensionality using PCA on standardized data, with individual-monkey dimensionalities spanning 8-13 

dimensions (A) and monkey-averaged dimensionalities spanning 10-17 components (B). Significance of the 

second point in (B) is assessed as in Figure 3-4A. 
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PCA and its resultant ñEigen-graspsò would suggest. In particular, the 10% of hand movement 

variance not explained by the first 9 PCs does not merely reflect motor noise. 

Neural responses occupy a high-dimensional space 

The correlations among neuronsô firing rates are smaller (Figure 3-8) than are those among 

different joint angles in the kinematics (c.f. Figure 3-3). Moreover, when using PCA, we find that 

roughly 50% of all dimensions from which we record in any given sensorimotor area are needed 

to explain 90% of the variance in those neural responses (Figure 3-9A), compared with as little as 

20% of the number of kinematic dimensions needed to reach a similar benchmark. Standardized 

neural data are even higher-dimensional, with roughly 80% of neural dimensions required to 

explain 90% of total variance (Figure 3-10). These suggest that neural responses during grasp 

appear to be even higher-dimensional than grasp kinematics, rather than being constrained to 

representations of kinematics along just a few axes. 

Indeed, this high-dimensional structure of the neural response is seen, for example, in the 

limited ability of the first few PCs of neural activity to reconstruct PETHs (Figure 3-2). When 

investigating PETHs filtered by such a compressing auto-encoder, important features 

distinguishing one object from another in several neuronsô PETHs are not so readily discernable, 

corroborating other results (Figure 3-9) showing the necessity of including high-order PCs to 

explain 90% of the neural variance. 

To quantify the structure in these high-dimensional population responses, we classify 

object types based on the neuronal activity recorded from neurons pooled across recording 

sessions. Neural object classifiers computed for each area reach peak accuracies over 50% (Figure 

3-9B), comparable to previously-reported classification accuracy using only M1 data prior to  
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attempts to cluster objects into similar ñgrasp typesò (Schaffelhofer, Agudelo-Toro, & 

Scherberger, 2015). Note that the classifiers we use simply compute mean rate over a 500ms bin, 

a large bin size that we note to be necessary to reach this level of classification accuracy. Neural 

 

Figure 3-8. Neural correlation matrix heatmaps. Rows of heatmaps indicate the cortical area from which neurons 

were recorded. Columns of heatmaps indicate the monkey from which each correlation matrix was obtained. 

Correlation matrices are signal correlation matrices; in other words, firing rates are averaged across trials for each 

object after aligning to object contact, and the correlations of these firing rates extending from 500ms to 10ms 

prior to contact are represented as the color in each heatmap. Trial averaging was done to permit pooling of 

neurons across sessions. Only heatmaps with at least 5 neurons are shown. 
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classification gradually increases in accuracy throughout the trial, indicating that the neural 

representation contains object-specific signals prior to object contact, just as the shape of the hand 

differentiates on an object-by-objet basis prior to object contact. Moreover, when extrapolating 

beyond our sample size, neural classifiers can reach accuracies comparable to kinematic classifiers 

with as few as 177 neurons (Figure 3-9C). Therefore, neural population responses are high-

dimensional and strongly object-dependent, paralleling the object-specific structure of the hand 

kinematics.

 

 

Figure 3-9. Analysis of neural structure and dimensionality. (A) Cumulative scree plot from PCA of joint postures 

and neural data, averaged across all four monkeys and plotted in terms of the fraction of the total number of 

components recorded from any given monkey. We plot in terms of fraction of number of components because 

population sizes recorded from each area in each monkey vary to give rise to different raw apparent neural 

dimensionalities that nonetheless align when instead plotted in this manner. We see that only 20% of the kinematic 

dimensionality is needed for the mean CVE to reach 90%, whereas for the cortical data that fraction jumps up to 

40%. Each trace represents the interpolated cumulative scree plot as a function of the fraction of total number of 

components, averaged across monkeys. Shaded regions surrounding each trace give ±1 S.E.M. for each point of 

each interpolated trace. (B) Neural classification accuracy when aligned to different epochs of grasp. Spike counts 

are taken over a 500ms causal window, and neurons from different sessions recorded from different monkeys are 

pooled to obtain these classification accuracies. We note that peak cross-validated accuracy reaches roughly 50% 

in population sizes on the order of 100 neurons. Vertical bars give ±1 S.E.M. (C) A population of roughly 200 

proprioceptive or motor cortical neurons is required to reach mean peak classification accuracy (roughly 60%) of 

kinematic classifiers, as shown in Figure 3-4B. Single-monkey and pooled-monkey samples from each area are 

shown as each point on the plot. Logistic regression is fit to these data pooled across cortical areas. 
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Discussion & Conclusions 

We note that volitional control of the hand spans a higher-dimensional continuum than one 

would expect at first blush. Indeed, previous results seeking a simplified continuum of hand 

shaping behavior (M Santello, Flanders, & Soechting, 1998) come to a similar conclusion: 

Namely, that although a variance-explained criterion obtains an estimate of low-dimensional 

structure in hand shaping behavior, looking at the dimensions important for discerning different 

grasps adopted for different objects reveals higher-dimensional structure. We find that the apparent 

dimensionality of hand kinematics is also extremely sensitive to the ranges of motion of the 

constituent joints, thereby constituting another mechanism by which previous efforts to quantify 

the dimensionality of hand shaping may have been underestimated. 

 

We also note that the neural signatures of different grasps are also extremely varied. In 

fact, the apparent dimensionality of population neural data during hand shapingðestimated using 

a similar variance-explained criterionðexceeds that of the kinematics. This, combined with the 

 

Figure 3-10. Standardized cumulative scree plots averaged across 4 monkeys as a function of the fraction of the 

number of components needed to reach variance explained thresholds. Standardization acts to make neural 

responses appear even higher-dimensional, with roughly 80% of dimensions being required to explain 90% of the 

firing rate data. 
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fact that low-variance components of hand shaping have a substantial effect on object  

classification, supports the notion that volitional control of the hand spans a higher-dimensional 

space than previously reported. Despite the high-dimensional space in which population neural 

activity resides, it contains readily-discernable information about object identityðinformation that 

we will probe on a neuron-by-neuron basis in the following chapter. 

We conclude that the volitional control of hand kinematics is even more complex than it 

might seem at first, with subtle components of the kinematics being manipulated prior to object 

contact to give rise to object-specific hand shapes. Methodological concerns arise from prior 

investigations of the dimensionality of the control over grasp, all of which give rise to chronic 

underestimation of the dimensionality of hand control. Moreover, we note a variety of different 

neural responses to the adoption of different object-specific hand postures, which in turn betray a 

high-dimensional yet highly-informative representation of object-specific information. 
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CHAPTER 4: 

The features of the hand represented in somatosensory and primary motor cortices 

Introduc tion 

We have thus far found that grasps span a complex, high-dimensional space, as do their 

neuronal representations. However, we also note that both kinematics and neuronal representations 

are structured, as evidenced by distinct grasps adopted for different objects and their respective 

neural signatures. In this chapter, we seek to delve further into the nature of these cortical 

representations of grasp at the single-neuron level by determining the features of grasps that most 

consistently and strongly correlate with spiking activity. 

In particular, our goal is to quantify the response fields (RFs), or the sets of features of 

grasp that give rise to spiking responses of proprioceptive cortical neurons. Moreover, we aim to 

compare and contrast their properties with those of tactile neurons in somatosensory cortex, the 

latter of which have received more experimental attention. Tactile somatosensory cortical neurons 

ï i.e., neurons in Brodmannôs areas 3b, 1, and 2 with tactile RFs ï are known for having RFs that 

are small, typically comprising only a fraction of a phalanx (Nelson, Sur, Felleman, & Kaas, 1980; 

M Sur, Merzenich, & Kaas, 1980). Moreover, the vast majority of tactile cells in somatosensory 

cortex exhibit strong response modulation to transient events such as contact onset and offset 

(Darian-Smith, Sugitani, Heywood, Karita, & Goodwin, 1982; Pei, Denchev, Hsiao, Craig, & 

Bensmaia, 2009; Mriganka Sur, Wall, & Kaas, 1984). Sustained responses to sustained skin 

indentations are weaker and generally accompanied by strong phasic responses during contact 

transients (onset and offset of contact). 

At first pass, proprioceptive responses in somatosensory cortex differ from their tactile 

counterparts in two important ways. First, a sizeable proportion of proprioceptive cortical neurons 
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have larger RFs, comprising multiple joints of the arm and hand (Costanzo & Gardner, 1981). 

Second, a notable proportion of proprioceptive cortical neurons exhibit strictly slowly-adapting 

response properties. That is, neurons exhibit high-amplitude sustained responses to constant 

flexion or extension of a given joint; a subset even seeming to track posture with no apparent 

increased response during movement (Gardner & Costanzo, 1981). 

However, these results were qualitative and the stimulation protocolsðnamely ramp-and-

hold and low-frequency sinusoidal movements of isolated single joints or small groups of joints ï 

were very simple relative to the full range of naturalistic hand movements. Our data thus afford us 

a unique opportunity to rigorously quantify kinematic response properties of hand proprioceptive 

neurons, including RF size and relative sensitivity to posture and movement. In addition, given the 

richness of the kinematics as detailed in Chapter 3, these measures are inferred from and thus 

extend to a larger space of hand kinematics than in previous studies.  

Proprioception, in addition to being related to tactile sensation, is also tightly coupled with 

motor control. The strictly-proprioceptive Brodmannôs area 3a sends monosynaptic projections 

onto neurons in M1 (Huerta & Pons, 1990). In addition, proprioceptive acuity seems most likely 

to be subserved by muscle spindles (Gandevia, Mccioskey, Burke, Mcc, & Oskey, 1992; Proske 

& Gandevia, 2012) that respond to length changes of muscles and receive gamma motor input 

themselves (Prochazka, 2011). Furthermore, proprioceptiveðspecifically, kinestheticðacuity 

appears to be affected by whether or not tension in a relevant muscle is being actively and 

volitionally maintained (Gandevia et al., 1992). Indeed, the hand pre-shaping behavior studied thus 

far is volitional, thereby rendering it more directly similar to investigations of M1 response 

properties during hand shaping (e.g., Umilta, Brochier, Spinks, & Lemon, 2007) than 

aforementioned work on proprioceptive cortical responses to passively-generated movements. We 
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therefore not only compare M1 and somatosensory cortical response properties during volitional 

hand shaping, we also do so during passive manipulation of the handðto which M1 neurons are 

also known to respond (Hatsopoulos & Suminski, 2011)ðto investigate the degree to which such 

response properties are dependent on whether hand kinematics are imposed or generated 

volitionally. 

Results 

Neural encoding models predict firing rates 

To characterize a neuronôs RF, we fit encoding models (Figure 4-1A) to predict each 

neuronôs time-varying firing rates based on kinematic features on a trial-by-trial basis. 

Specifically, we fit cross-validated generalized linear models (GLMs) to reconstruct as faithfully 

as possible the spiking activity of each neuron from a linear combination of single-joint postures 

and movements. We additionally use LASSO regularization to minimize the number of spurious 

joint angular predictors of spiking activity. Model fits are assessed using a measure called pseudo-

R2, an analogue to the standard coefficient of determination that uses model deviances defined 

using a Poisson noise model rather than residuals under a Gaussian noise model (see Appendix A: 

Methods). Example peri-event time histograms (PETHs) for a neuron constructed from both 

measured and modeled spiking activity for three different objects (Figure 4-1B) illustrate the 

quality of fit of these models. We find pseudo-R2 values (Figure 4-1C) that are consistent with and 

often exceed the R2 values obtained for single-trial predictions of firing rates in proximal limb 

motor cortex (Table 4-1) (Aflalo & Graziano, 2007). The distribution of pseudo-R2 values we 

obtain therefore suggests that features of hand kinematics are indeed encoded by these neurons at 

least as strongly as proximal limb kinematics are encoded by M1. 
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Neurons encode coordinated combinations of joints spanning the entire hand 

First, we find that individual proprioceptive neurons do not exhibit straightforward single-

joint response fields (RFs). Instead, we find that neurons encode combinations of multiple joints. 

To quantify the number of joints tracked by each neuron, we count the number of joints needed to 

reach or exceed 90% of the squared norm of the multi-joint predictor weight vector (Figure 4-2A). 

 

Figure 4-1. Generalized linear model (GLM) procedure and performance. (A) Flow chart depicting how GLM 

uses kinematics (left) to create a weighted linear sum that is passed through a soft-plus nonlinearity (middle) to 

estimate firing rates (right, top) such that they are maximally likely given measured patterns of spiking activity 

(right, bottom). (B) Measured (dark) and predicted (light) peri-event time histograms (PETHs) for three different 

objects aligned to maximum aperture for an example neuron from area 3a. The pseudo-R2  of the GLM fit to this 

neuron is 0.49. Vertical bars at each point indicate ±1 S.E.M. (C) Pseudo-R2 values for each neuron with cross-

validated pseudo-R2 greater than or equal to 0.05. Neurons are pooled across sessions and across different 

monkeys. Bar heights correspond with the mean pseudo-R2 among such neurons in each area. Each point 

represents the pseudo-R2 of a different neuron. Error bars span ±1 standard error of the mean pseudo-R2 of each 

area. In area 2, the pseudo-R2 values of 41 out of 50 total units (82.0%) are reported, with the remaining 9 units 

being omitted due to having pseudo-R2 values lower than 0.05; in area 3a, we report 40 of 68 (58.8%); in caudal 

M1, 59 of 89 (66.3%); and in rostral M1, 107 of 147 (72.8%).  
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We find that, on average, roughly eight joints contribute to the spiking activity of each neuron 

(Figure 4-2B). 

Table 4-1. Multiple two-sample, equal-variance T-tests for significant differences between goodness-of-fit metrics 

seen in our hand data versus data from a previous report in proximal limb motor cortical neurons (Aflalo & Graziano, 

2007). These proximal limb cortical data were compared with our hand data due to the lack of trial-averaging of the 

firing rates prior to computing goodness-of-fit. Highlighted cells indicate significant differences (FWER < 0.05, 

Holm-Bonferroni method). Black squares indicate the lack of enough neurons from our hand dataset to make a 

comparison (Nhand < 5 with pseudo-R2 > 0.05). No mean pseudo-R2 value from any area or monkey in our dataset was 

significantly smaller than the mean pseudo-R2 seen in the previously reported M1 data to which it was compared. We 

assume comparability of pseudo-R2 to the traditional coefficient of determination in this analysis. We also only analyze 

the set of pseudo-R2 or R2 values in each dataset greater than or equal to 0.05, although this comprised the majority of 

our hand data (c.f. Figure 4-1) and similarly comprised roughly 65% of the previously reported M1 data. 

 Monkey 1 Monkey 2 Monkey 3 Monkey 4 

Area 2 

p = 5.558 e-01 

t(52) = 0.544 

E(ȹR2) = 8.995 e-03 

Nhand = 13 

 

p = 3.476 e-01 

t(45) = 0.949 

E(ȹR2) = 1.714 e-02 

Nhand = 6 

p = 1.241 e-03 

t(60) = 3.390 

E(ȹR2) = 6.327 e-02 

Nhand = 21 

Area 3a  

p = 4.608 e-06 

t(63) = 5.014 

E(ȹR2) = 9.890 e-02 

Nhand = 24 

 

p = 2.465 e-01 

t(52) = 1.172 

E(ȹR2) = 1.696 e-02 

Nhand = 13 

Caudal M1 

p = 1.068 e-04 

t(60) = 4.149 

E(ȹR2) = 7.449 e-02 

Nhand = 21 

p = 1.840 e-01 

t(57) = 1.3448 

E(ȹR2) = 1.985 e-02 

Nhand = 18 

 

p = 3.338 e-03 

t(55) = 3.068 

E(ȹR2) = 7.446 e-02 

Nhand = 16 

Rostral M1 

p = 9.997 e-01 

t(69) = 0.004 

E(ȹR2) = 4.642 e-05 

Nhand = 30 

p = 1.325 e-02 

t(62) = 2.550 

E(ȹR2) = 4.703 e-02 

Nhand = 23 

p = 4.758 e-06 

t(46) = 4.490 

E(ȹR2) =1.461 e-01 

Nhand = 7 

p = 3.883 e-13 

t(86) = 8.559 

E(ȹR2) = 1.860 e-01 

Nhand = 47 

 

We constructed a noisy simulated neural population with single-joint coordinate response 

fields to assess whether our GLMs yielded multi-joint RFs due to spurious correlations. Indeed, 

the large correlations among joint angles that we note in Chapter 3 could give rise to such spurious 

predictors that improve model fits, even if only one among a highly-correlated cluster of joints is 

truly encoded. A neuron from this population was constructed by first selecting a random joint 

angular coordinateðthe angle or angular velocity of a single axis of rotation of a single jointðto 

serve as the basis for its time-varying firing rates. Firing rates were simulated by computing 
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 ’ὸ ÌÏÇρ ÅØÐ ὼὸ , (4-1) 

where ’ὸ is the firing rate of the simulated neuron at time ὸ;  and  are parameters to be 

optimized, and ὼὸ is the value of the joint angular coordinate that drives the neuronôs response 

at time ὸ. All simulated neurons were constructed to have a latency of 0 relative to the kinematics  

governing their spiking activity. From these rates, spike counts at each time ὸ were drawn from a 

Poisson distributionðMATLAB poissrnd ðwith mean ’ὸ. 

 

Figure 4-2. Neurons track multiple joints distributed over the entire hand. (A) To count joints in response fields, 

we calculate the contribution of each joint to the regression weight vector and count the minimum number of joints 

required to account for 90% of the regression weight vectorôs squared norm (gray shaded area). Faded points 

indicate the cumulative contribution of the best N joints (abscissa) to the weight vector. Overlaid on these are the 

average cumulative functions across neurons in each area. (B) The average number of joints in a neuronôs response 

field (RF) is roughly eight. There is no difference among areas in terms of the number of joints in the average 

neuronôs RF. Individual points are single neuronal joint counts and can only take integer values; vertical dispersion 

of these points is artificially inserted to enhance visibility. Error bars in both plots indicate ±1 S.E.M. 
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We then drew a random neuron from which we actually recorded and took note of its 

overall mean firing rate and peak pseudo-R2. We then optimize  and ðMATLAB function 

fminunc ðsuch that the mean rate and pseudo-R2 of the simulated neuron, after simulating its 

rate-varying Poisson spike counts, were equal to those of the real neuron. In this manner, we 

attempt to match the firing rates and amount of noise in our simulations to those in our recordings, 

as those differences could give rise to a different susceptibility of the resulting GLMs to spurious 

correlations. 

We find that our GLMs reliably find the single joint coordinate predictor built into these 

noisy simulated neurons. In particular, the simulated neurons exhibited clear single-joint 

coordinate response fields in the vast majority (>70% of N = 162) of cases (Figure 4-3). We 

conclude that the overwhelming number of multi-joint RFs we find in our recorded neural 

population are unlikely to be the trivial result of our GLMs finding spurious predictors to explain 

noise in the firing rate data. 

Given the size of these multi-joint RFs, on average spanning eight joints, the typical RF 

must necessarily span multiple digits as A) the wrist and elbow comprise only one joint each, and 

B) no digit has more than four joints associated with it. Digit 5, for example, is associated with 

degrees of freedom at its distal interphalangeal joint, proximal interphalangeal joint, metacarpo-

phalangeal joint, and carpo-metacarpal joint. Thus, the large RFs we note in joint-space mirror the 

multi-digit proprioceptive RFs noted in previous work (Costanzo & Gardner, 1981). However, it 

is still possible that the multi-digit RFs we observe may be more readily explained in terms of 

large, multi-articulate muscles such as the common flexor and extensor muscles that insert a tendon 

into each digit (Schieber, 1995; Serlin & Schieber, 1993). 
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To address this concern, we ran a second set of GLMs that use musculotendon lengths and 

their derivatives, rather than the angles along joint axes of rotation and their derivatives, as 

predictors. We count the number of musculotendon complexes included in each RF using similar 

methods as those used for counting joints, namely by computing the sum of squared standardized 

regression weights across all predictors ï both length and rate of length change ï spanning all 

subunits of each muscle. For example, the flexor digitorum profundus (FDP) has a tendon that 

inserts onto each digit, each of which is modeled as a separate musculotendon unit in our kinematic 

model, but whose squared regression weights are added together to obtain a measure of the 

contribution of the entire FDP musculotendon complex to the RF inferred by GLM. We find that 

the number of musculotendon complexes in the typical RF counted in this way is equivalent to the 

 

Figure 4-3. Simulated neuron populations with single-joint angular coordinate RFs and properties of their GLM 

fits. Left. Histogram of the number of joint predictors contained in the RF inferred via GLM. Note that every 

simulated neuron responded to just a single joint angular coordinate by design, and that over 70% of these 

simulated neurons had a GLM RF that recovered this single-predictor RF in spite of inter-joint correlations in 

the kinematics and noise in the simulated spike counts. Right. Distribution of pseudo-R2 values of GLMs fit to 

these toy neurons, which is similarðby designðto the distribution seen in real cortical neuronal data. 
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corresponding number of joints (Figure 4-4). This is despite the fact that several muscles span 

multiple digits and therefore might have yielded GLMs of neural activity with fewer predictors. 

Neurons encode postures of the hand rather than its movements 

To assess the degree to which neurons encode hand postures vs. hand movements, we first 

analyze the pseudo-R2 values for postural and movement encoding models of each neuron. We 

find that pseudo-R2 values for postural models exceed those for movement-encoding models 

(Figure 4-5A) (paired-sample T-tests: TArea 2(40) = 5.790, p = 9.320 e-07; TArea 3a(39) = 8.116, p = 

6.639 e-10; TCaudal M1(58) = 7.037, p = 2.542 e-09; TRostral M1(106) = 10.76, p = 1.100 e-18).  

Nonetheless, encoding models that included both postures and movements yielded, on average, 

better fits than did models that included only postures (Figure 4-5B) (paired-sample T-tests: TArea 

 

Figure 4-4. The number of musculotendon complexes contained in each RF is no fewer than the number of joints 

in those same RFs (c.f. Figure 4-2B). The same neurons are assessed for musculotendon counts in their RFs using 

similar methods as described in Figure 4-2A for joint counts. Error bars indicate ±1 S.E.M. 
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2(40) = 6.581, p = 7.225 e-08; TArea 3a(39) = 7.875, p = 1.393 e-09; TCaudal M1(58) = 8.013; p = 5.823 

e-11; TRostral M1(106) = 11.61, p = 1.355 e-20), suggesting that neurons also carry movement-related 

signals.  

To further quantify the relative contributions of postures and movements, we computed the 

amount of unique deviance, rather than the total fraction of neural deviance, explained by posture  

and movement models. A measure of such ñunique deviance explainedò can be obtained by 

computing partial pseudo-R2 values for each neuron, 

 
ὴὙȿ

ὴὙȟ ὴὙ

ρ ὴὙ
ȟ 

(4-2) 

where ὴὙȿ is the cross-validated partial pseudo-R2 of predictor set X (postures or movements) 

after accounting for variance explained by predictor set Y (movements or postures, respectively); 

ὴὙȟ is the cross-validated pseudo-R2 of the GLM that uses both predictor sets to estimate firing 

 

Figure 4-5. Results of generalized linear models (GLMs) testing for preferential encoding of joint postures or 

movements. (A) The distribution of cross-validated pseudo-R2 values computed for GLMs using just joint angles 

(Postures) as predictors or using just joint angular velocities (Movements) as predictors. Each point represents a 

single neuron. (B) Same abscissa as (A), but with each point plotted against the pseudo-R2 value obtained using 

both posture and movement predictors on the ordinate. 
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rates; and ὴὙ  is the cross-validated pseudo-R2 of the GLM that uses only predictor set Y. This 

computation is modeled after similar partial coefficient of determination calculations for 

regression models that assume a Gaussian distribution of residuals. When analyzing these partial 

pseudo-R2 values (Figure 4-6), we observe that hand postures explain far more unique deviance in 

the neural data than do movementsði.e., the postural partial pseudo-R2 values are considerably 

larger than the movement partial pseudo-R2 values (paired-sample T-tests: TArea 2(40) = 5.465, p = 

2.662 e-06; TArea 3a(39) = 7.529, p = 4.074 e-09; TCaudal M1(58) = 6.056, p = 1.101 e-07; TRostral 

M1(106) = 9.931, p = 8.109 e-17). 

 

 

Figure 4-6. Partial pseudo-R2 of posture models on the abscissa against movement models on the ordinate. Faded 

points indicate individual neurons with peak pseudo-R2 (non-partial) of 0.05 of greater. Overlaid fully-saturated 

points are means over neurons for each area, with error bars indicating ±1 S.E.M. along each principal axis of 

covariance. The vast majority of unique variance in the firing rates of the typical neuron from any of these 

sensorimotor areas is explained by hand postural information rather than hand joint angular velocity information. 
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These results from the hand contrast with previously reported results from the proximal 

limb, where movements are preferentially encoded over positions (Moran & Schwartz, 1999; 

Paninski, Fellows, Hatsopoulos, & Donoghue, 2004; Reina et al., 2014; Wang, Chan, Heldman, & 

Moran, 2007). To verify that salience of postures in the neuronal representations of the hand was 

not an artifact of our analysis, we implemented an identical analysis on analogous data from the 

proximal limb. Specifically, we applied GLMs to kinematics recorded using a KINARM  (Scott, 

1999) and neuronal data collected from a UEA in motor cortex as monkeys performed a delayed 

center-out reaching task (Hatsopoulos, Xu, & Amit, 2007; Kadmon Harpaz, Ungarish, 

Hatsopoulos, & Flash, 2018; Reimer & Hatsopoulos, 2010). We used cortical responses and 

associated kinematics starting 1 second before onset of movement and extending 1 second 

afterwards during reaches to each of eight directions separated by 45 degrees each. We found that 

the majority of neurons exhibit preferential encoding of movements over positions in the proximal 

limb (Figure 4-7), consistent with previous reports in the proximal limb but in contrast to our 

results from the hand. We conclude that the neuronal representations of the proximal and distal 

limbs are fundamentally different in that the former are dominated by movements whereas the 

latter are dominated by postures. 
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Encoding of passive hand movements 

Next, we wished to assess the degree to which neuronal representations were dependent on 

whether the movements are actively generated or imposed on the (passive) hand. Analysis of these 

data allowed us to gauge the extent to which the response properties we report might be shaped by 

motor input or other top-down influences. To this end, we manipulated one monkeyôs hand (Figure 

4-8A) while we recorded the kinematics and neural responses. Since there were not defined trials 

in these passive measurements, GLMs were fit to data collected throughout the period over which 

the monkeyôs hand was manipulated.  

 

Figure 4-7. Partial pseudo-R2 of position and velocity models for GLMs fit to neural data during a center-out 

reaching task. Conventions are as in Figure 4-6. Note that for the proximal limb, the majority of neurons and, 

indeed, the mean fall above the diagonal, indicating preferential encoding of velocities over positions. This 

contrasts with results for hand configurational encoding, where we observe preferential encoding of postures over 

movements. 
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First, we compare measures of overall neuronal activity across the active and passive 

conditionsðnamely, the mean firing rates of neurons. While different neurons are sampled and 

the kinematics are very different in the two conditions, this analysis might reveal large differences 

in responsivity during active vs. passive movements. We find that responses in the two conditions 

are comparable, except in area 3a, where neurons tend to respond more vigorously (Figure 4-8B) 

in the passive than in the active condition (two-sample two-tailed equal-variances T-test, T(82) = 

3.351, p = 1.219e-03). To assess whether differences in the neuronal responses between the active 

and passive conditions (or lack thereof) reflect differences in the kinematics, we simulated the 

responses of neurons recorded in the active condition to the kinematics measured during the 

passive condition and vice versa (Figure 4-8C).  We find that simulated responses in the passive 

condition are higher than those in the active condition (two-sample two-tailed equal-variances T-

 

Figure 4-8. Mean firing rates of neurons recorded during passive manipulation of the hand compared against those 

recorded during active, volitional grasp. (A) Each digit was passively manipulated by the experimenter. (B)  Firing 

rates are generally similar between the two tasks, with the notable exception of area 3a neurons (see text for 

statistics). (C) We simulate firing rates in response to the kinematics from one taskðthe label on the abscissað

using RFs fit to firing rates and kinematics recorded during the opposite task. We note that we should expect firing 

rates during the passive task to be higher than those during the active grasp task (see text for statistics). Vertical 

lines centered on the height of each bar indicate ±1 S.E.M. Only neurons with pseudo-R2 > 0.05 are considered in 

(C). Samples from active and passive sessions are not paired, but are rather separate samples. 
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test, T(193) = 3.092, p = 2.285e-03). We conclude that neurons in area 3a respond comparably in 

the active and passive conditions, while neurons in the other cortical fields are more responsive 

during active movements.  

Interestingly, however, the encoding properties of neuronsð the number of encoded joints 

and sensitivity to posture vs movementðwere comparable across the active and passive conditions 

(Figure 4-9A, B) as was the overall goodness-of-fit of the GLM models (Figure 4-9C). A possible 

exception is a modest effect of task type in rostral M1, where the number of joints was modestly 

larger for imposed movements than for actively generated ones. These analyses suggest that the 

encoding properties of neurons do not fundamentally change across these two conditions. 

Discussion 

Proprioceptive neurons in somatosensory cortex have large response fields  

Proprioceptive neurons in somatosensory cortex encode postures and movements 

distributed over several joints, with a mean of around eight (Figure 4-2B), and these large RFs are 

observed even during imposed movements of the hand (Figure 4-9A). The size of the response 

fields of proprioceptive neurons in somatosensory cortex stands in stark contrast to the size of the 

receptive fields of tactile neurons, particularly in area 3b, which typically include a small patch of 

skin spanning a fraction of a fingerpad (Nelson et al., 1980; M Sur et al., 1980). While the present 

work constitutes the first attempt to quantitatively characterize proprioceptive response fields in 

somatosensory cortex, our results are broadly consistent with those from previous qualitative  

characterizations (Costanzo & Gardner, 1981; Krubitzer, Huffman, Disbrow, & Recanzone, 2004; 

Pons, Garraghty, Cusick, & Kaas, 1985). 
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The ethological basis of tactile receptive fields and proprioceptive response fields is a 

matter of speculation. One might conjecture that tactile information ï about local spatial features 

of an object such as edge orientation (Bensmaia, Denchev, Dammann  3rd, Craig, & Hsiao, 2008) 

and curvature (Yau, Connor, & Hsiao, 2013), for example ï is best carried in a representation that 

preserves local spatial relationships. In contrast, information about the conformation of the hand 

requires the integration of digit and joint postures spanning the entire hand, thus requiring more 

distributed response fields. Ultimately, the integration of local shape features at the points of 

contact between skin and object ï carried in tactile representations ï must be integrated with 

 

Figure 4-9. Properties of GLMs fit to neurons during passive manipulation of the hand. (A) The number of joints 

tracked by a neuron in each area does not generally change between the active (filled bars and points, labelled 

ñAò) and passive (empty bars and points, labelled ñPò) cases (two-sample equal-variance two-tailed T-tests: 

TArea 2(46) = 0.432, p = 6.681 e-01; TArea 3a(43) = 0.528, p = 6.003 e-01; TCaudal M1(61) = -1.699, p = 9.441 

e-02), except in rostral M1 where the number of joints in the typical RF increases during passive movements RF 

(two-sample equal-variance two-tailed T test: TRostral M1(114) = -2.927, 4.137 e-03). Each point gives the number 

of joints in a single neuronôs RF. (B) Pseudo-R2 for posture-only models, movement-only models, and full models. 

In the passive case, postures are still preferentially encoded over movements of the joints. Not shown are the 

differences between the partial pseudo-R2 values of postural against movement models, which are no different 

from those in the active volitional grasp task (two-sample equal-variance two-tailed T-tests: TArea 2(46) = -0.485, 

p = 6.301 e-01; TArea 3a(43) = -2.571, p = 1.368 e-02; TCaudal M1(61) = -0.955, p = 3.434 e-01; TRostral M1(114) = -

0.279, 7.806 e-01). (C) Pseudo-R2 of GLMs (provided pseudo-R2 > 0.05) fit using the kinematics as predictors, 

which are not significantly different from those seen during active movement (c.f. Figure 4-C) (two-sample equal-

variance two-tailed T-tests: TArea 2(46) = 1.092, p = 2.804 e-01; TArea 3a(43) = 0.631, p = 5.313 e-01; TCaudal M1(61) 

= 0.829, p = 4.103 e-01; TRostral M1(114) = 1.506, p = 1.347 e-01). Vertical lines centered on the height of each bar 

indicate ±1 S.E.M. Only neurons with pseudo-R2 > 0.05 are considered. Samples from active and passive sessions 

are not paired, but are rather separate samples. 
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information about the conformation of the hand ï carried in proprioceptive representations ï to 

achieve a representation of the three dimensional structure of the object, a process known as 

stereognosis (Berryman, Yau, & Hsiao, 2006; Hsiao, 2008; Yau, Kim, Thakur, & Bensmaia, 

2016).  

Hand neurons encode postures over movements 

In both somatosensory and motor cortex, neurons encode joint postures of the hand more 

strongly than they do joint movements. This holds true during both active and passive 

manipulations of the hand. This contrasts with kinematic encoding of the arm, where both 

somatosensory cortical neurons (Weber et al., 2011) and motor cortical neurons (Moran & 

Schwartz, 1999; Paninski et al., 2004; Reina et al., 2014; Wang et al., 2007) preferentially encode 

joint velocities. This difference between proximal and distal limb representations may reflect 

differences in the functional roles of these two structures. Indeed, the role of the arm is to place 

the hand somewhere in three dimensional space, while that of the hand ï at least during grasp and 

object manipulation ï is to adopt a conformation that is appropriate to the task. From this 

perspective, it stands to reason that the control and neural representation of the proximal limb 

would rely on movement and that of hand conformation would rely on posture. 

An alternate explanation for this difference between proximal and distal limb 

representations arises from the dynamics governing their movements. Indeed, the arm, comprising 

both the forearm and hand, has more mass than the hand alone so the mechanics of proximal limb 

movements involve a larger inertial term than those of the digits. Although the specific manner by 

which a large inertial term may give rise to preferential coding of movement in the nervous system 

is unclear, it is nonetheless a factor whose influence may need to be accounted for. 
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Response to active vs. imposed hand movements 

The response fields of proprioceptive and motor neurons are similar whether these are 

computed from responses to active movements or responses to imposed movements of the hand. 

Indeed, response field size and postural preference are similar for active and passive movements. 

While this result may not be very surprising for somatosensory neurons, that it applies to M1 is 

less expected and suggests that the sensory input to M1 is aligned with its output. Note that M1 

has previously been shown to be driven by sensory input (Hatsopoulos & Suminski, 2011), so this 

basic observation is not novel.  

Our results suggest, though these experiments were not designed to test this explicitly, that 

M1 neurons are more active during active movements than passive ones, as expected. Neurons in 

area 2 also seem to exhibit a preference for active movements, as reflected in higher firing in the 

active condition. In contrast, somatosensory neurons with response fields on the proximal limb 

have been shown to alternatively exhibit a preference for either active or passive movement 

(London & Miller, 2013; Soso & Fetz, 1980). However, the responsiveness of area 2 in the passive 

condition may reflect increased cutaneous input driven by the experimenterôs manipulation of the 

hand. 

In contrast to their counterparts in M1 and area 2, neurons in area 3a do not exhibit a 

preference of active or passive movement after correcting for differences in kinematics. This 

finding is consistent with a role of this area as a traditional sensory area, an interpretation that 

conflicts with a more nebulous role of this area as a ñtransition zoneò area between sensory and 

motor cortex (E. G. Jones & Porter, 1980). This transition hypothesis is supported by motoneuron-

like properties of area 3a neurons, such as spiking activity that precedes movement onset (C 
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Fromm & Evarts, 1982) and  reciprocal connectivity between M1 and area 3a (Huffman & 

Krubitzer, 2001). 

We should note that the sample size of our passively sessions is small and that this data set 

is confounded by the differences in kinematics and the presence of significant uncontrolled tactile 

stimulation by the experimenter during hand manipulation. Nonetheless, our results suggest that 

area 3a neurons are equally responsive to actively generated and imposed movements, as one might 

expect from a ñtraditionalò sensory area. To test these hypotheses more rigorously will require 

experiments in which hand kinematics in the active and passive conditions are matched, 

presumably requiring a robotic exoskeletonðe.g. (Heo, Gu, Lee, Rhee, & Kim, 2012; C. L. Jones, 

Wang, Morrison, Sarkar, & Kamper, 2014), and cutaneous input is either systematically 

manipulated and accounted for or eliminated (using local anesthesia, for example).  

Dependence of postural preference on analytics approach 

A pair of previous studies on kinematic coding in the hand representation has come to a 

different conclusion regarding the postural preference of motor neurons, finding instead a mixed 

selectivity with a movement preference (Saleh, Takahashi, Amit, & Hatsopoulos, 2010; Saleh, 

Takahashi, & Hatsopoulos, 2012). However, three critical differences between the previous study 

and the present one may account for this seeming discrepancy: 1) the inclusion of regressors at 

multiple lags; 2) the inclusion of spike history regressors; and 3) the use of a different measure to 

compare postural vs. movement encodingðnamely, counting the number of neurons with a 

significant weight for each regressor, rather than comparing goodness-of-fit measures. Although 

the inclusion of multiple regressors at different lags may be important in proximal limb 

representations in M1 to track changing kinematic preferred directions during hand transport 

(Hatsopoulos et al., 2007), we find that inclusion of regressors at multiple lags yields only a modest 
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though statistically significant improvement in goodness of fit (Figure 4-10A). We abandoned 

multi-lag models due to this modest improvement in fit. Note, however, that a multi-lag model can 

extract posture from movement (by integrating velocity) and velocity from posture (by 

differentiating joint angle). These models are thus poorly suited to assess the weighting 

contributions of posture and movement in the neural responses.  

Replicating previous findings (Saleh et al., 2010, 2012), we also find that including spike history 

regressors significantly improves model fit (Figure 4-10B). However, we find that if we include 

these terms in the GLM, they tend to dominate their kinematic counterparts. Indeed, kinematics 

are highly autocorrelated over long time scales (Figure 4-10E), so spike history ï reflecting recent 

kinematics ï is an excellent predictor of current neuronal responses. Furthermore, spike history 

regression weights are more correlated with postural than movement regressors (Figure 4-10C) 

due to autocorrelations over long time scales for postures than movements (Figure 4-10E), which 

would preferentially reduce the variance explained by postural regressors relative to that of 

velocity regressors. Moreover, regression weights for history terms extend hundreds of 

milliseconds in the past, well outside a reasonable physiological time window (tens of 

milliseconds) for history-dependent effects (Chen & Fetz, 2005; Pillow et al., 2008; Pillow, 

Paninski, Uzzell, Simoncelli, & Chichilnisky, 2005), but consistent with the time scale of postural 

autocorrelations. Including these same spike history terms, in addition to predictors at multiple 

lags, weakens the postural preference in our neuronal data but does not eliminate it (Figure 4-10D).  
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Figure 4-10. Reconciliation of this paperôs grasping results with previous reports of grasp encoding (Saleh et al., 

2010, 2012). 
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Figure 4-10, continued. (A) Multi -lag models offer only a very slight, albeit significant, improvement over single-

lag GLMs in terms of explaining neural activity, as evidenced by most points, or neurons, falling just above the 

diagonal. (B) History terms offer a significant improvement to single-lag encoding models, as evidenced by most 

points, or neurons, falling below the diagonal. (C) However, history terms covary more strongly with postures than 

they do with movementsðas evidenced by the majority of points, or neurons, falling above the diagonalðand 

therefore could preferentially sap predictive power away from postures. (D) Regardless, posture terms are 

preferentially encoded in terms of partial pseudo-R2 in the majority of neuronsðas evidenced by the majority of points 

falling below the diagonalðeven when accounting for history terms. (E) Posture autocorrelations (left) extend farther 

out temporally than do movement correlations (middle) or (unsmoothed) neural spiking autocorrelations (right) to 

which GLMs are fit. Underlying firing rates seem to vary on timescales similar to postures, which non-physiological 

spike history terms extending back as far as 250ms in the past could obscure. 

In fact, even when we count neurons with significant weights for each regressor in models 

that exclude spike history regressors, we still observe a bias toward encoding of postural variables, 

albeit a slight one (Figure 4-11A). ñSignificanceò in this case is assessed for cross-validated 

models using the method described earlier and depicted in Figure 4-2A, rather than within-sample 

p-values as was previously done. We note that this measure of preferential posture- or movement-

coding contrasts with the measure by which we normally assess preferential coding: comparisons 

of pseudo-R2 between models. 

However, if we replicate the previous approach in all of its aspects ï multi-lag models with 

spike history regressors and preference measured by neuron count (Figure 4-11B), only then do 

we obtain movement preference. We conclude that the postural preference we observe in hand 

sensorimotor representations is robust.  

Hand representations reflect muscle activations 

Ultimately proprioception relies primarily on signals from afferents that innervate the 

muscles. M1 and proprioceptive responses might thus be more fruitfully described in terms of 

muscle activations rather than joint angles and angle velocities. We could not directly test this  
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hypothesis because our animals were not instrumented with electromyographs. As an indirect test 

of this hypothesis, albeit one that does not account for movement strategies featuring large co-

contractions of antagonist muscles, we investigated whether neuronal responses in somatosensory 

cortex and M1 could be better predicted from time-varying musculotendon lengths, which we 

could estimate from the kinematics using a musculotendon model of the hand (Figure 4-4). We 

found that this particular intrinsic reference frame was no more closely associated with cortical 

 

Figure 4-11. Continuation of Figure 4-10. (A) Counting the number of neurons with each predictor in its RF for 

multi-lag, no-history models. Joint angular coordinates are converted to the same domain as that used previously 

(Saleh et al., 2010, 2012) for the purposes of comparison. Postural predictors are the most frequently encoded in 

both caudal and rostral motor cortices. (B) Only when re-incorporating history terms on top of using multi-lag 

models and counting joints rather than assessing partial pseudo-R2 do we see movement predictors consistently 

occupying higher-rank slots than posture predictors. Velocity terms appear to have nearly exclusive representation 

among the top 4 most-encoded joint angular predictors, with wrist posture in caudal M1 being the lone exception. 
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responses than was the kinematic one. Note that we investigate in great detail the suitability of 

another reference frame ï kinematic synergies ï in Chapter 5. 

Contrasting proprioceptive and motor representations of the hand 

In both somatosensory and motor cortices, individual neurons preferentially encode hand 

postures distributed over multiple joints. Remarkably, neurons in all sensorimotor areas encode 

hand kinematics over comparable swaths of hand (number of joints) and are indistinguishable in 

terms of their respective preference for posture vs. movement. One might expect that motor activity 

leads the movement whereas sensory activity lags it. We found this to be the case in area 2 but not 

area 3a (Figure 4-12, right) (cf. (Christoph Fromm & Evarts, 1982) regarding area 3a). Activity in 

motor cortex generally led the kinematics, as expected, but even this phenomenon was not reliable. 

As noted above, however, the long kinematic autocorrelations make our estimates of response 

latency (lag and lead) very unreliable (Figure 4-12, left). 

Conclusions 

Proprioceptive neurons in somatosensory cortex have large response fields that track 

multiple joints spanning the entire hand, respond preferentially to multi-joint postures of the hand 

rather than the movements of those joints, and do so whether movements are actively generated 

by the animal or imposed by the experimenter. Similar coding properties are observed in M1, 

including the postural preference, which constitutes a departure from previous reports of M1 

coding of proximal limb movements. These differences between hand and proximal limb 

representations may reflect the fundamentally different roles of the hand and arm.  
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Figure 4-12. Optimal neural latencies. Left. We fit GLMs fit to multiple different latencies and report for each 

neuron the latency associated with the largest pseudo-R2 value. Shown is the latency-versus-pseudo-R2 plot for an 

example neuron from caudal M1. Kinematic autocorrelations rendered estimates of optimal lags hazardous on a 

neuron-by-neuron basis (see scale of the ordinate). GLMs are used to evaluate latency rather than events such as 

the start of movement to account for different response fields that could give rise to different apparent latencies 

via the latter method. Right. Estimates of optimal latency for each cortical area after averaging across all neurons 

with pseudo-R2 > 0.05. We find that, on average, area 2 neurons significantly lag kinematics (one-sample T-test: 

T(40) = 2.355, p = 2.353 e-02, ῳὸ = 34.97 ms), both rostral M1 (one-sample T-test: T(106) = -5.417, p = 3.816 e-

07, ῳὸ = -60.73 ms) and caudal M1 (one-sample T-test: T(61) = -2.611, p = 1.134 e-02, ῳὸ = -30.97 ms) 

significantly lead kinematics, and neurons in area 3a neither significantly lead nor lag kinematics on average (one-

sample T-test: T(41) = -1.835, p = 7.373 e-02, ῳὸ = -29.87 ms). Indeed, there is a significant difference among 

optimal lags across areas (one-way ANOVA: F(3,251) -= 8.111, p = 3.567 e-05) that can be attributed to area 2 

responses lagging kinematics relative to the other cortical areas (post-hoc Tukeyôs HSD: all pairwise differences 

n.s. except those involving area 2, parea 3a = 2.693 e-02, pcM1 = 1.056 e-02, prM1 = 5.030 e-02, all ῳ ῳὸ > 0). 

Significance values of multiple T-tests are assessed here with the Holm-Bonferroni method, with FWER < 0.05 

for this family of four comparisons. Slightly different degrees of freedom in these statistical tests relative to the 

rest of the text are because we compare both joint- and muscle-based models against each other in this figure, 

whereas we only account for joint-based models in the rest of the textðexcept where explicitly stated otherwise. 
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CHAPTER 5: 

The case against synergies for hand shaping 

Introduction  

As described in Chapter 4, we found that the response fields of neurons in sensorimotor 

cortex comprised multiple joints often spanning the entire hand. The principles that might underlie 

this structure eluded us, however. We reasoned that response fields might reflect hand kinematic 

synergies. From the strong interpretation of synergies, if these reflect a simplified control system, 

where each synergy constitutes a ñknobò that drives one aspect of hand movements, these knobs 

should be reflected in the cortical representation of hand movements. Even a weaker interpretation 

of synergies ï that they simply reflect correlated patterns of joint movements ï would predict that 

the correlational structure of the kinematics might be reflected in the brain by virtue of simple 

Hebbian principles. 

To investigate the role that putative postural synergies play in cortical representations of 

the hand, we 1) revisit the complexityñi.e., dimensionalityñof the kinematic and neural data and 

2) determine the extent to which low-dimensional representations of kinematic space are 

preferentially encoded in patterns of neural activity. We find that two critical predictions of the 

synergy hypothesis fail to materialize: 1) joint angle kinematics that reside outside the low-

dimensional manifold are not merely motor noise, but are instead under volitional control; and 2) 

neuronal responses in sensorimotor cortices are not better explained by a synergy reference frame 

than they are by kinematics in a joint angular or musculotendon length reference frame. 

Complexity of kinematics and sensorimotor cortical responses 

In Chapter 3 we use principal component analysis (PCA) to identify the dimensionality of 

hand kinematics and the neuronal representations thereof. We find that, while fewer than 10 joint 
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angular ñsynergiesò quantified in this manner are needed to explain 90% of kinematic variance, 

kinematic classifiers make use of putative ñnoiseò dimensions outside the 9-dimensional synergy 

manifold, suggesting that such dimensions are under volitional control and are reliably 

manipulated to adopt different object-specific grasps. Moreover, we find that the dimensionality 

of neural population activity exceeds that of the kinematics, which would seem to suggest on the 

surface that putative hand postural synergies are not preferentially encoded in cortex. 

Next, we wished to more explicitly test the synergy hypothesis by applying generalized 

linear models (GLMs) with synergies as regressors to predict firing rates. Indeed, individual 

neurons seem to track the states of multiple joints spanning the entire hand simultaneously. If these 

joint combinations match the computed kinematic synergies, then synergy-based models should 

be more compact and parsimonious than joint-based ones. 

Testing preferential encoding of individual synergies  

One possibility is that individual neurons in sensorimotor cortex preferentially encode 

individual synergies. To test this hypothesis, we implemented GLMs with a single joint or a single 

synergy as regressor to explain the neuronal firing rates, as has been previously done with M1 

responses (Kirsch, Rivlis, & Schieber, 2014; Mollazadeh, Aggarwal, Thakor, & Schieber, 2014). 

In brief, each of 60 GLMs, with each regressor being the angular position or velocity of one axis 

of rotation of one joint, is used to estimate the firing rate of each neuron. Note that the joint-based 

models differ from those implemented in Chapter 4 in that only one regressor is used per model. 

Similarly, each synergy-based GLM uses regressors comprising the principal component (PC) 

scores, or their derivatives, from each PC. Principal components are computed for joint angles 

only then PC scores are differentiated to compute the PC velocities. GLMs are computed at a range 

of physiologically plausible lags, and the pseudo-R2 of the GLM at the best-fit single lag is selected 
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for each joint or synergy. We then compare the highest cross-validated pseudo-R2 from joint-based 

models to that from synergy-based models for each neuron. We find that the fit of the best joint-

based GLM is comparable to the fit of the best synergy-based GLM (Figure 5-1). If anything, 

firing rates are slightly better explained by the best joint than by the best synergy (two-tailed 

paired-samples T-test, T(85) = 2.909, p = 4.626e-03). 

 

Of course, models based on single joints are not as good as those based on multiple joints. 

However, results from this analysis suggest that at least one interpretation of the synergy 

 

Figure 5-1. Comparison of the peak pseudo-R2 of a single joint axis GLM against that of a single principal 

component (PC) GLM. Peak pseudo-R2 are computed for each model at their own respective optimal lags. The 

results of GLMs shown here are computed for those neurons with a peak multi-joint pseudo-R2 value of at least 

0.20. We note, as has been noted previously in M1 alone  for lower-dimensional recordings of individuated finger 

movements (Kirsch et al., 2014; Mollazadeh et al., 2014), that neurons in sensorimotor cortices with hand response 

fields (RFs) do not preferentially encode any one PC of hand joint angles over a particular joint angular axis. In 

fact, the best PC model tends, on average, to be slightly worse-fitting than the best single joint-axis model when 

pooling results across areas (statistics in text). 
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hypothesis does not hold, namely that individual neurons preferentially encode individual 

synergies. 

Testing preferential encoding of mixtures of synergies with GLMs  

Another possibility is that the kinematic manifold derived using PCA constitutes a more 

relevant frame of reference for the neuronal representations of the hand than do individual joint 

angles and velocities. For example, co-varying joints tend to be grouped together in this rotated 

space, so to the extent that neurons encode correlated joint angles or movements, PCs will yield 

more parsimonious models of neuronal responses than do single joints. To test this hypothesis, we 

fit GLMs as previously described in Chapter 4 and counted the number of joints comprising each 

neuronôs response field (RF). We then repeated the same analysis but using PCs as regressors. We 

then compared the parsimony afforded by each model: How many significant regressors are 

needed in joint and in synergy space?  

First, we show that the goodness-of-fit of the two models ï joint-based and synergy based 

ï was equivalent, as expected since all models had access to all of the variance in the kinematics, 

albeit in different coordinate frames (Figure 5-2). Second, we found that the required number of 

PCs was comparable to the required number of joints (Figure 5-3). Roughly 8 PCs, on average, 

were required to account for the amount of variance explained by 8 joints spanning the entire hand. 

Moreover, we found that the majority of neuronsð190/249 (~76.3%) of neurons across all areas 

with peak R2 > 0.05ðhad PC-based RFs that included at least one ñnoiseò PC, i.e. a PC beyond 

the variance cut-off (95% explained). This result, consistent with the kinematic classification 

results from Chapter 3 wherein low-variance PCs contribute to kinematic-based object 

classification, suggest that these low-variance PCs are not just noise. These results also suggest 
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that the kinematic space defined by synergies does not provide a more parsimonious account of 

the neuronal representation of hand movements and postures than do individual joints. 

 

Testing synergy encoding in the activity of neuronal ensembles 

One might argue that kinematic synergies may not be reflected in the responses of 

individual neurons but rather in the activity of populations of neurons. Indeed, preferential 

encoding of synergies has been previously shown at the population level in primary motor cortex 

(M1) during reach-to-grasp (Overduin, dôAvella, Roh, Carmena, & Bizzi, 2015). In particular, 

individual PCs of trial-averaged neural activity seemed to track individual PCs of hand kinematics, 

at least within a highly constrained task paradigm. 

 

Figure 5-2. Pseudo-R2 of GLMs fit using multiple predictors defined in a joint coordinate frame (abscissa) plotted 

against those with predictors defined in a principal component (PC) coordinate frame (ordinate). We find that even 

when regularizing regressions and cross-validating with respect to the LASSO penalty to obtain the best out-of-

sample goodness-of-fit, both models fit neural spiking activity similarly well. All models shown have a pseudo-

R2 of at least 0.05. 


