
THE UNIVERSITY OF CHICAGO

A PRINCIPLED FRAMEWORK FOR ADAPTIVE LOSSY DATA COMPRESSION

WITH LINFINITY ERROR GUARANTEES

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

BRUNO BARBARIOLI

CHICAGO, ILLINOIS

DECEMBER 2023

Copyright © 2023 by Bruno Barbarioli

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . vii

ACKNOWLEDGMENTS . viii

ABSTRACT . ix

1 INTRODUCTION . 1

2 HIERARCHICAL RESIDUAL ENCODING FOR MULTIRESOLUTION TIME SE-
RIES COMPRESSION . 2
2.1 Introduction . 2
2.2 Background . 5

2.2.1 Time Series Compression Basics . 5
2.2.2 Compression with BoundedL1 Error 7
2.2.3 The Multiresolution Problem . 10

2.3 Mathematical Intuition . 12
2.3.1 Residualization . 12
2.3.2 Relevance to Time Series Compression 13
2.3.3 Novelty . 15

2.4 Hierarchical Residual Encoding . 15
2.4.1 Algorithm Basics . 16
2.4.2 Algorithm Description . 18
2.4.3 Decompression . 20

2.5 Optimizations . 21
2.5.1 Algorithmic Optimizations . 22
2.5.2 Implementation Optimizations . 25
2.5.3 Extensions . 27

2.6 Related Work . 30
2.7 Experiments . 32

2.7.1 Datasets . 32
2.7.2 Baselines . 33
2.7.3 Performance Overview . 34
2.7.4 Compression Ratio . 35
2.7.5 Compression and Decompression . 36
2.7.6 Edge Retrieval Experiments . 38
2.7.7 Micro-benchmarks . 40
2.7.8 Additional Experiments . 43

2.8 Conclusion . 45

iii

3 RASTERSTORE: ADAPTIVE COMPRESSION FOR FULLY RASTERIZED GEOSPA-
TIAL DATA . 46
3.1 Introduction . 46
3.2 Preliminaries . 48

3.2.1 Compression Basics . 49
3.2.2 RasterStore Overview . 50

3.3 Our Method . 51
3.4 Optimizations . 53

3.4.1 Statistical pivot selection . 54
3.4.2 Pivot selection given the ratio . 56
3.4.3 Ratio selection given the pivot . 58
3.4.4 Pivot and ratio selection . 59

3.5 Experiments . 61
3.5.1 Datasets . 62
3.5.2 Baselines . 62
3.5.3 Main Experiments . 63
3.5.4 Micro-benchmarks . 68

3.6 Conclusion . 74

4 GEOSPATIAL CASE STUDY: THE SOCIOME DATA COMMONS 75
4.1 Introduction . 75
4.2 Materials and Methods . 76
4.3 Software Implementation . 77
4.4 Governance and Sustainability . 78
4.5 Asthma Pilot Methodology . 79

4.5.1 Geocoding . 80
4.5.2 Missing data . 80
4.5.3 Outcome de�nition . 80
4.5.4 Spatial clustering . 81
4.5.5 Sociome Data Commons . 82
4.5.6 Model . 83
4.5.7 Evaluation . 85
4.5.8 Protocol testing . 86
4.5.9 Challenges . 86

4.6 Results . 86
4.6.1 Sociome Data Commons . 86
4.6.2 Asthma pilot results . 88
4.6.3 Sociome Data Commons datasets . 89

4.7 Conclusion . 91
4.7.1 Platform discussion . 91
4.7.2 Analysis discussion . 92
4.7.3 Limitations . 94

iv

REFERENCES . 96

v

LIST OF FIGURES

2.1 (A) Illustrates an example time series, (B) illustrates a coarse approximation of
the time series, (C) illustrates the residual series, (D) illustrates a �ner approxi-
mation of the residual series, and (E) shows how the summations of the residuals
lead to progressively better approximations . 14

2.2 The main algorithmic work�ow. Compression �ows from left to right and top
to bottom just like reading text. Decompression �ows from bottom to top and
inverts residualization with a summation. 18

2.3 Breakdown of performance at di�erent block sizes 41
2.4 Compression ratio for di�erent starting levels 42
2.5 L1 ; L1; L2 errors for 6 levels . 42
2.6 Breakdown of performance for three di�erent pooling functions 44

3.1 How RasterStore allocates error in a given window. 52
3.2 Compression ratio improvement over QTRC . 63
3.3 Breakdown of performance for several di�erent data resolutions 68
3.4 Breakdown of performance for several di�erent window sizes 70
3.5 Breakdown of performance for several di�erent error allocations 70
3.6 Breakdown of performance for several �attening methods: row, window, contigu-

ous window . 72
3.7 Breakdown of performance for several pivot methods 73

4.1 SDC Guiding principles . 77
4.2 SDC Standards . 79
4.3 SDC Data pipeline . 84
4.4 Clinical Maps . 89
4.5 Sociome Maps . 91

vi

LIST OF TABLES

2.1 The compression ratios for the lossy baselines in the multiresolution setting com-
pared to HIRE (bottom). The single trivial resolution is reported for the lossless
baselines (top). Some of the values are above 1 due to the multiresolution sum
of di�erent thresholds. 36

2.2 Compression latency (s): sum of all resolutions (lossy) and single trivial resolution
(lossless). 37

2.3 Decompression latency (s): average of all resolutions (lossy) and single trivial
resolution (lossless). 38

2.4 This table compares di�erent edge retrieval protocols on four metrics: ingestion
latency, transfer size, retrieval overhead, local storage. HIRE has a much lower
latency in both ingestion and retrieval compared to other lossy baselines, while
improving on a lossless baseline by over 14x in terms of compression ratio. . . . 39

2.5 Compression ratio for di�erent resolutions on an edge device 40
2.6 Compression ratio and compression latency (s) of OS and MS on a small block.

The relative contribution to OS ratio is 0.114 for the optimum split pooled values
alone and 0.146 for storing the sizes alone. 45

3.1 Compression ratio for di�erent error thresholds (%) 65
3.2 Compression latency for di�erent error thresholds (s) 66
3.3 Decompression latency for di�erent error thresholds (s) 67

vii

ACKNOWLEDGMENTS

I thank my parents for their unconditional love and their support throughout my entire life.

This work wouldn't be possible without my adviser's, Sanjay Krishnan, amazing insights

and ideas and my main collaborators Gabriel Mersy and Stavros Sintos help.

viii

ABSTRACT

Recent advances in edge computing and networking have led to a renaissance in the �eld of

ubiquitous sensing. Emerging applications range from imaging in autonomous vehicles to

geospatial data in remote satellite imagery. For such data, storage and communication is a

major bottleneck and lossy data compression can help. However, lossy data compression is

not as well developed beyond �perceptual� data formats such as images, audio, and video.

The errors such algorithms introduce can interact with downstream sensing algorithms and

lead to unforeseen consequences. This dissertation develops a principled approach to lossy

data compression over structured arrays of �oating-point data. It presents algorithms that

guarantee thel1 error, or the maximum error over all elements. These algorithms rely

on di�erent combinations of �oating point quantization and spatial quantization, both of

which preservel1 guarantees, and thus can be adaptively interspersed depending on the

data. Results show improved compression ratios for high-resolution geospatial raster data

and novel algorithms for optimizing edge-resident time-series data.

ix

CHAPTER 1

INTRODUCTION

In recent years, the realm of edge computing and networking has witnessed remarkable

strides, igniting a resurgence of interest in ubiquitous sensing. As the computing infras-

tructure moves closer to the data source, applications are broadening their reach, from

autonomous vehicles utilizing real-time imaging, satellite systems capturing geospatial infor-

mation to ubiquitous sensing in farms and remote areas. These advancements have undoubt-

edly revolutionized the way we perceive and interact with the world around us. Nevertheless,

they have also precipitated new challenges, most notably in data storage and communication.

Data storage and communication bottlenecks can be a signi�cant hindrance to the func-

tionality of sensing systems. High-resolution data arrays are particularly demanding in terms

of storage space and bandwidth, making it increasingly di�cult to operate these systems e�-

ciently. In order to mitigate these challenges lossy compression has been widely used in order

to compress large scale data. Lossy compression introduces a trade-o� between compression

ratio and error introduced on the data. The greater the compression desired the worse the

reconstruction of the encoding.

In this dissertation we explore a special case of lossy compression, where the error is

bounded by the worst reconstruction obtained on all data points in the reconstructed set, i.e.

l1 error. We propose methods to compress multivariate time series data in a hierarchical

manner and raster geospatial data while respecting the user choice of al1 bound. Our

algorithms combine �oat point and spatial quantization with di�erent techniques in order to

improve the state of the art.

We evaluate our systems against several di�erent baselines at each domain, comparing not

only the compression ratio, but the latencies required to compress and decompress the data.

We show that our methods bring signi�cant advantages in their respective tasks improving

either the overall compression ratio or one of the latency metrics.

1

CHAPTER 2

HIERARCHICAL RESIDUAL ENCODING FOR

MULTIRESOLUTION TIME SERIES COMPRESSION

2.1 Introduction

In today's data analytics infrastructure, it is common for data storage to be separated from

computational resources?. For example, very large datasets can be stored in a block storage

system like Amazon S3 and only transferred to compute nodes for analysis. Similarly, in

edge computing, data might reside on edge nodes for privacy or cost reasons and only be

transferred to a central location when needed??. In such on-demand retrieval architectures,

the time needed to transfer data between storage and computation nodes is an important

bottleneck, and data compression is one of the main techniques for controlling the cost of

data movement.

Traditionally, data compression approaches are divided into two categories: lossless and

lossy. In lossless compression, the data are compressed and decompressed without loss of

any information. Examples of such approaches include dictionary coding for string com-

pression??, GZip/BZip for byte-sequence compression?, and turbo-coding for integer com-

pression?. In contrast, lossy compression allows for minor errors in the reconstruction that

would not a�ect a downstream application. By nature, lossy compression is mostly aimed

at high-dimensional quantitative data. Examples include JPEG for images?, H.264 for

video ?, and a variety of techniques for scienti�c data???. Lossy compression techniques

sacri�ce accuracy (the degree of errors in the reconstruction) for storage size (the size of the

compressed data).

To cope with ever growing datasets, lossy compression has been increasingly adopted in

edge-computing and sensing systems?????. Data compression can be pushed towards the

point of data collection to save on downstream data transfer, storage, and computation. For

2

example, a visual dashboard monitoring a sensor only needs the data to be accurate up to

the screen pixel resolutions. On the other hand, machine learning models that consume the

data are often robust to small amounts of imprecision in the input features. While such

�compression pushdown� can be extremely e�ective, it is most useful when there is only a

single downstream application consuming the data.

Multiple downstream applications can have di�ering accuracy demands (e.g., a visual

dashboard requires a1e-3 maximum error in all values, but the anomaly detection framework

only requires1e-1 precision). In such cases, the available pushdown strategies essentially

are: (Strict Encoding) encode the data once at the strictest accuracy demand, (Multiple

Encoding) re-encode the data at all of the di�erent accuracy demands, and (Lazy Encoding)

�rst encode and store the data at the strictest accuracy demand, then at retrieval time

decode the data and re-encode it at the error target. Thestrict encoding strategy has the

obvious drawback that it forces every application to pay the same data transfer cost as

the one with the strictest accuracy requirement. On the other hand, themultiple encoding

strategy allows di�erent applications to selectively retrieve data encoded at their particular

accuracy demands. However, the multiple encoding strategy has a steep cost in terms of

compression latency or compression throughput (i.e., linear in the number of applications),

and local storage (i.e., stores one encoding per application). Finally, lazy encoding does not

use as much storage as the multiple encoding strategy and has a lower transfer cost than

strict encoding. However, the decompression process is signi�cantly slower, since it requires

re-encoding the data.

This paper navigates this impasse on time series data and studies e�cient methods for

supporting multiple downstream consumers of lossy (or lossless) data. Ideally, it should be

possible to store asingle encoding that can be selectively decompressed at all of the di�erent

resolutions and thus mitigate the downsides of both strategies described above. We call this

problem the multiresolution compression problem, where the objective is to construct a sin-

3

gle encoding of a time series that can be decompressed at di�erent cell-level error tolerances

(hereafter calledL1 errors). While related problems have been proposed in a number of

adjacent areas such as in reduced-precision ML? and approximate query processing??; to

the best of our knowledge, multiresolution compression has not been extensively evaluated

in the data compression literature. This problem setting subtly changes the typical met-

rics of interest for data compression. An e�ective multiresolution compression algorithm:

(Compression ratio) should require signi�cantly less storage than a separate encoding at

each error tolerance; (Compression latency) should be signi�cantly faster to construct the

encoding than a separate encoding at each error tolerance; (Decompression latency) should

be faster to decompress data for higher error tolerances. This means that a multiresolu-

tion compression algorithm might not be the most e�ective at any single error tolerance,

but in aggregate across multiple tolerances, it outperforms the strict and multiple encoding

strategies.

This paper proposes an e�ective multiresolution compression algorithm, called Hierar-

chical Residual Encoding (HIRE), for univariate and multivariate time series data. HIRE

assumes a mini-batch data acquisition model where data are streamed to the system in

small blocks, and these blocks represent contiguous time-segments of collected data. HIRE

constructs a synopsis data structure through a recursion of partitioning and residualizing

steps. The partitioning step approximates a time series with a piecewise approximation,

and the residualizing step calculates a signal that represents the approximation error. This

error signal can further be approximated at increasingly �ner granularities. We �nd that

these residual signals are often highly compressible, since many values may lie under the

error threshold of the strictest application. To retrieve data at a particular error threshold,

we apply a simple summation of the preceding layers. This result is not surprising as such

residualizing operations are e�ective in time series forecasting?, and in di�erential equation

solvers?.

4

2.2 Background

First, we will motivate the general problem statement and give context to our contributions

in multiresolution compression. Through this paper, we will consider the following running

example.

[Edge Data Storage and Retrieval] Data transfer over a network is one of the most

expensive (in terms of cost and energy) tasks in any distributed sensing application. Many

recent sensing architectures argue for lazy data retrieval?, where data are persisted on

the edge for some period of time and only centralized if/when needed. Let's consider a

simpli�ed two server version of this architecture. Consider a sensor deployed at a climate

research observatory that collects a time series of numerical data. The data are compressed

online at an �edge server� during data collection (located at the observatory), and stored

locally for a maximum of 10 days. The compressed versions can be retrieved from the edge

server, transferred to a remote server (e.g., at a research university), and decompressed at

the remote server.

2.2.1 Time Series Compression Basics

Let us consider a time series with observations:

X = [x0; x1; : : : ; xT� 1]:

For now, let us assume that eachx i is a single �oating point number (i.e., a univariate time

series). We will relax this assumption later, but it will be easier to understand the baselines

in the univariate case. A compression algorithm consists of an encoder and decoder pair

CX = enc(X) X 0= dec(CX)

5

that produces a compressed representation ofX called CX and reconstructs an estimate of

the original time seriesX 0 from CX . Without loss of generality, we can considerCX to be a

vector as well. There are several important metrics of interest that describe the performance

of such a compression algorithm:

ˆ Compression Ratio. Let H (�) denote the size in bits of a vector. The compression

ratio is de�ned as H (CX)
H (X) . A lower compression ratio indicates better performance in

terms of storage. In our running example, the compression ratio directly a�ects how

much data are transferred from the edge to the remote server.

ˆ Compression Latency. The compression latency of an algorithm is the time needed

to produce CX from X . In our running example, the compression latency a�ects the

data collection throughput of the edge server.

ˆ Decompression Latency. The decompression latency of an algorithm is the time

needed to produceX 0 from CX . In our running example, the decompression latency

a�ects how much extra time beyond data transfer is spent on the remote server.

ˆ Reconstruction Error. The di�erence betweenX and X 0 is called the reconstruc-

tion error, for some measure of dissimilarity.In our running example, the reconstruction

error measures how di�erent the data processed on the remote server is compared to

the edge server.

While there are many such compression algorithms, we primarily focus on the ones with

deterministic L1 reconstruction error guarantees. That is, we bound the maximum allowable

error of the reconstructed time seriesX 0 = dec(enc(X)) with respect to the original time

seriesX by specifying an error threshold parameter" . The L1 reconstruction error jjX �

X 0jj1 is de�ned as the maximum absolute disagreement betweenX and X 0at any time-step

i :

L1 = jjX � X 0jj1 = max
i

jx i � x0
i j

6

We then enforce an error guarantee by ensuring that theL1 error is within the pre-speci�ed

threshold", which meansjjX � X 0jj1 � " . For example," may represent the maximum error

that the observatory is willing to tolerate in the reconstructed time series to avoid a negative

impact on subsequent weather forecasting tasks. We choose such guarantees because they

are the strictest and most compatible with a wide variety of applications. The main trade-o�

in most techniques is when" is increased (i.e., more error), the compression ratio decreases.

2.2.2 Compression with BoundedL1 Error

There is an extensive body of literature on time series compression techniques (refer to

survey ?). However, not all compression algorithms can provideL1 error guarantees. For

example, a spectral approach like PCA, or an FFT, can only control the average error but

not the worst-case error for any given observation. For techniques that do provideL1 error

guarantees, they generally follow the same design pattern composing three main components:

(1) Quantization, (2) Temporal Decorrelation, and (3) Byte Encoding.

Quantization

The most basic technique for compressing numerical data with an error guarantee is quanti-

zation. Quantization is the process of rounding a �oating point number to nearest valid value

of �xed precision. Even simple data quantization can be very e�ective and is employed in

Amazon Redshift?. Proceeding to the technical formulation of quantization, let us suppose

that x� , x+ are the minimum and maximum ofX respectively. De�neR� to be the relative

L1 error, i.e., a desired error tolerance relative to the range ofX :

R� =
"

x+ � x�

7

A uniform quantization scheme cuts the range[x� ; x+] into 1
R�

equal-sized buckets1. To

encode a dataset using this scheme, one sets each numerical value to its resident integer

bucket (note that the �oor function discretizes the formerly continuous input):

enc(x i) =
�

(x i � x�)
(x+ � x�)

�
1

R�

�
(2.1)

We examine the quantization formula, we notice that the main termb (x i � x �)
(x+ � x �) � 1

R�
c is

integer-valued and ranges from0 to d 1
R�

e. In its most basic implementation, we can assign

a �xed-length binary code to each of the integer values. This would result in storage size of

log2d 1
R�

e per values.

To decode, one simply reverses the transformation:

x0
i = dec(enc(x i)) = enc(x i) � R� � (x+ � x�) + x� (2.2)

As long as we also storex+ ; x� ; R� , we can translate the stored integer into its corresponding

�oating point quantum. Unfortunately, regardless of whether quantization is applied to a

column sampled from a normal distribution or to a time series with high autocorrelation, it

yields the same mapping.

Temporal Decorrelation

For this reason, either before or after quantization most time series compression algorithms

attempt to factor out all of the �predictable� terms, thereby only leaving uncorrelated er-

rors to be compressed. The simplest approach to accomplish this is delta-encoding, which

transforms a time series so that every value is represented as a successive di�erence from the

previous value:

x�
i = x i � x i � 1

1. In the degenerate case of� = 0 one just keeps each element ofX in its own bucket

8

This transformation is completely reversible with a left-to-right cumulative sum, so no in-

formation is lost. Since time series often have highly similar values along the time axis, the

range of delta values is smaller in magnitude and variation than the original values. Thus,

the deltas can often be e�ectively stored with reduced precision.

We can think of delta-encoding as a simple form of �predictive� compression. The previous

value x i � 1 can be interpreted as a simple model that predicts the value of its neighboring

element ?. The same trick would work for any functionf of the previousj lagged elements:

x�
i = x i � f (x i � 1; xi � 2; : : : ; xi � j)

Given the dependence of the current value on the previous (lagged) values, the structure of

delta encoding is suitable for autoregressive models of any �avor. It is worth noting that

the better the predictive model, the more skewed theX � values will be towards zero. If

the e�ective domain of the numbers can be greatly reduced, then fewer bits can be used to

representX � .

In general, any time series modeling technique can be used to decorrelate the data.

For example, there are a number of piecewise approximations for time series that exploit

trend structure in a typical time series. Piecewise approaches decompose a time series into

segments and use the segments to approximate the time series such as in Piecewise Aggregate

Approximation (PAA) ? and Piecewise Linear Approximation (PLA)?. Like delta encoding,

we can think of piecewise approximation as a simple model that predicts the next value. One

only needs to store the model and the compressed residual. If this model is accurate, the

residual error is likely very sparse and highly compressible.

9

Byte-Encoding

Finally, after quantization and decorrelation, general-purpose compression algorithms can

be used to simply translate the remaining data into a series of bytes and reduce redundancy.

Most of these approaches are based on run-length encoding or the LZ77 algorithm that look

for byte-level repetitions within sliding windows of data?. Generally speaking, byte-oriented

techniques are lossless�meaning that theL1 error is always0�so they can provide a trivial

error guarantee. In numerical data, the obvious limitation is that while two �oating point

numbers may be close to each other numerically, there might not be a very strong similarity

between their binary representations leading to poor compression with an LZ77 technique.

This is why quantization and decorrelation are generally applied �rst to exploit the numerical

structure.

2.2.3 The Multiresolution Problem

For any combination of quantization and decorrelation described above, the encoded rep-

resentation CX is tied to a speci�c target error. Let us consider how this can cause an

unnecessary performance bottleneck in our running example.

[Two Applications With Di�erent Error Tolerances] Consider two remote applications

consuming the climate data collected at the observatory. The �rst application is a nightly

report that is generated over all of the collected data. This report requires that every value

processed is no more than" = 1e� 4 of the true value. The second application is a minute-

by-minute anomaly detector to detect whether the observatory has abnormal readings. This

application is far more tolerant to error and requires that each value processed is only within

" = 1e � 1 of the true value.

If we use the state of the art, there are three clear solutions�all of which have signi�cant

drawbacks.

ˆ Compress at the Strictest Tolerance. The most obvious approach would be to

10

compress the data at the strictest error tolerance. Unfortunately, this would mean that

every retrieval would pay a data transfer cost of the strictest threshold.In our running

example, the frequent anomaly detection tests would have to repeatedly transfer data

encoded with a target of" = 1e � 4 due to the relatively infrequent nightly reporting.

ˆ Compress at All Tolerances. Another approach would be to encode the data at all

relevant error tolerances. While this approach allows each application to only transfer

data encoded at an appropriate error tolerance, it shifts the burden towards encoding.

Each additional error target would reduce the e�ective throughput available for data

collection, since we are compressing the data twice.In our running example, we would

cut our ingestion capacity by roughly a factor of two.

ˆ Lazy Re-Encoding. A hybrid approach would be to �rst encode the data at the

strictest error tolerance, then at retrieval time decode the data and re-encode it at the

error target of each retrieving application. The core challenge is that decompression

is often signi�cantly slower than compression in many popular algorithms, and this

hybrid approach incurs these costs at the edge.In our running example, the frequent

anomaly detection tests would trigger expensive re-encoding processes that would burden

the edge server.

These drawbacks suggest the need for a new type of time series compression algorithm

aimed at supporting multiple downstream applications. Ideally, there should be a single

encoding that can be selectively decompressed at di�erent target resolutions.

[Multiresolution Compression] A multiresolution compression algorithm produces a sin-

gle encodingCX that can be selectively decomposed into sub-encodingsC � 1
X ; : : : ; C � l

X with

corresponding error thresholds� 1; : : : ; � l :

CX = C � 1
X

M
C � 2

X

M
: : :

M
C � l

X

11

where
L

denotes some combination operation of the sub-encodings.

Decomposable encodings allow one to selectively transfer data for any target resolution.

The multiple encoding strategy described above can be thought of as a trivial case where
L

is simply the concatenation operation over independent encodings of the data. The key

issue with this strategy is that no work is shared between any of the encodings, and e�ec-

tively sharing work will be the main premise of this paper. We will show that an additive

decomposition, where
L

is a linear combination operation, is a simple but e�ective solution.

Consequently, the goal of this paper is to investigate such algorithms, understand how to

evaluate them, and how to optimize for di�erent performance objectives in the multiresolu-

tion setting.

2.3 Mathematical Intuition

We will provide some basic technical intuition on how such an algorithm can be constructed.

2.3.1 Residualization

From the previous section, letX be a time series andX 0 be an approximation of it (e.g., a

decoding of a lossy encoding). Theresidual series is also a time series and is de�ned as:

R = X � X 0

which is the di�erence between the original series and its reconstruction. It clearly follows

from this de�nition that if one knows the approximation and the residual, one can fully

reconstruct the original seriesX 0+ R = X . Such a decomposition of terms is called an

additive decomposition and is well-studied in modeling time-dependent phenomena outside

of data compression?. For example, it is common to decompose time series into a trend

component (which represents the general trend of the series) and noise (which represents

12

variation along the trend). The trend component would be ourX 0 and the noise would be

our R.

Additive decompositions are recursive in nature, since the residualR is itself another time

series and can be further decomposed. Now, let us suppose that we have an approximation

to R denotedR0. We can similarly de�ne a residual seriesS = R� R0. Through substitution,

we can see that our additive decomposition now looks like this:

X = X 0+ R0+ S

This process can be repeated, further and further decomposing the residual, which yields a

natural recurrence equation:

R0 = X (2.3)

A i = approx(Ri)

Ri = Ri � 1 � A i � 1

whereapprox(�) is some approximation function. We can clearly see from this equation that

for k such recursions:

X =
k� 1X

i =0

A i + Rk

We leverage this basic intuition to construct an e�ective multiresolution compression algo-

rithm. Written in another way the equation above is simply
P k� 1

i=0 A i � X . We need to

construct a sequence of successive approximations that reduces the size of the residual signal

until the residual is less than our desired error threshold.

2.3.2 Relevance to Time Series Compression

The next section will show how to leverage a series of successive re�nements of the residual

series to represent the original series. At each step, we compress the residual vector from

13

Figure 2.1: (A) Illustrates an example time series, (B) illustrates a coarse approximation of
the time series, (C) illustrates the residual series, (D) illustrates a �ner approximation of
the residual series, and (E) shows how the summations of the residuals lead to progressively
better approximations

the previous step, progressively increasing the �delity of the compression. As more of the

variation in the data is explained by each subsequent step, the residual vector becomes

smaller in magnitude and sparser.

Let us consider a concrete example. In Figure 2.1(A), we have plotted an example time

series. One can coarsely approximate this time series with a piecewise constant approxima-

tion of 3 segments (Figure 2.1(B)). Between this approximation and the original series, there

is a residual (Figure 2.1(C)). This residual can be captured by another piecewise constant

approximation with 6 segments (Figure 2.1(D)). As long as each subsequent approxima-

tion includes additional information (i.e., increasing the number of segments), the remaining

residual series reduces in magnitude. A summation of these approximations gets closer to

the original value (Figure 2.1(E)). While the intuition is simple, realizing this idea turns out

to be more di�cult. The next section describes how we can enforce an error guarantee in

this process of successive re�nement and how to implement such an approach e�ciently.

14

2.3.3 Novelty

Our new compression method for recursively approximating a time series has some similari-

ties with other classical mathematical methods for approximating functions such as Fourier

and Taylor. For instance, a Taylor series can in fact provide an upper bound error for each

distinct partial sum, and the error decreases as the size of the partial sum grows. However,

there are key di�erences in our formulation because of how we re�ne our approximation and

measure the resulting bounds. In particular, in series approximation, error is only used to

decide when to terminate the series (i.e., a stopping condition), which is entirely di�erent

from how we recursively approximate the error values themselves. We leverage the intuition

that residuals often contain a sparser signal than the function values. By recursively ap-

plying approximation to the residuals at increasingly granularity, the resulting residual gets

sparser (more blocks under the error threshold). This leads to more long runs of 0 values

and thus better compressibility. By setting the midrank function as the pool function, we

show that the L1 error is strictly non-increasing with respect to the level of the hierarchy,

a similar theoretical guarantee to the Taylor series.

The novelty of our submission is therefore: i) a new problem de�nition highlighting

the emerging need for multiresolution (de)-compression systems, ii) hierarchical recursive

approximation of residual vectors in the domain of time series compression withL1 guaran-

tees�which has not been proposed before, iii) the use of pool function properties along with

vector theory to propose linear time compression and decompression algorithms computing

the errors on the �y, and iv) practical implementation of the theoretical algorithms making

use of vectorization and parallel computing.

2.4 Hierarchical Residual Encoding

Based on our intuition from the previous section, we design an algorithm that constructs a

progressively re�ned set of residual signals. This algorithm is called Hierarchical Residual

15

Encoding (HIRE). We describe our method considering a univariate time series. We can also

handle multivariate time series by running independent encodings.

2.4.1 Algorithm Basics

Before we introduce the algorithm, it would be informative to de�ne a few general building

blocks. As before, letX = [x0; x1; : : : ; xT� 1] be a univariate time series represented as a

vector of data, wherex i 2 R and X 2 RT . We further assume that the user provides us

with an error " � or the strictest error threshold that the encoding must guarantee.

Quantized Pooling

HIRE relies on a piecewise approximation of each residual series: over disjoint windows, the

value of the window is approximated by a single scalar aggregate. To use machine learning

terminology, this operation is called (temporal) pooling. Pooling reduces the dimensionality

of a data series along the time axis over a series of �xed-size windows. The pooling operation

is de�ned by two parameters, an aggregation functionf and a time seriesX . In particular

let pf (X) : Rn ! R, pf (X) = f (x0; : : : ; xn� 1), for any positive integern 2. In other words,

a pool function provides a concise estimate of a given time window with a single value. The

choice of pooling function is a hyper-parameter and di�erent pooling functions have unique

properties. We can think of them as di�erent ways of approximating the values in a time

window. For a windowX = [x0; : : : ; xn� 1], we de�ne:

ˆ Mean: f (X) = 1
n

P
i x i . The mean value is a natural pooling function that minimizes

the squared error with respect to the window.

ˆ Midrank: f (X) = 1
2 (maxi f x i g � mini f x i g). We can show that midrank is the opti-

mum pool function to minimize theL1 error of the residual vector in each node of the

2. We slightly abuse the notation and useX as either the input time series with sizeT, or any time series
with size n.

16

hierarchy, as described in the next subsection.

ˆ Median: f (X) returns the median value of vectorX .

ˆ Random: f (X) = x i with probability 1=n. We can show that a random pooling

function is robust to seasonal variation within windows of a time series.

To e�ciently store the results of a pooling operation, we further quantize the aggregate

value to a particular error threshold (using the process described in Section 2). Quantization

ensures that all of the pool values are integers, so more e�cient compression methods can

be used to compress/decompress them. During the decompression we derive the pool values

P and transform them to the corresponding real values before we take their sum. Care must

be taken in how these values are quantized, and Section 2.2.2 describes how to translate" �

into a quantization threshold.

Spline interpolation

Pooling is generally a lossy operation forn > 1 and is only lossless forn = 1 (i.e., window size

of 1). Thus, inverting this operation will only give us an approximation of the original series.

To do so, we require some function that estimates the original time series from the pooled

values. We de�ne a spline functionsw(pf (X)) � X , wherew = jX j. The user can choose

the spline function that they prefer. Our default option is a simple interpolation function

that duplicates the valuepf (X), w times. In particular, sw(pf (X)) = [pf (X); : : : � w]. This

duplication-oriented spline can be thought of as constructing a step function interval with

length w and value pf (X). Speci�cally, the default spline computes a step function where

each interval captures a pooled value that coversw time steps. In doing so, we map from a

lower dimensional summary to an approximation of the input series of a certain coarseness.

With an increasingly smallerw, the step approximation ofX improves proportionally to w

itself.

17

Figure 2.2: The main algorithmic work�ow. Compression �ows from left to right and top
to bottom just like reading text. Decompression �ows from bottom to top and inverts
residualization with a summation.

Residual Vectors

The spline function returns an approximation of the original time series. LetRX = X �

sw(pf (X)) be the residual vector representing the error of the spline function with respect

to the original vector. The key insight of our work is that residual vectors are generally more

compressible than the original time series. It is clearly true thatX = RX + sw(pf (X)),

and we can plug in this approximation into our recurrence equation of the previous section

(Equation 2.3), whereapprox(Ri) = sw(pf (Ri)) .

2.4.2 Algorithm Description

The main idea is to run the procedure described above recursively in a hierarchical manner

following the recurrence described in Equation 2.3. For simplicity we consider that size of the

time series is a power of 2, soT = 2k . First, we check if theL1 norm of vectorX is at most

" � . If yes, then we can stop the recursion setting the pool value to0. Otherwise, we compute

the pool value pf (X) over the entire vectorX . As stated, we also apply quantization on

pf (X). To simplify the notation and the proposed procedure we use the same notation for the

pool values and the quantized pool values3. Then we setRX = X � sw(pf (X)) as described

3. Otherwise, we can consider that any pool function applies quantization before it returns the �nal result.

18

above. In the next level of the recursion, we call the same procedure twice: the �rst time with

input X RX [0; : : : ; T=2 � 1] and the second time with inputX RX [T=2; : : : ; T � 1].

Let Pi = [p(i;0); : : : ; p(i;2i � 1)], for i = 0; : : : ; k, be the vector of the pool values in thei -th

level of the hierarchy sorted from left to right. LetP =
S

i =0 ;:::;k Pi . We stop the recursion

when the error is at most" � or after having jX j = 1. In other words, as we traverse down the

hierarchy, there is a successively more accurate approximation of the residual at each level.

After running this algorithm, the quantized pool values can be stored with any byte-encoding

format.

We describe the pseudocode in Algorithm 1 (for simplicity, we describe the pseudocode

considering that P is a global set of variables over the recursion) and provide a visual in

Figure 2.2.

Algorithm 1: Hierarchical
Input : X; i; j; " �

Output: P
1 if jjX jj1 � " � then
2 p(i;j) = 0;
3 return ;

4 T = jX j;
5 p(i;j) = pf (X);
6 RX = X � sT

�
pf (X)

�
;

7 if T > 1 then
8 Hierarchical (RX [0; : : : ; T=2 � 1]; i + 1; 2 � j; " �);
9 Hierarchical (RX [T=2; : : : ; T � 1]; i + 1; 2 � j + 1; " �);

Intuitively, we can think of a binary tree structure where the original time series lies

in the root and its residual vector is split into two equal length sub-vectors creating two

children in the tree structure. In each node of the tree, we store the corresponding singular

pool value. Let T be the tree structure representing the hierarchical compression. For a

nodeu in T , let pu be the pool value in this node. For example, ifu is the j -th node in the

i -th level, we havepu = p(i;j) . Let also Ru be the residual vector that is found from our

19

algorithm at node u.

We note that it is not necessary to start the hierarchical compression from the zero level�

considering the entire time seriesX . Instead, we can start the hierarchical compression from

any level� , splitting the original time series into2� parts, X [0; : : : : ; T=2� � 1]; X [T=2� ; : : : ; 2�

T=2� � 1]; : : : ; X [(2� � 1) � T=2� ; : : : ; T � 1] and run the Hierarchical algorithm for each of

them independently. In fact, we mostly run the hierarchical compression for the last10 or

12 levels, i.e., we set� = k � 10 or � = k � 12 in our experiments.

Finally, we note that it is not necessary to keep the pool values in di�erent variables

p(i;j) or pu storing the indexes(i; j) or u. We only use this notation to make the description

of the algorithm easier. Algorithm 1 can put all pool values in a single tableP following

the ordering: P[h1] = p(i1;j 1) ; P[h2] = p(i2;j 2) for h1 < h 2 if and only if i1 < i 2 or i1 = i2

and j 1 < j 2. When the decompression algorithm needs to accessp(i;j) , it corresponds to

the elementP[2i + j � 1], so we have direct access inO(1) time. Furthermore, as we will

see in the next subsection, sometimes we might need to have access to the pool value of the

parent or the left (right) child of a node u. If u corresponds to thej -th node in the i -th

level thenp(i � 1;j mod 2); p(i+1 ;2�j) ; p(i+1 ;2�j +1) is the pool value of the parent, left child, and

right child, respectively.

2.4.3 Decompression

Before we describe how we can decompressP to derive an approximation with L1 recon-

struction of X (lossy) or the exact X (lossless) we show an interesting property of the

residual vectors over the nodes ofT . Let ui be the j -th node of the i -th level in the hi-

erarchy. Let �X = X [j � w; : : : ; (j + 1) � w � 1], where w = T=2i , be the corresponding

part of the original time-series in nodeui . Let u0 ! : : : ! ui be the path from the

root of T to ui . From their de�nitions, Rui = �X �
P

`� i sw(pu`). Hence, it follows that

maxhfj Rui [h]jg = jj �X �
P

`� i sw(pu`)jj1 , i.e., the L1 error of the sum of the spline vectors

20

from the root node to the current node with respect to the original�X vector, is the L1

error of the residual vectorRui . We extend the previous observation to each level ofT . For

each leveli � k let E i be the maximum L1 error of all residual vectors found at leveli .

Let E =
S

i � k E i . Our system compresses bothP; E using any known compression method.

If M1; M2 are the compression methods used forP; E, respectively, the overall compression

ratio of our method is H (M 1(P))+ H (M 2(E))
H (X) , where againH (�) denotes the size in bits.

Multiresolution Decompression Let us see how the decompression algorithm works

with our running example. Recall that we have two di�erent applications that require error

thresholds of" = 1e� 4 and " = 1e� 1 after retrieving data from an edge server. First, using

HIRE, we construct a compressed residual encoding with" � = 1e � 4. Along with every

retrieval request, a desired error threshold is sent" . The edge server �rst �nds the maximum

error Em such that Em � " . Then we transfer all compressed pool valuesPi for i � m, from

the edge server to the remote machine that made the request. Finally, the decompression

procedure runs on the remote machine, �ndingX 0 =
P

i � m sT=2i (Pi), where the function

sT=2i (Pi) takes as input the vectorPi and returns another vector repeating every value of

Pi , T=2i times. Using the observations above, we have the guarantee thatjjX � X 0jj1 � " .

2.5 Optimizations

In this section we describe multiple algorithmic and implementation optimizations that im-

prove the running time of our algorithms. In the previous sectionk = log T, i.e., the

maximum height of the tree in the compression algorithm. Recall that the execution of our

compression algorithm �nishes when theL1 error is at most " � , hence the �nal depth of the

recursion (or height of the tree) might be less thanlogT. We slightly abuse the notation

and we usek to denote the actual number of levels of recursion (or the actual height of the

tree) after �nishing the compression algorithm.

21

2.5.1 Algorithmic Optimizations

Compression

We �rst note that Algorithm 1 runs in O(kT) time. There are at mostk levels of recursion

and in each level we construct the residual vectors of all nodes. Hence, in each level we spend

O(T) time. We show how we can run Algorithm 1 in only linear,O(T) time.

The main observation is that we do not need to construct the residual vectors explicitly.

These vectors are helping to run the recursion algorithm and at the same time show what

is the maximum L1 error in each node. We claim that we can still run the same algorithm

without constructing the residual vectors. Letu be the j -th node in the i -th level and

let v0 ! : : : ! vi � 1 = vi = u be the path of the nodes from the root to nodeu. Let also

�X = X [j �w; : : : ; (j +1) �w� 1], for w = T=2i , be the subset of time seriesX that corresponds

to the part of nodeu. It is straightforward to see that: p(i;j) = pu = f
�

�X �
P i � 1

`=0 sw(pv`)
�

.

This is a very important observation because it shows that by using only the original time

series along with the previously computed pool values, we can get the new pool value that

we need to store and compress.

Next, we show an e�cient way to computef
�

�X �
P i � 1

`=0 sw(pv`)
�

. Of course, the actual

algorithm depends on the functionf . Hence, we check all of the main functions that we used.

This method can be extended to a large family of functions. For all functions we are using,

we have the next observation: it holds that eitherf
�

�X �
P i � 1

`=0 sw(pv`)
�

= f (�X)�
P i � 1

`=0 pv`

or f
�

�X �
P i � 1

`=0 sw(pv`)
�

= f (�X). It is easy to maintain (when needed) the term
P i � 1

`=0 pv`

during the execution of the compression algorithm. LetSv be the sum of all pool values

from the root to the node v. We can updateSchild (v) = Sv + pchild (v) in constant time.

Hence, we only focus on how to computef (�X) e�ciently. In particular, we aim to construct

a data structure D in O(T) time such that given a query range[a; b], computef (X [a; : : : ; b])

in O(1) time.

22

We start considering the midrank functionf . We pre-processX and we build a range

MAX/MIN data structure D using the LCA technique?. It is known that D can be computed

in O(T) time, it has O(T) space, and can answer a range MAX or MIN query inO(1) time.

Hence, we can run Algorithm 1 inO(T) time.

Next, we consider the mean functionf . Again, we need a data structure to �nd the mean

of X in a query range. We compute and store the pre�x sums ofX : D[h] =
P h

z=0 X [z].

Overall, we construct a data structureD in O(T) time such that given a range[a; b] we return

f (X [a; b]) = D[b]�D [a� 1]
b� a+1 in O(1) time. Again, we run Algorithm 1 for the mean function in

O(T) time.

It is straightforward how to get a random item in X [a; : : : ; b] e�ciently for the random

function f . We just get a random numbert 2 [a; b] and we return X [t]. So we can also run

Algorithm 1 in O(T) time for the random function.

Next, we note that it is also straightforward to run the compression algorithm for the

pool functions with quantization. The only di�erence is that when we �nd the value of

f
�

�X �
P i � 1

`=0 sw(pv`)
�

we compute inO(1) time the integer bucket it belongs to. Unfortu-

nately, to the best of our knowledge, there is not any known data structure to compute the

median function in a query range inO(1) time, using at most linear pre-processsing time.

Interestingly, the data structure we used for the midrank pool function is actually needed

in all pool functions to measure theL1 error in each node/level in the hierarchy. Previously,

having a residual vector we could �nd theL1 error by checking the absolute values of its

elements. In the optimum algorithm we do not construct explicitly the residual vectors,

so we cannot do the same procedure. Instead, we argue as before. From the de�nitions

it follows that Ru = �X �
P i

`=0 sw(pv`). Hence,eu = jjRujj1 = maxhfj �X [h] � Sujg =

maxfj maxhf �X [h]g � Suj; j minhf �X [h]g � Sujg. As we explained above, we can calculate

Su (from the parent node) in O(1) time. Using the same data structureD we used for the

midrank function ?, we can �nd the MAX and the MIN values of the original time series

23

X in a query range inO(1) time. Hence, we can compute theL1 error in a nodeu of T in

O(1) time. The overall running time of Algorithm 1 for every pool functionf we use (except

the median), including the error calculation, isO(T).

Decompression

The decompression algorithm we described in the previous section runs inO(kT) time, since

we take the sum of the residual vectors to retrieve the original time series or an approximation

of it. We show how we can execute the decompression algorithm in only linearO(T) time.

More speci�cally, the algorithm can be executed in time linear to the number of nodes in the

hierarchy that we need to retrieve to run the decompression procedure. While the algorithm

is more tedious to describe than the compression algorithm, it is independent of the pool

function f that we used in the compression phase.

For simplicity, assume that the decompression method needs to take the sum over all the

pool values (using spline interpolation) up to levelL � k. The algorithm can be extended in

case that we need to take the sum of vectors (starting) from di�erent levels. We describe an

algorithm doing it without computing the spline interpolation vectors explicitly. The main

idea is the following: we run a sweep-line algorithm starting from left to right maintaining

the total sum of all the corresponding pool values in the hierarchy. For example, imagine

that we are currently considering an indexh � T in a node u at level L. Let Sh be the

total sum of the pool values from the root tou. We observe that the decompressed value

is X 0[h] = Sh. Hence, the goal is to maintain the correct valuesSh over all indexesh from

left to right. In order to derive the value Sh from Sh� 1, we subtract the pool values that

correspond to the nodes that indexh � 1 belongs to and add the pool values that correspond

to the nodes that indexh belongs to. The pseudocode can be seen in Algorithm 2. The

while condition on line 5 checks if there is a change in the pool values from indexh � 1 to

h at level i . Then variable j stores the node at leveli that index h belongs to. We update

24

Algorithm 2: FastDecompression
Input : P
Output: X 0

1 S� 1 = 0;
2 for h = 0 to T � 1 do
3 i = L;
4 Sh = Sh� 1;
5 while h mod T

2i == 0 AND i � 0 do

6 j = h
T=2i ;

7 Sh = Sh + p(i;j) � p(i;j � 1);
8 i = i � 1;

9 X 0[h] = Sh

10 return X 0;

the value Sh subtracting the pool valuep(i;j � 1) (i.e., pool value in(j � 1)-th node at level

i) and adding the pool valuep(i;j) (i.e., pool value in j -th node at level i). We recall that

the notation p(i;j) is only used to simplify the description of the algorithm. We can always

access the pool value in thej -th node at the i -th level, taking the value P[2i + j � 1] in

constant time. Algorithm 2 visits each compressed value inP two times, one to add it to

the sum and one to subtract it from the sum. Hence, the running time isO(T).

2.5.2 Implementation Optimizations

Moving now from theory to practice, here we highlight a few best practices for implementing

a scalable encoder-decoder pair�that is, a pair with a low latency and runtime memory

footprint.

Compression

The �rst step in optimizing the encoder (Algorithm 1) is to convert the recursive formulation

to an iterative formulation�thereby avoiding the allocation of unnecessary stack space. At

each level, we apply the pool and spline operations in succession. A naive implementation of

25

pooling might map the function of choice to each individual window. However, there is a large

amount of extra work in that we might perform an unnecessary memory allocation operation

to rearrange the array into windows of sizen and then redundantly computew small sums�

only to eventually divide each sum by the exact same value. Instead, we can compute a pre�x

sum over the entire input with a single optimized function call and then in constant time

deposit each pooled value into a pre-allocated array. This technique exploits the vectorization

and instruction-level parallelism present in conventional superscalar processors.

Now suppose that we have a multivariate time seriesY 2 RT� p that consists ofp uni-

variate columns. We can apply the encoding algorithm to each column in parallel and thus

achieve a latency speed up. Further suppose that we havebblocks in each univariate column.

We can also apply the encoding algorithm to individual blocks�or groups of blocks, for that

matter�which introduces a more granular form of parallelism.

Decompression

As an alternative approach to the linear time technique expressed in Algorithm 2, we can also

in principle exploit threaded parallelism within the decoder. The HIRE decoding algorithm

must calculate a linear combination over a large number of recomputed spline arrays. This

summation does not need to be done in a sequential order due to the fact that the pooled

values are already in memory. Visually, we can partition the hierarchy along the depth axis of

the tree such that each individual spline reconstruction and summation operation (Figure 2.2)

is assigned to a single thread. As a concrete example, if ten residual subtraction operations

are performed during encoding, ten addition operations must be performed during decoding.

If we have two cores available, then we can assign �ve operation pairs (reconstruction and

summation) to one thread and the remaining �ve to the other thread. We then perform

a meta summation over the vectors returned by each thread which therefore yields the

reconstructed time seriesX 0.

26

2.5.3 Extensions

We extend HIRE to work with other error functions, and we show how we can split a time

series to optimize the hierarchical compression algorithm. Furthermore, we show how our

technique can be optimized to handle smoother reconstruction errors. We only show the

high level ideas and skip the low level details.

Lp error.

Our compression method can actually bound the error of anyLp norm, extending the pre-

vious results for theL1 norm. For simplicity we focus onL1, and L2 norms. The main

observation is that the residual vectorRX explicitly computed by Algorithm 1, or implicitly

computed by the optimized algorithm, contains the absolute di�erences from the original

vector. Hence, we argue that theLp error of a nodeu is the Lp norm of vector RX in node

u. More speci�cally, in line 1 of Algorithm 1, we check whetherjjX jj1 � " � . For any Lp

norm we can use the conditionjjX jjp � " � to check theLp error in the current node of the

hierarchical compression. If we want to measure the overallLp error of the compressed time

series we take the sum of the errors over the nodes within the same level. In particular, if

w1; : : : ; wn are the Lp errors of n nodes at levelh, then the overall Lp error at level h is

de�ned as
� P

i � n wp
i
� 1=p. We can show that the optimum pool function to minimize theL1

error is the median function, while the optimum pool function for theL2 error is the mean

function. The linear time optimized compression algorithm can be applied for theL2 error.

The L2 norm can be computed without constructing the residual vector explicitly by calcu-

lating pre�x sums for both the values of the original time series and their squared values.

The mean function can also be computed in constant time for each node as we described

in Section 2.5.1. For a generalLp error function, the compression algorithm runs inO(kT)

time, as we had with theL1 error (recall that k is the number of levels in the hierarchical

compression). Finally, we note that the linear time optimized decompression algorithm is

27

independent of the error function.

Optimum splitting

We also explore di�erent ways to split a time series during the compression algorithm. For

example, using the midrank function for bounding theL1 error, the best option is to split

the time series such that the maximum pairwise absolute di�erence of elements in each sub-

time series is minimized. Speci�cally, given a time seriesX with n elements we want to

�nd the element j such that maxf maxi � j X [i] � min`� j X [`]; maxi>j X [i] � min`>j X [`]g

is minimized. In order not to de�ne a di�erent optimization problem for every error and

pool function, we consider the following splitting function that can split a time series in any

scenario: split at the elementj such that the maximum squared error of the two sub-time

series is minimized. In particular, the maximum squared error of splitting a time seriesX

on j is de�ned asmaxf
P

i � j (X [i] � X̂ � j)2;
P

`>j (X [`] � X̂ >j)2g, where X̂ � j is the mean

of X [1]; : : : ; X [j] and X̂ >j is the mean ofX [j + 1] ; : : : ; X [n]. Intuitively, the maximum

squared error captures how homogeneous each sub-time series is. Ideally, we would like

to create homogeneous time series so that by applying a pool function we minimize its

error. It is known that both functions, maximum di�erence and max of squared errors, are

increasing with respect to the number of elements in a time series. Hence, we run a standard

binary search on the elements ofX and for each elementj we evaluate the splitting function

on the ranges[1; ::; j] and [j + 1; ::; n] corresponding to the left and right side of the split,

respectively. By constructing a data structure in linear time during the pre-processing phase,

we can evaluate the squared error of a query range inO(1) time. The binary search on a

residual vector of sizen takesO(log n) steps. Given an input time series of sizeT, the overall

compression algorithm takesO(T + 2k logT) = O(T logT) time. Finally, we note that while

non-trivial splitting functions can help to reduce the error faster, it should explicitly store

the size of each sub-time series in the hierarchical encoding.

28

Smoother reconstruction errors

One drawback of our solution is that we do not have any control of the errorsE in each level

of the hierarchy. Using the midrank function we know that these errors are non-increasing,

however there are onlyk of them and they might not be smooth. For example, as described

earlier, given a reconstruction error" , our method �rst �nds the largest error Em such that

Em � " . Recall that Em is the maximum error at them-th level of T . Then by transferring

the pool values stored in nodes with depth at most" , we make sure that the reconstruction

error is Em. However,Em might be much larger than". Here, we describe a few ways to

decompress in a larger variety of error thresholds without changing the main ideas of our

compression method. In particular, instead of de�ning the errors with respect to the levels

of T we de�ne them with respect to the nodes ofT .

Let eu = jjRujj1 be the L1 error in node u. Let E = f eu j u 2 T g contains all

errors in each nodeu of T . Given a reconstruction error threshold", we could traverseT

to �nd the set of nodes U" having the largest errors that are at most" . Then we transfer

only the compressed pool values of all the ancestor nodes (along withU") U � U" . For the

decompression method we compute the sum of the spline functions of the pool values inU.

It guarantees that the L1 error is at most " . While this method works, it is very ine�cient

to store and compress all errorseu in E because of the high compression ratio. Ideally, we

would like to keep the compression ratio as low as possible. Next, we describe three di�erent

ways to do it.

Imagine that the error in a nodeeu is high and the it remains high in the nextt levels in

the subtree ofu as we run the hierarchical compression method. For instance, assume that

the error is always at least� � eu for � < 1 in the next t levels. After the hierarchy visits

the nodeu at level i , we can directly jump to the leveli + t and continue the hierarchical

approach, skipping all of the intermediate levels in the subtree ofu. The selection of the

parameterst; � depend on a given compression ratio upper bound and the original errorsE

29

in the nodes ofT .

As we observe in the experiments, the compression ratio of our method is better than

the overall compression ratio of the other methods. Hence, we have the ability to store more

errors in the nodes and still improve on other techniques. However, we need to be strategic

about the selection of those nodes. Similar to what we had in the previous technique, if

the error at nodev is not much smaller than the error at its parent nodeu, i.e., ev � �e u,

then we can skipev from E. The real parameter� � 1 can be selected based on a given

compression ratio upper bound and the current errorsE.

Before our system transfers the pool values from the edge to the remote server, one idea

is to identify a set of nodes to transfer with error at most" , without storing any error value,

i.e., E = ; . In order to do so, we should spend some time during the decompression phase on

the edge server to identify these nodes. The idea is the following: in the edge server, before

we transfer the compressed data, we run a bottom-up procedure onT �nding the error in

each node that we visit until we �nd nodes with error greater than". Let U" be these nodes

and let U � U" be the setU" along with all of their ancestors. We send all of the pool

values stored inU to the remote server. While this method increases the overall time to

decompress the data, it has two signi�cant advantages. First, it has the lowest compression

ratio, since we do not need to store any errors. Second, the method is parallelizable, so it

can be executed extremely fast on the edge server.

We did not implement these methods in the current experiments. In most of the datasets

that we used, the errors are quite smooth over the levels ofT , so it was left to future work.

2.6 Related Work

There has been substantial work in lossy numerical compression. Beyond the earlier dis-

cussion and the baselines used in our evaluation, there has been work in lossy compression

for scienti�c data ???. Like our study, most of these techniques focus on spatio-temporal

30

data, where the data are organized on some continuous axis (such as space, time, or both).

Example of such techniques include SZ family of compression algorithms??? and the ZFP

algorithm ?. These algorithms follow a familiar structure to those described in our work, and

o�er L1 error guarantees. They generally pre-process/transform the data, quantize it, and

then apply a byte-level encoding algorithm. We omit an extensive comparison because the

problem settings are quite di�erent. Scienti�c data compression algorithms generally focus

on maximizing compression for data at rest, and the applicability of these techniques in an

online or mini-batch setting is more limited. Furthermore, to the best our our knowledge,

multiresolution extensions to these algorithms have not been developed.

There has also been signi�cant interest in multiresolution problems in adjacent areas. In

approximate query processing, the DAQ project? uses a vertical layout of �oating point

bits to construct incrementally more accurate query results with error guarantees. This

approach does no compression (i.e., it does not save on storage), but it does reduce the

query latency for aggregate queries. The MLWeaving project has a similar approach to

achieve machine learning training at di�erent levels of precision?. Similarly, multiresolution

trees have been widely applied in approximate query processing where data are aggregated

at hierarchy predicates???. Similar �multiresolution� results for aggregate queries are seen

in wavelet techniques for AQP?, online aggregation?, and sketching?. This work inspires

our approach in HIRE, but is unfortunately only restricted to answering aggregate queries

and not point-lookups. Wavelet techniques beyond the scope of traditional linear algebra

decompositions have also been explored for multiresolution matrix compression?.

Thus, we focus our study on a key set of baseline compression algorithms that: (1) can run

e�ciently in the online setting with rapid incoming data, (2) provide L1 error guarantees

for point queries, and (3) do not require dataset-speci�c modeling for compression. It is

worth mentioning recent data compression work that has been excluded from this study.

The DeepSqueeze project? uses an auto-encoder to learn a low dimensional set of features

31

that can represent the original dataset. In our experiments, we found that the �encoder�

portion of the auto-encoder was very large in size (often the same order of magnitude as

the data), and since it is dataset-speci�c, it has to be included in the compression ratio

measurement. The encoder is required to compress any new data that arrives. Similarly, we

build a simpli�ed version of Squish that works assuming column-independence?.

2.7 Experiments

We conducted most of the main experiments on an Intel NUC with a dual-core 2.30 GHz i3-

6100U processor, 16GB RAM, and a 256GB SSD.4 All implementations were done in Python

3.9. Our technique, in addition to each baseline, was applied to 7 di�erent multivariate time

series data sets from the UCI? repository. For HIRE and the relevant baselines, we use the

Turbo Range Coder to encode the �nal codes into bytes?.

2.7.1 Datasets

Our data sets are from four di�erent projects within the UCI repository and in each case

we used a subset of the entire data as described: Heterogeneity activity recognition data set

?, from which we used four di�erent data sets53:3MB each, phones accelerometer (PA),

phones gyroscope (PG), watch accelerometer (WA), watch gyroscope (WG); Sensors for

home activity monitoring (SHAM) data set ? 46:2MB ; Individual household electric power

consumption data set (IHEPC) 29:4MB ; Bitcoin heist ransomware address data set (BC)

?, 50:3MB . We removed all non-numerical columns, since numerical values are the focus of

our present research. We also removed missing data when present. As mentioned earlier,

we assume a mini-batch model for data arrival. Since HIRE assumes mini-batches that are

sized as powers of 2, we simply cut the di�erent datasets to a multiple of our block sizes.

4. Bu� failed on BC dataset. We ran LFZip on a comparable Macbook Pro with a 1.4 GHz quad-core i5
processor due to incompatibility.

32

This modi�cation does not change our experiments and is simply done for consistency.

2.7.2 Baselines

Our baselines feature both lossless and lossy techniques. For the lossless techniques, we

simply consider a single encoding of the data (i.e., it defaults to the �strict encoding� strategy

described before). Below is a brief description of each baseline:

ˆ Identity Gzip (IdG) : Lossless compression baseline; we apply Gzip to an array of

numbers represented as �oating point values.

ˆ Quantize (Q) : We convert each �oating point number to an integer according to a

user-de�ned error threshold, thereby saving exponent and mantissa bits (see 2.2.2 for

more details). The numbers are stored as integers with bitpacking. The compression

ratio is proportional to dlog2 1=�e which captures the e�ect of the error threshold�

alone on the size of the compressed representation.

ˆ Quantize Gzip (QGZ) : This method consists of a quantization step and Gzip as the

downstream compressor.

ˆ Quantize TRC (QTRC) : This method consists of a quantization step and the Turbo

Range Coder (TRC) as the downstream compressor. TRC uses a Burrows�Wheeler

transform (BWT) ? to rearrange blocks of values into runs of the same symbol (i.e.,

integer), and then applies an arithmetic encoder? during the entropy encoding step.

ˆ Sprintz (Spz) : We apply quantization to map to integer time series. First, it predicts

the current sample based on the previous sample and encodes its di�erence (see 2.2.2

for more details). Second, it bitpacks the errors and stores metadata to allow for

unpacking. Third, it uses run length encoding on blocks of all zero errors. Lastly, it

Hu�man encodes the headers and payload?.

ˆ AdaptivePiecewiseConstant (APC) Piecewise approaches decompose a time series

33

into segments and use the segments to approximate the time series. Our version of

the algorithm adaptively sizes segments to enforce an error bound?. The downstream

data are compressed with GZip.

ˆ Gorilla (Grl) : This technique employs a scheme that consists of a bitwise XOR

between pairs of consecutive values. It then produces a lossless encoding for each pair

based on the number of leading or trailing zeros and the meaningful bits present?.

The downstream data are compressed with GZip.

ˆ LFZip: This method employs a pipeline of causal prediction, quantization, and en-

tropy coding. It �rst uses a Normalized Least Mean Square �lter to predict the

next value in the sequence based on the previous values. Subsequently, the di�er-

ence between the prediction and the actual value is obtained and quantized to a user-

determined L1 error. Finally, a version of BWT is applied to the quantized data

?.

ˆ Bu� : This technique was designed to exploit bounded range and precision in �oating

point sensor data. It eliminates less-signi�cant bits by adjusting for a certain precision.

It also compresses the integer and mantissa bits independently?.

2.7.3 Performance Overview

Table 2.5 from Subsection 2.7.6 exempli�es the main argument behind the bene�ts of using

HIRE over competing methods. We show the compression ratio of the compressed data

at 10 di�erent error thresholds. The breakdown of compression ratio shows that at very

low thresholds, we can always choose an error threshold using HIRE that will yield a more

compressed representation than the competing methods. Hence, we need to encode the other

methods at all possible error thresholds. On the other hand, because of how our method

is constructed, we only need to store the lowest threshold and we are still able to retrieve

all of the intermediate thresholds by traversing the tree structure until we reach the desired

34

resolution.

Overall, we perform better than all of the competing methods when it comes to the

combined compression ratioof all resolutions considered. For the experiments that we per-

formed, 10 di�erent resolutions were chosen that are inside the scope of real world usage:

" � 2 f 0:15; 0:1; 0:075; 0:05; 0:025;

0:01; 0:0075; 0:005; 0:0025; 0:001g. A key factor motivating our choice of thresholds is that

for Quantize (Q) the combined compression ratio across the error thresholds adds up to ap-

proximately 1.0 regardless of the speci�c dataset. HIRE requires half of the space to store all

of the resolutions when compared to other baselines. Furthermore, the compression latency

of HIRE is signi�cantly better than methods with low compression ratios, again due to the

fact that we only need to run the encoder once to produce multiple resolutions.

2.7.4 Compression Ratio

We evaluated the compression performance of each method on all seven datasets. The

resulting lossy compression ratios comprised of all of the resolutions are displayed in the

bottom portion of Table 2.1; the single encoding compression ratios for the lossless baselines

are included in the top portion of the table. The best methods for asingle error threshold

scenario are Quantize Turbo Range Coder (QTRC) and Sprintz (Spz), but when summing

up all of the di�erent resolutions, their performance is on average two times worse than

HIRE. One exceptional case is the SHAM data set, where the performance was really close

to ours. On this speci�c dataset, the sample coe�cient of variation (CV) i.e., the standard

deviation over the mean, is extremely low due to the relative stability of the data. This

impacts HIRE's smoothness throughout the various levels, which consequently results in a

worse performance.

35

PA PG WG WA SHAM HIEPC BC

Grl 0.818 0.592 0.638 0.806 0.765 0.295 0.806

IdGZ 0.555 0.402 0.449 0.464 0.769 0.217 0.230

Bu� 0.421 0.390 0.390 0.421 0.468 0.453 *

Q 1.000 1.000 1.000 1.000 1.000 1.000 1.000

QGZ 0.526 0.415 0.351 0.431 0.172 0.436 0.175

QTRC 0.258 0.156 0.119 0.170 0.029 0.183 0.116

Spz 0.275 0.157 0.119 0.179 0.023 0.222 0.164

APC 1.844 1.004 0.986 1.093 0.207 0.551 0.296

LFZip 0.349 0.212 0.168 0.210 0.043 0.545 0.434

HIRE 0.116 0.085 0.070 0.085 0.021 0.091 0.061

Table 2.1: The compression ratios for the lossy baselines in the multiresolution setting
compared to HIRE (bottom). The single trivial resolution is reported for the lossless baselines
(top). Some of the values are above 1 due to the multiresolution sum of di�erent thresholds.

2.7.5 Compression and Decompression

The evaluation of compression latency includes the compression algorithm (counting entropy

coding) and writing the compressed data to disk. HIRE outperforms all of the lossy low

compression ratio baselines as displayed in Table 2.2.5 The main driver of HIRE's signi�cant

performance advantage is the fact that we require only a single call to our compression

routine in order to produce multiple resolutions. This directly contrasts with the lossy

baseline methods, each of which compresses the data once per error threshold to produce 10

separable encodings. In the case of the lossless baselines, there is a single encoding at the

trivial resolution � = 0 re�ecting one function call.

5. We report the latency without bitpacking times. We found in our experiments that bitpacking intro-
duced a latency bottleneck that skewed some of the results in favor of HIRE. We removed bitpacking time
from those baselines, in�ating their results.

36

PA PG WG WA SHAM HIEPC BC

Grl 1.602 1.497 1.628 1.649 1.668 5.349 1.649

IdGZ 0.362 0.377 0.344 0.340 0.162 0.145 0.452

Bu� 0.030 0.029 0.029 0.030 0.235 0.148 *

Q 0.056 0.051 0.066 0.056 0.102 0.073 0.120

QGZ 1.595 1.039 0.910 1.450 1.269 8.264 43.50

QTRC 7.617 7.423 6.930 7.221 29.72 20.99 33.07

Spz 7.125 7.465 7.241 7.150 55.52 35.30 63.12

APC 1.844 1.003 0.986 1.093 0.207 0.561 0.362

LFZip 6.509 5.880 5.854 6.175 78.78 37.58 54.36

HIRE 0.431 0.376 0.357 0.388 1.027 2.020 1.921

Table 2.2: Compression latency (s): sum of all resolutions (lossy) and single trivial resolution
(lossless).

The evaluation of decompression latency includes reading the encoding from disk and

the decompression algorithm (counting entropy coding). When it comes to decompression

latency, we report the average value for all of the di�erent resolutions in Table 2.3. HIRE

performs about the same or better than the lossy low compression ratio methods on the �rst

four data sets. However, HIRE is signi�cantly outpaced by QTRC on the last three. Once

again, this is likely due to the characteristics of the datasets. Applying HIRE to the �rst four

datasets generates very smooth residuals, which allows for a shorter path of traversal along

the tree until the desired resolution is reached. On data sets with extreme CVs, the traversal

may not terminate until very low levels, which is overall detrimental to decompression latency.

Gorilla performs considerably worse in this scenario due to its complex recursive encoding

where adjacent values are compared and bitwise operations executed.6

6. We do note the caveat that the Python implementation that we used for Gorilla likely does not perform
bitwise operations e�ciently which may explain some of the poor results for latency.

37

PA PG WG WA SHAM HIEPC BC

Grl 2148 1870 2118 2313 29753 8508 2313

IdGZ 0.08 0.07 0.07 0.08 0.48 0.22 0.34

Bu� 0.02 0.02 0.02 0.02 0.17 0.12 *

Q 0.01 0.01 0.01 0.01 0.04 0.02 0.03

QGZ 0.01 0.01 0.01 0.01 0.05 0.02 0.04

QTRC 0.07 0.06 0.05 0.06 0.10 0.15 0.18

Spz 0.51 0.51 0.51 0.51 2.15 1.36 2.35

APC 0.18 0.10 0.10 0.11 0.02 0.06 0.04

LFZip 0.50 0.49 0.48 0.48 7.50 3.37 4.86

HIRE 0.07 0.06 0.06 0.07 0.19 0.40 0.23

Table 2.3: Decompression latency (s): average of all resolutions (lossy) and single trivial
resolution (lossless).

2.7.6 Edge Retrieval Experiments

We ran an experiment that mirrors the example in Section 2. We simulated a retrieval task

with data (PA dataset) collected and stored on an NVIDIA Jetson Nano with an ARM64

processor (4 cores) and 4GB of RAM. In other words, data are stored on the edge device

and are retrieved by remote applications. We measure the end-to-end latency of this process

for four multiresolution encoding strategies: strict encoding, all encoding, lazy re-coding,

and HIRE. We only report using a standard lossless method (IdGZ) and the best competing

lossy method (QTRC) as baselines. Results across di�erent baseline algorithms were highly

similar and are available upon request.

The retrieval workload is simple. There are ten di�erent resolution requirements. A

retrieval request is a request to the edge for one block of data (53.3MB) at one of those given

38

resolutions. We assume that choice is uniformly at random. We evaluate the multiresolution

strategies with the following metrics:

ˆ Ingestion Latency (IL). The time needed to compress one block of new data (53.3MB).

ˆ Transfer Size (TS). The average amount of data transferred from edge to remote

per retrieval request.

ˆ Retrieval Overhead (RO). The average time needed beyond data transfer to de-

compress or transcode per retrieval request.

ˆ Local Storage (LS). The average amount of data stored per block locally.

Algorithm Scheme IL TS RO LS

QTRC Strictest 4.8s 3.8MB 0.3s 3.8MB

QTRC All 44.5s 1.3MB 0.2s 12.9MB

QTRC Lazy 4.8s 1.3MB 5.1s 3.8MB

GZip Lossless 0.9s 28MB 0.17s 28MB

HIRE Multiresolution 1.2s 2.0MB 0.18s 5.8MB

Table 2.4: This table compares di�erent edge retrieval protocols on four metrics: ingestion
latency, transfer size, retrieval overhead, local storage. HIRE has a much lower latency in
both ingestion and retrieval compared to other lossy baselines, while improving on a lossless
baseline by over 14x in terms of compression ratio.

The results for the compression and decompression latencies are displayed in Table 2.4.

First, HIRE is signi�cantly faster than the best compression baseline in terms of both inges-

tion latency and retrieval overhead. In fact, it only has a minor overhead over a lossless GZIP

baseline. Second, while HIRE does transfer more data than the lossy baseline in the �all�

or �lazy� settings, it is still competitive to them and is signi�cantly smaller than the lossless

compression (by 14x). We believe that this is a tradeo� worth making. Edge devices are

storage constrained, and HIRE allows for a more e�cient use of local storage. Next, network

39

transfers are a major component in energy usage, which HIRE directly addresses.In other

words, we achieve similar latencies to a simple lossless compression framework

but can signi�cantly lower the data footprint if the downstream applications can

tolerate inaccurate results.

Detailed Breakdown of Compression Ratios

For the sake of completeness, we include the per-threshold compression ratios for HIRE. The

results for the compression ratio are displayed in Table 2.5. One key point worth reempha-

sizing is that we only need to store the encoding for the strictest threshold in HIRE, which

in this case is0:1164at 0:001error, since we are able to reconstruct all of the intermediate

representations from that single encoding.

Thresholds 0.15 0.10 0.075 0.050 0.025 0.010 0.0075 0.005 0.0025 0.001

HIRE 0.008 0.009 0.011 0.014 0.023 0.038 0.045 0.057 0.082 0.116

IdGZ 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555

QTRC 0.005 0.006 0.007 0.009 0.014 0.025 0.029 0.036 0.051 0.076

Table 2.5: Compression ratio for di�erent resolutions on an edge device

2.7.7 Micro-benchmarks

We ran several di�erent experiments in order to understand our method's most important hy-

perparameters: block size and start level. Additionally, we tested di�erent pooling functions

and their e�ects on the relevant metrics. All experiments in this subsection were performed

on the Phones Accelerometer (PA) data set.

Block Size

A block represents a subset of the entire data set meant to be compressed. It allows for

an online/streaming application of the method, since one can wait until a pre-determined

40

(a) Compression ratio (b) Compression latency

(c) Decompression latency

Figure 2.3: Breakdown of performance at di�erent block sizes

block size is bu�ered before applying HIRE. However, it also a�ects the performance of the

algorithm. We evaluate two di�erent scenarios in which we vary the block size: with and

without adjusting the starting level.

We notice in Figure 2.3a that as we increase the block size, the compression ratio in-

creases. This behavior can be attributed to two distinct reasons. First, the larger the block

size, the greater the range of values within each block. This phenomenon could possibly

impact the variance of the residuals at each level, leading to less redundancy for the down-

stream compressor to exploit. Second, the presence of outliers can be mitigated at smaller

block sizes, since their impact will be contained to a smaller subset of the data. Starting at

a lower level in the tree structure also reduces the amount of data being stored, which leads

to a positive impact on the compression ratio at each block size.

On the other hand, the increase in block size has a positive e�ect on compression la-

tency, especially when going from a very small block (512 time steps) to 8192 as we see in

Figure 2.3b. After that, the compression latency plateaus on the adjusted level scenario and

slightly increases on the regular one. We attribute this fact to hardware limitations that

41

Figure 2.4: Compression ratio for di�erent
starting levels

Figure 2.5: L1 ; L1; L2 errors for 6 levels

impede further scalability due to the �xed number of CPU cores. Finally, when analyz-

ing the decompression latency shown in Figure 2.3c, we can clearly see that once again it

decreases with the block size until it reaches a min value at roughly the same point as in

compression�8192. This observation is also due to hardware constraints. The level-adjusted

scenario performs signi�cantly better than the regular one while being less a�ected by the

hardware constraints.

Starting level

The starting level corresponds to the initial number of segments into which we break the

original time seriesX and apply the pooling function; or equivalently, the initial number

of nodes at level� of the binary tree T . That is, we do not need to start the recursion at

the �rst level, or even at the �rst few levels for that matter. Concretely, there is often little

to no value in pooling large segments, particularly when the block size is purportedly large.

We can therefore adjust the starting level in order to improve both compression ratio and

latency, albeit we lose the resolutions that correspond to the levels that are skipped. Such

a trade-o� is important in certain cases, as we may want to maintain a su�cient number

of levels to allow for a speci�c number of resolutions. Figure 2.4 shows that as we increase

the starting level, the compression ratio decreases. Furthermore, the inverse relationship

observed here is exponential in nature, since the number of values stored after pooling

42

increases exponentially�speci�cally by a factor of 2�until we reach the upper bound of

T values at the leaf nodes of the hierarchy.

Pooling function

The pooling function plays an important role in how the data are summarized and conse-

quently the resulting residuals. We described its role in detail in Section 2.4.1. In Figure

2.6a, we display the compression ratios at various error thresholds for the three pooling

functions: mean, median, and midrank. In Figures 2.6b and 2.6c respectively, we compare

the compression and decompression latency achieved by the three pooling functions. The

compression latency of the mean is markedly lower at all of the thresholds we tested. The

decompression latencies are consistent at smaller error thresholds but diverge at larger error

thresholds.

2.7.8 Additional Experiments

In this section we run HIRE considering i) di�erent error functions, and ii) a di�erent splitting

method. First, we implement Algorithm 1 using the mean pool function and measure the

L1 and L2 errors for each level of the compression tree, as described in Section 2.5.3. In

particular, we run HIRE on the �rst 1024 samples from the �rst column of IHEPC and

measure theL1 , L1, and L2 error in the last 6 levels of the compression tree. The results

are displayed in Figure 2.5. Note that theL1 and L2 errors are divided by the size of the

time series to obtain an element-wise metric (given in black), and the size of the bars are

adjusted for scale. We observe that while HIRE was designed to explicitly bound theL1

error, the L1 and L2 errors are implicitly bounded. Furthermore, the errors decrease in

lockstep with one another as HIRE progresses to lower levels. Note that we do not apply

a distinct optimized pool function to each error. Instead, we run the traditional HIRE and

show that it can still decrease theL1 ; L1, and L2 errors in low levels of the hierarchy.

43

(a) Compression ratio (b) Compression latency

(c) Decompression latency

Figure 2.6: Breakdown of performance for three di�erent pooling functions

Second, we implement a variation of HIRE that splits at the optimum location as de-

scribed in Section 2.5.3. We compare the compression ratio and the compression latency

of optimal split HIRE (OS) and midpoint split HIRE (MS). The experiment was run on a

block of 4096samples from the �rst column of IHEPC. Both versions of HIRE start from

the �rst level and have an error threshold of0:01. The results are displayed in Table 2.6.

Midpoint split (MS) of HIRE has a smaller compression ratio and lower compression latency

than OS. While OS optimizes the split (minimize the maximum squared error), there are

two drawbacks that a�ect the results. First, OS needs to store twice as many values as MS

because it stores the size of each time series in the hierarchical encoding. This increases the

compression ratio. Second, OS needs additional time to �nd the optimal split with respect

to the minimum squared error as described in Section 2.5.3. On the other hand, MS can

�nd the splitting point in O(1) time, so the compression latency is much lower for the MS

method.

44

Ratio Latency (s)

OS 0.242 2.042

MS 0.083 0.012

Table 2.6: Compression ratio and compression latency (s) of OS and MS on a small block.
The relative contribution to OS ratio is 0.114 for the optimum split pooled values alone and
0.146 for storing the sizes alone.

2.8 Conclusion

We presented HIRE, a novel system for multiresolution compression that uses hierarchical

residual encoding for time series data. We showed that strict, multiple, and lazy encoding

su�er from a high transfer cost, high compression ratio, or high retrieval overhead in edge

storage and retrieval applications. We proposed an e�cient technique to handle multireso-

lution compression that alleviates the limitations of the previous methods. Our experiments

validate that our system performs better than the baselines at multiresolution compression

for edge computing applications. HIRE can also be extended to the multidimensional case

(e.g., image compression). As mentioned, one simple way is to encode each column inde-

pendently. A more involved and e�cient way is to extend our hierarchical method in order

to natively support more dimensions. We leave the details and the implementation of the

multidimensional case to future work.

45

CHAPTER 3

RASTERSTORE: ADAPTIVE COMPRESSION FOR FULLY

RASTERIZED GEOSPATIAL DATA

3.1 Introduction

From the early days of relational databases, supporting geospatial analytics has been an

important research area. Motivated by applications such as ride-sharing and other location-

based services, most geospatial databases are optimized for �vector data� that is data which

consist of latitude, longitude (and perhaps altitude) points, polygons, and paths. In contrast,

many do not support �rasterized data�, which contains data organized like an image with

discrete values in regularly-spaced pixels or voxels. Rasterized data is important for appli-

cations in satellite imaging, robotics, scienti�c imaging, and increasingly, applying machine

learning over vector data.

Rasterized data is fundamentally array-structured data, but in most geospatial appli-

cations, the majority of this data is uninteresting. For example, in robotic mapping, one

might be interested in identifying the location of an obstacle in a mostly empty room. A

vector format is naturally compressed where only the relevant information is represented,

but a rasterized format has to expend memory to store the empty pixels or voxels. Since

rasterized data is often sensor collected, such data grows very rapidly even if much of it is

uninteresting ?.

Data compression? is a key tool to control the costs of rasterized data. Furthermore,

lossy compression can allow users to trade-o� data quality for improved storage and transfer

performance. Traditionally, many simply apply image compression algorithms like JPEG?

on such data . Firstly, while rasterized data resemble images, not all rasterized data are

natural images, and thus, image codecs may elide key features valuable to analysis. Second,

while image compression algorithms are highly e�ective at preserving perceptual similarity,

46

they do not o�er strong pixel-wise guarantees on error rates. For lossy compression to be

e�ective at a wide variety of rasterized data, it must o�er a strong pixel-wise error guarantee;

that is, maximum allowed error is bounded (hereafter called aǹ1 guarantee). Maximum

error guarantees are common in the context of both scienti�c data compression???? and

general time series codecs??.

To harmonize the need for̀ 1 guarantees with an e�ective codec that exploits the natural

structure of rasterized data, we present RasterStore a compression framework that �nds

a good combination of spatial and pixel-wise error. In contrast to manỳ1 preserving

methods from scienti�c data compression (e.g., SZ? and ZFP ?), expensive prediction and

transformation steps are omitted from our framework. Additionally, RasterStore pushes the

majority of computation toward the encoding stage of the pipeline and does not require

equally-expensive decoding routines to invert decorrelation steps. E�cient decompression

makes repeated decoding viable, a common requirement for machine learning pipelines that

frequently move training data between disk and main memory.

Our approach addresses what we call thespatial-pointwise precision tradeo�, where the

objective is to allocate error to competing spatial and pointwise dimensions. To illustrate

what we mean by these two dimensions, consider the following example.

De�ne two blocks A = [1:10; 1:14; 1:15; 1:16] and B = [1:10; 2:51; 3:89; 4:26] from a 2D

rasterized array that are both linearized for the sake of simplicity. We are given aǹ1

requirement of� = 0:05.

For the �rst block, we notice that if we choose1:15, all of the values in the block are

contained in the interval 1:15 � 0:05, and hence if we replace those three values with1:15

we maintain the `1 bound. In other words, this observation follows from the fact that

maxi jai � 1:15j � 0:05. This replacement strategy improves the redundancy in the block,

since each valueai 2 A will now be mapped to the same code.

On the other hand, it is clear that in block B, the same strategy will not work at the

47

strict guarantee of � = 0:05. The best strategy in this case is to simply quantize the values

at the error � = 0:05 and pass the values to the entropy coder.

In many cases, however, the choice between spatial replacement and quantization will

not be so clear-cut. Suppose that we combine the two blocks to form C = [1.10, 1.14, 1.15,

1.16, 1.10, 2.51, 3.89, 4.26]. In this instance, it is likely suboptimal to choose to exclusively

apply either replacement or quantization, so it would make sense to try a combination of

both strategies. Put simply, some of the error can be allocated to the replacement strategy

and the remaining error can be allocated to quantization. This is precisely what is meant

by the spatial-pointwise precision tradeo�.

Given a combined error threshold� and a replacement allocationx RasterStore consists

of the following steps:

1. Blocking : The 2D array is divided into multiple smaller blocks, which we call windows.

2. Replacement : In each window, a pivot value is selected, and all values in the window

falling within � x� of the pivot are replaced by the pivot value.

3. Quantization : Each modi�ed window is quantized using the remaining error(1� x)� .

4. Flattening : The quantized windows are �attened (linearized) to form a 1D integer

array.

5. Entropy coding : The resulting 1D array of integers is passed to an entropy coder

that exploits redundancy over the discrete distribution of integer codes.

Note that blocking, �attening, and entropy coding are all lossless operations, while replace-

ment and quantization are lossy operations. Each operation has multiple degrees of freedom.

3.2 Preliminaries

Below, we describe the main intuition behind our method. Raster data is represented as a

multidimensional array of values, where each value is often associated with a spatial location

48

??. A common example of raster data is the LandSat satellite that collects hyper-spectral

image data across the visible spectrum as well as several other frequency bands?. A Landsat

pixel corresponds to a location on the surface of the earth at a certain spatial resolution (e.g.,

30x30 meters). For the sake of simplicity, we can consider a single frequency band such as

the visible color red, and we will assume that the input data forms a square. In the running

example, this yields a square matrix of pixelsA , where each pixelA h represents the intensity

of the color red at a certain location.

3.2.1 Compression Basics

A compression algorithm consists of an encoder and decoder. To mirror the terminology

presented in later sections, we assume that the input to the compression algorithm is a

square matrix A 2 RN � N . The encoder (enc) produces a compressed representationCA

and the decoder (dec) returns a new version of the original matrixA 0:

CA = enc(A) A 0= dec(CA) (3.1)

In a lossless compression algorithm, it is always true thatA 0= A but in a lossy compression

algorithm such as HIRE it is only required that A 0 � A . Speci�cally, this means that

A 0= A + E for some error matrixE.

There are many ways in which error can be introduced, which range from soft constraints

on perceptual quality, as is common with images?, to hard constraints on the pointwise error

between any two values, as is common with scienti�c data?. We restrict our discussion to the

latter category of constraints and describe an e�ective algorithm that maintains a guarantee

on the maximum pointwise error.

49

3.2.2 RasterStore Overview

Now moving on to our system, the user �rst speci�es an error threshold� , which is the

pixel-wise `1 error guarantee that must be met by the codec. In particular, the following

must hold for any input:

jjvec(A � A 0)jj1 = max
h

jA h � A 0
hj � � (3.2)

where vec(�) is the matrix vectorization operator and A 0
h is any element of the decoded

matrix that corresponds to elementA h in the input matrix.

Apart from standard entropy coding, there are two lossless steps in our framework: block-

ing and �attening. These two steps interact with each other to capture spatial redundancy.

Blocking partitions the input matrix into a block matrix, where we call each block awindow.

Immediately prior to entropy coding, the �attening algorithm then de�nes how the blocks

are to be linearized, e�ectively mapping the block matrix to a single vector. As will be shown

in later sections, there are many possible �attening approaches.

At a high level, the encoding algorithm has two lossy steps that fully allocate the al-

lowable `1 error � to the compressed representation. These two steps are replacement and

quantization. Slightly abusing notation, for a given fraction0 � x � 1 the error quantity x�

is allocated to replacement and the remaining error(1 � x)� is allocated to quantization, so

indeedx� + (1 � x)� = � . Window replacement �rst deliberately chooses apivot value from

a particular block and then sets all values within a distance from the pivot of� x� to the

pivot value, increasing redundancy. The remaining error(1 � x)� is then used as a step size

to quantize the result and produce integer codes.

In general, RasterStore codec combines the lossless and lossy operations that we described

above to produce a decoding that has a strict pointwise guarantee on the error. While it is

intuitive that the two lossy steps would preserve the desired̀1 error, we can easily prove

that this is the case in the next section.

50

3.3 Our Method

In this section we describe our main lossy method. The principle is illustrated in Figure

3.1. Let A 2 RN � N be an array of real numbers. Without loss of generality, we assume

that A is a square matrix; all our methods work for any general matrix. Lett = N
s . We

partition A into t2 =
�

N
s

� 2
windows of sizes � s. Let W = f W1;1; : : : ; Wt;t g, where

Wi;j = A[((i � 1) � t + 1) � (i � t) ; ((j � 1) � t + 1) � (j � t)].

The algorithm visits every window Wi;j and applies our compression approach. More

speci�cally, for every Wi;j let pi;j be its pivot point, and x i;j be the ratio of the L1 error

for window replacement. That is, theL1 error for window replacement isx i;j � " while the

L1 error for quantization is (1 � x i;j) � " . We describe how we choosepi;j and x i;j in the

next Section.

We describe an algorithm to make two passes over the data to prepare for data compres-

sion. GivenWi;j , pi;j , and x i;j , the goal is to replace the inputWi;j with �Wi;j consisting of

a set of integers that they will be used for compression. We go through all items inWi;j in

any arbitrary order: For any ah 2 Wi;j we check whetherjah � pi;j j < x i;j " . If this is true

then we seta0 = pi;j . Otherwise we seta0
h = ah. In the mean time, we keep track of the

minimum value a0
h we encounter. Let� i;j be the minimum value ofa0

h we �nd. Then we go

over all items one more time to apply quantization: For everya0
h, we set�ah = b

a0
h � � i;j

(1� x i;j)�" c.

In the end, we set �Wi;j 2 Ns� s to be the window similar to Wi;j replacing the ah values

by the new computed�ah values. Finally, we set �A as the input to the data compression

algorithm we use.

We make two passes over the input elements so the running time of the algorithm in

every window isO(s2). Overall, the running time to construct all new windows �Wi;j , is

linear with respect to the input size, i.e.,O(t2 � s2) = O(N 2).

We state the fact that our algorithm guarantees thè 1 error � in the following Proposi-

tion.

51

Figure 3.1: How RasterStore allocates error in a given window.

52

Given an `1 error � > 0 and window replacement ratios0 � x i;j � 1 for all i; j and any

input matrix A the decoded matrixA 0after applying window replacement and quantization

has the following guarantee:

jjvec(A � A 0)jj1 = max
h2[N 2]

jA h � A 0
hj � �

Proof. We simply need to show that for a given window, the two lossy operations from our

codec preserve thè1 error guarantee. LetA w
i;j = R(A i;j) be the result of applying window

replacement with error x i;j � . Let A 0 = Q� 1(Q(A w
i;j)) be the result of quantizing (Q) the

replacement array to integer codes with error(1� x i;j)� and then dequantizing (Q� 1) back to

the reals. We observe thatjjvec(A i;j � A 0
i;j)jj1 = jjvec((A i;j � A w

i;j) + (A w
i;j � A 0

i;j)) jj1 . By

construction of the algorithm described abovejjvec(A i;j � A 0
i;j)jj1 � x i;j � and jjvec(A w

i;j �

A 0
i;j)jj1 � (1 � x i;j)� . Since `1 is a norm that satis�es the triangle inequality, we have

jjvec((A i;j � A w
i;j) + (A w

i;j � A 0
i;j)) jj1 � jj vec(A i;j � A w

i;j)jj1 + jjvec(A w
i;j � A 0

i;j)jj1 �

x i;j � + (1 � x i;j)� = � . Hence, the bound is satis�ed for all windowsA 0
i;j , so we conclude

that the bound is satis�ed for the full decoded matrixA 0 as required.

3.4 Optimizations

In this section, we describe various methods on how to optimally choose the valuesp and x

in order to achieve the best compression ratio. Unfortunately, the actual compression ratio

highly depends on the structure of the dataset and the entropy coder we use. In order to

select the best parametersp and x, we introduce some metrics to estimate how compressible

the data is. We use the variance, entropy, mode, and combinations of them to estimate

the compression ratio. LetA = f a1; : : : ; ang be a list of n integer numbers. The listA

corresponds to the items stored in a window�Wi;j .

ˆ Variance: V ar(A) = 1
n2

P
h2[1;n] a2

h � 1
n2

� P
h2[1;n] ah

� 2
. Intuitively, the smaller the

53

variance, the more compressible the data is.

ˆ Entropy: Let D(A) be the set of distinct integers inA, m = jD(A)j, and let f h

be the frequency of itemah 2 D(A). The entropy of A is de�ned as H (A) =

�
P

h2[1;m] f h logf h. Intuitively, the smaller the entropy, the more compressible the

data is.

ˆ Mode: M (A) = arg maxah2D(A) f h. Intuitively, the larger the mode is, the more

compressible the data is.

3.4.1 Statistical pivot selection

In this section, we de�ne the statistical pivot selection problem and state several practical

algorithms for choosing a suitable pivot in a given window. We focus on the problem of

�nding an estimate for the mode of a window without explicitly requiring that the values are

discretized by the quantization scheme, in contrast to what will be presented in later sections.

We �rst assume that each windowWi;j contains samples from a continuous distribution with

some unknown probability density functionf i;j (y) that can be approximated by an estimate

f̂ i;j (y). This is a well-studied statistical problem called (non-parametric) density estimation

???.

Formally, the objective in the context of compression is to choose an optimal pivotpi;j

such that the probability density
R

I f̂ i;j (y)dy on the interval I = [pi;j � x i;j �; p i;j + x i;j �] is

maximized. Following the algorithm described in Section 3.3, this corresponds to maximizing

the number of elements in a particular window that are contained in the intervalI .

However, the interval may not be known in advance, so it su�ces to consider the problem

of �nding a pivot that falls in a high density region of the probability distribution without

explicit prior knowledge of the interval lengthx i;j � . Concretely, the pivot is to be chosen so

many values will fall near the pivot, regardless of the length of the interval.

What we seek is a pivot that maximizes an estimatêf i;j constructed from the values in

54

a given windowA i;j for the window probability density function f i;j (y). This optimal pivot

is simply an estimator of amode. Crucially, the mode estimate must be found in a non-

parametric fashion, so the pivot selection procedure can use the actual values in a window as

input. Without loss of generality, we can constrain the pivot to the setA i;j . In particular,

it is satisfactory to �nd a value ah 2 A i;j that is close to a mode estimate. This leads us to

the following canonical form for statistical pivot selection:

pi;j = arg max
ah2A i;j

f̂ i;j (ah) (3.3)

where againf̂ i;j is some density estimate.

Practical algorithms

Below, we list several practical algorithms based on non-parametric density estimates that

can be used to select a pivot. The list is roughly in ascending order of latency overhead.

ˆ First element : Choose the �rst element in the window. This is an e�cient systematic

sampling method that does not require random number generation.

ˆ Random element : Choose an element uniformly at random from the window by

generating a random number for each dimension.

ˆ Histogram : Construct an equi-width histogramH with m bins B = f B1; B2; : : : ; Bmg

each having a corresponding bin densityp(Br). Find Bo = arg maxB r 2B p(Br) and

select any element that satis�esah 2 Bo. A histogram can be seen as a lower resolution

version of quantization.

ˆ Kernel density estimate : Using a valid kernelK the kernel density estimatef̂ (a) =

1
s2z

P
ah2A i;j

K (a� ah
z) is �rst computed, wherez is the bandwidth. Then, the element

arg maxah2A i;j
f̂ (ah) is chosen.

55

Note that at larger window sizes, the histogram and kernel density estimate can be con-

structed from a random sample drawn uniformly from the window, instead of the entire

window. Sampling would likely reduce the overhead imposed by these more complex meth-

ods, while still ensuring that the general distribution is closely approximated.

3.4.2 Pivot selection given the ratio

Next, we assume that we know the ratiox i;j for a window Wi;j . We show how we can �nd

the optimum pivot p := pi;j in near-linear time.

First, we construct A = f a1; : : : ; amg, a sorted array (ah � ak for h < k) that contains

all items in Wi;j . We visit eachah 2 A, and we compute its quantization binbh = bah � a1
(1� x)" c,

without considering the pivot. For every binbh we compute the number of items it contains,

denoted byf h. We also computeS1 =
P

h f h � bh and S2 =
P

h(f h � bh)2.

For simplicity, we search for the optimum pivot satisfyingp > a1 + x � " ; the minimum

valuea1 remains always the same. The algorithm can be extended to search forp � a1+ x � " ,

however it becomes more tedious.

Let I = [a1; a1+ x � "] be an interval in R1. We move this interval and we use itspI to �nd

all possible pivots. LetV , E, M be the current variance, entropy, and mode, respectively, of

Wi;j , with pivot pI , and ratio x. Let bs be the bin that the current pivot pI belongs to, i.e.,

bs = bpI � a1
(1� x)" c. Let alsops = jI \ Aj, i.e., the number of elements inI after their quantization

with pivot pI . If b̀ and br are the bins that the left and right endpoints ofI belongs to, let

` I be the number of elements in the binb̀ that are contained in I at the left of pI and let

r I be the number of elements in the binbr that are contained in I and at the right of pI .

Finally, let T be a max-heap that stores each binbh with weight f h. This max-heap is only

used to �nd the mode.

We show how to update the valuesV; E; M e�ciently each time that we try the next

possible pivot. After visiting all possible pivot points, we return the one that leads to either

56

the lowest variance, the lowest entropy, or the highest mode. We move the intervalI to the

right until one of its endpoints intersects an item fromA or one of its endpoints intersects

the boundary of a bin or its centerpI intersects the boundary of a bin.

First, we consider the case wherepI intersects the right boundary ofbs. Equivalently,

this is the left boundary of bs+1 .

If br > bs+1 and b̀ < bs then we update S2 = S2 � (ps � bs)2 + (ps � bs+1)2, S1 =

S1 � ps � bs + ps � bs+1 , and V = 1
m S2 � 1

m2 S2
1. We also remove the itembs from T and insert

the item bs+1 with weight ps. The modeM is updated by the top-weight inT. Finally, we

set bs = bs+1 . The entropy E remains unchanged.

If br = bs+1 and b̀ = bs then we updateS2 = S2 � ((ps + f s � ` I) � bs)2 � ((f s+1 � r I) �

bs+1)2 + ((f s � ` I) � bs)2 + ((ps + f s+1 � r I) � bs+1)2, S1 = S1 � (ps + f s � ` I) � bs � (f s+1 �

r I) � bs+1 + (f s � ` I) � bs + (ps + f s+1 � r I) � bs+1 , and V = 1
m S2 � 1

m2 S2
1. We also update

the weights of the itemsbs and bs+1 from T to be f s � ` I and f s+1 + ` I . The modeM is

updated by the top-weight in T. We also update the entropyE = E � f s+ r I
m log m

f s+ r I
�

f s+1 � r I
m log m

f s� r I
+ f s� ` I

m log m
f s� ` I

+ f s+1 + ` I
m log m

f s+1 + ` I
. Finally, we set bs = bs+1 .

Equivalently, we handle the cases i)br > bs+1 , b̀ = bs, ii) br = bs+1 , b̀ < bs.

Next, we consider the case where an endpoint ofI intersects the boundary of a bin.

Without loss of generality assume that the left endpoint ofI intersects the right boundary

of a bin bh = b̀ . If b̀ < bs � 1 then ` I = f h+1 . Otherwise, we set̀ I = jA \ [bh+1 ; pI]j. We

know A \ [bh+1 ; pI] by i) maintaining the number of elements between the left endpoint ofI

and pI with straightforward manner, or by ii) construct a search binary tree overA and ask

a O(log(n)) time count query to compute it. In the end we updateb̀ = bh+1 . Equivalently,

we handle the case where the right endpoint ofI intersects the right boundary of a binbh.

Finally, we assume that an endpoint ofI intersects an elementak 2 A from bin bk .

Without loss of generality we assume thatak intersect the right endpoint of I and b̀ < bs.

We need to updateV; E; M addingak in I . We have,S1 = S1� bk � (f k � r I) � bs �ps+ bk � (f k �

57

r I � 1)+ bs�(ps+1) , andS2 = S2� (bk �(f k � r I))2� (bs�ps)2+(bk �(f k � r I � 1))2+(bs�(ps+1)) 2.

We update,V = 1
m S2

1
m2 S2

1, and E = E � f k � r I
m log m

f k � r I
� ps

m log m
ps

+ f k � r I � 1
m log m

f k � r I � 1+

ps+1
m

m
ps+1 . In order to update the mode, we updateT. More speci�cally, we update the

weight of bs to be ps + 1 and we update the weight ofbk to be f k � r I � 1. The modeM

is updated by the top-weight in T. In the end, we updater I = r I + 1 and ps = ps + 1.

Equivalently, we can update all the variables ifb̀ = bs. The algorithm is also almost identical

when ak intersects the left endpoint ofI .

From Wi;j , we construct the sorted arrayA in O(m logm) time. We initialize the bins,

the interval I and the variables we use inO(m) time. Then for every algorithm we make

one pass over all items inA. For each item, we spendO(1) time to update V and E and

O(log m) time to update T for the modeM . Hence, for a windowWi;j with m items we can

�nd the optimum pivot in O(m) time. Overall, we compute the optimum pivot for every

window Wi;j in O(N 2 logN) time.

Putting everything together we have the next theorem. LetA be an array ofm elements

and let x be the window replacement ratio. There exists an algorithm to �nd the pivot that

minimizes either the variance or the entropy, or maximizes the mode inO(m logm) time.

3.4.3 Ratio selection given the pivot

In this section we describe how to select the ratiox assuming that the pivot point p is given.

First, we de�ne some additional useful notation. LetH (p; x; A), V ar(p; x; A), M (p; x; A)

be the entropy, variance, and mode respectively forA if the ratio is x and pivot is p. In this

subsection,p is �xed so we can skip it from the notation.

For every metric, we make an assumption that the value of the metric does not change

drastically for two distinct but close values ofx. This is a realistic assumption that we

also observed from our experiments in real data (see also Section 3.5). Formally, for any

 2 (0; 1) and � 2 (0; 1), a function g is called(
; �)-bounded, if maxf g(x;A);g((1+
)x;A)g
minf g(x;A);g((1+
)x+ �;A)g �

58

1+ r (
; �), whereg(�; �) is either the variance, the entropy or the mode, andr (
; �) is a small

approximation factor that depends on
 and � . If
 = � , we write r (
).

The main idea is to �nd an approximation of the best ratio by trying di�erent values of

x. First, we sort all points in A. Then, we discretizex's domain, i.e., the range[0; 1], to

the valuesS = f 0; �; (1 +
)�; (1 +
)2�; : : : ; 1g. We note that jSj = O(1

 log 1

�). For every

possibles 2 S, we run the algorithm from the previous subsection to computeg(p; s; A)

(notice that we know both parameters pivotp and ratio s.). In the end, we return the the

ratio x 2 S with the minimum g(p; x; A) value if g represents the entropy or the variance,

or the maximum g(p; x; A) if g represents the mode.

Let x� be the real optimum ratio for the function g. If x� 2 [0; �] There exists a value

x̂ 2 S such that x̂ � x� � � , while if x� 2 (�; 1] there exists a valuex̂ 2 S such that

x̂=x� � 1 +
 . In any case, for entropy and variance, it holds that there existŝx 2 S such

that g(p; x̂; A) � (1 + r (
; �))g(p; x� ; A). For mode, it holds that there existsx̂ 2 S such

that g(p; x̂; A) � 1
1+ r (
;�) g(p; x� ; A)

We needO(m logm) time to sort A. Then using the algorithms from the previous sub-

section for everys 2 S we computeg(p; s; A) in O(m) time. Overall the algorithm runs in

O(m(log m + 1

 log 1

�)) time.

Let A be an array ofm elements and letp be the pivot point. If the entropy, variance,

and mode are(
; �)-bounded functions for
; � 2 (0; 1), then there exists an algorithm to �nd

an (1 + r (
; �))-approximation of the optimum variance, entropy, or mode inO(m(log m +

1

 log 1

�)) time.

3.4.4 Pivot and ratio selection

In this section we describe an e�cient algorithm to �nd both the optimum x and p that

optimize the data compression. We focus on optimizing the entropy; in the end we brie�y

describe how to extend for variance and mode.

59

We note that the algorithm of the previous subsection can be applied here, straight-

forwardly. Indeed, for every possible pivot pointp 2 A we run the algorithm �nding the

best x given p. While, this algorithm returns a r (
; �) approximation, it is quadratic in

the size ofA, which is m. There are O(m) possible pivot points and each execution of

the previous algorithm takesO(m(log m + 1

 log 1

�)) . In total, such this algorithm runs in

O(m2(log m+ 1

 log 1

�)) time. This algorithm is not scalable in large tables. Next, we propose

an e�cient (near-linear time) randomized algorithm for �nding the best pivot and ratio.

Similarly to the straightforward algorithm, our e�cient algorithm tries all possible pivot

points. For every pivot, we try all discrete values of ratios inS. However, for every pivotp

and ratio x 2 S, we estimate (with high probability) the entropy e�ciently without visiting

all elements inA.

Given a pivot p and a ratio x, the goal is to estimate the entropyH (p; x; A). We use

the ideas estimating the entropy from ????. More speci�cally, as shown in?,we can get

a multiplicative 1 +
 approximation of H (p; x; A) for any p and any x, if we have a data

structure D that can answer e�ciently the following queries: i) Get a random sampleah from

A, ii) given an item ah 2 A, identify its bucket bh, and iii) count the number of elements in

a bin bh, i.e., if I h is the interval representing binbh then the data structure should return

jA \ I hj. Given A, let P be the preprocessing time to constructD and Q be the query time

to answer i), ii), iii) queries. Givenp; x, we can get an1 +
 multiplicative approximation of

H (p; x; A) in O(Q log2 m

 2) time with probability at least 1

m .

Our data structure D consists of a binary search treeT over A. Every element inA is

stored in a distinct leaf node ofT , and every nodeu of T storesmu the number of elements

in the leaf nodes of the subtree rooted atmu. We also store the minimum elementa1 in A.

This tree hasO(m) space and it is constructed inO(m logm) time.

We show howT can be used to answer the queries i, ii, iii given a pivotp and a ratio

x. For query i), it is known that the counters in the nodes ofT can be used to return a

60

random sample ofA in O(log m) time. Let v; w be the children of a nodeu. Then we return

a point in the subtree ofv with probability mv=(mv + mw), and a point from the subtree of

w with probability mw=(mv + mw). For query ii), given a sampleah we identify its bin bh

as follows. If jp � ahj � x" then ah has the same bucket with the pivot pointp. Hence we

return bh = b p� a1
(1� x)" c. If jp � ahj > x" we return bh = bah � a1

(1� x)" c. The running time is O(1).

Finally for query iii) we useT to count the number of elements in binbh. Let bp bep's bin. If

bh 6= bp then we de�ne the interval I = [bh(1� x)"; (bh +1)(1 � x)"]n[p� x"; p + x"]. We run a

counting query onT using the query intervalI . The result is the number of elements in bin

bh. If bh = bp then we de�ne the interval I = [bh(1� x)"; (bh +1)(1 � x)"][[p� x"; p + x"]. We

run a counting query onT using the query intervalI . The result is the number of elements

in bin bh. In both cases, the running time isO(log m).

Overall, the query time of every query onT takes O(log n) time. Putting everything

together, we conclude with the next theorem.

Let A be an array ofm elements and letp be the pivot point. If the entropy, is a (
; �)-

bounded functions for
; � 2 (0; 1), then there exists an algorithm to �nd a multiplicative

(1+
)(1+ r (
; �))-approximation of the optimum entropy in O(m logm + log3 m

 3 log 1

�) time.

The algorithm returns a correct result with probability at least 1 � 1=m.

If we use the variance or the mode instead of entropy, we can still use the data structure

D to estimate the optimum values using random samples. However, we cannot get the result

with high probability as we had for the entropy. Instead, we return an approximation with

con�dence interval bounds.

3.5 Experiments

We conducted all of the experiments on an Intel NUC with a dual-core 2.30 GHz i3-6100U

processor, 16GB RAM, and a 256GB SSD. All implementations were done in Python 3.11.

All di�erent compression techniques were applied to 4 di�erent datasets generated from the

61

city of Chicago data portal. For SR and QTRC, Turbo Range Coder was chosen as the

downstream compressor to encode the �nal codes into bytes?, whereas Gzip was chosen for

QGzip.

3.5.1 Datasets

Our datasets are all from the city of Chicago data portal. The other four datasets were

obtained from the city of Chicago which has its own data portal?. We downloaded data

pertaining parks locations, energy consumption, Sidewalk Cafe permits and Array of things

locations. Then we proceeded to rasterize the data into 1024x1024 blocks in order to maintain

consistency among the experiments. Each of those �les is 5MB in size approximately.

3.5.2 Baselines

Our baselines consist of both standard compression algorithms used for multiple �le formats

and scienti�c data compression algorithms used on research labs for large scale data storage.

We brie�y describe each of them below:

ˆ Identity Gzip (IdG) : Lossless compression baseline; we apply Gzip to an array of

numbers represented as �oating point values.

ˆ Quantize Gzip (QGZ) : We convert each �oating point number to an integer ac-

cording to a user-de�ned error threshold, thereby saving exponent and mantissa bits

(see 2.2.2 for more details). The numbers are stored as integers with bitpacking. The

compression ratio is proportional todlog2 1=�e which captures the e�ect of the error

threshold � alone on the size of the compressed representation. We apply Gzip as the

downstream compressor for the �nal step.

ˆ Quantize TRC (QTRC) : This method consists of a quantization step and the Turbo

Range Coder (TRC) as the downstream compressor. TRC uses a Burrows�Wheeler

62

transform (BWT) ? to rearrange blocks of values into runs of the same symbol (i.e.,

integer), and then applies an arithmetic

ˆ Fixed-Rate Compressed Floating-Point Arrays (ZFP) : It maps 4d values in d

dimensions to a �xed number of bits per block, which is chosen by the user.?

3.5.3 Main Experiments

The main experiments consist of comparing the compression ratio, compression latency

and decompression latency of all baselines against our method. We evaluate the aforemen-

tioned metrics in all datasets previously described and on the followingl1 error thresholds:

(0.15,0.1,0.05,0.01,0.005,0.001). They are meant the encapsulate real world use scenarios.

Figure 3.2: Compression ratio improvement over QTRC

63

We start by showing our method's improvement over QTRC which is the degenerate case

of our solution when the window is set to use0% of the l1 error budget. We notice on 3.2

that for errors larger than or qual to 0:01 we are able to generate signi�cant improvements

in compression ratio, upwards to33% on a sample data set (park distance). Most of the

improvement is derived from mapping neighboring points to the same quantization bucket

when applying the window replacement, therefore increasing the run length on the subsequent

downstream compressor.

On table 3.1 we see the results of our method and the competing ones. We notice that our

method is able to produce the best compression ratio in most scenarios, achieving upwards

to 35% improvements when compared to the second best baseline. It once again works

more e�ectively on higher error thresholds, due to the size of the quantization buckets. One

noticeable exception is the energy dataset, where our window method only improves upon

the QTRC baseline on the higher error threshold15%. That result is due to the higher

variability of that dataset where neighboring units might have completely di�erent energy

consumption therefore mitigating the spatial e�ects of agglomeration.

We it comes to compression latency we observe a di�erent trend. On 3.2 we notice that

ZFP has compression latencies an order of magnitude faster than our method. That basically

comes down to their highly optimized C++ code and the simpler operations performed during

the block assignments and error allocation. When compared to QTRC we observe a slight

increase in compression latency, but in the worst case scenario it adds roughly15% to the

already low latency baseline.

Finally when it comes to decompression latency we observe values on par to the highly

optimized ZFP and similar (if not identical) to QTRC. Our method does not add any steps

to QTRC when it comes to decompression, so it essentially conducts the same number of

operations. Since we do not make any estimations during the process, we are able to match

even ZFP when retrieving the data in its original format.

64

Data � RS QTRC GZip QGzip ZFP
Park 0.15 0.0152 0.0190 58.77 0.0383 12.39

0.1 0.0164 0.0216 58.77 0.0434 13.26
0.05 0.0261 0.0343 58.77 0.0693 14.14
0.01 0.0997 0.0895 58.77 0.1486 16.01
0.005 0.1661 0.1496 58.77 0.1541 16.99
0.001 0.5013 0.4594 58.77 0.7447 19.20

Energy 0.15 0.0508 0.0512 33.93 0.0593 13.56
0.1 0.0514 0.0492 33.93 0.0589 14.38
0.05 0.0521 0.0533 33.93 0.0752 15.19
0.01 0.0632 0.0612 33.93 0.098 16.82
0.005 0.0737 0.0718 33.93 0.0826 17.64
0.001 0.1729 0.1586 33.93 0.2197 20.63

SW 0.15 0.0145 0.0165 47.481 0.0405 13.37
0.1 0.0154 0.0185 47.486 0.0443 14.18
0.05 0.0176 0.0234 47.48 0.0602 14.99
0.01 0.0607 0.0625 47.48 0.102 16.62
0.005 0.1200 0.113 47.481 0.105 17.44
0.001 0.3486 0.338 47.48 0.4086 19.57

AOT 0.15 0.0819 0.0823 3762 0.0797 14.07
0.1 0.0842 0.0824 37.62 0.0751 14.89
0.05 0.0842 0.0845 37.62 0.0953 15.72
0.01 0.0910 0.0930 37.62 0.122 17.37
0.005 0.1008 0.1018 37.62 0.0963 18.34
0.001 0.2066 0.1924 37.62 0.2293 21.78

Table 3.1: Compression ratio for di�erent error thresholds (%)

65

Data � RS QTRC GZip QGzip ZFP
Park 0.15 0.1549 0.1318 0.3749 0.0200 0.0421

0.1 0.1441 0.1312 0.3753 0.0229 0.0307
0.05 0.1475 0.1460 0.3728 0.0249 0.0338
0.01 0.1441 0.1325 0.3716 0.0489 0.0341
0.005 0.1456 0.1354 0.3762 0.0679 0.0358
0.001 0.1521 0.1403 0.3736 0.0548 0.0405

Energy 0.15 0.1597 0.1388 0.7155 0.0247 0.0594
0.1 0.1453 0.1328 0.7203 0.0309 0.0341
0.05 0.1501 0.1410 0.7187 0.0260 0.0374
0.01 0.1483 0.1391 0.7652 0.0347 0.0378
0.005 0.1476 0.1373 0.7186 0.0331 0.0413
0.001 0.1515 0.1392 0.7190 0.0387 0.0463

SW 0.15 0.1536 0.1551 0.5998 0.0132 0.0344
0.1 0.1422 0.1346 0.6044 0.0175 0.0352
0.05 0.1464 0.1359 0.5975 0.0162 0.0343
0.01 0.1497 0.1333 0.5977 0.0274 0.0384
0.005 0.1397 0.1312 0.5992 0.0306 0.0383
0.001 0.1451 0.1367 0.5969 0.0430 0.0418

AOT 0.15 0.1620 0.1320 0.5648 0.0332 0.0338
0.1 0.1464 0.1380 0.5661 0.0394 0.0354
0.05 0.1481 0.1395 0.5641 0.0307 0.0357
0.01 0.1461 0.1349 0.6097 0.0439 0.0408
0.005 0.1416 0.1322 0.5661 0.0380 0.0400
0.001 0.1456 0.1353 0.5649 0.0421 0.0458

Table 3.2: Compression latency for di�erent error thresholds (s)

66

Data � RS QTRC GZip QGzip ZFP
Park 0.15 0.02602 0.0206 0.0780 0.01089 0.0245

0.1 0.02039 0.0216 0.0733 0.01086 0.0175
0.05 0.0202 0.0216 0.0833 0.0108 0.0182
0.01 0.0207 0.0207 0.0647 0.0117 0.0205
0.005 0.0212 0.0213 0.0717 0.0108 0.0217
0.001 0.0283 0.0256 0.0727 0.0108 0.0240

Energy 0.15 0.0257 0.0201 0.0639 0.0116 0.0292
0.1 0.0199 0.0207 0.0738 0.0109 0.0177
0.05 0.0203 0.0204 0.0730 0.0109 0.0187
0.01 0.0202 0.0203 0.0684 0.0108 0.0200
0.005 0.0208 0.0212 0.0838 0.0117 0.0211
0.001 0.0236 0.0235 0.0768 0.01090 0.0255

SW 0.15 0.0192 0.0179 0.0749 0.0075 0.0166
0.1 0.0181 0.01802 0.0923 0.0075 0.0179
0.05 0.0175 0.0188 0.0784 0.0092 0.0192
0.01 0.0177 0.0194 0.0734 0.0076 0.0206
0.005 0.0182 0.0186 0.0732 0.0074 0.0214
0.001 0.0218 0.0220 0.0749 0.0075 0.0246

AOT 0.15 0.0269 0.0202 0.0557 0.0108 0.0178
0.1 0.0206 0.0209 0.0750 0.0107 0.0188
0.05 0.0201 0.0203 0.0694 0.0107 0.0186
0.01 0.0206 0.0206 0.0589 0.0108 0.0207
0.005 0.0207 0.0212 0.0628 0.0108 0.0223
0.001 0.0235 0.0241 0.0679 0.0108 0.0270

Table 3.3: Decompression latency for di�erent error thresholds (s)

67

(a) Compression ratio: course, medium,
�ne (b) Compression ratio: �ne

Figure 3.3: Breakdown of performance for several di�erent data resolutions

3.5.4 Micro-benchmarks

We ran several di�erent experiments in order to understand our compression method's most

important hyperparameters: window size, pivot selection and error allocation. Additionally,

we tested di�erent �attening techniques to evaluate their corresponding performance. All

experiments in this subsection were performed on the rasterized parks data set and theL1

error was set to10%.

Raster Data Resolution

When rasterizing a data set, one needs to choose the appropriate resolution of the data that

will be stored. In this context this is a trade-o� between the precision and storage, as one

increases the precision of the data being stored, there will be more points representing the

same space and therefore it will require more storage space. Furthermore, we can always

upsample from a �ner grid to a coarse, but the other direction will involve an inference

step with regards to the points being estimated. Therefore, whenever possible, we want to

store data in the �ner possible granularity in order to preserve information. We analyse the

performance of our method on 3 di�erent rasterized grids [1.1m, 5.5m, 11m] of the same

data set. The values represent the distance between 2 points in the �nal data set.

68

On Figure 3.3a, we can see that as we increase the spatial resolution of the data sets the

compression ratio improves. That's an expected result, since the adjacent points will be more

similar in values, therefore improving the results. When it comes to the e�ect of di�erent

budget allocations for the di�erent granularity levels, we notice that the 11m and 5.5m

data sets have their best compression ratio at the degenerate case (w = 0%). The window

method only improves the performance of the compression when the values are relatively

smooth within their vicinity, which is the expected as we increase the number of points

within an area. However, Figure 3.3b show that when the raster data is �ne grained the

gains are substantial, once again achieving a24%improvement over the QTRC baseline. As

the spatial resolution of datasets continues to improve due to advances in sensing technology,

we would expect that HIRE would be able to exploit the increasingly �ne-grained structure.

Window Size

A window represents the 2d section of the data being analyzed at each point in time as

described. We tested di�erent window sizes ranging from 2x2 to 64x64 to evaluate their

e�ects on both the compression ratio and latency.

We notice in Figure 3.4a that the e�ect of the window size is not monotonic. It initially

improves the compression ratio until it reaches its minimum atw = 8 and then it starts to

get continuously worse. The optimal value seems to be data set dependent, where the more

similar the neighboring data points are the greater the improvement of a larger window is.

Once the window size surpasses the radius of similarity within the data the bene�ts subside.

On the other hand, the compression latency has the expected behavior with regards to

the window size as shown on Figure 3.4b. The greater the window size, the faster the com-

pression. One improvement that we aim to implement in the future is the use of parallelism

with regards to the window's computations. If the windows are performing replacements in

parallel we could have a balancing e�ect between the size of the window and the number of

69

(a) Compression ratio (b) Compression latency

Figure 3.4: Breakdown of performance for several di�erent window sizes

(a) Compression ratio (b) Compression latency

Figure 3.5: Breakdown of performance for several di�erent error allocations

possible parallel computations (up to a upper bound provided by the hardware).

Error Allocation

Error allocation is a vital parameter to consider in our method. As explained in?? it

determines how the total error budget (L1 error de�ned by the user) will be allocated to the

window replacement method instead of the quantization. We evaluate the e�ects of allocating

the following percentages of the overall budget to the window: [0,0.125,0.25,0.375,0.5,0.75].

In the following experiments we consider a total budget of10% of l1 error, therefore once

the window budget is chosen the quantization is its complement.

We can see on Figure 3.5a that the optimal choice of error to be allocated to the window

70

replacement is12:5% of the total budget. The di�erence between the degenerate scenario

with 0% o the error allocated to the window (QTRC baseline) and the best allocation

corresponds to a24% improvement in compression. Once again, the optimal choice will be

data dependent, where the similarity between values will determine the best window ratio.

In Figure 3.5b we see that the compression latency is barely a�ected by the change in

error allocation. This behavior is expected, since the computations involved are similar up

to value replacements, where the more e�ective the allocation the more replacements are

needed. However, those are barely noticeable in a modern computer architecture.

Flattening

Flattening corresponds to how the data is linearized in order for the downstream compressor

to operate. Di�erent �attening methods could a�ect how long the downstream compressor's

run length is and therefore its performance. We tested 3 di�erent versions: row, window and

contiguous window. The row method �attens the data row by row sequentially, trying to

maintain the run length along the horizontal axis. The window methods leverage the spatial

relationship between adjacent data points by performing horizontal �attening within each

window. The objective of the window methods is also to capture the redundancy introduced

by the replacement algorithm, as well as the spatial characteristics of the dataset.

The di�erence between the window and window contiguous methods are the order of

traversal through the input array. The window variant simply iterates through the windows

from left to right and top to bottom, in a conventional pattern. On the other hand, the

window contiguous method forces the order of traversal to only consider contiguous windows.

If a window is on the edge of the array, the algorithm advances one window in the vertical

direction and reverses the order of traversal in the horizontal direction. This ensures that

every window is contiguous with respect to at least one other window when considering the

ordering of the �attened array.

71

(a) Compression ratio (b) Compression latency

(c) Decompression ratio

Figure 3.6: Breakdown of performance for several �attening methods: row, window, con-
tiguous window

In Figure 3.6 we see the e�ects of di�erent �attening methods on the compression ratio,

compression latency, and decompression latency. Although we might expect the window

methods to perform better in terms of compression ratio, that is not the case on this dataset.

In Figure 3.6a the row method, even though simpler, performs better at capturing the local

similarities and extending the run length of the downstream encoder. While this result may

seem surprising, at smaller window ratios, it is likely that the �attening method does little

to magnify the e�ects of the replacement strategy. Hence, these conclusions may change at

di�erent combinations of window ratio and dataset. Furthermore, row �attening is faster

both in terms of compression and decompression, as shown in Figures 3.6b and 3.6c.

72

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	2 Hierarchical Residual Encoding for Multiresolution Time Series Compression
	2.1 Introduction
	2.2 Background
	2.2.1 Time Series Compression Basics
	2.2.2 Compression with Bounded L Error
	2.2.3 The Multiresolution Problem

	2.3 Mathematical Intuition
	2.3.1 Residualization
	2.3.2 Relevance to Time Series Compression
	2.3.3 Novelty

	2.4 Hierarchical Residual Encoding
	2.4.1 Algorithm Basics
	2.4.2 Algorithm Description
	2.4.3 Decompression

	2.5 Optimizations
	2.5.1 Algorithmic Optimizations
	2.5.2 Implementation Optimizations
	2.5.3 Extensions

	2.6 Related Work
	2.7 Experiments
	2.7.1 Datasets
	2.7.2 Baselines
	2.7.3 Performance Overview
	2.7.4 Compression Ratio
	2.7.5 Compression and Decompression
	2.7.6 Edge Retrieval Experiments
	2.7.7 Micro-benchmarks
	2.7.8 Additional Experiments

	2.8 Conclusion

	3 RasterStore: Adaptive Compression for Fully Rasterized Geospatial Data
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Compression Basics
	3.2.2 RasterStore Overview

	3.3 Our Method
	3.4 Optimizations
	3.4.1 Statistical pivot selection
	3.4.2 Pivot selection given the ratio
	3.4.3 Ratio selection given the pivot
	3.4.4 Pivot and ratio selection

	3.5 Experiments
	3.5.1 Datasets
	3.5.2 Baselines
	3.5.3 Main Experiments
	3.5.4 Micro-benchmarks

	3.6 Conclusion

	4 Geospatial Case Study: The Sociome Data Commons
	4.1 Introduction
	4.2 Materials and Methods
	4.3 Software Implementation
	4.4 Governance and Sustainability
	4.5 Asthma Pilot Methodology
	4.5.1 Geocoding
	4.5.2 Missing data
	4.5.3 Outcome definition
	4.5.4 Spatial clustering
	4.5.5 Sociome Data Commons
	4.5.6 Model
	4.5.7 Evaluation
	4.5.8 Protocol testing
	4.5.9 Challenges

	4.6 Results
	4.6.1 Sociome Data Commons
	4.6.2 Asthma pilot results
	4.6.3 Sociome Data Commons datasets

	4.7 Conclusion
	4.7.1 Platform discussion
	4.7.2 Analysis discussion
	4.7.3 Limitations

	References

