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ABSTRACT

A fundamental problem in computer simulation of systems of biophysical interest is the

separation of timescales. This refers to the fact that stable integration of the equations

that describe molecular motion requires timesteps on the order of the fastest motion, on

the order of a few femtoseconds, while events of interest, such as ligand binding, protein

conformational rearrangements, etc. take place on timescales of milliseconds or more. Since

even the fastest computers can barely reach the millisecond timescale by brute force, a naive

computation of most `textbook' quantities of interest such as on and o� rates for ligands or

free energy di�erences fail due to sampling error. The main focus of this dissertation is to

develop novel computational methods to attack the rare-event problem and compute such

quantities and more.

Our approach throughout is general: for each of the methods, we attempt to make as

few assumptions on the underlying dynamics beyond Markovianity, while at the same time

attempting to compute as broad a class of statistics as possible. To this end, our main

tool is unbiased short trajectories. We generate a swarm of unbiased, short trajectories,

each of which may be run in parallel, and then develop algorithms to recombine these short

trajectories to compute our kinetic statistics of interest. We begin with a simple linear basis

expansion method known as the dynamical Galerkin approximation. We reformulate the

method to account for �nite lag times and also develop new estimators for the reaction rate

and reactive current. Next, we introduce two machine learning based alternatives to the

DGA method. These use the universal function approximation properties of certain neural

networks to overcome limitations in the basis set construction required for DGA. Finally,

we combine our short trajectory methods with the weighted ensemble path sampling scheme

to develop a rapidly converging algorithm for computing arbitrary stationary distributions

for Markov processes. We illustrate our methods on well-characterized low-dimensional test

systems, as well as models of both subseasonal weather and protein folding.
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CHAPTER 1

INTRODUCTION

Molecular dynamics (MD) simulations enable atomic-resolution investigation of complex

processes. These investigations are often carried out by direct simulation: the equations

of motion are numerically integrated forward in time to generate trajectories (times series

of atomic positions and, as needed, momenta) for as long as possible given available com-

putational resources. Since most events of interest occur on timescales longer than those

accessible by direct simulation, many enhanced sampling schemes have been developed to

allow more extensive interrogation of an event of interest without sacri�cing model �delity.

The simplest and oldest class of methods restrict themselves to computing only equilib-

rium statistics. That is, they assume that the system obeys detailed balance, and typically

that the equilibrium distribution is the Boltzmann distribution, and then the algorithm uses

those assumptions to sample the con�gurational integral. There are a number of examples,

but the two most prevalent are umbrella sampling and metadynamics [6, 7]. In umbrella sam-

pling, one samples a large number of restricted distributions. These restricted distributions

are formed by adding a series of harmonic restraints along the coordinates which resolve the

slowest motions of the dynamics, such that the timescale problem is avoided in each restricted

distribution and the sampling is e�cient. Then, the data from each restricted distribution is

combined using a number of di�erent methods such as WHAM or MBAR [8, 7, 9]. Another

common choice is metadynamics [6]. Metadynamics adds a positive Gaussian bias term at

the states that the molecule has visited. This �lls up metastable basins, and rapidly pushes

the system to explore more basins. Both metadynamics and umbrella sampling are useful

for computing free energies and some other equilibrium statistics. They are not able to com-

pute any kinetic statistics however. To compute kinetic statistics (or equilibrium statistics

for irreversible systems), several alternative approaches have been proposed. Here we will

discuss transition path theory, path sampling, and Markov state modeling.
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Transition path theory is a means of analyzing rare events by considering quantities

which only depend on the current con�guration. We begin with any Markov processX t ;

with stationary distribution � (dx) and two disjoint statesA and B; and de�ne D = ( A [ B)c:

In the molecular setting, the setsA and B could correspond to folded and unfolded states

of a protein, for example. De�ne the forward stopping timeT+ (t) = min f s > t : X s =2 Dg

and the backward stopping timeT � (t) = min f s > t : X � s =2 Dg. For any in�nite trajectory

f X tg1
t= �1 ; the reactive ensemble is the set of con�gurationsX t for which X T � (t) 2 A and

X T+ (t) 2 B:

The basic idea of TPT is to compute expectations over the reactive path ensemble by

decomposing the reaction into a forward and backward fragment. Thus, the reactive density

is

P[X t = x; X T � (t) 2 A; X T+ (t) 2 B] = P[X t = x] Px [X T � (t) 2 A] Px [X T+ (t) 2 B]; (1.1)

where the probability can be factorized since the future and past are independent by Marko-

vianity. The latter two conditional probabilities are functions ofx which de�ne the backward

and forward committor probabilities respectively. The reactive density can therefore be writ-

ten succinctly as

� AB (x) = � (x)q� (x)q+ (x) (1.2)

Therefore, if the forward and backward committor probabilities can be calculated and ex-

pectations against the stationary distribution can be calculated, then one can compute ex-

pectations against the reactive density.

Another important quantity is the reactive �ux from A to B. This quantity is the average

number of reactive trajectories fromA to B per unit time. To write down a formula for this

which will prove useful later, consider a setS such that A � S and B \ S = ? : Then the
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reactive �ux is given by:

RAB = lim
dt! 0+

1
dt

Z
� (x)q� (x) Ex [(1S(X 0)1Sc(X dt) � 1Sc(X 0)1S(X dt))q+ (X dt)]dx (1.3)

This formula counts the net number of trajectories that cross the boundary ofS and weights

the starting point by the probability of last coming from A, �q � , and the end by the prob-

ability of proceeding to B next, q+ (X dt). Finally, another important object is the reactive

current. We de�ne this current to be the mean velocity of reactive trajectories at each point.

Written out using a central di�erence, this is:

JAB (x) = lim
dt! 0+

1
2dt

E[1A (X T � (t))1B (X T+ (t+ dt))(X t+ dt � X t )( � (X t � x))+ � (X t+ dt � x))]

(1.4)

= lim
dt! 0+

1
2dt

E[q� (X t )(X t+ dt � X t )q+ (X t+ dt)( � (X t � x)) + � (X t+ dt � x))] (1.5)

Transition path theory (TPT) is an extremely useful theoretical framework, but its utility has

thus far been limited by the di�culty of computing the ingredients in the above reactive �ux

and current formulae. In the last decades, several methods have been developed to compute

the committor probabilities and the stationary distribution needed for TPT analysis. We

will introduce the two main ones that we build upon in this work, splitting methods and

Markov state models.

Splitting methods are a common way to compute the stationary distributions and back-

ward committors that TPT needs. Such methods work by branching and pruning a collection

of simultaneously evolving trajectories to promote progress in a small number of order pa-

rameters (or collective variables, CVs) [10, 11, 12, 13, 14, 15]. A well-designed splitting

and killing method will ensure that adequate sampling is maintained along each free energy

barrier. An important example is the cloning method [16, 17]. In this method, copies of

the system are split and killed according to the value of a history-dependent observableA,
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commonly the nonequilibrium work or entropy production. The splitting and killing is done

in such at way that the large deviation rate function may be computed. The large deviation

theory quantities may then be used to study a variety of phenomena such as active matter,

chemical reaction networks, or driven systems, to name a few applications. [18, 19]. While

our contributions in this work may be used to re�ne cloning and other related algorithms,

we will focus mainly on computing stationary distributions.

One of the most important examples of splitting and killing methods is the weighted

ensemble (WE) of Huber and Kim [20]. The weighted ensemble approach proceeds by al-

ternating between evolution and splitting/killing steps. In the evolution step, trajectories

are evolved until they exit a certain pre-de�ned region of a CV space, known as a bin or

stratum. The splitting and killing step then duplicates and kills the endpoints of the evolved

trajectories in such a way that a �xed number of new points are sampled in each bin. The

weights of each bin are then updated in such a way that unbiased kinetic statistics may

be computed. This approach is often successful at reducing variance in estimation of very

general kinetic statistics relative to brute force simulation, and has been shown to be asymp-

totically unbiased [13]. A drawback, however, is that the removal of initialization bias in

WE and other splitting and killing methods can be extremely slow. This is a drawback we

will address in Chapters 5 and 6.

A third approach to the rare event problem is Markov State Modelling (MSM). The basic

idea of the MSM approach is to coarse-grain the system into a small number, on the order

of 100-1000 microstates. Trajectory data is then used to estimate the transition matrix for

these coarse-grained states. The transition probabilities which need to be estimated are of

the form

Pij = E � [1j (X � )1i (X
0)]; (1.6)

where 1i is indicator function that is 1 if X is in the microstate i . The coarse-grained

transition matrix is small enough to be handled with standard numerical linear algebra
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techniques. The MSM approach has been developed from extensive literature from the

last decade that shows that the eigenvalues and eigenvectors of the transition operator for

the full dynamics can be approximated from the eigenvalues and vectors of the coarse-

grained matrix, subject to a Markov assumption on the dynamics of the coarse-grained states

[21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. In particular, when the distribution

� is the stationary distribution for the dynamics, the MSM approach can compute certain

unbiased kinetic statistics. It is often impossible to estimate the correlation functions (1.6)

with � chosen as that stationary distribution, however.

MSMs and other related spectral estimation methods aim to characterize the slowest

dynamical features of the system (e.g., transitions between metastable states) as eigenvectors

corresponding to the largest eigenvalues of the transition operator. When the goal is to

study a particular event of interest, the indirect relationship between the eigenvectors of the

transition operator and the speci�c event of interest is a weakness of the spectral estimation

approach. Indeed, for many complex systems the true slowest dynamical features of the

system are too slow to be of any physical interest.

The MSM approach has recently been shown to have a natural modi�cation that allows

a similar construction to approximately solve for the TPT quantities introduced above [35,

36]. This extension to the MSM approach allows one to approximate all of the necessary

ingredients of the TPT reactive current and rate formulae. The main contribution of this

work will be to introduce a number of methods to solve for the main ingredients in the formula

(1.5), namely the stationary distribution, backward committor, and forward committor.

Our approach in Chapters 2, 3, and 4 will be to use short, unbiased trajectories as data

to solve the Feynman-Kac equation. In Chapter 2, we will introduce the Feynman-Kac

equation and present a linear method for solving it. This method will re�ne and clarify

the previously introduced DGA method [35]. We will then illustrate the linear method

on the trp-cage miniprotein. In Chapters 3 and 4, we will introduce two machine-learning

5



based approximations to the Feynman-Kac equation. The �rst will minimize the squared

residual of the Feynman-Kac equation, and the second is an inexact subspace iteration.

Our subspace iteration will be illustrated on the AIB9 peptide left-to-right handed helix

transition. In Chapter 5, we will introduce a new short-trajectory accelerated variant of the

weighted ensemble sampler which we will use to compute the stationary distribution�; as

well as the backward committor. The main novel contribution of Chapter 5 is that we will

show how any short-trajectory basedapproximation to the stationary distribution may be

inserted into the WE algorithm to yield an unbiased sample of the stationary distribution

without approximation. Finally, in Chapter 6 we will apply this accelerated WE sampler to

a protein folding problem.
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CHAPTER 2

LINEAR METHODS AND APPLICATION TO THE TRP CAGE

MINIPROTEIN

2.1 Introduction

In the original work introducing the DGA method, [35], Thiede et. al. compared di�usion

map [37] and indicator basis sets for predicting mean �rst-passage times and committors for

the Müller-Brown model [2] and the folding of the protein Fip35 using six long equilibrium

trajectories from D. E. Shaw Research [38]. Because there were only a few folding events

within those trajectories, it was di�cult to assess the performance of the method. One goal

of the present study is to generate a protein folding data set that enables robust application

of the approach and to compare di�erent basis sets and estimators systematically. To this

end, we study the trp-cage miniprotein, a 20-residue fast-folding arti�cial sequence (asn-leu-

tyr-ile-glu-trp-leu-lys-asp-gly-gly-pro-ser-ser-gly-arg-pro-pro-pro-ser) that has been studied

extensively both experimentally and computationally [39, 1, 40, 41, 42, 43, 44]. In solution

at 298 K, the protein folds on a 4� s timescale and unfolds on a 12� s timescale [39], which

makes these processes di�cult but not impossible to simulate directly. In particular, D. E.

Shaw Research produced a 208� s equilibrium simulation of the K8A mutant of trp-cage

using the Anton supercomputer with the CHARMM 22* force �eld [42]. Although, like the

Fip35 data, this trajectory contains relatively few folding events, it has been the subject

of previous MSM [43] and variational approach for Markov processes (VAMP) studies [44].

These earlier studies serve as valuable points of comparison and enable us to identify CVs

that provide good control over sampling. Though DGA does not depend directly on any

choice of CV, its performance is strongly a�ected by the quality of the data set of sampled

trajectories. We use our chosen set of CVs together with enhanced sampling methods to

generate a new data set comprised of many short trajectories that are distributed evenly
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throughout the CV space.

In this chapter, we reformulate DGA in terms of the transition operator of the underlying

Markov process. This has two primary advantages relative to our previous formulation in

terms of the generator of the process [35]. First, it clari�es the role of lag time in DGA

estimates, showing that correctly constructed estimators should have no dependence on lag

time in the in�nite-basis, in�nite-sampling limit. Second, the formulation in terms of the

transition operator leads directly to estimators that correctly account for boundary condi-

tions by stopping underlying trajectories appropriately. Using our improved DGA estimators

we introduce new estimators for TPT reaction rates and reactive currents. To make compu-

tation of the reactive current tractable and the result readily interpretable, we introduce a

projection formula for the reactive current onto a CV space which allows us to assign relative

weights to transition paths in arbitrary CV spaces. We also introduce a new procedure for

constructing a basis set from arbitrary molecular features (here, primarily pairwise distances

between C� atoms, though we also explore CVs with delay embedding) and compare it with

two basis sets that are used widely in the MSM literature: indicator functions on molecular

features and indicator functions on time-lagged independent component analysis (TICA) co-

ordinates [45, 46, 47]. We show that our DGA estimators with selected basis sets can robustly

yield remarkably good agreement with published results for committors and pathways, even

though the total simulation time of our trp-cage data set is only 30� s, with a maximum

trajectory length of 30 ns. The projection of the reactive currents on CVs facilitates both

visualization and quanti�cation of information about pathways, enabling immediate identi-

�cation of the de�ning properties of transition states. This makes our approach an e�cient

one for exploring mechanisms.
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2.2 Long time phenomena from short trajectory data

In this section, we introduce key dynamical statistics and explain how they can be de�ned

in terms of an evolution operator (Section 2.2.1). An emphasis on forms that lead directly

to practical and accurate numerical estimators causes several departures from the standard

presentation of this material. We present our approach for solving the operator equations nu-

merically by Galerkin (basis expansion) approximation [35] (Section 2.2.2), and distinguish

forward-in-time statistics (Section 2.2.2) from backward-in-time statistics involving the ad-

joint of the evolution operator (Section 2.2.2); this is followed by a discussion of basis sets

(Section 2.2.2) and an approach for constructing an approximately Markovian process when

the molecular representation does not adequately capture the dynamics (delay embedding,

Section 2.2.2). Finally, guided by TPT, we combine the dynamical statistics estimated by

DGA to yield approximations of reaction rates and currents. (Section 2.2.3).

2.2.1 The transition operator and Feynman-Kac representation

The dynamics of a Markov processX (t) can be encoded in its associated transition operator,

T t , which speci�es the evolution of the expectation of a functionf over some interval of time

t � 0:

T t f (x) = E
h
f (X t ) j X 0 = x

i
: (2.1)

The time index t can be continuous or discrete. The transition operator (also known as the

Koopman operator), and in particular its eigenvectors and eigenvalues, are the key quantities

in well-established methods for discovering slowly decorrelating features of a Markov process

[48]. The transition operator is also central to the DGA approach [35]. However, in DGA,

instead of estimating the spectrum of the transition operator, the goal is to solve linear

equations representing certain conditional expectations.

In ref. 35, we presented DGA in terms of the generator which, for a continuous time
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process is de�ned by the limit:

L f (x) = lim
t! 0

T t f (x) � f (x)
t

: (2.2)

For a discrete time process the limit is removed andt in (2.2) is replaced by the unit of a

single time step. A presentation in terms of the generator has the advantage that it results

in very concise equations for quantities of interest. For example, consider the (forward)

committor, q+ (x), which is the probability of entering a product stateB before a reactant

state A starting from x =2 A [ B :

q+ (x) = P[X T+ (0) 2 B jX 0 = x]; (2.3)

whereT+ (0) = min f t � 0 : X t 2 A [ Bg is the time of �rst entrance into A [ B . For x 2 A,

q+ (x) = 0 , and, for x 2 B, q+ (x) = 1 . The committor satis�es the Feynman-Kac relation

Lq+ (x) = 0 for x =2 A [ B; q+ (x) = 1B (x) =

8
>><

>>:

1; x 2 B

0; x =2 B
for x 2 A [ B (2.4)

(see Eqs. (18) and (19) of ref. 35).

In this article we choose to work directly with the transition operator instead of the

generator because it facilitates the implementation of numerical formulas. It also greatly

simpli�es our description of TPT and clari�es the relationship between DGA and the well-

established VAC approach to approximating spectral properties of the transition operator

(see ref. 48). In the case of the committor, we integrate (2.4) until a chosen time� to obtain

the equivalent form of the Feynman-Kac relation,

S� q+ (x) � q+ (x) = 0 for x =2 A [ B; q+ (x) = 1B (x) for x 2 A [ B: (2.5)
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In this expression we have introduced the notationSt for the transition operator of the

stopped processX t^ T+ (0) , i.e.,

St f (x) = E
�
f (X t^ T+ (0)) j X 0 = x

�
: (2.6)

Here and belowt ^ T+ (0) = min f t; T + (0)g, indicating that the evolution process does not

proceed beyond escape.

For a more general domainD and T+ (s) = min f t � s : X t =2 Dg, the conditional

expectation

u(x) = E

"

	( X T+ (0)) �
Z T+ (0)

0
�( X t )dt

�
�
�
� X 0 = x

#

for x 2 D (2.7)

solves the equation

S� u(x) � u(x) =
Z �

0
St �( x)dt for x 2 D; u(x) = 	( x) for x =2 D: (2.8)

To obtain (2.5) for the committor, chooseD = ( A [ B)c, 	 = 1B , and � = 0 . In (2.7) and

(4.5) we assume for simplicity that�( x) = 0 for x =2 D. For a discrete-time process the time

integral in these expressions should be interpreted as a sum.

Crucially, (4.5) holds for any choice of� � 0 including relatively small values. For very

large values of� , (4.5) converges to (2.7). However, in most cases of interest, the escape

time T+ (0) is very large, making estimation ofu in (2.7) by direct simulation of sample

trajectories of X t prohibitively expensive. In the context of DGA, the signi�cance of (4.5)

is that it expressesu in terms of an expectation over short trajectories. The catch is that

(4.5) must be �inverted� to solve foru.
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2.2.2 Dynamical Galerkin Approximation (DGA)

We now describe a Galerkin approach to approximating conditional expectations from short

trajectory data. We �rst introduce a �guess� function that satis�es the boundary conditions

(i.e.,  (x) = 	( x) for x =2 D). Our approximation has the form

u(x) �  (x) +
nX

j =1

� j (x)vj ; (2.9)

wheref � j (x)g is a set ofn basis functions satisfying� j (x) = 0 for x =2 D, and v is a vector

of n coe�cients.

Forward-in-time predictions

We begin by approximating predictions of quantities forward-in-time as in (2.7) by expanding

the solution u of (4.5) at a particular user chosen value of� called the lag time. While the

solution u itself is independent of� in (4.5), the quality of our approximation of u with a

�nite basis may depend on the choice of lag time (even in the absence of sampling error). A

similar phenomenon has recently been explained in detail in the context of the VAC algorithm

[48]. Substituting (2.9) into (4.5), multiplying by � i and integrating over the distribution of

sampled points� to form the inner product hf; g i � =
R

f (x)g(x)� (dx), we obtain the linear

system of equations:

(C� � C0)v = r � ; (2.10)

with matrices Cs 2 Rn� n for s = 0; � ,

Cs
ij = h� i ; Ss � j i � (2.11)
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and vector r � 2 Rn,

r �
i =

�
� i ;  (x) � S �  (x) +

Z �

0
St �( x)dt

�

�
: (2.12)

Given (4.39) and (2.12), (2.10) can be readily solved forv by standard methods of linear

algebra.

In models that represent molecules with high �delity, (4.39) and (2.12) cannot be eval-

uated directly because a closed form ofS� is not known. DGA overcomes this issue by

approximating the action of the transition operator using short molecular dynamics trajec-

tories: if X 0 is a sample drawn from� and f X tg�
t=0 is a trajectory segment of length�

starting from X 0, then we can estimateCs
ij (for s = 0; � ) and r �

i as

Cs
ij �

1
M

MX

m=1

� i (X
0
m)� j (X s^ T+

m (0)
m ) (2.13)

r �
i �

1
M

MX

m=1

� i (X
0
m)

0

B
@ (X 0

m) �  (X s^ T+
m (0)

m ) + �
(� ^ T+

m )� 1X

p=0

�( X p�
m )

1

C
A (2.14)

where m indexes trajectory segments,� is the sampling interval. To avoid overhead, it

is advantageous to generate trajectories much longer than� (but still much shorter than

typical values ofT+ ) and use a rolling window to generate short trajectories of length� . We

further note that in practice con�gurations are not saved at every molecular dynamics step.

This limits the resolution of both the lag time and the stopping time, which we take to be

the time of the �rst saved con�guration outside the domainD.

Adjoints, the steady state, and backward-in-time predictions
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To compute many important quantities we need not only to solve equations involving the

transition operator but also equations involving its adjoint(T t )y
� in the � -weighted inner

product, which by de�nition satis�es

Z
f (x)T tg(x) � (dx) =

Z
g(x)(T t )y

� f (x) � (dx): (2.15)

One such equation is for the change of measurew = d�=d� , which can be used to reweight

from the sampling distribution � to the stationary distribution � :

Z
f (x)� (dx) =

Z
f (x)w(x)� (dx); (2.16)

assuming� and w are normalized such that
R

w(x)� (dx) = 1 . Owing to the time transla-

tional invariance of averages over the stationary distribution� , (2.15), and (2.16), the change

of measure satis�es the equation

(T � )y
� w(x) � w(x) = 0 : (2.17)

(2.17) can be solved analogously to (4.5), but, in this case, there are no boundary conditions.

The introduction of a basis leads to a linear system of equations of the form

( �C� � �C0)> v = 0; (2.18)

with �Cs (for s = 0; � ) di�ering from Cs only in the choice of basis (which is no longer

restricted to D) and the use ofT s in place of Ss; > denotes the transpose. We note that

by including � 1(x) = 1 in the basis we can guarantee that the equation forv has a solution.
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Given an approximatew, (2.16) can be computed as

Z
f (x)� (dx) �

MX

j =1

f (X 0
j )w(X 0

j ); (2.19)

with the weights normalized such that

MX

j =1

w(X 0
j ) = 1 : (2.20)

That the change of measure can be estimated from short nonequilibrium trajectory data was

previously observed in ref. 29.

Another important quantity expressible in terms of an equation involving an adjoint of

the transition operator is the backwards committor

q� (x) = P
�
X T � (0) 2 A j X 0 = x

�
; T � (s) = max f t � s : X t 2 A [ Bg; (2.21)

for x =2 A [ B , where X t , t � 0 is the steady-state backward-in-time process governed by

the transition operator

T � t f (x) = ( T t )y
� f (x) =

1
w(x)

(T t )y
� [fw ](x) (2.22)

(the last equality can be veri�ed using (2.15)). The backward committor is the probability

that a trajectory currently at position x last came from the reactant stateA rather than the

product state B . It satis�es the Feynman-Kac relation

S� � q� (x) � q� (x) = 0 for x =2 A [ B; q� (x) = 1A (x) for x 2 A [ B: (2.23)

Consistent with our de�nition of St above,S� t is the transition operator for the steady-state

backward-in-time process stopped upon �rst entrance inA [ B .
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To expand and approximateq� according to the DGA recipe described above, we need

to estimate � -weighted inner products involvingS� t . To that end we note that, as long as

g = 0 on A [ B ,

D
g;S� t f

E

�
=

Z
E

"

f (X T � (t))
g(X t )

w(X t )

�
�
�
� X 0 = x

#

w(x)� (dx) (2.24)

We provide a derivation of (2.24) in Appendix 2.6.1. Just as for the forward committor,

we expect that use of a sampling measure� with high resolution in transition regions will

lead to higher approximation accuracy (i.e., better ability of a �nite basis to capture the

dynamics). However, in our experience the factor ofw� 1(X t ) in (2.24) leads to signi�cant

sampling errors for larger values oft. For our backward committor calculation we therefore

weight inner products by� , using the formula

D
g;S� t f

E

�
=

Z
E

�
f (X T � (t))g(X t )

�
�
�
� X 0 = x

�
w(x)� (dx): (2.25)

(2.25) allows inner products involvingS� t to be computed using forward trajectories ofX

initiated according to �; i.e., exactly the same ingredients required to make forward-in-time

predictions by DGA.

Following our procedure for forward quantities outlined in Section 2.2.2, given a guess

function  satisfying  = 1 on A and  = 0 on B and basis functions� j that are zero on

A [ B , we can build an approximation

q� (x) �  (x) +
nX

j =1

� j (x)vj (2.26)

by solving

(C� � � C0)v = r � � (2.27)
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with

C� �
ij =

D
� i ; S� � � j

E

�
=

Z
E

�
� j (X T � (� ))� i (X

� )

�
�
�
� X 0 = x

�
w(x)� (dx) (2.28)

and

r � �
i = h� i ;  i � �

D
� i ; S� �  

E

�

=
Z

E
��

 (X � ) �  (X T � (� ))
�

� i (X
� )

�
�
�
� X 0 = x

�
w(x)� (dx) (2.29)

where the second equality in each display follows from (2.25).

Along with the forward committor q+ and the stationary change of measurew, the

backward committor is a key ingredient of TPT. In Section 2.2.3 we describe how DGA

estimates of these quantities can be combined with TPT to reveal key properties of steady-

state transition paths from the reactant stateA to the product state B . However, before

that, we complete our presentation of DGA with a discussion of molecular representations

and basis sets, with emphasis on those that we employ in the present study to analyze

trp-cage miniprotein unfolding and folding.

Basis functions

A key determinant of the performance of DGA is the choice of basis set. Constructing a

basis set that respects the boundary conditions of the problem and captures the dynamics

with relatively few functions requires care. Here we discuss how we generated the basis sets

that we compare later in our numerical experiments, and explain why we chose them over

alternatives.

In addition to the choice of functions, there is also a choice of molecular representa-
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tion (i.e., the features that serve as inputs to the functions). Although molecular dynamics

trajectories are generally recorded as sequences of Cartesian coordinates, the inputs to the

basis functions are generally internal coordinates. This removes the e�ects of trivial trans-

lations and rotations, and it can improve the statistics. The internal coordinates that we

use are pairwise distances between all C� atoms, except those pairs which are less than

three sequence positions apart; for trp-cage, there are 153 such distances. In other words,

the processX (t) to which we apply DGA (and TPT) is the length 153 vector of pairwise

distance values. In our tests we found that including additional features, such as backbone

dihedral angles, did not improve performance. We assume that the reactant stateA and

product state B of interest can be characterized in terms of these variables. We construct

basis functions of these variables that satisfy the homogeneous boundary condition on the

domain D = ( A [ B)c.

In this work, we compare three choices of basis set: indicator functions on the pairwise

distances, indicator functions constructed on the top 10 TICA coordinates[45, 46, 47] com-

puted from the pairwise distances at a lag time of 0.5 ns, and smooth functions of pairwise

distances that satisfy the boundary conditions. We refer to these henceforth as the distance

indicator, TICA indicator, and modi�ed distance basis sets. We constructed the distance

indicator and TICA indicator basis sets and their guess functions as follows:

1. For the distance indicator basis set, we constructed 200 indicator functions by mini-

batch k-means clustering as implemented in PYEMMA on the values of the 153 pair-

wise distances. For the TICA indicator basis set, the clustering was performed on the

top 10 TICA coordinates constructed on the pairwise distances.

2. We retained all resulting indicator functions with non-zero regions fully contained in

(A [ B)c as the basis set. We split any indicator functions with non-zero regions

overlapping with A or B , and we rede�ned them to be non-zero only in the portions in

(A [ B)c. For the change of measure calculations, boundary conditions are not present,
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so we used all indicator functions unmodi�ed.

3. For the forward committor calculation we took the the guess function to be (x) =

1B (x). For the backward committor calculation we took the guess function to be

 (x) = 1A (x).

With an indicator basis, the DGA and MSM estimator (with appropriate state de�nitions) of

the forward committor q+ and change of measurew become similar [35]. We note however

that the DGA (as formulated here) and MSM approaches diverge both in DGA's use of

stopped trajectories and in the wayq+ and w (and q� ) are used to estimate TPT quantities

as described in Section 2.2.3.

We constructed the distance basis set and its guess function as follows:

1. We computeddA and dB as the distance in feature space (i.e. in 153-dimensional

Euclidean space) to the sampled points in statesA and B, respectively.

2. We seth(x) = dAdB =(dA + dB )2, which obeys the homogeneous boundary conditions

by construction.

3. We computed basis functions obeying the boundary conditions by multiplying each

coordinate of the pairwise distance vectorx by h(x): � i (x) = x i h(x). For the change

of measure calculation, we use� i = x i and add the constant function into the set of

chosen features.

4. To remove any linear dependencies introduced by enforcing the boundary conditions,

and to ensure numerical stability, we orthogonalized the basis set� i with respect to

the sampling measure (up to sampling error) using a singular value decomposition.

5. For the forward committor calculation we took the guess function to be (x) =

d2
B =(dA + dB )2. For the backward committor calculation we took the guess function

to be  (x) = d2
A=(dA + dB )2.
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Although here we use the backbone pairwise distances, we note that this construction proce-

dure could be used to generate basis sets obeying the homogeneous boundary conditions for

a choice of variables other than the pairwise distances such as dihedral angles, radial basis

functions, or soft indicator functions.

The indicator and TICA basis sets are the most widely used in the MSM literature.

Various alternatives have been proposed speci�cally in the context of spectral estimation

[49, 50, 51, 52]. In our previous work [35], we considered a basis set based on di�usion maps

[37]. Due to the size of our trp-cage data set (� 106 datapoints), the O(N 3) scaling of the ma-

trix diagonalization associated with the di�usion map proved prohibitively computationally

costly without subsampling and out of sample extension.

Delay Embedding

Application of DGA as described so far assumes that the underlying processX t is Markovian;

the conditional expectations that DGA seeks to approximate are not fully de�ned ifX t is

not Markovian. Yet, in the previous section we described an approach to building a basis set

for DGA consisting of functions of only a subset of the full collection of variables (selected

pairwise distances). Though the dynamics of this subset are not strictly Markovian, in

Section 2.4 we show that, at least in the speci�c context of the trp-cage system, the remaining

degrees of freedom relax su�ciently fast that DGA yields accurate results.

However, in some circumstances, one may only have access to a small number of variables

that are insu�cient to specify the dynamics. This situation is typical when the data are from

an experiment. In this case, we can construct a more expressive representation of the system

from time-lagged images, i.e., ifX t is not itself Markovian we can instead apply DGA to the

augmented process�X t = ( X t � M� ; X t � (M � 1)� ; : : : ; X t ) [35]. For large enoughM one can
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expect �X t to be nearly Markovian. State space augmentation was also used in the history-

augmented MSM (haMSM) approach of ref. 53 to obtain accurate MFPT estimates at all lag

times. Our approach di�ers in that we construction our basis on the delay embedded space,

whereas in the haMSM approach the transition probabilities are conditioned on visiting

multiple clusters in sequence. In principle, one can explicitly include memory as de�ned by

the Mori-Zwanzig formalism [54], though our delay-embedding approach is computationally

more straightforward because it does not require choosing a form for the memory kernel and

then estimating it from data, both of which are quite challenging [55, 56].

In Section 2.4.5, we show that delay embedding can signi�cantly improve DGA estimates

when a small number of CVs is used to characterize molecular con�gurations. Writing the

values of the CVs at timet as the vectorX t , we construct the delay embedded process�X t .

We then construct a basis set following the recipe in Section 2.2.2 for the modi�ed distance

basis, but replacingX with �X . We then extend other functionsf of the CV space to the

delay-embedded space byf ( �X t ) = f (X t �b M=2c� ). This allows us to extend the statesA and

B (which can both be de�ned in terms of the CVs) as well as the functionsa and b in (2.7).

We then apply DGA as outlined above directly on the delay-embedded space.

2.2.3 Reaction rates and currents

Estimates of rates from simulations are frequently of interest because they can be compared

directly with experimental measurements, and they can provide indirect information about

mechanisms. TPT in principle provides not just rate estimates but reactive currents or

�uxes, which provide direct information about mechanisms. However, previous calculations

of reactive current have been limited to toy models and depictions of the reactive �ux between

metastable states can been di�cult to interpret. Working within the TPT framework and

building upon DGA approximations of w, q+ , and q� , in this section we introduce robust

estimates of the reaction rate and of an easily interpretable projection of the reactive current
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onto CVs (as opposed to over the network of metastable states).

There are various expressions for the rate in TPT. One approach is based on the rate

at which trajectories transition from A to B, RAB . If U is any set for whichA � U and

B � Uc then, for a continuous time process,

RAB = lim
t! 0

1
t

Z �
1U(x)T t [1Uc q+ ](x) � 1Uc(x)T t [1U q+ ](x)

�
q� (x)� (dx)

= lim
t! 0

1
t

Z �
1U(x)T tq+ (x) � T t [1U q+ ](x)

�
q� (x)� (dx); (2.30)

where the second line is obtained by noting that1Uc(x) = 1 � 1U(x). Here and below, for a

discrete time process the limit is removed andt is replaced by the unit of a single time step.

Expression (2.30) simply counts trajectories with forward crossings of the surface dividing

U and Uc, weighted by their probabilities that they start in A and end inB . Consequently,

when using this formula to estimate rates from data, only those trajectories that cross the

surface dividing U and Uc contribute. Because these trajectories are generally a small

fraction of the data, this results in relatively large variances in estimates. We can obtain

considerably better estimates by considering the isocommittor surfaces:U(z) = f x : q+ (x) �

z; x 2 Dg for z 2 (0; 1), and noting that RAB is independent ofz. Integrating (2.30) with

respect toz[57], then exchanging integrals overz with applications of T t and noting that
R1

0 1[0;z]
�
q+ (x)

�
dz = 1 � q+ (x), we �nd that

RAB = lim
t! 0

1
t

Z Z 1

0

�
1[0;z]

�
q+ (x)

�
T tq+ (x) � T t

h
q+ 1[0;z](q+ )

i
(x)

�
dz q� (x)� (dx)

= lim
t! 0

1
t

Z �
�
1 � q+ (x)

�
T tq+ (x) � T t � q+ (1 � q+ )

�
(x)

�
q� (x)� (dx)

= lim
t! 0

1
t

Z �
T tq2

+ (x) � q+ (x)T tq+ (x)
�

q� (x)� (dx); (2.31)

where we have made use of the fact that the integral of the Heaviside function (which enters

through the indicator functions) is the ramp function. This expression forRAB immediately
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suggests the estimator:

RAB �
1
t

X

i

q+ (X t^ T+
i

i )
�
q+ (X t^ T+

i
i ) � q+ (X 0

i )
�

q� (X 0
i )w(X 0

i ) (2.32)

for some small choice oft. Note the use of stopped trajectories in (2.32). For very small

values oft the inclusion of the stopping timeT+ has no impact. However, in our numerical

experiments we �nd that use of stopped trajectories improves the accuracy of (2.32) and, in

particular, (2.36) below, for most choices oft. Given an estimate ofRAB , the rate constant

is

kAB =
RABP

i q� (X 0
i )w(X 0

i )
: (2.33)

The denominator in 2.33 is the mean of the backward committor, which is the fraction of

time the system spends having last visited state A.

We can also use simulations to understand how reactive trajectories �ow through a CV

space. One way to do this is to partition the space into discrete states and then estimate

the reactive �uxes between pairs of states [58]. However, the resulting directed graph can be

complicated and di�cult to interpret. When the sample paths are continuous the reactive

�ux between neighboring values in CV space is can be summarized as a single vector �eld in

CV space. If� is a vector-valued CV andds is a bin in CV space of volumejdsj, the reactive

current at point s is

J �
AB (s) = lim

t; jdsj! 0

1
2t jdsj

Z �
T t [�q+ ](x) � � (x)T tq+ (x)

�
1f � 2dsg(x)q� (x)� (dx)

+
�

T t [1f � 2dsg �q+ ](x) � � (x)T t [1f � 2dsg q+ ](x)
�

q� (x)� (dx)

(2.34)

In appendix 2.6.2, we show thatJ �
AB (s) =

R
JAB �r � (x)� (� (x) � s)� (dx), and we established

23



that the projected reactive current satis�es

Z

@C�
J �

AB (s) � n
C � d�

C � =
Z

@C
JAB � nCd� C ; (2.35)

whereC� is any region of CV space such that its inverse image (under the CV mapping) in

the full con�guration space,C, containsA and does not intersectB . To estimate J �
AB from

trajectory data we have the following estimator:

J �
AB (s) �

1
2tjdsj

MX

i =1

q+ (X t^ T+
i (0)

i )
�

� (X t^ T+
i (0)

i ) � � (X 0
i )

�
1� 2ds(X

0
i )q� (X 0

i )w(X 0
i )

+
1

2tjdsj

MX

i =1

q+ (X t
i )

�
� (X t

i ) � � (X T � (t)
i )

�
1� 2ds(X

t
i )q� (X T � (t)

i )w(X 0
i )d (2.36)

Note that the lag time t in (2.32) and (2.36) need not be the same as the lag time� used

to estimate the committors q+ and q� . Even with perfect sampling and a perfect basis,

estimates of TPT quantities will depend ont, in contrast to � . Several considerations are

involved in the choice oft. For larger values oft (2.32) and (2.36) incur signi�cant bias due

to poor approximation of the t ! 0 limit in (2.31) and (2.34). On the other hand, for small

values oft, we found that (2.32) and (2.36) su�er large statistical errors. A full analysis of

error sources is beyond the scope of this work, and in practice we choose a lag time that

gives reasonable results for the change of measure and reasonable smoothness in the vector

�eld.

2.3 Simulation methods and choices

In this section, we specify the computational procedure to generate and analyze the data

set for the unfolding and folding of trp-cage. We describe preparing the system and its

underlying dynamics (Section 2.3.1), choosing collective variables based on their ability to

24



distinguish metastable states (Section 2.3.2), generating and validating the data set of short

trajectories (2.3.3), and de�ning the unfolded and folded states (Section 2.3.4).

2.3.1 System setup

Unless otherwise noted, all molecular dynamics simulations were performed with GROMACS

5.1.4 [59] and PLUMED 2.3 [60, 61, 62] using the CHARMM36m force �eld [63, 64, 65] in

the NVT ensemble at 300 K using the Langevin thermostat with a temperature coupling

constant of 10 ps� 1 applied to all atoms, and a time step of 2 fs. Bonds to hydrogen atoms

were constrained using the LINCS algorithm [66]. Electrostatic interactions were computed

using particle-mesh Ewald summation with a cuto� of 1.2 nm. Lennard-Jones interactions

were switched o� from 1.0 to 1.2 nm using the default GROMACS switching function.

The system was prepared from an NMR structure of trp-cage (PDB code 1L2Y [67]). The

protein was solvated in a 50 Å cubic box with the TIP3P water model [68] using CHARMM-

GUI 3.0 [69, 70]. 10 K+ and 11 Cl� ions were added, bringing the system to charge neutrality

and 150 mM KCl. The energy of the system was minimized until the maximum force was

below 1000 kJ/mol nm. The system was then equilibrated for 1 ns in the NVT ensemble

with position restraints (using a 1 fs timestep), 10 ns in the NPT ensemble with harmonic

restraints on non-hydrogen atom positions (force constant 400 kj/mol nm2 for backbone

atoms and 40 kj/mol nm2 for side chain atoms.) and a Parrinello-Rahman barostat with a

pressure coupling constant of 5 ps� 1, 5 ns in the NPT ensemble without position restraints,

and then 10 ns in the NVT ensemble without position restraints. The cubic box length was

determined from the restraint-free NPT equilibration run to be 4.48 nm and �xed at that

value after that run.
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2.3.2 Choice of CVs

The performance of DGA rests on having a data set with good sampling of all states that

contribute to the reaction mechanism. As mentioned in the Introduction, the available

physically weighted molecular dynamics data for trp-cage [42] contain few unfolding and

folding transitions. We thus sought to use enhanced sampling methods to generate a data

set with improved representation outside the stable states. To this end, we evaluated CVs

for their ability to control sampling and resolve the unfolded and folded states.

Based on previous studies [40, 44], we considered �ve CVs:

1. The radius of gyration of the C� atoms (Rg);

2. The root mean squared deviation (RMSD) of all C� atoms from their positions in an

equilibrated structure (RMSDfull );

3. The RMSD of the C� atoms of residues 2 to 9, which make up the� -helix in the native

state (RMSDhx);

4. The RMSD of the C� atoms of residues 11 to 15, which make up the 3-10 helix in the

native state (RMSD3� 10);

5. The end-to-end distance (d).

Rg, RMSDfull , and RMSDhx were used in ref. 40, and RMSD3� 10 was used in ref. 44 (there

de�ned only to residue 14), where they found that it was able to resolve several metastable

states identi�ed by spectral clustering.

To explore how these collective variables change as trp-cage unfolds, we ran a series of

Adiabatic Bias Molecular Dynamics (ABMD) [71] simulations to drive unfolding from the

equilibrated native structure. ABMD uses a ratchet-and-pawl-like bias to trap spontaneous

�uctuations that move the system forward in selected CVs. By applying ABMD with dif-

ferent combinations of the CVs above, we found that RMSDfull and RMSD3� 10 yielded
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reasonable control of the system and enabled exploration of all metastable states character-

ized in previous studies.

2.3.3 Generation of the DGA data set

To initialize a data set of short trajectories for DGA, we de�ned a grid of 64 points in

the space of RMSDfull and RMSD3� 10 (Figure 2.1). We then used 64 independent ABMD

simulations to steer the system to each of these points from the �nal structure from the

equilibration simulations described in Section 2.3.1. We ran each ABMD simulation for 1 ns,

saving the structure every 5 ps; the force constants were 1.25 kJ/(mol Å2) and 1.0 kJ/(mol

Å2) for RMSDfull and RMSD3� 10, respectively. From the set of all recorded structures, we

chose the 64 structures closest to the targets and equilibrated each for 1 ns with a harmonic

restraint with the same force constants as in the AMBD simulations. From each of the

resulting structures, we then launched 14 free simulations (with di�erent random number

generator seeds) of length 30 ns each, saving structures every 5 ps.

From this data set, we computed all possible two-dimensional potentials of mean force

(PMFs) involving the CVs listed in Section 2.3.2. We compared these PMFs with corre-

sponding ones from replica exchange umbrella sampling (REUS). Based on the DGA PMFs,

we used the RMSD of the� -helix (RMSDhx), and the RMSD of the 3-10 helix (RMSD3� 10),

and the end-to-end distance (d) to control the sampling. REUS window centers were placed

on a uniform 8 � 8 � 8 grid of these three CVs, with RMSDhx ranging from 0.3 to 2.8 Å,

RMSD3� 10 ranging 0.3 to 3.3 Å, andd ranging from 6 to 38 Å. This grid fully covered the

relevant areas of CV space identi�ed by previous simulations. The force constants for the

harmonic potentials for each window were 29.2 kJ/(mol� Å2) for RMSDhx, 20.3 kJ/(mol

� Å2) for RMSD3� 10, and 0.178 kJ/(mol � Å2) for d, following ref. 72. To initialize each

window, structures were taken from the DGA database that were closest to each window

center. The built-in replica exchange functionality of GROMACS was used to create a
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Figure 2.1: Initialization points for the data set of short trajectories. ABMD targets (sym-
bols) are overlaid on DGA PMFs (color scale and contours, spaced every 1kB T) for the
CVs used for steering. (left) The initial 64 ABMD targets were based on RMSDfull and
RMSD3-10; 14 free simulations of length 30 ns were launched from each of the structures re-
sulting from these ABMD simulations. (right) 64 ABMD targets in RMSDhx and end-to-end
distance added to ensure adequate sampling of the unfolded state; 2 free simulations of length
30 ns were launched from each of the structures resulting from these ABMD simulations.

three-dimensional replica exchange procedure, where structures from nearby windows were

periodically exchanged [73]. Every window was �rst simulated for 100 ps, with swaps at-

tempted between adjacent windows ind space (i.e., window centers with the same RMSDhx

and RMSD3� 10 values, but neighboringd values) every 10 ps. This was repeated for a total

of three 100 ps iterations, with the second and third iterations proposing swaps between

neighboring windows in RMSDhx and RMSD3� 10, respectively. This 300-ps procedure was

repeated until a total simulation time of 10 ns was reached for each window, with struc-

tures saved every 10 ps. Following this protocol, structures were exchanged across all of

the three-dimensional grid, with exchange probabilities in the range 10-60%. The PMF was

constructed by using the Eigenvector Method for Umbrella Sampling (EMUS) [74] extended
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to REUS [75]. The REUS simulations were run until the asymptotic variance of the PMF

dropped below 0.1(kB T)2 (Figure 2.10).

Figure 2.2: PMFs for the indicated CVs. Results shown are computed by DGA with the
modi�ed distance basis set and a lag time of 0.5 ns. We use a50� 50 grid to compute each
PMF. Similar results are obtained with other basis sets and REUS; see Figures 2.13, 2.14,
and 2.15.

The REUS PMFs suggested that the initial DGA data set did not adequately sample

con�gurations with RMSDhx > 1:5 (Figure 2.12, note the lack of sampling toward the

upper right areas of the plots compared with those in Figure 2.2). In this case several of the

basins are missing, and the RMSD over all bins is> 1:3 kB T. Therefore, we selected 64 more

points from a grid with RMSDhx > 1:5 and a range of end-to-end distances from our short
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trajectory data set. From each of these points, we released two new free molecular dynamics

simulations of length 30 ns (Figure 2.1B). With these additional trajectories, we obtained

good agreement between DGA and REUS PMFs. Adding the extra sampling improved the

PMFs involving RMSDhx the most, but other PMFs were also noticeably improved. The

data set used for all further DGA calculations thus contains a total of 1024 trajectories, each

of length 30 ns, with structures saved every 5 ps.

2.3.4 State de�nitions

We found that PMFs projected onto only global measures of unfolding (RMSDfull , Rg, and d)

did not have clearly identi�able unfolded basins (Figures 2.1 and 2.2). By contrast, the PMF

on the CVs tracking secondary structure (RMSDhx and RMSD3� 10) had clearly identi�able

unfolded and folded basins, as well as several intermediates. Based on this analysis, we took

the unfolded state to be

jRMSDhx � 2:15 j3

0:0083 +
jRMSD310 � 2:8 j3

0:1253 < 1: (2.37)

The folded state is

(RMSDhx � 0:3 )2

0:02892 +
(RMSD310 � 0:3 )2

0:04 2 < 1 and d < 17 : (2.38)

We included the end-to-end distance constraint on the folded state to exclude structures

which are extended but have the secondary structure intact.

Heterogeneous structures contribute to the unfolded state, making it challenging to de�ne,

and there is no guarantee that the choices above are optimal in any sense. Because we expect

unfolding and folding to be among the slowest motions of the system, an alternative would be

to de�ne the states in terms of the slowest mode of the system identi�ed by a dimensionality-

reduction algorithm. However, data-driven state de�nitions are often di�cult to interpret
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Figure 2.3: Top nontrivial TICA eigenvector averaged on the RMSDhx and RMSD3-10 CVs
with physical weighting. The unfolded and folded states are indicated in yellow with repre-
sentative structures. Intermediate states in Table 2.1 are marked and labeled.

physically, despite their theoretical justi�cations. Furthermore, data-driven state de�nitions

can be di�cult to incorporate into sampling algorithms. We thus use physical CVs for path

sampling, strati�cation, and state de�nitions, and we then check for consistency with a

data-driven state choice.

Figure 2.3 shows that the slowest mode of the system identi�ed by TICA applied to the

DGA data set correlates with the PMF and switches between low and high values in going

between the unfolded and folded states. Here and going forward, all functions we project

onto CVs are conditional averages of the form
R

f (x)� (� (x) � s)� (dx)=
R

� (� (x) � s)� (dx).

We estimate these by binning our CV space into bins, and for each binds, plotting:

R
f (x)� (� (x) � s)� (dx)
R

� (� (x) � s)� (dx)
�

P
i f (X 0

i )w(X 0
i ) 1� 2ds(X

0
i )

P
i w(X 0

i ) 1� 2ds(X
0
i )

: (2.39)
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We furthermore show in Section 2.4.2 that this mode correlates with the committor. We

thus feel that RMSDhx and RMSD3� 10 enable the clearest two-dimensional projection of the

reaction and present most of our results in terms of these CVs. In addition to the unfolded

and folded states, we de�ne four intermediate states U1, U2, L1, and L2 shown on Figure

2.3. In the next section, we apply our DGA and TPT formalism to show that trp-cage can

fold along an upper path through intermediates U1 and U2, or a lower path through L1 and

L2.

2.4 Trp-cage analysis

In this section, we evaluate how the three basis sets described in Section 2.2.2 (indicator

functions of pairwise distances, indicator functions of TICA coordinates, and pairwise dis-

tances modi�ed to satisfy the boundary conditions) impact the performance of DGA for

estimating PMFs, rates, committors, and reactive currents for the unfolding and folding of

the trp-cage miniprotein. Where possible, we compare our results with references obtained

by independent means.

2.4.1 Comparison of PMFs

Figure 2.2 shows PMFs computed on each pair of the physically motivated CVs with DGA

with the modi�ed distance basis set. The corresponding PMFs from REUS are shown in

Figure 2.11; di�erence maps comparing the results obtained with the two methods and three

basis sets are shown in Figures 2.13, 2.14, and 2.15. All of the main basins identi�ed by

REUS are present in the DGA PMFs, and there is good quantitative agreement between

REUS and DGA, with RMSDs of < 1 kB T for all three basis sets (that said, of these,

the distance indicator basis set results in the largest deviations). Consistent with their

agreement with the REUS PMF, the three DGA PMFs are in agreement with each other.

We did observe that REUS tends to give slightly �atter PMFs than DGA with all three basis
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sets. In principle, there are two sources of error in the DGA PMFs: (i) approximation error

from representing the true change of measure with a basis expansion and (ii) estimation

(sampling) error. Analysis of error in DGA will be the subject of future work. Error in US

is discussed in refs. 74, 75, and 76.

Table 2.1: CV values for metastable states.

State RMSDfull =Å RMSDhx=Å d=Å RMSD3-10=Å Rg/ Å

Folded 1.1 0.30 11.1 0.30 7.0
Unfolded 5.8 2.1 20.2 2.8 9.2
U1 2.4 0.34 13.1 1.2 7.3
U2 5.2 0.34 19.3 2.8 8.8
L1 2.2 1.2 9.5 0.30 7.2
L2 2.6 1.9 14.5 0.30 7.3

Figure 2.4: Equilibrium average solvent accessible surface area (SASA) projected onto the
RMSDhx and RMSD3-10 CVs for (left) trp-6 and (right) proline-12.

We found that the projection onto the RMSDhx and RMSD3-10 coordinates was best able

to separate the pathways and states of interest, so we now focus on this projection. Figure 2.3
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indicates the folded (lower left) and unfolded (upper right) basins, as well four intermediates.

The intermediates de�ne two pathways, which we label upper (with intermediates U1 and

U2) and lower (with intermediates L1 and L2). Table 2.1 gives the �ve CV values for each

of the six states.

To understand the characteristics of the intermediate states, we turn to Figure 2.4, which

shows the solvent-accessible surface area (SASA) of trp-6 on the left, and pro-12 on the right.

We �nd that the U2 intermediate state is characterized by partial solvation of the hydropho-

bic core, measured by the SASA of trp-6, and nearly full detachment of pro-12. Furthermore,

the U2 state is signi�cantly more extended than the lower pathway intermediates as measured

both by Rg and end-to-end distance. In addition to being more compact, with near-native

Rg values, L1 and L2 have near-native trp-6 and pro-12 SASA values, suggesting the hy-

drophobic core is fully formed. These intermediate states can be mapped to those previously

reported in the literature. Bolhuis and Jurazek [1] identi�ed three folding intermediates.

Our U1 and U2 intermediates roughly map onto their Pd and I intermediates, and our L1

and L2 intermediates roughly map onto their L intermediate. U1 and U2 also correspond to

states S7 and S0 identi�ed by Sidky et al. [44].

2.4.2 Comparison of committors

We next calculated both forward and backward committors using DGA with the three basis

sets and lag times ranging from 0.5 ns to 12 ns (Figure 2.5 and Figure 2.16). As they should,

the backward committors mirror the forward committors, so we focus our discussion on the

latter. The timescale of trp-cage folding is on the order of 5� s from both experiment [39]

and simulation[40], thus both our trajectory lengths (30 ns) and lag times are several orders

of magnitude shorter than the motions of interest, providing an appropriate setting in which

we expect DGA to show bene�ts.

In contrast to the PMFs, we found the committors to be sensitive to the choice of basis
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Figure 2.5: DGA forward committors. Left, middle, and right columns are computed with
the modi�ed distance, distance indicator, and TICA indicator basis sets, respectively. Top,
middle, and bottom rows are computed with lag times of 0.5, 2.5, and 7.5 ns, respectively.

set (and associated guess function). The modi�ed distance basis set, in addition to being

substantially faster to construct as it avoids slow and unstable high-dimensional clustering,

is less prone to discontinuities at the boundary than the distance indicator function basis

set. The TICA indicator function basis set performs similarly to the modi�ed distance

basis set and has the advantage over the distance indicator basis set that clustering on the

lower-dimensional subspace is signi�cantly faster and more stable.

For a given basis set, we found relatively little variation in the committors across lag times.
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This is in contrast to variational approach for conformational dynamics (VAC) algorithm,

where the results can strongly depend on the lag time [48] (although this can be mitigated

by using multiple lag times[77]). We postpone a full investigation of DGA's error properties,

and in particular its dependence on the choice of lag time, to future work.

Because we expect unfolding and folding to be among the slowest motions of the system,

we can validate the DGA committors by comparing them with the slowest mode of the system

identi�ed by TICA. Comparing Figures 2.3 and 2.5 shows that the largest TICA eigenvector

(estimated with a lag time of 0.5 ns) correlates almost perfectly with the estimated com-

mittors obtained with the modi�ed distance basis set, when projected onto RMSDhx and

RMSD3� 10. The agreement between these two independent calculations furthermore sug-

gests that the physically motivated CVs capture the behavior detected by the data-driven

method. In this projection, we see that the transition states fall where the SASA of trp-6

(Figure 2.4) changes rapidly.

As an additional validation, we used DGA with the modi�ed distance basis set and a

lag time of 0.5 ns (Figure 2.6) to compute committors on the CVs used by Juraszek and

Bolhuis [1]. When projected onto RMSD and RMSDhx, the positions of the transition

states in Figure 4 of ref. 1 fall in areas estimated to haveq+ = 0:5 (white in Figure 2.6).

The traditional shooting approach employed in ref. 1 is quite computationally costly and

provides information about only a limited number of structures. Our ability to capture the

transition states thus makes clear the bene�t of DGA. We discuss DGA's ability to provide

mechanistic information further in the next section.

2.4.3 Reactive currents

We computed reactive currents for the three basis sets using the estimator in (2.36) and

the committors from the the previous section (Figure 2.7). For this calculation, we use the

shortest lag time of 0.5 ns for both the committor and reactive current, though in principle
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Figure 2.6: Forward committor (left) and reactive current (right) projected onto the
RMSDhx and full RMSD CVs used in ref. 1. Results shown are computed with the modi�ed
distance basis set and a lag time of 0.5 ns.

they could be chosen separately. As previously, we primarily present our results projected

onto RMSDhx and RMSD3� 10. Overall the results for the three basis sets are similar, though

the distance indicator basis set exhibits greater noise around (RMSDhx, RMSD3� 10) = (1.3

Å, 1.3 Å), consistent with the plateau in the committor in this region.

The currents, which provide information directly about dynamics, con�rm the presence

of two paths for the folding process: an upper path with formation of the� -helix prior to

formation of the 3-10 helix, and a lower path with the order of these events transposed.

The upper path proceeds through intermediates U1 and U2, with folding beginning with

formation of the � -helix and partial desolvation of trp-6, followed by full formation of the

3-10 helix. The lower path proceeds through L1 and L2, with folding beginning with collapse

into the L2 intermediate with no � -helix, but the hydrophobic core fully formed, followed by

formation of the � -helix. Both of these paths correspond to troughs in the PMFs on these
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Figure 2.7: Folding (top) and unfolding (bottom) reactive current projected onto the
RMSDhx and RMSD3-10 CVs using (2.36) with the three choices of basis set. Left, mid-
dle, and right columns are computed with the modi�ed distance, distance indicator, and
TICA indicator basis sets, respectively. All computations use a lag time of 0.5 ns.

CVs.

Previous studies have found multiple pathways resembling the ones we �nd here. Kim

et al. [78] used di�usion maps to identify two pathways: one with tertiary contacts forming

�rst, followed by � -helix formation, and another with the order transposed. Jurazek and

Bolhius came to similar conclusions using transition path sampling [1].

An advantage of the reactive current is that we can use it to assign weights to the two

paths. By computing the relative �ux crossing RMSD3-10 = 1:8 Å with either RMSDhx < 1:4

Å (upper pathway) or RMSDhx > 1:4 Å (lower pathway), we conclude that 88% of the

reactive paths proceed by �rst forming the� -helix, and then the 3-10 helix and hydrophobic

core (i.e., the upper pathway). Although we are not aware of a previous estimate of the

reactive current for this system, we can compare these numbers to the frequencies with
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which transition path sampling sampled the pathways in ref. 1. There, Juraszek and Bolhuis

observed the pathway in which tertiary contacts form �rst (i.e., the lower pathway) 80%

of the time. The di�erence may be due to di�erent CV and state de�nitions (Jurazek and

Bolhuis [1] used 5 CVs in their state de�nitions , whereas we consider only RMSD3� 10 and

RMSDhx) or force �eld and setup di�erences.

2.4.4 Rates

Finally, we computed rates using the estimator in (2.30). We present our results as inverse

rates (unfolding and folding times) to make comparisons to lag times and trajectory lengths

clear. As mentioned previously, these times are expected to be on the order of microseconds.

In particular, Juraszek and Bolhuis used transition interface sampling to estimate inverse

unfolding and folding rates of 1.2� s and 0.4� s [40], though as noted previously those results

are for a di�erent model.

Figure 2.8: Inverse rates estimated for folding (left) and unfolding (right).
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All three basis sets gave rate estimates that were within an order of magnitude of those

numbers. However, the results for the distance indicator basis were markedly faster. Fur-

thermore, in all three cases, the inverse rate exhibited signi�cant dependence on lag time.

We do not show lag times> 12 ns since they su�er from pronounced statistical error due to

the limitations of our short-trajectory data set. Our analysis of the trajectory of the K8A

mutant suggests the need for a lag time of at least 100 ns (consistent with ref. 44), though

as discussed in the Introduction, those data do not contain a su�cient number of unfolding

and folding events to obtain accurate rate estimates. Juxtaposed with the lack of sensitivity

to lag time for the committor and reactive current, these observations suggest that DGA's

strength is in its ability to give statistical insight into mechanisms with relatively little data,

but that rates may be more e�ciently computed by methods that directly sample relevant

statistics such as strati�cation schemes[14].

2.4.5 Demonstration of delay embedding

As described in Section 2.2.2, delay embedding can be used to construct an approximately

Markovian process when the feature space does not fully capture the dynamics. To illustrate

this idea using our trp-cage data set, we restrict the feature space to the �ve physical CVs and

apply DGA with the modi�ed distance basis set on either the feature space itself or the delay-

embedded feature space. Figure 2.9 shows the reactive currents and committors resulting

from DGA on these two spaces. We �nd that the committor and current constructed from

the delay embedded representation largely agree with the DGA result constructed on the

153 pairwise distances. Without delay embedding, we �nd several qualitative disagreements,

in particular the U2 state has a committor value close to zero, and the reactive current does

not resolve the two pathways since many of the arrows point directly towards the folded

state.
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Figure 2.9: Comparison of DGA estimates for the forward committor (top) and reactive
current for folding (bottom) with the modi�ed distance basis set on a feature space restricted
to the �ve physical CVs (right) and a delay-embedded feature space (left). The delay-
embedded results are obtained with a delay of� = 0:125ns, N = 40 images, and a DGA lag
time of 0.5 ns.

2.5 Conclusions

In this paper, we have cast the dynamical Galerkin approximation (DGA) [35] for computing

chemical kinetic statistics from short trajectories in terms of the stopped transition operator.

This formulation can be immediately translated into expressions that can be applied to

simulation data. It also clari�es the role of the lag time, showing that estimates of conditional

expectations computed by DGA are exact in the in�nite basis and data limit, independent

of the choice of lag time.

To evaluate DGA's performance, we generated and carefully validated a data set of short

trajectories for the unfolding and folding of the trp-cage miniprotein, a well-characterized

system. We used umbrella sampling to validate our short trajectory data set by comparing
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the resulting PMFs. Quantitative agreement between the PMFs was observed, suggesting

that our short trajectory data set had su�cient sampling to compute dynamical statistics.

The PMF calculations furthermore enabled us to rapidly assess di�erent combinations of CVs

for their abilities to separate metastable states. The� -helix RMSD and 3-10 helix RMSD

in particular allowed us to resolve intermediates to a greater degree than found in previous

studies.

We next applied DGA to compute forward and backward committors between the un-

folded and folded states. We evaluated a number of competing estimators for the backward

committor and found that one based on forward trajectories weighted by the stationary

distribution gave the best results. The committors by themselves are not able to identify

reaction pathways or transition states, but they can be combined according to transition

path theory to extract this information. Speci�cally, we introduce a new estimator for the

TPT rate, and a projection formula and corresponding estimator for the reactive current

in a CV space. Our projected reactive current allows us to easily resolve and visualize the

pathways that the system takes in arbitrary CV spaces, and even lets us assign relative

weights to these pathways. Acquiring this kind of mechanistic information has previously

been possible only through transition path sampling and related methods; such methods do

not as readily allow exploration of CVs and state de�nitions because the sampling is linked

directly to them.

We introduced a simple procedure that takes an arbitrary set of molecular features and

adapts them to produce a basis set that satis�es the homogeneous boundary conditions.

Using pairwise distances as the molecular features, we compared the performance of such a

basis set with indicator functions on the molecular features and indicator functions on TICA

coordinates. Other basis constructions such as di�usion maps and radial basis functions are

possible, and we expect that the best choice will be system dependent. We applied our DGA

and TPT formalism to our data set, and identi�ed intermediate states and pathways which
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have been previously reported in the literature, providing further validation of our methods.

We found that the estimates of the TPT rate, while on the same order of magnitude as

previous estimates, nevertheless show signi�cant dependence on lag time. Finally, we showed

that delay embedding can be an e�ective strategy for constructing a molecular representation

with approximately Markovian dynamics from a low-dimensional feature space.

Our results suggest several interesting directions for future investigation. We have seen

that in our trp-cage application the choice of lag time has only a modest e�ect on DGA

estimates of conditional expectations, while TPT quantities, in particular the rate, depend

sensitively on lag time. Recently, we showed that integrating over lag times for VAC improves

the robustness of that method [77]. It will be interesting to see if an analogous strategy can

improve rate estimates from DGA. An in depth mathematical study of DGA's error and its

dependence on lag time along the lines of our previous analysis of VAC [48] is also in order.

By showing how DGA's results depend on the sampling measure, such an analysis could lead

to a practical scheme for targeting sampling to selected regions, just as our analysis of US

[8, 79] did [75]. This will be particularly important for systems that are not amenable to

the strategy that we took in the present study of using REUS for identifying regions of CV

space that require more sampling.

Though DGA has performed well in our tests so far, looking ahead to larger and more

complex systems, it may become necessary to move away from a Galerkin approach and

toward more �exible representations of the kinetic functions we seek to approximate. This

would be consistent with a trend toward using neural networks to represent eigenfunctions in

spectral estimation [30, 44, 77]. Indeed, some of the �rst estimates of committors from data

used neural networks [80, 81]. Introducing this higher level of representational �exibility

while maintaining the reliability we observe in our trp-cage application of DGA will be a

challenge.
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2.6 Appendix

2.6.1 Backward-in-time inner products

In this appendix we provide an elementary derivation of (2.24) which is key to our estimates

of inner products involving the stopped backward-in-time transition operatorSt . For the

purposes of this derivation we assume thatX t is a discrete time process (so thatt is a

non-negative integer) with probability density p(x1jx0) for transition from x0 to x1 and

stationary density � . The steady state backward-in-time processX � t then has transition

density

q(x0jx1) =
p(x1jx0)� (x0)

� (x1)
: (2.40)

From this expression we immediately �nd that

� (xt )q(xt � 1jxt )q(xt � 2jxt � 1) � � � q(x0jx1)

= � (x0)p(xt jxt � 1)p(xt � 1jxt � 2) � � � p(x1jx0) (2.41)

relating the steady state backward-in-time path density to the steady state forward-in-time

path density. Therefore, for any path functionF (x0; x1; : : : ; xt ) and any density� (equivalent

to � ) we �nd (recalling that here w = �=� ) that

Z
E

h
F (X 0; X � 1; : : : ; X � t ) j X 0 = x

i
� (x)dx

=
Z

F (x0; : : : ; x� t )

w(x0)
� (x0)q(x� 1jx0) � � � q(x� t jx� t+1 )dx0 � � � dx� t

=
Z

F (xt ; : : : ; x0)

w(xt )
� (xt )q(xt � 1jxt ) � � � q(x0jx1)dxt � � � dx0

=
Z

E

"
F (X t ; X t � 1; : : : ; X 0)

w(X t )

�
�
�
�
�
X 0 = x

#

w(x)� (x)dx: (2.42)
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We will use (2.42) to �nd an expression for

hg;S� t f i =
Z

E
�
g(x)f (X � (T � (0)^ t)) j X 0 = x

�
� (x)dx (2.43)

in terms of the forward-in-time process. If we choose

F (X 0; X � 1; : : : ; X � t ) = g(X 0)f (X � (T � (0)^ t)); (2.44)

then

hg;S� t f i =
Z

E
h
F (X 0; X � 1; : : : ; X � t ) j X 0 = x

i
� (x)dx: (2.45)

In terms of the forward process

F (X t ; X t � 1; : : : ; X 0) = f (X T � (t))g(X t ); (2.46)

where we remind the reader that:

T � (t) = max f s � t : X s 2 A [ Bg

with T � (t) = 0 if X s =2 A [ B for all 0 � s � t.

Applying (2.42) with this choice ofF yields (2.24):

D
g;S� t f

E
=

Z
E

"

f (X T � (t))
g(X t )

w(X t )

�
�
�
� X 0 = x

#

w(x)� (dx):
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2.6.2 A formula for the reactive current

It has been shown[57] that for a di�usion with generator

L f (x) =
X

j

bj (x)
@f
@xj

(x) +
1
2

X

ij

aij (x)
@2f

@xi @xj
(x) (2.47)

the reactive current is the vector �eld given by

(JAB )i = q+ (x)q� (x)Ji +

� (x)q� (x)
X

j

aij (x)
@q+
@xj

(x) � � (x)q+ (x)
X

j

aij (x)
@q�
@xj

(x); (2.48)

whereJ is the equilibrium current:

Ji = � (x)bi (x) �
X

j

@[�a ij ]

@xj
(x): (2.49)

To project the current onto a CV space of interest, we take the dot product withr � for any

smooth CV � and, using the identity

Ji � r f (x) =
� (x)

2

�
L f (x) � L y

� f (x)
�

; (2.50)

which follows from direct manipulations, we can write

JAB � r � (x) =
� (x)

2

�
q� (x)L [q+ � ](x) � q+ (x)L y

� [q� � ](x)
�

(2.51)

for x 2 (A[ B)c. This formula is not useful computationally since it still contains a backward-

in-time generator. To compute statistics from data, we need to formulate their estimators

as expectations against the stationary distribution since this (1) permits the use of the

adjoint relation to clear away backward transition operators and (2) is consistent with our
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reweighting scheme. To this end, we de�ne the projected reactive current as

J �
AB (s) =

Z
JAB (x) � r � (x)� (� (x) � s)dx = lim

jdsj! 0

1
jdsj

Z

f � (x)2dsg
JAB (x) � r � (x)dx; (2.52)

whereds 2 (A [ B)c is an in�nitesimal region of CV space withs 2 ds, and f x : � (x) 2 dsg

does not intersectA [ B: Using (2.51) and the fact thatLq+ = 0 and L y
� q� = 0 on (A [ B)c,

we have

J �
AB (s) = lim

jdsj! 0

1
jdsj

Z
1f � (x)2dsg

� (x)
2

�
q� (x)L [q+ � ](x) � q+ (x)L y

� [q� � ](x)
�

dx

= lim
jdsj! 0

1
jdsj

Z
1f � (x)2dsg

� (x)
2

�
q� (x)L [q+ � ](x) � q� (x)Lq+ (x)� (x)

� q+ (x)L y
� [q� � ](x) + q+ (x)L y

� q� (x)� (x)
�

dx:

(2.53)

Writing this expression in terms of the transition operator and canceling terms, we �nd that

J �
AB (s) = lim

t; jdsj! 0

1
2t jdsj

Z
1f � (x)2dsg � (x)

�
q� (x)T t [q+ � ](x) � q� (x)T tq+ (x)� (x)

� q+ (x)(T t )y
� [q� � ](x) + q+ (x)(T t )y

� q� (x)� (x)
�

dx

= lim
t; jdsj! 0

1
2t jdsj

Z
� (x)q� (x)

�
1f � (x)2dsg

�
T t [q+ � ](x) � T tq+ (x)� (x)

�

+
�

T t [q+ � 1f � 2dsg](x) � T t [q+ 1f � 2dsg](x)� (x)
� �

dx; (2.54)

where the second equality follows from the de�nition of the adjoint(T t )y
� .

Expression (2.54) forJ �
AB (s) can be directly translated into an estimator for computing
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from short-trajectory data:

J �
AB (s) �

1
2tjdsj

MX

i =1

q+ (X t
i )

�
� (X t

i ) � � (X 0
i )

�

� q� (X 0
i ) 1� 2ds(X

0
i )w(X 0

i )

+
1

2tjdsj

MX

i =1

q+ (X t
i )

�
� (X t

i ) � � (X 0
i )

�

� q� (X 0
i ) 1� 2ds(X

0
i )w(X 0

i ): (2.55)

Finally, without a�ecting the t ! 0 limit, we can stop our trajectories when they exit or

enter A [ B , yielding the estimator

J �
AB (s) �

1
2tjdsj

MX

i =1

q+ (X t^ T+ (0)
i )

�
� (X t^ T+ (0)

i ) � � (X 0
i )

�

� q� (X 0
i ) 1� 2ds(X

0
i )w(X 0

i )

+
1

2tjdsj

MX

i =1

q+ (X t
i )

�
� (X t

i ) � � (X T � (0)
i )

�

� q� (X T � (0)
i ) 1� 2ds(X

t
i )w(X 0

i ) (2.56)

which, in our experience, outperformed (2.55) for larger values oft. Note that we could have

canceled additional terms in (2.54) to yield a more concise estimator. However, we found

that the estimator (2.56) gave less noisy results.

2.6.3 Reactive current on a CV space

We now establish that our projected reactive current gives the �ux over surfaces in CV

space. We assume that our CVs are smooth and that, for some subsetC� of CV space with

smooth boundary, the setC = f x : � (x) 2 C� g contains A and does not intersectB . We
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will establish that for such a subset,

Z

@C�
J �

AB (s) � n
C � d�

C � =
Z

@C
JAB � nCd� C : (2.57)

Here n
C � is the outward pointing normal vector to the boundary@C� of C� , nC is the

normal vector to the boundary@Cof C, �
C � is the surface measure on@C� and, � C is the

surface measure on@C. The signi�cance of (2.57) is that it shows that our de�nition of J �
AB

preserves reactive �ux across surfaces in the CV space so that statistics of reactive paths

could, in principle, be computed directly fromJ �
AB .

Let f � be a smooth function on CV space that is equal to 1 onC� and equal to 0 forx a

distance of more than� from C� . Applying the divergence theorem and integrating by parts

we �nd that

Z

@C�
J �

AB (s) � n
C � d�

C � =
Z

C �
divJ �

AB (s)ds

= lim
� ! 0

Z
f � (s) divJ �

AB (s)ds

= � lim
� ! 0

Z
J �

AB (s) � r f � (s)ds: (2.58)

Inserting our de�nition of J �
AB we �nd that

Z

@C�
J �

AB (s) � n
C � d�

C � = � lim
� ! 0

X

j

Z Z
JAB (x) � r � j (x)� (� (x) � s)

@f� (s)
@sj

dxds

= � lim
� ! 0

X

j

Z
JAB (x) � r � j (x)

@f�
@sj

(� (x))dx: (2.59)

Using the chain rule the last expression can be rewritten as

Z

@C�
J �

AB (s) � n
C � d�

C � = � lim
� ! 0

Z
JAB (x) � r f � (� (x))dx: (2.60)
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Integrating by parts, taking the � ! 0 limit, and applying the divergence theorem again

yields (2.57).

2.6.4 Linear Perturbation Theory

It has been shown that the largest source of error in most Markov state modelling procedures

is sampling error [82]. Since we expect DGA to behave similarly, we therefore would like

to develop tools to assess the magnitude of sampling error and to guide the allocation of

computational resources so as to reduce error as e�ciently as possible. In this section and

the next, we state an asymptotic error formula for the DGA method.

Suppose we have a linear systemAx = b; and an approximate systemÂx̂ = b̂. We want

to estimate the error vectorx̂ � x. Our basic tool is the �rst-order perturbation estimate to

the di�erence between the original system and the estimated system:

x̂ � x = A � 1(b̂� Âx ) (2.61)

For an in depth explanation, see Ref. 83, section 3. The estimation error in the DGA

forecast function is then:

E
� Z

(u(x) � û(x))2� (dx)
�

= E

2

6
4

Z
0

@
X

j

� j (x)( v̂j � vj )

1

A

2

� (dx)

3

7
5 (2.62)

= E

2

6
4

Z
0

@
X

jk

� j (x)(A � 1(b̂� Âv)) j

1

A

2

� (dx)

3

7
5 (2.63)

=
Z X

jk

� j (x)� k(x)� jk � (dx) (2.64)

=
X

jk

C0
jk � jk ; (2.65)
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where

� jk = E[(A � 1(b̂� Âv)) j (A � 1(b̂� Âv)k)] = Cov[A � 1(b̂� Âv)]: (2.66)

To estimate the covariance matrix� from data, we use the DGA estimates ofA � 1 and v in

2.66, Substituting the DGA de�nitions of the matrix Â and vector b̂, we have

b̂� Âv =
1
N

X

j

�( X 0
j )

0

B
@u(X 0

j ) � u(X � ^ T+

j ) + �
(� ^ T+ )� 1X

t=0

�( X t
j )

1

C
A (2.67)

De�ne the residual

Rj = u(X 0
j ) � u(X � ^ T+

j ) + �
(� ^ T+ )� 1X

t=0

�( X t
j ) (2.68)

Therefore, we have the estimator:

�̂ jk =
1

N 2

X

i

[Â � 1�( X 0
i )]j [Â � 1�( X 0

i )]kR2
i

�

 
1
N

X

i

[Â � 1�( X 0
i )]j Ri

!  
1
N

X

i

[Â � 1�( X 0
i )]kRi

!

: (2.69)

Global estimation error estimates can then be obtained from (2.65).

2.6.5 Optimal Sampling Distributions

To compute the optimal sampling distribution, we �rst write down an ansatz for the sampling

distribution:

� (dx) =
X

`

w`1S`
(x)� ` (dx)

R
1S`

(x)� ` (dx)
(2.70)

with
P

` w` = 1: The setsS` are disjoint sets such that
S

` S` = D [ A [ B: In practice,

we often chooseS` to be a set of bins on a low-dimensional CV space which are capable
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of resolving the highest free-energy barriers. The distributions� ` are arbitrary but �xed

sampling distributions on each of the setsS` : We then write, for example, the matrix element

estimator as

C�
jk =

X

`

w`
N`

X

i

� j (X 0
i )� k(X � ^ T+

i )1S`
(X 0

i ); (2.71)

where N` =
P

i 1S`
(X 0

i ) is the number of samples in binS` : With this estimator of the

inner products, our sampling measure does not depend on the number of samples in each

bin in expectation, and so our goal will be to minimize the estimation error over all choices

of the N` subject to the constraint
P

l N` = N: We do this by substituting the sampling

distribution ansatz (2.70) into the covariance matrix estimator (2.66) to obtain:

� jk =
X

`

w2
`

N`

(
1

N`

X

i

[Â � 1�( X 0
i )]j [Â � 1�( X 0

i )]kR2
i 1S`

(X 0
i )

�

 
1

N`

X

i

[Â � 1�( X 0
i )]j Ri 1S`

(X 0
i )

!  
X

i

[Â � 1�( X 0
i )]kRi

!

1S`
(X 0

i )

)

(2.72)

De�ning the factor in curly brackets to be Vjk` ; we see that the global error is then given by

error =
X

`

w2
`

N`

X

jk

C0
jk Vjk` (2.73)

Since asymptoticallyVjk` does not depend onN` ; the minimizer of the global estimation

error over N` subject to the constraint
P

` N` = N is then:

N �
` = N

P
jk C0

jk Vjk`
P

jk` C0
jk Vjk`

(2.74)
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2.6.6 Supplemental �gures

Figure 2.10: EMUS asymptotic variance for REUS PMFs.
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