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LIST OF FIGURES

Figure 1-1. Medial lemniscapathway for the sense of touch (illustration by Kenzie Green3}

Figure 1-2. (A) Firing rate evoked in an RA fiber by 44z skin vibrations of varying amplitudes.

The rate increases as a piase linear function of amplitude, interspersed wetitrainment
plateaus over which the fiber fires an integer number of spikes per stimulus cycle (Johnson, 1974).
(B) Responses of a PC fiber to a 489 skin vibration at three amplitudes. The spiking response

is highly patterned and repeatable and conwefggmation about the frequency of the stimulus
(Mackevicius et al., 2012). (C) Reconstruction of the spatial pattern of activation evoked in a
population of SAl1 (top), RA (middle) and PC (bottom) afferents when embossed letters are
scanned across the skifhe spatial pattern of activation reflects the spatial configuration of the
stimulus (Phillips et al., 1988).......uuiiiiiiiiiie e eeee e e 13

Figure 1-3. (A) Reconstruction of the response in a population of SAl afferents evoked by
embossed dot patterns scanned across the skispakial configuration of the dots is reflected in

the pattern of activation evoked in the afferents. (B) Response of a PC fiber to three finely textured
fabrics. Left: Microscope image of the texture; middle: spiking responses to 40 repeated
presentationsf the textured surface; right: power spectrum of the neural response. Each texture
produces a different but highly repeatable temporal spiking pattern (Weber et al.,.2013)8

Figure 1-4. Typical trial of the object lifting task. Vertical lines denote timeindaries of the task
phases. The top two colored traces show the-tianging load force (upward lines in the diagram

to the left) and grip force (inward arrows) during the trial. The black trace shows the vertical
position of the object as it is liftedff the support surface. The bottom three traces show spike
trains of RA, SA, and PC afferents, respectively. Bursts of spikes coinciding with specific task
events are circled in magenta. (adapted from Johansson and Flanagan,.2009)............. 24

Figure 1-5. (A) Orientation tuned neuron in area 3b (inset shows a Gaussian fit to its RF) (adapted
from Bensmaia et al., 2008). (B) Curvature and orientation tuned neurons in area 2 (Yau et al.,
2013). C| Orientatioh uned neur on in S2: Thiaardgit@O®2RBNOS 1 e
and multiple pads in each. However, its preferred orientation remains consistent across its RF

(approximately aligned with the long axis of the finger) (Fitzgerald et al., 2006)............. 31

Figure 1-6. (A) Direction tuning of a neuron in areatd scanned bars (adapted from Pei et al.,
2010). (B) Responses of a 6componento neuron
responds maxi mally when one of the plaidds ¢
direction. Cl|ttiResponsewsr of tao Aplaai ds. Thi s ne.l
direction of motion. Such neurons are only found in area 1.(Pei et al.,.2011)................. 32

Figure 1-7. (A) Muscle Spindle. The spindle capsule contains three types of intrafusal muscle

fiber: nuclea bag 1 fibers, which are sensitive to rate of stretch; and nuclear bag 2 and nuclear
chain fibers, whi ch ar e-dysamio fusintotormneurons selestivelyt i ¢ s
innervate bag 1 fibers and adjust sensitivity to the rate of stretch, e/tee s -statib feisimmtor

neurons selectively modulate the fibers that sense static stretch. Primary (la) spindle afferents
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innervate all three intrafusal fiber types and convey dynamic stretch information. Secondary (11)
spindle afferents innervate amdnvey information from only the intrafusal muscle fibers that
sense static stretch. (B) Golgi tendon organ (GTO). The outer tendon is resected to show the GTO
(Ib) afferent and the interior collagenous mesh it innervates. A single GTO is situatedsn serie
with 10-20 motor units (bundles of muscle fibers, top). GTO afferents convey active muscle force
by "counting” the number of recruited motor units (illustrations by Kenzie Green).......... 39

Figure 1-8. Neuron in area 2 that exhibits both tactile and proprioceptive responses (courtesy of

Sung Soo Kim). This neuronés activity is mod:!
However, responses are further modulated by cutaneous stimulation (rightpan The neur
response is a complex function of hand conformation and cutaneous.input................... 44

Figure 2-1. Rectified lowpass filtered EMG activity (filled gray traces, a) is estimated (black
traces, a) using combinations of patterns defined along threelansygnergies (b). A low
dimensional continuum appears at first glance to be a sufficient explanation of muscle activity.
Figure from déAvel l.a.,...Sal.t.i.el.,..&.Bi.z.zi.68 200 3.

Figure 2-2. (A) Mapping the preferred digit of different locations on a patcimofor cortex

(shown reconstructed on the left) gives rise to a lack of clear somatotopic separation among the
digits (right, different colors represent different preferred digits). Figures from Schieber &
Hibbard, 1993. (B) At a more coarsajyained levelof detail, separation of arm and hand
representations in M1 appears to follow a general pattern of arcaimg (Forelimb P)
Ahor seshoed s-godingqRoneldnb D) guclaus. &Figugeifrom Park et al., 200711

Figure 2-3. Firing rates of two dferent M1 neurons (left and right) during reachgrasp of
different objects (far left) centered on the onset of the reach, demonstrating just a small sliver of
the variety of handelated responses in M1. Figure from Umilta, Brochier, Spinks, & Lemon,

Figure 3-1. Different objects give rise to a variety of different kinematics and neural acfiity.
A phase plot of three joint angles (flexion_| being wrist flexion angle, pro_sup_| being wrist
supination angle, and 2mcp_flexion_| being seconetawarpal flexion angle) during one

monkeybds grasp of two different objects. Each
trial. Faded triangles (Aplayo symbols) indic
well before movement beganalr k s quares (Astopod symbol s) i N

maximum aperture, well after object contact where the hand adopted its final posture. Shown
below the phase plot is a series of still frames of the skeletal model of the hand for one pasentati
of each object, i1illustrating the progression
to a fully diff €B)®eparate ploteofthefegme pistp againstttiraet tis time
for all objects. Each colored trace gives the midaematics for a grasp of a particular object.
Shaded regions indicate +1 S.E.M. at each sample @d&erievent time histograms (PETHS)

for three select M1 and proprioceptive somatosensory cortical neurons for all objects. PETHs are
constructed by &ning each trial to the time of maximum aperture, calculating the average spike
count in each 10ms bin on a gaal basis, then smoothing the average trace with a centered
Gaussian kernel with 35ms width parameter. Each colored trace gives the nmgarafeiduring
grasping of a particular object. Shaded regions indicate £1 S.E.M. at each sample.time36

viii



Figure 3-2. Sample PETHs and PC reconstructions from neurons across all areas of cortex from
which we record. These show the temporal evolution of¢firates with respect to maximum
aperture and the separation of firing rate patterns as a function of object @emityresumably

as a function of the corresponding grasp conformation. All PETHs araveahged firing rates

of neurons from Monkey #h response to different objects, sorted on a nebyeneuron basis,
computed using similar trial averaging and smoothing procedures as those PETHSs in-EiQure 3
Note that the first 3 PC reconstructions preserve chjegendent variance for a few selec
neurons, but often fail to capture this structure for a large number of them.................... 87

Figure 3-3. Kinematic correlation matrices. The absolute values of correlations among joint
angular coordinates fofA) Monkey 1, (B) Monkey 2, (C) Monkey 3, and(D) Monkey 4.

Correlations are assessed at zero lag, and the order of joints is determined for each monkey with
hierarchical clustering so that large groups of highly correlated joints can better be visualized. Joint
angular coordinate key: flexiénflexion or exten@s n ( ipi t cho) of tdhe wri s
ulnar or radial deviatiodpfoyawopnobbrtisepwnias
the wrist joint| elbow elbow joint | 1508 digits 1 through 5, respectively | CMC
carpometacarpal joint | mépmeta@rpophalangeal joint | dinterphalangeal joint (digit 1 only)

| pnd proximal interphalangeal joint | Mddistal interphalangeal joint | _flexion, _flex, éxt

fl exion or extension (Apitcho) of ®©OhRlucioni nt p
oo adduction (Ayawo) of the | d@iproratiopor upirattbn ng t h
(Aroll o) of the joi.nt..pr.e.c.edi.ng..t.he..unf%rscor

Figure 3-4. Analysis of kinematic structure and dimensional{#y) Cumulative scree plot from
principal compnent analysis (PCA) of joint postures, averaged across all four monkeys. The mean
CVE first crosses the 90% boundary at 6 principal components (PCs), but more conservatively,
the circled point indicates the minimum number of PCs (9) for which the averdgewas
significantly greater than 90% (ona&led onesample ttest, T(3) = 7.023, p = 2.96%3,
significance assessed across all 30 points on the abscissa with thé&éfdemroni method of
multiple comparisons, FWER < 0.05). The cumulative scree plotincated at 12 components

but a total of 30 components are present. Vertical lines at each point indicate +1 S.E.M. across
monkeys(B) Crossvalidated (leav@neout) accuracy of object classification (mtdtass linear
discriminant analysis, i.e., L&) based on joint angular kinematics at different task epochs,
averaged across monkeys. Vertical lines at each point indicate +1 S.E.M. across monkeys. Dotted
blue lines indicate classifiers using only the first 9 PCs, compared with solid blue lineésotvat s
results of classifiers using the full dimensionality of hand kinematics. The shaded regions indicate
the mean difference 1 S.E.M. between the two classifiers. As this difference arises from paired
data (each monkey has one classifier of each tygepwhn standard error is indicated with the
darkness of the shaded region. The darkest region indicates the mean difference minus 1 S.E.M.,
and the lightest region indicates +1 S.E.M. When pooling across epochs, theatidesed full
kinematic classifiermore accurately determines the object presented fromofeagmple
kinematics than the one using only 9 PCs {taited pairedsamples-test, T(59) = 9.136, p =

G A A T 1 T SPPPOPPPPPPN 90

Figure 3-5. Analysis of kinematic structure and dimensionality by monk&y Cumulative scree
plots after applying principal component analysis (PCA) to the joint angular kinematics of each
monkey. These scree plots were averaged across monkeys to obtain the plot in Figure 3A. Circles
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indicate the number of components at whichdumulative scree plot for each monkey exceeds

90% of kinematic variance explained. These traces are averaged to obtain the trace inZAgure 3

(B) Accuracy of kinematic object classification (as in Figure 3B) for each monkey at different task
epochs. Agai, these accuracies were averaged across monkeys to obtain the mean accuracy curve
in Figure 3B. Solid lines indicate fukinematic accuracy; dashed lines, the accuracy of classifiers
using only the first few dimensions to explain at least 90% of kinenvatiancé the same

number of components as the corresponding circle in (A). Vertical lines at each epoch indicate +1
S.E.M. of classification accuracy. These trécese from each monkey, each given equal
weigh® are averaged to obtain the averaged timesmof classification accuracy in Figure 3

Figure 36.Vi sual i zat-goaspso n&bhigainned from principa
applied to the joint angular data of Monkey 2. Each row depicts a different-gigsp, with a
progression from left to right through that Eiggm as p6s r angjeint anfularc or r e |

movement s. Al t hough qual it agriasepsiontceawlrdethad iio
find that such PCs that merely explain the largest fraction of variance fail to capture reliable yet
subtle interobject differences in grasp POSKEBL............uuuvuiiiiieeiiceeerire e e e e e e e e e e e eeeee s 92

Figure 3-7. Cumulative scree plots for PCA run on standardized kinemati¢Aatan a monkey
by-monkey basis an@B) averaged across monkeys. Apparent dimensionality increases when
assessing kinematic dimensionality using PCA on standardized wad#ttaindividuatmonkey
dimensionalities spanningB3 dimensions (A) and monke&yweraged dimensionalities spanning
10-17 components (B). Significance of the second point in (B) is assessed as in Hgures3

Figure 3-8. Neural correlation matrix heatnmgagrows of heatmaps indicate the cortical area from
which neurons were recorded. Columns of heatmaps indicate the monkey from which each
correlation matrix was obtained. Correlation matrices are signal correlation matrices; in other
words, firing rates araveraged across trials for each object after aligning to object contact, and
the correlations of these firing rates extending from 500ms to 10ms prior to contact are represented
as the color in each heatmap. Trial averaging was done to permit poolireumaing across
sessions. Only heatmaps with at least 5 neurons are ShQWN............cccooveiieecvvviiiiieeeeennn. 95

Figure 3-9. Analysis of neural structure and dimensionalif) Cumulative scree plot from PCA

of joint postures and neural data, averaged across all four monkeys and plottedsirof the

fraction of the total number of components recorded from any given monkey. We plot in terms of
fraction of number of components because population sizes recorded from each area in each
monkey vary to give rise to different raw apparent neurakdsionalities that nonetheless align
when instead plotted in this manner. We see that only 20% of the kinematic dimensionality is
needed for the mean CVE to reach 90%, whereas for the cortical data that fraction jumps up to
40%. Each trace represents thierpolated cumulative scree plot as a function of the fraction of
total number of components, averaged across monkeys. Shaded regions surrounding each trace
give +1 S.E.M. for each point of each interpolated tré@8gNeural classification accuracy wme
aligned to different epochs of grasp. Spike counts are taken over a 500ms causal window, and
neurons from different sessions recorded from different monkeys are pooled to obtain these
classification accuracies. We note that peak evaidated accuracyeaches roughly 50% in
population sizes on the order of 100 neurons. Vertical bars give 1 SE)M. population of
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roughly 200 proprioceptive or motor cortical neurons is required to reach mean peak classification
accuracy (roughly 60%) of kinematic skifiers, as shown in Figure 3B. Singl®nkey and
pooledmonkey samples from each area are shown as each point on the plot. Logistic regression
is fit to these data pooled across Cortical areasS............oeeeeeiiiiieeeiiiii e eeeeeeeeeeeee el 96

Figure 3-10. Standardized cumulative scree plots averagedss 4 monkeys as a function of the
fraction of the number of components needed to reach variance explained thresholds.
Standardization acts to make neural responses appear evendiigéesional, with roughly 80%

of dimensions being required to expl&@0% of the firing rate data...................ooovvvvieeeeeen 97

Figure 4-1. Generalized linear model (GLM) procedure and performaf@g. Flow chart
depicting how GLM uses kinematics (left) to create a weighted linear sum that is passed through
a softplus nonlinearity (middle) to estiate firing rates (right, top) such that they are maximally
likely given measured patterns of spiking activity (right, botto(B). Measured (dark) and
predicted (light) perevent time histograms (PETHS) for three different objects aligned to
maximum apeure for an example neuron from area 3a. The ps&jdof the GLM fit to this
neuron is 0.49. Vertical bars at each point indicate +1 S EMPseudeR? values for each neuron

with crossvalidated pseud®? greater than or equal to 0.05. Neurons are pooled across sessions
and across different monkeys. Bar heights correspond with the mean {€eanwng such
neurons in each area. Each point represents the p&3udfa different neuron. Error bars span

+1 standard error of the mean psetiof each area. In area 2, the pselRiwalues of 41 out of

50 total units (82.0%) are reported, with the remaining 9 units being omitted due to having pseudo
R?values lower than 0.05; in area 3a, we report 40 of 68¥G8.in caudal M1, 59 of 89 (66.3%);

and in rostral M1, 107 Of 147 (72.8%0)u.......uuuuuuiiiieiei e ceeeicie e eeees e e e e e e e e eeee 103

Figure 4-2. Neurons track multiple joints distributed over the entire héAQTo count joints in

response fields, we calculate the contribution of each joint to the regregsight vector and

count the minimum number of joints required 1t
squared norm (gray shaded area). Faded points indicate the cumulative contribution of the best N
joints (abscissa) to the weight vector. gdaid on these are the average cumulative functions

across neuronsineachar®.The average number of joints in
roughly eight. There is no difference among areas in terms of the number of joints in the average
neuro s RF. Il ndi vi dual points are single neuron
vertical dispersion of these points is artificially inserted to enhance visibility. Error bars in both

(o101 ES T g o [To= 10T RS T = |V OSSP 105

Figure 4-3. Simulated neuropopulations with singlgoint angular coordinate RFs and properties

of their GLM fits. Left. Histogram of the number of joint predictors contained in the RF inferred
via GLM. Note that every simulated neuron responded to just a single joint angular at®bgyin
design, and that over 70% of these simulated neurons had a GLM RF that recovered this single
predictor RF in spite of intgoint correlations in the kinematics and noise in the simulated spike
counts. Right. Distribution of pseud®’ values of GLMsfit to these toy neurons, which is
similard by desigi® to the distribution seen in real cortical neuronal data...................... 107

Figure 4-4. The number of musculotendon complexes contained in each RF is no fewer than the
number of joints in those same RFs (c.f. FigurdB4. The same neurons are assessed for
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musculotendon counts in their RFs using similar methods as described in FRAroHjoint
counts. Error bars indicate £1 S.E.M...........ooiiiiiiiiiiie e 108

Figure 4-5. Results of generalized linear models (GLMs) testing for preferemtedding of joint
postures or movement§d) The distribution of crossalidated pseud®? values computed for
GLMs using just joint angles (Postures) as predictors or using just joint angular velocities
(Movements) as predictors. Each point represesiagle neuron(B) Same abscissa as (A), but
with each point plotted against the psetRfovalue obtained using both posture and movement
predictors 0N the OrdiNAte.........ccooii i eree e e 109

Figure 4-6. Partial pseuddR? of posture models on the abscissa against movement sraléhe
ordinate. Faded points indicate individual neurons with peak psetifmon-partial) of 0.05 of
greater. Overlaid fulhsaturated points are means over neurons for each area, with error bars
indicating +1 S.E.M. along each principal axis of coamace. The vast majority of unique variance

in the firing rates of the typical neuron from any of these sensorimotor areas is explained by hand
postural information rather than hand joint angular velocity information........................ 110

Figure 4-7. Partial pseuddr? of position and velocity models for GLMs fit to neural data during

a centeout reaching task. Conventions are as in FiguBe Mote that for the proximal limb, the
majority of neurons and, indeed, the mean fall above the diagonal, indicating preferentiadgenco

of velocities over positions. This contrasts with results for hand configurational encoding, where
we observe preferential encoding of postures over MOVEeMENtS..............vueeemmeeeeeeneenns 112

Figure 4-8. Mean firing rates of neurons recorded during passive manipulation of the hand
compared against those recorded during active, volitional gfA¥Each digit was passively
manipulated by the experiment€¢B) Firing rates are generally similar betweer tivo tasks,

with the notable exception of area 3a neurons (see text for statigZicgye simulate firing rates

in response to the kinematics from one &se label on the abscigsaising RFs fit to firing

rates and kinematics recorded during the oppadask. We note that we should expect firing rates
during the passive task to be higher than those during the active grasp task (see text for statistics).
Vertical lines centered on the height of each bar indicate +1 S.E.M. Only neurons with-Béeudo

> 0.05 are considered in (C). Samples from active and passive sessions are not paired, but are
rather separate SAMPIES. ......oooo i et 113

Figure 4-9. Properties of GLMs fit to neurons during passive manipulation of the hand. (A) The
number of joints tracked by a neuroneach area does not generally change between the active
(filled bars and points, | abelled AA0O) and pa:
sample equaVariance twetailed T-tests: Tarea {46) = 0.432, p = 6.681-@1; Tarea 3d43) = 0.528,

p = 6.003 e)1; Tcaudaim{61) =-1.699, p = 9.441-82), except in rostral M1 where the number of
joints in the typical RF increases during passive movements RFsé@mple equavariance twe

tailed T test: Rostraim{114) =-2.927, 4.137€©3). Each pait gives the number of joints in a single
neur onds RMR2for poBtireorifyanedeld, movemertnly models, and full models. In

the passive case, postures are still preferentially encoded over movements of the joints. Not shown
are the differencebetween the partial pseudR? values of postural against movement models,
which are no different from those in the active volitional grasp task-gbmaple equavariance
two-tailed T-tests: Tarea {46) =-0.485, p = 6.301-01; Tarea 3{43) =-2.571, p =1.368 €02; Tcaudal
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m1(61) =-0.955, p = 3.434-81; Trostral M{114) =-0.279, 7.806 €©1). (C) Pseudd®? of GLMs
(provided pseudd? > 0.05) fit using the kinematics as predictors, which are not significantly
different from those seen during active movement (c.f. Figtr€¥(two-sample equavariance
two-tailed T-tests: Tarea {46) = 1.092, p = 2.804-@1; Tarea 3d43) = 0.631, p = 518 e01; Tcaudal
m1(61) = 0.829, p = 4.103-@1; Trostra v(114) = 1.506, p = 1.34%@&1). Vertical lines centered on
the height of each bar indicate +1 S.E.M. Only neurons with psRtid00.05 are considered.
Samples from active and passive sessions@trpaired, but are rather separate samples115

Figure 4100 Reconci |l i ation of this paperds graspin
encoding (Saleh et al., 2010, 2012)) Multi-lag models offer only a very slight, albeit significant,
improvemenm over singlelag GLMs in terms of explaining neural activity, as evidenced by most
points, or neurons, falling just above the diagor{8) History terms offer a significant
improvement to singkag encoding models, as evidenced by most points, or reufaliing
below the diagonalC) However, history terms covary more strongly with postures than they do
with movement8 as evidenced by the majority of points, or neurons, falling above the didgonal
and therefore could preferentially sap predictive poaway from postures(D) Regardless,
posture terms are preferentially encoded in terms of partial pstidahe majority of neurors

as evidenced by the majority of points falling below the diagbeaken when accounting for
history terms(E) Posture autocorrelations (left) extend farther out temporally than do movement
correlations (middle) or (unsmoothed) neural spiking autocorrelations (right) to which GLMs are
fit. Underlying firing rates seem to vary on timescales similar to postureshwbirphysiological

spike history terms extending back as far as 250ms in the past could obscure............ 120

Figure 4-11.Continuation of Figure-4.0.(A) Counting the number of neurons with each predictor
in its RF for multilag, nehistory models. Joint angul@oordinates are converted to the same
domain as that used previously (Saleh et al., 2010, 2012) for the purposes of conmipasisoal.
predictors are the most frequently encoded in both caudal and rostral motor c{Bjidesly
when reincorporating history terms on top of using midty models and counting joints rather
than assessing partial pset®do we see movement predictors consistently occupying higher
rank slots than posture predictors. Velocity terms appear to have neatdgiexckepresentation
among the top 4 moesincoded joint angular predictors, with wrist posture in caudal M1 being the
[0 g TSI = (ot =T o] 1 o] o VAU PPPPPRPPRPRN 122

Figure 4-12. Optimal neural latencies. Left. We fit GLMs fit to multiple different latencies and
report for each neurothe latency associated with the largest psdRidealue. Shown is the
latencyversuspseudeR? plot for an example neuron from caudal M1. Kinematic autocorrelations
rendered estimates of optimal lags hazardous on a nbyroauron basis (see scale okth
ordinate). GLMs are used to evaluate latency rather than events such as the start of movement to
account for different response fields that could give rise to different apparent latencies via the latter
method. Right. Estimates of optimal latency for teaortical area after averaging across all
neurons with pseudB? > 0.05. We find that, on average, area 2 neurons significantly lag
kinematics (onesample TFtest: T(40) = 2.355, p = 2.35302, w 6= 34.97 ms), both rostral M1
(onesample Ftest: T(106)-5.417, p = 3.816-87,w &=-60.73 ms) and caudal M1 (ocsample

T-test: T(61) =2.611, p = 1.134-62, w &= -30.97 ms) significantly lead kinematics, and neurons

in area 3a neither significantly lead nor lag kinematics on averageséomgle Fted: T(41) =-

1.835, p = 7.373-62, w &= -29.87 ms). Indeed, there is a significant difference among optimal
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lags across areas (em@ay ANOVA: F(3,251)-= 8.111, p = 3.567-85) that can be attributed to

area 2 responses lagging kinematics relative totther cortical areas (peghtoc Tu k ey ds HSD
pairwise differences n.s. except those involving areaed,sp= 2.693 €02, pm1 = 1.056 €02, pm1

=5.030 e02, allpw & 0). Significance values of multiplefEsts are assessed here with the Holm
Bonferroni method, with FWER < 0.05 for this family of four comparisons. Slightly different
degrees of freedom in these statistical tests relative to the rest of the text ase lvee@ompare

both joint and musclébased models against each other in this figure, whereas we only account

for joint-based models in the rest of the &xtxcept where explicitly stated otherwise.....124

Figure 5-1. Comparison of the peak pseuéof a single joint axis GLM against that of a single
principal component (PC) GLM. Peak psetRfoare computed for each model at their own
respective optimal lags. The results of GLMs shown here are computed for those neurons with a
peak multijoint pseudeR? value of at least 0.20. We note, as has been noted previously in M1
alone for lowerdimensional recordings of individuated finger movements (Kirsch et al., 2014;
Mollazadeh et al., 2014), that neurons in sensorimotor cortices with hand respongFke)do

not preferentially encode any one PC of hand joint angles over a particular joint angular axis. In
fact, the best PC model tends, on average, to be slightly Jfitinsg than the best single joint

axis model when pooling results across are@sigits in teXt)..........cooovvrviiiiiiiiiiienne s 132

Figure 5-2. PseudeR? of GLMs fit using multiple predictors defined in a joint coordinate frame
(abscissa) plotted against those with predictors defined in a principal component (PC) coordinate
frame (ordinate). We find that even when regularizing regressions andvatiming with

respect to the LASSO penalty to obtain the bestobgsample goodnessf-fit, both models fit

neural spiking activity similarly well. All models shown have a pseRtlof at least 0.05...134

Figure53. The number of | o issajptied agairestthe aumbeoai BCsin RF  (
t hat neuronds RF (ordinate). We find a | ack
number of PCs or the number of joints needed t
in text). Moreoer, we find that in muktPC models, the majority of neurons include in their RF at

least one lowariance PC generally considered to reside outside of the hand postural synergy
manifold (see text). All models shown have a pseR#iof at least 0.05..............cceevvennnee. 135

Figure 5-4.Triallaver aged i ne ufmeasares usiny sirglmjoiht axés oRotalion

both the angles and angular velocities about these axes of rétasopredictors in a multiple
linear regression model (ordinate) plotted against similar mad#tg individual PCs of hand
joint movements (ordinate). We note a lack of significant difference in terms of the number of
individual joint axes of rotation or kinematic PCs needed to explain neural ensemble activity
(statistics in text). All models showrave a maximum pseudr? of at least 0.05................ 137

Figure 5-5. Trial-averaged singleeuronal firing rate Rmeasures using the same predictors on
the ordinate and abscissa as in Figurke We note that even when averaging across trials, neural
activity isno better explained by individual PCs of hand kinematics than by individual joint axes
of rotatiord in fact, individual joint axes of rotation explain slightly more variance in single
neuronal firing rates than do individual PCs (statistics in text). Atleteosshown have a maximum
PSEUABRZ Of At 1EASE 0.08........civieieie it ctieceeete e etee st e et e st et ssmenee e et e stesereeseteesaessmeneeeeees 137
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Figure A-1. Behavioral task and kinematic recording meth@as Set of objects varying in shape,

size, and orientation to encourage different gra@sPresentation of objects to a monkey. An

object is magnetically mounted onto a robotic arm. The monkey is seated in a chair with a
photosensor placed in its armrest to discourage reaching. A trial begins once an object is mounted

to the robot and the monkgd s ar m i s appropriately position
armrest. I f at any point during a trial the m
the trial is aborted/C) Task timeline. Once the trial starts, the robot posititsedfito present the

object to the monkey. Once the robot begins to move toward the monkey, the monkey performs a
grasp. Each grasp is manually scoredlio# for three kinematic events: the start of movement,

max aperture, and object contact (i.e., gra®feural data from 700ms prior to the start of
movement to 10ms prior to grasp comprise the epoch of interest for analysis. After grasp, the
monkey then holds the object until the robot retra@$.Positioning of reflective markers (31

tota) onthemokey 6 s hand for kinematic recording. Tri
to both the elbow and wrist joints, and markers on the hand are placed at the most distal portions

of each metacarpal and phalanx of each digit. Cameras capture thatyng threedimensional

positions of these markers. With the aid of a musculoskeletal model of the arm and hand, inverse
kinematics can be computed to estimate joiNt aNgIeS........ooovviiiiiiiiiecc 152

Figure A-2. Array placements relative to cortical surface landmg&sMonkeyl was implanted

with two Utah electrode arrays (UEAs, Blackrock Microsystems, Salt Lake City, UT) in area 2
and rostral M1 and four floating microelectrode arrays (FMAs, Microprobes, Gaithersburg, MD)
in area 3a and caudal M(B-E) Semichronic SE6 array with individually deptkadjustable
electrodes ifB) the right hemisphere of monkey(£,) the right hemisphere of monkey(8) the

left hemisphere of monkey 3, aff) the left hemisphere of monkey.4............ccoovvvvvvvnnees 155

Figure A-3. Classification results for two typeof crossvalidation for(A) Monkey 2 and(B)

Monkey 4, the two monkeys from which enough sessions (6 and 9, respectively) had been recorded
to permit generalization in leaxmesessiorout crossvalidation. Faded traces indicate
classification accuracgn one session after training on the other sessions recorded from that
monkey. Bold traces indicate classification accuracy when leaving one trial out and training on all
other trials pooled across sessions. Leavetrial-out crossvalidation tends to nteh the overall
accuracy and time course of the learesessiorout crossvalidated accuracy curves.
Kinematics across different sessions are therefore similar enough to minimize the hazard of
pooling neural responses across thOSE SESSIONS..........uiiiiiiiicceeee e eeeee 161

Figure A-4. Effect of averaging kinematics over repeated trials of the same object (pooled across
sessions) on the apparent di mensi o-dimehsiohay of \Y
at 90% variance explained when not taakraged, the kinematics appearhbe roughly 4

dimensional when trighveraged. This indicates that witknmal variability acts to increase the

apparent dimensionality of the kinematics, and presumably the neural data as.well....161
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ABSTRACT

Despite the remarkable complexity of our hands, we effortlessly use them to grasp and
manipulate objects. To achieve dexterous object manipulation requires not only a sophisticated
motor system to move the hand but also a sensory system to provide deesigckd
proprioceptive and tactil® about the consequences of those movements. While some progress
has been made to understand the neural basis of touch in somatosensory cortex, much less is known
about the neural basis of hand proprioception. TaHi# gap, we simultaneously record time
varying joint kinematics of the har@l measured using a camdyased motion tracking system
0 and neural activity from somatosensory and motor cortices of rhesus maéaqusisg
chronically implanted electrode arsa§ as they perform natural grasping movements and are
subjected to passive hand movements. We find that somatosensory representations of kinematics
are very similar to their motor counterparts, with spiking activity preferentially encoding the
postures (ot the velocities) of multiple joints spanning the entire hand. Preferential encoding of
hand posture stands in stark contrast to models of kinematic encoding of the shoulder and elbow,
where velocities are preferentially encoded. Moreover, we obserarsissponse properties in
somatosensory and motor cortices during both active and passive movements of the wrist and
digits. We conclude that hand shaping via movements of the digits and wrist relies on different

neural mechanisms than does hand transf@rnhovements of the arm.
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CHAPTER 1:
Introduction to haptic sensation
Preface
The goal of this dissertation, broadly speaking, is to determine the nature of how hand
postures and movements are represented in somatosensory cortex. We discuss in this chapter the
nature of the sense of touch and the computations performed by thesgystmm as one ascends
the neuraxis. We also discuss the more mysterious sense of propriateéptanodality through
which hand postures and movements are sénaead how its neural code compares and contrasts
with the comparatively more wedtudied neuwal code for touch. This chapter on haptic sensation
has been published as a book chaffiaodman & Bensmaia, 2018)
Introduction
When we interact with an object, neural signals from the skin, joints, and muscles convey
information about the shape, size, weight, and texture of the object. If the object is moving across
the hand, information about its direction and speed is alscabiailThe senses of touch and
proprioception play a key role in our sense of embodiment, the sense that our bodies are a part of
us. Somatosensation is also very important for affective communication: We touch the people we
love. Finally, haptic feedback icritical to our ability to dexterously manipulate objects. Without
it, we would struggle to perform the most basic activities of daily living, like buttoning a shirt or
turning a door knob. Indeed, while vision is critical to identify objects and Iticaie in space,
only somatosensory signals provide the information about contact with objects that allows us to

interactwith them effectively.



The sense of touch
Cutaneous mechanoreceptors and associated nerve fibers

The skin contains a variety of diffamt types of receptors that respond to different types of
stimulation. Thermoreceptors respond to 4pamful changes in skin temperature, nociceptors
(pain receptors) respond to strong mechanical, thermal, or chemical stimulation of the skin that is
liable to damage it, and lethreshold cutaneous mechanoreceptors respond to smafpéindal)
skin deformations. The palmar surface of the hand contains four types of mechanoreceptors, each
of which responds to different aspects of skin deformations: Megkls, Meissner corpuscles,
Pacinian corpuscles, and Ruffini endingsg(re 1-1). These receptors convert the mechanical
deformations of the skin into neur al signal s,
nerve fibers. Afferent signals conwénformation about objects grasped in the hand and are
interpreted by downstream structures in the brain.

Merkel cellsare approximately 10 um in diameter and located in the basal epidermal layer,
generally grouped in complexes of 30 x 250 um, most ftehe base of sweat dugiéolano et
al., 2003) They are innervated by slowly adapting type 1 (SAl) afferents, which have small
receptive fields (RFs) and produce sustained response to sustained indentations of the skin
(Knibestol, 1975)That is, SA1 #ierents only respond to stimulation of a small patch of skin, and
when that patch is indented, the response of the afferent will persist for tens of seconds or minutes.
SAl afferents are also sensitive to {owquency skin vibrations (< 30 Hz) delivergdough a
small punctate probe centered on their (RFeeman and Johnson, 1982, Muniak et al., 2007)
Electrical stimulation of a single individual SA1 afferent elicits a sensation of pressure that is
localized to a small patch of skin whose location ddieg with that of the receptive fie{@®choa

and Torebjork, 1983)



Ventroposterior lateral
nucleus of the thalamus

uZne

Meissner Pacinian  Merkel cell Ruffini
corpuscle corpuscle ending

Figure 1-1. Medial lemniscal pathway for the sense of touch (illustration by Kenzie Green).

Meissner corpuscleareoval in shape, composed stacksof disclike lamellag about 50
x 150 um intotal size, and located in the dermal papil{@auna, 1956, Bell et al., 1994, Pare et
al., 2001, Nolano et al., 2003)hey are innervated by rapidly adapting (RA) afferents, which also
have small receptive fields (albeit larger rihéheir SA1 counterparts) and produce transient
responses at the onset and offset of skin indentafionbestol, 1973)That is, they only respond
during dynamic indentations of the skin but not static ones. RA afferents respond best to skin

vibrations & intermediate frequencies (peaking in sensitivity around 60 Hz) delivered through a



small punctate probe centered on their (RFeeman and Johnson, 1982, Muniak et al., 2007)
Electrical stimulation of an individual RA afferent elicits a sensation offikier that is localized
to a small patch of skin ( aga({Oohoanaad TorBbjork,g t he
1983)

Pacinian corpuscletave an oval, onicfike appearance, and are typically between 0.5
and 2 mm in length in adul(Pease anQuilliam, 1957, Cauna and Mannan, 19%8)d are located
in the subcutaneous fat pads of the fingers and p@wsiena, 1978)among other places. They
are innervated by PC afferents, which have large diffuse receptive fields and, like their RA
counterparg, produce transient responses at the onset and offset of skin inderfthifarsson,
1978, Vallbo and Johansson, 198RC afferents are exquisitely sensitive to skin vibrations,
particularly if these are delivered over a wide contact éBeisben et b, 1999)and peak in
sensitivity around 250 Hz, where detection thresholds can be as low as 100 nm. Electrical
stimulation of individual PC fibers elicits sensations of skin vibrations that are far more confined
than one might expect given the size ofrtlFs(Ochoa and Torebjork, 1983)

Ruffini endingsare 1.4mm long spindleshaped structures, located deep in the dermis and
most densely situated around the ifRére et al., 2002, Pare et al., 2003, Birznieks et al., 2009)
They are thought to be inn@ted by slowly adapting type 2 (SA2) fibers, which have large
receptive fields and produce sustained responses to sustained skindtfeacisson, 1978|)ike
their PC counterparts, SA2 fibers respond to vibrations over a wide range of frequencies, albe
with lower sensitivityGynther et al., 1992Flectrical stimulation of individual SA2 fibers often
produces no sensation; when a sensation is produced, it is of pulling of the skin, seemingly deep

within the tissugOchoa and Torebjork, 1983)



Mecharosensitivity is conferred to the different mechanoreceptors by ion channels in their
cell membrane that generate currents in response to mechanical perturbations. There are two
mechanisms by which these ion channels might be od&he@arter et al., 199%Hu and Lewin,

2006) Mechanosensitive channels in the cell membrane open either directly in response to
membrane stretcliSachs, 2010pr are tethered to fibers in the tissue surrounding the cell
membrane, which pull the channels open when this tisswasted(Hu et al., 201Q)Three ion
channel families have been implicated in mammalian mechanotransductioseasidg ion
channels (ASIC), transient receptor potential (TRP) channels, and Piezo p{tseinszaki and
Bautista, 2009, Coste et al., 20D®&Imas et al., 2011, Coste et al., 2012, Woo et al., 2014, Volkers
et al., 2015)While ASICs and TRPs likely mediate visceral and nociceptive mechanosensation
(Liedtke and Friedman, 2003, Suzuki et al., 2003, Drew et al., 2004, Nagata et al., 2a04,,Lu e
2009, Kremeyer et al., 2010Piezo proteins are thought to be primarily responsible for
mammalian touckiDelmas et al., 2011, Volkers et al., 2015)

Mechanotransduction is shaped not only by the properties of mechanosensitive ion
channels, but alsby the mechanical properties of the nerve ending. For example, the Pacinian
corpuscle consists of several neatlyanged concentric lamellae with layers of viscous fluid
between eackPease and Quilliam, 1957)his structure shields the afferent in ttemter from
static deformations while allowing very higlequency components to pass through easily
(Loewenstein and Skalak, 196&)s a result, PC afferents produce a sleadiapting response to
indentations when the Pacinian corpuscle is remofddndeson and Lowenstein, 1964,
Loewenstein and Mendelson, 196BEcent evidence suggests that Merkel cells synapse onto SA1
afferents and contain vesicles filled with neuromodulators. Their removal substantially reduces the
sustained response of SA1 afferemisrthermore, isolated Merkel cells produce ion currents in
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response to mechanical perturbat{daksimovic et al., 2014)The role of Merkel cells appears

to be to modulate the response of the mechanosensitive SA1 neurite endings. Meissner corpuscles
consst of several irregularharranged lamellar discs with serrated edges that bend axon terminals

of interstitial RA afferents during initial mechanical loading. During sustained loading, a smooth,
viscoelastic region in the center of the discs absorbarssallowing the edges of the discs to

return to their original positions and, in turn, stop imposing deformation upon the nerve endings.
In this way,the characteristic rapidly adapting respoon$dhese afferents aris€¥akahashi

lwanaga and Shimodap03)

Mechanoreceptive afferents do not only differ in their response propeéeritedso in their
distribution in the skin. RA and SAL1 fibers innervate the glabrous skin of the hand most densely
(~140 and 80 units per éan the fingertip) while PC ar8lA2 afferents are far less prevalent (~20
and 10 units per cfi(Johansson and Vallbo, 197%he density of RA and SA1 afferent decreases
sharply as one proceeds proximally from the fingertips, whereas that of PC and SA2 afferents
remains relatively comant. Note, however, that Pacinian receptors located in the palm of the hand
and even in the forearm will respond robustly when the fingertips come into contact with an object
(Westling and Johansson, 1987, Delhaye et al., 2012, Manfredi et al., 20E2ye numbers of
PC afferents are recruited during interactions with objects, regardless of contact location. Indeed,
these receptors are exquisitely sensitive to vibratisaispropagate across the skin.

Skin mechanics and afferent branching

Forcesspplied to the skindbs surface propagate
strains at the locatiaof the receptors, which cause the membranes of their neurites to depolarize,
ultimately evoking spikes in the associated nerve fibers. Becausgnth#us propagates through
the tissue before reaching the receptors, these only experience a distorted version of the stimulus:
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Certain features in the stimulus are enhanced while others are obscured simply due to skin
mechanicgPhillips and Johnson, 198, Dandekar et al., 2003, Sripati et al., 20@pecifically,

external corners and edges in the object are strongly enhanced because these exert more force on
the skinbdés surface than do internal obuseect f e
they are filtered out as the forces exerted or
of the presence of adjacent features. From one perspective, skin mechanics are valuable in that
they enhance edges and corners, a process thataegpecialized neural machinery in the retina
(namely lateral inhibition). On the other hand, the sense of touch is poor at conveying complex

and fine spatial structure due in part to this mechanical filtering of thgAgkarianstielau and

Loomis, 1975 Cho et al., 2016)This limitation can be overcome to some extent when the skin

moves across the spatial patterns (see section on texture coding).

Because Merkel cells are | ocated in the &ep
not have to prpagate far to reach them. Moreover, various cellular structures tightly anchor
Merkel Cells to the epidermi@iunger, 1965, Iggo and Muir, 1969, Halata et al., 2083) a
result, they respond only to local skin deformations and can therefore conveyaitidorbout
skin deformations with a high spatial resolution. Meissner corpuscles are also superficial, being
located in the dermal papillae, which are protrusions of the dermis into the epidermis. However,
the link between Meissner corpuscles and theegpits consists of a network of collagen fibers,
which is less rigid a coupling than that of Merkel cémuna, 1956, Takahashvanaga and
Shimoda, 2003and may contribute to the reduced spatial acuity of RA afferents compared to their
SAL1 counterpartd?acinian corpuscles are situated deep in the dermis, so forces applied to the skin
must propagate long distances to reach them, thereby giving rise to the large and diffuse receptive

fields of PC afferents.



The neural image carried by the nerve fiberturther distorted by afferent branching.
Indeed, SA1 and RA afferents innervate multiple Merkel cells and Meissner corpuscles,
respectively. Individual SA1 afferent and RA fibers may innervate as many as 100 Merkel cells
(Johnson, 20013nd 15 to 30 Meis&t corpusclegJohansson, 1978)espectively. How signals
from multiple neurite branches are combined to culminate in an afferent spike train remains a topic
of debate. According to one view, inspired by work with noemmmals(Adrian and Zotterman,
1926a,b), the afferent response reflects the sum of inputs across all of its neurites. According to
the other view, dubbed the "driver" modéksniak et al., 2014)spike trains propagate along
neurites to an intersection and, from the intersection, will g@geanot only orthodromically along
the nerve, but also antidromically along the adjoining neurites. Antidromic spike propagation leads
to spike collisions along the other neurites, thereby canceling out their contributions to the afferent
firing rate. Thaway, a single neurite "drives" the firing rate of the entire afferent by suppressing
the influence of all the other neurites. Anatomical and electrophysiological data from mammals
support the driver modéHorch et al., 1974, Lesniak et al., 2014)

Regadless of which mechanisms mediates the integration of signals from the different
branches, this branching structure leads to additional spatial filtering of the stimulus in the
response. However, the more complex receptive field structures that resuthisoconvergent
input may also confer to afferents some preference for certain stimulus features over others. For
example, nerve fibers with radially asymmetric receptive fields tend to respond more strongly to
edges at some orientations than at otfferaszynski and Johansson, 2QMich may pave the

way for the strong orientation selectivity observed in cortex (see below).



Tactile coding in the somatosensory nerve

Information about objects is multiplexed in the responses of the four cutaneous
mechanceceptive afferents that innervate the glabrous skin of the hand: Some aspects of the
responses conveys information about shape, others about texture, and yet others about motion.
Initially, the different afferent types were thought to play fundamentdigrent roles in touch
(Johnson, 2001)SA1 fibers were thought to mediate tactile shape and texture perception, RA
fibers tactile motion perception, PC fibers vibration perception, and SA2 fibers hand
proprioception (the sense of the position and movésneithe fingers). However, all afferents
types are activated during contact with objects and, it turns out, signals from most or all of them
convey information about any one object featiBaal and Bensmaia, 2014)he different types
of afferents diffe in what features they preferentially respond to: SA1 afferents tend to respond to
larger stimulus features (edges, coarse textural features) that are either static or move slowly across
the skin; PC afferents are capable of responding to very smallssifieatures (less than 1 micron
in size) that move rapidly; RA afferents fall somewhere between those two extremes. Because
most objects comprise elements whose size vary over orders of magnitude, all fiber types tend to
be involved in touch sensationsdaen most circumstances. Nonetheless, different aspects of the
afferent responses convey different types of information about an object and the same responses
from the same afferents are read out (decoded) in different ways to extract this disparate
information.

Stimulus magnitude

Intensity is one of the most basic stimulus dimensions. In vision, it corresponds to
brightness; in audition, to loudness; in olfaction, gustation, and touch, it is described using more
generic terms: a weak/strong taste, smeltpach(Bensmaia, 2008)The neural determinants of
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tactile intensity were first investigated by Kenneth Johnson, who, along with his mentor Vernon
Mountcastle, made the following observation: While the perceived intensity of a sinusoidal
vibration appliedo the skin grows smoothly as a function of the amplitude of the stimulus, the
firing rate of individual mechanoreceptive fibers does R@urel-2A). Instead, the function that
relates firing rate of individual fibers to intensity is a pigse linear function, punctuated by
long plateaugqTalbot et al., 1968a, Johnson, 197#) contrast, the perceived intensity of a
stimulus is a smooth monotarfunction of its amplitude. This discrepancy between the responses
of individual afferents and the resulting perceptual experience led to the conclusion that the
perceived magnitude of a tactile stimulus is determined by the response of a population of
afferents. Indeed, if perception were determined by a single afferent, perceptual magnitude would
also be constant over large ranges of stimulus amplitude. Similarly, while both the firing rates of
mechanoreceptive afferen@/erner and Mountcastle, 196&)d the perceived intensity of skin
indentationgLamotte, 1977)ncrease linearly with indentation depth, the perceived intensity of
indentations depends on the rate of indentation and on the duration of the indentation plateau in
ways that cannot be pretid from the responses of any one type of mechanoreceptive afferent
(Poulos et al., 1984)

In a psychophysical study (with human participants) paired with a neurophysiological one
(with monkeys), using the same set of vibratory stimuli, the perceiveditytena tactile stimulus
was shown to be determined by the response of all afferents that respond to the @tinmuikais
et al., 2007)While the spike rate of any one population of fibers could not predict how intense a
stimulus felt, the total populan response predicted with high precision the perceived intensity.
Furthermore, spikes from the different populations did not contribute to sensory magnitude
equally: SA1 spikes were contribute more to perceived intensity than do RA spikes, which in turn
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are weighted more than PC spik@ensmaia, 2008)Thus, signals from the various sensory
channels are integrated to determine how intense a stimulus will feel.
Vibratory frequency

Skin vibrations evoke sensations with distinct qualities (and mediatanggiray distinct
populations of afferents) depending on what range of frequencies they fall in. Skin oscillations
ranging in frequency from 1 to 50 Hz evoke a sensation of light flutter, which can be accurately
localized and is mediated primarily by RAddrs. As the frequency increases beyond 60 Hz or so,
the sensation changes to one of vibratory hum, emanating from deeper tissue and more poorly
localized(Talbot et al., 1968aHuman observers can distinguish skin vibrations on the basis of
their frequery across both flutter and vibration rang@eff, 1967, Franzen and Nordmark, 1975,
LaMotte and Mountcastle, 1975, Salinas et al., 2000, Tommerdahl et al.; RO®®)flutter range
(5150Hz), a 10% change in frequency can be perceived about 75% ohéhert the vibration
range (>100Hz), a 30% change in frequency is required to achieve this level of discrimination
performance. While the ability to discriminate changes in frequency might be in part attributable
to the concomitant change in perceived magle (Verrillo et al., 1969, Hollins and Roy, 1996,
Muniak et al., 2007)changes in vibratory frequency also result in changes in vibrotactile pitch, as
evidenced by the fact that tactile frequency discrimination is not substantially impaired when the
stimulus amplitude varies unpredictably from stimulus to stim({eu et al., 2009b, Harvey et
al., 2013)

A striking feature of afferent responses to sinusoidal vibrations is their entrainment: an
afferent tends to produce one spike or burst of spikeneahto a small portion of each stimulus
cycle Figurel-2B) (Talbot et al., 1968b, Freeman and Johnson, 1982, Mackevicius et al., 2012)
This patterning in the spiking response was thought to account for the ability to discern the
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vibratory frequency. ldeed, over a range of amplitudes, sinusoidal vibrations evoke a response in
afferents but this response is not entrained to the stirfiLdiddotte and Mountcastle, 197%)ver

this secalled atonal interval, the vibrations are tangible, but their frequemoegiscernible. While

this evidence was circumstantial, it was later confirmed that temporal patterning in afferent
responses does convey information about stimulus frequency, not just for sinusoids but also for
more complex (and ecological) skin vibrats (Mackevicius et al., 2012)Furthermore, the
entrainment of the vibrations to the stimulus shapes the way skin vibrations are perceived and
accounts for the perceptual experience of vibrotactile pitch.

In the aforementioned experiments, skin vibratiarere generated using vibratory motors,
which allows for fine control of the stimulation waveform. These experiments provided insights
into how information is encoded in the nerve, and specifically what role spike timing might play.
One might ask what etagical role vibrotaction plays. In everyday life, skin vibrations caused by
footsteps, as they propagate across the floor,
we interact with an object indirectly through other objédike with paper throuly a writing
utensil, with food through an eating utensil, or with the ground through a walking e&rations
propagating through the grasped object convey information about the other objects with which it
comes into contac{Katz, 1925, Brisben et al.,929) The transduction and processing of
vibrations also plays an important role in the perception of texture, as detailed below.

Shape
When we grasp an object, cutaneous signals convey information about its shape. Cutaneous
information about locdeatures of the object at each contact point is integrated with information

about the relative position of the contact padntkat is, information about the conformation of
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Figure 1-2. (A) Firing rate evoked in an RA fiber by 4@z skin vibrations of arying amplitudes. The rate increases
as a piecavise linear function of amplitude, interspersed with entrainment plateaus over which the fiber fires an

integer number of spikes pe

r stimulus cy@ehnson, 1974)B) Responses of a PC fiber to a 489 skin vibration

at three amplitudes. The spiking response is highly patterned and repeatable and conveys information about the
frequency of the stimulugviackevicius et al., 2012JC) Reconstruction of the spatial pattern of activation evoked in

a populatiorof SA1 (top), RA

(middle) and PC (bottom) afferents when embossed letters are scanned across the skin.

The spatial pattern of activation reflects the spatial configuration of the sti(®iiilps et al., 1988)

the hané to achieve a t

hree dimensiomalage of the object (see beloftjsiao, 2008)First, we

examine how this local feature information is encoded in the responses of mechanoreceptive

afferents. When a spatial pattern is indented into or scanned across the skin, its spatial features are

reflected in the spatial p

attern of activation evoked in SA1 and RA affeFegts€1-2C)(Johnson

and Lamb, 1981, Phillips et al., 1988, Goodwin et al., 1995, Wheat and Goodwin, 2000, 2001)
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SAL1 afferents convey the most spatially acute neural image andtsedr ability to discern the
smallest tangible features. Tactile spatial acuity is most reliably measured using the grating
orientation discrimination task, in which subjects identify the orientation of gratings indented into
the skin (with the ridges dngrooves parallel or perpendicular to the long axis of the finger). As
the ridges and grooves get narrower, it becomes more and more difficult to make out their
orientation(Craig and Johnson, 2000)he finest gratings whose orientations can be discérned
with a spatial period of about 2 mimevoke spatially modulated responses in SA1 but not RA
afferents(Phillips and Johnson, 1981a, Bensmaia et al., 2006loxher words, SA1 fibers signal

the presence of a fine grating while RA fibers respond ts it ia were a flat surface. In fact, at

the limits of our tactile spatial acuity, RA input seems to interfere with SA1 input: We can better
discern small spatial features if RA fibers do not resg@mhsmaia et al., 2006&)lote that this

task become tvially easy regardless of groove width if the grating is scanned across the finger (as
described below in the section on texture).

However, RA signals do convey information about coarse spatial features. The most
compelling evidence for this is provided the successful use of the optical to tactile converter
(Optacon(Bliss et al., 1970)The Optacon consists of an array of pins that each can be made to
vibrate. The idea was to convert the output of a camera scanned across text into patterned activation
of the pins so that the letters scanned by the camera would be reproduced on the array. Subjects
were able to recognize the letters with reasonable acc(Caaig, 1980)despite the fact that the
Optacon did not activate SA1 afferents af@hrdner and &mer, 1989) Thus, while SA1 fibers
convey the most acute spatial signal, the spatial image carried by RA fibers can also convey

information about the local spatial features of the object. Spatial information stemming from RA
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fibers is probably more infarative than that from their SA1 counterparts under certain
circumstances, for example during dynamic contact with an object.
Texture

We are exquisitely sensitive to surface microstructure, and are able to discern surfaces
whose elements differ in size s of nanometers and in inlement spacing by hundreds of
nanometerg§Skedung et al., 2013purface texture morphs slowly into local shape as the elements
grow larger and farther apart, but texture extends well into the millimeter range, so texture
perception spans about six orders of magnitude in size. This remarkable sensitivity to surface
microstructure is made possible by the different mechanoreceptive afferents and their different
response properties. Texture perception relies on (at least) stinctlimechanisms. Coarse
textural features are encoded in the spatial pattern of activation in SA1 and RA afferents, as are
local spatial contourd={gure1-3A) (Connor et al., 1990, Connor and Johnson, 1992, Blake et al.,
1997) At this scale, form andekture overlap. For example, a Braille word has both a form that
defines it but also can be described as 6éroug
is inherently limited by innervation density. Combined, SA1 and RA afferents have resatutions
the order of half a millimeter or so. If this mechanism were the only one we used, the range of
tangible textures would be much narrower than it is.

Fortunately, the spatial mechanism is complemented by a temporal one: To make out fine
textures, we danot simply press our fingers across a surface; we run our fingers across it
(Lederman and Klatzky, 1993\Vithout this lateral movement between skin and surface, we are
unable to make out fine surfaced featufidsllins and Risner, 2000)Vhen we run our fingers
across a textured surface, small vibrations are produced in the skin. These vibrations are shaped
by the texture, the speed at which it is scanned, and geometry of the finger{ipesismala and
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Hollins, 2003, Bensmaia and Hall, 2005, Delhaye et al., 2012, Manfredi et al., 20v)eed,
the vibrations produced in the skin reflect the spatial layout of surface features, with features whose
spatial period matches that of the fingerprint enhanced relative to others. Furthetmore,
vibrations dilate or contract systematically (and so their frequency composition translates left and
right along the frequency axis) with decreases or increases in scanning speed, respectively. The
skin vibrations elicited during texture scanning e vibrotactile afferents, namely RA and PC
afferents(Lamb, 1983, Weber et al., 2013)exture responses convey information about the
stimulus in their temporal patterning, which reflects the temporal structure of the vibr&igune (
1-3B). In otherwords, the frequency composition of the skin vibrations is reflected in that of the
spiking responses, and these patterns are highly informative about texture identity when decoded
with a precision on the order of two to five milliseconds. Furthermor&yreeglicited vibrations
propagate across the skin and excite PC afferents throughout the hand and even the forearm.
Texture information therefore does not stem solely from the point of contact with the surface but
from the entire hand, as evidenced byftw that subjects can perform a roughness discrimination
task even when their fingertip has been numbed with an anegthbbeiton et al., 2012)As
might be expected, textuspecific spiking patterns also dilate or contract with decreases or
increass in scanning speed, respectivéWeber et al., 2013)The temporal mode of texture
perception in primates is analogous to the principal mode of texture perception in rodents, who
sense texture from deflections produced in their whiskers as they scara¢thess surfaces
(Diamond, 201Q)

The spatial and temporal mechanisms are seamlessly integrated to form a holistic percept
of texture, shaped by the responses of all activated mechanoreceptive afferents. Texture can be
broken down into a number of percegtudimensions, the most salient of which are
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roughness/smoothness, hardness/softness, stickiness/slipperiness, and warmth{idodine st

al., 1993, Hollins et al., 2000Df these, the most prominent is roughness, which has received a
lot of experimatal attention(Hollins and Bensmaia, 20Q7yhe perceived roughness cannot be
predicted from the responses of any one population of fibers. Rather, the inhomogeneity in the
spatialpattern of response in SA1 fibers combined with the inhomogeneity tertiporalpattern

of response in RA and PC fibers accounts for the perceived roughness of surfaces spanning the
range of tangible textures with remarkable accur@teber et al., 2013)This makes sense
because uneven surfaces, which are perceived as roygbduce a spatially inhomogeneous
response in SA1 fibefissome SALl fibers are activated by surface elements impinging upon the
RFs while others are notand responses in RA and PC fibers wax and wane as coarse elements
move across theRFs.

Hardness/sftness is the subjective continuum associated with the compliance of an object
(Harper and Stevens, 1964). Softness perception has been shown to rely primarily on cutaneous
cues: eliminating kinesthetic i nstrimnatesdfthnessn has
(Srinivasan and Lamotte, 1999hdeed, a compliant surface is more liable to conform to the
contour of the skin than is a hard one. Accordingly, the compliance of the object may be signaled
by the growth of the area over which the stamtacts the object as the contact force increases, as
well as by the more distribution of forces exerted by the object on the skin across the contact area.
Softness perception has been thought to rely on signals from SA1(Bbeisasan and LaMotte,

1996) First, PC fibers are too sparse and their RFs too large to signal pressure gradients or contact
area. Second, the response of RA fibers to a surface indented into the skin is not modulated by the
compliance of the surface whereas the response ofiBé&% is(Srinivasan and LaMotte, 1996)

However, the neural code for softness cannot simply be dependent on the strength of the response
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evoked in individual SA1 fibers as both the rate at which a surface is indented into the skin and its
compliancemodulate SA1 firing rates; in contrast, softness perception is independent of the
indentation rate. Rather, compliance may be encoded in the spatial pattern of activation across SA1

afferents or perhaps in relative activations of the three populatiofieerds.
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Figure 1-3. (A) Reconstruction of the response in a population of SA1 afferents evoked by embossed dot patterns
scanned across the skin. The spatial configuration of the dots is reflected in the patterrmtidraetivoked in the

afferents. (B Response of a PC fiber to three finely textured fabrics. Left: Microscope image of the texture; middle:
spiking responses to 40 repeated presentations of the textured surface; right: power spectrum of the neural response.
Each texture produces a diffetdyut highly repeatable temporal spiking patt@ifeber et al., 2013)

Stickiness/slipperiness is the sensory continuum associated with the friction between skin
and surface, i.e. the ratio between the force exerted normal to the surface to that exerted parallel
to the plane of the surfa¢@mith and Scott, 1996furthermorewhen judging stickiness, subjects
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do not substantially vary the normal forces they apply on the surface, but the applied tangential
forces tend to vary across surfaces, suggesting that tangential forces are critical in the perception
of stickinesgCallier et al., 2015)As slowly adapting type 2 fibers are sensitive to skin stretch
(Knibestol, 1975)this population of mechanoreceptive afferent fibers may provide the peripheral
signals underlying stickiness perception, although recent evidence sugbgestsother
mechanoreceptive afferents also convey information about tangential forces exerted on the skin
(Birznieks et al., 2001)

The warmth or coolness of a surface is another important textural dimension, one that is
associated with the thermal conduityi of the material. Metals feel cool because they conduct
heat out of the skin whereas plastics feel warm because they do not conduct heat. This sensory
information about the thermal conductivity of a surface, which implicates warm and cool fibers in
the skin (Ho and Jones, 2006, 2008 integrated with information about surface microstructure
to yield a holistic percept of texture. The perception of texture is thus a canonical example of the
interplay of the different modalities, and of the exploitatod their disparate response properties
(Saal and Bensmaia, 2014, Pirschel and Kretzberg, 2016)

Motion

The haptic exploration of objects typically involves movement between the hand and the
object(Lederman and Klatzky, 1993As discussed above, if week information about texture,
we move our fingers across the surface. If we seek information about the shape of an object, we
follow its contours with our fingertips. Furthermore, we need to sense how objects move across
our skin to dexterously manipulateem. Information about tactile motion is thought to be
conveyed by two different mechanis(®ei and Bensmaia, 2014)ne is the sequential activation
of mechanoreceptive fibers with neighboring REardner and Costanzo, 198@) mechanism
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that is akin to its visual counterpart (involving sequential activation of neighboring
photoreceptors). The other is the activation of SA2 fibers, which are sensitive to skin stretch: The
skin will tend to be pulled in the direction of the moving stimulus, so theselstelated signals
can convey information about movement directi@hausson et al., 2000)\fferent firing rates
increase monotonically with the speed at which an object moves across the skin, but they are also
modulated by texture, so it is not cleaowh information about speed and texture can be
disambiguated from the responses of afferents. In fact, while texture perception is consistent over
a wide range of scanning speeds, speed perception is dependent or{Depasrilt et al., 2008)
Nonethelessinformation about scanning speed is perceptually available (if not veridical) so it
remains unknown how this information is extracted from afferent responses. The evidence
suggests that motion representations at the periphery involve multiple affqes{Rgi and
Bensmaia, 2014)
Peripheral signals during object manipulation

The sense of touch plays a key role in our ability to interact with objects. Indeed, the
dexterous manipulation of objects requires the rapid integration of motor commands, seespry
and internal predictions. A lack of cutaneous input from the fingertips results in a large
compensatory increase in grip force that fails to adapt appropriately to obje¢Asiipselle et
al., 2003, Nowak et al., 20Q3The importance of cutanemunput for object manipulation is
underscored by the fact that patients with sensory nerve damage primarily complain of motor
deficiencies rather than of the sensory loss i{détiberg, 1962, Jones and Lederman, 2006)

Information about the forces weax on an object is critical to our ability to grasp and
manipulate it: We apply enough force so that it will not slip from our grasp but not much more
than that. Indeed, the safety margin, the amount of force exerted above the minimum necessary to
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avoid dip ranges from 10 to 40 %, depending on the indiviqdahansson and Westling, 1984,
Westling and Johansson, 1984, Augurelle et al., 20@8thanoreceptive afferents, particularly

SA1 and SAZ2 fibers, provide precise information not only about the nuagntut also about the
direction of forces exerted on the skBirznieks et al., 2001, Wheat et al., 201@)erestingly,

SA2 afferents with RFs near the nail are particularly informative as to force dir@8tranieks

et al., 2010) The importance of these cutaneous cues to object manipulation is demonstrated in
experiments with digital anesthesia: When cutaneous cues are eliminated by anesthetizing the
fingertips, subjects exert substantially more force on objects when graspm(piingurelle et al.,

2003)

Most of the classical work on somatosensory processing focuses on perceptual tasks with
passively applied stimuli, in which ample time is provided to integrate sensory features at all levels
of the somatosensory neuraxis, froeriphery to cortex. However, object manipulation involves
dynamic, multicontact interactions. Furthermore, due to delays in the deployment of motor
responses that are approximately 100 ms in duration, timely correction for unanticipated sensory
signals rguires that this information be conveyed within a very short time windoWwansson
and Flanagan, 2009)ong motor output delays require the presence of feedforward in addition to
feedback signals, implying the presence of an internal model. A broadbqgubstefore emerges
from these constraints: how does the somatosensory system manage to do everything it needs to
do with so little time to integrate the incoming sensory information?

Much work on peripheral cutaneous signals during object manipulagéisriocused on
recordings of peripheral afferents during an object lifting {dskansson and Westling, 1984)
which subjects grip a thin rod using the index finger and thumb. Subjects are then instructed to lift
the rod, which is attached to a forcensducer and a weight. The texture and mass of the
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manipulandum can be varied from trial to trial, thereby manipulating the grip and load forces
required to perform the task. The task is split into four phases: contact, load, lift, anBitnotd (
1-4). The different types of afferent exhibit distinct response patterns during the task and respond
differently during the various phases of the task. The most striking features of the neural signature
of this task are the transient bursts of activity tightlypded with the initiation of the contact and
lift phases, which result in large scale deformations of the fingertip and activate afferents
terminating all over the fingerpad, not just over the contact(&iskey et al., 2000, Birznieks et
al., 2001) Impartantly, the timing of the first spike of these bursts, rather than solely the firing
rates of these afferents, appears to be important for determining object properties useful for
manipulation, particularly surface curvatug@hansson and Birznieks, 200%ohansson and
Flanagan, 2009, Saal et al., 2008)ising from and supported by research on the information
contained within firsspike timing is a model of how the timing of the responses distributed over
the different afferent populations might be dise reliably signal object curvature. In this view,
curvature could in principle be decoded by neurons that detect specific patterns of spike
coincidence. Presumably, similar mechanisms could be used to extract other features, such as
surface friction inbrmation vital for determining the amount of grip force needed to support object
load (Edin et al., 1992and the directions of forces applied to the fingdgidgnmalm et al., 2003)
which are useful for detecting object slip. One possibility is thaethemcidence detectors exist
in the cuneate nucleus in the brain stem, which receives cutaneous information from the hand and
input from cortexJohansson and Flanagan, 2009)

Whil e much information about the objectds
about i1its weight is only made available at t hi
is supported by the hand. The most striking neural signatures aintle is the bursting activity of
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PC afferentsKigure1-4) (Johansson and Edin, 1992)s a subject initiates the load phase, an
internal model for the weight of the object is constructed from memory and from information from
other sensory modalitie.g., visual associations between size and weight), which in turn
manifests as a corollary discharge signaling the expected time of obj€Golifton et al., 1993,
Jenmalm and Johansson, 1997, Flanagan et al.,.Z0@&}iming of bursting from PC affarts,
which signals lift, is then compared with the information from this corollary discharge and a
mismatch between the two results in a rapid adjustment of motor output. The notion that weight is
computed based on a comparison between an internal malddstasory information is supported
by fMRI results wherein bilateral cerebellum, contralats@hatosensory corteand M1, and
ipsilateral posterior parietal cortex are selectively active during mismatches between expected and
actual weightgJenmalm etlg 2006)
The touch pathways

The cuneate and gracile nuclei in the brainstem receive the first synapses from the
periphery Figurel-1). At first glance, neurons from these nuclei seem to act as simple relays, with
responses that reflect a hifielity, oneto-one copy of afferent inpufVickery et al., 1994,
Gynther et al., 1995)The feedback projections to cuneate nucleus from thal@frylife et al.,
1986)and corteXCheema et al., 1983 owever, suggests a more complex functional roléhor
dorsalcolumn nuclei. Indeed, neurons in brainstem nuclei are inhibited by both afferent and
cortical input(Andersen et al., 1964, Biedenbach et al., 1971, Marino et al., ,280@)these
descending projections are thought to play a role in the movegaéing of cutaneous input
(Coquery and Coulmance, 1971, Dy#eulsen, 1975, Rushton et al., 1981, Chapman et al., 1987,

Chapman et al.,, 1988, Chapman, 1994, Post et al., 1994, Wasaka et al., 2012)
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Figure 1-4. Typical trial of the object lifting task. Vertical lines denote the boundaries of the task phases. The top two
colored traces show the tirvarying load force (upward lines in the diagram to the left) and grip force (inward arrows)
during the trial. The lalck trace shows the vertical position of the object as it is lifted off the support surface. The
bottom three traces show spike trains of RA, SA, and PC afferents, respectively. Bursts of spikes coinciding with
specific task events are circled in magefadapted from Johansson and Flanagan, 2009)

Recent patch clamp studies in cats have revealed that the responses of individual cuneate neurons
are dominated by a few primary afferents (4 to 8); as a result, cuneate neurons produce highly
repeatable and idsyncratic responses to tactile stimulatiBengtsson et al., 2013, Hayward et

al., 2014, Jorntell et al., 201#owever, while most of the work investigating the properties of
neurons in the dorsal column nuclei has been carried out in a cat model, the neuronal morphology
and microcircuitry of this structure and the descending projections it receives differ between
primates and cat@Harris et al., 1965, Biedenbach et al., 1971, Molinari et al., 19égent
advances in chronic implants are poised to elucidate the organization of these elusive structures in

awake, behaving primatéRichardson, 2015, Richardsonatt 2016)

24



The dorsal column nuclei then send the bulk of their projections to the ventral posterior
lateral nucleus of the thalamus (VPEjdure1-1), which has also been traditionally considered
to be a simple sensory relay (in humans, the somatogyemscleus is called Ventral Caudal). At
a first approximation, the responses of individual thalamus neurons to tactile stimuli mirror the
simple excitatory spatial receptive fields of their afferent ifBushnell and Duncan, 198@jhd
are not modulatedybattentional state or behavioral goals (in contrast to their counterparts in
sensory cortexCamarillo et al., 2012, Vazquez et al., 2012pwever, counter to this classical
view, sensory thalamus exhibits a magnitude and variety of bidirectional mbectovity with
sensory cortex that imply a much more active processing(kolet al., 2003, Reichova and
Sherman, 2004, Van Horn and Sherman, 208reover, circuitry contained entirely within
thalamus acts to modulate thalamic output to cortex. Aijhahe most prominent cell type in
thalamus is the relay cell projecting to somatosensory cortex, inhibitory interneurons from roughly
twenty percent of neurons in thalamus and are commonly situated between afferents and relay cells
in a common threeaeuon motif(Penny et al., 1983, Bentivoglio et al., 1991, Arcelli et al., 1997)
Inhibitory input from the thalamic reticular nucleus (TRN) also acts to modulate and gate the
output of thalamocortical projectiorfsee et al., 1994, McAlonan et al., 2008)e implications
of this inhibitory thalamic circuitry in stimulus coding are unclear but it confers to thalamus an
ability to refine and modulate, rather than merely relay, sensory information to cortex.

In addition to the medial lemniscal pathway for {dweshold discriminative touch, the
somatosensory system includes the anterolateral system, which carries information about pain,
itch, temperature, and pleasant affective to(Mlendoza and Foundas, 2007, Davidson et al.,
2009, McGlone et al., 2014, Red)15) This system receives afferent information from small
diameter C fibers and]Afibers that terminate in free nerve endings expressingthigishold
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mechanosensitive (pain), lethreshold mechanosensitive (pleasant affective touch), histamine
sensitve (itch), and exhibit selective heatnd coldsensitive responses. These afferents form
synapses in the dorsal horn of the spinal cord, and these sec@ncheurons then decussate and
ascend the eponymous anterolateral aspect of the spinal cordatensitetb the stimulation site.
Emanating from these ascending spinal fibers are multiple axon branches. The spinothalamic
pathway is one such branch that sends synaptic connections torthercheurons in VPL, which
in turn project tosomatosensory cax (see below). Other branches of the anterolateral system
project to various nuclei in hypothalamus, brainstem, and midbrain responsible for the powerful
autonomic and affective responses to painful stimuli.
Tactile coding in somatosensory cortex

Somatosesory cortexcan be divided into four modules with differing cytoarchitecture,
thal amocortical input, and respon&igurepl).dnper ti e
fact, area 3 is technically primary somatosensory cortex proper, given ther kighsity of
thalamocortical projections to its layer 4 relative to the rest-abfied S1(Kaas, 1983)Neurons
in area 3a are primarily sensitive to joint movements and seldom exhibit purely cutaneous
responses. In contrast, neurons in area 3b amd firemarily sensitive to cutaneous stimulation.
Note, however, that even cutaneous neurons often respond to joint movements in the absence of
object contac{Bensmaia and Tillery, 2014, Kim et al., 201hit whether or not this movement
related activity ontributes to proprioception remains to be elucidated. Neurons in area 2 exhibit
both cutaneous and jointlated responses and are thought to be involved in the integration of
cutaneous and proprioceptive information necessary for stereognosis (see below)

One of the primary principles governing the organizatiorsahatosensory corteis
somatotopy: Adjacent neurons (along the plane parallel to the cortical surface) respond to adjacent
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patches of skinKigurel-1) (Pons et al., 1985As a result, receptive fields progress systematically

as one proceeds from the medial to lateral aspect®rohtosensory corteand each module
contains a complete map of the body: The lower body is represented near the midline while the
head is represged at the lateral extreme of the parietal co(téxas et al., 1979)Furthermore,

more cortical volume is devoted to certain body regions than otharphenomenon dubbed
cortical magnification(Sur et al., 1980)Body regions are magnified in proporti to their
innervation density and to the functional significance of touch in those regions. As we tend to
explore and manipulate objects with our hands and not our backs, the skin of the hand is more
densely innervated than is that of the back, anddhd hepresentation somatosensory cortéx

much larger than that of the back, despite the much larger area of the back relative to the hand. For
similar reasons, the fingertips are more magnified than is the palm, and large swaths of
somatosensory contare devoted to the lips as well.

Somatosensory corticaleurons project to the parietal ventral area (PV) and secondary
somatosensory cortex (S2), located on the superior border of the lateral sulcus (Disbrow et al.,
2003). Very little is known about tHeF properties of neurons in PV. S2 neurons have very large
RFs, for example covering the entire hand, and often respond to stimulation on both sides of the
body (wnlike their counterparts in stalled S1) Some evidence suggests that S2 comprises
multiple compartments, some exhibiting exclusively cutaneous responses, others both cutaneous
and proprioceptive ones.

As discussed above, individual mechanoreceptive afferents convey ambiguous information
about a stimulus, which tends then to be distributedsacthe responses of a large number of
fibers. Neurons in primary somatosensory cortex carry more explicit signals about behaviorally
relevant stimulus features, such as the orientation of an edge indented into the skin or the motion
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of an object acrossdfskin. As has been shown in other sensory modalities and discussed in more
detail below, neurons tend to be selective for increasingly complex stimulus features as one
ascends the somatosensory neuraxis. Early in the processing hierarchy, neurons lh&fessma
and are sensitive to simple stimulus features, such as their orientation and direction of motion of
local features. Higher up the hierarchy, neurons have larger RFs and are selective for more
complex features such as curvature and global motioatidine Furthermore, neuronal responses
are increasingly invariant with respect to other stimulus features at higher processing stages; that
is, tuning for a given feature is consistent, no matter what the other features of the object are, a
phenomenon thdtas been extensively documented in vision.
Vibratory frequency

As mentioned above, not only does the tactile perception of vibration have an ecological
role but the study of the neural encoding of vibration can shed light into how the temporal
propertiesof a stimulus are represented in the somatosensory system. Like their counterparts in
the nervesomatosensory corticaburons produce entrained responses to skin vibrations; that is,
they produce one spike or a burst of spikes within a restricted phaaelostimulus cycle. This
entrainment is pervasive for lefrequency stimuli (< 50 HfMountcastle et al., 1969, Salinas et
al., 2000) but is observed for vibrations at up to 800 Hz in a subpopulation of neurons in area 3b
(Harvey et al., 2013)For lowfrequency stimuli, frequency can be decoded both from the firing
rate and from periodicity in the response, as bothary with frequencySalinas et al., 2000,
Luna et al.,, 2005)In contrast,somatosensory cortical firingates are completely frequency
independent at the higher frequencies (>100 Hz), so the only information about the spectral
composition of a skin vibration is conveyed in the temporal patterning of the evoked spikes
(Harvey et al., 2013)
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The frequencyndependence otomatosensory cactl firing rates evoked by high
frequency stimuli stands in stark contrast to the strong frequency dependence of PC firing rates,
which are primarily responsible for signaling hiffequency vibrations in the nerve. This seeming
inconsistency suggests ththe PC signals serve to modulate the timingavhatosensory cortical
responses without affecting their strength. This phenomenon can be explained if the PC input is
integrated over short periods of time and in such a way that it exerts an influesoceadosensory
corticalneurons that is excitatory and inhibitory in equal pé8tsal et al., 2015)

Shape

As discussed in detail above, local spatial features of an object, which impinge upon
individual fingerpads, are encoded in the spatial pattern sfatich in RA and especially SA1
fibers Figure1-3A), a representation that is qualitatively analogous to that in the retina. In light
of this, it is perhaps not surprising that the representation of shegmmiatosensory cortas
gualitatively analogous to its counterpart in primary visual cortex (V1). Indesdmatosensory
cortexas in V1, a large proportion of neurons (~50%) are tuned for the orientation of an edge
indented into or scanned across their Rigyre 1-5A) (Bersmaia et al., 2008)That is, they
respond maximally to an edge at a specific orientation and less so to edges at other orientations.
Furthermore, in both sensory cortices, this orientation selectivity is shaped at least in part by the
neur ons 0 eHRRFs centprisa extitatary regions flanked by one or more inhibitory regions
(DiCarlo et al., 1998, DiCarlo and Johnson, 2000, 2008¢ configuration of the excitatory and
inhibitory subfields determines the preferred orientation of the neuron (se@iRggire1-5A).

While areas 3b and 1 exhibit comparable orientation selectivity, more complex feature
selectivity emerges in area 2, namely selectivity for orientation and curyatameet al., 2013)
Neurons in area 2 not only encode the orientation of the stimulus but also its curvature, defined as
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a contour with smoothly varying orientatiddigure1-5B). This curvature tuning is also observed
in secondary somatosensory cortex (82qu et al., 209c), supporting the notion that feature
selectivity gets more complex as one ascends the neuraxis.

Neuronal responses to spatial patterns also become increasingly invariant with respect to
stimulus position. Indeed, an orientation selective neuron in3realy responds when an edge
at its preferred orientation impinges on its small RF. Neurons in area 1 have larger RFs and so are
more tolerant to small changes in the position of the é8gesmaia et al., 2008Neurons in S2
can have RFs that cover thetire hand, or even the entire &Burton, 1986)Orientation selective
neurons in S2 exhibit the same orientation preference over large swaths of th&iigafesl{5C)
(Fitzgerald et al., 2006)rhis positional invariance of the feature tuning drawsuaalogy to the
responses of neurons in hitgvel visual areas.

Motion

Again, the representation of tactile motion somatosensory corteis remarkably
analogous to its visual counterpart in YRack and Bensmaia, 2015a) subpopulation of
somatosensgrcorticalneurons is tuned for direction of motion. That is, they respond maximally
to an edge moving across the skin in a particular direction, respond minimally or not at all to an
edge moving in the opposite direction, and produce an intermedsgense to edges moving in
intermediate directiond=(gure1-6A). For edges, the direction tuning is stronger in areas 1 and 2
than it is in area 3b, as might be expected given their relative positions in the somatosensory
hierarchy(Pei et al., 2010)However, the difference is far more pronounced for spatial patterns
that consist of edges at several orientations, a difference that can be attributed to the aperture

problem.
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Figure 1-5. (A) Orientation tuned neuron in area 3b (inset shows a Gaussian fit to ifad@ipted from Bensmaia et
al., 2008) (B) Curvature and orientation tuned neurons in arééa? et al., 2013)C| Orientatiortuned neuron in
S2: This neur on s four digite (PaD5) \ard miltiple lpatls is gaeh. However, its preferred
orientation remains consistent across its RF (approximately aligned with the long axis of théFitegajald et al.,
2006)

The aperture problem refers to the geometrical faat the only information available
about the motion of a straight edge is from the component of the motion that is perpendicular to
its orientation. That is, if an edge is moving in some diredDast speeds, it will seem to be
moving in the direction ppendicular to its orientatioD*, and its perceived speed will decrease
as the angle betwe®t andD increases. To discern the veridical direction of motion of an object,

then, requires that information be integrated across different edges at different orientations or that
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the motion of terminators edge endpoints or cornérde observed; indeed, temmaitors convey
unambiguous velocity information. Neurons in area 3b are subject to the aperture problem because
they have small RFs and thus typically experience only a single edge at a time. As a result,
individually neurons convey ambiguous informatiomuatstimulus motion and do not signal the

direction of motion of objects comprising multipleged at different orientations.
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Figure 1-6. (A) Direction tuning of a neuron in area 1 to scanned (@atapted from Pei et al., 201QB) Responses

of a 6componento neuron to plaids scanned in 12 directd.i
component gratings is moving in its preferred directio
respondstothp| ai dds gl obal direction of mo(Peievah,20lH)uch neur ons

A fruitful paradigm to study motion integration has consisted of probing the perception of
motion and its neural basis using plaids, which consist of superichgpaéngs. Indeed, the
component gratings of the plaid will drive the responses of neurons subject to the aperture problem
(Figurel1-6B), but the perceptual experience of the plaid in both vision and (Beclkt al., 2008)

is of the global motion of thplaid, which depends on the velocities of both component gratings.
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This implies that a population of neurons somewhere along the neuraxis is able to extract the
veridical direction of motion of the stimulus. In vision, this computation is reflected in the
responses of socal | ed fApatternd neurons in medial t e
direction of the plaid. In touch, such a population of neurons is found in aféguie(l-6C) (Pei

et al., 2011) When presented with plaids, these neurons resporthe global motion of the

stimulus and not the motion of its component gratings. The responses of this population of neurons

in area 1 can account for the perceived direction of motion across a wide range of stimulus
conditions(Pei et al., 2010, 2011fPattern neurons are not found in area 3b, again highlighting the
hierarchical relationship between areas 3b and 1.

Il n summary, neurons in area 3b exhibit dir
forest for the tr eediitatoeohsestof nuitiescentotire th contiast,h st i
neurons in area 1 fnsee the forest, not t he
independent of the spatial configuration of the stimulus. These neurons can account for the
perceived directionf all tactile motion stimuli, including those moving in an ambiguous direction.

In fact, a simple model that describes the output of neurons in area 1 from a simple vector sum of
inputs from area 3b accounts for both the neurophysiological and psycluaplogta(Pei et al.,
2011)

Texture

Little is known about the cortical basis of texture perception, in part because all
experiments to date investigating texture representations in cortex used gratings and embossed dot
patterns as stimuli. As discussaliove, these classes of stimuli engage primarily the spatial
mechanism of texture processing and obscure the contribution of the temporal one, which accounts
for much of the range of tangible textures. Moreover, because gratings and dot patterns involve
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essentially a single parameter (spatial period), they do not provide a rich enough stimulus space to
disentangle competing hypotheses about the underlying neural@oieor et al., 1990)

In experiments with scanned gratin@3arianSmith et al., 1982, &clair and Burton,
19914, b, Burton and Sinclair, 199%)d embossed dot patte(@hapman et al., 2002, Bourgeon
et al., 2016) the response of the majority of cutaneous neurors®mmatosensory cortexere
found to be modulated by the spatial period of the stimuli. Furthermore, the responses of a subset
of these neurons seems to track the perceived roughness of such (Etamsan et al., 2002,
Bourgeon et al., 2016¢onsistent with the hypotheslsat they are causally implicated in texture
perception. As lesions of area 1 result in specific deficits in texture discrimirfR@maolph and
Semmes, 1974, Semmes et al.,, 1974, Semmes and Turner, 18§ grea may be part of a
pathway specialized faexture processing.

In the somatosensory nerves, coarse and fine textural features are encoded based on spatial
and temporal patterns of activation, respectively (as summarized above). The spatial structure of
somatosensory corticaturong comprising &citatory fields flanked by inhibitory ongBiCarlo
et al., 1998, DiCarlo and Johnson, 2000, 2G08)well suited to extract information from spatial
patterns of afferent activation, and thus to represent coarse textural features. For example, these
neuons respond maximally to spatially inhomogeneous stimuli applied to the finger and could
thus encode surface roughness, which entails a computation of spatial inhomd@=meitr and
Johnson, 1992)A subpopulation ofomatosensory corticaleurons alsgesponds to complex
high-frequency vibrations of the skin of the sort that are produced when fine textures are scanned
across the ski(Harvey et al., 2013)While these two properties sbmatosensory corticaturons
can in theory mediate the represdiotas of texture in cortex, no systematic experiments have been
carried out to investigate the cortical representation of natural textures.
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Parallels between vision and touch

Traditionally, touch has been thought of as a spatial sense, drawing remarkablges
with vision. First, the peripheral image in touch consists of a spatiotemporal pattern of activation
across a sensory shéethe skini, as is the case with vision and the retina. Second, neurons in
somatosensory cortexhibit orientation andicection tuning, much like their counterparts in V1
(Figure 1-5, Figure 1-6) (Bensmaia et al., 2008, Pack and Bensmaia, 20Fsbjhermore, the
receptive field structure ofomatosensory corticaind V1 neurons is similar, consisting of
excitatory fieldsflanked by inhibitory onegDiCarlo et al., 1998, Bensmaia et al., 2Q08hich
can at least in part explain the similar functional properties. Third, higher order representations of
both shape and motion are highly analogous in vision and touch, asdietadveYau et al.,
2009c, Pei et al., 2010, 2011, Yau et al., 20E8Wrth, the tactile perception of shape and motion
is similar to its visual counterpart, as evidenced by, for example, similar patterns of errors in letter
identification(Phillips etal., 1983)and similar perceptual biases in motion perceptitai et al.,
2008) The similarities in processing make sense as both systems interact with a common
environment, with statistical regularities that the two perceptual modalities have evaixéod
(Simoncelli and Olshausen, 200Eurthermore, visual and tactile representationsxst when
we interact with objects and must therefore be integaisckey and Sathian, 2012) process that
is simpler if the representations are analogous.

Parallels between audition and touch

Although similarities with hearing have not received the extensive experimental treatment
as have those with vision, touch and hearing are similar in that both can operate as temporal senses.
Indeed, some classes of mechanoreceptive afferents (RA, PExaqnsitely sensitive to skin
vibrations and produce highly repeatable and precise temporal spike patterns, the timing of which
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reflects the frequency composition of the skin vibrati@radbot et al., 1968b, Mackevicius et al.,
2012) A subpopulation ofomatosensory corticaleurons exhibits sensitivity to highequency
vibrations and produce responses to skin vibrations characterized by high temporal precision
(Harvey et al., 2013)Furthermoresomatosensory corteg even more sensitive to differences
spike timing than is primary auditory cortex (Afang and Zador, 2012 difference that can be
attributed to their different positions along their respective neu@xesmatosensory cortag
three synapses away from primary afferents whereasfAe isynapses away. Moreover, stimulus
information seems to be integrated across frequency bands in similar ways in touch and hearing
(Marks, 1979, Makous et al., 1999 hese findings together suggest that the somatosensory system
is well suited to extret information from environmental oscillations, as is its auditory counterpart.
The temporal mode of touch plays a critical role in texture perception: While coarse textural
features are encoded in the spatial pattern of activation in SA1 afferentgrdegtpn of fine
features relies on the transduction and processing of skin vibrations that are produced in the skin
during texture scanning. Fine features are encoded in thetegision temporal spiking patterns
in RA and PC fibers and these pattedilate or contract with decreases or increases in scanning
speed, respectivelfWeber et al., 2013)which amounts to left and right translations of the
frequency composition of the neural response along the frequency axis. In contrast, the perception
of texture is almost completely independent of scanning speed. Somewhere along the
somatosensory neuraxis, then, texture constancy must be extracted from a peripheral image that is
highly dependent on scanning speed. This problem is identical to timbre aypstéach also
involves translation of a harmonic stack along the frequency axis with changes in fundamental
frequency(Yau et al.,, 2009a) Given that the two problenistexture and timbre constanéy
require similar computations, it is likely that thesiyr on similar neural mechanisms. A key
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difference between audition and touch, however, is that the former benefits from a peripheral
process akin to Fourier decomposition (in the basilar membrane) whereas the latter does not.
However, in both systems, orimation about the acoustic or tactile stimulus is also encoded in the
timing, and it is likely that similar neural mechanisms are involved in extracting this information.

The remarkable analogies between vision, audition, and touch support the ndtibe tha
nervous system implements a limited number of stratégoasmonical computatioristo extract
information from the environment, and that these computations span the different sensory
modalities(Pack and Bensmaia, 2015b)

Affective touch

The way inwhich we touch people, for example the speed at which we stroke them,
communicateslistinct emotions, such as anger, fear, compassion, or love, and the accuracy with
which this emotional information is transmitted through touch is comparable to thatabfavot
facial expressionHertenstein et al., 2009)n the somatosensory nerves, pleasant touch is
mediated at least in part by specialized smatiameter fibers, namely-@ctile afferents, that
innervate the hairy ski(Loken et al., 2009)Counterprts to these afferents have yet to be found
in glabrous skin. Several regions in cortex are associated with the affective and social aspects of
touch. For examplesomatosensory corticattivation depends on who does the toucki®azzola
et al.,, 2012)and some neurons respond to the observation of touch and may support social
communication through empathy, a phenomenon dubbed 'miiroou ¢ h s y(Keysers hte s i a 0
al., 2010) The posterior insular cortex is implicated in the experience of pleasant aadch
receives projections from-@ctile afferentgBjornsdotter et al., 2009Affective touch is also
represented in orbitofrontal cortex, which is generally associated with affective value
(Kringelbach, 2005and responds weakly to neutral toEtolls € al., 2003)
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The sense of proprioception
Proprioceptive receptors and their associated nerve fibers

Proprioception is the sense of the location of the body, of its movement, and of the forces
that it applies or are applied to it. Proprioception playsitecal role in our ability to plan and
execute movements. Without it, we would struggle to perform the simplest activities of daily living
(Cole and Sedgwick, 1992, Ghez et al., 1995, Ghez and Sainburg, 1995, Sainburg et al., 1995)
Signals about the limimovements originate from receptors embedded in joints, muscles, tendons,
and the skin.

Muscle spindlesre most numerous and sensitive proprioceterschazka, 1996Fach
spindle consists of a bundle of intrafusal muscle fibers running in paséileextrafusal fibers
and contained within a spind#haped capsuleFigure 1-7A). Three different fiber types are
present in a spindle: nuclear bag 2 and nuclear chain fibers are primarily sensitive to the strain they
experience; nuclear bag 1 fiberspesd primarily to the rate of change in strain. Primary spindle
afferents (la) innervate all three types of fibers whereas secondary proprioceptive afferents (I1)
innervate only the bag 2 and chain fibers. As a result, primary spindle afferents argesémsiti
muscle strain and its rate of change whereas secondary spindle afferents are sensitive primarily to
the strain(Hulliger, 1984) Muscle spindles are unique somatosensory transduction organs in that
their sensitivity can be adjusted by descendingtiffoun gamma motor neurons. Action potentials
in gamma motor neurons cause contractions of the distal ends of intrafusal fibers, thereby adjusting
their baseline tension and thus their mechanical sensitivity to strain. There are two sets of gamma
motor newons: gamma dynamic neurons innervate nuclear bag 1 fibers and modulate primary
spindle afferent sensitivity to strain rate; gamma static neurons innervate bag 2 and chain fibers
and modulate the sensitivity of both types of spindle affe(ghuliger, 184, Prochazka, 1996)
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Golgi Tendon OrganfGTOSs) are located at the musculotendon junction, in series with the
contractile portion of the muscle. Each GTO consists of an encapsulated collagenous mesh
innervated by several afferenGigure 1-7B). Signalsfrom GTOs track muscle tension, exhibit
little sensitivity to tension rate, and do not adapt to sustained tension levels outside of a transient
spike in firing rate at stimulus ongg&regory and Proske, 19793 TO afferents signal tension in
a quantal mamer(Edin and Vallbo, 1990) meani ng t hat their firing
level to another rather than varying smoothly over a continuum. The quantal nature of GTO
afferent spiking arises from discrete increases in the number of motor unifiseckcwith each

GTO afferent tracking a subset of motor ufii®uk and Henneman, 1967)

bag, bag, chain

Figure 1-7. (A) Muscle Spindle. The spindle capsule contains three types of intrafusal muscle fiber: nuclear bag 1
fibers, which are sensitive to rate of stretch; and nuclear bag 2 and nuclear chain fibers, which are sensitive to static
st r et cdynamid fasenotor aurons selectively innervate bag 1 fibers and adjust sensitivity to the rate of stretch,
wh e r e a-statid fusienotar neurons selectively modulate the fibers that sense static stretch. Primary (la) spindle
afferents innervate all three intrafusal fibgpeés and convey dynamic stretch information. Secondary (ll) spindle
afferents innervate and convey information from only the intrafusal muscle fibers that sense stati¢B}rétolyi

tendon organ (GTO). The outer tendon is resected to show the GT&féiient and the interior collagenous mesh it
innervates. A single GTO is situated in series witf2@0motor units (bundles of muscle fibers, top). GTO afferents
convey active muscle force by "counting" the number of recruited motor units (illustrbyidgtenzie Green).
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Joint receptorgan be divided into three classes, each of which is analogous to one present
in the skin or in muscles. GTOs located in the ligaments signal tension. Ruffini endings and
Pacinian corpuscles located in the joint capsualektthe level of strain applied to the joint and its
dynamics, respectivel@Zimny, 1988) These sensory organs are innervated by similar afferent
types as those present in the muscle and the skin, but are distinct in their lack of sensitivity to
muscle oiskin palpation. Afferents that innervate joint receptors tend to only respond when joints
are in extreme positions of flexion or extens{Bargess and Clark, 1969, Grigg, 1975)

Proprioceptive afferents follow the same medial lemniscal pathway as theireous
counterparts and synapse onto neurons in the external (or accessory) cuneate and gracile nuclei in
the brainstem, which in turn project to thalamus and ultimately to cortex. There are other
somatosensory pathways of which little is known and fthlabutside he scope of the present
review.

The cortical basis of proprioception

As is the case with their cutaneous counterparts, proprioceptive afferents send projections
to the Dorsal Root Ganglion (DRG) of the spinal cord, where their cell bodi&scated. These
fibers ultimately synapse onto neurons in the dorsal column nuclei, which in turn project to the
ventral posterior lateral (VPL) nucleus of thalamus. In both the dorsal columns and thalamus,
proprioceptive and cutaneous signals are segrdgaihe accessory cuneate receives
proprioceptive input whereas the internal cuneate receives cutaneous input; in VPL, cutaneous
neurons are located in the central region whereas proprioceptive neurons are located in the outer
shell (Kaas, 1983)Little is known about proprioceptive representations in these structures. Note
that both touch and proprioception comprise other tracts, which have received far less experimental
attention than has the medial lemniscal pathway and that fall outside the scopeiigw.
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Neurons in thalamus then send projections to two regions of primary somatosensory cortex:
Area 3a, located in the bank of the central sulcus, adjacent to motor cortex; and area 2 on the side
of somatosensory cortex that borders the intrapasetaus. A hierarchical relationship between
areas 3a and 2 is often assumed as proprioceptive receptive fields in the latter are larger and
respond to more complex conjunctions of features than do those in the (6akata et al., 1973,
London and Milley 2013) However, the anatomical evidence for a hierarchical progression from
area 3a to area 2 is curiously inconclusive. Although area 2 does receive projections from area 3a,
these projections are not as dense as would be expected from other hidhaodhipéed cortical
areaqPorter, 1991)

Neurons in area 3a exhibit a variety of responses to movements imposed on the limb, as
might be expected from the response profiles of proprioceptive afferents. Some neurons respond
only to joint movements, othet® joint postures, and others produce a phasic response to
movement and a tonic one that is posture deperi@antiner and Costanzo, 1980Dne consistent
feature of neurons in 3a is that they respond to flexion or extension of a joint but not both.

Area 3a neurons also exhibit sensitivity to forces applied to the limb. When the arm
maintains its position against a load, neurons in area 3a will respond with firing rates proportional
to the load(Fromm and Evarts, 1982)Just as responses to passive jomdvements are
unidirectional, so too are load responses of neurons in area 3a. Furthermore, during active
movements, neurons in area 3a respond to perturbations that oppose movement in their anti
preferred directiod i.e., they respond to perturbations thpply force in their preferred direction,
consistent with the hypothesis that area 3a

adjusting motor output in the presence of unanticipated perturbations.
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While the proprioceptive properties ofurens in area 2 have received less experimental
attention than have their counterparts in area 3a, area 2 is thought to play an important role in
stereognosis, the haptic perception of the three dimensional structure of objects grasped in the
hand. Firstneurons in area 2 exhibit both cutaneous and proprioceptive responses, a prerequisite
for stereognosis. Second, area 2 lesions cause specific deficits in object shape discrimination, while
leaving surface texture discrimination relatively spafleedndolphand Semmes, 19747 hird,
receptive fields in area 2 are largeamura et al., 1980pften encompassing several digits and
therefore well suited to carry representations of whole hand conformations necessary to support
stereognosis (see below). In adulitito its role in stereognosis, area 2 may also carry an internal
model of intended movements, as evidenced by the fact that some neurons in area 2 respond to
active movements prior to movement ongsindon and Miller, 2013)

Phenomenology of propriocepton

Human subjects can detect changes in joint angle of proximal joints of the upper limb better
than changes in the angles of distal joints. When sensitivity is measured in terms of the muscle
strains, however, joint angular acuity is constant acrosssj@itdll and McCloskey, 1983)
suggesting that spindle and GTO afferents play a key role in the conscious proprioception as these
afferents track muscle strains. Furthermore, humans are more sensitive to active movements than
they are to passive onéGandeia et al., 1992) Presumably, this greater sensitivity for active
movements might reflect the convergence of efference copy and sensory input in active
movements, which does not occur for passive movements. Finally, some evidence suggests that
the resporss of cutaneous afferents to skin stretch may influence conscious proprioception.
Indeed, when strain is applied to the skin on the dorsal surface of the hand, subjects report illusory
movement of the fingeréEdin and Johansson, 1995, Collins and ProchazR96) Although
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cutaneous signals follow an anatomical pathway distinct from that followed by their proprioceptive
counterparts, these psychophysical results suggest that proprioception involves the integration of
cutaneous and proprioceptive signals.
Multimodal integration and stereognosis

The somatosensory system is unique in that it comprises a deformable sensory sheet: As
our fingers move, the positions of cutaneous receptors change relative to one another. Thus, to
interpret cutaneous signals emanating from each of the fingertipeettessary take into account
the relative position of the fingers. When we grasp an object, we acquire information about its
three dimensional structure, which relies on the integration of cutaneous and proprioceptive
information(Berryman et al., 2006, Hsp, 2008, Yau et al., 2016As described above, cutaneous
signals are first processed in area 3b then project to area 1, which in turn (presumably) sends
projections to area 2; area 2 also receives proprioceptive signals, both from area 3a and from
thalanus. It should also be noted that limb joint movements activate neurons in areas 3b and 1 in
the absence of contact by virtue of the concomitant skin stretch or compréssgianzo and
Gardner, 1981, Gardner and Costanzo, 1981, Chapman and AgeBadnger, 1991, Nelson et
al., 1991, AgeraniotBelanger and Chapman, 1992, lwamura et al.,, 1993, Kalaska, 1994,
Krubitzer et al., 2004, Rince@onzalez et al., 2011Thus, many neurons acragsmatosensory
cortex exhibit both proprioceptive and cutaneouspmses. In most multimodal neurons,
proprioceptive responses are superimposed on cutaneous ones, so the signals carried by these
neurons are ambiguo@kim et al., 2015) A subpopulation of neurons somatosensory cortex
exhibit more complex, noelinear nteractions of the proprioceptive and cutaneous infpigu(e
1-8). While multimodal integration isomatosensory cortédnas been documented, the resulting
representational framework for stereognosis has yet to be discovered. As neurons in area 2 are the
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first to receive convergent proprioceptive and cutaneous input, this area is likely implicated in
stereognosis. Consistent with this hypothesis, lesions of area 2 produce selective deficits in shape
recognition(Randolph and Semmes, 1974)

As discussed abe, the somatosensory system is the only modality to comprise a
deformable sensory sheet. How cutaneous and proprioceptive information is integrated is one of
the great challerep facing sensory neuroscience.

without cutaneous input with cutaneous input
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Figure 1-8. Neuron in area 2 that exhibibeth tactile and proprioceptive responses (courtesy of Sung Soo Kim). This
neuronds activity is modulated simply by moving the di
cutaneous stimulation (r i gdmplexguacion bfhand cbrioematioreand catanéosis r e s p ¢
input.

Conclusions
The sensors underlying the senses of touch and proprioception comprise an elaborate mesh
of afferent types conveying information about skin, connective, and muscle tissue stressirand st
at various spatial and temporal scales. These afferent types each constitute unique channels of

information about objects that are being touched: SAl fibers give local spatial information about
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skin deformations useful for detecting edges and coestares; RA fibers trade spatial acuity for
temporal precision and appear to convey clear signals related to object slips; PC fibers operate on
spatial scales orders of magnitude larger than either SAI or RA fibers in exchange for the temporal
precision taresolve the vibratory consequences of nacale spatial features of surfaces scanned
across the skin or remote object interaction events such as a grasped object being lifted off a
surface; and a variety of proprioceptive afferents, likely in conjunatitnSAIl afferents, convey
information about tissue stretches arising from different configurations and movements of the
hand. As one ascends the somatosensory neuraxis, the rule is that information from different
afferents is integrated to give risefiiters detecting more and more elaborate features of tactile
stimuli, akin to the emergence of more and more elaborate stimulus filters in visual and auditory
cortices. Indeed, even information across different afferent types is integrated as early as
somatosensory cortex to enable, among other things, a holistic perception of textures spanning
eight orders of magnitude. Although this process has received some experimental attention in
tactile somatosensory cortex, only basic properties of proprioceptiveatgesensory cortical
neurons have so far been studied. An understanding of the types of filters and elaborations used in
the cortical processing of proprioceptive stimuli is essential to make further progress in
understanding the somatosensory hierarelggcially as both proprioceptive and somatosensory
modal ities eventually converge in Brodmannos
senses play during stereognosis, these senses need to be further investigated during grasps and
manipulaions of multiple objects that require different hand shapes, as opposed to the single object

studied in the canonical object manipulation task so far described.
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CHAPTER 2:
Introduction to shaping behaviorand principles of its neural control
Hand shaping behavior
Introduction

To understand neuronal representations of the hand, we must first describe the behaviors it
engages in. However, the complexity of the hand defies an obvious, concise description. In this
section, we briefly discuss advancasdescribing hand movements then, focusing on grasp, we
enumerate features of grasp that, when combined, enable the manipulation of objects spanning
myriad shapes and sizes.

The gamut of hand function

The complex anatomy of the hand allows it to performagety of different functions.
Accordingly, one might wish to consider the space in which hand movements reside and determine
where grasping the focus of the present studyfalls within this space. To this end, we first
examine hand control along twaies: the degree of individuation among digits and the degree to
which kinematics or forces are the relevant control parameter.

At one extreme of the first axis, prehensile movements comprise hand behaviors classically
considered to require the least indwation across digits. At the other extreme, (poehensile)
skilled movements such as playing a musical instrument require the most indiviquaties &
Lederman, 2006)Along the second axis, functions are classified generally based on whether or
notan object is in contact with the hand. On one side, behaviors invoksdaapang the hand prior
to object contact; on the other side, behaviors involve controlling applied force to maintain grip
and prevent slip as the arm acts to lift a grasped objéet.focus of this project will be the
kinematic control of prehensile movements, in part because an important step in understanding the
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neural basis of stereognosis is to understand the proprioceptive representation of prehensile
kinematics giving rise tthe shape of the hand. Ultimately, the resulting model of proprioceptive
coding of hand posture will be fused with the model of tactile coding of object contact to develop
a model of stereognosis.
Early qualitative characterizations of hand shaping

Perhapshe earliest attempt of note to characterize the behavior of the grasping hand comes
from John Napier beginning in 19%Bapier, 1956)He studied, in particular, the postures that
people adopted when holding various objects and tools in their hands atel qualitative
assessments of those grasps. The overarching theme of his line of research was that hand postures
adopted for the grasps of different objects appeared to lie ondinvemsional continuum: Along
one dimension were grips of cylinders andnh@ers of various diameters that involved proximal
contact points such as the palm and proxi mal |
other dimension were grips of disks of various sizes that frequently involved contact points at the
distal phd ange s, whi ch he dubbed fprecision grip
infinitesimally spaced points on this continuum, unlike other theories of grip which presumed
discrete grip types.

However, Napierds wor k f ocusendeitpadiadopiedi | v o0
its final position. The movements undertaken by the hand after initial contact and prior to adopting
its final posture, in addition to its relationship with the arm during coupled Hteagpfasp
movements, remained unexplored. Onehefmost basic features of hand movement to be teased
out was the nature of its typical coordination with reach, as shaping of the hand occurs in tandem
during canonical reaeto-grasp movementg¢M Jeannerod, 1984) Lawr ence and K
seminal lesion studs of the descending motor tracts in monkeys offered some insight into this
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issue(Lawrence & Kuypers, 1968a, 1968k) particular, the coordinated movements of the digits
themselves were more profoundly impaired by the removal of the descending pi/teanidhan
were movements of the shoulder and elbow responsible for transporting the hand to the appropriate
location. This laid the groundwork in motor systems and motor behavioral research for the notion
of separate pathways for the control of reaclaing grasping, which paralleled the idea of separate
dorsal and ventral streams of information about object location and identity in visual systems
neurosciencéGoodale & Milner, 1992; Ungerleider & Haxby, 1994)
Simple quantification of hand shaping behsior

Subsequent research into redctgrasp movements sought to quantify the relative time
courses and gross kinematic profiles of these presumably separate reach and grasp profiles. The
consistent theme that arose from this body of literature was thenmeof hand kinematic features
that corresponded with the size of a target object and the interaction between hand transport and
shaping under normal reatthgr asp condi ti ons. I n particul ar,
apertur eo ar o feetiorfpoimtsim vidp seeordmgs df reaching and grasping hands
(M Jeannerod, 1984Dburing normal reacho-grasp, the digits of the hand consistently abduct and
extend during the first half of hand transport to create a circle defined by fingertijphscar
Aaperturedo, roughly 20% | ar gMarcJdatmarad, 200904isi i r ed |
hand aperture is then reduced with flexions and adductions of the digits through the second half of
limb transport, eventually terminating at gragpere object contact is established.

Sophisticated quantification of hand shaping behavior: Synergies

The set of features so far described offer a qualitative, rudimentary picture of the full range
of function afforded by atnilde Alparedc.i sTle on @trii on s
decision to treat the aperture of the hand as an important measure, are all based on qualitative
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observations. As physiological recording techniques advanced to permit ever more detailed data,
extracting meaningfuhformation from these data required a more rigorous quantitative approach.

One such approach, most notably adopted by Emilio Bizzi and colleagues to find
ensembles of correlated muscle activity in the legs of the(frdgd Avel | a, Sal,ti el
was to apply a variant of principal component analysis (PCA) to theviameng electre
myographic (EMG) traces recorded during a variety of behaviors such as leaping and kicking. The
resultant weighted vectors of muscle activigygiure2-1) were dubbedi muscl e syner gi e
surprisingly simple structure could be extracted from this complex array of EMG activity by
explaining them in terms of these synergies. Similarly to how Napier had attempted to qualitatively
constrain the full range of hand movertssto a planar poweprecision continuum, a simple three
dimensional continuum inferred systematically using PCA could explain over 60% of the cross
validated variation in the timearying EMG traces of 13 musclésd 6 Av el | a.lreotheral . , 2
words, nuscle activations often fell into patterns that could be discerned using simple
dimensionality reduction algorithms.

Applying this methodology to evéarger EMG datasets and behaviors of different species,
including grasping in primat€sOv e r d u i apRoh, & BiZeiy 2008;] Weiss & Flanders, 2004)
researchers have consistently found simple-diomwensional structure in high dimensional data
sets. Similar methods had also been applied to grasping kinematic data of th&duatedlo,
Flanders, & Soechting, 1998; Weiss & Flanders, 20G4) find superficially similar low
dimensional structure across mimed grasps of a variety of different objects. A -apieitging
guantitative body of literature had come to support a widely held conclusion hith@gto
gualitatively surmisedl namely, that the control of movement was indeed constrained to a
tractably simplified continuum comprising just a handful of dimensions. Thus, an effector as
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complex as the hand, whi ch wovarypmbssiblehandpastere ma ny
were accessible, was simplified such that only a subset of these postures could be achieved,

therefore requiring fewer knobs.
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Figure 2-1. Rectified lowpass filtered EMG activity (filled gray traces, a) is estimated (black traces, a)
combinations of patterns defined along three muscle synergies (b).-dineensional continuum appears at fir
glance to be a sufficient explanation ofsule activity. Figure frord 8 Avel | a, Salti el ,

However, a number of limitations and conflicting results are evident in the body of
literature on synergie@resch & Jarc, 2009Foremost, behaviors used to assess the presence of
synergies can often be very simple, such asdingensional planar reaches. When inferring
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synergies from a lowdimensional behavior, it becomes difficult to disentangle constraints
imposed by the taskdm putative ones imposed by the neural control system. Moreover, these
synergies are inferred using PCA or a similar method which simply aims to explain a threshold
amount of variance in the original data. While reasonable, it may not capture the aSpaots
movements that are most useful for discerning different object and grip types. When assessing
synergies in terms of their ability to separate among numerous different object grip types rather
than raw variancper se the apparent dimensionalitycitherefore complexity of the multivariate
grasp continuum appears to increéSantello et al., 1998As such, control of movements may
reside on a highedtimensional continuum than synergy based approaches typically describe.
Conclusions

The hand is aamplex effector comprising numerous degrees of freedom. In light of this
complexity, researchers have attempted to reduce prehensile behavior to a tractably small set of
features such as the powmecision continuum of grip types, hand aperture, andndisteach
and grasp components. These concepts continue to dictate the discussion of hand shaping behavior
even as more sophisticated methods have permitted the collection and analysis of increasingly high
dimensional data. Indeed, these quantitative nustloviginally came to the conclusion that the
neural control of movement was constrained to
offering quantitative physiological support for dimensionality reduction as a fundamental strategy
of motor contol rather than merely an operation of convenience performed by investigators of
motor behavior. However, a number of limitations in the study of such synergies cast doubt on just

how simplified and lowdimensional the neural control of grasp truly is.
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The cortical motor control of the arm and hand
The basis of a neural Acodeo for mo

Since the work of Sherringtofsherrington, 1910)the notion of a central motor system
defined by an intricate web of divergent outputs onto peripheral effectorseasebtablished.
The complexity inherent to such a massively divergent scheme of innervation as far downstream
as spinal interneurons, which is likely further exacerbated at the level of motor cortex, has inspired
motor cortical neurophysiologists for deles to attempt to collapse this detail into a simple,
tractable ficodedo for movement parameters. Suc!
the anatomical complexity of the hand into a{dimensional continuum of different grip types.
They abko parallel attempts to explain the neurophysiological consequences of massively
convergent inputs onto visual and somatosensory cortical sensory neurons in terms of a simple
Acodeo for parti(Pack &aBensmdaj 20lB)ich @ ndural alingiof abject
orientation and edge detection. As we will soon see, however, attempts to impose a sirgle over
arching fAcoded on the activity of M1 cortical
S0 in sensory cortices, leading to no small amoficontroversyOmrani, Kaufman, Hatsopoulos,
& Cheney, 2017)

Somatotopy as an organizing principle?

Among the first set of such codes considered to be supported by motor cortex is the notion
of a spatial, somat ot o p iody, vihar@mtlie numieroud diviergentr e n t
projections of neurons in M1 are presumed to be constrained to some sfiatitdly region of
the body in a manner predicted by their location in cortex itself. The most famous early attempt to
systematically infer aetailed somatotopic map of primary motor cortex (M1) came from Penfield
and Boldrey(Penfield & Boldrey, 1937)Their work revealed, through electrical stimulation of
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the surface of M1 and the resultant twitches of the body, a coarse somatotopic oayaofZdil

that paralleled that of cortex posterior to the central sulcus, which he also mapped by electrical
stimulation and asking patients the locations of resultant sensations. Subsequent work probing for
more detail in this motor somatotopy, howeveverds an idiosyncratic map featuring overlapping
representations of the digitSchieber & Hibbard, 1993Figure2-2A). In contrast, somatosensory
cortex remains clearly somatotopic even at this level of detail: A reliable ntedéral
progression of cortical neurons with receptive fields (RFs) in digits progressing from 5 to 2 and
then the thumb is se€Rons, Gamghty, Cusick, & Kaas, 1985)
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Figure 2-2. (A) Mapping the preferred digit of different locations on a patch of motor cortex (shown reconst
on the left) gives rise to a lack of clear somatotopic separation among the digits (right, different colors re
different preferred digits). FigussromSchieber & Hibbard, 1993B) At a more coarselgrained level of detail,
sepaation of arm and hand representations in M1 appears to follow a general pattern ofcadiagr(Forelimb
P) Ahor seshoed-caing(Forelinb B)innckpus.aigute frgPark et al., 2001.

One set of attempts to reconcile the idiosyncrasiebe detailed M1 somatotopic map
include redefining the types of somatotopic progressions one might expect to see. For example,
whereas somatosensory cortex represents along its own #iaelial axis portions of the arm and
hand progressing from praxal to distal, the M1 representation of the arm and hand appears to

radiate from a focal point that represents the fingers to progressively more proximal arm effector
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representations in surrounding patches of Migjre2-2B) (Kwan, MacKay, Murphy, & Wong,

1978; Park, Belhapaf, Gordon, & Cheney, 20Q3Ibeit with a region of considerable overlap in
between. Another attempt to reconcile these idiosyncrasies has been to forego the notion of
somatotopy altogether: Work by Graziano and colleagues usingfdomgstimulation trains
(Graziano, Aflalo, & Coke, 2005) as opposed to the extremely brief stimuli typically applied to
minimize the spread of current when attempting to determine a precise somatotopic map of M1,
seemed to result in reliable spatial segregation of qualitatively different and belarielevant
movement types to form what was dubbed an fdfiet
this approach, ranging from the necessarily coarse resolution of sucfofangtimulation and

the qualitative nature by which movements were cludidrave rendered this a controversial take

on the organization of M1.

In summary, a coarse somatotopy in M1 appears to be present. However, at the level of
detail needed to understand hand or even arm movements in isolation, M1 somatotopy begins to
break @wn. Attempts to impose structure on the idiosyncrasies of M1 somatotopy at this level of
detail are few in number and often contentious.

A more detailed code for M1: timevarying limb forces or kinematics?

In addition to seeking a whoeleody map in M1, aast body of literature has sought more
detail: In particular, looking in the tiraearying spiking activity of M1 neurons for a correlate with
the precise tim&arying forces or kinematics generated in the target limb. The vast majority of
this literaturefocuses on muscle activations, forces, and kinematics pertaining of the proximal
limb rather than the hand due to its greater experimental tractability. One of the earliest attempts
to discover the code in M1 was undertaken by E&ntarts, 1968)In this line of research, Evarts
found that the force output at the wrist was most reliably related to M1 spiking activity than were
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the wrist kinematics. Applying a constant weight acting against wrist flexion or extension
systematically changed firing rate fites in M1 neurons despite little change in wrist kinematics.
However, noamonotonic relationships between force and firing rate and the incidence of some
units that appeared to be preferentially responsive to wrist kinematics muddied the waters.
In a sulsequent, highly influential study, Georgopoulos and colleag@esrgopoulos,
Kalaska, Caminiti, & Massey, 1982)und cosinguned neurons for movement direction in a
monkey performing reaching movements constrained to a plane and interpreted thigr@seevid
for the kinematics coding. In subsequent experiments, it was shown that movement direction could
be reliably read out from the activity of
v e c t(&eorgopoulos, Schwartz, & Kettner, 198&ater work also foundhtt firing rates
appeared to also be monotonically related to movement glleedn & Schwartz, 199%nd that
the imposition of bias forces, which dissociated movement direction from the forces used to
generate them, appeared to have a limited effeceonn ons 6 pr e f(®eorgopadilosdi r ect
Ashe, Smyrnis, & Taira, 1992 These experiments differed in important ways from those in the
aforementioned foreeoding studies: First, reaches involved muscle forces and torques about both
the shoulder and ety joints, not just the wrist; moreovatirectional tuning curves involved
considerably more averaging, over a large time window, across trials, and even across neurons.
The debate over whether forces or kinematics are represented in M1 continues to this day.
The kinematic line of research has received more attention, and as such has been elaborated upon
with observations of preferential encoding of limb velocity over lpokition in M1 (Paninski,
Fellows, Hatsopoulos, & Donoghue, 2004; Wang, Chan, Heldman, & Moran,. 200Wgver,
preferred directions have been known to change direction during the execution of movement,
which necessarily challenges the interpretation dfihematic coding in terms of simple cosine
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tuned neurons. Researchers have proposed that this may be evidence of preferential force coding
instead Sergio, HamePaquet, & Kalaska, 20059vidence of the encoding of complex kinematic
trajectories(Hatsomulos, Xu, & Amit, 2007) or even evidence that such apparent codes for
movement are idiosyncratic consequences of rotational structure that gives rise to M1 activity in
the first placgChurchland et al., 2012)

Coordinate frames in motor control

Anotherline of such research aims to describe the relationship of M1 to muscular force in
more detail, in particular recording from EMGs across many forearm muscles giving rise to net
forces or movements of the wrist. This line of investigation made use oftsigigered averaging
to identify neurons with @Afacil (Chemdy,) Rete,& or A
Palmer, 1985; Fetz & Cheney, 198@) consistent theme in this line of work is that antagonist
pairs of flexors and extensors are frequergtyprocally facilitated and suppressed by M1 neurons,
with outputs to forearm flexor muscles in particular seeming to be the preferred targets of
suppressive outputs from M1.

One may be inclined to wo n-deatered wdie wheer an
reciprocal agonisantagonist innervation motifs rather than the net forces or movements they
produce, may be a more appropriate coordinate frame in which to conceptualize M1 outputs. Work
by Kakei, Hoffman, and StrickKakei, Hoffman, & Strick, 1999%imed to answer the emerging
guestion of whether an intrinsic fAimuscleo0O coo
frame was most appropriate to explain M1 spiking activity. They were able to dissociate set
correlations between the two coordindtemes and found separate clusters of preferentially
intrinsic and preferentially extrinsic neurons are present in M1. Other attempts to dissociate
intrinsic and extrinsic coordinate frames have advanced nuanced differences in interpretation
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(Morrow, Jorda, & Miller, 2007) Regardless, the common thread is that M1 includes neurons
that operate in both extrinsic and intrinsic coordinate frémes not, in fact, a monolith with a
single uniform code for movement.
The hand as potentially a special case ofator control

Thus far, we have discussed the controversies of motor control as they pertain to the control
of reaching and wrist movements. However, some evidence suggests that motor control of grasp
and behaviors involving the hand might constitute aiapease of motor control, subject to
di fferent principles. First, spinal | esi ons h
grasp (Lawrence & Kuypers, 1968a, 1968bl)Moreover, anatomical studies have revealed
important differences between tteudal and rostral subdivisions of ¥Rathelot & Strick, 2009)
Importantly, the caudal subdivision contains a much larger density of direct andicmeuronal
projections, a preponderance of which are sent to extrinsic and intrinsic muscles cgntrollin
movements of the digits. In addition, as mentioned above, while M1 is not as clearly
somatotopically organized as is somatosensory cortex, the arm and hand representations do seem
to be somewhat segregated in KKwan et al., 1978; Park et al., 200E)nally, somatosensory
feedback seems to play a greater role in grasp than in reaching. In particular, lesions of
somatosensory and motor cortices appear at first glance to have similar effects on gross motor
behavior, the most notable distinction beingriaduction in overall grip strength resultant of M1
inactivation and preferentially abolished coordination among the digits with somatosensory
cortical inactivation(Brochier, Boudreau, Paré, & Smith, 1999)

In addition to the anatomical and physiologiealdence of a separate representation of
arm and hand movements, intuitively the arm and hand support qualitatively different functions.
Indeed, while rotations about the shoulder and elbow joints are required to transport the arm to a
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target position, maaments about the wrist and interphalangeal joints are generally coordinated to
shape the hand to an object to establish contact points appropriate for object manipulation. The
arm thus places the hand in some location in three dimensional space, wheteastmust be
formed into a specific configuration, two goals that would seem to require markedly different
computations.
M1 response properties during grasp

Among the first systematic studies of the motor control of grasp was undertaken by Smith
and colleagues in 19®mith, HeppReymond, & Wyss, 1975who found that during a ramp
andhold isometric grip force behavior, motor cortical neurons tend to iretbéag firing rates
with respect to the level of force applied, similar to what Evarts noted in the wrist. Subsequent
work into precision grip mirrored the progression of wiastd arramovement study, in particular
expanding into EMG recordings and spikiggered averaging to work within a more detailed
intrinsic coordinate frame. An emergent theme of this line of study is that individual M1 neurons
appear to simultaneously facilitate and suppress multiple muscles, although the population of
muscles faditated was surprisingly small, with muscle fields generally comprising roughly 2
muscles that was largely invariant to the number of muscles rec(Bdgs, Lemon, Mantel, &
Muir, 1986; Mckiernan, Marcario, Karrer, Cheney, & Kar, 1998)is was taken asvidence that
M1 control of the hand in particular was wsllited to individual movements of digits by virtue
of such apparently small muscle fields. However, it should be noted that the behavioral repertoire
of the hand under study was typically fairlynple, either spanning just two grip tydef p o we r 0
and Aprecisiono, the |l atter of lemooManteh& y i nv
Muir, 1986p or involving grasps restricted to the aperturesh&f wells of aKliver board
(Mckiernan et al.1998)
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Research into the neural signatures of these more varied grasping behaviors is a fairly
recent development. Varieties of different grasps give rise to a variety of different patterns of EMG
activity (Brochier, Spinks, Umilta, & Lemon, 200dnd M1activity (Umilta, Brochier, Spinks, &
Lemon, 2007¥pecific to each objecF({gure 23). One may intuit from these results that such
variety arises from different preferences for specific small groups of muscles. However, work in
another intrinsic coordiate frame, namely in terms of joint angles, seems to find that individual
neurons exert control over the movements of far more than two joints. The best explanation of the
sort of control exerted by M1 neurons, as assessed during a variety of differgos,ggaems to
be in terms of combinations of joint movements spanning multiple digits and indeed the entire

hand(Saleh, Takahashi, Amit, & Hatsopoulos, 2010; Saleh, Takahashi, & Hatsopoulos, 2012)

e alubhbdlid]
[ PRy -y PP Y

it

o e
l 20sps’

\ S
—

-1.5

| 40sps”

9T TR o Y

4 7 \- N
WY m.;h
_ nhlibh Bosadednle s o . oanliebe i e o
o sl ateniidune

|
J

0 15 -15 0 1.5
HPR HPR
time from home pad release (s)

Figure 2-3. Firing rates of two different M1 neurons (left and right) during reaefirasp of different objects (fa
left) centered on the onset of the reach, demonstrating just a small sliver of the variety- &l &i@odresponse:
in M1. Figure fromUmilta, Brocher, Spinks, & Lemon, 2007
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Synergies to simplify hand control

Given the complexity of the hand as an effector, some have questioned whether the brain
can handle this complexity, suggesting instead that hand movements exist in a lower dimensional
spacel n particul ar, Amot or primitivesod or Amuscl
description of motor behavior in general, including grasping, which should then be reflected in the
representation of hand movements in M1. Indeed, stimulationlofas to reveal fractionated
representations of digits, instead rise to movements of multiple digits at once. Moreover, the multi
muscle response properties of M1 during grasp could perhaps be reflective of a simpler control
scheme defined in terms ofsjua few multimuscle synergies.

In support of these ideal|1 stimulation generates combined activations of muscles that
seem constrained to the ledimensional space inferred from recorded retaehrasp behavior
(Overduin, doAvel |13).,Mor€oxer, tmearaying fikhg rBtesofzensemb20
of neurons in cortex appear to be strongly correlated to the synergies efagmabp movements
(Overduin, do6éAvella, Roh, Carmena, & Bizzi, 2

These studies suffer from limitations that underntieeconclusions, however. The first is
the common charge levied against such studies of muscle synergies, namely that the task constrains
the complexity of both the movements and the underlying neuronal representation. Another
critigue is similar to mostsynergybased literature, namely that variance explained is a
guestionable criterion to understand neural constraints. This critique is exacerbated by the presence
of two separable behavi@grgeach and gragpwhich could give rise to a single axis of varianc
that dwarfs more subtle sources of behavioral variance such as reach direction and grip type.
Finally, research into M1 coding of synergies has typically involved the application of smoothing
and triataveraging of neural and kinematic data, which okescanuch of the fine structure in the
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response and preserves only its coarse structure. With these limitations in mind, questions remain
as to whether M1 preferentially encodes synergies. In fact, recent work has suggested that the
discharge patterns of Mtortical neurons are no better explained using synergies of hand
movement rather than individual dig{tsirsch, Rivlis, & Schieber, 2014; Mollazadeh, Aggarwal,
Thakor, & Schieber, 2014yvhich are themselves poor predictors of M1 spiking.
Conclusions

How M1 controls the arm and wrist remains elusive. The most consistent feature in the M1
coding literature is that a variety of different kinematic and force parameters can be extracted from
patterns of activity in populations of M1 neurons. Single neuronsatew mosaic of different
responses idiosyncratically related to different aspects of muscle activity, movement, and forces,
and teasing apart a single fApreferredo refere
Nonetheless, at least one importégdture of M1 responses has been revealed: within a strictly
kinematic reference frame, the velocity of the limb is preferentially encoded over the position of
the limb. An important element of motor control of the arm and hand, however, is that thé contro
of the two appears to be mediated by physiologically separable mechanisms, probably due to their
fundamentally different biomechanical properties (inertial mass, e.g.) and functions (transport vs.
object manipulation). It is fair to say that there areemuestions than answers when it comes to

our understanding of the neural basis for hand movements.
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CHAPTER 3:
The structure of hand shaping behavior and its populatioAevel neuronal representation
Introduction

Given the surfacéevel complexity of the hand and its neural representation, we sought to
answer the question of whether or not we could find structure in that complexity. Indeed, the
number of objects we have monkeys grasp, and conseqtietiyimber of grasps they perform,
span a gamut of hand shaping behaviors not frequently seen before. As such, simple structure in
grasping behavior that has previously been reported may elude the hand in the broader contexts of
hand movements that we syuldere. In particular, we analyze the data to ascertain 1) the degree
to which different hand shapes and patterns of neural activity manifest for different objects, 2) the
time course over which hand shapes and neural signatures thereof adoptpdydctstates, and
3) the complexitii i.e., underlying dimensionalify governing both hand shape and the neural
representation thereof. Overall, we find that hand shaping behavior is indeed not as simple as has
been previously reportédi.e., timevarying hand kiematics do not merely span a two
dimensional continuum. However, the time evolution of hand shaping and its neural representation
mirrors that previously reported. Moreover, the distinctness of grasps on antybgiect basis
reveals that despite tlmetomplexity, the kinematics of the hand and the neural representation
thereof are indeed structured in a principled manner.

Data are complex yet structured

To begin to visualize structure in hasdaping kinematics, wanalyzethe timevarying
anglesof the joints of the hand during grasps of different objé€igure 3-1A-B). Visualizing
grasping behavioon a reducediimensional continuum, in this case the angles of three particular

joints, revealsreadily-discernable separation between hand shapes extldpt some objects.
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Moreover, this separation among objects can be observed as early as maximundajreotiner

words, well before object contact is made, the shape of the hand has begun to conform to-an object
specific state. Nonetheless, we note that me obj ects tend to {ficlust
dimensional continuum, which will prompt the use of more principled methods below to identify
further objectspecific structure in the kinematics.
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Figure 3-1. Different objects give rise to a variety of different kinematics and neural ac{i&ityA phase plot of
three joint angles (flexion_I being wrist flexion angle, pro_sup_I being wrist supination angle, and 2mcp_fle
being second metacarpal flexiomggh e) duri ng one monkeyds grasp o
kinematics during a single grasp trial. Faded
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maximum aperture, well after object contact where the hand adopted its final ppbtwse. below the phase plc
is a series of still frames of the skeletal model of the hand for one presentation of eachllisfeating the
progression of the handés conformation from (B)
Separate plots of the same joints against time, this timalfasbjects. Each colored trace gives the me
kinematics for a grsp of a particular object. Shaded regions indicate +1 S.E.M. at each samplEjifert
event time histograms (PETHS) for three select M1 and proprioceptive somatosensory cortical newibn
objects.PETHSs are constructed by aligning each triathi time of maximum aperture, calculating the aver:
spike count in each 10ms bin on a-fré&l basis, then smoothing the average trace with a centered Gaussian
with 35ms width parameteEach colored trace gives the mean firing rate during grgsif a particular object.
Shaded regions indicate +1 S.E.M. at each sample time.
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Figure 3-2. Sample PETHSs and PC reconstructions from neurons across all areas dfroortekich we record.
These show the temporal evolution of firing rates with respect to maximum aperture and the separation
rate patterns as a function of object ideiitignd presumably as a function of the corresponding gi
conformation All PETHSs are triahiveraged firing rates of neurons from Monkey 4 in response to different ob
sorted on a neureby-neuron basiscomputed using similar trial averaging and smoothing procedures as
PETHSs inFigure 31C. Note that the first 3 PC reconstructions preserve cbggméndent variance for a few sele
neurons, but often fail to capture this structure for a large number of them.
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Thecorresponding tim&arying firing rates in sensory and primary motor cortices reveals
a similar separation of objects at roughly the time of maximum hand apéifigues@3-1C) (Figure
3-2). A number of themes emerge from the pmrert time histograms (BTHs) of these
sensorimotor corticaheurons recordedcross differentonkeys: 1) neuronal responses often
show preferentially high firing rates for one set of objects over other sets of objects; 2) response
latencieswith respect to a kinematic evenuch as maximum aperture can also vary on an ebject
by-object basisand 3) neurons frequently have activity patterns whereby increased or decreased
spiking activity relative to baseline is sustained for several hundreds of milliseconds following the
initial ramp in firing rateCollectively, these suggest that these neurons are indeed responding
during the task in a manner that varies with different hand shaping trajectories.

Control of hand posture is higherdimensional thanpreviously thought

Hand postues adopted during grasp are typified by high correlations among joints. Indeed,
especially among the fingers, several pairs of joints in our kinematic data are highly correlated
(Figure 33). To extr act potential |l yr me psthesefdatiodh c anon
other work(Turk & Pentland, 1991performing similar dimensionality reduction of face data to
obt ai nf & &hews @sa principal component analysis (PCA) to find which combinations of
joint movements best explain the total variance leb-hand movements.

When usind®?CA, we find tharoughly6-9 dimensions are@n averageequired to explain
90% of the variance among hand postures adopted during dfappe(3-4A), with 58
dimensions appearing to be sufficient to reach thisshold on a monkeyy-monkey basis
(Figure 35A). This figure ison the same order of magnituaghas previously been reportéat
comparably diverse hand movemelflsgram, Kording, Howard, & Wolpert, 2008; Marco

Santello, Flanders, & Soechting, 192802; Thakur, Bastian, & Hsiao, 200®ote that this
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Figure 3-3. Kinematic correlation matrices. The absolute values of correlations among joint angular coor
for (A) Monkey 1,(B) Monkey 2,(C) Monkey 3, andD) Monkey 4. Correlations are assessed at zero lag,
the order of joints is determined for each monkey with hierarchical clustering so that large groups of
correlated joints can better be visualized. Joint angular coordiegtdléxiord flexionore x t e nsi on

the wrist joint | deviatiodu | nar or radi al devi at i o8 prénitipraowsbipination
(Arol Il 0) of t &elbowjoint$i55 digisi 1rthrough 8, Irespeactively | CMCcarpometacarpal
joint | ncpd metacarpophalangeal joint pipnterphalangeal joint (digit 1 only) | @nproximal interphalangeal
joint | mdd distal interphalangeal joint | _flexion, _flex, &t | exi on or extensi on (
the underscore | _abd, _abducBombdict i on or adduction (fAyawo) o}
_supinatiod pr onati on or supination (fAroll o) of the |j
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Figure 3-4. Analysis of kinematicstructure anddimensionality.(A) Cumulative scree plot from principa
component analysis (PCA) of joint postures, averaged across all four monkeys. The mean CVE first crc
90% boundary at 6 principal components (PCs), but more conservatively, the circled point indicates then
number of PCs (9) for which the average CVE wsigmificantlygreater than 90% (orailed onesample itest,
T(3) = 7.023, p = 2.965@3, significance assessadrossall 30 points on the abscisaath the HolmBonferroni
method of multiple comparisonBWER < 0.05). The cumulative scree plot is truncated at 12 components
total of 30 components are present. Vertical lines at each point indicate +1 S.E.M. across n{BhKenxss
validated (leav@neout) accuracy of object classification (medtass linear discriminant analysis, i.e., LD/
based on joint angular kinematics at different task epochs, averaged across monkeys. Vertical lines at e
indicate +1 S.E.M. across monkeys. Dotted blue lines indicate classifiers using only the@sstc®mpared with
solid blue lines that show results of classifiers using the full dimensionality of hand kinematics. The shaded
indicate the mean difference +1 S.E.M. between the two classifiers. As this difference arises from pail
(each nonkey has one classifier of each type), its own standard error is indicated with the darkness of the
region. The darkest region indicates the mean difference minus 1 S.E.M., and the lightest region indic
S.E.M. When pooling across epochs, thessvalidated full kinematic classifier more accurately determines
object presented from ouf-sample kinematics than the one using only 9 PCs-{@ied pairedsamples-test,
T(59) =9.136, p = 6.773&3).

previous work will often report even lowdimensional structure by virtue of a different

benchmark e . g . , 80% of the variance explained,
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Mor eover, di mensions found -guxismpg 0P duditaticeo rbreeas p
similarity to those found in the aforementioned woFkg(re 36). The naive assumption
underlying inferences of the dimensionality of the hand using such a 90% cumulative variance
criterion is that the majority of the variance in hand movernes const i tutes motor
volitional control, with the remaining 10% of variance of hand movements reflecotay moise

not under volitionatontrol.

A B

100y 100 fMonkey 1 7!\‘10nkey 2 [ 7Monkey -4
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Figure 3-5. Analysis of kinematic structure and dimensionality by monK&y. Cumulative scree plots afte
applying principal component analysis (PCA) to the joint angular kinematics of each monkey. These scr
were averaged across monkeys to obtain the plot in Figure 3A. Circles indicate the number of components
the cumulative scree plot for each monkey exceeds 90% of kinematic variance explained. These tri
averaged to obtain the traceRigure 34A (B) Accuracy of kinematic object classification (as in Figure 3B)
each monkey at different task epochs. Again, these accuracies were averaged across monkeys to obtait
accuracy curve in Figure 3B. Solid lines indicate-kilematic accuracy; dashédes, the accuracy of classifier
using only the first few dimensions to explain at least 90% of kinematic vadiaheesame number of componen
as the corresponding circle in (A). Vertical lines at each epoch indicate +1 S.E.M. of classificatiorya¢tese
trace$i one from each monkey, each given equal wéighte averaged to obtain the averaged time cours
classification accuracy iRigure 34B.
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We note that for standardized kinematic data, PCA reveals that more dimensiais, 10
are required on average to explain 90% of the variéfigeire 37), which is considerably larger
than the aforementioned consensus. Although the fact that PCA isatetnsariant is well
understood, this neaoubling of the number of dimensions suggests that previous attempts to
guantify the dimensionality of hand movements may very well have underestimated it. Indeed,
traditional PCA methods may merely reflect a vast disparity in the ranges of motion among

individual joints of the hand rather than the limited repertoire ekcouitments of those joints.

PC 1

Figure 3-6. Vi sual i zat-gpasp$ofi@bganned from principal

joint angular data of Monkey 2. Each row depicts a different Eggaap, with a progression from left to rigt
through that Eigey r a s p 6 s r a n gomt angblar mavemerdsl Althoagth qualitative interpretations
t hese -girEisgpesr0 could be inferred, we find that s
fail to capturereliable yet subtlénter-object differences in grasp possr
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We then use patterns of movement spanning multiple joints to obtain a principled estimate
of just how separated objespecific grasps are from one another. In particular, we use-chags
linear discriminant analysis (LDA) to classify objects on theshatthe hand shapes adopted

A B
100 ¢
90
80 | 80 |
70 | 70 |
60 | 60 |
50 | 50 |
40 | 40 |

301 301

20 + Monkey 1

Monkey 2

20 1

Cumulative % of variance explained
Cumulative variance explained (CVE) (%)

107 Monkey 4

90% variance explained | >90% CVE
0 . 0 :
0 5 10 15 20 0 5 10 15 20
Number of components (30 total) Number of components (30 total)

Figure 3-7. Cumulative scree plots for PCA run on standardized kinematic(datan a monkeyby-monkey
basis and(B) averaged across monkeys. Apparent dimensionality increases when assessingtiki
dimensionality using PCA on standardized data, with individoahkey dimensionalities spanningl8
dimensions (A) and monkegveraged dimensionalities spannih@17 componentg¢B). Significance of the
second point in (B) is assessed aBigure 34A.

during grasp. lnd postures can be used to correctly identify one of 35 objects with over 60%
peak accuracy on averaddadqure3-4B), andwith up to 90% accuracy in one monkéygure 3

5B). Moreover, classification accuracy ramps gradually togbak accuracthroughout the trial
Taken together, these results reiterditat the hand gradually conforms am objectspecific
posture welprior to contact. However, timearying classification accuracy using only the first 9
kinematic PCs is significantly low&rroughly 50% peak accura@mn averagdgFigure 3-4B)d

than timevarying classification accuracy using the full kinematitbis seemsat indicate that

volitional control over the shape of the hand spans more dimensions than naive interpretations of
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PCA and its -gepaspsaeanwotEdgsenggest. I n partict
variance not explained by the first 9 PCs doeswarely reflect motor noise.
Neural responses occupy a higdimensional space

Thecorrelationamongn e u r o n s 0 affe smallegFigurer38) thanare those among
different joint angles in the kinemati¢sf. Figure 33). Moreover, when using PCAve find that
roughly 50% of all dimensions from which we record in any given sensorimotor area are needed
to explain 90% of the variance in those neural respofsgsré3-9A), compared with as little as
20% of the number of kinematic dimensions neeecach a similar benchmar®tandardized
neural data are even highdimensional, withroughly 80%of neural dimensions required to
explain 90% of total variancd~igure 310). These suggest that neural responses during grasp
appear to be even highdimensional than grasp kinematics, rather than being constrained to
representations of kinematics along just a few axes.

Indeed, this higldimensional structure of the neural response is seen, for example, in the
limited ability of the first few PCs of neuraktivity to reconstruct PETH@-igure 32). When
investigating PETHs filtered by such a compressing -antmder, important features
di stinguishing one object from another in sev
corroborating other regsl (Figure 39) showing the necessity of including highder PCs to
explain 90% of the neural variance.

To quantify thestructure in these higtiimensional population responsesge classify
object types based on the neuronal activity recorded from neurons pooled across recording
sessionsNeural object @ssifiers computed for each area reach peak accuracies ovefighve (

3-9B), comparable to previousheported classification accuracy using only M1 dati&r to
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Figure 3-8. Neural correlation matrix heatmaps. Ramffieatmap#dicate the cortical area from which neuror
were recorded. Colummsf heatmapsndicate the monkey from which each correlation matrix was obtair
Correlation matrices are signal correlation matrices; in other words, firing rates are averaged alsrfissstaich
object after aligning to object contact, and the correlations of these firing rates extending from 500ms t
prior to contact are represented as the color in each heatmap. Trial averaging was done to permit pc
neurons across sess® Onlyheatmapsvith at least 5 neurons are shown.

attempt s t o cluster 0 b j e(Schaffelhofen tAgudeldaromi&!l a r A ¢
Scherberger, 2015)\ote that the classifiers we use simply compute mean rate over a 500ms bin,
a large bin size that we note to be necessary to reach this level of classification adteuealy.
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classificationgradually increases in accuracy throughdug trial, indicating thathe neural
representation contains objesgecific signals prior to object contact, just as the shape of the hand
differentiates on an objebtly-objet basis prior to object contadfloreover, when extrapolating
beyond our sampleze, neural classifiers can reach accuracies enatybe to kinematic classifiers
with as few as 177 neuron&igure 3-9C). Therefore, neural population responses are-high
dimensionaland strongly objectdependentparallelingthe objectspecific structure of the hand
kinematics
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Figure 3-9. Analysis of neurastructure andimensionality(A) Cumulative scree plot from PCA of joint posturt
and neural data, averagadross all four monkeys and plotted in terms of the fraction of the total numb
componentsecorded from any given monkeye plot in terms of fraction of number of components beca
population sizes recorded from each area in each monkey vary toiggvin different raw apparent neur:
dimensionalities that nonetheless align when instead plotted in this mafesee that only 20% of the kinemat
dimensionality is needed for the mean CVE to reach 90%, whereas for the cortical data that fraptsoumpjto
40%. Each trace represents the interpolated cumulative scree plot as a function of the fraction of total ni
components, averaged across monkeys. Shaded regions surrounding each trace give +1 S.E.M. for eac
each interpolated tracéB) Neural classification accuracy when aligned to different epochs of grasp. Spike ¢
are taken over a 500ms causal window, and neurons from different sessions recorded from different mor
pooled to obtain these classification accuraciesndte that peak crosslidated accuracy reaches roughly 5C
in population sizes on the order of 100 neurons. Vertical bars give +1 SE)M. population of roughly 200
proprioceptive or motor cortical neurons is required to reach mean peak classificativacy (roughly 60%) of
kinematic classifiers, as shown kigure 3-4B. Singlemonkey and poolethonkey samplefrom each area are
shown as each point on the plot. Logistic regression is fit to these data pooled across cortical areas.
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Discussion & Conclusions

We note that volitional control of the hand spans a higimaensional continuum than one
would expect at first blush. Indeed, previous results seeking a simptietthuum of hand
shaping behavio(M Santello, Flanders, & Soechting, 199&)me to a similar conclusion:
Namely, that although a variaregplained criterion obtains an estimate of 4dimensional
structure in hand shaping behavior, looking at the dimensions important for discerning different
grasps adopted for different objemseals highedimensional structure. We find that the apparent
dimensionality of hand kinematics is also extremely sensitive to the ranges of motion of the
constituent joints, thereby constituting another mechanism by which previous efforts to quantify

the dimensionality of hand shaping may have been underestimated.

CVE (%)

0 0.2 0.4 0.6 0.8 1
Fraction of components

Figure 3-10. Standardized cumulative scree plots averaged across 4 monkeys as a function of the fractic
number of components needed to reach varianceaieenl thresholds. Standardization acts to make ne
responseappearven higheddimensional, with roughly 80% of dimensions being required to explain 90% c

firing rate data.

We also note that the neural signatures of different grasps are also extremely varied. In
fact, the apparent dimensionality of population neural data during hand shagstignated using

a similar variancexplained criteriod exceeds that of the kinematidshis, combined with the

97



fact that lowvariance components of hand shaping have a substantial effect on object
classification, supports the notion that volitional control of the hand spans a-tigtesrsional
space than previously reported. Despite tigh-dimensional space in which population neural
activity resides, it contains readitiiscernable information about object iderditinformation that

we will probe on a neurehy-neuron basis in the following chapter.

We conclude that the volitional conkraf hand kinematics is even more complex than it
might seem at first, with subtle components of the kinematics being manipulated prior to object
contact to give rise to objespecific hand shapes. Methodological concerns arise from prior
investigations bthe dimensionality of the control over grasp, all of which give rise to chronic
underestimation of the dimensionality of hand control. Moreover, we note a variety of different
neural responses to the adoption of different okgpetific hand postures,hich in turn betray a

high-dimensional yet highiynformative representation of objegpecific information.
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CHAPTER 4:
The features of the hand represented in somatosensory and primary motor cortices
Introduc tion

We have thus far found that grasps span a complex;dnngénsional space, as do their
neuronal representations. However, we also note that both kinematics and neuronal representations
are structured, as evidenced by distinct grasps adopted foediffglojects and their respective
neural signatures. In this chapter, we seek to delve further into the nature of these cortical
representations of grasp at the singdeiron level by determining the features of grasps that most
consistently and strongly oelate with spiking activity.

In particular, our goal is to quantify the response fields (RFs), or the sets of features of
grasp that give rise to spiking responses of proprioceptive cortical neurons. Moreover, we aim to
compare and contrast their propestwith those of tactile neurons in somatosensory cortex, the
latter of which have received more experimental attention. Tactile somatosensory cortical neurons
ii.e., neurons in Brodmann arelnowe mrshavihi@RFsah , and
are small, typically comprising only a fraction of a phalédglson, Sur, Felleman, & Kaas, 1980;

M Sur, Merzenich, & Kaas, 1980Moreover, the vast majority of tactile cells in somatosensory
cortex exhibit strong response modulation to transienttev&mch as contact onset and offset

(DarianSmith, Sugitani, Heywood, Karita, & Goodwin, 1982; Pei, Denchev, Hsiao, Craig, &
Bensmaia, 2009; Mriganka Sur, Wall, & Kaas, 1988)istained responses to sustained skin
indentations are weaker and generally agganied by strong phasic responses during contact
transients (onset and offset of contact).

At first pass, proprioceptive responses in somatosensory cortex differ from their tactile
counterparts in two important ways. First, a sizeable proportion of pogtive cortical neurons
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have larger RFs, comprising multiple joints of the arm and l@&odtanzo & Gardner, 1981)
Second, a notable proportion of proprioceptive cortical neurons exhibit strictly sholapting
response properties. That is, neuronsilekihigh-amplitude sustained responses to constant
flexion or extension of a given joint; a subset even seeming to track posture with no apparent
increased response during moven@&surdner & Costanzo, 1981)

However, these results were qualitative aredgtimulation protocofs namely rampand
hold and lowfrequency sinusoidal movements of isolated single joints or small groups ofijoints
were very simple relative to the full range of naturalistic hand movements. Our data thus afford us
a unique opportuty to rigorously quantify kinematic response properties of hand proprioceptive
neurons, including RF size and relative sensitivity to posture and movement. In addition, given the
richness of the kinematics as detailed in Chapter 3, these measures aed iinfen and thus
extend to a larger space of hand kinematics than in previous studies.

Proprioception, in addition to being related to tactile sensation, is also tightly coupled with
motor control. The strictp r opr i ocepti ve Br od osgmpidmojediong a 3 a
onto neurons in M{Huerta & Pons, 1990)n addition, proprioceptive acuity seems most likely
to be subserved by muscle spindl@&ndevia, Mccioskey, Burke, Mcc, & Oskey, 1992; Proske
& Gandevia, 2012jhat respond to length changalsmuscles and receive gamma motor input
themselves(Prochazka, 2011)Furthermore, proprioceptidespecifically, kinestheti@ acuity
appears to be affected by whether or not tension in a relevant muscle is being actively and
volitionally maintainedGandeva et al., 1992)Indeed, the hand pshaping behavior studied thus
far is volitional, thereby rendering it more directly similar to investigations of M1 response
properties during hand shapin@.g., Umilta, Brochier, Spinks, & Lemon, 2007han
aforementioned work on proprioceptive cortical responses to pasgeegrated movements. We
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therefore not only compare M1 and somatosensory cortical response properties during volitional
hand shaping, we also do so during passive manipulatiore dfathd to which M1 neurons are
also known to respon@Hatsopoulos & Suminski, 2014 )to investigate the degree to which such
response properties are dependent on whether hand kinematics are imposed or generated
volitionally.
Results
Neural encoding models pedict firing rates

To charact er i ae fit ancodirgunodel§Figsre 4R4&) to predict each
neur on &aying firmgeratesbased on kinematic featuresn a triatby-trial basis.
Specifically, we fit crossvalidatedgeneralized linear mode{&LMs) to reconstruct as faithfully
as possible thepiking activityof each neuroifrom alinear combination of singl@int postures
and movements. Wadditionallyuse LASSO regularization to minimize the number of spurious
joint angular predictors ofpiking activity. Model fits are assessed using a measure called pseudo
R?, an analogue to the standard coefficient of determination that uses devd@icesdefined
using a Poisson noise model rather tremiduals undest Gaussian noise model (Fegpendix A:
Methodg. Example perevent time histograms (PETHSs) farneuron constructed from both
measured and modeled spiking activity for three different obj&atgire 4-1B) illustrate the
quality of fit of these models. We find pseuBbvalues Figure4-1C) thatare consistent with and
often exceedhe R? valuesobtainedfor singletrial predictionsof firing rates in proximal limb
motor cortex Table 4-1) (Aflalo & Graziano, 2007) The distribution of pseudB? values we
obtain therefore suggadhat features of hand kinematics are indeed encoded by these neurons at

least as strongly as proximal limb kinematics are encoded by M1.
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Figure 4-1. Generalized linear model (GLM) procedure and performaf#eFlow chart depicting how GLM
uses kinematics (left) to create a weighted linear sum that is passed throughplassoéinlinearity (middle) to
estimate firing rates (right, top) such that they are maximally likely given measured patterns of spikityg .
(right, bottom).(B) Measured (dark) and predicted (light) pevient time histograms (PETHS) for three differe
objects aligned to maximum aperture for an example neuron from area 3a. TheR&@idbe GLM fit to this

neuron is 0.49. Vertical baet each point indicate +1 S.E.NC) PseudeR? values for each neuron with cres:
validated pseud&? greater than or equal to 0.05. Neurons are pooled across sessions and across

monkeys. Bar heights correspond with the mean ps&idamong suchneurons in each area. Each poi
represents the pseudR3 of a different neuron. Error bars spahstandard error of the mean psetRfoof each

area. In area 2, the pseuB®values of 41 out of 50 total units (82.0%) are reported, with the remaininigs9
being omitted due to having pseuRbvalues lower than 0.05; in area 3a, we report 40 of 68 (58.8%); in c:
M1, 59 of 89 (66.3%); and in rostral M1, 107 of 147 (72.8%).

Neurons encode coordinated combinations of joints spanning the entire hand

First,we find that individual proprioceptive neurons do extibit straightforward single
joint response fields (RIrsinstead, we find that neurons encode combinations of multiple joints.
To quantify the number of joints tracked by each neus@n¢ountthe number of joints needed to

reach or exceed 90% of the squared norm of the outti predictor weight vectoiRjgure4-2A).
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We find that, on average, roughly eiglints contribute to the spiking activity adach neuron
(Figure4-2B).

Table 4-1. Multiple two-sample, equalariance TFtests for significant differences between goodradi metrics

seen in our hand data versus data from a previous report in proximal limb motor cortical (@flatm& Graziano,
2007) These proximal limb corticalata were compared with our hand data due to the lack e&trmhging of the
firing rates prior to computing goodnessfit. Highlighted cells indicate significant differences (FWER < 0.05,
Holm-Bonferroni method). Black squares indicate the lack mafugh neurons from our hand dataset to make a
comparison (Nung< 5 with pseudeR?> 0.05).No mean pseud®? value from any area or monkey in our dataset was
significantly smaller than the mean psetRfoseen in the previously reported M1 data to whiakeis compared. We
assume comparability of pseuto the traditional coefficient of determination in this analysis. We also only analyze
the set of pseudB? or R values in each dataset greater than or equal to 0.05, although this comprised the shajority
our hand data (c.Figure 41) and similarly comprised roughly 65% of the previously reported M1 data.

Monkey 1 Monkey 3 Monkey 4

p =5.558 01 p =3.476 01 p=1.241 03
Area 2 t(52) = 0.544 t(45) = 0.949 t(60) = 3.390

E( ®R 8.995 €03 E( ®R1.714e02 | E ( PR 6.327 €02

Nhang= 13 Nhand= 6 Nhand= 21

p = 4.608 €06
t(63) = 5.014

E (R 9.890 €02
Nhand= 24

p = 2.465 €01

{(52) = 1.172

E( ®R 1.696 €02
Nhang= 13

Area 3a

p = 1.068 D4 p = 1.840 eD1 p = 3.338 €03
Caudal my | (60) = 4.149 {(57) = 1.3448 {(55) = 3.068
E( DR 7.449€02 | E ( ®R 1.985 €02 E ( @R 7.446 €02
Nhand= 21 Nhand= 18 Nhand= 16
p =9.997 e01 p = 1.325 €02 p = 4.758 €06 p = 3.883 el3
Rosual M1 | (69) = 0.004 £(62) = 2.550 1(46) = 4.490 £(86) = 8.559
E ( Ci)R 4.642 €05 E ( (i)R 4.703 e02 E ( CleAGl e0l | E( (%)R 1.860 e01
Nhana= 30 Nhand= 23 Nhand= 7 Nhand= 47

We constructe@d noisy simulated neural populatiavith singlejoint coordinate response

fields to assess whether our GLMglded multijoint RFs due to spurious correlations. Indeed,

the large correlations among joint angles that we note in Chapter 3 could give rise to such spurious

predictors that impnee model fits, even if only one among a highbyrelated cluster of joints is
truly encoded. A neuron from this population was constructed by first selecting a random joint
angular coordinate the angle or angular velocity of a single axis of rotation sihgle join® to

serve as the basis for its timarying firing rates. Firing rates were simulated by computing
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o 11T A 1 ad (4-1)
where’ 0 is the firing rate of the simulated neuron at tilg¢ and| are parameters to be
optimized,ando0i s t he value of the joint angular <coa

at timeo. All simulated neurons were constructed to have a latency of 0 relative to the kinematics

2
2

Cumulative fraction of ||3]|
Number of joints in response field (RF)

Area 2
Area 3a
Caudal M1
Rostral M1
>90% CVE

5 10 15 5 10 15
Number of joints

Figure 4-2. Neurons track multiple joints distributed over the entire héApTo count joints in response fields
we calculate the contribution of each joint to the regression weight vector and count the minimum number
required to account for 90% ¢fhe r egr essi on waorng(gray shaded aren). Baslednge
indicate the cumulative contributiari the besN joints (abscissa) to the weight vect@verlaid on these are th
average cumulative functions across neurons ineach(B)éethear e r age number of j oi
field (RF)is roughlyeight There is no difference among areas in terms of the number of joints in the a
neuronds RF. 1 ndividual p ardpananly ke ategei values; wrticaleispers
of these points is artificially inserted to emite visibility Error bardn both plotsndicate +1 S.E.M.

governing their spiking activity. From these rates, spike counts at each ware drawn from a

Poisson distributioh MATLAB poissrnd & with mean’ 0.
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We then drew a random neuron from whigk actually recorded and took note of its
overall mean firing rate and peak psetRfo We then optimiz¢ andf & MATLAB function
fminunc & such that the mean rate and pseBdof the simulated neuron, after simulating its
ratevarying Poisson spike countaere equal to those of the real neuron. In this manner, we
attempt to match the firing rates and amount of noise in our simulations to those in our recordings,
as those differences could give rise to a different susceptibility of the resulting GLMsituspu
correlations.

We find that our GLMs reliably find the single joint coordinate predictor built into these
noisy simulated neurondn particular, the simulated neurongxhibited clear singlgoint
coordinateresponse fields in the vast majority (>7@%6N = 162) of casesHgure 43). We
conclude that the overwhelming number of mjdint RFs we find in our recorded neural
population are unlikely to be the trivial result of our GLMs finding spurious predictors to explain
noise in the firing rate data.

Given the size of these mujtint RFs, on average spanning eight joints, the typical RF
must necessarily span multiple digits as A) the wrist and elbow comprise only one joint each, and
B) no digit has more than four joints associated with it. Digfobgexample, is associated with
degrees of freedom at its distal interphalangeal joint, proximal interphalangeal joint, metacarpo
phalangeal joint, and carpoetacarpal joint. Thus, the large RFs we note in{gatce mirror the
multi-digit proprioceptiveRFs noted in previous woilCostanzo & Gardner, 1981however, it
is still possible that the multigit RFs we observe may be more readily explained in terms of
large, multiarticulate muscles such as the common flexor and extensor muscles that insert a tendon

into each digi{Schieber, 1995; Serlin & Saber, 1993)
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Figure 4-3. Simulated neuron populatiomgth singlejoint angular coordinatBFs and properties of their GLM
fits. Left Histogram of the number of joint predictors contained in the RF inferred via GLM. Note that evel
simulatedneuron responded to just a single ja@ngular coordinate by desigand that over 70% of these
simulated neurons had a GLM RF that recoveresidimglepredictor RF in spite of intgpint correlationsn

the kinematicsind noisen the simulated spike coun®Right Distribution of pseuddr? values of GLMs fit to
these toy neurons, which is simiaby desigd to the distribution seen in real ciogl neuronal data.

To address this concern, we ran a second set of GLMs that use musculotendon lengths and
their derivatives, rather than the angles along joint axes of rotation and their derivatives, as
predictors. We count the number of musculotenctumplexes included in each RF using similar
methods as those used for counting joints, namely by computing the sum of squared standardized
regression weights across all predictbrsoth length and rate of length charigepanning all
subunits of each mukec For example, the flexor digitorum profundus (FDP) has a tendon that
inserts onto each digit, each of which is modeled as a separate musculotendon unit in our kinematic
model, but whose squared regression weights are added together to obtain a niehsure o
contribution of the entire FDP musculotendon complex to the RF inferred by GLM. We find that

the number of musculotendon complexes in the typical RF counted in this way is equivalent to the
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corresponding number of join{&igure 44). This is despitehe fact that several muscles span
multiple digits and therefore might have yielded GLMs of neural activity with fewer predictors.
Neurons encode postures of the hand rather than its movements
To assess the degree to which neurons encode hand postinasdvsiovements, afirst
analyze the pseud®’ values for postural and movement encoding models of each neuron. We
find that pseudd?? values for postural models exceed those for movemernding models
(Figure4-5A) (pairedsample TFtests: Trea {40) =5.790, p = 9.320-87; Tarea 3{39) = 8.116, p =

6.639 €10; Tcauda v{58) = 7.037, p = 2.542-@9; Trosral M{106) = 10.76, p = 1.100-18).

12 o & o
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Figure 4-4. The number of musculotendon complexes contained in each RF is no fewer than the number
in those same RFs (cHigure4-2B). The same neuns are assessed for musculotendon counts in their RFs |
similar methods as describedHigure4-2A for joint counts Error bargndicate +1 S.E.M

Nonetheless,reoding moded thatincludedboth postures and movemerislded on average,

better fits than did models that included only post(ifegure4-5B) (pairedsample Fests: Trea
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2(40) = 6.581, p = 7.225@8; Tarea 3{39) = 7.875, p = 1.39809; Tcaudaim{58) = 8.013; p = 5.823
e-11; Trostraim(106) = 11.61, p = 1.35520), suggesting that neurons also carry movemelated
signals

To further quantify the relative contributions of postures and movements, we computed the

amount of unige deviance, rather than the total fraction of neural deviance, explained by posture
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Figure 4-5. Results of generalized linear models (GLMs) testing for preferential encoding of joint postu
movements(A) The distribution of crosgalidated pseud&®? values computed for GLMs using just joint angl
(Postures) as predictors or using just joint angular velocities (Movements) as predictors. Each point rep
single neuron(B) Same abscissa as (A), mith each point plotted against the psedrfosalue obtained using
both posture and movement predictors on the ordinate.

and movement model s. A measure of such fAunig
computing partial pseudB® values for each neuron,

YR WY, (4-2)

1Y —
N7 p Ny

wheren'Y ¢ is the crossvalidated partial pseud@’ of predictor seX (postures or movements)

after accounting for variance explained by predictolYs@ovements opostures, respectively

N ; isthe crossvalidated pseud®? of the GLM that uses both predictor sets to estimate firing
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rates; and)'Y is the crossvalidated pseud®? of the GLM that uses only predictor SétThis
computation is modeledfter similar partial coefficient of determination calculations for
regression models that assume a Gaussian distribution of residirs.analyzinghesepartial
pseudeR? values Figure 46), we observe that hand postuesplain far more uniquéeviarcein

the neural data than do moveménts., the postural partial pseud® values are considerably
larger than the movement partial psel®fozalues(pairedsample Ttests: Tarea 40) = 5.465, p =
2.662 €06; Tarea 3d39) = 7.529, p = 4.074-@9; Tcaudal M{58) = 6.056, p = 1.101-@7; Trostral

w1(106) = 9.931, p = 8.109 £7).

04 r
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Figure 4-6. Partial pseuddr? of posture models on the abscissa against movement models on the ordinate
points indicate individual neurons with peak pse®idnon-partial) of 0.05 of greateOverlaid fully-saturated
points are means over neurons for each area, with erroiniolicating £1 S.E.M. along each principal axis
covariance. The vast majority of unique variance in the firing rates of the typical neuron from any o
sensorimotor areas is explathky hand postural information rather tHaand joint angular vefity information.
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These results from the hand contrast with previously reported results from the proximal
limb, where movements are preferentially encoded over posifMosan & Schwartz, 1999;
Paninski, Fellows, Hatsopoulos, & Donoghue, 2004; Reink, @&044; Wang, Chan, Heldman, &
Moran, 2007) To verify that salience of postures in the neuronal representations of the hand was
not an artifact of our analysis, we implemented an identical analysis on analogous data from the
proximal limb.Specifically,we applied GLMs to kinematics recorded using a KINARB(cott,
1999)and neuronal data collected from a UEA in motor cortex as monkeys performetayad
centerout reaching task(Hatsopoulos, Xu, & Amit, 2007; Kadmon Harpaz, Ungarish,
Hatsopoulos, &Flash, 2018; Reimer & Hatsopoulos, 201@e used artical responses and
associated kinematics starting 1 second before onset of movement and extending 1 second
afterwards during reaches to each of eight directions separated by 45 degrees éauhd Whiat
the majority of neurons exhilpreferential encoding ahovement®verpositions in the proximal
limb (Figure 47), consistent with previous reports in the proximal limb but in contrast to our
results from the hand. We conclude that the neuronal esgeg®ns of the proximal and distal
limbs are fundamentally different in that the former are dominated by movements whereas the

latter are dominated by postures.
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contrasts with resulf®r hand configurationatncoding, where we observe prefdral encoding of postures ove
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Encoding of passive hand movements
Next, we wished to assess the degree to which neuronal representations were dependent on
whether the movements are actively generated or imposed on the (passive) hand. Analysis of these
data allowed us to gauge the extent to which the response propertiegost might be shaped by
motor inputor other topdown influences. Tothisend we mani pul at e dcFigmene mon
4-8A) while werecordedhe kinematics and neural responsiiace there were not defined trials
in these passive measurements, Glse fit to data collected throughout the period over which

the monkeybds hand was manipul at ed.
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Figure 4-8. Mean firing rates ofieurons recorded during passive manipulation of the bamgared against thos
recorded during active, volitional gragp) Each digit was passively manipulated by the experimefigr-iring
rates are generally similar between the two tasks, with the notable exception of area 3a neurons (se
statstics).(C) We simulate firing rates in response to the kinematics from ond thsklabel on the abscissa
using RFs fit to firing rates and kinematics recorded duringpipesitetask. We note that we should expect firir
rates during the passive task to be higher than those during the active grasp task (see text for Satistads
lines centered on the height of each bar indicate +1 S.E.M. Only neurons with4Ret0d¥b are considereith
(C). Samples from active and passive sessions are not paired, but are rather separate samples.

First, we compare measures of overall neuronal activity across the active and passive
condition® namely, the mean firing rates of neuronshiMy different neurons are sampled and
the kinematics are very different in the two conditions, this analysis might reveal large differences

in responsivity during active vs. passive movements. We find that responses in the two conditions

are comparable xeept in area 3a, where neurons tend to respond more vigorbiglyd 48B)

in the passive than in the active condition {sample twetailed equalvariances Ttest, T(82) =

3.351, p =1.21983). To assess whether differences in the neuronal resguetse=en the active

and passive conditions (or lack thereof) reflect differences in the kinematics, we simulated the
responses of neurons recorded in the active condition to the kinematics measured during the

passive condition and vice vergagure 48C). We find that simulated responses in the passive

condition are higher than those in the active condition-@ample twetailed equalariances T
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test, T(193) = 3.092, p = 2.2888). We conclude that neurons in area 3a respond comparably in
the active angbassive conditions, while neurons in the other cortical fields are more responsive
during active movements.

Interestingly, however, the encoding properties of nedrotiee number of encoded joints
and sensitivity to posture vs movem@mere comparable auss the active and passive conditions
(Figure 49A, B) as was the overall goodnesisfit of the GLM modelgFigure 49C). A possible
exception is a modest effect of task typeostral M1, where the number of jointgas modestly
larger for imposed movements than for actively generated ®dhese analyses suggest that the
encoding properties of neurons do not fundamentally change across these two conditions.

Discussion
Proprioceptive neurons in somatosensory cortexdve large response fields

Proprioceptive neurons in somatosensory corencode postures andchovements
distributed oveseveral jointswith a mean oaround eightKigure4-2B), and theséarge RFsare
observed even during imposed movements of the (faigdre 49A). The size of the response
fields of proprioceptive neurons in somatosensory cat@xds in stark contrast tive size of the
receptive fields of tactile neurgrgarticularly in area 3b, which typically includesmall patch of
skin spanning fraction of a fingerpafNelson et al., 1980; M Sur et al., 1980}hile the present
work constitutes the first attempt tpantitativelycharacterize proprioceptive response fields in
somatosensory cortex, our results are broadly consistent with fitooseprevious qualitative
characterizationfCostanzo & Gardner, 1981; Krubitzer, Huffman, Disbrow, & Recanzone, 2004;

Pons, Garraghty, Cusick, & Kaas, 1985)
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Figure 4-9. Properties of GLMs fit to neurons during p&ssnanipulation of the hand. (A)he number of joints
tracked by a neuron in each area does not generally change between the active (filled bars and points
fiA0) and passive (empty b@w-samplenedualivarianoettvgo;tailed a-testsl
Tharea2(46) = 0.432, p = 6.681 e-01; Tarea3a(43) = 0.528, p = 6.003 e-01; Tcaudarm1(61) = -1.699, p = 9.441
e-02), except in rostral M1 where the number of joints in the typical RF increases during passive moRHm
(two-sample equavariance twetailed T testTroswra m{114) =-2.927, 4.137 ©3). Each point gives the numbe
of joints i nRF4B)BseuddrIfoe postueeanty modéls movemeranly models, and full models
In the passive case, postsirare still preferentially encoded over movements of the jdiis.shown are the
differences between the partial psetRfovalues of postural against movement models, which are no diffe
from those in the active volitional grasp tqsko-sample equaVariance twetailed T-tests: Tarea {46) =-0.485,
p = 6.301 é01; Tarea 3{43) =-2.571, p = 1.368-82; Tcauda M{61) =-0.955, p = 3.434-81; Trostrai v{114) =-
0.279, 7.806 ©1). (C) PseudeR? of GLMs (provided pseud®? > 0.05) fit using the kinematics as predictol
which are not significantly different from those seen during active movemergirife4-C) (two-sampe equal
variance twetailed T-tests: Tea {46) = 1.092, p = 2.804-@1; Tarea 3{43) = 0.631, p = 5.313@1; Tcauda m{61)
=0.829, p = 4.103-81; Trostraim(114) = 1.506, p = 1.347@1). Vertical lines centered on the height of each |
indicatex1 S.E.M. Only neurons with pseudR3 > 0.05 are considered. Samples from active and passive ses
are not paired, but are rather separate samples.

The ethological basis of tactile receptive fields and proprioceptive response fields is a

matter ofspeculation. One might conjecture thattile informationi about locakpatial features

of an objecsuch as edge orientatiBensmaia, Denchev, Dammardnd, Craig, & Hsiao, 2008)

and curvaturéYau, Connor, & Hsiao, 2013)jor exampld is best carried in a representation that

preserves local spatial relationships. In contrast, information about the conformation of the hand

requires the integration of digit and joint postures spanning the entire hand, thus requiring more

distributed response fields. Ultimately, the integration of local shape features at the points of

contact between skin and objdcicarried in tactile representatioiismust be integrated with
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information about the conformation of the handarried in propoceptive representatioristo
achieve a representation of the three dimensional structure of the @bjgadcess known as
stereognosigBerryman, Yau, & Hsiao, 2006; Hsiao, 2008; Yau, Kim, Thakur, & Bensmaia,
2016)

Hand neurons encode postures over avements

In both somatosensory and motor cortex, neurons enoodgpsture®f the hand more
strongly than they doojnt movements.This holds true during both active and passive
manipulations of the handlhis contrasts with kinematic encoding of thama where both
somatosensory cortical neurofi@/eber et al.,, 2011and motor cortical neurons(Moran &
Schwartz, 1999; Paninski et al., 2004; Reina et al., 2014; Wang et al.[i26&fgntially encode
joint velocities. This difference between proximal cgmistal limb representations may reflect
differences in the functional roles of these two structures. Indeed, the role of the arm is to place
the hand somewhere in three dimensional space, while that of thé halehst during grasp and
object manipulaon 7 is to adopt a conformation that is appropriate to the task. From this
perspective, it stands to reason that the control and neural representation of the proximal limb
would rely on movement and that of hand conformation would rely on posture.

An alternate explanation for this difference between proximal and distal limb
representations arises from the dynamics governing their movements. Indeed, the arm, comprising
both the forearm and hand, has more mass than the hand alone so the mechanics oéfiproxima
movements involve a larger inertial term than those of the digits. Although the specific manner by
which a large inertial term may give rise to preferential coding of movement in the nervous system

is unclear, it is nonetheless a factor whose imibi@emay need to be accounted for.
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Response to active vs. imposed hand movements

The response fields of proprioceptive and motor neurons are similar whether these are
computed from responses to active movements or responses to imposed movements of the hand.
Indeed, response field size and postural preference are similar for active and passive movements.
While this result may not be very surprising for somatosensory neurons, that it applies to M1 is
less expected and suggests that the sensory input to Mdnisdcawith its output. Note that M1
has previously been shown to be driven by sensory (iaisopoulos & Suminski, 201,190 this
basic observation is not novel.

Our results suggest, though these experiments were not designed to test this exyicitly, t
M1 neurons are more active during active movements than passive ones, as expected. Neurons in
area 2 also seem to exhibit a preference for active movements, as reflected in higher firing in the
active condition. In contrast, somatosensory neurons regponse fields on the proximal limb
have been shown to alternatively exhibit a preference for either active or passive movement
(London & Miller, 2013; Soso & Fetz, 198 owever, the responsiveness of area 2 in the passive
conditonmayreflect ncr eased cutaneous input driven by
hand.

In contrast to their counterparts in M1 and area 2, neurons in area 3a do not exhibit a
preference of active or passive movement after correcting for differences in kinerhtes
finding is consistent with a role of this area as a traditional sensory area, an interpretation that
conflicts with a more nebulous role of this a
motor corteE. G. Jones & Porter, 1980)his transition hypothesis is supported by motonetron

like properties of area 3a neurons, such as spiking activity that precedes moveme(€ onset
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Fromm & Evarts, 1982pand reciprocal connectivity between M1 and aregRafman &
Krubitzer, 2001)

We should not¢hat the sample size of our passively sessions is small and that this data set
is confounded by the differences in kinematics and the presence of significant uncontrolled tactile
stimulation by the experimenter during hand manipulation. Nonethelessesulisrsuggest that
area 3a neurons are equally responsive to actively generated and imposed movements, as one might
expect from a At r BEodestttheeohgpatheéemare rigarausiyyill require a .
experiments in which hand kinematics in thetive and passive conditions are matched,
presumably requiring a robotic exoskeléioa.g.(Heo, Gu, Lee, Rhee, & Kim, 2012; C. L. Jones,
Wang, Morrison, Sarkar, & Kamper, 2014and cutaneous input is either systematically
manipulated and accounted farediminated (using local anesthesia, for example).

Dependence of postural preference on analytics approach

A pair of previous studiesn kinematiccoding in the hand representation has come to a
different conclusion regarding the postural preferenceaibrmeurons, finding instead a mixed
selectivity with a movement preferen(®aleh, Takahashi, Amit, & Hatsopoulos, 2010; Saleh,
Takahashi, & Hatsopoulos, 2012owever, three critical differences betweengheviousstudy
and thepresentonemay accounfor this seeming discrepancy) the inclusion of regressors at
multiple lags; 2) the inclusion of spike history regressors; and 3) the use of a different measure to
comparepostural vs. movement encodhgamely, counting the number of neurons with a
significant weight for each regressor, rather than comparing goodfdissneasures. Although
the inclusion of multiple regressors at different lags may be important in proximal limb
representations in M1 to track changing kinematic preferred directiomsgdouand transport
(Hatsopoulos et al., 200%ye find that inclusion of regressors at multiple Igigéds only a modest
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though statistically significantmprovement ingoodness of fi{Figure 410A). We abandoned
multi-lag models due tthis modesimprovement in fit. Note, however, that a mditg model can
extract posture from movement (by integrating velocity) and velocity from poghye
differentiating joint angle). These models are thus poorly suited to assess the weighting
contributions of psture and movement in the neural responses.

Replicating previous finding&Saleh et al., 2010, 2012)ealso find that including spike $tory
regressors significantlynprovesmodel fit (Figure 410B). However, we find that if we include
these terms ithe GLM, they tend to dominate their kinematic counterparts. Indeed, kinematics
are highly autocorrelated over long time scakl@gure 410E), so spike history reflecting recent
kinematicsi is an excellent predictor of current neuronal resporfa@thermore,spike history
regression weightare more correlated with postural than movement regre@Signsre 410C)

due toautocorrelationsver long time scales for postures than movem@tiggaire 410E), which

would preferentially reduce the variance explained by postural regressors relative to that of
velocity regressors. Moreoverggression weights for history terms extend hundreds of
milliseconds in the past, well outside a reasonable physialogime window (tens of
milliseconds) for histondependent effectéChen & Fetz, 2005; Pillow et al., 2008; Pillow,
Paninski, Uzzell, Simoncelli, & Chichilnisky, 20Q%ut consistent with the time scale of postural
autocorrelationsincludingthese samepike history terrs, in addition to predictors atultiple

lags, weakens the postural preference in our neuronal data but does not elirtfiguesi4 10D).
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Figure 4-10, continued (A) Multi-lag models offer only a very slight, albeit significant, improvement sirgle

lag GLMs in terms of explaining neural activity, as evidenced by most points, or neurons, falling just above the
diagonal.(B) History terms offer a significant improvement to sintflg encoding models, as evidenced by most
points, or neurons, lling below the diagonalC) However, history terms covary more strongly with postures than
they do with movemensas evidenced by the majority of points, or neurons, falling above the didgandl
therefore could preferentially sap predictive power aviieym postures.(D) Regardless, posture terms are
preferentially encoded in terms of partial psediin the majority of neurords as evidenced by the majority of points
falling below the diagonal even when accounting for history terrtis) Posture autocortations (left) extend farther

out temporally than do movement correlations (middle) or (unsmoothed) neural spiking autocorrelations (right) to
which GLMs are fit. Underlying firing rates seem to vary on timescales similar to postures, whiphysiziogial

spike history terms extending back as far as 250ms in the past could obscure.

In fact, even when we coumeurons with significant weights for each regressor in models
that exclude spike history regressaovs, still observe bias toward encoding pbstural variables
albeit a slight ondFigure 4-11A). A Si gni fi cance o0 i n t h-vafidatedas e i
models using the method described earlier and depictédume 42A, rather than withirsample
p-values as was previously done. We notg this measure of preferential postuwemovement
coding contrasts with the measure by which we normally assess preferential coding: comparisons
of pseudeR? between models.

However, if we replicate the previous approach in all of its aspeutsti-lag models with
spike history regressoendpreference measured by neuron cdirgure 4-11B), only then do
we obtain movement preferend&’e conclude that the postural preference we observe in hand
sensorimotor representations is robust.

Hand representations reflect muscle activations

Ultimately proprioception relies primarily on signals from afferents that innervate the

muscles. M1 and proprioceptive responses might thus be more fruitfully described in terms of

muscle activations rather thaoint angles and angle velocities. We could not directly test this
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Figure 4-11. Continuation ofFigure 410. (A) Counting the number of neurons with each predictor in its RF
multi-lag, nehistory models. Joint angular coordinates are converted to the same domain as that used pi
(Saleh et al., 2010, 2018)r the purposes of comparisdPostural predictors are the most frequently encodei
both caudal and rostral motor corticé8) Only when reincorporating history terms on top of using migtj

models and counting joints rather than assessing partial p&&wtn we seenovement predictors consistentl
occupying higherark slots than posture predictok&locity termsappearto have nearly exclusive representatis
among the top 4 mostincoded joint angular predictonsjth wrist posture in cadal M1 being the lone exceph.

hypothesis because our animals were not instrumented with electromyographs. As an indirect test
of this hypothesis, albeit one that does not account for movement strategies featuring-large co
contractions of antagonist muscles, we investigated whethesnmsuesponses in somatosensory
cortex and M1 could be better predicted from twvaeying musculotendon lengths, which we
could estimate from the kinematics using a musculotendon model of th€Figace 44). We

found that this particular intrinsic refarce frame was no more closely associated with cortical
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responses than was the kinematic one. Note that we investigate in great detail the suitability of
another reference franiekinematic synergies in Chapter 5.
Contrasting proprioceptive and motor representations of the hand

In both somatosensognd motor corticeandividual neurons preferentially encode hand
postures distributed over multiple joints. Remarkably, neurons in all sensorimotoeaceas
hand kinematics over comparable swaths of Handhber of jointy andare indistinguishable in
terms of their respective preference for posture vs. movefeatmight expect that motor activity
leads the movement whereas sensory activity lags it. We found this to be the case in area 2 but not
area 3gFigure 412, right) (cf. (Christoph Fromm & Evarts, 198&garding area 3ahctivity in
motor cortex generally letthe kinematics, as expected, but even this phenomenon was not reliable.
As noted above, however, the long kinematic autocorrelations make our estimates of response
latency (lag and lead) very unrelialflggure 412, left).

Conclusions

Proprioceptive neurongl somatosensory cortex have large response fields that track
multiple joints spanning the entire hand, respond preferentially to-joutipostures of the hand
rather than the movements of those joints, and do so whether movements are activelydgenerate
by the animal or imposed by the experimenter. Similar coding properties are observed in M1,
including the postural preference, which constitutes a departure from previous reports of M1
coding of proximal limb movements. These differences between handoramdnal limb

representations may reflect the fundamentally different roles of the hand and arm.

123



0.7
Area2: o o) © O%@g @ o 8
0.65
L ]
N Areadar g @ @ gﬁE%OQ 2 o ©
o
o)
el
=
[+F]
d
os Caudal M1~ @ g 6 @%@o € ¢ ®
Rostral M1 - 8 @ 8 80 o 8
0.55 :
-200 -100 0 100 200 -300 -200 -100 0 100 200 300
<- Leading | lagging -> neural latency (ms) <- Leading | lagging -> neural latency (ms)

Figure 4-12. Optimal neural latencies.eft. We fit GLMs fit to multiple different latencies and report for ea
neuron theatency associated with the largest pseRdwalue. Shown is the latenaiersuspseudeR? plot for an

example neuron from caudal M1. Kinematic autocorrelations rendered estimates of optimal lags hazard
neuronby-neuron basis (see scale of the patdé). GLMs are used to evaluate latency rather than events st
the start of movement to account for different response fields that could give rise to different apparent |
via the latter methodRight Estimates of optimal latency for each @t area after averaging across all neurc
with pseudeR? > 0.05. We find that, on average, area 2 neurons significantly lag kinematiesajopée Ttest:

T(40) = 2.355, p = 2.353-@2, w &= 34.97 m¥ both rostral M1 (onsample Fest: T(106) =5.417, p = 3.816€

07, w 6= -60.73 ms)and caudal M1 (onrsample TFtest: T(61) =-2.611, p = 1.134 62, w 6= -30.97 ms)
significantly lead kinematics, and neurons in area 3a neither significantly lead nor lag kinematiesagéone

sample Hest: T(4l) =-1.835, p = 7.373-62, @ &= -29.87 ms) Indeed, there is a significant difference amo
optimal lags across areas (emay ANOVA: F(3,251)-= 8.111, p = 3.567-85) that can be attributed to area
responses lagging kinematics relative to the otbetical areas (postoc Tukey ds HSD: a
n.s. except those involving area 2 epsa= 2.693 €02, pm1 = 1.056 €02, pm1 = 5.030 €02, all ww &> 0).

Significance values of multiple-tests are assessed here with the HBbmferroni method, with FWER < 0.0!
for this family of four comparison$lightly differentdegrees of freedoiim these statistical testelative to the
rest of the text are because compare both jointand musclédased models against each other in this figt
whereas we only account for joibased models in thest of the texd except wiere explicitly stated otherwise
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CHAPTER 5:
The case against synergies for hand shaping
Introduction

As described in Chapter 4, we found that the response fields of neurons in sensorimotor
cortexcomprised multiple joints often spanning the entire hand. The principles that might underlie
this structure eluded us, however. We reasoned that response fields might reflect hand kinematic
synergies. From the strong interpretation of synergies, if tleélgeetra simplified control system,
where each synergy constitutes a Aknobo that
should be reflected in the cortical representation of hand movements. Even a weaker interpretation
of synergies that they snply reflect correlated patterns of joint movementgould predict that
the correlational structure of the kinematics might be reflected in the brain by virtue of simple
Hebbian principles.

To investigate the role that putative postural synergies plagriical representations of
the hand, we 1) revisit the compleXity.e., dimensionalitff of the kinematic and neural data and
2) determine the extent to which laedimensional representations of kinematic space are
preferentially encoded in patternsredural activity. We find that two critical predictions of the
synergy hypothesis fail to materialize: 1) joint angle kinematics that reside outside the low
dimensional manifold are not merely motor noise, but are instead under volitional control; and 2)
neuronal responses in sensorimotor cortices are not better explained by a synergy reference frame
than they are by kinematics in a joint angular or musculotendon length reference frame.

Complexity of kinematics and sensorimotor cortical responses
In Chapter3 we use principal component analysis (PCA) to identify the dimensionality of

hand kinematics and the neuronal representations thereof. We find that, while fewer than 10 joint
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angul ar fAsynergieso quantified i n aticlvariancemanner
kinematic classifiers make use -dnfensipnaltsymergyv e fn
manifold, suggesting that such dimensions are under volitional control and are reliably
manipulated to adopt different objesytecific grasps. Meover, we find that the dimensionality

of neural population activity exceeds that of the kinematics, which would seem to suggest on the
surface that putative hand postural synergies are not preferentially encoded in cortex.

Next, we wished to more explity test the synergy hypothesis by applying generalized
linear models (GLMs) with synergies as regressors to predict firing rates. Indeed, individual
neurons seem to track the states of multiple joints spanning the entire hand simultaneously. If these
joint combinations match the computed kinematic synergies, then sylo@sgyg models should
be more compact and parsimonious than jbaged ones.

Testing preferential encoding of individual synergies

One possibility is that individual neurons in sensorimatortex preferentially encode
individual synergies. To test this hypothesis, we implemented GLMs with a single joint or a single
synergy as regressor to explain the neuronal firing rates, as has been previously done with M1
responseg¢Kirsch, Rivlis, & Sdieber, 2014; Mollazadeh, Aggarwal, Thakor, & Schieber, 2014)

In brief, each of 60 GLMs, with each regressor being the angular position or velocity of one axis
of rotation of one joint, is used to estimate the firing rate of each neuron. Note thantageid

models differ from those implemented in Chapter 4 in that only one regressor is used per model.
Similarly, each synergpased GLM uses regressors comprising the principal component (PC)
scores, or their derivatives, from each PC. Principal compsrage computed for joint angles

only then PC scores are differentiated to compute the PC velocities. GLMs are computed at a range
of physiologically plausible lags, and the pset®iof the GLM at the bedit singlelag is selected
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for each joint or syergy. We then compare the highest creatidated pseud®&? from joint-based
models to that from synergyased models for each neuron. We find that the fit of the best joint
based GLM is comparable to the fit of the best syn&aged GLM Figure 5-1). If anything,
firing rates are slightly better explained by the best joint than by the best syheogailed

pairedsamples Ttest, T85) =2.909, p = 4.62663).
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Figure 5-1. Comparison of the peak pseuBd of a single joint axis GLM against that of a single princif
component (PC) GLM. Peak pseuB®are computed for each model at their own respective optimal lags.
results of GLMs shown here are computed for those neurons with a peafomtifiseudeR? value of at least
0.20. We note, as has been noted previously in M1 alone for-timsensional recordings of individuated finge
movementgKirsch et al., 2014; Mollazadeh et al., 201#at neurons in sensorimotor cortices with hand respc
fields (RFs) do not preferentially encode any &@@of hand joint angles over a particular joint angular dxis.
fact, the best PC model tends, on average, to be slightly +itinsg than the best single jolatxis model when
pooling results across areg@satistics in text).

Of course, models based on single joints are not as good as those based on amtsiple |

However, results from this analysis suggest that at least one interpretation of the synergy
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hypothesis does not hold, namely that individual neurons preferentially encode individual
synergies.
Testing preferential encoding of mixtures of synergies ith GLMs

Another possibility is that the kinematic manifold derived using PCA constitutes a more
relevant frame of reference for the neuronal representations of the hand than do individual joint
angles and velocities. For example;v@rying joints tend tde grouped together in this rotated
space, so to the extent that neurons encode correlated joint angles or movements, PCs will yield
more parsimonious models of neuronal responses than do single joints. To test this hypothesis, we
fit GLMs as previously dscribed in Chapter 4 and counted the number of joints comprising each
neurondés response field (RF). We then repeate:
then compared the parsimony afforded by each model: How many significant regressors are
needed in joint and in synergy space?

First, we show that the goodnesisfit of the two model$ joint-based and synergy based
T was equivalent, as expected since all models had access to all of the variance in the kinematics,
albeit in different coordiate framesKigure5-2). Second, we found that the required number of
PCs was comparable to the required number of joiitgi(e 5-3). Roughly 8 PCs, on average,
were required to account for the amount of variance explained by 8 joints spanning tHeedtire
Moreover, we found that the majority of neuréns90/249 (~76.3%) of neurons across all areas
with peak R>0.08 hadPGCbased RFs that included at | east
the variance cudff (95% explained). This result, consistenithwthe kinematic classification
results from Chapter 3 wherein levariance PCs contribute to kinemaliased object

classification, suggest that these tgariance PCs are not just noise. These results also suggest
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that the kinematic space defined by eymes does not provide a more parsimonious account of

the neuronal representation of hand movements and postures than do individual joints.

Figure 5-2. PseudeR? of GLMs fit using multiple predictors defined in a joint coordinate frame (abscissa) pl
against those with predictors defined in a principal component (PC) coordinate frame (ordinate). We find tl
when regularizing regressions and craaBdaing with respect to the LASSO penalty to obtain the besbéut
sample goodnessf-fit, both models fit neural spiking activity similarly well. All models shown have a psel
R? of at least 0.05.

Testing synergy encoding in the activity of neuronal ensentds
One might argue that kinematic synergies may not be reflected in the responses of
individual neurons but rather in the activity of populations of neurons. Indeed, preferential
encoding of synergies has been previously shown at the population leviehamypmotor cortex
(M1) during reackio-grasp( Over dui n, déAvell a, R tnIparticudia r me n a
individual PCs of trialaveraged neural activity seemed to track individual PCs of hand kinematics,

at least within a highly constrained taskg@digm.
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