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article, we define Interaction-Shaping Robotics (ISR), a subfield of HRI that investigates robots that influence
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1 INTRODUCTION

As the field of Human–Robot Interaction (HRI) continues to grow, researchers are designing
and studying increasingly complex human–robot social interactions, including those that involve
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Fig. 1. Schematic depicting an interaction-shaping robot that displays behavior (blue dashed arrows) toward
two other agents: one human and one human or robot. The agents may (1) respond reciprocally toward the
robot (black dotted arrows) and/or (2) change their interactions with one another as a result of the robot’s
behavior (green bold arrows). We consider this latter effect to be unique to interaction-shaping robots.

multiple people and/or multiple robots [29, 106, 111]. Numerous studies examining human–robot
group interactions have demonstrated that robots can do more than influence one person’s behav-
ior. Robots can also shape current and subsequent interactions between multiple agents, especially
including those between people [42, 103, 120, 126].

This article proposes a new research area—Interaction-Shaping Robotics (ISR)—which we define
as the study of robots that influence the behaviors and attitudes exchanged between two (or
more) other agents. Figure 1 illustrates this definition. The figure represents the robot’s behavior
toward two other interactants with blue dashed arrows. One of the interactants in the diagram
is a human and the other may either be a human or a robot. The robot’s behavior can then result
in two possible effects: (1) a direct reciprocal effect from the agent (black dotted arrows) and/or
(2) an indirect effect of the robot’s behavior on the interaction of the other interactants (green bold
arrows). This first direct reciprocal effect is characteristic of traditional HRI research spanning
both dyadic and multiparty scenarios, where a robot’s behavior shapes human behaviors and
attitudes back toward the robot. This second indirect effect of the robot’s behavior on the inter-
actions between other agents is unique to ISR, where a robot influences how one agent behaves
toward and/or thinks about another interactant in a group. While some researchers explicitly
design their robots to shape interactions between other agents [29, 30, 44, 120, 132], many robots
also produce interaction-shaping effects that are neither designed nor intended by the robot or
researcher. ISR represents a critically needed addition to the current topic areas covered in the
HRI community, as it invites researchers and practitioners to be more deliberate and thoughtful
about the potential of influencing interactions when designing and deploying robots, especially
considering how these interactions between other agents may be negative or positive, intended or
unintended.

To illustrate an example of an interaction-shaping robot, consider the humanoid robot that
made vulnerable expressions in a collaborative game with three people [120]. In response to the
robot’s vulnerable expressions (e.g., “I sometimes find myself getting a bit discouraged...”), some
human team members verbally responded to the robot, which are examples of direct responses
to the robot’s behavior (black dotted arrows in Figure 1). Later in the collaborative game, people
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were more likely to explain their mistakes to their human team members if their robot teammate
had made vulnerable utterances, as opposed to neutral utterances [120]. This increased likelihood
to explain their mistakes to fellow human team members displays how the robot shaped the
interactions between its human teammates (green bold arrows in Figure 1) by influencing what
information these human team members shared with each other. Beyond this one example, other
work in HRI has also demonstrated a variety of interaction-shaping robots, including robots
that influence the amount of time people spend talking to one another [44, 77, 97, 129] and
backchanneling [105, 126], robots that change how people in a group perceive [63] and resolve
[108] conflicts, robots that shape people’s perceptions of group dynamics such as inclusion [119]
and cohesion [112], and robots that influence how people behave toward other robots [29].

In this article, we present ISR as a subfield of HRI to bring this research area to the attention
of the HRI community and align researchers whose work touches on this space. We define five
key factors that characterize the distinct methods that interaction-shaping robots use to influence
interactions between other agents. We do not claim that the presented key factors represent a com-
plete and sufficient theoretical framework but suggest that these factors support our understanding
of the impact interaction-shaping robots have in society and highlight unexplored research direc-
tions and possible ethical risks in developing interaction-shaping robots. Additionally, we describe
three categories of human–robot group structures, along with example scenarios within each that
highlight distinct opportunities and effects of a robot’s interaction-shaping behavior capturing the
variation in possible group compositions and targets for interaction-shaping.

To provide a holistic HRI perspective, we highlight ethical, methodological, and computational
challenges that arise when building and deploying interaction-shaping robots. Our goal is
to inspire future research to carefully consider the ethical risks (e.g., of deception or biased
behavior) while recognizing the potential benefits of deliberately influencing human–robot and
human–human interactions. Furthermore, we emphasize the need for future research to develop
new methodologies for meaningful comparisons between robots, robot behaviors, and scenarios
in ISR. By discussing computational challenges, we encourage bridging the gap between related
research fields, such as affective computing and network analysis, necessary for developing
effective, ethical, and adaptive interaction-shaping robots.

2 BACKGROUND

This section highlights prior work that informs ISR. First, we summarize work on multiparty HRI
and the formation of human–robot relationships. Then, we review related work in psychology and
sociology that examines how people can shape the behavior and attitudes of other people.

2.1 Human–Robot Multiparty Interactions

ISR is closely related to multi-party HRI. When multiple humans and/or robots interact simulta-
neously, the scenario is broadly a multi-party interaction. When a multi-party interaction also
involves a robot influencing how one agent behaves toward and thinks about another interactant
in the group, then the scenario represents both a multi-party HRI scenario and an ISR scenario.

There is a long history of work in multi-party human–robot interaction that motivates ISR.
For instance, HRI research in public environments has investigated robot interactions with many
people in places like museums [37, 80, 115, 128], office buildings [16, 50], airports [130], train
stations [51], hospitals [76], hotels [26], and schools or care centers for children [64, 65, 71, 148].
Recently, there has also been increased interest in studying group human–robot interactions
[104, 106], including situations where robots are peripheral companions to groups [55, 126] and
situations where robots directly participate in conversational engagements [42, 75, 77, 93, 129, 135],
multi-party games [31, 113, 136, 138], or collaborative tasks [29, 62, 63].
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While not all these examples focus explicitly on ISR, several of these research directions have
motivated studying how robots can influence human behavior toward other interactants. For
example, Kanda et al. [64] describe the deployment of Robovie in a school environment. In this
setting, 63% of first-grader’s interaction time with the robot was in the company of one or more
friends. These types of interactions provide opportunities for robots to shape relationships. Also,
Yamaji et al. [148] studied children’s interaction with Sociable Trash Boxes (STBs). When the
STBs moved individually, only 30% of children in the public environment where the robots were
deployed helped with trash collection. Meanwhile, when the STBs moved in groups, 70% of
children helped with the trash collection. This group effect could be seen as an example of ISR
whereby the behavior of a Sociable Trash Box motivated children to interact with another nearby
STB in which they deposited trash. We generally see ISR as overlapping with multi-party HRI,
because a subset of ISR requires multiple colocated interactants but focuses more narrowly on
how a robot can shape interpersonal processes among other interactants.

A growing body of work in multi-party HRI has started to explore the benefits and risks of
interaction-shaping robot. For example, robots using non-verbal behaviors can assist a group con-
versation by balancing engagement [126] or participation [42]. In addition, robots can help to
resolve situations of conflict [63, 108], build more trustful relationships in peer groups [14, 120],
enhance the interaction among intergenerational groups [113], influence how included people
feel in a group [44, 119], and improve interpersonal interactions [36, 95]. Recent pioneering work
has also started to uncover the negative effects robots can have on interactions and the consec-
utive formation or destruction of relationships. For example, in a scenario where only one team
member could ask a robot for information, that team member experienced a greater sense of exclu-
sion from the human members of their group [119]. Also, non-anthropomorphic robots have been
shown capable of inducing feelings of ostracism [35] in people, which can also shape subsequent
human–human interactions [34]. These examples of interaction-shaping robots in multiparty HRI
demonstrate the variety of interaction-shaping effects, both positive and negative, robots can have
in a range of multiparty interaction settings.

2.2 Human Relationships with Robots

In addition to shaping human–human interactions, interaction-shaping robots may increasingly
form and change human–robot interactions and relationships. Several studies have described the
formation of relationships between humans and robots, which grow and develop over a series
of interactions. Sung et al. [121] found that robot vacuum cleaner owners build an intimate
attachment to their robot vacuum cleaners. Further, soldiers working with bomb-disposal
robots have been found to form close bonds with these robots [20]. Similarly, dismantling
ceremonies for Aibo robots in Buddist temples in Japan are indicative of close bonds and
relationships between owners and their robots [19, 90]. While human–human relationships
display a mutuality and depth that human–robot relationships have yet to realize, robots
are increasingly incorporating methods to personalize their interactions with people [101],
which is a step toward building relationships. As human–robot interactions and relationships
become increasingly common, it is important to consider the potential for third-party robots
to influence human–robot interactions and relationships, a potential we discuss further in this
work.

2.3 Human-to-Human Social Influence

How people can shape the behaviors and attitudes of other people through social behavior is
important for ISR, since robots can potentially use similar methods of social influence to shape
the interactions between other agents. Social influence is typically studied in the field of social
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psychology. The literature broadly studies aspects of conformity, obedience and power, attitudes,
group processes, and effects of culture and gender concerning social influence [7, 56, 66, 78].
We would like to note that in this section, we focus on social influence a human or robot could
exert knowingly, e.g., through language or behavior. In the following paragraphs, we discuss
phenomena from the human-to-human social influence literature that we found particularly
promising for HRI or that have been used in previous HRI studies. We recommend the interested
reader to consult a social psychology textbook [7, 56, 66, 78] for an exhaustive literature review
on social influence. One way people can exert social influence is by their behavior or emotion
spreading from one person to another through social interactions, an effect known as behavioral
or emotional contagion [11, 24, 25]. A variety of behaviors have been found to spread from person
to person including selfish behaviors in economic games [61] or aggressive behavior in children
[33]. Emotions are also contagious, for example, people are more likely to be happy if they are
in contact with others who are happy [41] or become depressed if they are assigned to live with
a mildly depressed roommate [59]. Emotions can also spread from one person to an entire group,
for example, Barsade [11] demonstrated that one person’s positive affect in a collaborative group
led to improved cooperation between group members, less conflict, and increased perceived task
performance.

In addition to behavioral and emotional contagion, people can influence the behavior and at-
titudes of other people using other forms of social influence. For example, people change their
behavior to match the behavior of others, an effect known as conformity [27]. Famously, Asch [8]
demonstrated that participants asked to judge the length of the line would choose a clearly incor-
rect answer about 37% of the time if their peers also chose the same incorrect answer, displaying
the powerful effect of conformity and peer pressure. Compliance is another type of social influence
and refers to cases where a person acquiesces to the request of another person (e.g., purchasing
items from a door-to-door salesman, voting for a political candidate touted by a colleague) [28].
In addition to conformity and compliance, people are also greatly influenced by social norms—
rules about actions to perform or avoid that are upheld by a community of people who follow and
enforce them [13, 18]. Examples of social norms include shaking someone’s hand when meeting
them, not littering in a park, and speaking softly in a library.

In addition to individual behaviors, group-level social influences such as intergroup processes
and balance theory can shape people’s behaviors and attitudes. Intergroup effects in form of biases
describe the natural favoring of one’s own group (ingroup) over other groups (outgroup). This
ingroup-outgroup bias results in implicit intergroup and cognitive biases to the detriment of the
perception of and behaviors toward the outgroup [40]. To overcome those ingroup-outgroup biases,
the literature proposes the contact hypothesis that suggests that relationships between groups can
be improved through positive contact in a joint interaction [5, 147]. Balance theory suggests that
groups naturally strive for a balanced state, meaning that attraction relations are reciprocal [52].
If imbalances occur, then the balance can be restored by changes in the individual or interpersonal
changes. For example, one person disliking another can change their opinion if they realize that
the other group member likes them. However, a group member can also change their opinion from
liking to disliking the other, which can cause ostracism [125].

This section offers a brief overview of the literature that covers aspects of human–human social
influence and intergroup effects, demonstrating that people’s behaviors and attitudes are strongly
influenced by the people around them and their behavior. As people increasingly interact with
social robots, they will also inevitably influence the behaviors and attitudes of these people, likely
in similar ways (e.g., contagion, conformity, and compliance) as in human–human social influ-
ence. As a result, effects found in human–human literature offer promising directions for studying
interaction-shaping robots.
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Table 1. Key Factors of Interaction-Shaping Robots. The ISR Factors on the Left Distinctly Identify
Mechanisms that Allow Robots to Shape Interactions Between Other Agents

ISR Factor Category Description

Role of the
Robot

Guiding
Facilitator

The robot leads and directly mediates the interaction
between the agents.

Peripheral
Facilitator

The robot is present and active, but is not directly
involved in the interaction.

Peer Group
Member

The robot acts as a peer relative to the agents.

Specialized Group
Member

The robot adopts a special role as a group member
relative to the agents.

Robot-Shaping
Outcome

Cognitive The shaping outcome is measurable in changes in
cognitive attitudes and thoughts (e.g., interpersonal
evaluation, feelings, intentions).

Behavioral The shaping outcome is measurable as a change in
behavior (e.g., spatial repositioning, amount of
speaking, gazing).

Form of Robot
Influence

Explicit Robot
Influence

The robot addresses aspects of the interaction
explicitly through clear and exact communication,
directly prompting or requesting a change in the
interaction (e.g. calls a conflict out and asks for
resolving it).

Implicit Robot
Influence

The robot implicitly addresses aspects of the
interaction that could lead to a change in the
interaction among the other agents.

Type of Robot
Communication

Verbal The robot uses verbal natural language to shape the
interaction.

Non-Verbal The robot uses non-verbal behavior (e.g., gestures,
gaze, movement, resource distribution) to shape the
interaction.

Timeline of
Robot Influence

Immediate
Influence

The robot’s behavior immediately shapes the
interaction between the agents.

Long-Lasting
Influence

The robot’s behavior shapes the interaction between
the agents after the robot’s interaction-shaping
behavior has concluded (e.g., the following day).

3 FACTORS OF INTERACTION-SHAPING ROBOTICS

This section presents key aspects for Interaction-Shaping Robotics as five factors that greatly
influence how a robot shapes interactions (see Table 1). To develop these factors, we consulted
recently published surveys on group HRI [45, 104, 106] and reviewed the surveyed and more
recently published literature. Based on prominent examples from the literature, we discussed
distinguishing elements repeatedly among all authors, drafted definitions and naming of the
factors, and refined them while mapping works to factors and their categories. Before agreeing
on the final five factors, we focused on the overall clarity to a potential reader and the fit
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of work from the literature. The result of this process is documented in the remainder of
this section, in which we describe and exemplify each factor with related work from the HRI
community.

The following subsections describe factors that we identified as uniquely relevant and essential
for ISR: (1) the role of the robot in the group, (2) the robot-shaping outcome, (3) the form of robot
influence, (4) the type of robot communication, and (5) the timeline of robot influence on the inter-
action(s). Similarly to the broader field of HRI, we acknowledge that many factors other than these
five may influence ISR interactions [39], including robot-specific factors (e.g., physical appearance
[89], anthropomorphism [151]) and individual differences in human interaction partners (e.g., per-
sonality, prior familiarity). While these additional factors can certainly influence ISR interactions
considerably, the five factors we have chosen to focus on reflect aspects that have a unique and
sizable impact on how robots can shape interactions between other agents.

Similarly to work in the field of HRI more broadly, we also expect that some interaction-shaping
factors will have similar effects when they are expressed by a robot compared with when they are
expressed by a human (e.g., expressions of vulnerability being reciprocated by others [120]). How-
ever, the literature shows that effects might not always replicate, as in the case of replicating the
effects of Asch’s conformity experiment [17, 109] or have an effect with reduced magnitude when
compared to human–human interactions [99]. Additionally, robots can adopt some interaction-
shaping behaviors that are similar to those that people can express but they can also shape in-
teractions in unique ways by, for example, expressing lights, sounds, and movements impossible
for humans. The five interaction-shaping factors we identified represent ways that robots can in-
fluence other agents that contain similarities with human–human interaction-shaping and key
differences.

3.1 Role of the Robot

The role that a robot adopts in human–robot interactions has a significant impact on how people
perceive the robot and respond to its behavior. Interaction-shaping robots in prior work have
often adopted the roles of facilitator or group member, which offer particular opportunities but
also challenges when shaping interactions. Some types of interactions, like role-playing games
[136], allow robots to switch between the facilitator and group member roles.

Guiding Facilitator: When an interaction-shaping robot adopts a guiding facilitator role, it di-
rectly leads the interaction between the other agents. A robot can utilize this role to explicitly
draw the agents’ attention to the aspects of the interaction the robot wants to shape. For example,
Shen et al. [108] showed how a Keepon robot can help children to resolve their resource conflicts
by explicitly pointing at the conflict and suggesting to focus on a constructive solution. In addition,
Birmingham et al. [14] exemplified how a robot could guide a support group session for stressed
students with questions and self-disclosure statements to invite students to share their stress ex-
periences and improve trust between participants. As long as the robot is accepted as the leader,
it can effectively guide the group, like eliciting participation from quiet individuals when making
hiring decisions [107], or encouraging deeper conversations among strangers [149]. Engagement
from other interactants is crucial for robots in this role.

Peripheral Facilitator: An interaction-shaping robot can also facilitate an interaction between
agents from the periphery. The robot is present and active, but it is not directly involved in the
main task being carried out by the group. For example, Tennent et al. [126] explored this role
for a microphone-shaped robot, MicBot. During human group conversations, MicBot followed the
speaker and attempted to encourage the least talkative participant to take the floor of the conver-
sation by turning toward them. The authors found that these behaviors led to a more balanced
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engagement of all group members [126]. In another example, a Cozmo robot used similar behav-
iors to turn toward children to follow their play, encourage participation, and prompt collaboration
to help the process of inclusion among children [44]. These examples demonstrate that peripheral
robot facilitators can have a profound impact on an interaction even though engagement from
other interactants with the robot is not a requirement. It is important, though, that the robot’s
actions are recognizable enough for people to not forget about the robot or ignore it [95].

Peer Group Members: Interaction-shaping robots can also take on the role of a peer, similar in
function to the other group members. In contrast to the facilitator role, the robot can leverage
the establishment of group membership to shape interactions, e.g, leading to higher trust by the
other group members [10]. One context where prior work has explored interaction-shaping robots
as peers is in collaborative task and game contexts, where the interaction-shaping behavior is
embedded within the task or game. For example, Strohkorb Sebo et al. [120] found that a robot
that admitted having made mistakes during the game play could increase the number of vulnerable
statements made by other people within the group.

Specialized Group Members: An interaction-shaping robot can also fulfill a special role as a
group member, where the robot makes a unique contribution to the group but still benefits from
emerging group membership. For example, Mutlu et al. [77] studied interactions with a travel
agent robot that gave people advice on travel destinations. Because the robot’s goal was to help
people select a suitable travel location, the robot’s primary role (serving as an information source)
was distinct from the role of other group members (seeking advice). A robot’s special role might
thereby offer the robot opportunities for shaping interactions that can be part of the role itself
or the task-based behavior. In other examples from prior work, robots have adopted a variety of
special roles including an information source in a desert survival task [119], a ‘bomb scanner’ in a
bomb defusal game [63], and a guesser in a word guessing game [42].

3.2 Robot-Shaping Outcome

A robot shaping an interaction might lead to cognitive and/or behavioral outcomes. Cognitive out-
comes typically result in a change in cognitive attitudes often measured through questionnaires or
dedicated tasks, e.g., the Implicit Association Test (see Reference [54] for an example). Behavioral
outcomes can typically be measured within the interaction between the robot and other agents
or in dedicated tasks. Changes in cognitive attitudes may often influence changes in behavioral
outcomes. However, it is also possible for people to change their behavior while their cognitive
attitudes remain the same, e.g., a requested spatial repositioning might not change how the other
agents perceive themselves or the interaction.

Cognitive: Cognitive outcomes are measurable changes, e.g., in interpersonal attitudes, changes
in trust between the other agents, or aspects of group dynamics such as cohesion or perception
of group identity. For example, researchers explored a non-anthropomorphic robot’s leaning
gestures and their influence on interpersonal evaluations in conversations [95]. In another
example, researchers address intergroup effects through explicit experimental manipulation
before the interaction with the robot, and through an implicit manipulation by giving one group
member the unique role of the robot liaison. They find that the role of the robot liaison has a
stronger effect on perceived inclusion than the explicit formation of ingroup and outgroup before
the interaction with the robot [119]. Other works explore the effect of robot exclusion, inclusion
and overinclusion on the experience of ostracism [35], the perception of inclusion in groups of
mixed visual abilities [79], or trust in support groups [14]. A change in stereotypical thinking as
demonstrated by Hitron et al. [54] can also be understood as a cognitive robot-shaping outcome
that generally influences how an individual thinks and acts toward others in society.
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Behavioral: Robots can also influence how other agents, individually or as a group, behave
in interaction-shaping scenarios, including how much time agents spend speaking, how group
members communicate with each other, work as a team, or how they change their spatial posi-
tioning [15]. Prior work has provided multiple examples that have demonstrated that participants’
speaking behavior can be altered by a robot’s shaping behavior [42, 77, 79, 86, 114]. Other
works demonstrated that robots can change conflict resolution strategies around toys among
children [108] or how children play with members from a different group in the context of social
inclusion [44]. Further examples include robots that could elicit prosocial interventions in case
of robot mistreatment [29], evoke task-based explanations among children [21], alter a group’s
decision-making process [119], or prompt more trash disposal to a robotic trash can [148].

3.3 Form of Robot Influence

Another important factor of ISR is how the robot influences the interaction among the other agents.
We consider two possible forms of robot influence: explicit and implicit. While this section dis-
cusses these two forms as distinct categories, we recognize that the form of robot influence is best
described by a spectrum where a specific shaping attempt might fall between explicit and implicit.
The form of robot influence might affect people’s ability to identify and be aware of the robot’s
shaping behavior. We discuss the ethical considerations of forms of robot influence in combination
with other factors in Section 5.1.

Explicit Robot Influence: A robot can shape interactions explicitly by using behaviors or other
means that elicit clear expectations on how the interaction between the other agents should
change. Typically, a robot would use direct prompts and requests. For instance, one research
study investigated the efficacy of a couple’s counselor [133]. The robot invited the couples to
explore exercises that aim to improve their communication skills among them. In other research,
a robot explicitly asked participants to reposition themselves when interacting with the robot
[15]. Another example of the explicit influence that does not use verbal communication is the
robot MicBot [126]. In this work, the robot takes the form of a microphone that turns to encourage
participants to speak. While Micbot cannot verbally explain its actions, swiveling toward a
person does clearly indicate Micbot’s desire for that person to speak. Other works explore a
robot’s explicit influence in situations of resource conflict [108], children collaborating in a
rocket-building game [118], or general moderation of a collaborative game [113]. In cases where
the robot’s influence is explicit, other agents have the choice to either accept the robot’s influence
or reject the robot’s influence. Therefore, the ability of a robot to shape interactions explicitly
depends on the decisions of the other agents to follow its prompts.

Implicit Robot Influence: In contrast to shaping interactions in ways that clearly communicate
expectations toward the other agents, robots can also implicitly shape interactions. For example,
in a word-guessing game, a robot used gaze cues to encourage more participation from a less
talkative person [42]. Even though participants might notice irregular patterns in the robot’s gaze
when asked to reflect on the robot’s behavior, the robot does not make it explicitly clear to the
participant that its gaze may result in a change in their behavior [43]. Additionally, robot expres-
sions of vulnerability in a game context increased people’s likelihood to explain their mistakes to
one another and console those who made mistakes [120]. Further research has shown that a robot
being unreliable in a task could elicit more task-based explanations among children [21], or could
harmonize an interaction, i.e., yielding the floor to a less active group member after taking the
floor in a short natural exchange with the current speaker(s) [73]. Implicit means of shaping in-
teractions typically use subconscious responses, like gaze or psychological processes, to influence
the interaction. These subconscious responses might though be subject to individual differences
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between people and could affect how effectively a robot can shape interactions through implicit
means.

3.4 Type of Communication

Robots can shape interactions through verbal and non-verbal communication. Verbal communica-
tion involves the use of natural language. Non-verbal communication comprises other expressive
forms of behaviors, such as movement, gesture, backchanneling, and gaze. This section describes
how these behaviors can contribute to how a robot shapes interactions between other agents. Im-
portant to note is that the type of communication only concerns interaction-shaping behaviors.
The robot could display additional behaviors intended for other aspects of the interaction that use
other types of communication.

Verbal communication: Verbal communication can be used in different ways by robots to shape
interactions, e.g., utterances can provide recommendations or mention problematic situations ex-
plicitly. For example, Jung et al. [63] studied the effects of a robot with a special role in a shared
bomb-defusal task. The robot admonished a confederate for their hostile behavior toward another
participant and, through this verbal behavior, called attention to the conflict between the human
team members. Robots in guiding facilitator roles, as discussed in Section 3.1, often use verbal com-
munication to shape interactions, acting as a couples counselor [132], reducing conflicts among
children [108], and improving the perception of a patient as evaluated from a caregiver’s or doc-
tor’s perspective [23]. While verbal behavior can be an effective way to shape interactions between
agents, a robot’s use of verbal behavior may lead people to believe that a robot can both produce
and understand natural language. If a robot cannot understand natural language to the same ex-
tent that it can produce it, then people’s expectations of the robot could be violated [92], and, in
turn, this could reduce trust [67] and social influence. Therefore, considering human expectations
is particularly important for these interaction-shaping robots.

Non-verbal communication: Non-verbal behaviors typically used by interaction-shaping robots
include gestures, movement, backchanneling, gaze and functional interaction-shaping behaviors.
Non-verbal communication can help coordinate human–human conversations and group interac-
tions and is influential in human–robot interactions [102]. For example, a robot’s gaze behavior
can balance human participation in conversations [42], shape conversational roles [77], and dis-
tribute speaking turns to less talkative members of a conversation [73, 114]. Furthermore, Erel
and colleagues explored the effect of gaze and leaning gestures of the non-anthropomorphic robot,
Kip, on the interaction between humans. They found that these behaviors can positively influence
the perception of conversation partners [95] and improve perceived emotional support within the
group [36]. This work points out one advantage of fully non-verbal robots: users have lower ex-
pectations of them. This could facilitate creating effective interaction-shaping robots.

Functional non-verbal behavior can also be used by robots to shape interactions among two other
agents. For example, non-humanoid robots “shooting a ball” unequally in a group interaction can
raise feelings of exclusion [35]. Additionally, in industrial contexts, a robot arm’s unequal distribu-
tion of resources has been shown to systematically influence human–human interaction dynamics
[62]. Other examples of non-verbal interaction-shaping behaviors include the microphone-shaped
robot MicBot that balances engagement [126], the robot Cozmo that encourages active play to im-
prove inclusion among children through body movement, sound and facial expressions [44], and
robotic bar-stools that encourage spontaneous conversation [98]. In summary, non-verbal behav-
ior can be designed from human–human communication or following the specific capabilities of
the robot, making a robot’s possible repertoire of interaction-shaping behaviors both shared and
unique relative to those used by people.
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3.5 Timeline of Robot Influence

Once a robot has expressed interaction-shaping behavior, the robot’s behavior may influence the
agents’ interactions in both the short-term and the long-term. A robot’s behavior may have imme-
diate interaction-shaping effects on the agents that are physically present with the robot. It is also
possible that the robot’s interaction-shaping behavior might have long-lasting effects and influ-
ence the agents’ subsequent interactions with others, even in the absence of the robot’s presence.

Immediate Influence: When a robot exhibits interaction-shaping behavior (e.g., gaze cues [42,
77] and supportive comments [105]), often their effects on the agents with whom the robot is
interacting are immediate, occurring seconds or minutes after the robot’s behavior. Most examples
of ISR focus on immediate effects. For example, during one interaction, interaction-shaping robots
can lead to more constructive resolution of conflict [108], greater harmony in group conversations
[73], more balanced engagement [126] or participation in conversations [42], more vulnerable
statements [120] or higher trust among group members [14].

Long-lasting Influence: It is also possible that a robot’s behavior shapes interactions that occur
after the interaction with the robot took place. These long-lasting effects “carry over” to shape the
interaction between multiple agents in subsequent human–agent interactions. For example, Erel
et al. [34] studied how the effect of ostracism, induced by multiple robots on one person, influenced
the person’s subsequent human–human interactions, including their proximity to other people and
compliance with an experimenter’s request. It is important to note that these long-lasting effects
can occur even if not all of the affected agents were present with the robot (the experimenter in
Erel et al. [34]) when the robot exhibited its interaction-shaping behavior (the robot ostracizing
the human participant in Erel et al. [34]). Another example of an effect that has been found to carry
over is prosociality [82]. For example, Shiomi et al. [110] showed that positive feelings from a robot
hug could lead to people donating more money to victims of an earthquake. This suggests that long-
lasting interaction-shaping robot behaviors have the potential to positively impact human–agent
interactions without a dependency on the robot. This is a particularly exciting line of work that
would benefit from more research.

4 INTERACTION-SHAPING GROUP STRUCTURES

In this section, we discuss three human–robot group structures (illustrated in Figure 2) that rep-
resent distinct interaction-shaping group structures. These group structures characterize differ-
ent group compositions and thereby give insight into the interactions that a robot might shape
(human–human or human–robot) and how many robots (one or more) are acting to influence
other agents. Each group structure presents unique opportunities for ISR, which we highlight us-
ing examples from related work and by proposing areas of future research.

4.1 Structure I: One Robot Shapes a Human–Human Interaction

Structure I describes a group structure where one robot shapes the interaction between two or
more other people (Figure 2(a)). Scenarios investigating this group structure have received the
largest amount of attention as researchers have sought to use robots to improve human-to-human
interactions and group dynamics. Several robots have been shown to increase the amount and
quality of interactions between people, including those between older adults in care facilities [97,
127], teammates [129], and children with autism and their caregivers [103], therapists [68], and
playmates [152]. Other robots have been designed to assist people in collaborative contexts, using
a variety of behaviors (e.g., gaze [42], mechanical movement [126], and verbal utterances [105]) to
encourage more equal participation [42, 105, 126], promote expressions of vulnerability [120], and
mediate conflict [63, 108] between human group members.

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 12. Publication date: March 2024.



12:12 S. Gillet et al.

Fig. 2. Overview of the three interactions-shaping group structures (Section 4). The relationships-shaping
robot(s) are marked with a green ellipse. Relationships are shaped among the remainder of agents.

Since having positive interactions and relationships with other people are critical to our
well-being and everyday experiences [91, 134, 142], investigating how robots can positively shape
human–human interactions will continue to be an important area of research. For example, for
robots that collaborate with people in work teams, it would be helpful for them to contribute
positively to the team’s dynamics in light of research that has demonstrated the positive influence
social team dynamics (e.g., inclusion, trust) have on a team’s performance [74, 85]. Other research
could further explore how robots can shape other key human–human relationships including
long-term romantic partnerships [132], friendships, and caregiver-patient relationships [32] to
name a few. In addition to investigating how robots can positively assist human–human interac-
tions, it is also important to explore the negative effects of robots on human–human interactions
so that people can be aware of the possible dangers robots pose to human–human interactions
and relationships. For example, Sebo et al. [105] showed that giving a human team member a
specialized role to interact with the robot significantly reduced how included the human team
member felt in the group. With this knowledge, human teams can proactively work to counteract
the exclusion a team member may feel if they are given a specialized role to interact with
a robot.

4.2 Structure II: One Robot Shapes a Human–Robot Interaction

Structure II pertains to situations where an interaction-shaping robot influences a human–robot
interaction between one or more humans and one or more robots (Figure 2(b)). Although limited
prior work has investigated scenarios with this group structure, it is likely that it will become
common in the future as robots are increasingly incorporated into everyday activities in human
environments. For example, we foresee this type of scenario occurring often with service robots,
which may need to hand off their interaction with users to another robot due to being unable
to complete the desired task (e.g., because of technical issues or limited robot capabilities). For
example, Tan et al. [123] demonstrated that a first robot could set human expectations of a second
robot, to whom the first robot makes a hand-off, potentially shaping how the human interacts
with the second robot. Further, imagine if the first robot told the group that the second robot was
malfunctioning in a particular way, setting low expectations over its functionality. Perhaps the
user(s) would then be more forgiving to errors by the second robot, showing greater trust recovery
[144]. Another example of Scenario II are situations where the way in which a robot interacts with
another robot influences how humans perceive the other robot. Söderlund [117] recently provided
initial evidence that this type of effect is possible with human initiated robot-to-robot interactions.
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Likewise, we suspect that it could emerge in robot-initiated robot-to-robot interactions [51] in
multi-party HRI.

In the future, interaction-shaping robots could influence human–robot interactions in a fully
reciprocal manner. That is, interaction-shaping robots could influence both how humans interact
with other robots and their attitudes toward them, as in the prior examples, and how these other
robots interact with humans. This would require future social robots to better perceive changes
in behavior and attitudes as well as better process information provided by other robots about
users. Then, they could adapt their behavior toward a person according to how another robot
acts in their group. For instance, imagine that a robot in a kiosk at a hospital told another guide
robot that a visitor was looking for their friend, who was recently in an accident. The information
provided by the robot at the kiosk could then influence the guide robot to provide words of
encouragement and support to the visitor as it guides the person to the friend’s room in the
hospital.

4.3 Structure III: Multiple Robots Shape an Interaction between Multiple Others

Structure III implies multiple robots shaping interactions through coordinated behavior (Fig-
ure 2(c)). For instance, Sadka et al. [98] showed that the motion of robotic bar-stools can encour-
age human–human interactions and increase positive encounters. Another example is the study
by Connolly et al. [29] on group human–robot interactions involving robot abuse. In a team of 2
humans and 3 Cozmo robots, a confederate abused one of the robots after it made mistakes during
the interaction. The other two robots either ignored the abuse events or reacted in response to it
by expressing sadness toward the abused robot. Interestingly, the latter reaction led to participants
being more likely to prosocially intervene to help the abused robot and stop the mistreatment by
the confederate in comparison to former one. This was a surprising group social influence effect
by robots, because people have many reasons to avoid conflict with a person that abuses a robot
in a laboratory study [124]. In the future, we foresee more examples and scenarios with Structure
III present demonstrating powerful group social effects in ISR, including conformity [99].

Structure III also brings new perspectives to swarm robotics. While most work in swarm ro-
botics within HRI concerns operator control methods [70], swarm robotics in ISR is more about
multiple robots shaping the interaction between other agents. An example is MOSAIX [4], a social
swarm system designed to help humans in social tasks like opinion-mixing and brainstorming.
The movement and mixing of the swarm appeared to engage people in a public exhibition and led
to conversations about climate change. In the future, more work could be done to understand ISR
with multiple robots and more human interactants than typically studied today.

5 CHALLENGES AND OPPORTUNITIES

This section discusses current challenges and also opportunities regarding ethical considerations,
methodological approaches, and computational advances unique to Interaction-Shaping Robotics.

5.1 Ethical Considerations

In this section, we highlight the opportunities but also ethical risks and challenges of research and
development in the field of ISR.

5.1.1 A Robot’s Influence on Human–Human Connections. Positive relationships between peo-
ple bring them feelings of happiness, security, self-esteem, and pleasure [49, 94]. Furthermore,
close and positive relationships between people are essential to living a fulfilled and healthy life
[134, 142]. On the contrary, when relationships between people are negative or nonexistent, people
suffer from social rejection, loneliness, and poorer physical health [57, 116].
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IEEE’s guidelines on Ethically Aligned Design indicate that autonomous and intelligent systems
should support human potential and ensure connections and relationships between humans [83].
Interaction-shaping robots have a unique opportunity to follow this suggestion by enhancing and
promoting human–human connections. For example, robots have already been shown to increase
human–human interactions and connections between child and caregiver [22, 47] and in care fa-
cilities for older adults [84, 97, 127]. Also, they can potentially detect if a person is isolated and
encourage connections between them and others. This approach for alleviating human isolation
by having robots promote human–human interaction is distinct from other methods in HRI to
alleviate loneliness through human–robot interactions alone. While several robots have shown
promise in reducing a person’s loneliness and raising their mood [141], some have expressed con-
cern that giving a person a robot to reduce their loneliness could isolate the person even further
[38]. Regardless of the benefits or drawbacks of using robots to alleviate peoples’ loneliness, using
robots to encourage human–human interaction is a promising avenue that could increase human
well-being and avoid potential risks of further isolation.

While reducing the risk of isolation and improving well-being, the risk of dependency on the ro-
bot cannot be fully eliminated. Instead of an individual being dependent on the robot, the function-
ing of an interaction between people could become dependent on the robot’s interaction-shaping
efforts. Therefore, we believe that it is valuable for an interaction-shaping robot to sustainably
improve interactions and relationships so that the robot eventually becomes obsolete. This way,
people can reap the benefits of human–human connections without being fully dependent on a ro-
bot to sustain them. Future research should investigate more the long-lasting effects of interaction-
shaping robots beyond the interaction with the robot, as discussed in Section 3.5.

5.1.2 People’s Unawareness of the Influence of Interaction-shaping Robots. Interaction-shaping
robots face the ethical risk of deception when people are unaware of the robot’s shaping attempts
and its effects. Interaction-shaping can positively shape human–human interactions, for example,
so that every group member’s opinion gets heard [42], or so that people feel more comfortable
when discussing difficult problems [14]. However, people are fully aware that a robot is influencing
their interactions only in some contexts, while they may not be aware of its influence in others.

A person’s possible awareness of the robot’s influence might best be described as a spectrum
between being fully aware and unaware. The literature has explored scenarios in which the human
group members could be fully aware of the robot’s influence on their interaction. People could
become aware of the robot’s influence through the context of interaction, e.g, a robot acting as
a couple’s counselor [132], or through the behaviors the robot demonstrates during interactions,
e.g., when a robot intervenes in a conflict, it can openly address the conflict and suggests conflict
resolution strategies [108].

When the robot uses non-verbal communication or shapes the interaction implicitly, it is more
likely that human group members are unaware of the robot’s influence. A robot acting as a
group member or a peripheral facilitator might further increase unawareness of its influence. For
example, participants sometimes noticed gaze cues used to encourage more participation from a
less talkative person [42] as irregular patterns in the robot’s gaze. However, they were unaware
that the robot’s gaze influenced their behavior relative to other humans in the game [43]. Addi-
tionally, people might have been aware of the robot’s expressions of vulnerability [120], but they
were not aware that their own behavior was shaped by the robot as a result of these vulnerable
expressions.

Especially since people may be unaware that their interactions may be shaped by robots, it is
important to consider the potential ethical risk of deception in ISR. Deception has been identified
as an ethical risk for social robots in general [83, 146] and extends to interaction-shaping robots as
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humans might not expect their interactions to be shaped by a robot. IEEE’s ethics guidelines
suggest that “in general, deception may be acceptable in an affective agent when it is used for the
benefit of the person being deceived, not for the agent itself”[83, p. 175]. In other words, deception
in ISR might be acceptable in cases where there is consensus that the robot’s influence benefits peo-
ple (e.g., robots that express vulnerability [120] to help people feel more comfortable self-disclosing,
robots that use gaze to elicit verbal participation from more quiet group members [44]). Nonethe-
less, research at the intersection of RoboEthics [139] and ISR is important to critically discuss
the effects of interaction-shaping robots and establish recommendations for their development.
These discussions will further help to prepare the public and policymakers for handling end-user
robotic products capable of shaping interactions. Last, we suggest that future work explores
interesting directions that might arise when thriving to reduce ethical risks. For example, in cases
where it might be natural to hide a robot’s intent, how would being upfront about the robot’s goal
to shape other agents’ interactions affect how people perceive the robot and its social influence
capacity?

5.1.3 Potential Bias in ISR. a Interaction-shaping robots might inherit societal biases. The risk
for bias is present in all of HRI, but it is of particular importance in ISR where the bias can affect
other agents’ interaction negatively. For example, Hitron et al. [53] showed that a robot giving
turns in a debate according to gender biases reinforced gender stereotypes. However, reversing the
robot’s behavior dispelled these stereotypes [54]. Further, Rosenthal-von der Pütten and Abrams
[96] and Winfield et al. [146] discuss the risk that machine learning algorithms known for devel-
oping biases [58] might transfer those biases when used to create robot behaviors, e.g., in resource
allocation problems [62]. These biases might stem from societal biases captured in the data or occur
due to nonrepresentative datasets [87]. To mitigate potential biases, future work in ISR needs to
carefully consider sources of the data used to design or learn interaction-shaping robot behaviors.

5.2 Research Methods

Because multi-party HRI research has explored a large variety of contexts and robot applications,
there are not many standardized methods, tasks, and approaches that allow for comparison across
studies [81]. Additionally, theoretical models and frameworks for studying group interactions
are needed to guide our understanding of how robots can shape interactions between other
agents. Abrams and von der Pütten [1] proposed the I-C-E framework for studying groups by
presenting definitions for inclusion, cohesion, entitativity, and methods that allow for measuring
the different concepts. Despite these contributions, the authors highlight that these methods
for understanding groups and their dynamics are scarce and are insufficient to understand
the complex interactions in groups. Conversation Analysis, which is concerned with the fine-
granular qualitative analysis of human–human interactions might offer one possible direction
to understand interaction-shaping effects [88, 131]. Future work should invest in exploring new
techniques to study interaction-shaping robots.

5.3 Computational Advances

We need computational advancements for developing interaction-shaping robots that can
autonomously adapt to different group interactions and support their distinct needs [46]. Current
work in HRI often uses sets of simple heuristics and interaction scripts to guide autonomous robot
behavior in multi-party interactions. While these heuristics can provide a first approximation
to appropriate behavior when driven by human psychology (e.g., References [42, 69, 126]), there
is no guarantee that these hand-crafted policies capture all the essential information in the
interaction that the robot may need to select optimal actions nor account for unexpected human
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behavior. To develop more robust interaction-shaping robot behavior, advances are needed in
modeling relationships and group phenomena, state representations, and robot behavior control.

5.3.1 Modeling Relationships and Group Phenomena. ISR is concerned with shaping interac-
tions that eventually result in shaping relationships among other agents. This can be achieved by
leveraging group phenomena (e.g., group social influence [29]) or can in turn induce group social
phenomena (e.g., cohesion [112]). This makes the perception of both relationships and group social
factors in HRI essential to interaction-shaping robots. A path forward to improve robot perception
in this regard is to bridge Social Signal Processing (SSP) [140] and ISR. Social Signal Processing
has contributed many methods for computationally modeling social aspects important for human–
human interactions. For example, prior work explored identifying dominant individuals [6, 9] or
emerging leadership [12, 100]. In terms of group-level phenomena, there is also work on the recog-
nition of social roles [3, 150], social relations [2], and cohesion [60]. In the future, it is important
to extend these lines of research to more clearly understand causal relationships between group
members’ behavior, and how shifting perspectives (top-down camera view often used is SSP versus
a robot’s first-person view) may influence reasoning about group behavior.

5.3.2 State Representation: Recent work in multi-party Human–Robot Interaction has begun
to advocate for representing social interactions with graph abstractions [72, 122, 137, 143], which
would also benefit ISR as suggested by Figure 1. In these graphs, nodes often encode information
about interactants and edges encode information about relationships. These graph abstractions
could be used for a state representations in ISR, because they encode relevant data in a well-
organized manner, which in turn could lead to algorithms that exploit the structure [48, 145] for
better modeling of interactions and group constructs.

5.3.3 Robot Behavior Control. Finally, it is important to close the loop between perception and
control in ISR. Advances from Reinforcement Learning and Imitation Learning might be suitable
to map perceived group states with effective robot behaviors for shaping interactions among other
agents. Early explorations of learning robot policies for ISR compare reinforcement learning and
imitation learning approaches in the context of balancing human participation in conversations
[43]. A challenge when learning robot shaping behavior is ensuring that the resulting policy is
safe and appropriate for the given interaction context, e.g., learned gaze behaviors may be irritat-
ing, requiring careful hyper-parameter search and final model selection [43]. If future interaction-
shaping robots can learn complex behaviors, then we might be able to discover shaping behaviors
that are potentially unique to robots, not something that humans would naturally do or even be
capable of doing.

6 CONCLUSION

This article defines ISR as robots that shape interactions among two (or more) other agents. Key
factors of ISR characterize interaction-shaping robots according to their role in the interaction, the
robot-shaping outcome, the form of robot influence, the type of robot communication, and the time-
line of the robot’s influence. Further, we highlight three unique ISR group structures where one
robot shapes either a human–human or a human–robot interaction, or multiple robots shape the
interaction among multiple other humans. These structures, in combination with the discussion on
key factors, offer interesting avenues to explore a larger variety of interaction-shaping robots. It is
essential that future work further advances our ethical understanding of ISR, robot autonomy, and
methodological practices, but most importantly we hope that future interaction-shaping robots can
support humans in flourishing by shaping their human–robot and human–human interactions.
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