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ABSTRACT

In this thesis, we discuss three positive semidefinite matrix estimation problems. We recast them by

decomposing the semidefinite variable into symmetric factors, and investigate first-order methods

for optimizing the transformed nonconvex objectives.

The central theme of our methods is to exploit the structure of the factors for computational

efficiency. The first part of this thesis focuses on low rank structure. We first consider a family of

random semidefinite programs. We reformulate the problem as minimizing a fourth order objective

function, and propose a simple gradient descent algorithm. WithO(r3κ2n log n) random measure-

ments of a positive semidefinite n × n matrix of rank r and condition number κ, our method is

guaranteed to converge linearly to the global optimum.

Similarly, we address the rectangular matrix completion problem by lifting the unknown matrix

to a positive semidefinite matrix in higher dimension, and optimizing a fourth order objective

over the factor using a simple gradient descent scheme. With O(µr2κ2nmax(µ, log n)) random

observations of a n1 × n2 µ-incoherent matrix of rank r and condition number κ, where n =

max(n1, n2), the algorithm linearly converges to the global optimum with high probability.

Sparsity is the other structure we study. In the second part of this thesis, we consider the

problem of computing the fastest mixing Markov chain on a given graph. The task is to choose

the edge weights so that a function of the eigenvalues of the associated graph Laplacian matrix is

minimized. We rewrite this problem so that the search space is over the sparse Cholesky factor

of the associated graph Laplacian, and develop a nonconvex ADMM algorithm. Experiments are

conducted to demonstrate the convergence of this approach.
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CHAPTER 1

INTRODUCTION

A growing body of recent research is shedding new light on the role of nonconvex optimization for

tackling large scale problems in machine learning, signal processing, and convex programming. A

parallel development is the surprising effectiveness of simple classical procedures such as gradient

descent for problems with exploded size and complexity, as explored in the recent literature [Bach

and Moulines, 2011; Bach, 2014; Hoffman et al., 2013]. This thesis is devoted to develop rela-

tively simple first-order algorithms for certain nonconvex approaches and explain the remarkable

effectiveness and efficiency of them.

Optimizing a nonconvex function is in general hard due to the presence of local minima and

saddle points. For the past few decays, there has been extensive studies that focuses on convex re-

laxation of nonconvex functions [Goemans and Williamson, 1995; Candès, 2006; Donoho, 2006;

Recht et al., 2010; Chandrasekaran et al., 2012]. In particular, semidefinite programming has be-

come a key surrogate optimization tool of difficult combinatorial problems [d’Aspremont et al.,

2004; Amini and Wainwright, 2009; Goemans and Williamson, 1995]. In spite of the importance

of SDPs in principle—promising efficient algorithms with polynomial runtime guarantees—it is

widely recognized that current optimization algorithms based on interior point methods can handle

only relatively small problems. Thus, a considerable gap exists between the theory and applicabil-

ity of SDP formulations. Scalable algorithms for semidefinite programming, and closely related

families of nonconvex programs more generally, are greatly needed.

The motivating result of this thesis is recent work for phase retrieval by Candès et al. [2015b].

The phase retrieval problem is to recover a complex vector z ∈ Cn from squared magnitudes of its

linear measurements

yi = |〈ai, z〉|2, i = 1, . . .m.

The authors propose a gradient descent algorithm to optimize a fourth order nonconvex objective

1



function

f(z) =
1

4m

m∑
i=1

(
yi − |〈ai, z〉|2

)2
. (1.1)

Under mild assumptions, using carefully constructed initialization and step size, the iterates con-

verge to global optimum at a linear rate.

If we assume that a1, . . . , am, z ∈ Rn, an interesting reparameterization of f is

1

4m

m∑
i=1

(yi − 〈Ai, X〉)2 , (1.2)

where Ai = aia
>
i and X = zz> is a semidefinite variable. This observation has inspired our

thinking in two aspects:

1. Local searching such as gradient descent can be effective and computationally efficient for

certain nonconvex problems of symmetric structure.

2. For certain families of SDPs, one can nonconvexify the problem by taking symmetric fac-

torization X = ZZ> and then solve the resulting nonconvex problem via gradient descent

over the factor Z.

In this thesis, we study several problems where the symmetric factorization technique can

apply. The first part of our work focuses on utilizing the low rank structure of the semidefinite

variable. When Z is of low rank, this can be viewed as part of a framework for solving general

low rank semidefinite programs proposed by Burer and Monteiro [2003, 2005]. In Chapter 2, we

introduce the affine rank minimization problem. It provides a unified characterization of problems

we study in the next two chapters up to certain transformations. In Chapter 3, we consider a class

of SDPs with random linear constraints where the solution matrix is of low rank. We prove that

a simple gradient scheme linearly converges to global optimum with high probability. This work

was presented at NIPS 2015 [Zheng and Lafferty, 2015].

As a generalization, Chapter 4 studies a projected gradient descent algorithm for solving low

rank rectangular matrix completion problem. We introduce a lifting method that transforms the
2



rectangular matrix into a positive semidefinite matrix in higher dimension, so that it can be decom-

posed in the same way as before. This work is reported in a technical report [Zheng and Lafferty,

2016]. It extends the results in previous chapter in two directions that are of more practical interest:

the target matrix is rectangular and the observation is incomplete.

In addition to the low rank model, the second part of this thesis considers sparse structure.

Chapter 5 discusses the fastest mixing Markov chain problem: finding edge weights of a given

graph to achieve the fastest mixing rate. It can be written as a matrix eigenvalue optimization

problem, whose variable is the graph Laplacian matrix. The graph Laplacian is positive semidefi-

nite and of nearly full rank, but it has a sparse Cholesky factor. We propose a variant of the ADMM

algorithm that optimizes a nonconvex objective over the Cholesky factor with a fixed sparsity pat-

tern.

Finally, we conclude in Chapter 6. Some directions for future work are also provided in this

chapter.
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Part I

Low Rank Matrices
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CHAPTER 2

AFFINE RANK MINIMIZATION

We consider the problem of recovering a unknown low rank matrix X? ∈ Rn1×n2 from m linear

measurements

bi = 〈Ai, X?〉, i = 1, . . . ,m.

LetA : Rn1×n2 −→ Rm be the affine transformation such thatA(·) = 〈Ai, ·〉. Our goal is to find a

matrix X∗ of minimum rank satisfying A(X∗) = b. The underdetermined case where m� n1n2

is of particular interest, and can be formulated as the optimization

min
X∈Rn1×n2

rank(X)

subject to A(X) = b.

(2.1)

This problem is a direct generalization of compressed sensing, and subsumes many machine

learning problems such as image compression, low rank matrix completion and low-dimensional

metric embedding [Recht et al., 2010; Jain et al., 2013].

The challenges that are both statistical and computational in nature.

• Computationally, while the problem is natural and has many applications, the objective func-

tion is nonconvex. Without conditions on the transformation A or the minimum rank solu-

tion X∗, it is generally NP hard [Meka et al., 2008]. We would like to have an algorithm

which converges to X∗ in polynomial time, meanwhile has fast convergence rate and low

per-iteration cost.

• Statstically, we want to achieve exact recovery X∗ = X? with as few measurements as

possible.

We study two instances of Problem 2.1 in this thesis. In Chapter 3, we assume that

(i) X? is positive semidefinite, which implies n1 = n2 = n;

5



(ii) Each Ai is a random n × n symmetric matrix from the Gaussian Orthogonal Ensemble

(GOE), with (Ai)jj ∼ N (0, 2) and (Ai)jk ∼ N (0, 1) for j 6= k.

We shall refer to this problem as low rank positive semidefinite matrix sensing. In addition to the

wide applicability of affine rank minimization, this problem is also closely connected to a class of

semidefinite programs. In Section 3.1, we show that the minimizer of a particular class of SDP can

be obtained by a linear transformation of X?. Thus, efficient algorithms for problem (3.1) can be

applied in this setting as well.

In Chapter 4, we consider the rectangular matrix completion problem, a common model for

recommendation system. There the transformation A represents a random sampling operator and

b consists of entries of X? that are observed.

6



CHAPTER 3

SEMIDEFINITE PROGRAMMING FROM RANDOM LINEAR

MEASUREMENTS

We would like to a reconstruct a positive semidefinite matrix X? of minimum rank that satisfies a

group of linear constraints. The task is to solve the nonconvex optimization problem

min
X�0

rank(X)

subject to tr(AiX) = bi, i = 1, . . . ,m,

(3.1)

where Ais are i.i.d variables generated from GOE.

As mentioned in Chapter 1, noting that a rank-r matrix X? can be decomposed as X? =

Z?Z?> where Z? is a n by r matrix, our approach is based on minimizing the squared residual

f(Z) =
1

4m

∥∥∥A(ZZ>)− b
∥∥∥2

=
1

4m

m∑
i=1

(
tr(Z>AiZ)− bi

)2
. (3.2)

While this is a nonconvex function, we develop a gradient descent algorithm for optimizing

f(Z). Our main contributions concerning this algorithm are as follows.

• We prove that withO(r3n log n) constraints our gradient descent scheme can exactly recover

X? with high probability. Empirical experiments show that this bound may potentially be

improved to O(rn log n).

• We show that our method converges linearly, and has lower computational cost compared

with previous methods.

• We carry out a detailed comparison of rank minimization algorithms, and demonstrate that

when the measurement matricesAi are sparse, our gradient method significantly outperforms

alternative approaches.

7



Later sections are organized as follows. Before presenting our algorithm, we explain the con-

nection between semidefinite programming and rank minimization in Section 3.1. This connection

enables our scalable gradient descent algorithm to be applied and analyzed for certain classes of

SDPs. In Section 3.2 we discuss the gradient scheme in detail. Our main analytical results are pre-

sented in Section 3.3, with detailed proofs contained in the Section 3.7. In Section 3.4 we review

related work. Our experimental results are presented in Section 3.5, and we conclude with a brief

discussion of future work in Section 3.6.

3.1 Semidefinite Programming and Rank Minimization

Consider a standard form semidefinite program

min
X̃�0

tr(C̃X̃)

subject to tr(ÃiX̃) = bi, i = 1, . . . ,m

(3.3)

where C̃, Ã1, . . . , Ãm ∈ Sn. If C̃ is positive definite, then we can write C̃ = LL> where L ∈

Rn×n is invertible. It follows that the minimum of problem (3.3) is the same as

min
X�0

tr(X)

subject to tr(AiX) = bi, i = 1, . . . ,m

(3.4)

where Ai = L−1ÃiL
−1>. In particular, minimizers X̃∗ of Problem (3.3) are obtained from

minimizers X∗ of Problem (3.4) via the transformation

X̃∗ = L−1>X∗L−1.

SinceX is positive semidefinite, tr(X) is equal to ‖X‖∗. Hence, problem (3.4) is the nuclear norm

relaxation of Problem (3.1). Next, we characterize the specific cases where X∗ = X?, so that the

8



SDP and rank minimization solutions coincide.

Theorem 3.1 (Recht et al. [2010]). Let A : Rn×n −→ Rm be a linear map. For every integer k

with 1 ≤ k ≤ n, define the k-restricted isometry constant to be the smallest value δk such that

(1− δk) ‖X‖F ≤ ‖A(X)‖ ≤ (1 + δk) ‖X‖F

holds for any matrix X of rank at most k. Suppose that there exists a rank r matrix X? such

that A(X?) = b. If δ2r < 1, then X? is the only matrix of rank at most r satisfying A(X) = b.

Furthermore, if δ5r < 1/10, then X? can be attained by minimizing ‖X‖∗ over the affine subset.

In other words, since δ2r ≤ δ5r, if δ5r < 1/10 holds for the transformation A and one finds a

matrix X of rank r satisfying the affine constraint, then X must be positive semidefinite. Hence,

one can ignore the semidefinite constraint X � 0 when solving the rank minimization (3.1). The

resulting problem then can be exactly solved by nuclear norm relaxation. Since the minimum rank

solution is positive semidefinite, it then coincides with the solution of the SDP (3.4), which is a

constrained nuclear norm optimization.

3.2 A Gradient Descent Algorithm for Rank Minimization

Our method is described in Algorithm 1. It is parallel to the Wirtinger Flow (WF) algorithm for

phase retrieval [Candès et al., 2015b]. To recover a complex vector z? ∈ Cn given the squared

magnitudes of its linear measurements bi = |〈ai, z?〉|2, i ∈ [m], where a1, . . . , am ∈ Cn. Candès

et al. [2015b] propose a first-order method to minimize the sum of squared residuals

fWF(z) =
n∑
i=1

(
|〈ai, z〉|2 − bi

)2
. (3.5)

The authors establish the convergence of WF to the global optimum—given sufficient measure-

ments, the iterates of WF converge linearly to x up to a global phase, with high probability.

9
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Figure 3.1: An instance of f(Z) where X? ∈ R2×2 is rank-1 and Z ∈ R2. The underlying truth is
Z? = [1, 1]>. Both Z? and −Z? are minimizers.

If z and the ais are real-valued, the function fWF(z) can be expressed as

fWF(z) =
n∑
i=1

(
z>aia

>
i z − x

>aia
>
i x
)2
,

which is a special case of f(Z) in Equation (3.2), where Ai = aia
>
i and each of Z and X? are

rank one. See Figure 3.1 for an illustration; Figure 3.2 shows the convergence rate of our method.

Our methods and results are thus generalizations of Wirtinger flow for phase retrieval.

Before turning to the presentation of our technical results in the following section, we present

some intuition and remarks about how and why this algorithm works. For simplicity, let us assume

that the rank is specified correctly.

Initialization is of course crucial in nonconvex optimization, as many local minima may be

present. To obtain a sufficiently accurate initialization, we use a spectral method, similar to those

used in [Netrapalli et al., 2013; Candès et al., 2015b]. The starting point is the observation that a

linear combination of the constraint values and matrices yields an unbiased estimate of the solution.

Lemma 3.1. Let M = 1
m

∑m
i=1 biAi. Then 1

2E(M) = X?, where the expectation is with respect

to the randomness in the measurement matrices Ai.

Based on this fact, let X? = U?ΣU?> be the eigenvalue decomposition of X?, where U? =

[u?1, . . . , u
?
r ] and Σ = diag(σ1, . . . , σr) such that σ1 ≥ . . . ≥ σr are the nonzero eigenvalues of

10
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distance metric is given in Definition 3.1.

X?. Let Z? = U?Σ
1
2 . Clearly, u?s = z?s/ ‖z?s‖ is the top sth eigenvector of E(M) associated with

eigenvalue 2 ‖z?s‖2. Therefore, we initialize according to z0
s =

√
|λs|
2 vs where (vs, λs) is the top

sth eigenpair of M . For sufficiently large m, it is reasonable to expect that Z0 is close to Z?; this

is confirmed by concentration of measure arguments.

Certain key properties of f(Z) will be seen to yield a linear rate of convergence. In the anal-

ysis of convex functions, Nesterov [2004] shows that for unconstrained optimization, the gradient

descent scheme with sufficiently small step size will converge linearly to the optimum if the ob-

jective function is strongly convex and has a Lipschitz continuous gradient. However, these two

properties are global and do not hold for our objective function f(Z). Nevertheless, we expect that

similar conditions hold for the local area near Z?. If so, then if we start close enough to Z?, we

can achieve the global optimum.

In our subsequent analysis, we establish the convergence of Algorithm 1 with a constant step

size of the form µ/ ‖Z?‖2F , where µ is a small constant. Since ‖Z?‖F is unknown, we replace it

by
∥∥Z0

∥∥
F .

11



Algorithm 1: Gradient descent for rank minimization
input: {Ai, bi}mi=1, r, µ
initialization

Set (v1, λ1), . . . , (vr, λr) to the top r eigenpairs of 1
m

∑m
i=1 biAi s.t. |λ1| ≥ · · · ≥ |λr|

Z0 = [z0
1 , . . . , z

0
r ] where z0

s =

√
|λs|
2 · vs, s ∈ [r]

k ← 0
repeat

∇f(Zk) = 1
m

m∑
i=1

(
tr(Zk

>
AiZ

k)− bi
)
AiZ

k

Zk+1 = Zk − µ∑r
s=1 |λs|/2

∇f(Zk)

k ← k + 1
until convergence;

output: X̂ = ZkZk
>

3.3 Convergence Analysis

In this section we present our main result analyzing the gradient descent algorithm, and give a

sketch of the proof. To begin, note that the symmetric decomposition of X? is not unique, since

X? = (Z?U)(Z?U)> for any r × r orthonormal matrix U . Thus, the solution set is

S =
{
Z̃ ∈ Rn×r | Z̃ = Z?U for some U with UU> = U>U = I

}
.

Note that ‖Z̃‖2F = ‖X?‖∗ for any Z̃ ∈ S . We define the distance to the optimal solution in terms

of this set.

Definition 3.1. Define the distance between Z and Z? as

d(Z,Z?) = min
UU>=U>U=I

‖Z − Z?U‖F = min
Z̃∈S

∥∥Z − Z̃∥∥F .

Our main result for exact recovery is stated below, assuming that the rank is correctly speci-

fied. Since the true rank is typically unknown in practice, one can start from a very low rank and

gradually increase it.
12



Theorem 3.2. Let the condition number κ = σ1/σr denote the ratio of the largest to the smallest

nonzero eigenvalues of X?. There exists a universal constant c0 such that if m ≥ c0κ
2r3n log n,

with high probability the initialization Z0 satisfies

d(Z0, Z?) ≤
√

3

16
σr. (3.6)

Moreover, there exists a universal constant c1 such that when using constant step size µ/ ‖Z?‖2F
with µ ≤ c1

κn
and initial value Z0 obeying (3.6), the kth step of Algorithm 1 satisfies

d(Zk, Z?) ≤
√

3

16
σr

(
1− µ

12κr

)k/2
with high probability.

We now outline the proof, giving full details in the supplementary material. The proof has four

main steps. The first step is to give a regularity condition under which the algorithm converges

linearly if we start close enough to Z?. This provides a local regularity property that is similar

to the Nesterov [2004] criteria that the objective function is strongly convex and has a Lipschitz

continuous gradient.

Definition 3.2. LetZ = arg min
Z̃∈S

∥∥Z − Z̃∥∥F denote the matrix closest to Z in the solution set.

We say that f satisfies the regularity condition RC(ε, α, β) if there exist constants α, β such that

for any Z satisfying d(Z,Z?) ≤ ε, we have

〈∇f(Z), Z −Z〉 ≥ 1

α
σr
∥∥Z −Z∥∥2

F +
1

β ‖Z?‖2F
‖∇f(Z)‖2F .

Using this regularity condition, we show that the iterative step of the algorithm moves closer

to the optimum, if the current iterate is sufficiently close.

Lemma 3.2. Consider the update Zk+1 = Zk − µ

‖Z?‖2F
∇f(Zk). If f satisfies RC(ε, α, β),

13



d(Zk, Z?) ≤ ε, and 0 < µ < min(α/2, 2/β), then

d(Zk+1, Z?) ≤
√

1− 2µ

ακr
d(Zk, Z?).

In the next step of the proof, we condition on two events that will be shown to hold with high

probability using concentration results. Let δ denote a small value to be specified later.

A1 For any u ∈ Rn such that ‖u‖ ≤ √σ1,

∥∥∥∥∥ 1

m

m∑
i=1

(u>Aiu)Ai − 2uu>
∥∥∥∥∥ ≤ δ

r
.

A2 For any Z̃ ∈ S,

∥∥∥∥∥∂2f(Z̃)

∂z̃s∂z̃>k
− E

[
∂2f(Z̃)

∂z̃s∂z̃>k

]∥∥∥∥∥ ≤ δ

r
, for all s, k ∈ [r].

Here the expectations are with respect to the random measurement matrices. Under these assump-

tions, we can show that the objective satisfies the regularity condition with high probability.

Lemma 3.3. Suppose that A1 and A2 hold. If δ ≤ 1
16σr, then f satisfies the regularity condition

RC(
√

3
16σr, 24, 513κn) with probability at least 1−mCe−ρn, whereC, ρ are universal constants.

Next we show that under A1, a good initialization can be found.

Lemma 3.4. Suppose that A1 holds. Let {vs, λs}rs=1 be the top r eigenpairs of M = 1
m

m∑
i=1

biAi

such that |λ1| ≥ · · · ≥ |λr|. Let Z0 = [z1, . . . , zr] where zs =

√
|λs|
2 · vs, s ∈ [r]. If δ ≤ σr

4
√
r
,

then

d(Z0, Z?) ≤
√

3σr/16.

Finally, we show that conditioning on A1 and A2 is valid since these events have high proba-

bility as long as m is sufficiently large.
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Lemma 3.5. If the number of samples m ≥ 42

min(δ2/r2σ2
1, δ/rσ1)

n log n, then for any u ∈ Rn

satisfying ‖u‖ ≤ √σ1, ∥∥∥∥∥ 1

m

m∑
i=1

(u>Aiu)Ai − 2uu>
∥∥∥∥∥ ≤ δ

r

holds with probability at least 1−mCe−ρn − 2
n2

, where C and ρ are universal constants.

Lemma 3.6. For any x ∈ Rn, if m ≥ 128

min(δ2/4r2σ2
1, δ/2rσ1)

n log n, then for any Z̃ ∈ S

∥∥∥∥∥∂2f(Z̃)

∂z̃s∂z̃>k
− E

[
∂2f(Z̃)

∂z̃s∂z̃>k

]∥∥∥∥∥ ≤ δ

r
, for all s, k ∈ [r],

with probability at least 1− 6me−n − 4
n2

.

Note that since we need δ ≤ min
(

1
16 ,

1
4
√
r

)
σr, we have δ

rσ1
≤ 1, and the number of measure-

ments required by our algorithm scales as O(r3κ2n log n), while only O(r2κ2n log n) samples are

required by the regularity condition. We conjecture this bound could be further improved to be

O(rn log n); this is supported by the experimental results presented below.

Recently, Tu et al. [2016] establish a tighter O(r2κ2n) bound overall. Specifically, when only

one single SVP step is used in preprocessing, the initialization of PF is also the spectral decomposi-

tion of 1
2M . The authors show thatO(r2κ2n) measurements are sufficient for the initial solution to

satisfy d(Z0, Z?) ≤ O(
√
σr) with high probability, and demonstrate an O(rn) sample complexity

for the regularity condition.

3.4 Related Work

Burer and Monteiro [2003] proposed a general approach for solving semidefinite programs using

factored, nonconvex optimization, giving mostly experimental support for the convergence of the

algorithms. The first nontrivial guarantee for solving affine rank minimization problem is given by

Recht et al. [2010], based on replacing the rank function by the convex surrogate nuclear norm, as

already mentioned in the previous section. While this is a convex problem, solving it in practice is
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nontrivial, and a variety of methods have been developed for efficient nuclear norm minimization.

The most popular algorithms are proximal methods that perform singular value thresholding [Cai

et al., 2010] at every iteration. While effective for small problem instances, the computational

expense of the SVD prevents the method from being useful for large scale problems.

Recently, Jain et al. [2010] proposed a projected gradient descent algorithm SVP (Singular

Value Projection) that solves

min
X∈Rn×p

‖A(X)− b‖2

subject to rank(X) ≤ r,

where ‖·‖ is the `2 vector norm and r is the input rank. In the (t + 1)th iteration, SVP updates

Xt+1 as the best rank r approximation to the gradient update Xt − µA>(A(Xt) − b), which

is constructed from the SVD. If rank(X?) = r, then SVP can recover X? under a similar RIP

condition as the nuclear norm heuristic, and enjoys a linear numerical rate of convergence. Yet

SVP suffers from the expensive per-iteration SVD for large problem instances.

Subsequent work of Jain et al. [2013] proposes an alternating least squares algorithm AltMinSense

that avoids the per-iteration SVD. AltMinSense factorizes X into two factors U ∈ Rn×r, V ∈

Rp×r such that X = UV > and minimizes the squared residual
∥∥∥A(UV >)− b

∥∥∥2
by updating U

and V alternately. Each update is a least squares problem. The authors show that the iterates

obtained by AltMinSense converge to X? linearly under a RIP condition. However, the least

squares problems are often ill-conditioned, it is difficult to observe AltMinSense converging to

X? in practice.

As described above, considerable progress has been made on algorithms for rank minimization

and certain semidefinite programming problems. Yet truly efficient, scalable and provably conver-

gent algorithms have not yet been obtained. In the specific setting that X? is positive semidefinite,

our algorithm exploits this structure to achieve these goals. We note that recent and independent

work of Tu et al. [2016] proposes a hybrid algorithm called Procrustes Flow (PF), which uses a

few iterations of SVP as initialization, and then applies gradient descent. Similar algorithms and

related problems are also analyzied in Chen and Wainwright [2015]; Bhojanapalli et al. [2016a].
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Method Complexity

nuclear norm minimization via ADMM O(mn2ρ+m2 + n3)

gradient descent O(mn2ρ) + 2n2r

SVP O(mn2ρ+ n2r)

AltMinSense O(mn2r2 + n3r3 +mn2rρ)

Table 3.1: Matrix sensing: per-iteration computational complexities of different methods.

3.5 Experiments

In this section we report the results of experiments on synthetic datasets. We compare our gradient

descent algorithm with nuclear norm relaxation, SVP and AltMinSense for which we drop

the positive semidefiniteness constraint, as justified by the observation in Section 3.1. We use

ADMM for the nuclear norm minimization, based on the algorithm for the mixture approach in

Tomioka et al. [2010]; see Section 3.7.7. For simplicity, we assume that AltMinSense, SVP

and the gradient scheme know the true rank. Krylov subspace techniques such as the Lanczos

method could be used compute the partial eigendecomposition; we use the randomized algorithm

of Halko et al. [2011] to compute the low rank SVD. All methods are implemented in MATLAB

and the experiments were run on a MacBook Pro with a 2.5GHz Intel Core i7 processor and 16

GB memory.

3.5.1 Computational Complexity

It is instructive to compare the per-iteration cost of the different approaches; see Table 3.1. Suppose

that the density (fraction of nonzero entries) of each Ai is ρ. For AltMinSense, the cost of

solving the least squares problem is O(mn2r2 + n3r3 + mn2rρ). The other three methods have

O(mn2ρ) cost to compute the affine transformation. For the nuclear norm approach, the O(n3)

cost is from the SVD and the O(m2) cost is due to the update of the dual variables. The gradient

scheme requires 2n2r operations to compute ZkZk
>

and to multiply Zk by n×n matrix to obtain

the gradient. SVP needs O(n2r) operations to compute the top r singular vectors. However, in

practice this partial SVD is more expensive than the 2n2r cost required for the matrix multiplies
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in the gradient scheme.

Clearly, AltMinSense is the least efficient. For the other approaches, in the dense case (ρ

large), the affine transformation dominates the computation. Our method removes the overhead

caused by the SVD. In the sparse case (ρ small), the other parts dominate and our method enjoys a

low cost.

3.5.2 Runtime Comparison

We conduct experiments for both dense and sparse measurement matrices. AltMinSense is

indeed slow, so we do not include it here.

In the first scenario, we randomly generate a 400 × 400 rank-2 matrix X? = xx> + yy>

where x, y ∼ N (0, I). We also generate m = 6n matrices A1, . . . , Am from the GOE, and

then take b = A(X?). We report the relative error measured in the Frobenius norm defined as

‖X̂ −X?‖F /‖X?‖F . For the nuclear norm approach, we set the regularization parameter to λ =

10−5. We test three values η = 10, 100, 200 for the penalty parameter and select η = 100 as it leads

to the fastest convergence. Similarly, for SVPwe evaluate the three values 5×10−5, 10−4, 2×10−4

for the step size, and select 10−4 as the largest for which SVP converges. For our approach, we

test the three values 0.6, 0.8, 1.0 for µ and select 0.8 in the same way.

In the second scenario, we use a more general and practical setting. We randomly generate

a rank-2 matrix X? ∈ R600×600 as before. We generate m = 7n sparse Ais whose entries are

i.i.d. Bernoulli:

(Ai)jk =


1 with probability ρ,

0 with probability 1− ρ,

where we use ρ = 0.001. For all the methods we use the same strategies as before to select

parameters. For the nuclear norm approach, we try three values η = 10, 100, 200 and select η =

100. For SVP, we test the three values 5× 10−3, 2× 10−3, 10−3 for the step size and select 10−3.

For the gradient algorithm, we check the three values 0.8, 1, 1.5 for µ and choose 1.

The results are shown in Figures 3.3 and 3.4. In the dense case, our method is faster than the
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Figure 3.3: Runtime comparison where X? ∈ R400×400 is rank-2 and Ais are dense.
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Figure 3.4: Runtime comparison where X? ∈ R600×600 is rank-2 and Ais are sparse.

nuclear norm approach and slightly outperforms SVP. In the sparse case, it is significantly faster

than the other approaches.

3.5.3 Sample Complexity

We also evaluate the number of measurements required by each method to exactly recover X?,

which we refer to as the sample complexity. We randomly generate the true matrix X? ∈ Rn×n

and compute the solutions of each method given m measurements, where the Ais are randomly

drawn from the GOE. A solution with relative error below 10−5 is considered to be successful. We
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Figure 3.5: Sample complexity comparison.

run 40 trials and compute the empirical probability of successful recovery.

We consider cases where n = 60 or 100 and X? is of rank one or two. The results are shown

in Figure 3.5. For SVP and our approach, the phase transitions happen around m = 1.5n when

X? is rank-1 and m = 2.5n when X? is rank-2. This scaling is close to the number of degrees

of freedom in each case; this confirms that the sample complexity scales linearly with the rank

r. The phase transition for the nuclear norm approach occurs later. The results suggest that the

sample complexity of our method should also scale as O(rn log n) as for SVP and the nuclear

norm approach [Jain et al., 2010; Recht et al., 2010].

3.6 Discussion

We connect a special case of affine rank minimization to a class of semidefinite programs with ran-

dom constraints. Building on a recently proposed first-order algorithm for phase retrieval [Candès

et al., 2015b], we develop a gradient descent procedure for rank minimization and establish con-

vergence to the optimal solution with O(r3n log n) measurements. We conjecture that O(rn log n)

measurements are sufficient for the method to converge, and that the conditions on the sampling

matrices Ai can be significantly weakened. More broadly, the technique used in this paper—
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factoring the semidefinite matrix variable, recasting the convex optimization as a nonconvex opti-

mization, and applying first-order algorithms—first proposed by Burer and Monteiro [2003], may

be effective for a much wider class of SDPs, and deserves further study.

3.7 Proofs

3.7.1 Proof of Lemma 3.1

Let A = (aij) be a random matrix that is GOE distributed; thus aij ∼ N (0, 1) for i 6= j and aii ∼

N (0, 2). We have E(M) =
∑r
s=1 E((z?s

>Az?s)A). Hence, it suffices to show that E((x>Ax)A) =

2xx> for any x ∈ Rn. The (i, j) entry of (x>Ax)A has expected value

E((x>Ax)aij) = E

(∑
k

∑
l

xkxlaklaij

)

=
∑
k

∑
l

xkxlE(aklaij)

=
∑
k

∑
l

xkxl ·


0 if (k, l) 6= (i, j) ∧ (k, l) 6= (j, i)

E(a2
kl) otherwise

=


2xixjE(a2

ij) if i 6= j

x2
iE(a2

ii) otherwise

=


2xixj if i 6= j,

2x2
i otherwise,

where we use that the variance of aii is 2 and the variance of aij is 1 for any i 6= j. In matrix form,

this is E((x>Ax)A) = 2xx>.
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3.7.2 Technical Lemmas

We first present some technical lemmas that will be needed later. Recall Definition 3.2 that for any

Z,Z = arg min
Z̃∈S

∥∥Z − Z̃∥∥F . Let H = Z −Z . The sth column of Z,Z , Z?, H are denoted by

zs, z̄s, z?s , hs respectively. We shall use the following formulas for the gradient and second order

partial derivatives:

∇f(Z) =
1

m

m∑
i=1

(
tr(H>AiH) + 2 tr(Z>AiH)

)
(AiH + AiZ),

∂2f(Z)

∂zs∂z>s
=

1

m

m∑
i=1

(
2Aizsz

>
s A
>
i +

(
tr(Z>AiZ)− bi

)
Ai

)
, ∀s ∈ [r],

∂2f(Z)

∂zs∂z>k
=

1

m

m∑
i=1

2Aizsz
>
k A
>
i , ∀s, k ∈ [r] such that s 6= k.

The next ingredient we need is the expectation of the second order partial derivatives with

respect to the random measurement matrices.

Lemma 3.7. Let A = (aij) be a GOE distributed random matrix. For any two fixed vectors x and

y, we have E [AxyA] = x>yI + yx>.

Proof. The expectation of (i, j) entry of Axy>A is

E[(Axy>A)ij ] = E

(∑
k l

aikajkxkyl

)
.

If i = j, then we have

E[(Axy>A)ii] = E

(∑
k

a2
ikxkyk

)
=
∑
k

xkyk + xiyi,

since Var(a2
ii) = 2 and Var(a2

ik) = 1 if k 6= i. On the other hand, if i 6= j, then

E[(Axy>A)ij ] = E

(∑
kl

aikajlxkyl

)
= E(a2

ijxjyi) = xjyi.
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Therefore, E(Axy>A) = x>yI + yx>.

Lemma 3.8. For all s ∈ [r], it holds that E
[
∂2f(Z)

∂zs∂z>s

]
= 2 ‖zs‖2 I + 2zsz

>
s + 2ZZ> − 2X? and

E

[
∂2f(Z)

∂zs∂z>k

]
= 2z>s zkI + 2zkz

>
s for all k ∈ [r] such that k 6= s, where the expectation is over

the random measurement matrices.

Proof. The case where k 6= s is a direct result of Lemma 3.7. For the other case, let A = (aij) be

a GOE distributed random matrix. It follows from Lemma 3.1 that

E
[
∂2f(Z)

∂zs∂z>s

]
= 2E(Azsz

>
s A) + 2ZZ> − 2X?.

By Lemma 3.7, we have

E(Azsz
>
s A) = ‖zs‖2 I + zsz

>
s .

Substituting this back into the above equation, we obtain the lemma.

We next recall a concentration result for the operator (spectral) norm of the random measure-

ment matrices.

Lemma 3.9. (Ledoux and Rider [2010, Theorem 1]) There exists two absolute constants C and

ρ = 1√
8C

such that with probability at least 1− Ce−ρn,

‖Ai‖ ≤ 3
√
n.

A tighter upper bound is actually given in the Tracy-Widow law: w.h.p. ‖Ai‖ = O(2
√
n +

n1/6).

Corollary 3.1. With probability at least 1 −mCe−ρn, the average of the squared operator norm

of the random measurement matrices is upper bounded by 9n.
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Proof. Applying a union bound we have

P

(
1

m

m∑
i=1

‖Ai‖2 ≤ 9n

)
≥ P

(
∀i, ‖Ai‖ ≤ 3

√
n
)

≥ 1−
m∑
i=1

P
(
‖Ai‖ > 3

√
n
)

≥ 1−mCe−ρn,

where we use Lemma 3.9 in the last line.

The following two technical lemmas are important tools for us. Define the set

E(ε) = {Z | d(Z,Z?) ≤ ε} .

Lemma 3.10. Suppose that A1 holds:
∥∥∥ 1
m

∑m
i=1(u>Aiu)Ai − 2uu>

∥∥∥ ≤ δ
r , for any u such that

‖u‖ ≤ √σ1. If δ ≤ 1
16σr, then for any Z ∈ E

(√
3
16σr

)
it holds that

2
∥∥∥HH>∥∥∥2

F
− δ ‖H‖2F ≤

1

m

m∑
i=1

tr(H>AiH)2 ≤ δ ‖H‖2F + 2
∥∥∥HH>∥∥∥2

F
.

Proof. Let hs be the sth column of H . Since maxs∈[r] ‖hs‖2 ≤ ‖H‖F ≤
√

3
16σr ≤

√
σ1, it

follows from the assumption of the lemma that

∥∥∥∥∥ 1

m

m∑
i=1

(h>s Aihs)Ai − 2hsh
>
s

∥∥∥∥∥ ≤ δ

r
, s = 1, . . . , r.

By the triangle inequality, we have

∥∥∥∥∥ 1

m

m∑
i=1

r∑
s=1

(h>s Aihs)Ai − 2
r∑
s=1

hsh
>
s

∥∥∥∥∥ ≤ δ
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and consequently

−δ ‖hs‖2 ≤ h>s

(
1

m

m∑
i=1

tr(H>AiH)Ai − 2HH>
)
h>s ≤ δ ‖hs‖2 , s = 1, . . . , r,

where we replace
r∑
s=1

h>s Aihs by tr(H>AiH) and
∑r
s=1 hsh

>
s by HH>. Taking the sum of the

above inequalities, we obtain

−δ ‖H‖2F ≤
1

m

m∑
i=1

tr(H>AiH)2 − 2 tr(H>HH>H) ≤ δ ‖H‖2F .

Note that tr(H>HH>H) =
∥∥∥HH>∥∥∥2

F
. Therefore,

2
∥∥∥HH>∥∥∥2

F
− δ ‖H‖2F ≤

1

m

m∑
i=1

tr(H>AiH)2 ≤ δ ‖H‖2F + 2
∥∥∥HH>∥∥∥2

F
.

Lemma 3.11. Suppose that A2 holds: for any Z̃ such that Z̃Z̃> = X? we have

∥∥∥∥∥∂2f(Z̃)

∂z̃s∂z̃>k
− E

[
∂2f(Z̃)

∂z̃s∂z̃>k

]∥∥∥∥∥ ≤ δ

r
, s, k = 1, . . . , r. (3.7)

Then

(
σr −

δ

2

)
‖H‖2F +

∥∥∥H>Z∥∥∥2

F
≤ 1

m

m∑
i=1

tr(H>AiZ)2 ≤
(
σ1 +

δ

2

)
‖H‖2F +

∥∥∥H>Z∥∥∥2

F
.

Proof. Our goal is to bound 1
m

m∑
i=1

tr(H>AiZ)2. This can be expanded as

1

m

m∑
i=1

(
r∑
s=1

(h>s Aiz̄s)

)2

=
1

m

m∑
i=1

r∑
s=1

(h>s Aixs)
2 +

1

m

m∑
i=1

∑
s<k

2(h>s Aixs)(h
>
k Aixk).
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We first bound the sum of the quadratic terms. For any s ∈ [r], we have

∂2f(Z)

∂z̄s∂z̄>s
=

1

m

m∑
i=1

2Aiz̄sz̄
>
s Ai,

E
[
∂2f(Z)

∂z̄s∂z̄>s

]
= 2 ‖z̄s‖2 I + 2z̄sz̄

>
s .

It follows from assumption (3.7) that for any s ∈ [r],

−δ
r
‖hs‖2 ≤

1

m

m∑
i=1

2(h>s Aiz̄s)
2 − 2 ‖z̄s‖2 ‖hs‖2 − 2(h>s z̄s)

2 ≤ δ

r
‖hs‖2 .

Taking the sum of above inequalities, we obtain

− δ

2r

r∑
s=1

‖hs‖2 ≤
1

m

m∑
i=1

r∑
s=1

(h>s Aiz̄s)
2 −

r∑
s=1

‖z̄s‖2 ‖hs‖2 −
r∑
s=1

(h>s z̄s)
2 ≤ δ

2r

r∑
s=1

‖hs‖2 .

(3.8)

Similarly, we bound the sum of the cross terms. For any fixed s, k such that s 6= k, we have

∂2f(Z)

∂z̄s∂z̄>k
=

1

m
f(Z)

m∑
i=1

2Aiz̄sz̄
>
k Ai,

E

[
∂2f(Z)

∂z̄s∂z̄>k

]
= 2z̄>s z̄kI + 2z̄kz̄

>
s ,

and consequently

−δ
r

∑
s<k

‖hs‖ ‖hk‖ ≤
1

m

m∑
i=1

∑
s<k

2(h>s Aiz̄s)(h
>
k Aiz̄k)− 2

∑
s<k

z̄>s z̄kh
>
s hk − 2

∑
s<k

h>s z̄kz̄
>
s hk

(3.9)

≤ δ

r

∑
s<k

‖hs‖ ‖hk‖ .
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We combine equations (3.9) and (3.8) to get

− δ

2r

∑
sk

‖hs‖ ‖hk‖ ≤
1

m

m∑
i=1

tr(H>AiZ)2−
∑
sk

z̄>s z̄kh
>
s hk−

∑
sk

h>s z̄kz̄
>
s hk ≤

δ

2r

∑
sk

‖hs‖ ‖hk‖ .

(3.10)

Note that
∑
sk h
>
s z̄kz̄

>
s hk = tr(H>ZH>Z),

∑
sk z̄
>
s z̄kh

>
s hk =

∥∥∥ZH>∥∥∥2

F
and

∑
sk

‖hs‖ ‖hk‖ =

(
r∑
s=1

‖hs‖

)2

≤ r

r∑
s=1

‖hs‖2 = r ‖H‖2F .

By Lemma 3.12, tr(H>ZH>Z) =
∥∥∥H>Z∥∥∥2

F
. Replacing those terms in equation (3.10) gives us

−δ
2
‖H‖2F +

∥∥∥ZH>∥∥∥2

F
+
∥∥∥H>Z∥∥∥2

F
≤ 1

m

m∑
i=1

tr(H>AiZ)2 ≤ δ

2
‖H‖2F +

∥∥∥ZH>∥∥∥2

F
+
∥∥∥H>Z∥∥∥2

F
.

Finally, we obtain the claim by noticing that

√
σr ‖H‖F ≤

∥∥∥ZH>∥∥∥
F
≤ √σ1 ‖H‖F ,

where
√
σ1 = σmax(Z) ≥ · · · ≥ σmin(Z) =

√
σr are the singular values ofZ .

Lemma 3.12. tr(H>ZH>Z) =
∥∥∥H>Z∥∥∥2

F
.

Proof. Let U = arg minUU>=U>U=I ‖Z − Z
?U‖2F = arg maxUU>=U>U=I〈U,Z

?>Z〉. Note

that 〈A,B〉 ≤ ‖A‖∗ ‖B‖ for any matrices A,B that are of the same size. The equality holds when

B = UAV
>
A where A = UAΣAV

>
A is the SVD of A. Hence, U = Ũ Ṽ > where Ũ S̃Ṽ > is the

SVD of Z?>Z; Z = Z?U . Therefore, Z>Z = Z>Z?U = Ṽ S̃Ṽ > is symmetric and positive

semidefinite. Thus, H>Z = Z>Z −Z>Z is also symmetric. This implies that tr(H>ZH>Z) =∥∥∥H>Z∥∥∥2

F
.

3.7.3 Linear Convergence

Proof of Theorem 3.2
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Let Hk = Zk −Zk. Then we have that

∥∥∥Zk+1 −Zk
∥∥∥2

F
=

∥∥∥∥∥Zk − µ

‖Z?‖2F
∇f(Zk)−Zk

∥∥∥∥∥
2

F

=
∥∥∥Hk

∥∥∥2

F
+

µ2

‖Z?‖4F

∥∥∥∇f(Zk)
∥∥∥2

F
− 2µ

‖Z?‖2F
〈∇f(Zk), Hk〉

≤
∥∥∥Hk

∥∥∥2

F
+

µ2

‖Z?‖4F

∥∥∥∇f(Zk)
∥∥∥2

F
− 2µ

‖Z?‖2F

(
1

α
σr

∥∥∥Hk
∥∥∥2

F
+

1

β ‖Z?‖2F

∥∥∥∇f(Zk)
∥∥∥2

F

)

=

(
1− 2µ

α
· σr∑r

s=1 σs

)∥∥∥Hk
∥∥∥2

F
+
µ(µ− 2/β)

‖Z?‖4F

∥∥∥∇f(Zk)
∥∥∥2

F

≤
(

1− 2µ

α
· σr
rσ1

)∥∥∥Hk
∥∥∥2

F

=

(
1− 2µ

ακr

)
d(Zk, Z?)2,

where we use the definition of RC(ε, α, β) in the third line, ‖Z?‖2F = ‖X?‖∗ =
∑r
s=1 σs in the

third to last line and 0 < µ < min {α/2, 2/β} in the second to last line. Therefore,

d(Zk+1, Z?) = min
Z̃∈S

∥∥∥Zk+1 − Z̃
∥∥∥2

F
≤
√

1− 2µ

ακr
d(Zk, Z?).

3.7.4 Regularity Condition

As mentioned before, Nesterov [2004, Theorem 2.1.11] shows that the gradient scheme converges

linearly under a condition similar to the regularity condition, which is satisfied if the function

is strongly convex and has a Lipschitz continuous gradient (strongly smooth). In order to prove

Lemma 3.3, we show that with high probability the function f satisfies the local curvature condi-

tion, which is analogous to strong convexity, and the local smoothness condition, which is analo-

gous to strong smoothness.

C1 Local Curvature Condition
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There exists a constant C1 such that for any Z satisfying d(Z,Z?) ≤
√

3
16σr,

〈∇f(Z), Z −Z〉 ≥ C1

∥∥Z −Z∥∥2
F +

∥∥∥(Z −Z)>Z
∥∥∥2

F
.

C2 Local Smoothness Condition

There exist constants C2, C3 such that for any Z satisfying d(Z,Z?) ≤
√

3
16σr,

‖∇f(Z)‖2F ≤ C2

∥∥Z −Z∥∥2
F + C3

∥∥∥(Z −Z)>Z
∥∥∥2

F
.

Proof of the Local Curvature Condition

〈∇f(Z), H〉 =

p2︷ ︸︸ ︷
2

m

m∑
i=1

tr(H>AiZ)2 +

q2︷ ︸︸ ︷
1

m

m∑
i=1

tr(H>AiH)2 +
3

m

m∑
i=1

tr(H>AiZ) tr(H>AiH)

≥ p2 + q2 − 3

m

√√√√ m∑
i=1

tr(H>AiZ)2

√√√√ m∑
i=1

tr(H>AiH)2

= p2 + q2 − 3√
2

p︷ ︸︸ ︷√√√√ 2

m

m∑
i=1

tr(H>AiZ)2

q︷ ︸︸ ︷√√√√ 1

m

m∑
i=1

tr(H>AiH)2

=

(
p− 3

2
√

2
q

)2

− 1

8
q2

≥
(
p2

2
− 9

8
q2
)
− 1

8
q2

=
p2

2
− 5

4
q2 =

1

m

m∑
i=1

tr(H>AiZ)2 − 5

4

1

m

∑
i

tr(H>AiH)2

≥
(
σr −

δ

2

)
‖H‖2F +

∥∥∥H>Z∥∥∥2

F
− 5δ

4
‖H‖2F −

5

2

∥∥∥HH>∥∥∥2

F

≥
(
σr −

5

2
‖H‖2F −

7

4
δ

)
‖H‖2F +

∥∥∥H>Z∥∥∥2

F
.
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where we use Cauchy-Schwarz inequality in the 2nd line, the inequality (a− b)2 ≥ a2

2 − b
2 in the

5th line, Lemma 3.10 and 3.11 in the 7th line, and the fact that
∥∥∥HH>∥∥∥

F
≤ ‖H‖2F in the 8th line.

Since ‖H‖F ≤
√

3
16σr and δ ≤ 1

16σr, we have

〈∇f(Z), H〉 ≥ 27

64
σr ‖H‖2F +

∥∥∥H>Z∥∥∥2

F
. (3.11)

Proof of the Local Smoothness Condition

We need to upper bound ‖∇f(Z)‖2F = max‖W‖F=1 |〈∇f(Z),W 〉|2. It suffices to show

that for any W ∈ Rn×R of unit Frobenius norm, |〈∇f(Z),W 〉|2 is upper bounded if Z ∈

E

(√
3
16σr

)
.

Since (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2), we have

|〈∇f(Z),W 〉|2 =

(
1

m

m∑
i=1

(
tr(H>AiH) + 2 tr(H>AiZ)

)(
tr(W>AiH) + tr(W>AiZ)

))2

=

(
1

m

m∑
i=1

tr(H>AiH) tr(W>AiH) + 2 tr(H>AiZ) tr(W>AiH)

+ tr(H>AiH) tr(W>AiZ) + 2 tr(H>AiZ) tr(W>AiZ)

)2

≤ 4

(
1

m

m∑
i=1

tr(H>AiH) tr(W>AiH)

)2

+ 4

(
2

m

m∑
i=1

tr(H>AiZ) tr(W>AiH)

)2

+ 4

(
1

m

m∑
i=1

tr(H>AiH) tr(W>AiZ)

)2

+ 4

(
2

m

m∑
i=1

tr(H>AiZ) tr(W>AiZ)

)2

.
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The first term in the righthand side can be upper bounded as

4

(
1

m

m∑
i=1

tr(H>AiH) tr(W>AiH)

)2

≤ 4

(
1

m

m∑
i=1

tr(H>AiH)2

)(
1

m

m∑
i=1

tr(W>AiH)2

)

≤ 4
(

2 ‖H‖4F + δ ‖H‖2F
)( 1

m

m∑
i=1

‖W‖2F ‖AiH‖
2
F

)

= 4
(

2 ‖H‖4F + δ ‖H‖2F
)( 1

m

m∑
i=1

‖AiH‖2F

)

≤ 4
(

2 ‖H‖4F + δ ‖H‖2F
)( 1

m

m∑
i=1

‖Ai‖2 ‖H‖2F

)

≤ 36n ‖H‖2F
(

2 ‖H‖4F + δ ‖H‖2F
)
,

where we use the Cauchy-Schwarz inequality in the first and second line, Lemma 3.10 and

∥∥HH>∥∥F ≤ ∥∥H∥∥2
F

in the third line, and Corollary 3.1 in the last line.

The other three terms are bounded similarly. For the second term, we have

4

(
2

m

m∑
i=1

tr(H>AiZ) tr(W>AiH)

)2

≤ 16

(
1

m

m∑
i=1

tr(H>AiZ)2

)(
1

m

m∑
i=1

tr(W>AiH)2

)

≤ 36n ‖H‖2F

(
(4σ1 + 2δ) ‖H‖2F + 4

∥∥∥H>Z∥∥∥2

F

)
,

where we use Lemma 3.11 and 3.1. The third term is bounded as

4

(
1

m

m∑
i=1

tr(H>AiH) tr(W>AiZ)

)2

≤ 4

(
1

m

m∑
i=1

tr(H>AiH)2

)(
1

m

m∑
i=1

tr(W>AiZ)2

)

≤ 36n
∥∥Z∥∥2

F

(
2 ‖H‖4F + δ ‖H‖2F

)
,
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and the fourth term is bounded as

4

(
2

m

m∑
i=1

tr(H>AiZ) tr(W>AiZ)

)2

≤ 16

(
1

m

m∑
i=1

tr(H>AiZ)2

)(
1

m

m∑
i=1

(W>AiZ)2

)

≤ 36n
∥∥Z∥∥2

F

(
(4σ1 + 2δ) ‖H‖2F + 4

∥∥∥H>Z∥∥∥2

F

)
.

Putting these inequalities together, we have

‖∇f(Z)‖2F ≤ 36n
(∥∥Z∥∥2

F + ‖H‖2F
)(

2 ‖H‖4F + (4σ1 + 3δ) ‖H‖2F + 4
∥∥∥H>Z∥∥∥2

F

)
.

Hence,
‖∇f(Z)‖2F

144n
(∥∥Z∥∥2

F + ‖H‖2F
) ≤ (σ1 +

1

2
‖H‖2F +

3

4
δ

)
‖H‖2F +

∥∥∥H>Z∥∥∥2

F
.

Since ‖H‖F ≤
√

3
16σr and δ ≤ 1

16σr, we have

‖∇f(Z)‖2

144n
(∥∥Z∥∥2

F + (3/16)σr

) ≤ (σ1 +
9

64
σr

)
‖H‖2F +

∥∥∥H>Z∥∥∥2

F
.

Proof of the Regularity Condition

Now we combine the curvature and the smoothness conditions. For any γ ∈
(

0, σ1σr

)
, it holds

that

γ
σr
σ1
·

‖∇f(Z)‖2F
144n

(∥∥Z∥∥2
F + (3/16)σr

) ≤ γ
σr
σ1
·
(
σ1 +

9

64
σr

)
‖H‖2F +

∥∥∥H>Z∥∥∥2

F
. (3.12)

Combining equation (3.11) and (3.12), we obtain

〈∇f(Z), H〉 ≥
(

27

64
− γ − γ σr

σ1

9

64

)
σr ‖H‖2F + γ

σr
σ1
·

‖∇f(Z)‖2F
144n(

∥∥Z∥∥2
F + (3/16)σr)

≥
(

27

64
− 73

64
γ

)
σr ‖H‖2F + γ

σr
σ1
·

‖∇f(Z)‖2F
144n(

∥∥Z∥∥2
F + (3/16)σr)

.
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If we take γ = 1
3 , then

〈∇f(Z), H〉 ≥ 1

24
σr ‖H‖2F +

σr
σ1
·

‖∇f(Z)‖2F
3 · 144n

(∥∥Z∥∥2
F + (3/16)σr

)
≥ 1

24
σr ‖H‖2F +

σr/σ1

513n ‖Z?‖2F
‖∇f(Z)‖2F ,

where we use
∥∥Z∥∥2

F = ‖Z?‖2F = ‖X?‖∗ ≥ σr. Thus we have

〈∇f(Z), H〉 ≥ 1

α
σr ‖H‖2F +

1

β ‖Z?‖2F
‖∇f(Z)‖2F

for α ≥ 24 and β ≥ σ1
σr
· 513n.

3.7.5 Initialization

Proof of Lemma 3.4

By assumption, we have

∥∥∥∥∥ 1

m

m∑
i=1

(z?s
>Aiz

?
s)Ai − 2z?sz

?
s
>
∥∥∥∥∥ ≤ δ

r
, s ∈ [r].

Hence,

‖M − 2X?‖ =

∥∥∥∥∥ 1

m

m∑
i=1

r∑
s=1

(z?s
>Aiz

?
s)Ai − 2

r∑
s=1

z?sz
?
s
T

∥∥∥∥∥
≤

r∑
s=1

∥∥∥∥∥ 1

m

m∑
i=1

(z?s
>Aiz

?
s)Ai − 2z?sz

?
s
>
∥∥∥∥∥

≤ δ.

(3.13)

Let λ′1 ≥ · · · ≥ λ′n be the eigenvalues of M . By Weyl’s theorem, we have

|λ′s − 2σs| ≤ δ, s ∈ [n].

Since δ < σr, it is easy to see λ′1 ≥ · · · ≥ λ′r > δ and |λ′s| ≤ δ, s = r+ 1, . . . , n. Hence, λs = λ′s,
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s ∈ [r], and Z0Z0> is the best rank r approximation of 1
2M . Therefore,

∥∥∥Z0Z0> − Z?Z?>
∥∥∥
F
≤
√

2r
∥∥∥Z0Z0> − Z?Z?>

∥∥∥
=
√

2r

∥∥∥∥Z0Z0> − 1

2
M +

1

2
M − Z?Z?>

∥∥∥∥
≤
√

2r

(∥∥∥∥Z0Z0> − 1

2
M

∥∥∥∥+

∥∥∥∥1

2
M − Z?Z?>

∥∥∥∥)
≤
√

2rδ,

where we used ‖A‖F ≤
√

rank(A) ‖A‖ in first line, the fact
∥∥∥Z0Z0> − 1

2M
∥∥∥ = 1

2 |λr+1| ≤ 1
2δ

and inequality (3.13) in the last line.

Let H = Z0 −Z0. We want to bound d(Z0, Z?)2 = ‖H‖2F . According to the discussion in

Lemma 3.12, H>Z0 is symmetric and Z0>Z0 is positive semidefinite.

The following step closely follows [Tu et al., 2016]. It holds that

∥∥∥Z0Z0> − Z?Z?>
∥∥∥2

F
=

∥∥∥Z0Z0> −Z0Z0>
∥∥∥2

F

=
∥∥∥HZ0> +Z0H> +HH>

∥∥∥2

F

= tr
(
Z0H>HZ0> +HZ0>HZ0> +HH>Z0>

+Z0H>Z0H> +HZ0>Z0H +HH>Z0H>

+Z0H>HH> +HZ0>HH> +HH>HH>
)

= tr
(

(H>H)2 + 2(H>Z0)2 + 2(H>H)(Z0>Z0)

+ 4(H>H)(H>Z0)

)
= tr

((
H>H +

√
2H>Z0

)2
+ (4− 2

√
2)(H>H)(H>Z0)

+ 2(H>H)(Z0>Z0)

)
≥ tr

(
(4− 2

√
2)(H>H)(H>Z0) + 2(H>H)(Z>Z)

)
= tr

(
(4− 2

√
2)(H>H)(Z0>Z0)

)
+ tr

(
(2
√

2− 2)(H>H)(Z>Z)
)
,

34



where in the fourth line we used the property that the trace is invariant under cyclic permutations

and H>Z0 = Z0>H .

Since Z0>Z0 is positive semidefinite, tr((H>H)(Z0>Z0)) is nonnegative. Hence,

∥∥∥Z0Z0> − Z?Z?>
∥∥∥2

F
≥ (2

√
2− 2) tr

(
(H>H)(Z>Z)

)
= (2

√
2− 2)

∥∥∥HZ>∥∥∥2

F

≥ (2
√

2− 2) ‖H‖2F σr

= (2
√

2− 2)σrd(Z0, Z?)2.

If δ ≤ σr
4
√
r
, then

d(Z0, Z?)2 ≤

∥∥∥Z0Z0 − Z?Z?>
∥∥∥2

F

(2
√

2− 2)σr
≤ 2rδ2

(2
√

2− 2)σr
≤ 3

16
σr.

3.7.6 Sample Complexity

In this subsection, we verify that our assumptions hold with high probability if m ≥ cn log n,

where c is a constant that depends on δ, r, and κ. Our proof relies on the following concentration

inequality.

Theorem 3.3. (Matrix Bernstein Inequality [Tropp, 2015]) Let S1, . . . , Sm be independent random

matrices with dimension n × n. Assume that E(Si) = 0 and ‖Si‖ ≤ L, for all i ∈ [m]. Let

ν2 = max
{∥∥∥∑m

i=1 E(SiS
>
i )
∥∥∥ ,∥∥∥∑m

i=1 E(S>i Si)
∥∥∥}. Then for all δ ≥ 0,

P

(∥∥∥∥∥ 1

m

m∑
i=1

Si

∥∥∥∥∥ ≥ δ

)
≤ 2n exp

(
−m2δ2

ν2 + Lmδ/3

)
.

We first give a technical lemma that we will use later.

Lemma 3.13. Let A = (aij) be a random matrix drawn from GOE. Let S = a11A−2e1e
>
1 . There
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exist absolute constants C, ρ such that with probability at least 1− Ce−ρn, we have

‖S‖ ≤ 18n.

Proof. Let Ã = A− a11e1e
>
1 . S = a11Ã+ (a2

11 − 2)e1e
>
1 . Note that a11 and Ã are independent,

hence ‖S‖ ≤ |a11|‖Ã‖ + |a2
11 − 2|. Besides, since a11 ∼ N (0, 2), we can see that a2

11/2 is χ2

distributed.

First we bound the operator norm of Ã. We rewrite ‖Ã‖ as

‖Ã‖ = max
‖u‖=1

|u>Ãu| = max
‖u‖=1

|u>Du− du2
1| ≤ ‖D‖+ |d|,

where D = Ã+ de1e
>
1 , d ∼ N (0, 2). As D is GOE distributed, by Lemma 3.9,

P
(
‖D‖ > 3

√
n
)
≤ C ′e−ρ

′n, (3.14)

where C ′ and ρ′ are absolute constants.

Using the Gaussian tail inequality, we have

P
(
|d| > 2

√
n
)
≤ 2e−n. (3.15)

Combining inequalities (3.14) and (3.15), we have

P
(
‖Ã‖ > 5

√
n
)
≤ P

(
‖D‖ > 3

√
n ∨ |d| > 2

√
n
)
≤ C ′e−ρ

′n + 2e−n, (3.16)

where the last inequality follows from the union bound.

Next we bound the deviation of the χ2 term. By the corollary of Lemma 1 in Laurent and

Massart [2000], we have

P(|a2
11 − 2| > 4(

√
n+ n)) ≤ 2e−n. (3.17)
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Since a11 is identically distributed as d, inequality (3.15) holds for a11 as well. Namely,

P
(
|a11| > 2

√
n
)
≤ 2e−n.

Combining this with inequalities (3.17), (3.16), we have

P
(
‖S‖ ≤ 14n+ 4

√
n
)
≥ 1− 6e−n − C ′e−ρ

′n.

Finally, the statement is obtained by choosing proper C, ρ, and using
√
n ≤ n.

Proof of Lemma 3.5

Proof. It is equivalent to show that for any unit vector u, with high probability,

∥∥∥∥∥ 1

m

m∑
i=1

(u>Aiu)Ai − 2uu>
∥∥∥∥∥ ≤ δ

rσ1
.

If P is an orthonormal matrix, then

∥∥∥∥∥ 1

m

m∑
i=1

(
(Pu)>Ai(Pu)

)
Ai − 2(Pu)(Pu)>

∥∥∥∥∥ =

∥∥∥∥∥ 1

m

m∑
i=1

(
u>(P>AiP )uAi

)
− 2Puu>P>

∥∥∥∥∥
=

∥∥∥∥∥ 1

m

m∑
i=1

u>(P>AiP )uP>AiP − 2uu>
∥∥∥∥∥

=

∥∥∥∥∥ 1

m

m∑
i=1

u>ÃiuÃi − 2uu>
∥∥∥∥∥ ,

where in the second line we use unitary invariance of the operator norm, and in the last line we

denote P>AiP by Ãi. Since the GOE is invariant under orthogonal conjugation, Ãi and Ai are

identically distributed. Hence, it suffices to prove the claim when u = e1, i.e.

∥∥∥∥∥ 1

m

m∑
i=1

a
(i)
11Ai − 2e1e

>
1

∥∥∥∥∥ ≤ δ0,
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where a(i)
11 is the (1, 1) entry of Ai and δ0 = δ

rσ1
.

To show this, we apply Theorem 3.3, where Si = a
(i)
11Ai − 2e1e

>
1 . This requires that the

operator norm of Si is bounded, for each i. We address this by noticing that with high probability

‖Si‖ ≤ 18n, ∀i. To be precise, by Lemma 3.13 there exist constants C, ρ, such that

P (‖Si‖ > 18n) ≤ Ce−ρn, i = 1, . . . ,m.

Taking the union bound over all the Sis leads to

P
(

max
i
‖Si‖ > 18n

)
≤ mCe−ρn. (3.18)

Next, we calculate ν2 =
∥∥∑m

i=1 E(S2
i )
∥∥ = m

∥∥E(S2
1)
∥∥. Let A = (aij) denote A1, S denote S1.

We have E(S2) = E(a11
2A2)− 4e1e

>
1 , and

(
a2

11A
2)

11 = a4
11 +

n∑
k=2

a2
11a

2
1k,

(
a2

11A
2)
ii = a2

11

a2
ii +

n∑
k 6=i

a2
ik

 , ∀i 6= 1,

(
a2

11A
2)
ij = a2

11

n∑
k=1

aikajk, ∀i 6= j.

It is easy to see that E(a2
11A

2) = diag(2n+10, 2n+2, . . . , 2n+2). Consequently, ν2 = (2n+6)m.
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By Theorem 3.3, if m ≥ 42
min(δ20 ,δ0)

· n log n, then

P

(∥∥∥∥∥ 1

m

m∑
i=1

Si

∥∥∥∥∥ ≥ δ0

)
≤ 2n exp

(
−mδ2

0

2n(1 + 3δ0) + 6

)

≤ 2n exp

(
−mδ2

0

2n(4 + 3δ0)

)

≤ 2n exp

(
−mδ2

0

14n ·max(1, δ0)

)

≤ 2

n2
.

(3.19)

Combining inequalities (3.18) and (3.19), we conclude that

P

(∥∥∥∥∥ 1

m

m∑
i=1

a
(i)
11Ai − 2e1e

>
1

∥∥∥∥∥ ≤ δ0

)
≥ 1−mCe−ρn − 2

n2
.

Proof of Lemma 3.6

The formulation of the second order partial derivatives and their expectations is given in Ap-

pendix 3.7.2.

It is easy to see that for any Z ∈ S , maxs∈[r] ‖z̄r‖ ≤
√
σ1. Thus it is sufficient to prove that

for any two unitary vector u and y with high probability it holds that

∥∥∥∥∥ 1

m

m∑
i=1

2Aiuy
>Ai − 2u>yI − 2yu>

∥∥∥∥∥ ≤ δ

rσ1
.

We can decompose y as y = βu + β⊥u⊥ for a certain unit vector u⊥ that is orthogonal to u,

where β2 + β2
⊥ = 1. Let δ0 =

δ

2rσ1
. It suffices to prove the following two claims.
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(i) For any unitary vector u, with high probability

∥∥∥∥∥ 1

m

m∑
i=1

2Aiuu
>Ai − 2I − 2uu>

∥∥∥∥∥ ≤ δ0.

(ii) For any two orthogonal unit vectors u and u⊥, with high probability

∥∥∥∥∥ 1

m

m∑
i=1

2Aiuu
>
⊥Ai − 2u⊥u

>
∥∥∥∥∥ ≤ δ0.

Proof of (i)

If P is an orthonormal matrix, then

∥∥∥∥∥ 1

m

m∑
i=1

2AiPuu
>PAi − 2I − 2Puu>P>

∥∥∥∥∥ =

∥∥∥∥∥ 1

m

m∑
i=1

2P>AiPuu
>P>AiP − 2I − 2uu>

∥∥∥∥∥
=

∥∥∥∥∥ 1

m

m∑
i=1

2Ãiuu
>Ãi − 2I − 2uu>

∥∥∥∥∥ ,
where Ãi and Ai have the same distribution. Hence we only need to prove the case where u = e1:

∥∥∥∥∥ 1

m

m∑
i=1

2v(i)v(i)> − 2I − 2e1e
>
1

∥∥∥∥∥ ≤ δ0,

where v(i) = Aie1 is the first column of Ai.

Let Si = 2(v(i)v(i)> − I − e1e
>
1 ). To apply Theorem 3.3, we need to show that with high

probability ‖Si‖ is bounded for each i and calculate ν2 =
∥∥∑n

i=1 E(S2
i )
∥∥ = m

∥∥E(S2
1)
∥∥.

Let S, v, A denote S1, v(1), and A(1) respectively. It is easy to see that

‖S‖ ≤ 2 ‖v‖2 + 4 = 2(w + a2
11) + 4,

where w =
∑n
k=2 a

2
1k. As a11 ∼ N (0, 2), a1k ∼ N (0, 1) for k 6= 1, we can see that a2

11/2 and w
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are χ2 distributed with degrees of freedom 1 and n− 1, respectively. Using the χ2 tail bound, we

have

P
(
a2

11/2 > 2(
√
n+ n) + 1

)
≤ e−n,

P (w > 5n− 1) ≤ e−n, k = 2, . . . , n.

It follows from the union bound that

P (‖S‖ > 26n+ 6) ≤ 2e−n,

and consequently

P
(

max
i
‖Si‖ > 26n+ 6

)
≤ 2me−n. (3.20)

To calculate ν2, we expand E(S2) as

E(S2) = 4E
(

(vv>)2
)
− 4(I + e1e

>
1 )2

= 4E
(
‖v‖2 vv>

)
− 4(I + 3e1e

>
1 ).

Some simple calculations show that

(
‖v‖2 vv>

)
11

= v1
4 +

n∑
k=2

vk
2v1

2,

(
‖v‖2 vv>

)
jj

= v1
2vj

2 + vj
4 +

∑
k 6=1,j

vk
2vj

2, j = 2, . . . , n,

(
‖v‖2 vv>

)
jl

=
n∑
k=1

vk
2vjvl, j < l.
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As v1 ∼ N (0, 2), vj ∼ N (0, 1) for j 6= 1,

E
(
‖v‖2 vv>

)
11

= 2n+ 10,

E
(
‖v‖2 vv>

)
jj

= n+ 3, j = 2, . . . , n,

E
(
‖v‖2 vv>

)
jl

= 0, j < l.

Hence, E(S2) = diag(8n+ 24, 4n+ 8, . . . , 4n+ 8) and thus ν2 = m(8n+ 24).

If m ≥ (128/min(δ2
0, δ0))n log n, then by applying Theorem 3.3 we can see

P

(∥∥∥∥∥ 1

m

m∑
i=1

2v(i)v(i)> − 2I − 2e1e
>
1

∥∥∥∥∥ > δ0

)
≤ 2n exp

(
−mδ2

0

8n+ 24 + (26
3 n+ 2)δ0

)

≤ 2n exp

(
−mδ2

0

(128/3)nmax(1, δ0)

)

≤ 2

n2
.

(3.21)

Combining inequalities (3.21) and (3.20) leads to

P

(∥∥∥∥∥ 1

m

m∑
i=1

2v(i)v(i)> − 2I − 2e1e
>
1

∥∥∥∥∥ ≤ δ0

)
≥ 1− 2me−n − 2

n2
.

Proof of (ii)

We only need to prove the case where u = e1 and u⊥ = e2 due to the same reason above. That

is, ∥∥∥∥∥ 1

m

m∑
i=1

2v(i)q(i)> − 2e2e
>
1

∥∥∥∥∥ ≤ δ0,

where v(i) and q(i) are the first and second columns of Ai.

As before, let Si = 2(v(i)q(i)> − e2e
>
1 ) and let S, v, q, A denote S1, v(1), q(1) and A(1)

respectively. From the proof of (i), we can see that with probability at least 1− 4e−n both ‖v‖ and
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‖q‖ are no larger than
√

13n+ 1. Since ‖S‖ ≤ 2 ‖v‖ ‖q‖+ 2, we have

P
(

max
i
‖Si‖ ≥ 26n+ 4

)
≤ 4me−n.

Next, we calculate ν2 = mmax
{∥∥∥E(SS>)

∥∥∥ ,∥∥∥E(S>S)
∥∥∥}.

E(SS>) = 4E(‖q‖2)E(vv>) + 4e2e
>
2 .

E(S>S) = 4E(‖v‖2)E(qq>) + 4e1e
>
1 .

Some simple calculation shows that E(‖v‖2) = E(‖q‖2) = n + 1, E(vv>) = I + e1e
>
1 and

E(qq>) = I + e2e
>
2 . Hence,

E(SS>) = 4(n+ 1)I + 4(n+ 1)e1e
>
1 + 4e2e

>
2 ,

E(S>S) = 4(n+ 1)I + 4(n+ 1)e2e
>
2 + 4e1e

>
1 ,

and ν2 = 8(n+ 1)m. If m ≥ 78
min(δ20 ,δ0)

n log n, then by applying Theorem 3.3 we have

P

(∥∥∥∥∥ 1

m

m∑
i=1

2v(i)q(i)> − 2e1e
>
2

∥∥∥∥∥ > δ0

)
≤ 2n exp

(
−mδ2

0

8n+ 8 + (26n+4
3 )δ0

)

≤ 2n exp

(
−mδ2

0

26nmax(1, δ0)

)

≤ 2

n2
.

(3.22)

This means,

P

(∥∥∥∥∥ 1

m

m∑
i=1

2v(i)q(i)> − 2e1e
>
2

∥∥∥∥∥ ≤ δ0

)
≥ 1− 4me−n − 2

n2
.
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3.7.7 ADMM for Nuclear Norm Minimization

We reformulate the nuclear norm minimizing problem as

min
X∈Rn×n

1

2λ
‖A(X)− b‖2 + ‖X‖∗ , (3.23)

where λ > 0 is the regularization parameter. λ→ 0 will enforce the minimizer X∗nuc satisfying the

affine constraint A(X∗nuc) = b.

We apply ADMM to the dual problem of (3.23):

min
α∈Rm,V ∈Rn×n

λ

2
‖α‖2 − α>b

subject to ‖V ‖ ≤ 1

A>(α) = V,

(3.24)

where we introduce an auxiliary variable V to make this problem equality constrained.

The augmented Lagrangian of problem (3.24) can be written as

Lη(α,X) =
λ

2
‖α‖2 − α>b+ 1‖·‖≤1(V ) + 〈X,A>(α)− V 〉+

η

2

∥∥∥A>(α)− V
∥∥∥2

F
,

where X is the multiplier, η is the penalty parameter, and 1‖·‖≤1 is the indicator function of the

unit spectral norm ball i.e. 1‖·‖≤1(V ) equals 0 if ‖V ‖ ≤ 1 and +∞ otherwise.

Let vec(·) denote the vectorization of a matrix, whose inverse mapping is denoted by mat(·).

We can rewrite the transformations asA(X) = Avec(X) andA>(α) = mat(A>α) =
∑m
i=1 αiAi,

where A is a m× n2 matrix whose ith row is vec(Ai)
>.

The ADMM starts from initialization (α0, V 0, X0) and updates the three variables alternately.
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The updates can be computed in close forms:

αk+1 = (λI + ηAA>)−1
(
b+ Avec

(
ηV k −Xk)),

V k+1 = proj
( m∑
i=1

αk+1
i Ai +Xk/η

)
,

Xk+1 = Xk + η

( m∑
i=1

αk+1
i Ai − V k+1

)
,

where proj(·) is the projection onto the unit spectral norm ball. Let X = UΣV > be the singular

value decomposition of X ,

proj(X) = U min(Σ, 1)V >.

In fact, the update of V can be combined with other steps without being computed explicitly. One

only has to iterate the following two steps:

αk+1 = (λI + ηAA>)−1
(
b+ Avec

(
η
∑
i=1

αki Ai +Xk−1 − 2Xk)),
Xk+1 = proxη

(
η
m∑
i=1

αk+1
i Ai +Xk

)
,

where proxη(·) is the singular value soft-thresholding operator defined as

proxη(X) = U max(Σ− η, 0)V >.

The sequence of multipliers
{
Xk
}

converges to the primal solution of (3.23). To speed up the

update of α, the Cholesky decomposition of λI + ηAA> is precomputed in our implementation.
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CHAPTER 4

RECTANGULAR MATRIX COMPLETION

We have seen that the Burer-Monteiro technique is remarkably effective for a family of low rank

random SDPs in the previous chapter. In this Chapter, we enlarge the collection of problems to

which the factored approach can be successfully applied, by analyzing the convergence properties

of gradient descent applied to the problem of rectangular matrix completion from incomplete mea-

surements. The standard matrix completion problem asks for the recovery of a low rank matrix

X? ∈ Rn1×n2 given only a small fraction of observed entries. Let Ω be the set of m indices of the

observed entries. Fixing a target rank r � min(n1, n2), the natural, but nonconvex objective is

min
X∈Rn1×n2

rank(X)

subject to Xij = X?
ij , (i, j) ∈ Ω.

(4.1)

In order for this problem to be well-posed, it is important to understand when X? is identifiable

and, in particular, the unique minimizer of (4.1). Moreover, because the problem is in general

NP-hard, it is essential to identify tractable families of instances, together with efficient algorithms

having global convergence guarantees.

In the current work, we apply the factorization technique by “lifting” the matrix X? to a pos-

itive semidefinite matrix Y ? ∈ R(n1+n2)×(n1+n2) in higher dimension. Lifting is an established

method that recasts vector or matrix estimation problems in terms of positive semidefinite matri-

ces with special structure. It has been applied to sparse eigenvector approximation [d’Aspremont

et al., 2004] and phase retrieval [Candès et al., 2015a], where the lifted matrix is of rank one. As

explained in detail below, we can construct Y ? to be of the same rank as X?, thus obtaining a

factorization Y ? = Z?Z?> for some Z? ∈ R(n1+n2)×r, and transforming the original matrix

completion problem into the problem of recovering the semidefinite factor Z?. We formulate this

as minimizing a nonconvex objective f(Z), to which we apply a gradient descent scheme, using

a particular spectral initialization. Our analysis of this algorithm establishes a lower bound on the
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number of matrix measurements that are sufficient to guarantee identifiability of the true matrix

and geometric convergence of the gradient descent algorithm, with explicit bounds on the rate.

In the following section we give a full description of our approach. Our theoretical results are

presented in Section 4.2, with detailed proofs contained in Section 4.6. Our analysis subsumes

the case where X? is positive semidefinite. In Section 4.3 we briefly review related work. The

experimental results are presented in Section 4.4, and we conclude with a brief discussion of future

work in Section 4.5.

4.1 Semidefinite Lifting, Factorization, and Gradient Descent

For any (n1 + n2)× r matrix Z, we will use Z(i) to denote its ith row, and ZU and ZV to denote

the top n1 and bottom n2 rows. The operator, Frobenius and `∞ norm of matrices are denoted by

‖·‖, ‖·‖F and ‖·‖∞, respectively. We define ‖Z‖2,∞ = maxi

∥∥∥Z(i)

∥∥∥
2

as the largest `2 norm of its

rows, and similarly ‖Z‖∞,2 = max

{
‖Z‖2,∞ ,

∥∥∥Z>∥∥∥
2,∞

}
. Let PΩ : Rn1×n2 → Rn1×n2 be the

operator where

PΩ(X)ij =


Xij if (i, j) ∈ Ω,

0 otherwise.
(4.2)

In this paper, we focus on completing an incoherent or “non-spiky” matrix X?. With U?Σ?V ?

denoting the rank-r SVD of X?, we assume X? is µ-incoherent, as defined below.

Definition 4.1. The matrix X? is µ-incoherent with respect to the canonical basis if its singular

vectors satisfy

‖U?‖2,∞ ≤
√
µr

n1
, ‖V ?‖2,∞ ≤

√
µr

n2
, (4.3)

where µ is a constant.1

Our main interest is the uniform model where m entries of X? are observed uniformly at

random, though we shall analyze a Bernoulli sampling model, where each entry of X? is observed

1. Note that µ ≥ 1, since r = ‖U?‖2F =
∑

i∈[n1]

∥∥∥U?
(i)

∥∥∥2
2
≤ µr.
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with probability p = m/n1n2. One can transfer the results back to the uniform model, as the

probability of failure under the uniform model is at most twice that under the Bernoulli model; see

[Candès and Recht, 2009; Candès and Tao, 2010].

Using the rank-r SVD of X?, we can lift X? to

Y ? =

U?Σ?U?> X?

X?> V ?Σ?V ?>

 = Z?Z?>, where Z? =

U?
V ?

Σ?
1
2 . (4.4)

The symmetric decomposition of Y ? is not unique; our goal is to find a matrix in the set

S =
{
Z̃ ∈ R(n1+n2)×r | Z̃ = Z?R for some R with RR> = R>R = I

}
, (4.5)

since for any Z̃ ∈ S we have X? = Z̃U Z̃
>
V . Let Ω denote the corresponding observed entries of

Y ?, and consider minimization of the squared error

min
Z

1

2p

∑
(i,j)∈Ω

(ZZ>ij − Y
?
ij)

2 = min
Z

1

2p

∥∥∥PΩ(ZZ> − Y ?)
∥∥∥2

F
. (4.6)

Note that Y ? is not the unique minimizer of (4.6), nor is it the only possible positive semidefinite

lifting of X?. For example, let P be an r × r nonsingular matrix, and form the matrices

Z ′ =

 U?Σ?
1
2P

V ?Σ?
1
2P−1

 Y ′ =

U?Σ? 1
2P 2Σ?

1
2U?> X?

X?> V ?Σ?
1
2P−2Σ?

1
2V ?>

 . (4.7)

Since Ω does not contain any entry in the top-left or bottom-right block, Y ′ is also a minimizer of

(4.6). Thus, the solution set of the lifted problem is much larger than the set S of actual interest.

For the sake of simple analysis, we shall focus on exact recovery of Y ? only, and thus impose

an additional regularizer to align the column spaces of ZU and ZV , as in [Tu et al., 2016]. The
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regularized loss is

f(Z) =
1

2p

∥∥∥PΩ(ZZ> − Y ?)
∥∥∥2

F
+
λ

4

∥∥∥Z>DZ∥∥∥2

F
, where D =

In1 0

0 −In2

 . (4.8)

While this apparently introduces an extra tuning parameter, our analysis establishes linear conver-

gence of the projected gradient descent algorithm when λ = 1
2 , and thus one may treat λ as a fixed

number.

It is discussed in [Chen and Wainwright, 2015] that one needs to ensure the iterates stay inco-

herent. Let C be the set of incoherent matrices

C =

{
Z : ‖Z‖2,∞ ≤

√
2µr

n1 ∧ n2

∥∥∥Z0
∥∥∥} (4.9)

where we assume µ is known and Z0 will be determined.

Our algorithm is simply gradient descent on f(Z), with projection onto C.

Let M = p−1PΩ(UV > −X?). Then the gradient of f is given by

∇f(Z) =

 0 M

M> 0

Z + λDZZ>DZ. (4.10)

The projection PC to the feasible set C has closed form solution, given by row-wise clipping:

PC(Z)(i) =


Z(i) if

∥∥∥Z(i)

∥∥∥ ≤√ 2µr
n1∧n2

∥∥Z0
∥∥ ,

Z(i)∥∥∥Z(i)

∥∥∥ ·
√

2µr
n1∧n2

∥∥Z0
∥∥ otherwise.

(4.11)

Note that X0 ≡ p−1PΩ(X?) is an unbiased estimator of X? under the Bernoulli model. To

initialize, we thus construct Z0 from the top rank-r factors of X0. This leads to the following

algorithm.

Remarks. (i) The step size η is normalized by
∥∥Z0

∥∥2. Our analysis will establish linear con-
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Algorithm 2: Projected gradient descent for matrix completion

input: Ω,
{
X?
ij : (i, j) ∈ Ω

}
, m, n1, n2, r, λ, η

initialization
p = m/n1n2

U0Σ0V 0> = rank-r SVD of p−1PΩ(X?)

Z0 = [U0Σ0
1
2 ;V 0Σ0

1
2 ]

Z1 = PC(Z0)
k ← 1

repeat
Mk = p−1PΩ(ZkUZ

k>
V −X?)

∇f(Zk) =

[
0 Mk

Mk> 0

]
Zk + λDZkZk

>
DZk.

Zk+1 = PC

(
Zk − η∥∥Z0

∥∥2
∇f(Zk)

)
k ← k + 1

until convergence;

output: Ẑ = Zk, X̂ = ZkUZ
k
V
>

.

vergence when taking step sizes of the form η/σ?1 , where η is a sufficiently small constant. We

replace σ?1 by
∥∥Z0

∥∥2 in the actual algorithm since it is unknown in practice. (ii) The feasible set

(4.9) depends on
∥∥Z0

∥∥ as well. Under the above spectral initialization, our analysis shows that

when p ≥ O(µκ2r2 log n/n1 ∧ n2), the term
√

2µr
n1∧n2

∥∥Z0
∥∥ is an upper bound of ‖Z?‖2,∞ with

high probability (see Corollary 4.1 below). This means S is a subset of C. Note that this does not

change the global optimality of Z? and its equivalent elements, since f(Z?) = 0. In practice, we

find that the iterates of our algorithm remain incoherent, so that one may drop the projection step.

(iii) The column space regularizer (4.8) is needed in our analysis. We also found that when λ = 0,

our algorithm typically converges to another PSD lifted matrix of X?, with minor difference from

Y ? in the top-left and bottom-right blocks.

In the following section we state and sketch a proof of our main convergence result for this

algorithm.
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4.2 Main Result: Convergence Analysis

Theorem 4.1. Suppose that X? is of rank r, with condition number κ = σ?1/σ
?
r , and µ-incoherent

as defined in Definition 4.1. Suppose further that we observe m entries of X? chosen uniformly at

random. Let Y ? = Z?Z?> be the lifted matrix as in (4.4) and write n = max(n1, n2). Then there

exist universal constants c0, c1, c2, c3 such that if

m ≥ c0µr
2κ2 max(µ, log n)n, (4.12)

then with probability at least 1− c1n−c2 the iterates of Algorithm 2 converge to Z? geometrically,

when using regularization parameter λ = 1/2, correctly specified input rank r, and constant step

size η/σ?1 with η ≤ c3/µ
2r2κ.

We shall analyze the Bernoulli sampling model, as justified in Section 4.1.

Similar to Chapter 3, let us define the distance to Z? in terms of the solution set S.

Definition 4.2. Define the distance between Z and Z? as

d(Z,Z?) = min
Z̃∈S

∥∥Z − Z̃∥∥F = min
RR>=R>R=I

‖Z − Z?R‖F .

The next theorem establishes the global convergence of Algorithm 2, assuming that the input

rank is correctly specified. The proof sketch is given in the next subsection.

Theorem 4.2. There exist universal constants c0, c1, c2 such that if p ≥ c0µr
2κ2 log n

n1 ∧ n2
, with prob-

ability at least 1− c1n−c2 , the initialization Z1 ∈ C satisfies

d(Z1, Z?) ≤ 1

4

√
σ?r . (4.13)

Moreover, there exist universal constants c3, c4, c5, c6 such that if p ≥ c3 max(µ2r2κ2, µr log n)

n1 ∧ n2
,

when using constant step size η/σ?1 with η ≤ c4
µ2r2κ

and initial value Z1 ∈ C obeying (4.13), the
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kth step of Algorithm 2 with λ = 1/2 satisfies

d(Zk, Z?) ≤ 1

4

(
1− 99

256
· η
κ

)k/2√
σ?r

with probability at least 1− c5n−c6 .

Remarks.

(i) After each update, the distance of our iterates to Z? is reduced by at least a factor of 1 −

O(1/µ2r2κ2).

(ii) Hence, the output Ẑ satisfies d(Ẑ, Z?) ≤ ε after at most⌈
2 log−1

(
1/(1− 99

256 ·
η
κ)
)

log
(√

σ?r/4ε
)⌉

iterations.

4.2.1 Proof Sketch

Our proof idea is of the same nature as the analysis in Candès et al. [2015b]; Zheng and Lafferty

[2015]. We show two appealing properties when sufficient entries are observed. First, our spectral

initialization produces a starting point within the O(σ?r ) neighborhood of the solution set.

Lemma 4.1. There exist universal constants c, c1, c2, such that if p ≥ cµr2κ2 log n

n1 ∧ n2
then with

probability at least 1− c1n−c2 ,

d(Z1, Z?) ≤ d(Z0, Z?) ≤ 1

4

√
σ?r .

To demonstrate this, we exploit the concentration around the mean of p−1PΩ(X?). See Sec-

tion for the proof. Using this lemma, we can immediately show that Z? and all other elements of

S are contained in the feasible set (4.9).

Corollary 4.1. With probability at least 1− c1n−c2 , ‖Z?‖2,∞ ≤
√

2µr
n1∧n2

∥∥Z0
∥∥ .
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The second crucial property is that f(Z) is well-behaved within the O(
√
σ?r ) neighborhood,

so that the iterates move closer to the optima in every iteration. The key step is to set up a local

regularity condition [Candès et al., 2015b] similar to Nesterov’s conditions [Nesterov, 2004].

Definition 4.3. LetZ = arg min
Z̃∈S

∥∥Z − Z̃∥∥F denote the matrix closest to Z in the solution set.

We say that f satisfies the regularity condition RC(ε, α, β) if there exist constants α, β such that

for any Z ∈ C satisfying d(Z,Z?) ≤ ε, we have

〈∇f(Z), Z −Z〉 ≥ 1

α
σ?r
∥∥Z −Z∥∥2

F +
1

βσ?1
‖∇f(Z)‖2F .

Using this condition, one can show the iterates converge linearly to the optima if we start close

enough to Z?.

Lemma 4.2. Consider the update Zk+1 = PC
(
Zk − µ

σ?1
∇f(Zk)

)
. If f satisfies RC(ε, α, β),

d(Zk, Z?) ≤ ε and 0 < µ ≤ min(α/2, 2/β), then

d(Zk+1, Z?) ≤
√

1− 2µ

ακ
d(Zk, Z?).

The following lemma illustrates the local regularity of f(Z). Nesterov’s criterion is established

upon strong convexity and strong smoothness of the objective. Here we show analogous curvature

and smoothness conditions holds for f(Z) locally – within the O(
√
σ?r ) neighborhood – with high

probability. Interestingly, we found that to show the local curvature condition holds, it suffices to

set λ = 1
2 . The proof can be found in Section 4.6.3, for which we have generalized some technical

lemmas of [Chen and Wainwright, 2015].

Lemma 4.3. Let the regularization constant be set to λ = 1
2 . There exists universal constant

c, c1, c2, such that if p ≥ cmax(µ2r2κ2, µr log n)

n1 ∧ n2
, then f satisfiesRC(

√
σ?r
4 , 512/99, 13196µ2r2κ),

with probability at least 1− c1n−c2 .
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4.3 Related Work

Matrix completion is one instance of the general low rank linear inverse problem

find X of minimum rank such that A(X) = b, (4.14)

where A is an affine transformation and b = A(X?) is the measurement of the ground truth X?.

Considerable progress has been made towards algorithms for recoveringX? including both convex

and nonconvex approaches. One of the most popular methods is nuclear norm minimization, a con-

venient convex relaxation of rank minimization. It was first proposed in [Fazel, 2002; Recht et al.,

2010], and analyzed under a certain restricted isometry property (RIP). Subsequent work clarified

the conditions for reconstruction, and studied recovery guarantees for both exact and approxi-

mately low rank matrices, with or without noise [Candès and Recht, 2009; Candès and Tao, 2010;

Negahban and Wainwright, 2012; Chen, 2015]. One significant advantage for this approach is its

near-optimal sample complexity. Under the same incoherence assumption as ours, Chen [2015]

establishes the currently best-known lower bound of O(µrn log2 n) samples. Using a closely re-

lated notion of incoherence, Negahban and Wainwright [2012] show that if X? is “α-nonspiky”

with ‖X
?‖∞

‖X?‖F
≤ α√

n1n2
, then O(α2rn log n) samples are sufficient for exact recovery. However,

convexity and low sample complexity aside, in practice the power of nuclear norm relaxation is

limited due to high computational cost. The popular algorithms for nuclear norm minimization

are proximal methods that perform iterative singular value thresholding [Cai et al., 2010; Tomioka

et al., 2010]. However, such algorithms don’t scale to large instances because the per-iteration

SVD is expensive.

Another popular convex surrogate for the rank function is the max-norm [Srebro et al., 2004;

Foygel and Srebro, 2011], given by ‖X‖ = minX=UV > ‖U‖2,∞ ‖V ‖2,∞. For certain types of

problems, the max-norm offers better generalization error bounds than the nuclear norm [Srebro

and Shraibman, 2005]. But practically solving large scale problems that incorporate the max-norm

is also non-trivial. In 2010, Lee et al. [2010] rephrased the max-norm constrained problem as an
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SDP, and applied Burer-Monteiro factorization. Although this ends up with an `2,∞ constraint

similar to ours (4.9), we emphasize that the constraint plays a different role in our setting. While

[Srebro et al., 2004; Lee et al., 2010] use it to promote low rank solutions, our purpose is to

enforce incoherent solutions; and experimental results suggest that one can drop it. Moreover, the

convergence of projected gradient descent for this problem was not previously understood.

In a parallel line of work, the problem of developing techniques that exactly solve nonconvex

formulations has attracted significant recent research attention. In chronological order, Kesha-

van et al. [2010] proposed a manifold gradient method for matrix completion. They factorize

X? = U?Σ?V ?>, where U? ∈ Rn1×r, U>U = n1In1 and V ? ∈ Rn2×r, V >V = n2In2 .

Similar to our definition of S, the equivalence classes of U? and V ? are Grassmann manifolds

of r dimensional subspaces. The authors then minimize the nonconvex objective F (U, V ) =

minS∈Rr×r

∥∥∥PΩ(USV > −X?)
∥∥∥2

F
over the manifolds. In each iteration, U and V are updated

along their manifold gradients, followed by the update of the optimal scaling matrix S. This

algorithm can exactly exactly reconstruct the matrix, though the convergence rate is unknown.

However, its per-iteration update also has high computational complexity, see Section 4.4 for de-

tails. There are other manifold optimization methods for matrix completion including [Boumal

and Absil, 2011; Mishra et al., 2013; Vandereycken, 2013].

In the same year, Jain et al. [2010] suggested minimizing the squared residual ‖A(X)− b‖2

under a rank constraint rank(X) ≤ r. While this constraint is nonconvex, projection onto the

feasible set can be computed using low rank SVD. Under certain RIP assumption on A, Jain et al.

establish the global convergence of projected gradient descent for (4.14). This algorithm is named

Singular Value Projection (SVP). Yet in the setting of completion, only experimental support for

the effectiveness of SVP is provided. More importantly, SVP also suffers from expensive per-

iteration SVD for large scale problems.

Keshavan [2012]; Jain et al. [2013] further analysed the alternating minimization procedure

for (4.14). AltMin factorizes X = UV > where U ∈ Rn1×r and V ∈ Rn2×r, and alternately

solves
∥∥∥A(UV >)− b

∥∥∥2

2
over U and V , while fixing the other factor. The authors obtain sample
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complexity bounds with rκ8, r7κ6 dependency, respectively. In 2014, Hardt [2014] improved the

bounds to r2κ2. Notably, all these works assume the use of resampling—independent sequences

of samples Ωk, k = 1, 2, . . .. In other words, in every iteration we can sample the true matrix

under a certain Bernoulli model independently. However, in practice Ω is usually given and fixed.

To get around the dependence on the sample sets, they partition Ω into a predefined number of

subsets of equal size. However, sample sets obtained by partitioning are not independent, and

partitioning, if used in practice, does not make the most efficient use of the data. Thus, Hardt and

Wootters [2014] considered a new resampling scheme. They assume a known generative model of

{Ωk}, where each Ωk is obtained under a Bernoulli model with probability pk, p =
∑
k pk and

Ω = ∪kΩk. While not practical, under this assumption the authors obtain a sample complexity

that is logarithmic in κ.

Another theoretical disadvantage of the resampling scheme is that the sample complexity de-

pends on the desired accuracy ε, as established by [Keshavan, 2012; Jain et al., 2013; Hardt, 2014;

Hardt and Wootters, 2014]. As the accuracy goes to zero, the sample complexity increases. In

contrast, our algorithm doesn’t require resampling, and the sample complexity is independent of ε.

In 2014, Candès et al. [2015b] proposed Wirtinger flow for phase retrieval. Wirtinger flow

is a fast first-order algorithm that minimizes a fourth order (nonconvex) objective, geometrically

converging to the global optimum. While previous work [Candès et al., 2015a, 2013; Candès and

Li, 2014] lifts the phase retrieval problem into an SDP where the solution is rank one, this work

bridges SDP and first-order algorithms via the Burer-Monteiro technique. It has inspired further

research on related topics; last year, the authors of [Zheng and Lafferty, 2015; Tu et al., 2016; Bho-

janapalli et al., 2016a; Chen and Wainwright, 2015] considered factorizations for (4.14), assuming

X? is semidefinite, and proved global optimality of first-order algorithms under appropriate initial-

izations. Tu et al. [2016] have extended this algorithm to handle rectangular matrix via asymmetric

factorization, and have shown exact recovery of X?, assuming A satisfies a certain RIP. They use

lifting implicitly, factorizing X = ZUZ
>
V and applying gradient updates on both factors ZU and
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ZV simultaneously, with the nonconvex objective function

g(ZU , ZV ) =
1

2p

∥∥∥PΩ(ZUZ
>
V −X

?)
∥∥∥2

F
+
λ′

4

∥∥∥Z>UZU − Z>V ZV ∥∥∥2

F
. (4.15)

Their proof strategy also shows convergence of Z in the lifted space. For the specific case of matrix

completion, Chen and Wainwright [2015] obtained guarantees when X? is semidefinite. Our work

generalizes the results obtained in [Tu et al., 2016; Chen and Wainwright, 2015], extending the

recent literature on first-order algorithms for factorized models.

After completing this work we learned of independent research of Sun and Luo [2015], who

also analysed a gradient algorithm for rectangular matrix completion. Their formulation is similar

to ours, with additional Frobenius norm constraints on the factors. The authors established a sam-

ple complexity of O(r7κ6) observations; in comparison our bound scales as O(r2κ2). The authors

also analyzed block coordinate descent type alternating minimization, which cyclically updates the

rows of U and then the rows of V , showing exact recovery of this algorithm without resampling.

Recent independent work of Yi et al. [2016] analyzes a gradient scheme for Robust PCA. Under

the setting of partial observation without corruption, this is the standard matrix completion prob-

lem. In other related work, [Zhao et al., 2015; Wei et al., 2016] also study nonconvex optimization

methods for matrix completion, using algorithms that still require low rank SVD in each iteration.

4.4 Experiments

We conduct experiments on synthetic datasets to support our analytical results. As the column

space regularizer and incoherence constraint of our gradient method (GD) are merely for analytical

purpose, we drop them in all the experiments; simply optimize the `2 loss 1
2

∥∥∥PΩ(ZZ> − Y ?)
∥∥∥2

F
.

We compare GD with SVP, OptSpace, nuclear norm minimization (nuclear) and trust region

methods on Riemannian manifolds (trustRegion). For nuclear, we rescale the standard

objective to be

min
X

1

2λ
‖PΩ(X −X?)‖2F + ‖X‖∗ , (4.16)
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Method Complexity

GD 2mr +m+ n2r + 4nr

SVP O(n2r)

OptSpace O(mr3 + n2r2 + nr4 + r6)

nuclear O(n3)

AltMin O(mr2)

Table 4.1: Matrix completion: per-iteration computational complexities of different methods.

where λ = 0 will enforce the minimizer fitting the observed values exactly. We use ADMM to

solve (4.16). It is based on the algorithm for the matrix approach in [Tomioka et al., 2010], and

can neatly handle the case λ = 0. We emphasize there is no computational difference between

cases whether λ is zero or not. All methods are implemented in MATLAB. We use the toolbox

Manopt for trustRegion [Boumal et al., 2014] and the implementation of OptSpace from

the authors. For AltMin, we use the same sample sets in every iteration. The experiments were

run on a Linux machine with a 3.4GHz Intel Core i7 processor and 8 GB memory.

4.4.1 Computational Complexity

Table 4.1 summarizes the per-iteration complexity of all the methods for completing a n × n ma-

trix. Since Mk is a sparse matrix with m nonzero entries, and we have dropped the regularizer

and constraint, our method GD only needs 2mr + m + n2r operations to compute the gradient,

and 4nr operations to update the iterate. The computation of nuclear is dominated by singu-

lar value thresholding and updating the objective value, which require the O(n3) cost full SVD.

Similarly, SVP needs O(n2r) operations to compute the rank-r SVD for low rank projection. For

OptSpace, O(mr+n2r+nr2) operations are needed to compute the manifold gradient and line

search. The most expensive part is to determine the optimal scaling matrix S ∈ Rr×r, which boils

down to solving a r2 by r2 dense linear system. In total O(mr3 +n2r2 +nr4 + r6) operations are

used to construct and solve this system. For AltMin, in every iteration we have to solve (n1 +n2)

linear systems of size r × r. See [Sun, 2015] for the exact formulation. The time cost for each

iteration is O(mr2). One can see that GD reduces the computation than the others. Though the
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dominating terms for SVP and GD are in the same order, in practice the partial SVD are more

expensive than the gradient update, especially on large instances.

4.4.2 Runtime Comparison

We randomly generated a true matrixX? of size 4000×2000 and rank 3. It is constructed from the

rank-3 SVD of a random 4000 × 2000 matrix with i.i.d normal entries. We sampled m = 199057

entries of X? uniformly at random, where m is roughly equal to 2nr log n with n = 4000 and

r = 3. For simplicity, we feed SVP, OptSpace and GD with the true rank. For all these methods,

we use the randomized algorithm of Halko et al. [2011] to compute the low rank SVD, which is

approximately 15 times faster than MATLAB built-in SVD on instances of such size. We report

relative error measured in the Frobenius norm, defined as ‖X̂ − X?‖F / ‖X?‖F . For nuclear,

we set λ = 0 to enforce exact fitting. The convergence speed of ADMM mildly depends on the

choice of penalty parameter. We tested 5 values 0.1, 0.2, 0.5, 1, 1.5 and selected 0.2, which leads to

fastest convergence. Similarly, for SVP, we would like to choose the largest step size for which the

algorithm is converging. We evaluated 15, 20, 30, 35, 40 and selected 30. The step size is chosen

for GD in the same way. Five values 20, 50, 70, 75, 80 are tested for η and we picked 70. For

OptSpace, we compared fixed step sizes 0.50.10.050.010.005 with line search, and found the

algorithm converged fastest under line search. Figure 4.1a shows the results. GD is slightly slower

than trustRegion and faster than competing approaches.

To further illustrate how runtime scales as the dimension increases, we run larger instances of

size 10000× 5000 and 20000× 5000, where the true rank is 40. The parameters are selected in the

same manner, and we terminate the computation once the relative error is below 1e−9. We report

the results of AltMin GD, SVP and trustRegion in Figure 4.2a; nuclear, OptSpace do

not scale well to such sizes so that we didn’t include them. The runtime of AltMin scales the

slowest, while the runtimes of GD and trustRegion increase slower than SVP.
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Figure 4.1: (a) Runtime comparison where X? is 4000 × 2000 and of rank 3. 199057 entries are
observed. (b) Magnified plots to compare other methods except nuclear.

4.4.3 Sample Complexity

We evaluate the number of observations required by GD for exact recovery. For simplicity, we

consider square but asymmetric X?. We conducted experiments in 4 cases, where the randomly

generated X? is of size 500× 500 or 1000× 1000, and of rank 10 or 20. In each case, we compute

the solutions of GD given m random observations, and a solution with relative error below 1e−6 is

considered to be successful. We run 20 trials and compute the empirical probability of successful

recovery. The results are shown in Figure 4.2b. For all four cases, the phase transitions occur

around m ≈ 3.5nr. This suggests that the actual sample complexity of GD may scale linearly with

both the dimension n and the rank r.

4.5 Discussion

We propose a lifting procedure together with Burer-Monteiro factorization and a first-order algo-

rithm to carry out rectangular matrix completion. While optimizing a nonconvex objective, we

establish linear convergence of our method to the global optimum with O(µr2κ2nmax(µ, log n))
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Figure 4.2: (a) Runtime growth of AltMin, trustRegresion, GD and SVP. (b) Sample com-
plexity of gradient scheme.

random observations. We conjecture that O(nr) observations are sufficient for exact recovery,

and that the column space regularizer can be dropped. We provide empirical evidence showing

this simple algorithm is fast and scalable, suggesting that lifting techniques may be promising for

much more general classes of problems.

4.6 Proofs

4.6.1 Technical Lemmas

Another way of writing the objective function is

f(Z) =
1

2p

2m∑
l=1

(
〈Al, ZZ>〉 − bl

)2
+
λ

4

∥∥∥Z>DZ∥∥∥2

F
,
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where l is an index of Ω, Al is a matrix with 1 at the corresponding observed entry and 0 elsewhere.

Let H = Z −Z , the gradient can be written as

∇f(Z) =
1

p

2m∑
l=1

(
〈Al, ZZ>〉 − bl

)
(Al + A>l )Z + λ

Γ︷ ︸︸ ︷
DZ

(
Z>DZ

)

=
1

p

2m∑
l=1

(
〈Al, HZ

>
+ZH> +HH>〉

)
(Al + A>l )(Z +H) + λΓ.

We will use the following facts throughout the proof:

∥∥Z∥∥2,∞ = ‖Z?‖2,∞ ≤
√

µr

n1 ∧ n2
σ?1, (4.17)

‖H‖2,∞ ≤ 3

√
µr

n1 ∧ n2
σ?1, (4.18)

〈(Al + A>l )B,C〉 = 〈Al, BC> + CB>〉, (4.19)

Z>Z is positive semidefinite, H>Z is symmetric. (4.20)

Inequality (4.17) is a direct result of Definition 4.1. To see (4.18), note that ‖H‖2,∞ ≤

‖Z‖2,∞ +
∥∥Z∥∥2,∞ ≤

√
2µr
n1∧n2σ1 +

√
µr

n1∧n2σ
?
1 , and |σ1 − σ?1| ≤

1
16σ

?
1 by the discussion of

initialization in Section 4.6.2. For (4.20), it holds that

arg min
RR>=R>R=I

‖Z − Z?R‖2F = AB>,

where AΛB> is the SVD of Z?>Z. Clearly, Z>Z is positive semidefinite, and H>Z = Z>Z −

Z
>
Z = BΛB> −Z>Z is symmetric.

Next, we list several technical lemmas that are utilized later. We will use c to denote a numerical

constant, whose value may vary from line to line.

Lemma 4.4. For any Z of the form Z =

ZU
ZV

 =

UΣ
1
2R

V Σ
1
2R

, where U, V,R are unitary matrices
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and Σ � 0 is a diagonal matrix, we have

∥∥∥ZZ> − Z?Z?>∥∥∥
F
≤ 2

∥∥∥UΣV > − U?Σ?V ?>
∥∥∥
F
.

Proof. Recall that

Z? =

Z?U
Z?V

 =

U?Σ? 1
2

V ?Σ?
1
2


where X? = U?Σ?V ?>. We have

∥∥∥ZZ> − Z?Z?>∥∥∥2

F

=
∥∥∥UΣU> − U?Σ?U?>

∥∥∥2

F
+
∥∥∥V ΣV > − V ?Σ?V ?>

∥∥∥2

F
+ 2

∥∥∥UΣV > − U?Σ?V ?>
∥∥∥2

F
,

(4.21)

and∥∥∥UΣU> − U?Σ?U?>
∥∥∥2

F
+
∥∥∥V ΣV > − V ?Σ?V ?>

∥∥∥2

F

= 2
(
‖Σ‖2F + ‖Σ?‖2F − 〈Σ, U

>U?>Σ?U?>U + V >V ?>Σ?V ?>V 〉
). (4.22)

We can obtain the lower bound

〈Σ, U>U?>Σ?U?>U + V >V ?>Σ?V ?>V 〉

=
r∑
i=1

σi

(
U>U?>Σ?U?>U + V >V ?>Σ?V ?>V

)
ii

=
r∑
i=1

σi

r∑
k=1

σ?k

(
(U>U?)2

ik + (V >V ?)2
ik

)
≥

r∑
i=1

σi

r∑
k=1

σ?k · 2 (U>U?)ik(V >V ?)ik

= 2〈Σ, U>U?Σ?V ?>V 〉.

(4.23)
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Combining (4.22) and (4.23), we obtain

∥∥∥UΣU> − U?Σ?U?>
∥∥∥2

F
+
∥∥∥V ΣV > − V ?Σ?V ?>

∥∥∥2

F

≤ 2
(
‖Σ‖2F + ‖Σ?‖2F − 2〈Σ, U>U?>Σ?V ?>V 〉

)
= 2

(∥∥∥UΣV >
∥∥∥2

F
+
∥∥∥U?Σ?V ?>∥∥∥2

F
− 2〈UΣV >, U?>Σ?V ?>〉

)
= 2

∥∥∥UΣV > − U?Σ?V ?>
∥∥∥2

F
.

(4.24)

Plugging (4.24) back into (4.21), we obtain the lemma.

Recall that n = max(n1, n2). We will exploit the following two known concentration results.

Lemma 4.5 (Chen [2015], Lemma 2). For any fixed matrix X? ∈ Rn1×n2 , there exist universal

constants c, c1, c2 such that with probability at least 1− c1n−c2 ,

∥∥∥p−1PΩ(X?)−X?
∥∥∥ ≤ c

(
log n

p
‖X?‖∞ +

√
log n

p
‖X?‖∞,2

)
.

Lemma 4.6 (Candès and Recht [2009], Theorem 4.1). Define subspace

T =
{
M ∈ Rn1×n2 : M = U?X> + Y V ?> for some X and Y

}
. (4.25)

Let PT be the Euclidean projection onto T . There is a numerical constant c such that for any

δ ∈ (0, 1], if p ≥ c

δ2

µr log n

n1 ∧ n2
, then with probability 1− 3n−3, we have

p−1 ‖PTPΩPT − pPT ‖ ≤ δ.

Lemma 4.7 upper bounds the spectral norm of the adjacency matrix of a random Erdős-Rényi

graph. It is a variant of Lemma 7.1 of Keshavan et al. [2010], which uses known results of Feige

and Ofek [2005].

Lemma 4.7 (Chen and Wainwright [2015], Lemma 9). Suppose that Ω̄ ⊂ [d] × [d] is the set
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of edges of a random Erdős-Rényi graph with n nodes, where any pair of nodes is connected

with probability p. There exists two numerical constants c1, c2 such that, for any δ ∈ (0, 1], if

p ≥ c1 log d

δ2d
, then with probability at least 1− 1

2d
−4, uniformly for all x, y ∈ Rn it holds that

p−1
∑

(i,j)∈Ω̄

xiyj ≤ (1 + δ) ‖x‖1 ‖y‖1 + c2

√
d

p
‖x‖2 ‖y‖2 . (4.26)

We refer readers to [Keshavan et al., 2010] for a complete proof, in particular noticing that one

can choose p large enough so that the constant factor in the first term in (4.26) is only 1 + δ.

Lemma 4.8, 4.9 and 4.10 are direct generalizations of Lemma 4 and 5 of [Chen and Wainwright,

2015].

Lemma 4.8. There exists a constant c such that, for any δ ∈ (0, 1], if

p ≥ c

δ2
max

( log(n1 + n2)

n1 + n2
,
µ2r2κ2

n1 ∧ n2

)
,

then with probability at least 1 − 1
2(n1 + n2)−4, uniformly for all H such that ‖H‖2,∞ ≤

3
√

µr
n1∧n2σ

?
1 , we have

p−1
∥∥∥PΩ(HH>)

∥∥∥2

F
≤ (1 + δ) ‖H‖4F + δσ?r ‖H‖2F .

Proof. It holds that

p−1
∥∥∥PΩ(HH>)

∥∥∥2

F
= p−1

∑
(i,j)∈Ω

〈H(i), H(j)〉
2

≤ p−1
∑

(i,j)∈Ω

∥∥∥H(i)

∥∥∥2

2

∥∥∥H(j)

∥∥∥2

2
.

(4.27)

Since Ω is a reduced sampling of Y ∈ R(n1+n2)×(n1+n2) under a Bernoulli model, Lemma 4.7

is applicable here. Assume p ≥ c1 log(n1+n2)
δ2(n1+n2)

, we then have with probability at least 1 − 1
2(n1 +
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n2)−4, for all H such that ‖H‖2,∞ ≤ 3
√

µr
n1∧n2σ

?
1 ,

p−1
∥∥∥PΩ(HH>)

∥∥∥2

F
≤ p−1

∑
(i,j)∈Ω

∥∥∥H(i)

∥∥∥2

2

∥∥∥H(j)

∥∥∥2

2

(a)
≤ (1 + δ)

( ∑
i∈[n1+n2]

∥∥∥H(i)

∥∥∥2

2

)2
+ c2

√
n1 + n2

p

∑
i∈[n1+n2]

∥∥∥H(i)

∥∥∥4

2

≤ (1 + δ) ‖H‖4F + c2

√
n1 + n2

p
‖H‖2F ‖H‖

2
2,∞

(b)
≤ ‖H‖2F

(
(1 + δ) ‖H‖2F +

√
81c22µ

2r2σ?1
2(n1 + n2)

p(n1 ∧ n2)2

)
,

(4.28)

where (a) follows from Lemma 4.7 and (b) follows from ‖H‖2,∞ ≤ 3
√

µr
n1∧n2σ

?
1 .

Let us further assume p ≥ 162c22µ
2r2κ2γ

δ2(n1∧n2)
, where γ = n/(n1 ∧ n2) is a fixed constant, then we

can bound

p−1
∥∥∥PΩ(HH>)

∥∥∥2

F
≤ ‖H‖2F

(
(1 + δ) ‖H‖2F + δσ?r

)
. (4.29)

The final threshold we obtain is thus p ≥ c
δ2

max
(

log(n1+n2)
n1+n2

, µ
2r2κ2

n1∧n2

)
for some constant c.

Lemma 4.9. There exists a constant c, if p ≥ c log n

n1 ∧ n2
, then with probability at least 1− 2n−4

1 −

2n−4
2 , uniformly for all matrices A, B such that AB> is of size (n1 + n2)× (n1 + n2),

p−1
∥∥∥PΩ(AB>)

∥∥∥2

F
≤ 2nmin

{
‖A‖2F ‖B‖

2
2,∞ , ‖B‖2F ‖A‖

2
2,∞

}

Proof. Let ΩYi = {j : (i, j) ∈ Ω} denote the set of entries sampled in the ith row of AB>. Note

that because of the structure of Ω, at most n2 entries are sampled at the frist n1 rows, and at most

n1 entries are sampled at the rest n2 rows.

Using a binomial tail bound, if p ≥ c log n2

n2
for sufficiently large c, the event maxi∈[n1] |ΩYi | ≤

2pn2 holds with probability at least 1−n−4
2 . Similarly for the rest n2 rows. Hence, if p ≥ c log n

n1 ∧ n2

for some constant c, with probability at least 1− n−4
1 − n

−4
2 , we have maxi∈[n1+n2] |ΩYi| ≤ 2pn.
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Conditioning on this event, we then have for all A,B of proper size,

p−1
∥∥∥PΩ(AB>)

∥∥∥2

F
= p−1

n1+n2∑
i=1

∑
j∈ΩYi

〈A(i), B(j)〉
2

≤ p−1
n1+n2∑
i=1

∥∥∥A(i)

∥∥∥2

2

∑
j∈ΩYi

∥∥∥B(j)

∥∥∥2

2

≤ p−1
n1+n2∑
i=1

∥∥∥A(i)

∥∥∥2

2
max

i∈[n1+n2]
|ΩYi| ‖B‖

2
2,∞

≤ 2n ‖A‖2F ‖B‖
2
2,∞ .

Similarly we can prove with probability at least 1− n−4
1 − n−4

2 ,

p−1
∥∥∥PΩ(AB>)

∥∥∥2

F
≤ 2n ‖B‖2F ‖A‖

2
2,∞ .

The following lemma establishes restricted strong convexity and smoothness of the observation

operator for matrices in T .

Lemma 4.10. Let T be the subspace defined in (4.25). There exists a universal constant c such

that, if p ≥ c

δ2

µr log n

n1 ∧ n2
, with probability at least 1− 3n−3, uniformly for all A ∈ T , we have

p(1− δ) ‖A‖2F ≤ ‖PΩ(A)‖2F ≤ p(1 + δ) ‖A‖2F . (4.30)

Consequently, uniformly for all A,B ∈ T ,

|p−1〈PΩ(A),PΩ(B)〉 − 〈A,B〉| ≤ δ ‖A‖F ‖B‖F . (4.31)

Proof. By Lemma 4.6, with probability at least 1− 3n−3, for any X ∈ Rn1×n2 it holds that

p(1− δ) ‖X‖F ≤ ‖PTPΩPT (X)‖F ≤ p(1 + δ) ‖X‖F . (4.32)
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Let A be a matrix in T . Rewriting ‖PΩ(A)‖2F = 〈PΩPT (A),PΩPT (A)〉 = 〈A,PTPΩPT (A)〉,

and using the Cauchy-Schwarz inequality and (4.32) we can bound

‖PΩ(A)‖2F ≤ p(1 + δ) ‖A‖2F . (4.33)

In addition, we have

‖PΩ(A)‖2F = 〈A,PTPΩPT (A)〉

= 〈A,PTPΩPT (A)− pPT (A) + pPT (A)〉

≥ −‖A‖F ‖(PTPΩPT − pPT )(A)‖F + p ‖A‖2F
(a)
≥ p(1− δ) ‖A‖2F ,

(4.34)

where (a) follows from Lemma 4.6. Combining (4.33) and (4.34) proves (4.30). To show (4.31),

let A′ = A
‖A‖F

and B′ = B
‖B‖F

. Both A′ +B′ and A′ −B′ are in T . We have

〈PΩ(A′),PΩ(B′)〉 =
1

4

{ 1︷ ︸︸ ︷∥∥PΩ(A′ +B′)
∥∥2
F −

2︷ ︸︸ ︷∥∥PΩ(A′ −B′)
∥∥2
F

}
(b)
≤ 1

4

{
(1 + δ)p

∥∥A′ +B′
∥∥2
F − (1− δ)p

∥∥A′ −B′∥∥2
F

}
=

1

4

{
2δp

(∥∥A′∥∥2
F +

∥∥B′∥∥2
F

)
+ 4p〈A′, B′〉

}
= pδ + p〈A′, B′〉,

(4.35)

where (b) follows from (4.30). Thus, we have

p−1〈PΩ(A),PΩ(B)〉 = p−1 ‖A‖F ‖B‖F 〈PΩ(A′),PΩ(B′)〉 ≤ δ ‖A‖F ‖B‖F + 〈A,B〉. (4.36)

Similarly, we can show

p−1〈PΩ(A),PΩ(B)〉 ≥ −δ ‖A‖F ‖B‖F + 〈A,B〉. (4.37)
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Last, we want to show the projection onto feasible set C is a contraction.

Lemma 4.11. Let y ∈ Rr be a vector such that ‖y‖2 ≤ θ, for any x ∈ Rr. Then

∥∥∥P‖·‖2≤θ(x)− y
∥∥∥2

2
≤ ‖x− y‖22 .

Proof. If ‖x‖2 ≤ θ, then P‖·‖2≤θ(x) = x. Otherwise P‖·‖2≤θ(x) = θx̄, where x̄ = x
‖x‖2

. Write

y = (y>x̄)x̄+ P⊥x (y), we have

‖θx̄− y‖22 =
∥∥∥θx̄− (y>x̄)x̄

∥∥∥2

2
+
∥∥∥P⊥x (y)

∥∥∥2

2
= (θ − y>x̄)2 +

∥∥∥P⊥x (y)
∥∥∥2

2
. (4.38)

It suffices to show

(θ − y>x̄)2 ≤ (‖x‖ − y>x̄)2. (4.39)

If y>x̄ ≤ 0, then (4.39) holds because ‖x‖ > θ. If y>x̄ > 0, (4.39) still holds since ‖x‖ > θ ≥

‖y‖ ≥ y>x̄.

4.6.2 Initialization

Proof of Lemma 4.1

Let δ denote the upper bound of
∥∥p−1PΩ(X?)−X?

∥∥ as in Lemma 4.5, and let σ1 ≥ . . . ≥ σn

denote the singular values of p−1PΩ(X?). By Weyl’s theorem, we have

|σi − σ?i | ≤ δ, i ∈ [n]. (4.40)

Note this implies σr+1 ≤ δ, as σ?r+1 = 0.

By definition, Z0 = [U ;V ]Σ
1
2 , where UΣV > is the rank-r SVD of p−1PΩ(X?). According
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to Lemma 4.4, one has

∥∥∥Z0Z0> − Z?Z?>
∥∥∥
F
≤ 2

∥∥∥UΣV > −X?
∥∥∥
F

(a)
≤ 2

√
2r
∥∥∥UΣV > −X?

∥∥∥
≤ 2

√
2r
(∥∥∥UΣV > − p−1PΩ(X?)

∥∥∥+
∥∥∥p−1PΩ(X?)−X?

∥∥∥)
(b)
≤ 2

√
2r (δ + δ)

= 4
√

2rδ,

(4.41)

where (a) holds because rank(UΣV > − X?) ≤ 2r, (b) holds since
∥∥∥UΣV > − p−1PΩ(X?)

∥∥∥ =

σr+1 ≤ δ.

Let H = Z0 −Z0. We want to bound d(Z0, Z?)2 = ‖H‖2F . According to (4.20), H>Z0 is

symmetric and Z0>Z0 is positive semidefinite. Hence we can write

∥∥∥Z0Z0> − Z?Z?>
∥∥∥2

F

=
∥∥∥HZ0> +Z0H> +HH>

∥∥∥2

F

= tr
(

(H>H)2 + 2(H>Z0)2 + 2(H>H)(Z0>Z0) + 4(H>H)(H>Z0)

)
= tr

((
H>H +

√
2H>Z0

)2
+ (4− 2

√
2)(H>H)(H>Z0) + 2(H>H)(Z0>Z0)

)
≥ tr

(
(4− 2

√
2)(H>H)(H>Z0) + 2(H>H)(Z0>Z0)

)
=(4− 2

√
2) tr

(
(H>H)(Z0>Z0)

)
+ (2
√

2− 2)
∥∥∥HZ0T

∥∥∥2

F
,

(4.42)

where in the second line we used thatH>Z0 is symmetric. Besides, as Z0>Z0 is positive semidef-

inite, (4−
√

2) tr((H>H)(Z0>Z0)) is nonnegative. Therefore,

∥∥∥Z0Z0> − Z?Z?>
∥∥∥2

F
≥ (2
√

2− 2)
∥∥∥HZ0>

∥∥∥2

F
≥ 4(
√

2− 1)σ?r ‖H‖2F . (4.43)
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Combining (4.41) and (4.43), it follows that

d(Z0, Z?)2 ≤

∥∥∥Z0Z0 − Z?Z?>
∥∥∥2

F

4(
√

2− 1)σ?r
≤ 8r

(
√

2− 1)σ?r
δ2. (4.44)

Therefore, it suffices to show

d(Z0, Z?)2 ≤ 8r

(
√

2− 1)σ?r
δ2

(a)
= c

r

σ?r

(
log n

p
‖X?‖∞ +

√
log n

p
‖X?‖∞,2

)2

(b)
≤ c r

σ?1
2

σ?r

(
µr log n

p(n1 ∧ n2)
+

√
µr log n

p(n1 ∧ n2)

)2

≤ 1

16
σ?r ,

(4.45)

where in (a) we replaced δ using Lemma 4.5, and (b) holds since by our incoherence assump-

tion (4.3) we have

‖X?‖∞ =
∥∥∥U?Σ?V ?>∥∥∥

∞
≤ σ?1 max

i,j

∥∥∥U?(i)∥∥∥∥∥∥V ?(j)∥∥∥ ≤ σ?1 ‖U
?‖2,∞ ‖V

?‖2,∞ ≤ σ?1
µr

n1 ∧ n2
,

(4.46)

‖X?‖∞,2 =
∥∥∥U?Σ?V ?>∥∥∥

∞,2
≤ σ?1

∥∥∥U?V ?>∥∥∥
∞,2

(c)
≤ σ?1

√
µr

n1 ∧ n2
. (4.47)

Note that for (c) we used
∥∥∥AB>∥∥∥

2,∞
≤ ‖A‖2,∞ ‖B‖.

Hence, to obtain d(Z0, Z?)2 ≤ 1
16σ

?
r , it suffices to have

p ≥ max

{
cµr3/2κ log n

n1 ∧ n2
,
cµr2κ2 log n

n1 ∧ n2

}
=
cµr2κ2 log n

n1 ∧ n2
. (4.48)

Since PC is just row-wise clipping, by Lemma 4.11 we have

d(Z1, Z?)2 ≤
∥∥∥PC(Z0)− Z?

∥∥∥2

F
≤
∥∥∥Z0 − Z?

∥∥∥2

F
.
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Proof of Corollary 4.1

By the incoherence assumption, we have ‖Z?‖2,∞ ≤
√

µr
n1∧n2σ

?
1 , see (4.17). It suffices to

show 2σ1 ≥ σ?1 . From the above discussion, we can see that

8r

(
√

2− 1)σ?r
δ2 ≤ 1

16
σ?r ⇒ δ ≤ 1

16
σ?r .

By Wely’s theorem, we have |σ1 − σ?1| ≤
1
16σ

?
r . As a result, 2σ1 ≥ σ?1 .

4.6.3 Regularity Condition

Analogous to the restricted strong convexity (RSC) and restricted strong smoothness (RSS), we

show that with high probability our objective function f satisfies the local curvature and local

smoothness conditions defined below.

• Local Curvature Condition

There exists constant c1, c2 such that for any Z ∈ C satisfying d(Z,Z?) ≤ 1
4

√
σ?r ,

〈∇f(Z), H〉 ≥ c1 ‖H‖2F + c2

∥∥∥H>DZ∥∥∥2

F
.

• Local Smoothness Condition

There exist constants c3, c4 such that for any Z ∈ C satisfying d(Z,Z?) ≤ 1
4

√
σ?r ,

‖∇f(Z)‖2F ≤ c3 ‖H‖2F + c4

∥∥∥H>DZ∥∥∥2

F
.
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Proof of the Local Curvature Condition

〈∇f(Z), H〉

=
1

p

(
2m∑
l=1

〈Al, HZ
>

+ZH> +HH>〉 · 〈(Al + A>l )(Z +H), H〉

)
+ λ tr(H>Γ)

(i)
=

1

p

(
2m∑
l=1

〈Al, HZ
>

+ZH> +HH>〉 · 〈Al, HZ
>

+ZH> + 2HH>〉

)
+ λ tr(H>Γ)

=
1

p

{ a2︷ ︸︸ ︷
2m∑
l=1

〈Al, HZ
>

+ZH>〉2 +

b2︷ ︸︸ ︷
2m∑
l=1

2〈Al, HH>〉2 +
2m∑
l=1

3〈Al, HZ
>

+ZH>〉〈Al, HH>〉
}

+ λ tr(H>Γ)

(ii)
≥ 1

p

{
a2 + b2 − 3√

2

a︷ ︸︸ ︷√√√√ 2m∑
l=1

〈Al, HZ
>

+ZH>〉2

b︷ ︸︸ ︷√√√√ 2m∑
l=1

2〈Al, HH>〉2
}

+ λ tr(H>Γ)

=
1

p

{(
a− 3

2
√

2
b

)2

− 1

8
b2
}

+ λ tr(H>Γ)

(iii)
≥ 1

p

(
a2

2
− 5

4
b2
)

+ λ tr(H>Γ)

=
1

2
p−1

∥∥∥PΩ(HZ
>

+ZH>)
∥∥∥2

F
− 5

2
p−1

∥∥∥PΩ(HH>)
∥∥∥2

F
+ λ tr(H>Γ).

(4.49)

where we used equation (4.19) for (i), the Cauchy-Schwarz inequality for (ii), inequality (a −

b)2 ≥ a2

2 − b
2 for (iii). Finally, in the last line we used

∑2m
l=1〈Al,M〉

2 =
∥∥PΩ(M)

∥∥2
F

.

We first lower bound 1
2p
−1
∥∥∥PΩ(HZ

>
+ZH>)

∥∥∥2

F
. By the symmetry of Ω, it is equal to

p−1
∥∥∥PΩ(HUZ

>
V +ZUH

>
V )
∥∥∥2

F
, which expands to

p−1
∥∥∥PΩ(HUZ

>
V )
∥∥∥2

F
+ p−1

∥∥∥PΩ(ZUH
>
V )
∥∥∥2

F
+ 2p−1〈PΩ(HUZ

>
V ),PΩ(ZUH

>
V )〉. (4.50)
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As both HUZ
>
V and ZUH>V belong to T , we use Lemma 4.10 to lower bound above three terms,

respectively. This gives us

1

2
p−1

∥∥∥PΩ(HZ
>

+ZH>)
∥∥∥2

F

≥ (1− δ)
(∥∥∥HUZ>V ∥∥∥2

F
+
∥∥∥ZUH>V ∥∥∥2

F

)
+ 2〈HUZ

>
V ,ZUH

>
V 〉 − 2δ

∥∥∥HUZ>V ∥∥∥
F

∥∥∥ZUH>V ∥∥∥F
≥ (1− δ)

(∥∥∥HUZ>V ∥∥∥2

F
+
∥∥∥ZUH>V ∥∥∥2

F

)
+ 2〈HUZ

>
V ,ZUH

>
V 〉

− δ
(∥∥∥HUZ>V ∥∥∥2

F
+
∥∥∥ZUH>V ∥∥∥2

F

)
(iv)
≥ (1− 2δ)σ?r

(
‖HU‖2F + ‖HV ‖2F

)
+ 2〈HUZ

>
V ,ZUH

>
V 〉

= (1− 2δ)σ?r ‖H‖2F + 2〈HUZ
>
V ,ZUH

>
V 〉.

(4.51)

where we used
∥∥∥HUZ>V ∥∥∥2

F
≥ σ?r ‖HU‖2F and

∥∥∥ZUH>V ∥∥∥2

F
≥ σ?r ‖HV ‖2F for (iv).

Until now, we obtain

〈∇f(Z), H〉 ≥ (1− 2δ)σ?r ‖H‖2F + 2〈HUZ
>
V ,ZUH

>
V 〉+ λ tr(H>Γ)− 5

2
p−1

∥∥∥PΩ(HH>)
∥∥∥2

F
.

(4.52)

Next, we lower bound 2〈HUZ
>
V ,ZUH

>
V 〉+ λ tr(H>Γ) together. Rewriting

2〈HUZ
>
V ,ZUH

>
V 〉 = 〈H,

 0 ZUH
>
V

ZVH
>
U 0

Z〉 = 〈H, 1

2
(ZH> −DZH>D)Z〉,

ZZ> −ZZ> = HH> +ZH> +HZ
>
,

(4.53)
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and plugging in Γ = DZZ>DZ, we then have

2〈HUZ
>
V ,ZUH

>
V 〉+ λ tr(H>Γ)

= 〈H, 1

2
(ZH> −DZH>D)Z〉+ λ〈H,D(ZZ> −ZZ>)DZ〉+ λ〈H,D(ZZ

>
)DZ〉

+ λ〈H,D(ZZ
>

)DH〉
(a)
= 〈H, 1

2
(ZH> −DZH>D)Z〉+ λ〈H,D(ZZ> −ZZ>)DZ〉+ λ

∥∥∥Z>DH∥∥∥2

F

(b)
= λ

∥∥∥Z>DH∥∥∥2

F
+ 〈H, 1

2
(ZH> −DZH>D)Z + λD(HH> +ZH> +HZ

>
)D(Z +H)〉

(c)
= λ

∥∥∥Z>DH∥∥∥2

F
+

1

2

∥∥∥H>Z∥∥∥2

F
+ λ

∥∥∥H>DH∥∥∥2

F
+ 3λ tr(H>DHH>DZ)

+

(
λ− 1

2

)
tr(H>DZH>DZ)

=
λ

2

∥∥∥Z>DH∥∥∥2

F
+
λ

2

∥∥∥Z>DH + 3H>DH
∥∥∥2

F
− 7

2
λ
∥∥∥H>DH∥∥∥2

F

+
1

2

∥∥∥H>Z∥∥∥2

F
+

(
λ− 1

2

)
tr(H>DZH>DZ)

≥ λ

2

∥∥∥Z>DH∥∥∥2

F
− 7

2
λ ‖H‖4F +

(
λ− 1

2

)
tr(H>DZH>DZ)

(4.54)

Equality (a) holds because Z>DZ = 0. We plug in (4.53) in (b). For (c), we use Z>DZ =

0 and that H>Z is symmetric. Finally, we take λ = 1
2 and use Lemma 4.8 to upper bound

p−1
∥∥∥PΩ(HH>)

∥∥∥2

F
:

〈∇f(Z), H〉 ≥ (1− 2δ)σ?r ‖H‖2F +
1

4

∥∥Z>DH∥∥2
F −

7

4
‖H‖4F −

5

2
(1 + δ) ‖H‖4F −

5

2
δσ?r ‖H‖2F

=

(
(1− 2δ)σ?r −

5

2
(
17

10
+ δ) ‖H‖2F −

5

2
δσ?r

)
‖H‖2F +

1

4

∥∥∥Z>DH∥∥∥2

F
.

(4.55)

For simplicity, we take δ = 1
16 . We also have ‖H‖2F ≤

1
16σ

?
r . This leads to

〈∇f(Z), H〉 ≥ 227

512
σ?r ‖H‖2F +

1

4

∥∥∥Z>DH∥∥∥2

F
. (4.56)
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Note that this lower bound holds with high probability uniformly for all Z ∈ C such that

d(Z,Z?) ≤ 1
4

√
σ?r , since Lemma 4.8 and 4.10 hold uniformly.

When the ground truth X? is positive semidefinite, we don’t need to do lifitng nor impose

the regularizer. Using Lemma 4.10, we can lower bound 1
2p
−1
∥∥∥PΩ(HZ

>
+ZH>)

∥∥∥2

F
& (1 −

δ)σ?r ‖H‖2F directly. Taking proper constants, we can obtain the standard restricted strong convex-

ity condition:

〈∇f(Z), H〉 & σ?r ‖H‖2F .

Proof of the Local Smoothness Condition

To upper bound ‖∇f(Z)‖2F = max‖W‖F=1 |〈∇f(Z),W 〉|2, it suffices to show that for any

n× r W of unit Frobenius norm, |〈∇f(Z),W 〉|2 is upper bounded. We first write

〈∇f(Z),W 〉

=
1

p

2m∑
l=1

(
〈Al, HZ

>
+ZH>〉+ 〈Al, HH>〉

)
· 〈(Al + A>l )(Z +H),W 〉+ λ tr(W>Γ)

(i)
=

1

p

2m∑
l=1

(
〈Al, HZ

>
+ZH>〉+ 〈Al, HH>〉

)(
〈Al,WZ

>
+ZW>〉+ 〈Al,WH> +HW>〉

)
+ λ tr(W>Γ)

=
1

p

{
〈PΩ(HZ

>
+ZH>),PΩ(WZ

>
+ZW>)〉+ 〈PΩ(HH>),PΩ(WZ

>
+ZW>)〉

+ 〈PΩ(HZ
>

+ZH>),PΩ(WH> +HW>)〉+ 〈PΩ(HH>),PΩ(WH> +HW>)〉
}

+ λ tr(W>Γ),

(4.57)
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where we used (4.19) for (i). Since (a+ b+ c+ d+ e)2 ≤ 5(a2 + b2 + c2 + d2 + e2), we have

|〈∇f(Z),W 〉|2

≤ 5

p2

{
〈PΩ(HZ

>
+ZH>),PΩ(WZ

>
+ZW>)〉2 + 〈PΩ(HH>),PΩ(WZ

>
+ZW>)〉2

+ 〈PΩ(HZ
>

+ZH>),PΩ(WH> +HW>)〉2 + 〈PΩ(HH>),PΩ(WH> +HW>)〉2
}

+ 5λ2 tr(W>Γ)2

(ii)
≤ 5

p2

(∥∥∥PΩ(HZ
>

+ZH>)
∥∥∥2

F
+
∥∥∥PΩ(HH>)

∥∥∥2

F

)

·
(∥∥∥PΩ(WZ

>
+ZW>)

∥∥∥2

F
+
∥∥∥PΩ(WH> +HW>)

∥∥∥2

F

)
+ 5λ2 ‖Γ‖2F

=1︷ ︸︸ ︷
‖W‖2F

(iii)
≤ 5

p

(
2

1︷ ︸︸ ︷∥∥∥PΩ(HZ
>

)
∥∥∥2

F
+2

2︷ ︸︸ ︷∥∥∥PΩ(ZH>)
∥∥∥2

F
+

3︷ ︸︸ ︷∥∥∥PΩ(HH>)
∥∥∥2

F

)

· 1

p

(
2

4︷ ︸︸ ︷∥∥∥PΩ(WZ
>

)
∥∥∥2

F
+2

5︷ ︸︸ ︷∥∥∥PΩ(ZW>)
∥∥∥2

F
+2

6︷ ︸︸ ︷∥∥∥PΩ(WH>)
∥∥∥2

F
+2

7︷ ︸︸ ︷∥∥∥PΩ(HW>)
∥∥∥2

F

)
+ 5λ2 ‖Γ‖2F ,

(4.58)

where we used the Cauchy-Schwarz inequality for (ii), and (a + b)2 ≤ 2(a2 + b2) for (iii). We

then use Lemma 4.9 to upper bound 1 , 2 , 4 , 5 , 6 , 7 , and Lemma 4.8 for 3 . Also since

‖W‖F = 1, one has

|〈∇f(Z),W 〉|2

≤ 5
(

8n ‖H‖2F
∥∥Z∥∥2

2,∞ + (1 + δ) ‖H‖4F + δσ?r ‖H‖2F
)
·
(

8n
∥∥Z∥∥2

2,∞ + 8n ‖H‖22,∞
)

+ 5λ2 ‖Γ‖2F

= 40n
(

8n
∥∥Z∥∥2

2,∞ + (1 + δ) ‖H‖2F + δσ?r

)
‖H‖2F ·

(∥∥Z∥∥2
2,∞ + ‖H‖22,∞

)
+ 5λ2 ‖Γ‖2F

≤ 400µrσ?1

(
8µrσ?1 + (1 + δ) ‖H‖2F + δσ?r

)
‖H‖2F + 5λ2 ‖Γ‖2F ,

(4.59)
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where in the last line we plugged in
∥∥Z∥∥2,∞ ≤

√
µr

n
σ?1 and ‖H‖2,∞ ≤ 3

√
µr

n
σ?1 , i.e. (4.17) and

(4.18).

Next, we bound

‖Γ‖2F =
∥∥∥D(ZZ> −ZZ>)DZ +DZZ

>
DZ
∥∥∥2

F

≤ 2
∥∥∥D(ZZ> −ZZ>)DZ

∥∥∥2

F
+ 2

∥∥∥DZZ>DZ∥∥∥2

F

(a)
≤ 2

∥∥∥ZZ> −ZZ>∥∥∥2

F
‖Z‖2 + 2

∥∥Z∥∥2
∥∥∥Z>DZ∥∥∥2

F

(b)
= 2

∥∥∥HH> +ZH> +HZ
>
∥∥∥2

F
‖Z‖2 + 2

∥∥Z∥∥2
∥∥∥Z>DH∥∥∥2

F

≤ 6

(∥∥∥HH>∥∥∥2

F
+
∥∥∥ZH>∥∥∥2

F
+
∥∥∥HZ>∥∥∥2

F

)
‖Z‖2 + 2

∥∥Z∥∥2
∥∥∥Z>DH∥∥∥2

F

(c)
≤ 6

(
‖H‖2F + 2

∥∥Z∥∥2
)
‖H‖2F ‖Z‖

2 + 2
∥∥Z∥∥2

∥∥∥Z>DH∥∥∥2

F

(d)
= 6

(
‖H‖2F + 4σ?1

)
‖H‖2F ‖Z‖

2 + 4σ?1

∥∥∥Z>DH∥∥∥2

F
.

(4.60)

Inequality (a) holds because ‖AB‖F ≤ ‖A‖ ‖B‖F and ‖D‖ = 1. To get (b), for the first term

in the 3rd line we expand ZZ> − ZZ>, for the second term we expand Z = Z + H and use

Z
>
DZ = 0. For (c), we use ‖AB‖F ≤ ‖A‖ ‖B‖F ≤ ‖A‖F ‖B‖F . Last, (d) holds because∥∥Z∥∥2

= 2σ?1 .
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Finally, we combine (4.59) and (4.60). As before, take λ = 1
2 , δ = 1

16 , and ‖H‖2F ≤
1
16σ

?
r , we

obtain

‖∇f(Z)‖2F

≤
{

400µrσ?1

(
8µrσ?1 + (1 + δ) ‖H‖2F + δσ?r

)
+ 30λ2

(
‖H‖2F + 4σ?1

)
‖Z‖2

}
‖H‖2F

+ 20λ2σ?1

∥∥∥Z>DH∥∥∥2

F

(a)
≤
{

400µrσ?1

(
8µrσ?1 + (1 + δ) ‖H‖2F + δσ?r

)
+

735

8
σ?1λ

2
(
‖H‖2F + 2σ?1

)}
‖H‖2F

+ 20λ2σ?1

∥∥∥Z>DH∥∥∥2

F

(b)
≤
{

400

(
8 +

17

256
+

1

16

)
+

735

32

(
1

16
+ 2

)}
µ2r2σ?1

2 ‖H‖2F + 5σ?1

∥∥∥Z>DH∥∥∥2

F

≤ 3299µ2r2σ?1
2 ‖H‖2F + 5σ?1

∥∥∥Z>DH∥∥∥2

F
,

(4.61)

where for (a) we used ‖Z‖ ≤ ‖H‖+
∥∥Z∥∥ ≤ 1

4

√
σ?r +

√
2σ?1 ≤

7
4

√
σ?1 , for (b) we used µ, r ≥ 1.

As before, this condition holds uniformly for all Z such that d(Z,Z?) ≤ 1
4

√
σ?r and satisfying

the incoherence condition.

For the case X? is positive semidefinite, as we don’t need to impose the regularizer, standard

restricted strong smoothness condition follows:

‖∇f(Z)‖2F . σ?1 ‖H‖
2
F .

Proof of Lemma 4.3

Rearranging the terms in the smoothness condition (4.61), we can further bound

1

4

∥∥∥Z>DH∥∥∥2

F
≥
‖∇f(Z)‖2F
20µ2r2κσ?1

− 3299

20
σ?r ‖H‖2F

≥
‖∇f(Z)‖2F

13196µ2r2κσ?1
− 128

512
σ?r ‖H‖2F .

(4.62)
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Combining equation (4.56) and (4.62), it follows that

〈∇f(Z), H〉 ≥ 99

512
σ?r ‖H‖2F +

1

13196µ2r2κσ?1
‖∇f(Z)‖2F . (4.63)

Finally, by upper bounding the probability that Lemma 4.8, 4.9, or 4.10 fails, and the sample

probability p these lemmas require, we conclude that once

p ≥ cmax

(
µr log n

n1 ∧ n2
,
µ2r2κ2

n1 ∧ n2

)
, (4.64)

regularity condition (4.63) holds with probability at least 1− c1n−c2 , where c, c1, c2 are constants.

4.6.4 Linear Convergence

Proof of Lemma 4.2

Let Hk = Zk −Zk. Our iterate is Zk+1 = PC(Zk − η∇f(Zk)). Since PC is just row-wise

clipping, by Lemma 4.11 we have

∥∥∥∥PC (Zk − η

σ?1
∇f(Zk)

)
−Zk

∥∥∥∥2

F

≤
∥∥∥∥Zk − η

σ?1
∇f(Zk)−Zk

∥∥∥∥2

F

. (4.65)
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It follows that

∥∥∥Zk+1 −Zk
∥∥∥2

F

≤
∥∥∥∥Zk − η

σ?1
∇f(Zk)−Zk

∥∥∥∥2

F

=
∥∥∥Hk

∥∥∥2

F
+

η2

σ?1
2

∥∥∥∇f(Zk)
∥∥∥2

F
− 2η

σ?1
〈∇f(Zk), Hk〉

(a)
≤
∥∥∥Hk

∥∥∥2

F
+

η2

σ?2
1

∥∥∥∇f(Zk)
∥∥∥2

F
− 2η

σ?1

(
1

α
σ?r

∥∥∥Hk
∥∥∥2

F
+

1

βσ?1

∥∥∥∇f(Zk)
∥∥∥2

F

)
=

(
1− 2η

ακ

)∥∥∥Hk
∥∥∥2

F
+
η(η − 2/β)

σ?2
1

∥∥∥∇f(Zk)
∥∥∥2

F

(b)
≤
(

1− 2η

ακ

)∥∥∥Hk
∥∥∥2

F
,

(4.66)

where we use the definition ofRC(ε, α, β) for (a) and 0 < η ≤ min {α/2, 2/β} for (b). Therefore,

d(Zk+1, Z?) = min
Z̃∈S

∥∥∥Zk+1 − Z̃
∥∥∥2

F
≤
√

1− 2η

ακ
d(Zk, Z?). (4.67)

81



Part II

Sparse Graphs
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CHAPTER 5

FASTEST MIXING MARKOV CHAIN

The recurring theme of this thesis is to reformulate a problem so that the number of parameters

is the same as its intrinsic degrees of freedom, even if the resulting problem becomes nonconvex.

In the previous two chapters, we have studied the situation where the target matrices are of low

rank. However, in many other contexts, the matrices of interest might not be low-rank. Is there any

other structure we could exploit and apply similar methods? In this chapter, we focus on the graph

Laplacian matrix — a fundamental positive semidefinite matrix that connects graph theory, linear

algebra, numerical computation and many other related fields [Boyd, 2006; Spielman, 2010]. For

a connected graph with n nodes, the Laplacian matrix is of rank n − 1. However, when applying

Cholesky factorization — a special symmetric decomposition where the factor is lower-triangular

— to the graph Laplacian, the factors we obtained are often sparse. We consider the fastest mixing

Markov chain (FMMC) problem [Boyd et al., 2004; Boyd, 2006], where one needs to find the best

graph Laplacian matrix under certain constraints. We propose a nonconvex formulation for FMMC

based on the Cholesky factorization, and study a first order method where the sparsity of the factor

is utilized.

5.1 Graph Laplacian and Cholesky Factorization

The graph Laplacian is a core matrix representation of graph that naturally arises in many prob-

lems. It has various appealing algebraic properties and has received tremendous research interests.

For example, solving large scale linear systems is ubiquitous in scientific computing, and efficient

algorithms for solving systems in the Laplacian — more broadly, symmetric and diagonally domi-

nant matrices — have been emerging as a primitive for other numerical methods [Spielman, 2010].

Extensive studies have shown that those systems can be solved in nearly-linear time [Spielman and

Teng, 2004; Koutis et al., 2010; Cohen et al., 2014]. Our work is also inspired by the technical

advances in this field. Let us first define the graph Laplacian matrix.
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Definition 5.1. Let G = (V,E) be a simple, undirected, weighted graph, where V is the set of

n nodes, E ⊆ V × V is the set of m edges excluding self loops. We assume that i < j for any

(i, j) ∈ E.

Let W be the weight matrix whether

Wij =


wl if edge l = (i, j) ∈ E or l = (j, i) ∈ E,

0 otherwise.

The graph Laplacian matrix is defined by

L = D −W, (5.1)

where D is a diagonal matrix with Dii =
∑n
j=1Wij . Let w ∈ Rm be the vector of edge weights,

C be a n×m matrix such that the lth column have all zero entries except

Cil = 1, Cjl = −1, (i, j) ∈ E, (5.2)

i.e. nodes i and j are connected by edge l. The Laplacian matrix can also be written as

L = C diag(w)C>, (5.3)

where diag(w) is a m×m diagonal matrix formed from w.

An important property of L is that it is positive semidefinite, where the smallest eigenvalue is

λn = 0 1 . The algebraic multiplicity of the eigenvalue 0 is equal to the number of connected

components of the graph. Throughout this chapter, we will assume that the graph is connected,

which implies

λ1 ≥ λ2 ≥ · · ·λn−1 > λn = 0.

1. We assume larger eigenvalues have smaller subscripts.
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The inspiration of our work comes from the line of research for fast solving linear system in

the graph Laplacian. There are two major approaches [Spielman, 2010]: variants of Gaussian

elimination and iterative methods. For Gaussian elimination methods, one first uses the Cholesky

decomposition to factorize L into the form

L = ZZ>,

where Z is a lower triangular matrix and has nonnegative diagonal entries.2 In particular, one

can often permute the rows and columns of L so that the factor Z is very sparse and can be

computed in nearly linear time. Popular permutation methods include minimum degree ordering

[Tinney and Walker, 1967], Cuthill-McKee reordering [Cuthill and McKee, 1969], approximate

minimum degree ordering [Amestoy et al., 1996], etc. Without an appropriate permutation, one

might observe the fill-in phenomenon: some nonzero entries that are not in L appear in Z. In the

sequel, we will assume that such good permutation is known and there is no fill-in.

In this chapter, we consider problems of choosing edge weights so that some function of L is

minimized. In particular, we look at the problem of constructing the fastest mixing Markov chain

for a given graph. We are interested in the following questions:

1. Given the Cholesky factor of a valid Laplacian, does the factor of the optimal Laplacian have

the same sparsity pattern, under the same permutation?

2. Can we build a nonconvex reformulation of FMMC, where the variable is the sparse Cholesky

factor? Can first order methods successfully find a global minimizer?

3. Will the resulting algorithm have low computational cost?

To answer these questions, the rest of this chapter is organized as follows. Section 5.2 briefly

describes the FMMC problem; more details can be found in Boyd et al. [2004]. In Section 5.3,

2. Cholesky decomposition is uniquely defined for positive definite matrix, where the diagonal entries of factors
are positive. We can extend it to positive semidefinite matrix by allowing zeros on the diagonal line, but such decom-
position might not be unique. For graph Laplacian matrix, one way to obtain a valid Z is to stop the decomposition
algorithm when the remaining matrix has dimension 2. In this case, we will have Znn = 0.
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we introduce a variant of the ADMM algorithm and analyze its computational cost. Section 5.4

discusses related work. Empirical results are presented in Section 5.5. Conclusions and future

research directions are included in Section 5.6.

5.2 Problem Statement

We consider the discrete time Markov chain for sampling the nodes for a given undirected con-

nected graph G. Each edge l ∈ E is associated with a special edge weight wl, which is the tran-

sition probability between these two nodes. Our weight matrix is the transition matrix P ∈ Rn×n

where Pij = Pji is the probability of transits between node i and node j. The equilibrium distri-

bution is the uniform distribution 1/n1 since P is symmetric.

To ensure the matrix P describes a valid Markov chain defined on the graph, it has to satisfy

(a) the nonnegative constraint P ≥ 0,

(b) the doubly stochastic constraint P1 = 1, P = P>,

(c) the graph structure constraint Pij = 0 if (i, j) /∈ E.

Let π(t) denote the probability distribution of the state at time t. The rate at which π(t)

converges to the uniform distribution is determined by the second largest eigenvalue magnitude

(SLEM) of P:

µ(P ) = max
i>1
|λi(P )| = max {λ2(P ), −λn(P )} . (5.4)

The smaller the SLEM, the faster the mixing rate.

We are interested in finding the edge probabilities that give the fastest mixing chain. Boyd et al.

[2004] show that the fastest chain and optimal SLEM can be exactly computed by the following
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program:

min
P

µ(P )

subject to P ≥ 0

P1 = 1, P = P>

Pij = 0, ∀i 6= j such that (i, j) /∈ E

(5.5)

This problem can be formulated as a semidefinite program. One easy way to see this is to note

that µ(P ) =
∥∥∥P − (1/n)11>

∥∥∥
2
, so that the minimization of µ(P ) is equivalent to minimizing a

constant γ satisfying the constraint −γI � P − (1/n)11> � γI . As seen in previous chapters,

standard interior point solvers for SDPs are not feasible for modern large scale problems. Boyd

et al. [2004] give a projected subgradient method that can scale to much larger instances. We shall

refer to this algorithm as subgrad and mainly compare our approach to it.

5.3 Nonconvex Formulation and First Order Method

This section presents our approach to FMMC. We first discuss one key observation about the

sparsity pattern of Cholesky factor of Laplacian matrices. Based on it, we develop our algorithm

and discuss the computational cost.

5.3.1 Sparsity Pattern of Cholesky Factor

Through a sequence of experiments, we have found an interesting phenomenon: given a valid

graph Laplacian L of graph G where all the edges in E have positive weights, we compute the

Cholesky factor Z of L. Let S be the set of nonzero entries of Z. Then for any other valid graph

Laplacian of the same graph, the nonzero entries of its Cholesky factor are contained in S.

Figure 5.1 illustrates this phenomenon. We randomly generated an Erdős–Rényi graph of 5

nodes, the edge structure (including self-loops) is plotted in (a). Let Zmh be the Cholesky factor

of the Laplacian obtained by the Metropolis-Hastings algorithm [Metropolis et al., 1953; Hastings,

1970]. The Metropolis-Hastings algorithm is a popular sampling technique. In our context, it gives

87



nz = 13
1 2 3 4 5

1

2

3

4

5

nz = 8
1 2 3 4 5

1

2

3

4

5

nz = 8
1 2 3 4 5

1

2

3

4

5

(a) graph structure
nz = 13

1 2 3 4 5

1

2

3

4

5

nz = 8
1 2 3 4 5

1

2

3

4

5

nz = 8
1 2 3 4 5

1

2

3

4

5

(b) Zmh

nz = 8
1 2 3 4 5

1

2

3

4

5

nz = 6
1 2 3 4 5

1

2

3

4

5

(c) Z(1)

nz = 13
1 2 3 4 5

1

2

3

4

5

nz = 8
1 2 3 4 5

1

2

3

4

5

nz = 8
1 2 3 4 5

1

2

3

4

5

(d) Z?

nz = 8
1 2 3 4 5

1

2

3

4

5

nz = 6
1 2 3 4 5

1

2

3

4

5

(e) Z(2)

nz = 8
1 2 3 4 5

1

2

3

4

5

nz = 5
1 2 3 4 5

1

2

3

4

5

(f) Z(3)

Figure 5.1: For a randomly generated Erdős–Rényi graph, the sparsity patterns of adjacency matrix
and Cholesky factors of a few graph Laplacian matrices.

all-positive edge weights. Details of this method are explained in Section 5.4. Z(1) is associated

with a randomly generated all-positive weighting. Z?, Z(2) and Z(3) correspond to the fastest

chain, and two random weightings where some edges have zero weights, respectively. We can see

that Zmh and Z(1) have the same sparsity pattern, which contains all the nonzero entries of Z?,

Z(2) and Z(3). Especially, the sparsity pattern of Z? is the same as Zmh. We have checked the

edge weights of the optimal chain and confirmed they are all positive.

This phenomenon is made precise in Theorem 5.1, see Section 5.7 for the proof. Motivated by

this observation, we restrict the update to this fixed sparsity pattern. The procedure is described in
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the following subsection.

Theorem 5.1. Let L = C diag(w)C> be a valid Laplacian matrix of G, where w > 0. Let Z be

its Cholesky factor and S be the set of its nonzero entries. Then for any other valid Laplacian of

the same graph L′ = C diag(w′)C = Z ′Z ′>, we have

supp(Z ′) ⊆ S.

5.3.2 Algorithm: A Variant of ADMM

We first rewrite Problem 5.5 so that it is parameterized by L. By definition, the Laplacian matrix

L is equal to I − P . The eigenvalues of P and L have the following relationship:

λi(P ) = 1− λn+1−i, i = 1, . . . , n,

where λi(P ) and λi are the ith largest eigenvalues of P and L, respectively. The SLEM of P can

also be translated as

µ̄(L) = µ(P ) = max {1− λn−1, λ1 − 1} .

The nonnegative, doubly stochastic and graph structure constraints of P are also equivalent to the

conditions

• w ≥ 0,

• Lii ≤ 1, i = 1, . . . , n.

The second condition ensures that the probability of staying at the same node is nonnegative. It is

equivalent to the expression Bw ≤ 1, where B is a n × m matrix such that Bil = 1 if edge l is

incident to node i otherwise 0.
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Identifying those relationships, Problem 5.5 can be written as

min
L,w

µ̄(L)

subject to L = C diag(w)C>

w ≥ 0, Bw ≤ 1.

(5.6)

Next, we apply the symmetric factorization ideas, and leading to

min
w,Z

f(Z)

subject to ZZ> = C diag(w)CT

w ≥ 0, Bw ≤ 1.

(5.7)

where

f(Z) = max
{
σ2

1 − 1, 1− σ2
n−1

}
(5.8)

and σ1 ≥ . . . ≥ σn are the singular values of Z. One can see this is still a convex function of Z,

but Problem 5.7 is nonconvex because of the quadratic equality constraint.

The crux of solving either Problem 5.6 or Problem 5.7 is how to couple with the equality con-

straints. That is, how we can ensure that L or ZZ> is a valid graph Laplacian. Projected gradient

descent methods may not be suitable since direct projection onto the constrained set is difficult.

Instead, we use a variant of the alternating direction method of multipliers (ADMM). ADMM is

an algorithm that originates from Gabay, Mercier, Glowinski and Marrocco in 1970s. It is a com-

bination of augmented Lagrangian methods for constrained optimization and dual decomposition,

and is often well suited for large scale problems [Boyd et al., 2011].

The augmented Lagrangian for Problem 5.7 is

Lρ(Z,w,M) = f(Z) + 1w≥0, Bw≤1(w) + 〈M,ZZ> − C diag(w)CT 〉

+
ρ

2

∥∥∥ZZ> − C diag(w)CT
∥∥∥2

Z
,

(5.9)
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where M is the multiplier, and 1C(w) is an indicator function that equals zero if w satisfies C, and

otherwise is infinity. Lρ is nonconvex in F but convex in both M and w. Standard ADMM repeats

the following updates until convergence:

Zt+1 = arg min
Z

Lρ(Z,wt,M t), (5.10)

wt+1 = arg min
w

Lρ(Zt+1, w,M t), (5.11)

M t+1 = M t + ρ

(
Zt+1Zt+1> − C diag(wt+1)C>

)
, (5.12)

t← t+ 1. (5.13)

Our algorithm is a variant of this. Instead of solving the nonconvex inner step (5.10), we take one

gradient update for Z, and this update only applies to a fixed subset of entries. Details of updating

Z and w are explained below.

• Update Z

The function f(Z) is a convex function. According to the derivation in Boyd et al. [2004]

and the chain rule 3, if f(Z) = σ2
1 − 1, then one subgradient of f at Z is

2uu>Z = 2σ1uv
>,

where u, v are singular vectors associated with σ1. Analogously, if f(Z) = 1 − σ2
n−1 and

u, v are singular vectors associated with σn−1, the matrix

−2uu>Z = −2σn−1uv
>

3. https://people.eecs.berkeley.edu/ elghaoui/Teaching/EE227BT/Lectures/lect2 handout.pdf
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will be one subgradient. The subdifferential of f at Z is a convex hull of these subgradients:

∂f(Z) = conv
({

2σ1uv
> | u>Zv = σ1, f(Z) = σ2

1 − 1
}

∪
{
−2σn−1uv

> | u>Zv = −σn−1, f(Z) = 1− σ2
n−1

})
.

(5.14)

Therefore, the subgradient of Lρ(Z,wt,M t) at Zt will be

gt + 2ρ
(
ZtZt

> − C diag(wt)C> + 1/ρM t
)
, gt ∈ ∂f(Zt).

Hence, in every iteration, to obtain a subgradient, we will compute the top and bottom few

singular vectors of Z, or equivalently some eigenvectors of ZZ>.

We restrict the update to a fixed sparsity pattern S. This will keep the iterates of Z sparse,

so that its eigenvalues and eigenvectors can be computed quickly. Empirically, we find that

initializing by the Metropolis-Hastings algorithm is effective and robust. Let Lmh and Zmh

be the Laplacian matrix and its factor corresponding to the output of the Metropolis-Hastings

algorithm. We choose S to be the subset of nonzero entries of Zmh. We shall briefly review

this algorithm in Section 5.4.

• Update w

We need to solve

arg min
w≥0
Bw≤1

h(w) =
1

2

∥∥∥∥
Φ︷ ︸︸ ︷

ZZ> + 1/ρM −C diag(w)C>
∥∥∥∥2

F
(5.15)

where Z and M are fixed. Let Φ = ZZ> + 1/ρM , we can rewrite

h(w) = 2
∑
l

(Φi(l)j(l) − wl)
2 +

n∑
i=1

(
Φii −

∑
l=(i,·)

wl

)2

= 2 ‖φ− w‖2 + ‖diag(Φ)−Bw‖2 ,

(5.16)
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Algorithm 3: Approximate projection of w
input: w,B
w ← max {w, 0}
for node i = 1, . . . , n do
I(i) = {l | l = (i, ·)}

while
∑
l∈I(i)wl > 1 do

I(i) = {l | l = (i, ·), wl > 0}

δ = min
{

minl∈I(i)wl,
(∑

l∈I(i)wl − 1
)
/|I(i)|

}
wl = wl − δ, l ∈ I(i)

end
end

where
(
i(l), j(l)

)
is the subscript of one entry of Φ that corresponds to edge l, and we use

φ to denote the vector that consists these entries. Note that φ can be simply read off from

the lower triangular part of Φ.
∑
l=(i,·)wl is the sum of the weights of all edges incident to

node i, which is equal to the 〈B(i), w〉.

Problem 5.16 can be solved by projected gradient descent, possibly with early termination.

The gradient of h at w is

∇h(w) = 4(w − φ) + 2(B>Bw −B> diag(Φ)). (5.17)

We use the approximate method proposed by Boyd et al. [2004] to projectw onto the feasible

set {w|w ≥ 0, Bw ≤ 1}, see Algorithm 3. It first projects w onto the nonnegative orthant,

then compute one w satisfying the inequality constraint Bw ≤ 1 by thresholding.

The whole algorithm is presented in Algorithm 4.

5.3.3 Computational Complexity

It is important to understand the per-iteration computational cost of our algorithm.
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Algorithm 4: Nonconvex ADMM variant for FMMC
initialization
w0 ← output of Metropolis-Hastings

Z0 = Chol(C diag(w0)C>), M0 = 0

S ← nonzero entries of F 0

t← 0, res← 0

repeat
// update F

∇LZ ← gt + 2ρ
(
res +M t/ρ

)
Zt, where gt ∈ ∂f(Zt)

Zt+1
S = ZtS − η

t(∇LZ)S

// update w (Problem 5.16)

Φ← Zt+1Zt+1> + 1/ρM t

φ← (edge weight) entries read off from Φ

wt+1 = wt

repeat
∇h = 4(wt+1 + φ) + 2(B>Bw −B> diag(Φ))

wt+1 ← ApproxProj(wt+1 − γ∇h)

until convergence;

// update M

res← Zt+1Zt+1> − C diag(wt+1)CT

M t+1 = M t + ρ res

t← t+ 1
until convergence;

First of all, with an appropriate ordering, we would expect L and its Cholesky factor Z to have

the same order of number of nonzero entries. For our particular choice of initialization, L0 is

exactly (m+ n)-sparse, so that the iterates
{
Zt
}

will have O(m) nonzero entries.

We found that the projected gradient descent algorithm for updating w usually converges very

quickly in a few iterations. The dominating computational cost is the update of Zt, for which we

need to compute the largest and smallest two singular values and associated left singular vectors

of Zt. One efficient way to obtain them is to compute the left eigenvectors of ZtZt> using the

Lanczos method [Lanczos, 1950].
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To compute the eigenvalue decomposition of a n × n matrix, the Lanczos method first rotates

the ZtZt> into a tridiagonal matrix and computes its eigenpairs, then rotates the eigenvectors

back. The rotation is performed by generating and applying n Lanczos vectors one by one, called

the Lanczos iterations. To compute only the top eigenpair accurately, it suffices to run a constant

number of Lanczos iterations. Let k denote this number. In O(mk) flops, we obtain a k × k

tridiagonal matrix, as the dominating computation in every iteration is to multiply ZtZt> with

the Lanczos vector. Afterwards, one can use QR decomposition or the MRRR algorithm [Dhillon

et al., 2006] to get k eigenvalues and an orthonormal matrix Q ∈ Rk×k in O(k2) flops . The

eigenvectors of L are then obtained by multiplying the Lanczos vectors with Q.

The smallest two eigenvectors can be computed in the shift mode: apply the Lanczos method

to compute the top two eigenvectors of (λ1 + ε)I − ZtZt>, where λ1 is the largest eigenvalue of

ZtZt
> we obtained.

Overall, the per-iteration runtime of the nonconvex ADMM is O(m). It should be noted that

there is no computational improvement compared to either subgrad or ADMM for solving Prob-

lem 5.6, since we need to compute the eigenvectors of ZtZt>, which is comparable to computing

the eigenvectors of Lt for the other two methods.

5.4 Related Work

Our thinking about the using nonconvex methods to optimize graph Laplacian is inspired by the

recent advances in solving linear systems in the Laplacian matrices [Lee et al., 2015; Kyng et al.,

2016]. The authors have shown that for every Laplacian matrix L there exists a constant factor ap-

proximation L̄, whose Cholesky factor Z only has O(n) nonzero entries. The sparsified Cholesky

factor Z can be computed in polynomial time via spectral vertex sparsification, a procedure that

recursively approximates the Schur complement of subsets of nodes without constructing the Schur

complement explicitly. While this is not fully developed in this thesis, our initial thought was to
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use O(n) sparseZ in the algorithm, either fixing or varying the sparsity pattern in every iteration.4

Using an O(n) sparse factor will reduce the per-iteration cost for computing the eigenvectors to

O(n), if such sparsification could be computed quickly. However, in practice we found that find-

ing the O(n) approximation is hard since the vertex sparsification algorithm is complex. There

is a much simpler sparsifier proposed by Kyng and Sachdeva [2016], which is based on purely

randomly sampling the edges. Nonetheless it only guarantees that the output Cholesky factor has

O(m log3 n) nonzero entries. Another crude way to achieve computational efficiency is to ran-

domly sample O(n) edges of the given graph, and use it as a replacement of the original graph.

For Erdős–Rényi graphs, the subsampled graph might still be connected, yet this might not be

feasible for graphs with more practical structures such as clusters, hubs, etc.

Another research field that led us to the FMMC problem is Markov Chain Monte Carlo sam-

pling (MCMC). MCMC is widely used in many scientific fields to randomly sample from a high

dimensional probability distribution. While asymptotically converging to the equilibrium distribu-

tion, determining when the chain is close to equilibrium is a challenging open question. As pointed

out in Boyd et al. [2004], although the problem of FMMC focuses on finding edge weights rather

than sampling itself — we hope that understanding the edge weights of the fastest chain can give

insights into how to improve the efficiency of practical MCMC simulations. For solving FMMC it-

self, our benchmark is the projected gradient descent algorithm subgrad proposed by Boyd et al.

[2004]. Regarding practical MCMC algorithms, the Metropolis-Hastings algorithm [Metropolis

et al., 1953; Hastings, 1970] is a commonly used random walk sampling technique that works as

follows. At current node x, one first samples a node y from a easily-computed proposal distribution

q(·|x), then jumps to the candidate y with probability min
{
πyq(x|y)/πxq(y|x), 1

}
; otherwise the

walk remains at node x. For our problem, πy/πx = 1 as the equilibrium distribution is uniform.

If we choose the natural proposal distribution q(·|x) = 1/di, where di is the degree of node i, we

will have that the transition probability between two connected (different) nodes i and j is equal to

min
{

1/di, 1/dj
}

. This means the Metropolis-Hastings chain only depends on local information –

4. If such pattern is fixed, we might expect suboptimality of the algorithm.
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one can sample the nodes while exploring the graph, without knowing the whole graph structure in

advance. Therefore, if the graph structure is known, the Metropolis-Hastings chain can be easily

computed in exact (m+n) time. We thus feed the solution of it to our algorithm as an initialization.

5.5 Experiments

This section presents empirical experiments to study the effectiveness of Algorithm 4. We are

interested to see

• whether the nonconvex ADMM converges to the global optimum, and

• whether ADMM or nonconvexification can provide a faster convergence rate than the pro-

jected subgradient method [Boyd et al., 2004].

Hence, we also considered the convex ADMM variant for solving Problem 5.6. The algorithm is

roughly the same as Algorithm 4, except the gradient update of Z is replaced by a gradient update

of L. All the methods are implemented in MATLAB and the experiments are conducted on a

Macbook Pro with 2.4G HZ CPU and 16GB memory.

5.5.1 Initialization of Nonconvex ADMM

We first inspect the convergence of Algorithm 4. Nonconvex functions might have saddle points

and local minima, so that a good initialization is important. Even for strict saddle problems like

phrase retrieval and positive semidefinite matrix sensing [Sun et al., 2016; Bhojanapalli et al.,

2016b], bad initialization could result in slow convergence. We have found that starting by the

following two edge weights are effective and robust:

• the output of Metropolis-Hastings wmh, or

• wunif = ApproxProjw≥0, Bw≤1(1).

We randomly generated 10 Erdős–Rényi graphs, where the probabilities of connecting every

two nodes vary from 0.05 to 0.5. For each graph, we compute the fastest mixing chain, and run
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Figure 5.2: (a) Optimal SLEM and the output of our approach using heuristic initialization. (b)
Comparing with random initialization.

our approach using the above two initializations. We use diminishing step size ηt = 0.2/
√

(t) and

stop the computation after 500 iterations. The penalty parameter ρ for ADMM is fixed to be 1.

Figure 5.2(a) reports the SLEM of fastest chain and the SLEMs we obtained. We can see that for

both heuristic initializations, the algorithm is converging towards the global optimum.

A natural question to ask is whether random initialization works. If the algorithm under ran-

dom initialization also converges to the global optimum, it implies that the nonconvex objective

might have favorable geometry. For example, the nonconvex objective for positive semidefinite

matrix sensing and completion does not have spurious local minima. Hence, we also checked the

performance of our approach when it is initialize randomly: we generate a random Gaussian vec-

tor β ∼ N (0, I) and start from w0 = ApproxProj(β). For this type of initialization, w0 often

contains many zero entries, and the initial Cholesky factor Z0 is very sparse. If we use the sparsity

pattern of Z0, it is hard to observe convergence. Hence, we feed the algorithm with the sparsity

pattern obtained by Metropolis-Hastings, but randomly generated edge weights. We update the es-

timate for 1000 iterations, and the step size is determined by line search. The result is reported in
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Figure 5.3: Convergence comparison for a random Erdős–Rényi graph.

Figure 5.2(b). We have found random initialization performs worse than the other two heuristics.

5.5.2 Comparison with Other Methods

Figure 5.3 shows the convergence speed for different algorithms for two randomly generated

Erdős–Rényi graph with 100 nodes. For the first graph, every pair of nodes is connected with

probability 0.1. In the second graph, this probability is increased to be 0.2.

Figure 5.4 plots the results for graphs generated from stochastic block model. In the first case,

there are two clusters in the graph, each has 50 nodes. The nodes are are randomly connected with

probability 0.1 if they are in the same cluster, otherwise with probability 0.02. The between-cluster

connection probability has been increased to 0.05 in the second case.

All the methods are initialized by the solution of Metropolis-Hastings, and use the same step

size ηt = 0.2/
√
t. In all these four cases, subgrad converges first. The rate of both convex and

nonconvex ADMM are comparable.

99



iteration
0 100 200 300 400 500

S
L

E
M

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9
subgrad
cvx admm
noncvx admm
optimal

(a) pin = 0.1, pout = 0.02

iteration
0 100 200 300 400 500

S
L

E
M

0.8

0.82

0.84

0.86

0.88

0.9

0.92
subgrad
cvx admm
noncvx admm
optimal

(b) pin = 0.1, pout = 0.05

Figure 5.4: Convergence comparison for a random graph in stochastic block model.

5.6 Discussion

We propose a nonconvex formulation based on Cholesky factorization to compute the fastest mix-

ing Markov chain on a given graph. We develop a variant of the ADMM algorithm for optimizing

the objective. Empirical results suggest that this algorithm may converge to a global minimizer,

with comparable rate and computational cost to subgrad and convex ADMM.

Unlike the results in previous chapters, the nonconvexified objective did not lead to faster

convergence or reduced computational Complexity. The computational cost is not reduced since

we did not avoid computing the eigenvectors. Further study needs to be carried out to provide

comprehensive understanding of both nonconvex ADMM and the FMMC problem.

For example, an alternative way to write SLEM as a function of L is max‖u‖=1,u′1=0 |u>Lu−

1|. This leads us to another nonconvex min-max formulation:

min
w≥0,Bw≤1

max
‖u‖=1,u′1=0

(u>Lu− 1)2, (5.18)

where we square the absolute value to make the loss function differentiable. This loss function is

fourth order in terms of u and quadratic in terms of w. Simple and efficient algorithms that can
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solve this nonconvex problem, are worth exploring.

5.7 Proofs

5.7.1 Proof of Theorem 5.1

The proof has two steps. We first explicitly identify the columns of the Cholesky factor, then

discuss its sparsity pattern.

Step 1.

The operations to compute the Cholesky factorization of L can be considered as sequential

elimination of the nodes ofG. Let us define a chain of Schur complements as in Kyng and Sachdeva

[2016].

Let L = S(0) be the Laplacian matrix of graph G = (V,E). Let Mi denote the i column of a

matrix M . In the k-th iteration, we eliminate node k and define

S(k) = S(k−1) − 1

S
(k−1)
kk

S
(k−1)
k S

(k−1)
k

T
, (5.19)

which is the Schur complement of S(k−1) respect to column k. We can see that the first k columns

and rows of S(k) are all zeros. Mathematically, if S(k−1)
kk = 0, we set S(k) = S(k−1). Finally, we

will end this sequence with a zero matrix S(n).

Now let us define dk = S
(k−1)
kk and fk = 1/dk · S

(k−1)
k . Again, if S(k−1)

kk = 0, we shall set

them zero as well. It holds that

S(k) = S(k−1) − dkfkf>k .

Observing S(n) = 0 and L = S(0), we have

L =
n∑
k=1

S(k−1) − S(k) =
n∑
k=1

dkfkf
>
k = F diag(d)F>, (5.20)
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where fk is the kth column of F . F is a lower-triangular matrix, since fk inherits its sparsity

pattern from S
(k−1)
k , and the first k − 1 rows and columns of S(k−1) are all zero. Consequently,

F diag(d)1/2 is the Cholesky factor of L.

Step 2.

It remains to show that the sparsity pattern of fk is contained in a certain fixed set, when the

initial edge weights are all positive. As the sparsity patterns of fk and the kth column of S(k−1)

are the same, it suffices to show that every Schur complement matrix S(k) (except the last one) in

this chain is a Laplacian matrix of a fixed graph G(k), and all the edge weights are positive.

We prove this by induction. The base case is f1 = S
(0)
1 . This is trivial by our assumption.

Suppose that S(k−1) is the Laplacian of graph G(k−1) with positive weights:

(S(k−1))k =
∑

l in G(k−1)

wlClC
>
l , w > 0. (5.21)

Define

(S(k−1))k =
∑

l incident to k in G(k−1)

wlClC
>
l , (5.22)

where C is the incidence matrix defined in Definition 5.1. We can rewrite

S(k) =

S
(k−1)
−k︷ ︸︸ ︷

S(k−1) − (S(k−1))k +

C(k)︷ ︸︸ ︷
(S(k−1))k −

1

S
(k−1)
kk

S
(k−1)
k S

(k−1)
k

T
. (5.23)

Clearly,

S
(k−1)
−k =

∑
l not incident to k in G(k−1)

wlClC
>
l ,

this is a Laplacian matrix of a new graph formed by eliminating node k and associated edges from

G(k−1), where the remaining edges still have unchanged positive weights. A well known fact is

that C(k) is a Laplacian of the clique that contains all the neighbors of node k in G(k−1), see

Lemma 5.1. In particular, from Equation (5.27), we can see all edges in this clique have positive

weights.
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Hence, S(k) is the Laplacian for graph G(k), which is formed by combining these two parts.

It contains nodes k, . . . , n; the edges are the union of the remaining edges and the clique, where

overlapping edges have weights added up. Hence, the associated weights are all positive.

Lemma 5.1. C(k) is a Laplacian of a clique formed by the neighbors of node k in G(k−1).

Proof. Without lose of generality, let us assume k = 1 and denote the first row of S(0) by [d,−a>].

The vector a consists of the weights of edges incident to node 1, and d = a>1.

We then have

C(1) =
∑

l incident to node 1

wlclc
>
l −

 d −a>

−a (1/d)aa>


=

 d −a>

−a diag(a)

−
 d −a>

−a (1/d)aa>


=

0 0>

0 diag(a)− (1/d)aa>

 .
(5.24)

Note that 0 0>

0 aa>

 =
∑

i incident to 1

∑
j incident to 1

w(1,i)w(1,j)c(i,j)c
>
(i,j), (5.25)

where c(i,j) is a vector whose ith entry is 1 and jth entry is -1. Besides, we also have d =∑
i incident to 1w(1,i), hence the diagonal entries are

C
(1)
ii = w(1,i) −

w2
(1,i)∑
j w(1,j)

=

∑
j 6=iw(1,i)w(1,j)∑

j w(1,j)
, i = 1, . . . n. (5.26)

To see the off-diagonal entries, we have

C(1) − diag(C(1)) =
∑

i incident to 1

∑
j incident to 1

j 6=i

−
w(1,i)w(1,j)∑

j w(1,j)
c(i,j)c

>
(i,j). (5.27)
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It follows immediately that C(1) is the Laplacian for the clique of neighbors of node 1 in G(0),

where the edge weight for (i, j) is w(1,i)w(1,j)/
∑
j w(1,j).
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Part III

Conclusion, Extensions and Future Work

105



CHAPTER 6

CONCLUSION

6.1 Summary

This thesis studies a new framework for optimizing semidefinite variables. We decompose the

target semidefinite variables into symmetric factors, and reformulate the problem so as to optimize

the factor. Depending on the nature of the problem, the structure of the factor, such as the low-rank

property or sparsity, are utilized to reduce the number of parameters and computational cost.

The first direct application of our technique is semidefinite programming. While SDP is usually

used as surrogate relaxations of difficult nonconvex problems, the newly proposed methods in this

thesis approach SDPs via nonconvexifying. When the factor is of low rank, same factorization

idea was proposed by Burer and Monteiro [2003]. We have shown that these simple methods

are remarkably effective for several problems of practice interests, with analytical convergence

guarantees and strong empirical performance. These algorithms are also fast, scalable, and easy

to implement, and hence are well suited for very large scale problems. We emphasize that our

technique is not limited to convex problems; the reformulation could be helpful for nonconvex

problems too.

6.2 Future Work

A contribution of this work is to indicate that the road between nonconvex and convex approaches

is in fact bidirectional. There might be other classes of problems for which nonconvex recast-

ing could be helpful. While the power and limits of convex approximation are both analyzed

and demonstrated for many problems, theoretical understanding of many nonconvex problems is

nascent. For example, though empirical results show that the nonconvex ADMM in Chapter 5

may converge to a global minimizer reliably, it still lacks theoretical support. The current sample

complexity obtained for both matrix sensing (Chapter 3) and completion (Chapter 4) are still sub-
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optimal. In contrast, the nuclear norm relaxation achieves the information theoretically optimal

bound. The transformation between two types of methods, and the potential trade-off between

statistical and computational properties, deserves further study.

The convergence result we obtained in this thesis reveals two distinctive features for the non-

convex objectives we consider in Chapter 3 and 4. First, for a local region near the global optimum,

the functions are essentially convex. Second, spectral initialization leads to a very good starting

point located in that well-behaved area. However, our work is not the final word on this subject.

Many recent advances have been made in understanding the geometry of nonconvex objectives.

Recent studies have shown that many nonconvex functions do not have spurious local minima,

and around each saddle point or local maximizer, these functions always have a negative direction

of curvature. Therefore, popular optimization algorithms such as stochastic gradient descent and

trust region methods can provably converge to a global minimizer with arbitrary initialization in

polynomial time [Sun et al., 2015]. Examples includes phase retrieval [Sun et al., 2016], dictio-

nary leanring [Sun et al., 2017], low rank positive semidefinite matrix sensing [Bhojanapalli et al.,

2016b] and completion [Ge et al., 2016], and orthogonal fourth order tensor decomposition [Ge

et al., 2015].

For standard semidefinite programming with m constraints, Boumal et al. [2016] studies the

geometry of the rank r Burer-Monteiro reformulation. The authors show that when the search

space of SDP is compact, and the search space of the reformulated problem is a smooth manifold,

and one takes r large enough so that r(r + 1) > 2m, then for almost all cost matrices, spurious

local minima do not exist.

On the other hand, another line of interesting research considers measuring the suboptimality of

spurious local minima. Montanari [2016] and Mei et al. [2017] have studied the rank-constrained

version of SDPs arising in MaxCut and in synchronization problems. The authors have established

Grothendieck-type inequalities that prove all the local maxima and dangerous saddle points are

within a small multiplicative gap from the global maximum.

To conclude, it would be a fruitful to understand the geometry of more nonconvex objectives
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of interest, and more broadly, the landscape of nonconvex optimization.
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Dhillon, I. S., Parlett, B. N., and Vömel, C. (2006). The design and implementation of the mrrr
algorithm. ACM Transactions on Mathematical Software (TOMS), 32(4):533–560.

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on information theory,
52(4):1289–1306.

Fazel, M. (2002). Matrix rank minimization with applications. Technical report, Elec. Eng. Dept.,
Stanford University. PhD thesis.

110



Feige, U. and Ofek, E. (2005). Spectral techniques applied to sparse random graphs. Random
Structures & Algorithms, 27(2):251–275.

Foygel, R. and Srebro, N. (2011). Concentration-based guarantees for low-rank matrix reconstruc-
tion. arXiv:1102.3923.

Ge, R., Huang, F., Jin, C., and Yuan, Y. (2015). Escaping from saddle points—online stochastic
gradient for tensor decomposition. In Conference on Learning Theory, pages 797–842.

Ge, R., Lee, J. D., and Ma, T. (2016). Matrix completion has no spurious local minimum. In
Advances in Neural Information Processing Systems, pages 2973–2981.

Goemans, M. X. and Williamson, D. P. (1995). Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of the ACM,
42(6):1115–1145.

Halko, N., Martinsson, P.-G., and Tropp, J. A. (2011). Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review,
53(2):217–288.

Hardt, M. (2014). Understanding alternating minimization for matrix completion. In FOCS 2014.
IEEE.

Hardt, M. and Wootters, M. (2014). Fast matrix completion without the condition number. In
COLT 2014, pages 638–678.

Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1):97–109.

Hoffman, M., Blei, D. M., Wang, C., and Paisley, J. (2013). Stochastic variational inference. The
Journal of Machine Learning Research, 14.

Jain, P., Meka, R., and Dhillon, I. S. (2010). Guaranteed rank minimization via singular value
projection. In Advances in Neural Information Processing Systems, pages 937–945.

Jain, P., Netrapalli, P., and Sanghavi, S. (2013). Low-rank matrix completion using alternating
minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing,
pages 665–674. ACM.

Keshavan, R. H. (2012). Efficient algorithms for collaborative filtering. PhD thesis, Stanford
University.

Keshavan, R. H., Montanari, A., and Oh, S. (2010). Matrix completion from a few entries. Infor-
mation Theory, IEEE Transactions on, 56(6):2980–2998.

Koutis, I., Miller, G. L., and Peng, R. (2010). Approaching optimality for solving sdd linear
systems. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on,
pages 235–244. IEEE.

111



Kyng, R., Lee, Y. T., Peng, R., Sachdeva, S., and Spielman, D. A. (2016). Sparsified cholesky and
multigrid solvers for connection laplacians. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, pages 842–850. ACM.

Kyng, R. and Sachdeva, S. (2016). Approximate gaussian elimination for laplacians-fast, sparse,
and simple. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium
on, pages 573–582. IEEE.

Lanczos, C. (1950). An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. United States Governm. Press Office Los Angeles, CA.

Laurent, B. and Massart, P. (2000). Adaptive estimation of a quadratic functional by model selec-
tion. Annals of Statistics, pages 1302–1338.

Ledoux, M. and Rider, B. (2010). Small deviations for beta ensembles. Electron. J. Probab., 15:no.
41, 1319–1343.

Lee, J. D., Recht, B., Srebro, N., Tropp, J., and Salakhutdinov, R. R. (2010). Practical large-
scale optimization for max-norm regularization. In Advances in Neural Information Processing
Systems, pages 1297–1305.

Lee, Y. T., Peng, R., and Spielman, D. A. (2015). Sparsified cholesky solvers for sdd linear systems.
arXiv preprint arXiv:1506.08204.

Mei, S., Misiakiewicz, T., Montanari, A., and Oliveira, R. I. (2017). Solving sdps for synchroniza-
tion and maxcut problems via the grothendieck inequality. arXiv preprint arXiv:1703.08729.

Meka, R., Jain, P., Caramanis, C., and Dhillon, I. S. (2008). Rank minimization via online learn-
ing. In Proceedings of the 25th International Conference on Machine learning, pages 656–663.
ACM.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).
Equation of state calculations by fast computing machines. The journal of chemical physics,
21(6):1087–1092.

Mishra, B., Meyer, G., Bach, F., and Sepulchre, R. (2013). Low-rank optimization with trace norm
penalty. SIAM Journal on Optimization, 23(4):2124–2149.

Montanari, A. (2016). A grothendieck-type inequality for local maxima. arXiv preprint
arXiv:1603.04064.

Negahban, S. and Wainwright, M. J. (2012). Restricted strong convexity and weighted matrix com-
pletion: Optimal bounds with noise. The Journal of Machine Learning Research, 13(1):1665–
1697.

Nesterov, Y. (2004). Introductory lectures on convex optimization, volume 87. Springer Science
& Business Media.

Netrapalli, P., Jain, P., and Sanghavi, S. (2013). Phase retrieval using alternating minimization. In
Advances in Neural Information Processing Systems, pages 2796–2804.

112



Recht, B., Fazel, M., and Parrilo, P. A. (2010). Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501.

Spielman, D. A. (2010). Algorithms, graph theory, and linear equations in laplacian matrices. In
Proceedings of the international congress of mathematicians, volume 4, pages 2698–2722.

Spielman, D. A. and Teng, S.-H. (2004). Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 81–90. ACM.

Srebro, N., Rennie, J., and Jaakkola, T. S. (2004). Maximum-margin matrix factorization. In
Advances in neural information processing systems, pages 1329–1336.

Srebro, N. and Shraibman, A. (2005). Rank, trace-norm and max-norm. In Learning Theory, pages
545–560. Springer.

Sun, J., Qu, Q., and Wright, J. (2015). When are nonconvex problems not scary? arXiv preprint
arXiv:1510.06096.

Sun, J., Qu, Q., and Wright, J. (2016). A geometric analysis of phase retrieval. In Information
Theory (ISIT), 2016 IEEE International Symposium on, pages 2379–2383. IEEE.

Sun, J., Qu, Q., and Wright, J. (2017). Complete dictionary recovery over the sphere i: Overview
and the geometric picture. IEEE Transactions on Information Theory, 63(2):853–884.

Sun, R. (2015). Matrix Completion via Nonconvex Factorization: Algorithms and Theory. PhD
thesis, University of Minnesota Twin Cities.

Sun, R. and Luo, Z.-Q. (2015). Guaranteed matrix completion via nonconvex factorization. In
Foundations of Computer Science, IEEE 56th Annual Symposium on, pages 270–289.

Tinney, W. F. and Walker, J. W. (1967). Direct solutions of sparse network equations by optimally
ordered triangular factorization. Proceedings of the IEEE, 55(11):1801–1809.

Tomioka, R., Hayashi, K., and Kashima, H. (2010). Estimation of low-rank tensors via convex
optimization. arXiv:1010.0789.

Tropp, J. A. (2015). An introduction to matrix concentration inequalities.

Tu, S., Boczar, R., Simchowitz, M., Soltanolkotabi, M., and Recht, B. (2016). Low-rank solu-
tions of linear matrix equations via procrustes flow. In International Conference on Machine
Learning.

Vandereycken, B. (2013). Low-rank matrix completion by riemannian optimization. SIAM Journal
on Optimization, 23(2):1214–1236.

Wei, K., Cai, J.-F., Chan, T. F., and Leung, S. (2016). Guarantees of riemannian optimization for
low rank matrix completion. arXiv:1603.06610.

113



Yi, X., Park, D., Chen, Y., and Caramanis, C. (2016). Fast algorithms for robust pca via gradient
descent. In Advances in neural information processing systems.

Zhao, T., Wang, Z., and Liu, H. (2015). A nonconvex optimization framework for low rank matrix
estimation. In Advances in Neural Information Processing Systems, pages 559–567.

Zheng, Q. and Lafferty, J. (2015). A convergent gradient descent algorithm for rank minimiza-
tion and semidefinite programming from random linear measurements. In Advances in Neural
Information Processing Systems, pages 109–117.

Zheng, Q. and Lafferty, J. (2016). Convergence analysis for rectangular matrix completion using
burer-monteiro factorization and gradient descent. arXiv preprint arXiv:1605.07051.

114


