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Abstract

Anomalies of global symmetries are important tools for understanding the dynamics of
quantum systems. We investigate anomalies of non-invertible symmetries in 3+1d using
4+1d bulk topological quantum field theories given by Abelian two-form gauge theories,
with a 0-form permutation symmetry. Gauging the 0-form symmetry gives the 4+1d “in-
flow” symmetry topological field theory for the non-invertible symmetry. We find a two
levels of anomalies: (1) the bulk may fail to have an appropriate set of loop excitations
which can condense to trivialize the boundary dynamics, and (2) the “Frobenius-Schur
indicator” of the non-invertible symmetry (generalizing the Frobenius-Schur indicator
of 1+1d fusion categories) may be incompatible with trivial boundary dynamics. As
a consequence we derive conditions for non-invertible symmetries in 3+1d to be com-
patible with symmetric gapped phases, and invertible gapped phases. Along the way,
we see that the defects characterizing Z4 ordinary symmetry host worldvolume theo-
ries with time-reversal symmetry T obeying the algebra T2 = C or T2 = (−1)FC , with
C a unitary charge conjugation symmetry. We classify the anomalies of this symmetry
algebra in 2+1d and further use these ideas to construct 2+1d topological orders with
non-invertible time-reversal symmetry that permutes anyons. As a concrete realization
of our general discussion, we construct new lattice Hamiltonian models in 3+1d with
non-invertible symmetry, and constrain their dynamics.
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1 Introduction

Symmetry plays a crucial role in our understanding of quantum systems. In particular, ’t Hooft
anomalies of global symmetries are invariant across all energy scales, and are powerful tools
for constraining dynamics. Examples of anomalies in nature are abundant, including for in-
stance chiral anomalies in gauge theories, Lieb-Schultz-Mattis anomalies for lattice models, as
well as examples of anomalies of discrete symmetries.

In recent years, the concept of symmetry has been generalized in various directions (see
e.g. [1] for a review with references). In relativistic continuum quantum field theories a work-
ing definition of a symmetry is any topological operator of the system. This includes ordinary
global symmetries (topological operators of codimension one in spacetime) as well as higher-
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form symmetries (topological operators of higher codimension) [2]. A particularly novel gen-
eralization is to non-invertible symmetries, which are symmetries generated by topological op-
erators without inverses. Non-invertible symmetries include the familiar Kramers-Wannier du-
ality, and other topological line defects in 1+1d [3–20]. Beyond 1+1d systems, non-invertible
symmetries are also ubiquitous in higher dimensions as discussed in e.g. [21–24] in 2+1d,
and e.g. [24–79] in higher spacetime dimensions. Generalized symmetry also plays a role in
the weak gravity conjecture and the completeness hypothesis [35, 80–84], as well as particle
physics applications [39,40,50,52,54,75,85,86].

Non-invertible symmetries can also be anomalous, leading to new constraints on the dy-
namics of quantum systems. In the case of ordinary symmetries, an anomaly is often defined
as an obstruction to gauging the global symmetry, i.e. summing over insertions of the asso-
ciated topological operators. A consequence of a non-trivial anomaly is then that the system
cannot be deformed to a trivially gapped phase by any continuous symmetry preserving defor-
mation including renormalization group flow. For non-invertible symmetries, these two points
of view on anomalies may in general differ [87], and below we will directly define anomalies
of non-invertible symmetries as obstructions to trivially gapped realizations of the symmetry.
Our main results are to characterize certain anomalies of non-invertible symmetries in 3+1d.

Anomalies of non-invertible symmetries in 1+1d can be systematically understood using
fiber functors [11, 13, 88–90]. These anomalies depend on the F -symbol, which generalizes
the 3-cocycle defining anomalies of invertible symmetries. While systematic, this method has
two main drawbacks. First, it provides more information than just presence or absence of an
anomaly; it completely defines a trivially gapped phase in the absence of an anomaly. Because
fiber functors provide more information than desired, they are also very difficult to use in
general. For example, it is very difficult to determine whether or not a fiber functor for a
given non-invertible symmetry exists. Second, this approach is difficult to generalize to higher
dimensions.

Recently, [26,36,37,63,64,91,92]made progress in understanding anomalies of particular
kinds of non-invertible symmetries in 3+1d. However, the framework employed only applies to
specific non-invertible symmetries. Moreover, they do not take into account the generalization
of the F -symbol, which includes in particular the 3+1d analogue of the 1+1d Frobenius-Schur
(FS) indicator. We denote this important piece of data defining the symmetry by ω (or ω f
for fermionic systems). In general, the FS indicator is one piece of data entering into the
higher-categorical structure of the non-invertible symmetry [32,45,57,68,70,71,73,93].

Below, we provide an alternate approach for detecting whether or not certain kinds of non-
invertible symmetries are anomalous. This approach is applicable to non-invertible symmetries
that include Kramers-Wannier-like (duality and more general n-ality) defects in any spacetime
dimension. In 1+1d, this is quite restrictive, but in 3+1d, we will show that this actually
encompasses all finite non-invertible symmetries. Our approach refines of the above studies
of non-invertible symmetries in 3+1d to include anomalies due to ω. Specifically, [26,37,63]
showed that for a given kind of gauging, certain 1-form SPTs, labeled by integers (N , p), in
3+1d are invariant and therefore can have duality defects. We show that for trivial ω or ω f ,
the 1-form symmetries defined by those valid (N , p) together with the duality symmetry do
indeed form anomaly-free non-invertible symmetries. On the other hand, for nontrivial ω or
ω f , the symmetry is always anomalous for N odd, but can be anomaly-free or anomalous
for N even. Our main results are stated in Theorem 1 and Theorem 2. Our approach also
reproduces, via a quicker and easier calculation, the results of [13, 94, 95] for non-invertible
symmetries in 1+1d. It furthermore provides an interpretation of the physical meaning of the
anomaly.
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1.1 Symmetry TQFTs for 3+1d non-invertible symmetries

Our approach uses the symmetry topological quantum field theory (TQFT), which is a theory in
one higher dimension than the physical system carrying the anomaly. Any QFT can be viewed
as a symmetry TQFT with appropriately chosen boundary conditions [2, 46, 47, 96–98], with
the symmetry given by bulk defects restricted to the boundaries. More precisely, the boundary
of a TQFT is a relative theory [99–101], and we need to further choose a polarization to obtain
an absolute theory, without the bulk TQFT. Specifically, we can put the bulk TQFT on an open
interval with one topological boundary corresponding to the choice of polarization, giving the
desired symmetry, and the other boundary chosen such that shrinking the interval removes
the bulk and produces the QFT of interest [99–101]. From this perspective, constraints from
anomalies of the symmetry can be viewed as constraints on the possible boundary dynamics
of the given bulk TQFT. Symmetry TQFTs were used in [64, 95, 97] to study anomalies of
non-invertible symmetries in 1+1d (and some aspects of non-invertible symmetries in higher
dimensions), and have been further explored in [93,102–105]. From this perspective, we can
completely classify finite non-invertible symmetries using TQFTs in one higher dimension that
have at least one gapped boundary condition.

Non-invertible symmetries in 1+1d are diverse because 2+1d TQFTs are diverse. However,
in 4+1d, TQFTs with bosons are all Witt equivalent (i.e. have topological interfaces) to Abelian
two-form gauge theories [106,107] (possibly with a fermion). This is because all the particles
are bosonic, so we can always condense them and the resulting theory is always an Abelian
two-form gauge theory. This means that all TQFTs with bosons in 4+1d can be obtained from
gauging a 0-form symmetry G of an Abelian two-form gauge theory. Our approach applies to
all symmetries for which the symmetry TQFT can be obtained by gauging a 0-form symmetry
of an Abelian gauge theory, so in 3+1d, it can in fact be used to study all finite 3+1d non-
invertible symmetries.

For concreteness, we will focus on symmetries with duality-like defects, whose symmetry
TQFTs are obtained by gauging an Abelian permutation symmetry of an Abelian gauge theory.
For example, Tambara-Yamagami fusion category symmetries in 1+1d have symmetry TQFTs
given by gauging a Z2 permutation symmetry of an Abelian 1-form gauge theory [47,95,108].
Our main interest lies in Tambara-Yamagami-like symmetries in 3+1d, generated by a 1-form
ZN symmetry and a non-invertible duality symmetry, whose symmetry TQFT is a ZN 2-form
gauge theory with a gauged Z4 permutation symmetry.1 In general, the theory resulting from
gauging a permutation symmetry is rather complicated, with various non-invertible higher-
form symmetries. However, its properties are already fully determined by two simpler pieces
of data: (1) the 0-form symmetry action on the ZN 2-form gauge theory and (2) the choice
of SPT of the 0-form G symmetry stacked on the system prior to gauging. We will show that
these two pieces of data specify the anomaly: (1) determines whether or not there is a “first
level obstruction” like those studied in Refs. [26, 37, 63] and (2) determines a “second level
obstruction” related to ω and ω f .2

1We give the full fusion rules in Eq. (16).
2The higher fusion category characterizing the symmetry also depends on fractionalization data, i.e. the possible

decoration of junctions of codimension one symmetry defects by codimension two symmetry defects (i.e. the one-
form symmetry operators). In general, this data also modifies the anomaly (see e.g. [109–111]). However, in our
case we are focused on examples that are self-dual under gauging the one-form global symmetry. This implies that
anomalies involving the one-form symmetry are trivial and hence the fractionalization choice does not modify the
anomaly of the QFTs of interest.
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1.1.1 4+1d Abelian 2-form gauge theory

We begin with the first piece of data, which may already indicate that the 3+1d non-invertible
symmetry is anomalous. A general Abelian two-form gauge theory is described by the action

S =
∑

I ,J

iK I J

4π

∫

bI d bJ , (1)

where bI are U(1) two-form gauge fields, and K is an antisymmetric matrix.3 Our main interest
is the simplest example of the above which is a ZN 2-form gauge theory,

S =
iN
2π

∫

bed bm . (2)

It is characterized by loop excitations labeled by integers (qe, qm) ∈ ZN×ZN , with antisymmet-
ric braiding [27,102,107,113]. Different kinds of non-invertible defects in 3+1d correspond
to duality symmetries in the 2-form gauge theory with different permutation actions. For ex-
ample, S : (be, bm) → (bm,−be) and ST : (be, bm) → (bm,−be + bm). As we will discuss
more in detail in Section 2, the permutation action of the 0-form symmetry can already indi-
cate an anomaly: if there does not exist a subgroup of N loops that (1) can simultaneously
condense, (2) is invariant under the duality symmetry, and (3) overlaps trivially with those
generated by (qe, qm) = (1,0), then the 3+1d non-invertible symmetry is anomalous. A collec-
tion of loops fulfilling these criteria is the 4+1d analogue of the “duality-invariant magnetic
Lagrangian subgroup” described in Ref. [95]; different such 4+1d subgroups correspond to
different 3+1d duality-invariant 1-form SPTs. By studying these subgroups, we will reproduce
and generalize the results derived in Refs. [26,37,63]. For example, we will rederive the fact
that for S gauging, −1 must be a quadratic residue mod N for the non-invertible symmetry to
be anomaly-free.

1.1.2 4+1d SPT/Frobenius-Schur indicator

If the two-form gauge theory has the kind of Lagrangian subgroup described above, the sym-
metry passes the first level obstruction and we can consider the second piece of data, which
can present other anomalies. The second piece of data describes stacking of a 4+1d SPT of the
0-form symmetry on the Abelian gauge theory before gauging. The fusion of the fluxes of the
SPT modifies the fusion of the duality defects.4 In 2+1d, the SPT for a Z2 duality symmetry is
classified by H3(Z2, U(1)), and is precisely the Frobenius-Schur (FS) indicator. This quantity
affects the F -symbol of the duality object of 1+1d Tambara-Yamagami fusion categories. In
4+1d, stacking with an SPT for the 0-form symmetry gives the analogue of the FS indicator we
denoted by ω above. Because ω affects the fusion of the duality defects in 3+1d [109, 115],
it plays an important role in determining the anomaly of the 3+1d non-invertible symmetry.

We will be particularly interested in order four duality symmetries. Then, the relevant
Z4 SPTs are those which directly interplay with the Z4 symmetry and hence are given by the
quotient below

Ω5
SO(BZ4)/Ω

5
SO(pt)∼= Z4 ×Z4 , Ω5

Spin(BZ4)/Ω
5
Spin(pt)∼= Z4 , (3)

where above Ω5(pt) denotes purely gravitational SPTs, and the two cases above correspond
to respectively bosonic or spin SPTs. Thus, the higher analogs of the FS-indicator, ω and ω f

3We can also include diagonal entries in K , which give rise to fermionic loop excitations [102, 112]. For sim-
plicity, we do not consider such cases here.

4In Appendix B, we show that ω is also related to braiding correlation functions for domain wall operators in
4+1d, similar to how the FS indicator in 2+1d is related to the self-statistics of line operators [114].
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takes values in Z4 × Z4 and Z4 respectively. For reasons discussed in Section 3.4, we will
consider ω for N odd and ω f for N even. If ω or ω f is trivial, then it does not present
any additional anomaly; all we must check is the existence of a duality-invariant magnetic
Lagrangian subgroup as described above. If it is nontrivial, then our main strategy is as follows:
ω and ω f describe Z4 SPTs in 4+1d that have a decorated domain wall construction, that we
explain in Section 3.4.1 following [63,116,117]. Specifically,ω describes 4+1d SPTs where the
Z4 domain walls are decorated by 3+1d SPTs of T2 = C symmetry, where T is time-reversal
and C is charge conjugation satisfying C2 = 1, and ω f describes 4+1d SPTs where the Z4
domain walls are decorated by 3+1d T2 = (−1)F C SPTs. Note that this correspondence does
not require the ambient 4+1d theory to have time-reversal symmetry; rather T is a symmetry
of the worldvolume theory of the defect. This decorated domain wall construction means that
when a Z4 domain wall ends at the boundary, its 2+1d endpoint hosts a theory with a T2 = C
or T2 = (−1)F C anomaly. The 3+1d non-invertible symmetry is then anomaly free if and only
if the 2+1d duality defects also have a T2 = C or T2 = (−1)F C anomaly, that can cancel that
of domain wall endpoints. By determining the anomalies of the SPTs on the Z4 domain walls
and the anomalies of the duality defect theories, we find that this cancellation occurs when N
even but not for N odd. Furthermore, for even N , this cancellation only occurs for even classes
of ω f . Therefore, nontrivial ω and ω f can make the symmetry anomalous, in certain cases.

Our method applies to Kramers-Wannier-like symmetries in general spacetime dimensions.
As a warm-up to our main derivations, we reproduce the result that the 1+1d Z2×Z2 Tambara-
Yamagami fusion category [118] with the diagonal bicharacter and non-trivial FS indicator is
anomalous, but that with the off-diagonal bicharacter and nontrivial FS indicator is anomaly-
free [13]. Here, the domain walls of the 2+1d Z2 SPT carry 1+1d T SPTs, and the duality
defect theory is a free qubit.

1.2 Anomalies of T2 = (−1)FC and non-invertible T symmetry

As we show in Section 3.6.1 and Section 3.6.2, the anomalies for T2 = C symmetry in 2+1d
admit Z4×Z4 classification. Similarly, the anomalies of T2 = C(−1)F symmetry in 2+1d admit
Z4 classification. These symmetry algebras involving T are common in 2+1d [119–121] and
as such this classification is of intrinsic interest. The anomalies can be detected as follows. In
the bosonic case, the anomalies ω = (k,ℓ) ∈ Z4 ×Z4 means that the theory has chiral central
charge c− = 2ℓ mod 8. The anomaly k can be detected by gauging the C symmetry (unitary
Z2 symmetry in 2+1d is non-anomalous since H4(Z2, U(1)) = 0). When k = 2, gauging the
C symmetry renders the T symmetry into a 2-group symmetry; when k is odd, gauging the
C symmetry makes T symmetry non-invertible. In the fermionic case, the anomaly ω f ∈ Z4
implies the theory has chiral central charge c− = ω f /4 mod 1/2 for odd ω f . For ω f = 2,
gauging the C symmetry renders the time-reversal symmetry non-invertible.

In the process of studying T2 = (−1)F C anomalies, we also find various 2+1d systems with
non-invertible time-reversal symmetry that are interesting in their own right. Specifically,
we find an infinite family of 2+1d TQFTs that have non-invertible time-reversal symmetry,
denoted by ON ,p, that are obtained by gauging a Z2 unitary charge conjugation symmetry in
the minimal Abelian TQFT AN ,p [122] with even N and p2 = −1 mod N . The original AN ,p

theory has an anomalous T2 = (−1)F C symmetry. As a result, ON ,p has an anti-unitary non-
invertible symmetry that implements time-reversal transformation composed with coupling to
a Z2 gauge theory.

The fusion rules of the non-invertible time-reversal symmetry generator with its orientation
reverse produces a sum including both the identity and (copies of) the Kitaev chain [123,124].
Other examples of non-invertible time-reversal symmetry in 3+1d were studied in [42].
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1.3 Lattice models

Finally, we also provide concrete lattice models for 3+1d theories with ZN 1-form symmetries,
where the matter degrees of freedom live on the edges of a cubic lattice. These lattice models
are invariant under S gauging. We conjecture a phase diagram in the space of couplings, N ,
and p; the phase diagram has only previously been considered for p = 0 [63, 125, 126]. We
also consider aspects of ST2n gauging on the lattice, highlighting some subtleties that will be
further explored in future work.

Note Added Near the completion of this work, we learned of recent work [92] that also dis-
cusses duality-invariant Lagrangian subgroups in 4+1d, as well as [127], which also discusses
the anomalies of non-invertible symmetries.

2 First level obstruction: Lagrangian subgroups

As mentioned in the introduction, every 4+1d TQFT can be obtained by gauging a 0-form
symmetry of an Abelian 2-form gauge theory, possibly with a transparent fermion. Let us first
present an intuitive argument for this result (see Refs. [106, 107] for more details). We will
show that if we ungauge the 0-form symmetry by condensing all the particles, the resulting
theory is an Abelian 2-form gauge theory, possibly with a transparent fermion.5

The particles in a fermionic 4+1d TQFT consist of bosons, emergent fermions, and a trans-
parent fermion. These particles can all be simultaneously condensed because the emergent
fermions can be paired with the transparent fermion. After condensing the particles, we ob-
tain a theory with only loop excitations. We need to prove that these loop excitations have an
Abelian fusion algebra.

Suppose that the fusion of two simple loop excitations s, s′ were non-Abelian, i.e.

s× s′ =
∑

i

si , (4)

where the right hand is a direct sum of loop excitations. Let us shrink the circumference of the
loops so that they become particle excitations.6 Since there are no non-trivial particles left,
we find

1× 1=
∑

i

1 , (5)

which gives a contradiction unless the right hand side only contains a single term, i.e. the
fusion algebra is Abelian. The TQFT after condensing the particles is therefore an Abelian
2-form gauge theory.

Since every bosonic 4+1d TQFT with emergent fermions can be obtained from a fermionic
one by gauging fermion parity, every bosonic 4+1d TQFT can also be obtained by gauging a
0-form symmetry of an Abelian 2-form gauge theory, possibly with a transparent fermion.

The 3+1d non-invertible symmetries we are interested in have symmetry TQFTs where
the 0-form symmetry acts on the loop excitations by permutation. In this section, we discuss
anomalies determined by these permutation actions.

5Equivalently, every 4+1d TQFT is Witt equivalent to an Abelian 2-form gauge theory, possibly with a transpar-
ent fermion. This means that there is a topological interface between the two theories.

6The reduction of loop excitations to particle excitations by shrinking is also used in e.g. [128] for the classifi-
cation of 3+1d TQFTs. We note that in the absence of particles, if shrinking a simple loop excitation s produced
multiple copies of identity, then the loop excitation would have nontrivial endomorphism that permutes the copies
End(s) ̸= C, which contradicts the loop excitation being simple. This property is also used in the classification of
3+1d topological orders [128,129].
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2.1 Review of Abelian 2-form gauge theory

We begin by reviewing some aspects of Abelian 2-form gauge theories. See Ref. [27] and
references therein for more details. Such a theory can be described by the action

2r
∑

I ,J=1

KI J

4π

∫

bI d bJ =
∑

I<J

MI J

2π

∫

bI d bJ , (6)

where K = M − M T is an antisymmetric, non-degenerate matrix, with I , J = 1, · · ·2r. bI are
2-form U(1) gauge fields, and we will also label them by bI = bI

e and br+I = bI
m for I = 1, · · · r.

Note that in terms of matrix M , the action is properly quantized for each term, while each term
separately is not properly quantized in the expression with K if KI J is odd.

The theory consists of Abelian loop excitations, described by surface operators
ei
∮

qI bI
= ei
∮

(qI
e bI

e+qJ
m bJ

m) labeled by integer vectors q = {qI}= {qI
e, qJ

m}. Unlike Abelian particle
(anyon) excitations of 2+1d TQFTs, the loop excitations {qI} and {q′I} have antisymmetric
braiding, given by

〈q, q′〉= e2πiqT K−1q′ = 〈q′, q〉∗ . (7)

From (7), we see that excitations of the form K I JqI for any integer vector q are trivial. There-
fore, the loops fuse according to an Abelian group given by

A= Z2r/KZ2r . (8)

The theory has symmetry g ∈ GL(2r,Z) that transforms the two-form gauge fields {bI}
(and thus the charges {qI}) while preserving the braiding 〈q, q′〉:7

gT K−1 g = K−1 mod Z . (9)

Such transformations include those that satisfy g ′T K g ′ = K , where g ′T = g−1. This symmetry
group consists of all symmetries that permute the loop excitations, so we call it Aut(K).

2.1.1 Aut(K) and Lagrangian subgroups

We would like to constrain the dynamics of 3+1d theories with non-invertible symmetry corre-
sponding to g ∈ Aut(K). To study the first-level obstruction, we must determine which gapped
boundaries of a 2-form gauge theory described by K are compatible with a given g ∈ Aut(K).

The gapped boundaries of an Abelian 2-form gauge theory are given by Lagrangian sub-
groups ofZ2r/KZ2r . They correspond to subgroups of the loop excitations whose condensation
completely trivialize the theory. In other words, gauging the 2-form symmetry generated by
the surface operators in the Lagrangian subgroup turns the theory into the trivial theory, given
by action

2r
∑

I ,J=1

JI J

4π
b′I d b′J , (10)

where J =
�

0 1r
−1r 0

�

. The fields {bI} are related to {b′I} by a 2r × 2r integer invertible

matrix U: b′I = U I J bJ , where
K = U TJ U . (11)

7Similar methods can be used to study symmetries of Abelian Chern-Simons theories [120].
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Note that U does not have determinant ±1, because it is not simply a change of basis for
the fields; in general, det(U) =

p

det(K). This can also be understood from the fact that
we have trivialized the theory by gauging a 2-form symmetry leading to new well-defined
gauge fields b′I . The matrix U also specifies a subgroup of the loop excitations ei

∮

q′I b′I that we
can simultaneously condense because they all have trivial braiding with each other, according
to (7). We can denote the subgroup formed by these condensed loops by Λ(U):

Λ(U) = (Im U |Z2r )/KZ2r ⊂ Z2r/KZ2r . (12)

For the domain wall g to end on the corresponding gapped boundary, we demand that U
to commute with g

U gU−1 g−1 = 1 . (13)

This means that Λ(U) is invariant under g.

2.1.2 Polarization for the boundary theory: Sixing the symmetry

In addition to the constraint above that there exists a g-invariant Lagrangian subgroup, there
is one further constraint that must be satisfied related to this first-level obstruction. This con-
straint is that the Lagrangian subgroup must intersect trivially with a canonical Lagrangian sub-
group specified by the polarization. Recall that the 3+1d non-invertible symmetries of interest
consist of non-invertible defects together with a finite, Abelian 1-form symmetry. The polariza-
tion that gives this 1-form symmetry in the symmetry TQFT corresponds to a Lagrangian sub-
group Λe of the 4+1d Abelian 2-form gauge theory consisting of loops labeled by q = {qI

E , 0}.
Therefore, in order to pass the first-level obstruction to the symmetry being anomaly-free, we
must ensure that there exists a Lagrangian subgroup that is not only invariant under g, but
also intersects trivially with Λe:

Λe ∩Λ(U) = {0} . (14)

This condition is the generalization of the existence of duality-invariant magnetic Lagrangian
subgroup in the study of 1+1d Tambara-Yamagami fusion category symmetries [95].

Lagrangian subgroups that have nontrivial intersections with Λe give, in the open interval
setup with Λe condensed on one boundary and Λ(U) condensed on the other boundary, TQFTs
with deconfined particle excitations. The deconfined particle excitations are precisely those in
the overlap Λe ∩ Λ(U). Such 3+1d theories are not invertible, and generally have nontrivial
ground state degeneracy on manifolds other than S4.

Symmetry-enforced gaplessness If we are simply interested in symmetric TQFTs rather
than symmetric invertible TQFTs, then we can drop the requirement (14). Lagrangian sub-
groups satisfying (13) but not (14) describe nontrivial 3+1d TQFTs that are invariant under
gauging. When a symmetry has an anomaly that prevents even a symmetric gapped phase, it
demonstrates “symmetry-enforced gaplessness” as discussed in Refs [130, 131] for invertible
symmetries. Note that in 1+1d, a symmetric TQFT must be invertible; only in higher dimen-
sions can a symmetry-preserving TQFT be non-invertible. We will give some examples of Λ(U)
satisfying (13) but not (14) in Section 2.2.1 and remark on the effect of ω and ω f on these
theories in Section 3.4.

2.2 Kramers-Wannier non-invertible symmetry and generalizations

We will now illustrate the above general discussion in the particular case where the symmetry
of the 3+1d theory includes a non-anomalous ZN 1-form symmetry, together with duality
defects that implement gauging of the 1-form symmetry. In 3+1d, different ways to gauge a
ZN 1-form symmetry correspond to stacking with different SPTs of the 1-form symmetry before
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gauging. In terms of the partition function, this amounts to adding a topological action for the
2-form gauge field, which is a quadratic action with coefficient labelled by an integer n:

ST n gauging : Z[B]→
∑

b

Z[b]e
2πi
N

∫

bB+ 2πin
2N

∫

P(b) , (15)

where B and b are classical and dynamical 2-form gauge fields for the 1-form symmetry respec-
tively, and P is the generalized Pontryagin square operation (see Eq. 63). Invariance under
ST n gauging means that the partition functions on the two sides are equal. We will study the
first-level obstruction described above for non-invertible defects corresponding to general ST n

gauging. For the special case n= 0, which was previously studied in Refs. [24,26,37,47,64],
the non-invertible symmetry consists of the ZN 1-form symmetry together with the duality de-
fect D, the charge conjugation defect U , and the condensation defect C0, obeying the following
fusion rules (specifically for n= 0):

D̄×D =D× D̄ = C0 ,

D×D = U × C0 = C0 ×U ,

U ×D =D×U = D̄ ,

D× C0 = C0 ×D = (ZN )0 D ,

C0 × C0 = (ZN )0 C0 .

(16)

The more general defects studied here, implementing ST n gauging, obey similar but different
fusion rules. For example, the duality defect D would not be order four in general.

We will constrain the dynamics of theories with defects implementing ST n gauging us-
ing Lagrangian subgroups of 4+1d ZN 2-form gauge theories. A ZN 2-form gauge theory is
described by the Lagrangian

N
2π

bed bm , (17)

for two-form gauge fields be, bm. The gauge field bm constrains be to have ZN holonomy, and
similarly be constrains bm to have ZN holonomy. The theory has loop excitations described by
eiqe
∮

be+iqm
∮

bm for integers {qe, qm} ∈ ZN × ZN , that generate a ZN × ZN fusion algebra. The
excitations {qe, qm} and {q′e, q′m} have antisymmetric braiding [27], given by

〈{qe, qm}, {q′e, q′m}〉= e
2πi
N (qeq′m−qmq′e) = 〈{q′e, q′m}, {qe, qm}〉∗ . (18)

The theory (17) has SL(2,Z) symmetry that transforms the fields be, bm [2, 27]. Domain
walls that generate ST n ∈ SL(2,Z) in the bulk, when ending on the boundary, become bound-
ary topological defects between theories related by gauging the ZN 1-form symmetry with
local counterterm n. In terms of the partition function Z[B], the two sides are related as in
equation (15).

2.2.1 Gapped boundaries with STn non-invertible symmetry

We will consider in this section gapped boundaries of the ZN gauge theory that describe
duality-invariant TQFTs. These are boundaries where the ST n domain wall can end, with
the same theory on either side of the defect. In Section 2.2.2, we will specify a polarization
and restrict to invertible TQFTs by requiring (14).

As discussed in Section 2.1.1, the gapped boundaries of an Abelian 2-form gauge theory
are labeled by Lagrangian subgroups. The Lagrangian condition means that gauging a 2-form
symmetry, which can be expressed as a change of variables {be, bm} → {b′e, b′m} by a 2 × 2
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integer matrix U , can bring the theory to the trivial theory. For ZN gauge theory, the trivial
theory is given by

1
2π

b′ed b′m . (19)

The symmetry transformation g = ST n ∈ Aut(K) is given by

�

0 1
−1 n

�

, which maps

be→−bm , bm→ be + nbm . (20)

U must commute with g according to (13), so U must take the form

U(n,α,β) =

�

α β

−β α+ nβ

�

, (21)

where α and β are integers. Substituting the transformation into (11) gives

N = α2 + β2 + nαβ . (22)

For values of N with solutions to (22), there exists duality-invariant Lagrangian subgroups,
so the ST n domain wall can end on the boundary with the same theory on either side. The
non-invertible symmetry can therefore be realized in a symmetric TQFT. For other values of
N , the ST n defects can only appear in gapless phases.

The subgroup of bulk loop excitations that condenses on the gapped boundary is given by
(Im U(n,α,β)|Z2)/KZ2, since all excitations

∫

b′e,
∫

b′m are trivial. The Lagrangian subgroup
Λ(U(n,α,β)) is therefore generated by loops {qe, qm}= {α,−β}, {β ,α+ nβ}.

Let us give some examples of N with solutions to (22), for a given n:

• For n= 0, we have

N = 2,4, 5,8, 9,10, 13,16, 17,18, 20,25, 26,29, 32,34, 36,37, 40,41, 45,49,

50, 52,53, 58,61, 64,65, 68,72, 73,74, 80,85, 89,98, 100,113,128, · · · . (23)

Note that the above N agrees with the entries in Table 1 of [63]. Examples of theories
with these defects are ZN 3+1d Toric code in a transverse field [26].

• For n= 1, we have

N = 3, 4,7, 9,12, 13,16, 19,21,25, 27,28, 31,36, 37,39, 43,48, 49,52, 57,61,

63,64, 67,73, 75,76, 79,84, 91,93, 97,108, 109,112, 127, · · · . (24)

• For n= 2, we have

N = 4, 9,16, 25,36, 49,64, 81,100, 121,144, 169,196, 225,256,289, 324, · · · . (25)

• For n= 3, we have

N = 4,5, 9,11, 16,19, 20,25, 29,31, 36,41, 44,45, 49,55, 59,61, 64,71, 76,79,

80,81, 89,95, 99,100, 101,109, 116,121, · · · . (26)
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2.2.2 Invertible boundaries with STn non-invertible symmetry

We now specify the polarization, to study invertible duality-invariant 3+1d theories. We
choose the polarization to be given by the “electric” Lagrangian subgroup Λe, generated by
the {1,0} loop. To get a symmetric invertible theory, we must impose (14). This means that
Λ(U(n,α,β)), generated by loops {α,−β}, {β ,α+nβ} cannot generate r{1,0} for any integer
r ̸= 0 mod N :

Invertible boundary: ∀p, q ∈ Z , p(α,−β) + q(β ,α+ nβ) ̸= r(1,0) , (27)

for some integer r ̸= 0 mod N . Note that −pβ + q(α + nβ) = 0 can be satisfied by
p = (α + nβ)m/ℓ and q = βm/ℓ for some integer m, and ℓ = gcd(α + nβ ,β). However,
pα+ qβ = Nm/ℓ, so (27) is equivalent to

gcd(α+ nβ ,β) = 1 . (28)

Notice that this means that {α,−β} generates {β ,α + nβ} and vice versa, so these two
loops are not independent generators.8 Let us list some examples of theories satisfying (28),
for a given n:

• For n = 0, the Lagrangian subgroup is generated by (α,−β) and (β ,α). The first few
cases of N with invertible absolute boundaries, labeled by Nα,β , are

N = 21,1, 52,1, 101,3, 132,3, 171,4, 253,4, 261,5, 292,5, 343,5,

371,6, 414,5, 501,7, 532,7, 583,7, 615,6 . (29)

Note that the N above coincide with the entries for SPT in table 1 of [63].

• For n = 1, the Lagrangian subgroup is generated by (α,−β) and (β ,α + β). The first
few cases of N with invertible absolute boundaries are

N = 31,1, 71,2, 131,3, 192,3, 211,4, 311,5, 373,4, 392,5, · · · . (30)

Example: bulk and boundary field theories for N = 5 To illustrate the confinement of
particles in a concrete example, let us consider n = 0 and N = 5. The boundary and bulk
action is given by

10
4π

∫

4d
bm bm +

5
2π

∫

5d
bed bm . (31)

The equation of motion for bm gives be+2bm=0 on the boundary, so {qe, qm}={1, 2}= 2{3, 1}
is condensed on the boundary, indicating α = 2,β = 1. To consider an absolute boundary
theory, we can choose e-condensed polarization be = da. The 3+1d absolute theory is then
given by

∫

4d

�

10
4π

bm bm +
5

2π
bmda
�

. (32)

In this absolute theory, the gauge invariant operators are generated by the open surface op-
erator ei
∮

a+2
∫

bm , and there are not genuine line operators [2, 122, 132]. Thus all particles
are confined. The 3+1d absolute theory is therefore an invertible TQFT that realizes the non-
invertible symmetry.

Note that the gauge invariant open surface operators can be obtained from the loops con-
densed on the boundary. Thus when the Lagrangian subgroup Λ(U(n,α,β)) intersects trivially
with the Lagrangian subgroup of the polarization, all particles are confined.

8In more detail, Bézout’s identity means that there exists integers x , y such that xβ + y(α+ nβ) = 0 mod N .
But if −xα+ yβ ̸= 0 mod N , then the Lagrangian subgroup overlaps nontrivially with Λe. Therefore we must have
x{α,−β}= y{β ,α+ nβ} mod N for some x , y .
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3 Second level obstruction: Generalized FS indicators

For the symmetries that pass the first-level obstruction discussed in the previous section, we
can consider an additional piece of data denoted by ω (for odd N) or ω f (for even N). ω
and ω f are the generalization of the FS indicator of 1+1d fusion categories and 2+1d TQFTs.
In 2+1d TQFTs, the FS indicator can be defined for self-dual anyons satisfying a × a ⊃ 1. In
the case where the self-dual anyons arise from gauging a 0-form Z2 symmetry the FS indica-
tor comes from stacking with a Z2 SPT before gauging. The FS indicator therefore modifies
the topological spins of the self-dual anyons, and leads to 1+1d boundary fusion category
symmetries with different F symbols [108].

We define ω (or ω f , for fermionic systems) as the analogous quantity for 3+1d non-
invertible symmetries and 4+1d TQFTs. Surface excitations in 4+1d that obey the fusion rule
aN ⊃ 1 come from gauging a ZN 0-form symmetry, and we can always stack a ZN SPT on the
theory before gauging. ω specifies this SPT, and modifies the braiding correlation functions of
the surface excitations (see Appendix B). It therefore partially defines the associator of sym-
metry defects in the 3+1d boundary theory. For example, for a 3+1d noninvertible symmetry
with fusion rule given by (16), the 0-form bulk permutation symmetry is Z4. Therefore, we
consider ω labeling 4+1d Z4 SPTs, classified by Z4 × Z4 (in the bosonic case) or Z4 (in the
fermionic case, if the Z2 subgroup is not identified with Z f

2). More generally, one must con-
sider SPTs classified by Ω5

SO(BG)/Ω5
SO(pt) or Ω5

Spin(BG)/Ω5
Spin(pt) [133], because we do not

include SPTs that do not involve the G symmetry. The FS indicatorω orω f can make the 3+1d
symmetry anomalous even if it passes the first level obstruction. In this section, we will study
anomalies related toω andω f using a method applicable to the case where the 4+1d SPT has
a decorated domain wall description. Our strategy can be generalized to include more general
4+1d SPTs if we incorporate suitable tangential structures on the domain wall to specify lower
dimensional junctions.

At first glance, it may be surprising that a symmetry with a nontrivial Frobenius-Schur
indicator has any hope for being anomaly-free. This is because the Frobenius-Schur indicator
already introduces an anomaly in 3+1D, given by the stacked SPT in 4+1D. However, it is well
known that an anomaly can be trivialized by an appropriate extension of the symmetry (see
e.g. [25, 134]). As we will discuss by example in section 3.2, sometimes the anomaly can be
trivialized by extending an invertible symmetry to a larger invertible symmetry. In other cases,
like in the cases studied in this work, the anomaly is trivialized by a non-invertible extension.
If the anomaly can be trivialized in this way, and the non-invertible extension matches the
non-invertible symmetry of interest, then the total symmetry is anomaly-free.

More precisely, for 3+1D Kramers-Wannier like symmetries, we use the observation that
the relevant 4+1D SPTs have a decorated domain wall description. Therefore, the defects
have an SPT attached, whose 2+1D defects carry anomalies (see Fig. 1). If the 2+1D duality
defects also carry an anomaly, that cancels the anomaly from the decorated domain wall SPT,
then the symmetry as a whole forms a non-invertible extension of the anomalous symmetry is
anomaly-free. In other words, the symmetry is anomaly-free if and only if the anomaly of the
duality defects cancel those given by the 4+1D SPT; this is the condition for the extension to
be anomaly-free.

3.1 Strategy: Decorated domain walls and anomaly cancellation

The SPTs labeled byω andω f are characterized by the property that domain walls of the bulk
0-form symmetry are decorated with 3+1d SPT phases. When such a domain wall ends on the
boundary of the 4+1d bulk, the boundary defect carries the anomaly of the 3+1d SPT. We can
cancel the anomaly by decorating the boundary defect with a TQFT, at the cost of modifying the
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Bulk TQFT + SPT (FS)

Bulk decorated domain wall SPT

Non-invertible symmetry defect

Boundary

(Gauging on half boundary)
/boundary of domain wall SPT

Figure 1: The second obstruction to trivially gapped phase: the non-invertible sym-
metry with nontrivial generalized Frobenius-Schur (FS) indicator as described by a
bulk SPT (grey), cannot be realized in a trivially gapped phase if the generator of the
non-invertible symmetry (red line) cannot be decorated with an anomalous TQFT
that corresponds to the decorated domain wall SPT (orange) for the bulk SPT.

fusion rules of the boundary defects and thereby extending the symmetry. Therefore, the 3+1d
non-invertible symmetry is anomaly-free if and only if the fusion rules of the non-invertible
defects are compatible with the TQFT that decorates the defects to trivialize the anomalyω or
ω f , i.e. it is precisely one of these non-invertible extensions. We will show that in particular
the anomalies described by the even classes ofω f , for N even, can be canceled by an extension
to a non-invertible symmetry.

If a symmetry passes the first level obstruction, we then proceed as follows:

1. Determine the 3+1d domain wall SPT given by ω (for odd N) or ω f (for even N).

2. Check if the TQFT of the duality defect has an anomaly that can cancel that of ω (for
odd N) or ω f (for even N).

Note that ifω orω f is trivial, then we do not have to go through these steps; only the first
level obstruction is relevant. In the following, we will first work out the steps above for 1+1d
Z2×Z2 Tambara-Yamagami fusion categories, recovering the results from Refs. [13,94,95]. We
will then study obstructions related to ω and ω f for 3+1d ZN Kramers-Wannier symmetries
with fusion rules given by (16), to both symmetric TQFTs and symmetric invertible TQFTs.

Note that non-invertible symmetries in 3+1d with non-trivial ω occur in many gauge the-
ories with fermions. An example of such a symmetry is the non-invertible chiral symmetry in
quantum electrodynamics [39,40]. In an upcoming work, we will investigate constraints from
these non-invertible symmetries on the dynamics of various gauge theories in 3+1d.

3.2 Trivializing the anomaly by symmetry extension in 1+1d

The FS indicator for 1+1d non-invertible symmetries comes from the 2+1d bosonic Z2 SPT
[135], which has the effective action

π

∫

A∪ A∪ A , (33)

where A is a background gauge field for the Z2 symmetry. The anomaly implies that the line
defect N that generates the symmetry in 1+1d is attached to the 1+1d topological action

π

∫

A∪ A . (34)
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Identifying the Z2 gauge field A with the first Stiefel-Whitney class w1 of the normal bundle of
the domain wall that generates the bulk symmetry, we obtain the action of the 1+1d bosonic
time-reversal (T) SPT, which has defects carrying Kramers doublets [116,117]. Note in partic-
ular that the bulk does not in general have T symmetry even though the defect worldvolume
theory does.

To cancel the T2 = −1 anomaly of these defects, we need to modify the domain walls to
cancel the 1+1d SPT phase. These modifications come at the cost of extending the symmetry.
There are multiple different ways to extend the symmetry to trivialize the anomaly:

• Invertible extension: decorate the defects with π
∫

ã/2 where a has the same transfor-
mation as A and we pick a lift to Z4. Then the symmetry becomes a Z4 symmetry, because
the line squares to (−1)

∫

a:

N 2 = (−1)
∫

a , N 4 = 1 . (35)

• Non-invertible extension: decorate the defects with the gapped boundary of π
∫

a1∪a2,
where a1 and a2 are Z2 gauge fields with transformation correlated with A. For such
a topological surface to end on the defect, we will take the T symmetry of the domain
wall to not permute the Wilson lines (−1)

∫

a1 and (−1)
∫

a2 (we will expand on this point
in the next section). Then using the method in Refs. [27, 33], the line fuses with itself
to produce

N ×N = 1+ (−1)
∫

a1 + (−1)
∫

a2 + (−1)
∫

(a1+a2) , (36)

which is the fusion rule of the Z2 ×Z2 Tambara-Yamagami fusion category [118]. Intu-
itively, the degenerate boundary theory of π

∫

a1 ∪ a2 can absorb the Wilson lines. The
fact that the anomaly can be trivialized by the above non-invertible extension is con-
sistent with the fact that the Z2 × Z2 Tambara-Yamagami fusion category with the off-
diagonal bicharacter is anomaly-free even with the nontrivial FS indicator [13,94,95].

We remark that decoration of TQFTs on the symmetry generator to cancel the anomaly is
also discussed in [25] in the context of gauging a subgroup of anomalous symmetry.

3.3 Z2 ×Z2 Tambara-Yamagami symmetries in 1+1d

We will now study in more detail the example of trivializing the above anomaly via non-
invertible extensions. In 1+1d, there are four kinds of Z2 × Z2 Tambara-Yamagami fusion
categories with the same fusion rules. They differ in their FS indicator and bicharacter, which
together specify the F symbol. We will show that the Z2 ×Z2 Tambara-Yamagami fusion cat-
egory with off-diagonal bicharacter can cancel the T2 = −1 anomaly (as mentioned in the
previous section), but the one with diagonal bicharacter cannot. The fusion category with the
nontrivial FS indicator and the diagonal bicharacter is therefore anomalous.

The quantum mechanics on the non-invertible line defect can be described by theZ2 scalars
φ1,φ2

π

∫

φ1 ∪ dφ2 , (37)

where φ1,φ2 transform under Z2 × Z2 unitary symmetry, whose Wilson lines generate the
invertibleZ2×Z2 symmetry. Because this defect is attached to a time-reversal invariant domain
wall [116,117,124], there is an action of time-reversal on this quantum mechanics. The two
bicharacters correspond to two choices of time-reversal action:

Off-diagonal : T(φ1) = φ1 , T(φ2) = φ2 ,

Diagonal : T′(φ1) = φ2 , T′(φ2) = φ1 . (38)
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= ε

Figure 2: Two time-reversal defects in a duality domain wall, circled in pink, fuse
to the FS indicator ε = ±1. This means that the nontrivial FS indicator, given by
ε= −1, corresponds to T2 = −1 on defects.

These symmetry actions are precisely the involution corresponding to the off-diagonal and
diagonal bicharacters respectively (see Ref. [13] for the definition of the involution in terms
of the bicharacter). We will call the latter electromagnetic duality symmetry in the quantum
mechanics system.9

The FS indicator corresponds to the anomaly of the quantum mechanics, described by
π
∫

w2
1, which decorates the domain walls of the 2+1d invertible phase π

∫

A3 as described
above. From the anomaly, we can see that a nontrivial value of the FS indicator means that
T2 = −1 on the quantum mechanics. Another way to see this directly from the F symbol of
the fusion category is illustrated in Fig. 2.

If the fusion category symmetry can be realized by an invertible phase, then the quantum
mechanics is well-defined by itself. Clearly, this is the case if the FS indicator is trivial. When
the FS indicator is non-trivial, the fusion category symmetry can be realized by an invertible
phase if and only if the quantum mechanics can realize the anomaly π

∫

w2
1, i.e. if the Hilbert

space is in the Kramers doublet projective representation of the time-reversal symmetry.
It is instructive to present the quantum mechanics as a free qubit, where the Z2×Z2 sym-

metry is generated by the Pauli Z and X operators. A non-anomalous time-reversal symmetry
can be realized in both cases, with

Off-diagonal : T= K ,

Diagonal : T′ = HK , (39)

where K is complex conjugation and H is the Hadamard gate.10 The Hadamard gate satisfies
H2 = 1 and HZH = X . Therefore, it implements the electromagnetic duality permutation.
BothT andT′ square to the identity, so the above time-reversal symmetries are non-anomalous
(i.e. the Hilbert space is in a Kramers singlet). Since both cases can realize non-anomalous
time-reversal, Z2×Z2 Tambara-Yamagami fusion category with trivial FS indicator is anomaly-
free, for both the diagonal and off-diagonal bicharacters [94].

3.3.1 Off-diagonal bicharacter

Let us couple the quantum mechanics to Z2 gauge fields A1, A2, such that dφ1 = A1, dφ2 = A2.
Then the quantum mechanics has the anomaly

π

∫

A1 ∪ A2 . (40)

9Note that the choice of involution can also be derived from the permutation action of the Z2 duality symmetry
in the corresponding 2+1d Z2 ×Z2 gauge theory, and applying the Z2 symmetry along with CPT as described in
Refs. [116,117].

10In the basis of Z-eigenvectors, H = 1p
2

�

1 1
1 −1

�

.
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In the off-diagonal bicharacter case, since T does not permute the φ1,φ2 fields, the anomaly
remains the same as above in the presence of background w1, and we can choose a “symmetry
fractionalization” A1 = A2 = w1. This produces the anomaly

π

∫

w2
1 . (41)

We conclude that the fusion category with the off-diagonal bicharacter is anomaly-free, even
with a nontrivial FS indicator, in agreement with Ref. [94].

We can also present the “fractionalization” in terms of the free qubit. This means that the
time reversal action is correlated with the action of the two Z2 symmetries. The product of
the two Z2 generators Z and X is the Pauli Y operator, so we obtain

Tanom = Y K . (42)

Since KY K = −Y , we find T2
anom = −1, i.e. the Hilbert space is in a Kramers doublet projective

representation. This anomaly cancels that of the FS indicator, recovering the fact that this
fusion category is anomaly-free even with a nontrivial FS indicator [94].

3.3.2 Diagonal bicharacter

Let us use the free qubit presentation. In this case, if we try to change the “fractionalization”
by correlating the time reversal action with those of the two Z2 symmetries, we get

T′anom = Y HK . (43)

Using the commutation relation HY H = −Y , we find

T′2new = Y H(−Y )H = Y 2 = +1 . (44)

Thus the Hilbert space is in a Kramers singlet, and there is no anomaly for the time-reversal
symmetry. In fact, this is the only consistent way to modify the time-reversal symmetry while
preserving the electromagnetic duality permutation.

We conclude that the quantum mechanics with the T action given by the diagonal bichar-
acter cannot cancel the anomaly of the non-trivial FS indicator. This is consistent with the
property that the Z2×Z2 Tambara-Yamagami fusion category with the diagonal bicharacter is
anomalous when the FS indicator is nontrivial [94].

3.4 Trivializing the anomaly by symmetry extension in 3+1d

We denote the analogue of the FS indicators in 3+1d by ω and ω f for bosonic and fermionic
theories respectively. In this section, we will only consider S gauging, corresponding to 3+1d
non-invertible symmetries with fusion rules described by (16). Our main results are summa-
rized in Theorem 1 and Theorem 2.

The duality defect is order four in this case, soω andω f label 4+1d bosonic and fermionic
Z4 SPTs respectively. Let us first discuss the domain walls of these SPTs and the 3+1d SPTs
that they carry. These 3+1d SPTs correspond to 2+1d anomalies, that can be cancelled by
extension in various ways (see Appendix C). Here we will focus on non-invertible extension.
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3.4.1 4+1d Z4 SPTs

The 4+1d topological action for the Z4 gauge field given by the Chern-Simons term will be rel-
evant for both bosonic and fermionic Z4 SPTs. We will first show that this action can be defined
on un-orientable manifolds, but requires a Wu3 structure. The same structure is present on the
domain wall, and is crucial for certain anomalies to be well-defined. The domain wall depends
on the Wu3 structure since it generates Z4 symmetry, but it has time-reversal symmetry and
thus the domain wall can be un-orientable [63].

Let us begin with the 4+1d Chern-Simons action

2πk
4

∫

A
dA
4

dA
4

, (45)

where A is Z4 gauge field normalized to have integer holonomy 0, 1,2, 3 mod 4. k = 0,1, 2,3
mod 4 is an integer labeling the Z4 classification of these SPTs. To examine whether or not
we can define this action for k odd on general five manifolds, let us extend the action to a 6d
non-orientable bulk manifold (setting here k = 1):

π

∫

dA
2

dA
4

dA
4
= π

∫

Sq1
�

ASq2
�

dA
4

��

, (46)

where Sqi are the Steenrod squares. Further simplifying using the Cartan formula and the
Adem relations,11 we obtain

π

∫

dA
2

dA
4

dA
4
= π

∫

Sq1Sq2A
dA
4
= π

∫

Sq3A
dA
4
= π

∫

w1w2A
dA
4

, (47)

where the last relation comes from Sqd−ia = via on a d dimensional manifold. Here, i is the
degree of a and vi is ith Wu class. In particular, v3 = w1w2. Thus we can define the action on
a general manifold by introducing the coupling

2π
4

∫

A
dA
4

dA
4
+π

∫

ρA
dA
4

, (48)

where dρ = w1w2 is the Wu3 structure. Such a structure exists in any closed manifolds of
dimension below or equal to five. Under a time-reversal transformation, ρ → ρ + w2 [136],
and the coupling π

∫

ρAdA
4 transforms by

π

∫

Sq2
�

A
dA
4

�

= π

∫

ASq2
�

dA
4

�

= π

∫

A
dA
4

dA
4

, (49)

which exactly compensates the transformation of 2π
4

∫

AdA
4

dA
4 under flipping the orientation.

Thus the entire action can be defined on un-orientable manifolds.
We can also express the Chern-Simons term using the Z4 valued quadratic form qρ as

2π
4

∫

A∪ qρ

�

dA
4

�

=
2π
4

∫

PD(A)
qρ

�

dA
4

�

, (50)

where PD(A)means the Poincaré dual of A. See Ref. [136] for a review of the quadratic form qρ.

11These are given by Sqn(a∪b) =
∑

i+ j=n Sqi(a)∪Sq j(b) and SqiSq j =
∑⌊i/2⌋

k=0

�

j − k− 1
i − 2k

�

Sqi+ j−kSqk respectively.

In particular, the latter gives Sq1Sq1 = 0.
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Bosonic 4+1d SPTs Z4 SPTs have a Z4×Z4 classification labeled by ω= (k, l), that we will
define below. One Z4 factor comes from the group cohomology classification, given by the
Chern-Simons term described above. In addition, there is also a Z4 classification of beyond
cohomology SPT phases, with action

πℓ

2

∫

Ap1(T M) =
2πℓ

4

∫

PD(A)
p1(T M) , (51)

where ℓ= 0,1, 2,3 mod 4, and p1(T M) is the first Pontryagin class of the tangent bundle. This
means that the domain wall that generates the Z4 symmetry is decorated with a gravitational
theta term.

Note that the possible bosonic invertible topological phases in 4+1d also include the in-
vertible phase with the effective action π

∫

w2 ∪ w3 [133, 137, 138]. However, this phase is
independent of the Z4 symmetry and thus does not affect our discussion. The invertible topo-
logical phases with Z4 symmetry modulo the invertible phases without symmetry have Z4×Z4
classification (see e.g. [139]), and are labelled by ω= (k,ℓ) as above.

Fermionic 4+1d SPTs The 4+1d topological terms for Z4 ×Z
f
2 symmetry (where Z f

2 is the
fermion parity symmetry) are classified by Z4 [140], and the generator can be described by
the anomaly of 3+1d massless free Dirac fermion (see e.g. [141]) with Z4 charge 2 and charge
1 (the charges are chosen such that the fermion parity is not identified with the Z2 subgroup
of Z4 symmetry):

I =
2π
4

∫

5d

�

23 + 13

3!
A

dA
4

dA
4

�

−
2π
4

∫

5d
(2+ 1)A

p1

24
= 3I0 , (52)

where

I0 =
2π
8

∫

5d
A

dA
4

dA
4
−

2π
4

∫

5d
A

p1

24
. (53)

Thus the SPT phases are generated by action I0, which is the (k,ℓ) = (1/2,−1/24) term in the
previous notation. Note that the action I0 has order four on spin manifolds, matching the Z4
classification above. This is because on a spin manifold, σ = p1/3 is a multiple of 16, where σ
is the signature of the 4-manifold. Therefore, the second term in (53) is order two. Moreover,
the k = 2 term on spin manifolds is trivial. It follows that we can label the effective actions of
the SPT phases by ω f I0 with ω f = 0, 1,2, 3 mod 4, where 2I0 is the ω= (1, 0) term.

3.4.2 3+1d SPTs on the domain walls

The above 4+1d Z4 SPT phases can be described by 3+1d SPT phases that decorate the domain
walls of the Z4 symmetry. Let us characterize these 3+1d SPTs, to determine the anomalies
they correspond to at the 2+1d boundary defects.

We begin with the Chern-Simons term, which describes four of the SPTs in the bosonic
case and two of the SPTs in the fermionic case. This SPT is given by the action (48), with a
coefficient k = 0, 1,2, 3 mod 4:

Generalized FS indicator k :
2πk

4

∫

A
dA
4

dA
4
+πk

∫

A
dA
4
ρ , (54)

where A is the backgroundZ4 gauge field. On the domain wall that generates the symmetry, the
Z4 symmetry becomes T2 = C , where C2 = 1 is charge conjugation [63]. Again we stress that
the bulk theory does not in general have T symmetry only the defect does. The background
gauge fields for these symmetries are related by A= 2B̃1+ w̃1, where B1 is the background for
C symmetry and tilde denotes a lift from Z2 to Z4. Let us discuss odd and even values of k
separately:
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• For odd k, there is dependence on ρ, and we restrict the Wu structure of the bulk to
the domain wall. The domain wall is described by the inflow term from A→ A+ dφ for
φ = 1:

πk
2

∫

qρ(y2) , (55)

where y2 = dA/4 = d(2B̃1 + w̃1)/4 as above. A boundary state is 2+1d Z2 doubled
semion theory, where the boson and semion (or anti-semion) have C2 = −1 and T2 = i.

• For even k, there is no dependence on ρ, so the action simplifies from (55). The domain
wall is described by the inflow term from A→ A+ dφ for φ = 1 as:

πk
2

∫

y2 ∪ y2 , (56)

where y2 = dA/4 = d(2B̃1 + w̃1)/4. For k = 2, this is an order two SPT phase for
T2 = C , C2 = 1 symmetry [142]. A boundary state is 2+1d Z2 toric code where the
electric and magnetic particles have C2 = −1 and T2 = i.

Bosonic 3+1d SPTs The above 3+1d T2 = C SPTs describe decorated domain walls of the
in-cohomology 4+1d Z4 bosonic SPT phases ω = (k, 0). The four 4+1d beyond cohomology
Z4 SPT phases ω = (0,ℓ) have domain walls decorated by SPTs corresponding to framing
anomalies given by c− = 2ℓ on their 2+1d boundary,12 due to the gravitational theta term.

Fermionic 3+1d SPTs For fermionic theories, the SPT phases are described by 4+1d effective
actions labeled by ω f = I0 with ω f = 0, 1,2,3 mod 4. When ω f = 0, 2, the effective action
is the same as the bosonic actions corresponding to ω = (0,0), (1,0), and it represents an
anomaly for T2 = (−1)F C symmetry as discussed above. For ω f = 1, 3 mod 4, the effective
action of the SPT phase contains an Ap1 term, that implies the 3+1d domain wall is decorated
with an SPT whose 2+1d boundary has c− =ω f /4.

3.5 Obstructions to symmetric TQFTs

Let us first remark on how ω and ω f modify the classification of symmetric TQFTs, such as
those discussed in Section 2.2.1. We consider separately ω,ω f describing SPTs within the
group cohomology classification, and those outside of the group cohomology classification.

If ω describes a 4+1d group cohomology SPT, then it does not present any additional ob-
struction to a symmetric TQFT. This is because such SPTs always admit a symmetric gapped
boundary given by a finite group gauge theory [143] (see also [25] for a review). Thus the
gapped boundaries for non-trivial bulk SPT phase can be obtained from the gapped bound-
aries for the case with trivial bulk SPT by stacking with the finite group gauge theory on the
boundary. The boundary non-invertible symmetry then acts as

D′g =Dg ⊗ D̃g , (57)

where D̃g acts on the finite group gauge theory, while Dg generates the non-invertible sym-
metry on the boundary with trivial bulk SPT phase (i.e. trivial ω,ω f ).

12The 3+1d term − 2πc−
8 σ for signature σ = p1/3 implies that the 2+1d boundary has framing anomaly c−.
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3.5.1 Obstructions from “beyond group cohomology” SPTs

While the group cohomology SPTs have gapped, symmetric boundaries as described above,
there can be obstructions from beyond group cohomology SPTs. We will show that these do
not occur for S symmetry, but they do occur for more general ST n symmetries. For bosonic
theories, beyond-cohomology SPTs in 4+1d can be described by a one-dimensional represen-
tation of Aut(K), ω1 ∈ H1(Aut(K), U(1)), with the 4+1d effective action

∫

ω1 ∪ (p1/3) , (58)

where p1 is the first Pontryagin class of the tangent bundle. We note that since p1 = 3σ,
and p1 = 3P(w2) + 2w4

1 mod 4, when the order of ω1 is 4 (which applies to S symmetry),
the anomaly can be realized by a symmetric TQFT by the inflow construction in [144]. If the
order ω1 does not divide 4, the anomaly may not be realized by a TQFT; if this is the case,
it is an example of “symmetry-enforced gaplessness”(see e.g. [130, 131] for other examples).
Such beyond group cohomology SPTs present obstructions to symmetric gapped boundary.

Let us give another argument using the partition function of 3+1d TQFT. It is known that
the partition function of unitary TQFTs without local operators on simply connected spin 4-
manifolds is positive [145]. Let us take the 4-manifold to be K3,

ZTQFT(K3) ̸= 0 . (59)

On the other hand, since K3 manifold has signature−16,
∫

K3 p1 = −48, the anomaly from (58)
implies that under a transformation ω1 → ω1 + dα, the partition function transforms by the
phase factor

Z(K3) −→ Z(K3) e−16iα . (60)

If 16α ̸∈ 2πZ, the partition function transforms by a non-trivial phase factor under the global
symmetry transformation. Thus the partition function vanishes on K3 manifold, contracting
the positive condition (59). We conclude that no symmetric gapped phase can realize the
non-invertible symmetry with such “beyond group cohomology” FS indicator.

For instance, if the non-invertible symmetry has the fusion rule of the triality symmetry
in [37], then the generalized Frobenius-Schur indicator is given by the beyond group coho-
mology SPT phase

2π
6

∫

A∪ (p1/3) , (61)

where A is the background field for bulk Z6 permutation symmetry. This gives an obstruction
to realizing the non-invertible symmetry in symmetric gapped phases.

We now proceed to study obstructions to symmetric invertible TQFTs with S symmetry
from ω,ω f .

3.6 Kramers-Wannier duality symmetry in 3+1d

As in the 1+1d example in Section 3.3, we must first determine the 2+1d defect theory that
ends the non-invertible duality defect of a 3+1d non-invertible symmetry with 1-form sym-
metry labeled by N and p. We will then check if these theories can cancel the anomalies
described above. If so, then the 3+1d non-invertible symmetry is a non-invertible extension
of the Z4 symmetry that trivializes the anomaly. This means that the non-invertible symmetry
is anomaly-free.

The non-invertible Kramers-Wannier symmetries in 3+1d that pass the first level obstruc-
tion for S gauging are listed in (29). These are N that satisfy N = α2 + β2 with integers α
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and β satisfying gcd(α,β) = 1. It can be shown that N satisfies this condition if and only if
there exists an integer p such that p2 = −1 mod N .13 In fact, each of the Lagrangian sub-
groups in (29) gives a boundary theory described by a ZN 1-form symmetry labeled by N , p,
with action

2πp
2N

∫

X
P(B) , (62)

where B is a background gauge field for the ZN 1-form symmetry and

P(B) =
¨

B ∪ B − B ∪1 dB ∈ H4(X ,Z2N ) , N even,

B ∪ B ∈ H4(X ,ZN ) , N odd.
(63)

These SPTs are invariant under gauging the 1-form symmetry [63]. For a Kramers-Wannier
symmetry with 1-form symmetry specified by N and p, it was shown in Ref. [63] that the 2+1d
defect of the non-invertible duality symmetry D is described by the minimal Abelian TQFT
AN ,p. This is a theory consisting of Abelian anyons aq, q ∈ [0, N) with ZN fusion rules and

spins h[aq] = pq2

2N mod 1. The S matrix follows from the Abelian fusion and the topological
spins, and is given by

Sqq′ =
1
p

N
exp
�

−
2πip

N
qq′
�

, (64)

which is unitary if gcd(p, N) = 1 (this is always the case for p satisfying p2 = −1 mod N). If
pN is even, the theory is bosonic, and if pN is odd, the theory is fermionic. We will consider
the cases where pN is even.

Ref. [63] furthermore showed that the duality defect has a T2 = C symmetry when N
is odd and p is even, and a T2 = C(−1)F symmetry when N is even and p is odd. When
N is even, we must add an additional transparent fermion to make the theory time reversal
invariant, which is why we considered fermionic SPTs in Section 3.4. Specifically, the time
reversal symmetry actions are given by

Even N : aq→ ap−1q = a−pq , Odd N : aq→ a−pq f q , (65)

where f is the transparent fermion. It is straightforward to check that both symmetries take
h[aq] → −h[aq], and that applying them twice takes aq → a−q. We will check whether the
T2 = C symmetry in AN ,p for odd N and the T2 = C(−1)F symmetry in AN ,p for even N are
anomalous, to cancel the anomalies of Section 3.4.2.

3.6.1 Anomalies in AN,p with odd N

Let us begin with theories with odd N . Ref. [146] showed that the T2 = C symmetry in
AN ,p for N = m2 + n2 with even p = m and odd n (and gcd(m, n) = 1) is anomaly-free, by
explicitly writing down a symmetric gapped phase under ZT4 . The same method can be used
to prove that AN ,p with odd prime N are all anomaly-free.14 For more general N , p we will
show that the T2 = C symmetry is anomaly-free by studying the structure of the time-reversal
symmetry after gauging C . We will show that the resulting theory has a T2 = 1 symmetry.

13One can also show that N is a product of Pythagorean primes, which are primes that are 1 mod 4, possibly
with a factor of two.

14The basic idea is to use the U(1) Chern-Simons description of the anyon theory, with K matrix
�

m n
n −m

�

, and
find null vectors for the K matrix describing the interface edge theory between two regions related by reflection.
This method works for any K matrix of the form

�

m n
n −m

�

, but in general, this describes AN ,m and m ̸= p. However,
if N is prime, one can show that there always exists an integer x such that m = px2 mod N , so this K matrix
also describes AN ,p. In other words, AN ,m is equivalent to AN ,p upon a relabeling of the anyons. To show that
such x exists, note that m = px2 mod N means that −pm (and therefore pm) is a quadratic residue of N . From
m2 + n2 = N we get n= pm mod N , where n is odd. n is always a quadratic residue of N by quadratic reciprocity.
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Because the gauging does not cause the time-reversal symmetry to be extended (to form a
2-group) or become non-invertible, we conclude that the original T2 = C symmetry is not
anomalous [25].

Gauging the C symmetry Let us gauge the charge conjugation symmetry without stacking
any additional invertible phases. The anyons in the gauged theories can be obtained using the
methods in e.g. [108,147], and they are as follows:

• a0 = 1 and the charge conjugation defect χ are invariant under the symmetry. They split
into 1,ε and χ+,χ− respectively. 1 and ε have quantum dimension 1 and spin 0, and χ+
and χ− have quantum dimension

p
N and spin c−

16 and c−
16 +

1
2 , where c− is the framing

anomaly. They obey the fusion rule χ+ = εχ−. In the particular case of AN ,p with odd
N and p2 = −1 mod N , c− = 0 [63], so the spins of χ+ and χ− are 0 and 1

2 respectively.

Note that ε is represented by the Wilson line for the C symmetry ei
∫

a′ , where a′ is the
background gauge field for C .

• The other anyons in AN ,p form orbits of size two under the symmetry, resulting in anyons

of the gauged theory with quantum dimension 2 and spin pq2

2N . We label these anyons by

a+ aN−1, a2 + aN−2, · · · a
N−1

2 + a
N+1

2 .

One can verify that the total quantum dimension is D2 =
∑

a d2
a = 2+ 2N + N−1

2 · 4= 4N .

Gauging the time-reversal symmetry: anomaly indicators We can check whether the
time-reversal forms a 2-group with the Z2 1-form symmetry generated by ε by computing
the anomaly indicators for time-reversal symmetry [109, 148–150]. These indicators detect
obstructions to gauging the time-reversal symmetry. There are two anomaly indicators:

η1 =
1
D

∑

a∈C
d2

a e2πih[a] = e
2πic−

8 , η2 =
1
D

∑

a∈CT

daT
2
ae2πih[a] , (66)

where C is the set of all anyons in the theory and da is the quantum dimension of anyon a.
In the definition of η2, we use CT ⊂ C to denote anyons that are not permuted under the
time-reversal symmetry, and T2

a = ±1 indicates whether a is Kramers singlet or doublet.
These two anomaly indicators take value in ±1 when the time-reversal symmetry does not

participate in a 2-group with ε [109]. η1 = 1 because c− = 0 mod 8 [63], so all we need to do
is compute η2. The only anyons in CT are 1,ε,χ+, and χ−, because these are the only anyons
with spin 0 or 1

2 mod 1. Furthermore, T2
ε = −1 so T2

χ+
= −T2

χ−
from the fusion rule χ+ = εχ−.

Putting this together with the spins listed above, we find

η2 =
1

2
p

N

�

1− 1+
p

NT2
χ+
− (−1)

p
NT2

χ+

�

= T2
χ+
= ±1 . (67)

Therefore, the time-reversal symmetry does not participate in a 2-group with the 1-form sym-
metry generated by ε. The value ofη2 depends on the fractionalization classes for the one-form
symmetry generated by ε, classified by H2(Z2,Z2) = Z2. The fractionalization class determines
T2
χ+

because χ± have πmutual statistics with ε. We see that there is always a fractionalization

that allows us to gauge the entire T2 = C symmetry. Changing the fractionalization amounts
to adding the local counterterm B1 ∪ w2

1, where B1 is the gauge field for C symmetry. There-
fore, the anomaly can be cancelled by local counterterm, and we conclude that the T2 = C
symmetry is non-anomalous in AN ,p theories with odd N and p2 = −1 mod N . Moreover,
since c = 0 mod 8, the theory does not have framing anomaly.

Because the theory has neither a T2 = C anomaly nor a framing anomaly, it cannot cancel
any of the anomalies of ω discussed in Section 3.4.2. Therefore, the non-invertible symmetry
with odd N and even p is anomalous when the generalized FS indicator ω is nontrivial.
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Theorem 1 The 3+1d Kramers-Wannier (S gauging) non-invertible symmetry with ZN 1-form
symmetry where N is odd is anomalous if and only if the generalized FS indicator ω ∈ Z4×Z4 is
nontrivial.

3.6.2 Anomalies in AN,p with even N

AN ,p with even N does not have a T2 = C symmetry. We will show that the time-reversal
symmetry in AN ,p with even N either participates in a 2-group with the Z2 subgroup of the ZN
1-form symmetry, or we can add a transparent fermion by tensoring the theory with {1, f } to
make the symmetry T2 = (−1)F C . We will consider the latter, and determine whether or not
the T2 = (−1)F C symmetry is anomalous in a way that cancel the anomalies of Section 3.4.2.

Time-reversal symmetry and 2-group The time-reversal symmetry in the AN ,p theory is
given by the permutation

q→ pq , p2 = −1 mod N . (68)

Under the time-reversal transformation, the spin changes into

pp2q2

2N
=

p(−1+ N)q2

2N
= −

pq2

2N
+

q
2

, (69)

where we used p2 = −1+N mod 2N for even N (note in particular that there does not exist p
satisfying p2 = −1 mod 2N for even N because 2N is divisible by four). Therefore, the theory
has time-reversal symmetry T obeying T2 = C that simultaneously shifts the spin of the odd
charge q by a half.

This kind of time-reversal symmetry is discussed in [136], and it participates in a 2-group
with Z2 subgroup of the ZN 1-form symmetry, with the Postnikov class being the third Wu class
w1w2. For an introduction to higher group symmetry, see e.g. [109,151].

Alternatively, we can add transparent fermion by tensoring the theory with {1, f }, where
the fermion f satisfies T2 = (−1)F . Then w2 is trivialized, and the 2-group becomes the tensor
product of the 1-form symmetry and the time-reversal symmetry that satisfies T2 = (−1)F C ,
C2 = 1. This means that the permutation action of the time-reversal symmetry on the anyons
must mix the transparent fermion with the anyons in the AN ,p theory [152]. The relevant
spacetime structure is called “Epin” in [142], where w2

1 and w2 are both exact.

Gauging the C symmetry: time-reversal symmetry becomes non-invertible As in the
odd N case, we will probe the anomaly of T2 = (−1)F C by gauging the C symmetry. Since the
transparent fermion does not participate in the C symmetry, we can focus on gauging the C
symmetry in the bosonic AN ,p theory. Denote the framing anomaly of the bosonic AN ,p theory
by c(N , p), which is an odd integer. Gauging the C symmetry without additional invertible
phase, using the methods in e.g. [108,147], gives a theory with the following anyons:

• a0 = 1 and the C defect χ are invariant under the symmetry. As in the odd N case, they
split into 1,ε (with quantum dimension 1 and spin 0) and χ+,χ− (with quantum dimen-
sion
p

N/2 and spin c(N ,p)
16 , c(N ,p)

16 + 1
2) respectively. χ± obey the fusion rule χ+ = εχ−.

Again, ε is represented by the Wilson line for the C symmetry.

• aN/2 is also invariant under the symmetry and leads to another C defect ξ. These split
into s+, s− and ξ+,ξ− respectively. s± have quantum dimension 1 and spin pN

8 mod 1,

and ξ± have quantum dimension
p

N/2 and spin of spin c(N ,p)
16 (ξ+), c(N ,p)

16 + 1
2 (ξ−).

They have the fusion rules s+ = εs− and ξ+ = εξ−.
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ON,p T ◦ S[ON,p] = ON,p

Non-invertible time reversal symmetry

Figure 3: Non-invertible time reversal symmetry of ON ,p, which is the AN ,p after
gauging C . T means reversing the orientation, and S means coupling to a Z2 gauge

theory: S[X ] :=
X×(Z2)2p
Z2

for general 2+1d theories X that has non-anomalous Z2
one-form symmetry. We have omitted the transparent fermion {1, f } in the figure.

• The other anyons in AN ,p form orbits of size two under the symmetry, resulting in anyons

in the gauged theory with quantum dimension 2 and spin pq2

2N mod 1. We label these
anyons by a+ aN−1, a2 + aN−2, · · · aN/2−1 + aN/2+1.

The total quantum dimension is D2 = 4 + 4 · (N/2) + (N/2 − 1) · 22 = 4N , as ex-
pected. For instance, when N = 2, A2,1 = U(1)2, and we only have the first two kinds
of anyons. The gauged theory has 8 anyons, all with quantum dimension 1, and spins
0, 0,1/4,1/4, 1/16, 1/16,9/16,9/16. This is precisely U(1)8, in agreement with [147,153].

Notice that the gauged theory does not have an invertible time-reversal symmetry. Specif-
ically, c(N , p) is odd for odd N , so there are no anyons with spins opposite of those of χ±,ξ±.
We will see that there is instead a non-invertible time-reversal symmetry. Because the time-
reversal symmetry becomes non-invertible after gauging C , we conclude that the T2 = C (or
T2 = C(−1)F if we add the transparent fermion) must be anomalous [25].

Let us show that the time-reversal symmetry becomes non-invertible after gauging the C
symmetry. Denoting the gauged theory by ON ,p, we will show that the theory is invariant
under the following time-reversal symmetry T′:

non-invertible time-reversal : T′ = T ◦ Sp[X ] , (70)

where

Sp[X ] =
X × (Z2)2c(N ,p)

Z2
=

¨ X×(Z2)2
Z2

, p = 1 mod 4 ,
X×(Z2)−2
Z2

, p = 3 mod 4 ,
(71)

where (Z2)2c(N ,p) is the fermionic Abelian Z2 gauge theory with Chern-Simons level c(N , p)
[153], whose magnetic charge has spin −c(N , p)/8 mod 1. The diagonal Z2 quotient is gen-
erated by the tensor product of a non-anomalous 1-form symmetry in X and the Z2 electric
charge, which are both bosons. In (71), we used the property that the chiral central charge
satisfies c(N , p) = p mod 4 for N = 2 mod 4 [122], which simplifies (Z2)2c(N ,p) = (Z2)2p by
the mod 8 periodicity of the Z2 topological term (see e.g. [153]).

For X = ON ,p, we choose the non-anomalous 1-form symmetry to be ε, so the Z2 quotient
is generated by the tensor product of ε and the Z2 electric charge of (Z2)2p. The theory is
invariant under (71) because Sp[ON ,p] flips the spins of χ± and ξ±, and T flips the spins of
all the anyons, in particular flipping back the spins of χ± and ξ±, bringing the theory back
to ON ,p. This time-reversal symmetry is non-invertible: the domain wall that generates the
time-reversal symmetry is decorated with the topological boundary condition of the Abelian
Z2 Chern-Simons theory (Z2)2p (see Figure 3). The fusion rule can be computed using e.g.
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[24,26,27,33,37,47,58], and is as follows:

T′ ×T′ =
1
M

�

1+ ip
∫

qρ(B1)
�

, (72)

where qρ(B1) is the Z4 valued quadratic form for the Z2 gauge field B1 for the C symmetry,

and M is an overall normalization numerical factor. The operator ip
∫

qρ(B1) represents p copies
(note that p is odd) of the Kitaev chain [123,124].

We remark that in an upcoming work [154], we will investigate other 2+1d TQFTs and
Chern-Simons matter theories with similar non-invertible time-reversal symmetry. Examples
of non-invertible time-reversal symmetry in 3+1d are discussed in e.g. [42].

Diagnosis for the anomaly in AN,p Because the time-reversal becomes non-invertible after
gauging C , we conclude that the original T2 = (−1)F C in {1, f }×AN ,p is anomalous. We now
determine which anomalies it can cancel out of those described in Section 3.4.2.

The fact that the non-invertible time-reversal symmetry requires coupling to (Z2)2c(N ,p),

which has the action πc(N ,p)
4

∫

B1dB1 (the factor 1/4 can be defined in fermionic theories), im-
plies that the time-reversal symmetry in AN ,p has mixed anomaly with the charge conjugation
symmetry, described by the anomaly term

Abulk ⊃ −
πc(N , p)

8

∫

dB1dB1 = −
πc(N , p)

2

∫

4d

�

2dB1

4

�2

. (73)

To see this, we note that reversing the orientation produces the term

πc(N , p)
4

∫

4d
dB1dB1 =

πc(N , p)
4

∫

3d
B1dB1 .

Therefore, after gauging the charge conjugation symmetry, the time-reversal symmetry be-
comes the non-invertible time-reversal symmetry T′ = T ◦ S. It follows that for even N , the
theory AN ,p has time-reversal anomaly (for the trivial fractionalization class) is described by
the bulk term

−
πc(N , p)

2

∫

qρ

�

dA
4

�

= −
πp
2

∫

qρ

�

dA
4

�

= ±
π

2

∫

qρ

�

dA
4

�

mod 2π , (74)

where A = 2B̃1 + w̃1, and we used c(N , p) = p mod 4. By reversing the orientation (or
changing the Wu3 structure ρ), the coefficients can be ±. The above anomaly corresponds
to ω= (1, 0), (3, 0) or ω f = 2 mod 4.

Anomalies from changing the fractionalization class Does the anomaly of AN ,p indicate
that the 3+1d Kramers-Wannier symmetry is only anomaly free if ω f = 2 mod 4? This is
not the case, because we can change the fractionalization class. Here, we will show that
fractionalization of the T2 = (−1)F C symmetry can cancel the above anomaly, allowing the
3+1d Kramers-Wannier symmetry with 1-form symmetry ZN with even N to be anomaly-free,
even with trivial ω f .

Since N is even, the theory has Z2 subgroup of the 1-form symmetry generated by aN/2,
which is invariant under charge conjugation. There can be non-trivial fractionalization class
for the T2 = (−1)F C symmetry on this 1-form symmetry. Here, we will regard this as a R2 = C
symmetry in the Euclidean signature spacetime. We can describe the fractionalization using
background fields.
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Denote the background field for C and R by B1 and w1, and the background for the Z2
subgroup of the 1-form symmetry by B2. Then we can consider the fractionalization class
from activating the background [109,111]

B2 =
dA
4

mod 2= Bock(A) , (75)

where A := 2B̃1 + w̃1 is a Z4 1-cocycle, tilde denotes lift from Z2 to Z4, and it is a Z4 cocy-
cle dA = 0 mod 4 since dB1 = dw̃1/2 = Bock(w1) mod 2 as describing R2 = C symmetry
extension of R by C . The operation Bock is the Bockstein homomorphism, see e.g. [109] for
a review. Since the Z2 subgroup of the 1-form symmetry is generated by an anyon of spin
p(N/2)2

2N = N
2

p
4 = p/4 mod 1 = ±1/4 mod 1,15 the 1-form symmetry is anomalous. The above

fractionalization class induces an anomaly for the symmetry given by [111]

±
2π
4

∫

qρ(B2) = ±
2π
4

∫

qρ

�

dA
4

�

, (76)

where the sign is positive if (N/2)p = 1 mod 4 and negative if (N/2)p = 3 mod 4. q is
the quadratic function for the Wu3 structure ρ that satisfies dρ = w1w2 inhered from the
trivialization of w2, as discussed in Section 3.4.1 (for a review, see e.g. [136]). We can flip the
sign by fractionalizing on aN/2 f rather than aN/2. Therefore the fractionalizations realize the
ω = (1,0), (3,0) or ω f = 2 mod 4 anomalies. This means that changing the fractionalization
class can trivialize the anomaly, so the 3+1d Kramers-Wannier non-invertible symmetry with
1-form symmetry with even N does not need ω f = 2 mod 4; it is also anomaly-free with
ω f = 0 mod 4.

ω f = ±1 mod 4 anomalies According to the discussion above, AN ,p with even N and odd
p can produce the T2 = (−1)F C anomalies labeled by ω f = 0,2 mod 4. On the other hand,
since the tensor product of the theory AN ,p and the transparent fermion has framing anomaly
quantized in units of 1/2 [114], it cannot realize the anomaly of ω4 = 1, 3 mod 4, which
requires framing anomaly ±1/4. In summary,

Theorem 2 The 3+1d Kramers-Wannier (S gauging) non-invertible symmetry with ZN 1-form
symmetry where N is even is anomalous if and only if the generalized (fermionic) FS indicator
ω f ∈ Z4 is odd. Otherwise, it is anomaly-free.

4 Lattice models with non-invertible symmetry STn

In this section, we will give a method for constructing lattice models invariant under S gauging
of the ZN 1-form symmetry. These models are akin to the Ising model (and more general clock
models) at criticality. We will also discuss ST n gauging, which is gauging with an additional
topological term n for the ZN two-form gauge field [122] (see Eq. 15).

We will give an example of a model with ST4 symmetry, whose defects have fusion rules
different but related to those written in (16).

4.1 Lattice models with S symmetry

We consider lattice models in 3+1 spacetime dimensions, where space is put on a cubic lattice
[0,1]3. We assign to each edge of the lattice a local “matter” Hilbert space, where the symmetry

15Since gcd(N , p) = 1, p is odd for even N , and p2 = −1 mod N implies that N = 2 mod 4. Moreover, one
can show that N = 2 mod 8 because N is has a single factor of 2, and all its other prime factors are Pythagorean
primes, of the form 4k+ 1 where k is an integer [26].
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Figure 4: After gauging the 1-form symmetry generated by
∏

e Xσe
e surfaces (vertex

term of H1), and then shifting from the dual lattice (faces) to the original lattice
(edges) with X↔ Z , H0 gets mapped to H1. H0 describes the SPT of class p with ZN
1-form symmetry [155] while H1 is dual to the 2-form gauge theory with topological
action p in Figure 6 on the dual lattice. Here, we show the lattice models for even p
for simplicity, the model for odd p can be similarly constructed and is given in [155].
While H0 and H1 are individually commuting Hamiltonians, H = J0H0 + J1H1 is not
commuting for nonzero J0 and J1.

acts, and we assign to the faces Hilbert spaces associated with the gauge fields. For the theory
to be invariant under gauging the 1-form symmetry, the faces must be dualized to be edges on
the dual lattice. This is the case here because the dual of a cubic lattice is also a cubic lattice,
and the faces get mapped to the edges of the dual lattice and vice versa.16

We will focus on lattice models with ZN 1-form symmetry, but our methods can easily be
generalized to other finite, Abelian groups

∏

i ZNi
. The operators acting on the edges are

generated by the ZN generalizations of the Pauli operators, X e and Ze, which obey

ZN
e = 1 , X N

e = 1 , X eZe = ZeX ee2πi/N . (77)

The operators acting on the faces are generated by X̃ f and Z̃ f , which obey the same rela-
tions (77). The 1-form symmetry is generated by

∏

e Xσe
e on closed surfaces, where σe = ±1

depending on the orientation of the edge e (see the vertex term in Figure 4). A model invariant
under S gauging the symmetry can be constructed as follows.

We start with the model with Hamiltonian H0 built out of X e, Ze, which has symmetry as
described above acting on the edges of the cubic lattice. Gauging the symmetry as described
in Section 4.2 produces a Hamiltonian H̃1, in terms of operators X̃ f , Z̃ f . In the gauged model,

the symmetry is generated by the Wilson operators given by
∏

f Z̃
σ f

f on closed surfaces, where
again σ f = ±1 depending on the orientation of the face f (see the cube term in Fig. 6). For
the model to be invariant under gauging, we need to identify the generator with the origi-
nal symmetry generator

∏

e Xσe
e . To do so, we shift the operators on the faces to the edges.

16This discussion can be generalized to d + 1 spacetime dimensions with a k-form symmetry, where the matter
degrees of freedom reside on the k-simplices and the gauge fields on the (k + 1)-simplices. The requirement for
gauging the k-form symmetry to produce a dual k-form symmetry is then (d−k) = k+1 so the spacetime dimension
must be even, reproducing the result from field theory.
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Figure 5: Modified Gauss law constraint that implements ST n gauging. Each of these
terms are set to be 1, so the symmetry transformation on a matter field gets mapped
to transformations on neighboring gauge fields. Here we list the model for even n,
while the model for odd n can be obtained similarly from the SPT models in [155].

In particular we map the symmetry generator
∏

f Z̃
σ f

f to
∏

e Xσe
sk

. In general, this involves a

“half translation, like in the 1+1d Ising chain in [20].17 We leave the complete study of the
fusion rule for the defects on the lattice to future work.

Denoting the resulting Hamiltonian by H1, we then consider the interpolation between the
two Hamiltonians given by

H = J0H0 + J1H1 . (78)

When J0 ≫ J1, the model H describes the original theory H0, while for J1 ≫ J0, H describes
the S gauged theory. At J0 = J1, we expect the theory to be self-dual with X↔ Z .

4.2 Microscopic model

A lattice model with a 1-form symmetry generated by closed surfaces
∏

e Xσe
e is given by the

bottom row of Figure 4 [155].18 Note that Fig. 4 shows lattice models for even classes (even p)
of the 1-form SPTs. When N is odd, these are the most general bosonic 1-form SPTs. When N
is even, there are also bosonic SPTs labeled by odd classes. Ref. [155] discusses lattice models
for these SPTs. They are relatively complex so we will focus on even classes for simplicity. Let
us call the model for the SPT in Fig. 4 H0. S gauging the 1-form symmetry consists of five
steps.

1. We introduce N -dimensional gauge degrees of freedom on the faces, with local operators
generated by X̃ f , Z̃ f .

2. If the Hamiltonian terms do not commute with the Gauss laws in Figure 5 with n = 0
(we will discuss n ̸= 0 in Section 4.4), which happens when p ̸= 0, we need to apply
minimal coupling. This modifies the Hamiltonian terms by Z̃ p

f on each of the two faces
to make them commute with the Gauss law terms.

3. We implement the Gauss laws in Figure 5 with n = 0 to replace matter operators with
gauge field operators.

4. We “integrate out the matter” by fixing the gauge Ze = 1 for all edges. The resulting
Hamiltonian is H̃1.

5. We implement zero gauge flux by adding the closed surface in Figure 6 to the Hamilto-
nian. This generates the dual 1-form symmetry.

17We thank Shu-Heng Shao for bringing up this point.
18While Ref. [155] specified N to be even, the model also works for N odd. Here we allow N to be odd, since

we take the class label to be even integer p.
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Figure 6: Lattice Hamiltonian for pure 2-form gauge theory with topological action
p on cubic lattice. Each face has a ZN degree of freedom, acted by the generalization
of Pauli operators that satisfying (77). The model can be obtained by gauging the
1-form symmetry in ZN 1-form symmetry SPT phase of class p. The first row is the
Gauss law term, while the second row is the flux term. Here we list the model for
even p, while the model for odd p can be obtained similarly from the SPT models
in [155].

We then shift H̃1 to H1, so its operators act on the edges of the original lattice, and use
X ↔ Z . The resulting Hamiltonian is given by the latter two rows of Figure 4. Similarly,
gauging H1 via the above five steps gives H̃0, which after shifting back to the original lattice and
using X↔ Z gives H0. Note that H0 and H1 are individually commuting, but H = J0H0+J1H1
is not commuting. If we were to shift H0 onto the dual lattice rather than H̃1 onto the original
lattice, then we get a 2-form gauge theory in a transverse field, where the transverse field is
given by the 1-form SPT:

H = J0H̃0 + J1H̃1 , (79)

where H̃1 is given by Figure 6. The S gauging of the p = 0 case, where H0 is a trivial param-
agnet and H̃ is a trivial transverse field, was studied in Appendix B of [26].

4.3 Dynamics

As briefly mentioned in Section 4.1, we can infer some regimes of H:

• At J0 ≫ J1, we can ignore the term H1, and the theory describes the class p SPT phase
with ZN one-form symmetry.

• At J1 ≫ J0, we can ignore the term H0, and the theory describes twisted ZN 2-form
lattice gauge theory with topological action n. For gcd(N , n) ̸= 1 there are deconfined
excitations and non-trivial topological order. For gcd(N , p) = 1, the theory describes a
ZN 1-form SPT phase of class −p−1, but with a surface topological order AN ,p, which
can have nontrivial chiral central charge c [2,156]. When the boundary theory has c ̸= 0
mod 8, it can only be obtained from the trivial Hamiltonian H0 with p = 0 by a nontrivial
quantum cellular automaton (QCA) [157].

We see that even for p2 = −1 mod N , where the phases are the same for J0≫ J1 and J1≫ J0,
the two models may differ because their boundaries have different c (mod 8). When N is odd,
AN ,p has c = 0 mod 8 if p2 = −1 mod N [63], but when N is even, c ̸= 0 mod 8.19 On the
lattice, H0 and H1 differ by QCA even though they describe the same phase.

19Previously, we considered fermionic systems when N is even, but here we restrict to bosonic lattice models for
simplicity.
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H0 and H1 are individually commuting Hamiltonians, but H is not commuting for nonzero
J0 and J1. When gcd(n, N) ̸= 1, we expect a confinement-deconfinement transition at inter-
mediate values of J0 and J1. For gcd(n, N) = 1, we still expect a quantum phase transition
between different SPT phases, except in the case p2 = −1 mod N . For N even and p2 = −1
mod N , there would at least be a surface transition due to the change in c. On the other hand
for N odd, it does not seem necessary for the system to undergo a phase transition.

When p = 0, the model reduces to the toric code in a transverse field studied in [26],
where it is shown that the model is invariant under gauging ZN 1-form symmetry. Monte
Carlo studies show that the self-dual point is a first order phase transition for N ≤ 4 [125].
When N ≥ 5, the theory flows to gapless Maxwell theory at the coupling e2 = 2π/N , where
the coupling is fixed by matching the duality defect in the renormalization group flow using
the non-invertible symmetry in Maxwell theory [26].

For general N , p, the dynamics of the lattice model is constrained by the non-invertible
defect: it cannot flow to gapped phase preserving the non-invertible symmetry unless p2 = −1
mod N . This indicates at these special values of N , p, there should be duality-symmetric terms
that one can add to the Hamiltonian to make it gapped (at least in the bulk) at J0 = J1. We
discuss this point more in Section 5.

4.3.1 Large N limit

For p = 0, for sufficiently large N , the lattice model flows to gapless Maxwell theory at coupling
τU(1) = iN , where the coupling is obtained by matching the non-invertible symmetry [37].
Here we make some conjectures of what might happen at nonzero p.

Let us impose the vertex term of H1 in Figure 4 exactly to enforce the Gauss law, and we
express the operators Z and X using the U(1) gauge field a and its canonical electric field Π
(we choose the temporal gauge a0 = 0) as

Z = eia j , X = e
2πi
N Π j , (80)

where j labels the direction of the edge, and we used [Π, a] = 1. In the Euclidean spacetime
picture, the terms in the first row in Figure 4 are small loop operators with two edges in the
temporal direction. In the continuum limit, they contribute the action

∫

(2π
N Πi + ipε0i jkB jk)2,

where we denote the magentic field as Bi j = ∂ia j − ∂ jai . The terms in the last line of Figure
4 are small loop operators in spatial directions, and in the continuum limit they contribute
the action
∫

(Bi j +
2πp
N iε0i jkΠk)2. Thus for N sufficiently large compared to p, the theory at

low energy is described by the free U(1) gauge theory. When p is larger, the quadratic terms
above are not sufficient to capture the Hamiltonian terms, and we expect the theory is not the
Maxwell theory, as discussed further below.

Domain wall tension Consider the interface where on half space we perform the S gauging
(with the appropriate shift and X ↔ Z). Then along the interface, there is additional energy
cost from the terms in H0 and H1, because the terms do not commute. For p < 2

p
N , such

energy cost can be estimated, for N ≫ 1, as 1−e2πi(p2)/N ∝ sin
�

2π(p2)
N

�

, from the commutation
relation of Z p, X p and Z , X .

From the domain wall tension, we expect the following

• When p2≪ N , the tension vanishes for large N , and the duality symmetry is unbroken.
For large N the phase is described by gapless Maxwell theory.

• When p2

N ∼ 1/4, the tension is finite for large N , and the duality symmetry is broken.
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J0/J1

Figure 7: Proposed phase diagram for the lattice model: inside the cone the duality
symmetry is unbroken but the theory is gapless, while outside the cone the symmetry
is broken. At the upper part of the interior of the cone for large N and small p, the
phase is described by gapless Maxwell theory. The shell of the cone are first order
phase transitions. The N , p plane through the origin corresponds to J0 = J1.

Since N , p are discrete, we do not expect new fixed points from dialing p/N . Therefore we
propose that the phase diagram in terms of the three parameters p, N and the lattice coupling
J0/J1 is given by cone extending from small p, N and J0 = J1, where inside the cone the duality
symmetry is unbroken, and for large N the upper part of the cone is the Maxwell theory. The
plane at p = 0 should match with the phase diagram of Ref [63] (see also [125]). Outside
the cone, the duality symmetry is broken. The boundary cone represent first order phase
transitions. See Figure 7 for an illustration.

4.4 STn gauging

The action of ST n gauging on the lattice is more subtle, when gcd(n, N) = 1. This is because
there are different versions of the ZN 1-form SPT given by H0 and H1, that may differ by a
gravitational term. ST n gauging for gcd(n, N) = 1 can be implemented as S ◦ U0 or S ◦ U1,
where U0 and U1 are the unitary operators that entangle the H0 1-form SPT or the H1 1-form
SPT respectively. Specifically, U†

0 H(0)0 U0 = H(n)0 and U†
1 H(0)0 U1 = H(n)1 , where the superscript

denotes the ZN 1-form SPT class (i.e. p = n). U0 is a finite-depth quantum circuit, while
U1 may be a QCA due to the nontrivial surface topological order with c ̸= 0 [157]. We can
equivalently implement the ST n gauging using modified Gauss laws. We illustrate the modified
Gauss laws corresponding to S ◦ U0 in Figure 5. For gcd(n, N) = 1, there is an alternate set of
modified Gauss laws corresponding to S ◦ U1.

Due to this ambiguity, we will discuss in this section an example where gcd(n, N) ̸= 1.20

We will give a lattice model similar to the ones above, but for ST4 gauging, and we use as
a particular example N = 4. Because ST4 is not order 2 (up to charge conjugation, which
leaves the SPT invariant), we actually obtain a model with an ST4 invariant multicritical point.
Specifically, the model takes the form

H = J0H0 + J1H1 + J2H2 + J3H3 , (81)

where the Hamiltonian terms for H0, H1, H2, and H3 are illustrated in Figure 8. The order four
ST4 symmetry cyclically permutes H0, H1, H2, and H3, so at the point J0 = J1 = J2 = J3, the
theory is invariant under ST4.

20We plan to study the subtleties of general ST n gauging in forthcoming work.
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Figure 8: ST4 cyclically maps the trivial paramagnet H0 to the twisted deconfined
gauge theory H1. It them maps the gauge theory to the class p = 4 SPT H2 and finally
to the untwisted deconfined gauge theory H3. We have only shown one of the three
kinds of terms (and neglected the vertex terms) of each Hamiltonian.
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Figure 9: Condensation defect on the domain wall (grey shade) given by ZN toric
code model in 2+1d, where the variables on the domain wall edges (dark red and
dark blue) are labelled by the variables on the plaquettes ending on the domain wall.

4.5 Fusion rule and condensation defect

Let us study the D̄×D fusion rule of the non-invertible S symmetry. We will insert the symmetry
defect by gauging on part of space, instead of on the entire space, with the rough boundary
condition (i.e. Dirichlet boundary condition), by setting Z̃ = 1 on the plaquettes on the domain
wall. We consider the convention of starting with the gauge theory in all of space. Let us take
the defect D̄ to be at coordinate z = −ε and the defect D to be at z = ε. We then shrink the
strip −ε < z < ε.

We remove the second and third“windmill” terms with X̃ , X̃ † in the first line of Figure 6,
since they have plaquettes with X̃ , X̃ † on the domain wall, and thus they do not commute with
Z̃ = 1 on the domain wall plaquettes.

The remaining second “windmill term” in the first line of Figure 6 becomes a product of
four X̃ (or X̃ † depending on the orientation) on the edges of a cross on the domain wall, where
the edge variables are labelled by the variables on the plaquettes that end on the edges on the
domain wall. See the first term in Figure 9.

Similarly, the cube terms in the second line of Figure 6 becomes a product of four Z̃ (or Z̃†

depending on the orientation) on the edges around a plaquette on the domain wall, see the
second term in Figure 9. Those are the standard vertex term and plaquette term in ZN toric
code model in 2+1d [158]. Thus we find that

D×D = Condensation Defect, (82)

where the condensation defect is described by ZN gauge theory on the domain wall. This
reproduces the fusion rule in e.g. [26] for D̄×D.
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5 Outlook

In this work we presented a general framework for studying anomalies of non-invertible sym-
metries in 3+1d, using a corresponding 4+1d Abelian 2-form gauge theory with a 0-form
symmetry. We found that for the particular example of Kramers-Wannier like symmetries, cer-
tain symmetries are anomalous due to a quantity that generalizes the 2+1d FS indicator. These
provide anomalies beyond those studied in Refs. [26, 37, 63]. We also uncovered a family of
non-invertible time-reversal symmetries in 2+1d and presented some lattice models with these
non-invertible symmetries.

Let us comment on some future directions which we would like to revisit:

• It would be interesting to study how non-invertible symmetries might fractionalize in
3+1d. This was studied in depth in e.g. [111,144,159,160] for invertible symmetries.

• We can generalize to study topological defects of other dimensions including those re-
lated to continuous symmetries. As a particular example, the anomaly field theory that
describes mixed anomaly of U(1) higher form symmetries is given by the analogue of
Chern-Simons term for the gauge fields. It would be interesting to study the possible
gapped or gapless boundaries of such examples from this point of view.

• In principle, our discussion does not need to assume Poincaré invariance, and should
apply also to condensed matter systems. For instance, the anomaly field theory is Witt
equivalent to the ZN two-form gauge theory described by the loop toric code model in
4+1d. This is unlike the argument in [63]. It would be interesting to apply our results
to a more broad class of systems with less spacetime symmetry.

• The discussion can be generalized to defects that generate gauging a subsystem symme-
try. See e.g. [161,162] for examples of non-invertible subsystem symmetries.

• A natural future direction is to study other non-invertible symmetries in 3+1d by using
different 0-form symmetry enriched 2-form Abelian gauge theories in 4+1d. For exam-
ple, we can study anomalies of ST n symmetries in 3+1d. We already studied the first
level obstructions in Section 2.2, but we did not systematically study anomalies from FS
indicators. We did give an example in Section 3.5.1 showing that ST n symmetry may
have obstructions to symmetric TQFTs related to beyond-cohomology SPTs not encoun-
tered for S symmetry.

• The 0-form symmetry enriching the Abelian gauge theory can also be non-Abelian. For
example, it can be a permutation group. It would be interesting to study anomalies of
symmetries in 3+1d related to more general 0-form symmetries of the 4+1d Abelian
gauge theory.

• In Section 3.6.2, we uncovered an infinite family of theories with non-invertible time
reversal, originating from theories where the time-reversal had a mixed anomaly with
charge conjugation. This method of obtaining a non-invertible time reversal symmetry
from an anomalous time reversal symmetry is very general; we will discuss this and
present many more examples in forthcoming work. [154]

• It would be very interesting to find realistic examples (beyond stacking constructions)
where the FS indicators ω,ω f are nontrivial. It should also be possible to construct
lattice models where ω is nontrivial. The lattice models we presented, like the Ising
model, have trivial ω. Furthermore, we restricted to bosonic models, but it should also
be possible to construct fermionic models, especially with nontrivial ω f , for N even.
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• As mentioned in Section 4.3, the lattice models we constructed have predictable dynam-
ics for p = 0. However, for p ̸= 0, and in particular for p ∼

p
N , our models for large N

seem have very different dynamics. It would be interesting to study the phase diagram
numerically, to confirm our hypothesized phase diagram in Figure 7. It would also be
interesting to study the phase diagram for p2 = −1 mod N , where the bulk does not
need to undergo a phase transition.

• If the phase diagrams for N , p where p2 = −1 mod N demonstrate that the J0 = J1 point
is gapless, it would be interesting to study what symmetric perturbations can be used to
take the system into a trivially gapped phase.

• There are many remaining questions related to the subtleties of gauging 1-form symme-
tries on the lattice. This is especially true for ST n gauging (see Section 4.4). We plan
to study the gauging, and recover the fusion rules (modified by translations) in future
work.
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A Non-invertible fusion rules from Aut(K) symmetry

When the domain wall that generates the bulk invertible Aut(K) symmetry ends on the bound-
ary, it gives non-invertible symmetry on the boundary. Alternatively, if we gauge the bulk
g ∈ Aut(K) symmetry, there is codimension operator given by open domain wall (such opera-
tor belongs to the twisted sector), and it generates new non-invertible symmetry.

We can compute the non-invertible fusion rules as follows. First, we obtain the worldvol-
ume description of the domain wall using the action with properly quantized matrix m for
each term, and perform the g transformation on bI on half spacetime Y with boundary ∂ Y
that supports the domain wall:

1
2π

∑

I<J

∫

Y

�

(gT mg)I J bI d bJ −mI J bI d bJ
�

=
1

4π

∑

I ,J

∫

∂ Y
W (g)I J bI bJ , (A.1)

where the right hand side is the worldvolume action on the domain wall in the bulk, and
W (g) is a symmetric integer matrix that describes which excitations are condensed on the
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worldvolume of the g domain wall. Explicitly,

WI J =

� ∑

K ,L gIK mK L gLJ , I = J ,
∑

K ,L gIK mK L gLJ −mI J , I ̸= J .
(A.2)

For instance, when the theory is N
2π

∫

5d bed bm, under g = T transformation bm→ bm+ be, the
W matrix is given by N

4π

∫

4d be be [27]. Under T = S transformation (be, bm)→ (bm,−be), the
W matrix is given by N

2π

∫

4d be bm [27]. The domain wall itself is condensation with charges

gei − ei where ei is the charge carried by the operator ei
∮

bi
[47].

If we gauge the g symmetry in the bulk, the open domain wall gives a codimension-two
operator on its boundary which obeys non-invertible fusion rule. Denote the support of the
domain wall by M4 with boundary M3 = ∂M4, the fusion of g with ḡ can be obtained from
W (g) by the methods in e.g. [24,26,27,33,37,47,58]:

∂M4 = M3 : g(M4)× g(M4) = #
∑

λ

ei
∑

I≤J W (g)I J
∫

PD(λI /2π) bJ+ i
4π

∑

I ,J

∫

M3
λI dλJ

, (A.3)

where # is a normalization factor, and λ = {λI} are one-forms on M that take values in
A= Z2r/KZ2r , PD denotes the Poincaré dual on M3.

Then the fusion rule in the absolute boundary theory with polarizationP is given by further
imposing the equivalence relation that sets the surface operators in P to be trivial.

We remark that the absolute theories for different polarizations can have different symme-
tries as in the examples in e.g. [102,163].

A.1 Example: ZN two-form gauge theory

Let us consider ZN two-form gauge theory

N
2π

bed bm . (A.4)

We will derive the fusion rule for the non-invertible symmetry from the ST n transformation.
The transformation is generated by the bulk domain wall

∫

4d

�

N
2π

be bm +
nN
4π

bm bm

�

. (A.5)

The fusion rule for defect ending on the boundary is given by

N ×N =
∑

Se ,Sm

ei
∫

nSm+Se
bm+
∫

Sm
be . (A.6)

On gapped boundary that preserves the ST n symmetry, where N = α2+β2+nαβ , we can
choose polarizations such as the Dirichlet boundary condition be| = 0 to obtain an absolute
gapped boundary theory. For this polarization, the fusion rule is

N ×N =
∑

Se ,Sm

ei
∫

nSm+Se
bm . (A.7)
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B Generalized Frobenius Schur-indicator and statistics

In this appendix, we discuss a similar obstruction to symmetric gapped phase as in [95] for
topological lines in 1+1d, to volume operators in 3+1d. In the Abelian theory (17), suppose
we consider an ordinary symmetry of order 2. We can obtain the anomaly field theory by
gauging the symmetry. We have choice of gauging the symmetry with additional local coun-
terterm. Suppose we add additional bosonic 4+1d Dijkgraaf-Witten theory for Z2 gauge group
described by H5(BZ2, U(1)) = Z2, the F symbol from fusing 5 volume operators give (−1) since
the Dijkgraaf-Witten term describes the 0-form symmetry anomaly [109, 164]. We will show
that the volume operator in this case has “self-statistics” i compared to the case without the
Dijkgraaf-Witten term. This is similar to the 2+1d Z2 Dijkgraaf-Witten theory, where the F
symbol for fusing three vortex operators is the Frobenius–Schur indicator (see e.g. [114]).

More generally, let us consider Dijkgraaf-Witten theory for Z2 gauge group in odd space-
time dimension (2n+ 1). We can describe the theory by the action in continuous notation

∫

M2n+1

�

π
a
π

�

da
2π

�n

+
2

2π
ad b
�

, (B.1)

where a is a one-form and b is a (2n− 1)-form. The equation of motion for a gives

n+ 1
(2π)n

(da)n +
2

2π
d b = 0 . (B.2)

Consider the correlation function on M2n+1 = S2n+1 for the gauge invariant operator

exp

�

i

∮

V2n−1

b+
(n+ 1)i

2(2π)n−1

∫

V2n

(da)n
�

, (B.3)

where V2n−1 = ∂ V2n. With such operation insertion, the equation of motion for b gives

da = −πδ(V2n−1)
⊥ , a = −πδ(V2n)

⊥ , (B.4)

where δ(V2n−1)⊥ is the delta function two-form that restricts to V2n−1, and δ(V2n)⊥ is the delta
function one-form that restricts to V2n. Thus the correlation function is
®

exp

�

i

∮

V2n−1

b+
(n+ 1)i

2(2π)n−1

∫

V2n

(da)n
�¸

= exp

�

(−1)n+1πi
2n

∫

M2n+1

δ(V2n)
⊥(δ(V2n−1)

⊥)n +
(−1)nπ(n+ 1)i

2n

∫

M2n+1

δ(V2n)
⊥(δ(V2n−1)

⊥)n
�

= exp

�

(−1)n
niπ
2n

∫

M2n+1

δ(V2n)
⊥(δ(V2n−1)

⊥)n
�

, (B.5)

where the integral in the last line equals the intersection number of V2n and the one-
dimensional nth intersection of V2n−1. Thus nontrivial F symbol implies nontrivial self-statistics
of the magnetic operator. We can call the F symbol as generalization of the Frobenius-Schur
indicator.

Let us consider some cases with lower n:

• For 4+ 1d spacetime dimension, n = 2, and the self statistics is ei π2 = i. Thus we find
that non-trivial F symbol (equals (−1)) for fusing 5 operators, which gives the Dijkgraaf-
Witten term, implies nontrivial self-statistics.

• Similarly, for 2 + 1d spacetime dimension, n = 1, and the self-statistics is e−
πi
2 = −i,

as expected from the vortex in the Z2 Dijkraaf-Witten theory in 2+1d. The F symbol
(equals (−1)) for fusing three operators, which gives the Dijkgraaf-Witten term, implies
nontrivial self-statistics.
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C Trivializing the anomaly by symmetry extension

Consider the non-invertible symmetry associated with the S-transformation in bulk ZN , with
N > 2. The S transformation has order 4, and we can stack the bulk TQFT with an SPT phase
for Z4 symmetry, described by

2πp
4

∫

A
dA
4

dA
4

, (C.1)

where p is an integer, and A is the background gauge field for the Z4 symmetry. This implies
that the domain wall that generates the unit transformation is attached to the SPT phase

2πp
4

∫

dA
4

dA
4

. (C.2)

We can trivialize the anomaly by decorating the domain wall with TQFTs to cancel such phase.
For instance, we can extend the Z4 symmetry in the following way:

• We can extend Z4 to Z16, denote a lift of Z4 gauge field to Z16 as Ã a Z16 cochain, then
we can cancel the domain wall anomaly be decorating it with the Chern-Simons term

2πp
16

∫

Ã
dA
4

. (C.3)

The fourth power of the domain wall gives

2πp
4

∫

A
dA
4

. (C.4)

Thus the decorated domain wall generates symmetry Z16/gcd(p,4).

• We can extend Z4 symmetry to a three-group by decorating the domain wall with Z4
three-form gauge field that satisfies

dB3 = p
dA
4

dA
4

. (C.5)

• We can decorate the domain wall with the gapped boundary of the invertible TQFT
Z4 × Z4 two-form gauge theory with the topological action 2πp

4

∫

b ∪ b′ for the two-
form gauge fields b, b′,21 such that the transformations of b, b′ are correlated with that
of dA/4. Encircling the surface operators

∫

b,
∮

b′ on the junction of the domain wall
such that dA/4 is non-trivial picks up a factor of i. Then the domain wall becomes
non-invertible:

N ×N =
∑

S,S′
e

2πi
4

∫

S b+ 2πi
4

∫

S′ b′ , (C.6)

where we omit an overall normalization factor on the right hand side.
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