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ABSTRACT

In this thesis, we discuss three positive semidefinite matrix estimation problems. We recast them by
decomposing the semidefinite variable into symmetric factors, and investigate first-order methods
for optimizing the transformed nonconvex objectives.

The central theme of our methods is to exploit the structure of the factors for computational
efficiency. The first part of this thesis focuses on low rank structure. We first consider a family of
random semidefinite programs. We reformulate the problem as minimizing a fourth order objective
function, and propose a simple gradient descent algorithm. With O(r3/<;2n log n) random measure-
ments of a positive semidefinite n X n matrix of rank 7 and condition number x, our method is
guaranteed to converge linearly to the global optimum.

Similarly, we address the rectangular matrix completion problem by lifting the unknown matrix
to a positive semidefinite matrix in higher dimension, and optimizing a fourth order objective
over the factor using a simple gradient descent scheme. With O(yr2x%n max (s, logn)) random
observations of a ny X no p-incoherent matrix of rank r and condition number x, where n =
max(ny,ns), the algorithm linearly converges to the global optimum with high probability.

Sparsity is the other structure we study. In the second part of this thesis, we consider the
problem of computing the fastest mixing Markov chain on a given graph. The task is to choose
the edge weights so that a function of the eigenvalues of the associated graph Laplacian matrix is
minimized. We rewrite this problem so that the search space is over the sparse Cholesky factor

of the associated graph Laplacian, and develop a nonconvex ADMM algorithm. Experiments are

conducted to demonstrate the convergence of this approach.



CHAPTER 1
INTRODUCTION

A growing body of recent research is shedding new light on the role of nonconvex optimization for
tackling large scale problems in machine learning, signal processing, and convex programming. A
parallel development is the surprising effectiveness of simple classical procedures such as gradient
descent for problems with exploded size and complexity, as explored in the recent literature [Bach
and Moulines, 2011; Bach, 2014; Hoffman et al., 2013]. This thesis is devoted to develop rela-
tively simple first-order algorithms for certain nonconvex approaches and explain the remarkable
effectiveness and efficiency of them.

Optimizing a nonconvex function is in general hard due to the presence of local minima and
saddle points. For the past few decays, there has been extensive studies that focuses on convex re-
laxation of nonconvex functions [Goemans and Williamson, 1995; Candes, 2006; Donoho, 2006;
Recht et al., 2010; Chandrasekaran et al., 2012]. In particular, semidefinite programming has be-
come a key surrogate optimization tool of difficult combinatorial problems [d’ Aspremont et al.,
2004; Amini and Wainwright, 2009; Goemans and Williamson, 1995]. In spite of the importance
of SDPs in principle—promising efficient algorithms with polynomial runtime guarantees—it is
widely recognized that current optimization algorithms based on interior point methods can handle
only relatively small problems. Thus, a considerable gap exists between the theory and applicabil-
ity of SDP formulations. Scalable algorithms for semidefinite programming, and closely related
families of nonconvex programs more generally, are greatly needed.

The motivating result of this thesis is recent work for phase retrieval by Candes et al. [2015b].
The phase retrieval problem is to recover a complex vector z € C" from squared magnitudes of its
linear measurements

yi = [ai, 2%, i=1,...m.

The authors propose a gradient descent algorithm to optimize a fourth order nonconvex objective
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Under mild assumptions, using carefully constructed initialization and step size, the iterates con-

verge to global optimum at a linear rate.

If we assume that aq,...,am, z € R", an interesting reparameterization of f is
1 — 5
RZ(%—@%X)) : (1.2)
=1

where A; = aiaiT and X = zz! is a semidefinite variable. This observation has inspired our

thinking in two aspects:

1. Local searching such as gradient descent can be effective and computationally efficient for

certain nonconvex problems of symmetric structure.

2. For certain families of SDPs, one can nonconvexify the problem by taking symmetric fac-
torization X = ZZ | and then solve the resulting nonconvex problem via gradient descent

over the factor Z.

In this thesis, we study several problems where the symmetric factorization technique can
apply. The first part of our work focuses on utilizing the low rank structure of the semidefinite
variable. When Z is of low rank, this can be viewed as part of a framework for solving general
low rank semidefinite programs proposed by Burer and Monteiro [2003, 2005]. In Chapter 2, we
introduce the affine rank minimization problem. It provides a unified characterization of problems
we study in the next two chapters up to certain transformations. In Chapter 3, we consider a class
of SDPs with random linear constraints where the solution matrix is of low rank. We prove that
a simple gradient scheme linearly converges to global optimum with high probability. This work
was presented at NIPS 2015 [Zheng and Lafferty, 2015].

As a generalization, Chapter 4 studies a projected gradient descent algorithm for solving low

rank rectangular matrix completion problem. We introduce a lifting method that transforms the
2



rectangular matrix into a positive semidefinite matrix in higher dimension, so that it can be decom-
posed in the same way as before. This work is reported in a technical report [Zheng and Lafferty,
2016]. It extends the results in previous chapter in two directions that are of more practical interest:
the target matrix is rectangular and the observation is incomplete.

In addition to the low rank model, the second part of this thesis considers sparse structure.
Chapter 5 discusses the fastest mixing Markov chain problem: finding edge weights of a given
graph to achieve the fastest mixing rate. It can be written as a matrix eigenvalue optimization
problem, whose variable is the graph Laplacian matrix. The graph Laplacian is positive semidefi-
nite and of nearly full rank, but it has a sparse Cholesky factor. We propose a variant of the ADMM
algorithm that optimizes a nonconvex objective over the Cholesky factor with a fixed sparsity pat-
tern.

Finally, we conclude in Chapter 6. Some directions for future work are also provided in this

chapter.



Part I

Low Rank Matrices



CHAPTER 2
AFFINE RANK MINIMIZATION

We consider the problem of recovering a unknown low rank matrix X* € R"™*"2 from m linear

measurements

b= (A;, X*), i=1,...,m.

Let A : R™*"2 — R™ be the affine transformation such that A(-) = (A4;, ). Our goal is to find a
matrix X™* of minimum rank satisfying A(X™*) = b. The underdetermined case where m < ning
is of particular interest, and can be formulated as the optimization
min rank(X)
XeR™M7m2 (2.1)
subjectto  A(X) = b.

This problem is a direct generalization of compressed sensing, and subsumes many machine
learning problems such as image compression, low rank matrix completion and low-dimensional
metric embedding [Recht et al., 2010; Jain et al., 2013].

The challenges that are both statistical and computational in nature.

e Computationally, while the problem is natural and has many applications, the objective func-
tion is nonconvex. Without conditions on the transformation .4 or the minimum rank solu-
tion X™, it is generally NP hard [Meka et al., 2008]. We would like to have an algorithm
which converges to X™* in polynomial time, meanwhile has fast convergence rate and low

per-iteration cost.

e Statstically, we want to achieve exact recovery X* = X* with as few measurements as

possible.
We study two instances of Problem 2.1 in this thesis. In Chapter 3, we assume that

(i) X™ is positive semidefinite, which implies n; = ny = n;

5



(i) Each A; is a random n X n symmetric matrix from the Gaussian Orthogonal Ensemble

(GOE), with (AZ)J] ~ N(O, 2) and (Ai)jk ~ N(O, 1) for j # k.

We shall refer to this problem as low rank positive semidefinite matrix sensing. In addition to the
wide applicability of affine rank minimization, this problem is also closely connected to a class of
semidefinite programs. In Section 3.1, we show that the minimizer of a particular class of SDP can
be obtained by a linear transformation of X*. Thus, efficient algorithms for problem (3.1) can be
applied in this setting as well.

In Chapter 4, we consider the rectangular matrix completion problem, a common model for
recommendation system. There the transformation .4 represents a random sampling operator and

b consists of entries of X * that are observed.



CHAPTER 3
SEMIDEFINITE PROGRAMMING FROM RANDOM LINEAR

MEASUREMENTS

We would like to a reconstruct a positive semidefinite matrix X of minimum rank that satisfies a
group of linear constraints. The task is to solve the nonconvex optimization problem
min rank(X)

X0 (3.1)

subjectto tr(A;X)=10b;, 1=1,...,m,

where A;s are i.i.d variables generated from GOE.
As mentioned in Chapter 1, noting that a rank-r matrix X* can be decomposed as X* =

Z*7* " where Z* isan by r matrix, our approach is based on minimizing the squared residual

£(7) = HA(ZZT) bH2 Ly (t (ZTA;Z) — b )2 (3.2)
=— — = — r Z)—b;) . .
4m 4m 4 ’ !
1=
While this is a nonconvex function, we develop a gradient descent algorithm for optimizing

f(Z). Our main contributions concerning this algorithm are as follows.

e We prove that with O(rgn log n) constraints our gradient descent scheme can exactly recover
X* with high probability. Empirical experiments show that this bound may potentially be

improved to O(rnlogn).

e We show that our method converges linearly, and has lower computational cost compared

with previous methods.

e We carry out a detailed comparison of rank minimization algorithms, and demonstrate that
when the measurement matrices A; are sparse, our gradient method significantly outperforms

alternative approaches.



Later sections are organized as follows. Before presenting our algorithm, we explain the con-
nection between semidefinite programming and rank minimization in Section 3.1. This connection
enables our scalable gradient descent algorithm to be applied and analyzed for certain classes of
SDPs. In Section 3.2 we discuss the gradient scheme in detail. Our main analytical results are pre-
sented in Section 3.3, with detailed proofs contained in the Section 3.7. In Section 3.4 we review
related work. Our experimental results are presented in Section 3.5, and we conclude with a brief

discussion of future work in Section 3.6.

3.1 Semidefinite Programming and Rank Minimization

Consider a standard form semidefinite program

min tr(CX)
X>0 (3.3)

subject to tr(gZ)N() =b;, i=1,....,m
where C , 111, e ,gm e S IfCis positive definite, then we can write C = LL" where L €
R"™*" is invertible. It follows that the minimum of problem (3.3) is the same as

min tr(X)

Xz0 (3.4)

subjectto tr(A;X)=10b;, i=1,....m

where A; = L‘lgiL_lT. In particular, minimizers X* of Problem (3.3) are obtained from

minimizers X * of Problem (3.4) via the transformation
Xt =1V x L

Since X is positive semidefinite, tr(X) is equal to || X ||. Hence, problem (3.4) is the nuclear norm

relaxation of Problem (3.1). Next, we characterize the specific cases where X* = X™*, so that the



SDP and rank minimization solutions coincide.

Theorem 3.1 (Recht et al. [2010]). Let A : R"*"™ — R™ be a linear map. For every integer k

with 1 < k < n, define the k-restricted isometry constant to be the smallest value 6. such that
(L —=6p) | X[ p < A < (1 +08) [ X 7

holds for any matrix X of rank at most k. Suppose that there exists a rank r matrix X™* such
that A(X*) = b. If 69 < 1, then X* is the only matrix of rank at most r satisfying A(X) = b.

Furthermore, if 05, < 1/10, then X* can be attained by minimizing || X ||, over the affine subset.

In other words, since d2, < 5., if d5, < 1/10 holds for the transformation .4 and one finds a
matrix X of rank r satisfying the affine constraint, then X must be positive semidefinite. Hence,
one can ignore the semidefinite constraint X > 0 when solving the rank minimization (3.1). The
resulting problem then can be exactly solved by nuclear norm relaxation. Since the minimum rank
solution is positive semidefinite, it then coincides with the solution of the SDP (3.4), which is a

constrained nuclear norm optimization.

3.2 A Gradient Descent Algorithm for Rank Minimization

Our method is described in Algorithm 1. It is parallel to the Wirtinger Flow (WF) algorithm for
phase retrieval [Candgs et al., 2015b]. To recover a complex vector z* € C" given the squared
magnitudes of its linear measurements b; = |(a;, 2*)|?, i € [m], where a1, ..., a;, € C". Candes

et al. [2015b] propose a first-order method to minimize the sum of squared residuals
9 2
fie(2) = 3 (e 22 = bs) (3.5)
1=1

The authors establish the convergence of WE to the global optimum—given sufficient measure-

ments, the iterates of WE' converge linearly to = up to a global phase, with high probability.
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Figure 3.1: An instance of f(Z) where X* € R2*2 is rank-1 and Z € R?. The underlying truth is
Z* =[1,1]T. Both Z* and —Z* are minimizers.

If 2 and the a;s are real-valued, the function fyr(z) can be expressed as

n

fur(z) = Z (zTaiaiTz - xTaZ-aiTx>2,
1=1
which is a special case of f(Z) in Equation (3.2), where A; = aiaiT and each of Z and X™* are
rank one. See Figure 3.1 for an illustration; Figure 3.2 shows the convergence rate of our method.
Our methods and results are thus generalizations of Wirtinger flow for phase retrieval.

Before turning to the presentation of our technical results in the following section, we present
some intuition and remarks about how and why this algorithm works. For simplicity, let us assume
that the rank is specified correctly.

Initialization is of course crucial in nonconvex optimization, as many local minima may be
present. To obtain a sufficiently accurate initialization, we use a spectral method, similar to those
used in [Netrapalli et al., 2013; Candes et al., 2015b]. The starting point is the observation that a

linear combination of the constraint values and matrices yields an unbiased estimate of the solution.

Lemma 3.1. Let M = % 1 bjAj. Then %]E(M ) = X*, where the expectation is with respect

to the randomness in the measurement matrices A;.

Based on this fact, let X* = U*SU* | be the eigenvalue decomposition of X*, where U* =

[u],...,uy] and ¥ = diag(oq,...,0p) such that 01 > ... > o, are the nonzero eigenvalues of

10
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Figure 3.2: Linear convergence of the gradient scheme, for n = 200, m = 1000 and r = 2. The
distance metric is given in Definition 3.1.

1
X*. Let Z* = U*X2. Clearly, u} = 2%/ ||z%|| is the top sth eigenvector of E(M) associated with

0 _ . /IAs

;*||2 Therefore, we initialize according to z§ = |/ 5" vs wWhere (vs, As) is the top

eigenvalue 2 ||z
sth eigenpair of M. For sufficiently large m, it is reasonable to expect that Z* is close to Z*; this
is confirmed by concentration of measure arguments.

Certain key properties of f(Z) will be seen to yield a linear rate of convergence. In the anal-
ysis of convex functions, Nesterov [2004] shows that for unconstrained optimization, the gradient
descent scheme with sufficiently small step size will converge linearly to the optimum if the ob-
jective function is strongly convex and has a Lipschitz continuous gradient. However, these two
properties are global and do not hold for our objective function f(Z). Nevertheless, we expect that
similar conditions hold for the local area near Z*. If so, then if we start close enough to Z*, we
can achieve the global optimum.

In our subsequent analysis, we establish the convergence of Algorithm 1 with a constant step

size of the form 1/ HZ*||% where p is a small constant. Since || Z*|| ;> is unknown, we replace it

by [|12%]| -

11



Algorithm 1: Gradient descent for rank minimization
input: {A’L: bl}?éla T |

initialization
Set (v1, A1), ..., (vr, Ar) to the top 7 eigenpairs of % S biA; st A > > A
70 = [z(l),...,zg] where 20 = %'vs,s € [r]
k<0

repeat

m T
Vizk) =L > (tr(Zk A, ZF) - bl-) i
1=

Zk+1 _ Zk _ H Vf(zk)
s=11Asl/2
k+—k+1
until convergence;

output: X = ZkaT

3.3 Convergence Analysis

In this section we present our main result analyzing the gradient descent algorithm, and give a
sketch of the proof. To begin, note that the symmetric decomposition of X™ is not unique, since

X* = (2*U)(Z*U)" for any r x r orthonormal matrix U. Thus, the solution set is
S = {E € R"™" | Z = Z*U forsome U with UU T = U U = 1} .

|| for any Z € 8. We define the distance to the optimal solution in terms

Note that || Z||% = || X*

of this set.

Definition 3.1. Define the distance between Z and Z* as

*\ . % I 7
d(Z,Z)—UUTr:n[}I%U:IHZ ZUHF—er;I;HZ Z|| -

Our main result for exact recovery is stated below, assuming that the rank is correctly speci-
fied. Since the true rank is typically unknown in practice, one can start from a very low rank and

gradually increase it.
12



Theorem 3.2. Let the condition number k = o1 /o, denote the ratio of the largest to the smallest
nonzero eigenvalues of X*. There exists a universal constant ¢y such that if m > cor2r3nlogn,

with high probability the initialization Z 0 satisfies

d(Z2°,7*) < ,/%ar. (3.6)

Moreover, there exists a universal constant ¢i such that when using constant step size |1/ HZ*H%

with p < = and initial value Z° obeying (3.6), the kth step of Algorithm 1 satisfies
KN

k/2
AZ*, 7)< 1| 2o, (1— a >/
12kr

with high probability.

We now outline the proof, giving full details in the supplementary material. The proof has four
main steps. The first step is to give a regularity condition under which the algorithm converges
linearly if we start close enough to Z*. This provides a local regularity property that is similar
to the Nesterov [2004] criteria that the objective function is strongly convex and has a Lipschitz

continuous gradient.

Definition 3.2. Let Z = arg min Fes HZ —Z H  denote the matrix closest to Z in the solution set.
We say that f satisfies the regularity condition RC' (e, «, ) if there exist constants «, (3 such that

for any Z satisfying d(Z, Z*) < e, we have
VI(2).2-2)> o ||Z2-Z|[h+ ——— IV}
) = F 2 )
o Blz*|lr

Using this regularity condition, we show that the iterative step of the algorithm moves closer

to the optimum, if the current iterate is sufficiently close.

I
2
i

Lemma 3.2. Consider the update Z¥T1 = 7k — Vf(Zk). If f satisfies RC (s, «, ),

13



d(ZF,7%) < e, and 0 < p < min(«/2,2/3), then

2
d(ZF 7%y <\ J1 - Eazb, 2.
aRT

In the next step of the proof, we condition on two events that will be shown to hold with high

probability using concentration results. Let 6 denote a small value to be specified later.

Al  Forany u € R"” such that ||u|| < /o7,

)
< -

1
Z(UTAiu)Ai —2uu " .

m
m

1=1
A2 For any ZeSs,

0% f(Z)
07507

*f(2)
0750z

<

)
—, forall s,k € [r].
,

Here the expectations are with respect to the random measurement matrices. Under these assump-

tions, we can show that the objective satisfies the regularity condition with high probability.

Lemma 3.3. Suppose that A1 and A2 hold. If § < 1%07«, then f satisfies the regularity condition

RC( %ar, 24, 513kn) with probability at least 1 —mC'e ™™, where C, p are universal constants.
Next we show that under A1, a good initialization can be found.

m
Lemma 3.4. Suppose that A1 holds. Let {vs, \s},_; be the top r eigenpairs of M = % > bjA;
1=1

As .
such that [\| > - > | Let 20 = [a1,. o o) where 2 = /B3l ug s € 1) 175 < 2

then

d(Z°, 2*) < \/30,/16.

Finally, we show that conditioning on A1 and A2 is valid since these events have high proba-

bility as long as m is sufficiently large.

14



42
min(62/r202, §/roy)

Lemma 3.5. If the number of samples m > nlogn, then for any u € R"

satisfying ||u|| < /071,

1 « 5
— Z( TAZ'U)AZ‘ —2uu " < -
m— r
holds with probability at least 1 — mCe™P" — %, where C' and p are universal constants.
128

Lemma 3.6. For any x € R", if m > nlogn, then for any ZesS

min(52/47°20%, d/2roq)

0%f(Z)
07507,

0% f(Z)
07507,

)
< -
-

, forall s,k € [r],

with probability at least 1 — 6me™ " — %

0 < 1, and the number of measure-

Note that since we need § < min <E’ m) oy, we have Fop S

ments required by our algorithm scales as O(r3/<a2n log n), while only O(r2m2n log n) samples are
required by the regularity condition. We conjecture this bound could be further improved to be
O(rnlogn); this is supported by the experimental results presented below.

Recently, Tu et al. [2016] establish a tighter O(2x2n) bound overall. Specifically, when only
one single SVP step is used in preprocessing, the initialization of PF is also the spectral decomposi-
tion of %M . The authors show that O(r2n2n) measurements are sufficient for the initial solution to
satisfy d(ZY, Z*) < O(y/0) with high probability, and demonstrate an O(rn) sample complexity

for the regularity condition.

3.4 Related Work

Burer and Monteiro [2003] proposed a general approach for solving semidefinite programs using
factored, nonconvex optimization, giving mostly experimental support for the convergence of the
algorithms. The first nontrivial guarantee for solving affine rank minimization problem is given by
Recht et al. [2010], based on replacing the rank function by the convex surrogate nuclear norm, as

already mentioned in the previous section. While this is a convex problem, solving it in practice is
15



nontrivial, and a variety of methods have been developed for efficient nuclear norm minimization.
The most popular algorithms are proximal methods that perform singular value thresholding [Cai
et al., 2010] at every iteration. While effective for small problem instances, the computational
expense of the SVD prevents the method from being useful for large scale problems.

Recently, Jain et al. [2010] proposed a projected gradient descent algorithm SVP (Singular

Value Projection) that solves

min IA(X) — b||?
X eRnXxp

subjectto  rank(X) <,

where ||-|| is the /o vector norm and r is the input rank. In the (¢ + 1)th iteration, SVP updates
Xt ag the best rank r approximation to the gradient update X' — MAT(A(X t) — b), which
is constructed from the SVD. If rank(X™*) = r, then SVP can recover X* under a similar RIP
condition as the nuclear norm heuristic, and enjoys a linear numerical rate of convergence. Yet
SVP suffers from the expensive per-iteration SVD for large problem instances.

Subsequent work of Jain et al. [2013] proposes an alternating least squares algorithm A1tMinSense
that avoids the per-iteration SVD. AltMinSense factorizes X into two factors U € R"*" V €
RPX" such that X = UV " and minimizes the squared residual HA(U v — bH2 by updating U
and V' alternately. Each update is a least squares problem. The authors show that the iterates
obtained by AltMinSense converge to X* linearly under a RIP condition. However, the least
squares problems are often ill-conditioned, it is difficult to observe A1tMinSense converging to
X in practice.

As described above, considerable progress has been made on algorithms for rank minimization
and certain semidefinite programming problems. Yet truly efficient, scalable and provably conver-
gent algorithms have not yet been obtained. In the specific setting that X™* is positive semidefinite,
our algorithm exploits this structure to achieve these goals. We note that recent and independent
work of Tu et al. [2016] proposes a hybrid algorithm called Procrustes Flow (PF), which uses a
few iterations of SVP as initialization, and then applies gradient descent. Similar algorithms and
related problems are also analyzied in Chen and Wainwright [2015]; Bhojanapalli et al. [2016a].

16



Method Complexity

nuclear norm minimization via ADMM O(mn p +m? —|— n3)

gradient descent (mn p) + 2n’r
SVP (mn p—|— n r)
AltMinSense O(mn®r? + n3r3 + mn2rp)

Table 3.1: Matrix sensing: per-iteration computational complexities of different methods.
3.5 Experiments

In this section we report the results of experiments on synthetic datasets. We compare our gradient
descent algorithm with nuclear norm relaxation, SVP and AltMinSense for which we drop
the positive semidefiniteness constraint, as justified by the observation in Section 3.1. We use
ADMM for the nuclear norm minimization, based on the algorithm for the mixture approach in
Tomioka et al. [2010]; see Section 3.7.7. For simplicity, we assume that AltMinSense, SVP
and the gradient scheme know the true rank. Krylov subspace techniques such as the Lanczos
method could be used compute the partial eigendecomposition; we use the randomized algorithm
of Halko et al. [2011] to compute the low rank SVD. All methods are implemented in MATLAB
and the experiments were run on a MacBook Pro with a 2.5GHz Intel Core 17 processor and 16

GB memory.

3.5.1 Computational Complexity

It is instructive to compare the per-iteration cost of the different approaches; see Table 3.1. Suppose
that the density (fraction of nonzero entries) of each A; is p. For AltMinSense, the cost of
solving the least squares problem is O(mn2r2 + n3r3 + mnzrp). The other three methods have
O(mn?p) cost to compute the affine transformation. For the nuclear norm approach, the O(n3)
cost is from the SVD and the O(m?) cost is due to the update of the dual variables. The gradient
scheme requires 2nr operations to compute Z kzk i and to multiply Z k by n X n matrix to obtain
the gradient. SVP needs O(n2r) operations to compute the top r singular vectors. However, in
practice this partial SVD is more expensive than the 2n2r cost required for the matrix multiplies

17



in the gradient scheme.

Clearly, A1tMinSense is the least efficient. For the other approaches, in the dense case (p
large), the affine transformation dominates the computation. Our method removes the overhead
caused by the SVD. In the sparse case (p small), the other parts dominate and our method enjoys a

low cost.

3.5.2 Runtime Comparison

We conduct experiments for both dense and sparse measurement matrices. AltMinSense is
indeed slow, so we do not include it here.

In the first scenario, we randomly generate a 400 x 400 rank-2 matrix X* = x4+ gy
where z,y ~ N(0,I). We also generate m = 6n matrices Ay, ..., A, from the GOE, and
then take b = A(X™). We report the relative error measured in the Frobenius norm defined as
| X — X*||p/||X*|| - For the nuclear norm approach, we set the regularization parameter to A =
1075, We test three values 7 = 10, 100, 200 for the penalty parameter and select 7 = 100 as it leads
to the fastest convergence. Similarly, for SVP we evaluate the three values 5x 1072, 10~4,2x107%
for the step size, and select 1074 as the largest for which SVP converges. For our approach, we
test the three values 0.6, 0.8, 1.0 for i and select 0.8 in the same way.

In the second scenario, we use a more general and practical setting. We randomly generate

€ R600x600

a rank-2 matrix X* as before. We generate m = 7n sparse A;s whose entries are

i.i.d. Bernoulli:

1 with probability p,
(Ai)jr =
0 with probability 1 — p,

where we use p = 0.001. For all the methods we use the same strategies as before to select
parameters. For the nuclear norm approach, we try three values = 10, 100, 200 and select n =
100. For SVP, we test the three values 5 x 1073, 2 x 10_3, 1073 for the step size and select 1073,
For the gradient algorithm, we check the three values 0.8, 1, 1.5 for ; and choose 1.

The results are shown in Figures 3.3 and 3.4. In the dense case, our method is faster than the
18



1072 {&-nuclear norm
=-SVP
©-gradient descent
' 10 10°
time (seconds)

€ R100x400

10»14

Figure 3.3: Runtime comparison where X* is rank-2 and A;s are dense.

10—12 | | |
10° 10! 102
time (seconds)
Figure 3.4: Runtime comparison where X* e R600%600 i rank-2 and A;s are sparse.

nuclear norm approach and slightly outperforms SVP. In the sparse case, it is significantly faster

than the other approaches.

3.5.3 Sample Complexity

We also evaluate the number of measurements required by each method to exactly recover X*,

which we refer to as the sample complexity. We randomly generate the true matrix X* € R"™*"

and compute the solutions of each method given m measurements, where the A;s are randomly

drawn from the GOE. A solution with relative error below 10~° is considered to be successful. We
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Figure 3.5: Sample complexity comparison.

run 40 trials and compute the empirical probability of successful recovery.

We consider cases where n = 60 or 100 and X* is of rank one or two. The results are shown
in Figure 3.5. For SVP and our approach, the phase transitions happen around m = 1.5n when
X* is rank-1 and m = 2.5n when X™* is rank-2. This scaling is close to the number of degrees
of freedom in each case; this confirms that the sample complexity scales linearly with the rank
r. The phase transition for the nuclear norm approach occurs later. The results suggest that the
sample complexity of our method should also scale as O(rnlogn) as for SVP and the nuclear

norm approach [Jain et al., 2010; Recht et al., 2010].

3.6 Discussion

We connect a special case of affine rank minimization to a class of semidefinite programs with ran-
dom constraints. Building on a recently proposed first-order algorithm for phase retrieval [Candes
et al., 2015b], we develop a gradient descent procedure for rank minimization and establish con-
vergence to the optimal solution with O(r3n log n) measurements. We conjecture that O(rnlogn)
measurements are sufficient for the method to converge, and that the conditions on the sampling

matrices A; can be significantly weakened. More broadly, the technique used in this paper—
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factoring the semidefinite matrix variable, recasting the convex optimization as a nonconvex opti-
mization, and applying first-order algorithms—first proposed by Burer and Monteiro [2003], may

be effective for a much wider class of SDPs, and deserves further study.

3.7 Proofs

3.7.1 Proof of Lemma 3.1

Let A = (a;;) be a random matrix that is GOE distributed; thus a;; ~ N(0, 1) fori # j and a;; ~
N(0,2). Wehave E(M) = >0 E((zXT Az¥)A). Hence, it suffices to show that E((z T Az)A) =

2xx | forany z € R™. The (4, j) entry of (x| Az)A has expected value

E((x' Az)ayj) = E <Z > xkxlakla”)
P
=Yz E(aga;;)
ko

0 if (k, 1) # (i.5) A (k1) # (5.9)
SDHITEL J :
ko1

]E(a%l) otherwise
2eja;E(af;) ifi#
22F(a2) otherwise

QJZZ'.CIZJ' if ¢ # j,

Zx? otherwise,

where we use that the variance of a;; is 2 and the variance of a;; is 1 for any ¢ # j. In matrix form,

this is E((z ' Az)A) = 2z .
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3.7.2 Technical Lemmas

We first present some technical lemmas that will be needed later. Recall Definition 3.2 that for any
7.7 = argminzes HZ — ZHF Let H = Z — Z. The sth column of Z, Z, Z*, H are denoted by
Zs, Zs» 2, hg respectively. We shall use the following formulas for the gradient and second order

partial derivatives:

1 _ _
VIZ) =~ (w(HTAH) +2u(ZT AH)) (AiH + AZ),
=1
Pf(Z) 1 & S .
02502] ~m Z <2Ai2525 A+ (tr(Z AiZ) — bz‘) AZ) , Vselr],

P2(2) 1 -
W_EEQA izszp Aj . Vs, k € [r] suchthat s # k.

The next ingredient we need is the expectation of the second order partial derivatives with

respect to the random measurement matrices.

Lemma 3.7. Let A = (a;;) be a GOE distributed random matrix. For any two fixed vectors x and

y, we have B [AzyA] = x Tyl +yx .

Proof. The expectation of (7, j) entry of AzyT Ais

E[(Azy' A);j] =E (Z aikajkak?Jl) :

kl

If 2 = 7, then we have

E[(Azy' A);] = E ( a?ﬂk%) = wpyp + Ty,
k k

since Var(aZ2 ) =2and Var( .) = Lif k # i. On the other hand, if i # j, then

]E[(AxyTA (Z azka]lxkyl> E(azjxjyz) = XjYi-
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Therefore, E(Azy " A) = z Tyl + yax . O

?f(Z
Lemma 3.8. Forall s € [r|, it holds that E [3 f; T) = 2||26||? I + 2252 +2227 —2X* and
25024
P2+ - -
0.7 | = 224 23] + 22124 for all k € [r] such that k # s, where the expectation is over
250z,

the random measurement matrices.

Proof. The case where k # s is a direct result of Lemma 3.7. For the other case, let A = (a;;) be

a GOE distributed random matrix. It follows from Lemma 3.1 that

. laZ‘f(Z)

T _9R(Azezd A) +222T —2X*
(9258;1} (Azs25 4)

By Lemma 3.7, we have

E(Azszg A) = ||2s||2 T + 2524 .

Substituting this back into the above equation, we obtain the lemma. 0

We next recall a concentration result for the operator (spectral) norm of the random measure-

ment matrices.

Lemma 3.9. (Ledoux and Rider [2010, Theorem 1]) There exists two absolute constants C and

_ 1 . - _ —pn
p 70 such that with probability at least 1 — C'e™ P,

145 < 3v/n.

A tighter upper bound is actually given in the Tracy-Widow law: w.h.p. ||4;| = O(2y/n +
nt/6).

Corollary 3.1. With probability at least 1 — mCe™P", the average of the squared operator norm

of the random measurement matrices is upper bounded by In.
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Proof. Applying a union bound we have

1 & .
P <Ezl 14]1% < 9n> > P (Vi, [|A]] <3v/n)
1=

m

> 1-Y P(|4] > 3vn)
1=1

> 1—mCe P,

where we use Lemma 3.9 in the last line. ]

The following two technical lemmas are important tools for us. Define the set
E(e)={Z|d(Z,7*) <e}.

Lemma 3.10. Suppose that A1 holds: H % Zﬁl(uTAiu)Ai — 2uu " H < g for any u such that

|ul| < /o1. If 6 < %O‘r, then forany 7 € E ( %m) it holds that
T2 512 < X S T A2 < 5 ILH2 T2
QHHH HF ~S|H|% < EZ}W(H JH)? < ||H||F+2HHH HF
1=

Proof. Let hs be the sth column of [. Since max,cp, [[hslly < |[H|[p < 1%07« < /oy, it

follows from the assumption of the lemma that

1 — b
— N (W Aps) Ay —2hsh || <= s=1,.
S {2 2 S
m i1 r
By the triangle inequality, we have
1 m r r
— D> (b Aihs) A =2y Jhh] | <6
i=1 s=1 s=1
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and consequently

1 m

—§||hs|? < S (- S t(H T AH)A; — 2HHT) hi <6|hsl?, s=1,...,r,

m
=1

,

where we replace > hl A;hs by tr(H " A;H) and Y_, hsh] by HHT. Taking the sum of the
s=1

above inequalities, we obtain

1 m
—§||H||% < - > (HAH)? —20(H HH H) < 5| H||%.
1=1

2
Note that tr(H | HH T H) = HHHT HF Therefore,

2 1 X 2
T 2 T A 2 2 T
2HHH HF—(SHHHFgai w(H T A;H) §6HH|\F+2HHH HF

1=

O]
Lemma 3.11. Suppose that A2 holds: for any Z such that ZZ T = X* we have
02 f(Z 02 f(Z J
Nf(qz — Nf(N_g < -, s,k=1,...,r (3.7)
8238zk 8zsﬁzk r

Then
o — O\ (% + HHTZH2 < iitrmu-@? < (o + 1H|% + HHTzH
2 F F~ m — ! - F

m [
Proof. Our goal is to bound % S~ tr(H " A;Z)?. This can be expanded as
=1

T m

2 m
— Z (Z (hy AiZs) ) = % DO (hg Ajws)® + % DS 2(h Ajws) (hy Ai).
i=1 \s=1

7/:1 S:]_ 'L:l S<k
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We first bound the sum of the quadratic terms. For any s € [r|, we have

% f( o

823875 E 2A,Zs% AZ,

0*f(2) 2 T
E[azsazl IR

It follows from assumption (3.7) that for any s € [r],

5 2 1 _ 2 12 T 0\ 12
= lIns] SEZQ(@AM)Q—QH%H [hs]|* = 2(hs Zs)2§;Hth :
i=1

Taking the sum of above inequalities, we obtain

T r
Z Ihs* < —ZZ (hs Aizs)? = |1z [hs]l* — Z (hg 25)° < Z Ihs %
i=1s=1 s=1 s= (3 8)

Similarly, we bound the sum of the cross terms. For any fixed s, k such that s # k, we have

s 1) _ 1 Z2A zszk i

82532k m

f(Z)
azsaz,j

=2z 5.1 + 27,2

and consequently

5 1 — ) _ T _
- > bl gl < - SN Cohd Aize)(hy Aizy) — 2> 2 mphd by — 2 hi 5z by,

s<k =1 s<k s<k s<k
3.9

4]
< 23 il el

s<k
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We combine equations (3.9) and (3.8) to get

b} 1 & _ . - b}
— S sl il < = S (T AZ? =3 2] sl =S R 52l < 5 3 ksl
sk =1 sk sk sk
(3.10)

o 2
Note that 3., hi 2,50 hy, = w(H T ZHTZ), 3 20 210 by = HZHTHF and

r 2 r
> llhsl gl = (Z ||hs||> <r Y bl =7 |lH|F
sk s=1

s=1

_ _ —_12
By Lemma 3.12, tr(HTZHTZ) = HHTZHF. Replacing those terms in equation (3.10) gives us

e 52 _ 1w Tam2_ 00002 T2 T=||2
2\H HZH H HH ZH <N wHTAZ)?2 <2 |H HZH H HH ZH .
5 I1H 5+ ot F_mi_er( iZ)* < 5 | H|E+ ot B
Finally, we obtain the claim by noticing that

Zrr |
varlHllp < |ZHT|| < varlHlp,

where /1 = omax(Z) > +++ > opin(Z) = /0 are the singular values of Z. O
Lemma 3.12. tr(H ' ZHZ) = HHTZH;

Proof. Let U = argming ;1 _yry-7 12 — Z*UH% = argmaxy; ;7T (U, Z*1 7). Note
that (A, B) < ||A]|, || B] for any matrices A, B that are of the same size. The equality holds when
B = UAVX where A = UAEAVJ is the SVD of A. Hence, U = UV where USV | is the
SVD of Z*'Z; Z = Z*U. Therefore, Z'Z = Z'Z*U = VSV is symmetric and positive
semidefinite. Thus, H' Z = Z'Z — Z 17 is also symmetric. This implies that tr( H TZH"Z ) =
HHTZH2 . O

F

3.7.3 Linear Convergence

Proof of Theorem 3.2
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Let H* = Z% — ZF. Then we have that

oot - 24 - o -2
Nl gl - s
o R el o v AL
- (12 - 2

2
(12
a  roj F
2
- (1 - —“) d( 7%, 7*)2,
(0%

RT

where we use the definition of RC/(e, «, /5) in the third line, ||Z*H%» = || X*||, = >_i_ o5 inthe

third to last line and 0 < p < min{«/2,2/4} in the second to last line. Therefore,

12 D)
d(Z¥, Z%) = min HZ’““ - ZH <\J1— g7k, 724,
7e8 F QKT

3.7.4 Regularity Condition

As mentioned before, Nesterov [2004, Theorem 2.1.11] shows that the gradient scheme converges
linearly under a condition similar to the regularity condition, which is satisfied if the function
is strongly convex and has a Lipschitz continuous gradient (strongly smooth). In order to prove
Lemma 3.3, we show that with high probability the function f satisfies the local curvature condi-
tion, which is analogous to strong convexity, and the local smoothness condition, which is analo-

gous to strong smoothness.

C1  Local Curvature Condition
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There exists a constant C'y such that for any Z satisfying d(Z, Z*) < 4/ %ar,

(V1(2).2-2) 2 Co |2 = 2|5+ (2 - Z)TZH;.

C2  Local Smoothness Condition

There exist constants C, C's such that for any Z satisfying d(Z, Z*) < 4/ 13_6‘77"’

VD) < o2 - 2%+ 0z - 272

Proof of the Local Curvature Condition

m

(Vf(Z),H) = % > w(HTAZ)? + = S uw(HTAH?+=> w(H T AZ)w(HT A;H)

vV
=
[\
_l’_
(=)
[\
|
|
e
E
_|
=
NI
e
-
E
4|
=
=
[\

2

g P T2 50 0 5 T2

> (on =3 ) VR + 72| = S 1 = 5 1|

> (o= 3) i+ |12 - 5 hmip - 5 [
Sz 7 2 T5|?

(or = 3081 = 59) 1+ 72

29



where we use Cauchy-Schwarz inequality in the 2nd line, the inequality (a — b)2 > %2 — b2 in the
5th line, Lemma 3.10 and 3.11 in the 7th line, and the fact that HHHT HF < ||H][% in the 8th line.

Since || H || < %Ur and ¢ < %GUT, we have

(Vf(Z),H) > z—zar 1H|% + HHTZH; G.11)

Proof of the Local Smoothness Condition

We need to upper bound ||Vf(Z)||2F = max)yy|| =1 (Vf(Z),W)|?. 1t suffices to show
that for any W € R™ % of unit Frobenius norm, |(Vf(Z), W)|? is upper bounded if Z &

)

Since (a 4 b+ c + d)? < 4(a® + b? + ¢ + d?), we have

Sl-
1

2
(VF(Z), W2 = ( (tr(HTAiH) v 2tr(HTAiZ)) (tr(WTAiH) + tr(WTAiZ))>

y

1

-
|

tw(H " AH) (WA H) + 2w(H T 4,Z) (W T A;H)

3=
1

Il
—

7

2
+t(HAH) e(W T A;Z) 4+ 2u(H T A;Z) tr(WTAZ-Z))

IN

2

m

4 (l > w(HTAH) tr(WTAZ-H)>

m
i=1

2
2 — -
+4 — Zl tw(H"A;Z) tr(WTA,-H)>
1=

2
1 — _
+4 — 2; tr(H " A;H) tr(WTAZ-Z)>
1=

2

2 — - -

+4 Ezltr(HTAiZ)tr(WTAiZ)> .
1=
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The first term in the righthand side can be upper bounded as

m 2 m
4 (% Ztr(HTAiH) tr(WTAiH)> < ( Ztr (H" A;H) ) (% Z (WTA;H) )
=1 =1

i=1

IN

1 m
4 (21HIE +51HIF) —ann%nmm%)
= 4 (20H)F+ o 1H)F) EZHAZHH%)
i1=1

1 m

4 2 2 2

A(21H1E s 1EE) (D14l ||HHF)
1=1

2 4 2
< sonl|HIF (21 HIE+01HIE)

IN

where we use the Cauchy-Schwarz inequality in the first and second line, Lemma 3.10 and
T
|EET] o< [

in the third line, and Corollary 3.1 in the last line.

The other three terms are bounded similarly. For the second term, we have

IN

m 2 m m
4 (% > w(H'AZ) tr(WTAZ-H)) 6 (% Ztr(HTAZ-Z)2> (% > tr(WTAZ-H)2)
i=1 i=1 =1

2 2 T2
36n | H|[}  (dor +20) [ HIF+4 | H7Z| ).

IN

where we use Lemma 3.11 and 3.1. The third term is bounded as

m 2 m m
! (% > u(H ' AiH) tr(WTAZ-Z)) < 4 (% Ztr(HTAiH)2> (% Ztr(WTAZ‘Z)Q)
=t i=1 i=1
<

36n | 2|5 (20H1% + o 111
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and the fourth term is bounded as

m 2 m m
4 (% Ztr(HTAZ-Z)tr(WTAZZ)> < 16 <% Ztr(HTAZ-Z)2> (% Z(WTAZ-Z)2>
i=1 =1

1=1

IN

— —112
36n ||Z||% ((401 +20) | H||% + 4 HHTZHF) .
Putting these inequalities together, we have
2 ~1|2 2 4 2 T2
197201 < 360 (|21 + V1) (2081 + o+ 39) e+ |72 ).

Hence,

Z)|2 7|
VLN o < a0+ 5 11 + 36 ) ey + 72
1an (|1Z|[ + 1H1%)

Since || H||p < 6O'T and § < 6UT, we have

V(21 9 2
e (e R G L

Proof of the Regularity Condition

Now we combine the curvature and the smoothness conditions. For any v € (O, %) , 1t holds

that

2 )
o IV£(2)I1% 9@.(01+20T) 2T a4 ER D
7 14dn (|Z]7 + 3/16)0) T 01 64 F

Combining equation (3.11) and (3.12), we obtain

27 o 9 2 IVA(2)
VIZ),HY > (= —y—72 2 o |H
(Vi2). H) (64 T 64)0 I+ 7, o1 144n(||Z|% + (3/16)0,)
21 73 2 IV/(2)]F
2t 12 I H
= (64 647)0 I+ 7 144n(||Z|% + (3/16)0,)
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If we take v = %, then

o V2|3
(VI(2).H) > Sorl|H|F+ V. (2 )z
7131140 (| 2[5 + (3/16)0,)
or/oq
> ﬂUTHHH% _or/or 2 IVf(2)||?

513n | 2*(|%

where we use HZHF = ||Z*||F |X™||, > op. Thus we have

I

1 5 1
Vi(Z),H) > ~o||H \Y
(VI(2),H) =z —or | H|F + 2 IV£(2)

for @ > 24 and 8 > % - 513n.

3.7.5 Initialization

Proof of Lemma 3.4

By assumption, we have

1N, T o s
3T A A -2 | <2 s el
1=1
Hence,
m T
| M —2X*| = ZZ *TA 25)A; — 2ZZ*Z*T
=1s=1 s=1
1 m
< Z —Z (X T Az A — 2272
1 :
< 0.
Let /\’1 > ... >\, be the eigenvalues of M. By Weyl’s theorem, we have
I\, — 20| <6, s€[n]
Since § < oy, itiseasy tosee A} > -+ > A. > dand [\;| < d,s =r+1,...,n. Hence, Ag
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s € [r],and Z 07 0T is the best rank r approximation of %M . Therefore,

HZOZOT o Z*Z*THF < @HZOZOT . Z*Z*TH

_ o ZOZOT_%M+%M_Z*Z*T

1 1
< @('ZOZOT—§MH+H§M—Z*Z*T )
< V2rs,

where we used ||A|| < /rank(A) ||A| in first line, the fact HZOZOT — %MH = L Ary1] < 36
and inequality (3.13) in the last line.

Let H = Z0 — ZY. We want to bound d(Z%, Z*)? = ||H||%; According to the discussion in
Lemma 3.12, H ' ZY is symmetric and Z 0770 s positive semidefinite.

The following step closely follows [Tu et al., 2016]. It holds that

2

2 —n=
R e i P

= |mz0" + 2007 + HHTH;
— (ZOHT 7" + HZO " HZO f HHTZ0T
+ 2002007 + 520 200 + HET 2007
+Z2%H " HHT + HZ HHT + HHTHHT>
— ((HT H)2 +2(HZ%2 + 2(H T H)(Z°' 2°)
+ 4(HTH)(HTZO))
R ( <HTH + \/ﬁHTZO)2 +(4—2v2)(H " H)(H 2"
+2HH) (ZoTZO))
> ((4 — V2 (H"HYH"ZYY +2H"H)Z"Z ))

= w((- 2\/5)(HTH)(ZOTZO)> +u((va-2HTH)ZTZ)),
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where in the fourth line we used the property that the trace is invariant under cyclic permutations
=0 50T
and H'Z0=27Y 1.

Since 70" 70 is positive semidefinite, tr((H | H)(Z 0'7 0) is nonnegative. Hence,

HZOZOT - Z*Z*TH; > (v2-2)u((H H)(Z'2))
- -y
> (2v2-2)|H|[} o,

= (2v2 = 2)0,d(2°, 2%)2.

Or
If 6 S m, then

2
0~0 T
HZ 70 _ zxz* HF ors? 5
< _O-r.

0 x
U2° 27 < (2v2—-2)o,  ~ (2v2—-2)0, ~ 16

3.7.6 Sample Complexity

In this subsection, we verify that our assumptions hold with high probability if m > cnlogn,
where c is a constant that depends on 9, r, and . Our proof relies on the following concentration

inequality.

Theorem 3.3. (Matrix Bernstein Inequality [Tropp, 2015]) Let S, . . . , Sy, be independent random
matrices with dimension n x n. Assume that E(S;) = 0 and ||S;|| < L, for all i € [m]. Let

v —max{Hz 1ESS )

i E(S]S;)

_m252
Z ) S 2n exXp m .

We first give a technical lemma that we will use later.

}. Then for all 6 > 0,

Y

1 m
(|5 s

Lemma 3.13. Let A = (aij) be a random matrix drawn from GOE. Let S = a1 A — 26161—. There
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exist absolute constants C, p such that with probability at least 1 — Ce™P", we have
151l < 18n.

Proof. Let A=A— alleleir. S = a11g+ (a%1 — 2)616I. Note that a1 and A are independent,
hence ||S| < |aq1||| Al + la?, — 2|. Besides, since aj; ~ N(0,2), we can see that a2 /2 is x°
distributed.

First we bound the operator norm of A. We rewrite || A|| as

|A|l = max |u" Au| = max |u' Du — du}| < ||D|| + |d],
[ul=1 [Jul|=1
where D = A + dele]—, d ~ N(0,2). As D is GOE distributed, by Lemma 3.9,

P (||D| > 3vn) < C'e P, (3.14)

where C’ and p’ are absolute constants.

Using the Gaussian tail inequality, we have
P (|d| > 2v/n) < 2e7". (3.15)
Combining inequalities (3.14) and (3.15), we have
P (||Z|| > 5\/ﬁ> <P(IID|| > 3v/nV |d] > 2y/n) < Cle P 4 2e7, (3.16)

where the last inequality follows from the union bound.
Next we bound the deviation of the x2 term. By the corollary of Lemma 1 in Laurent and

Massart [2000], we have

P(la%; — 2| > 4(v/n +n)) < 27" (3.17)
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Since a1 is identically distributed as d, inequality (3.15) holds for a1 as well. Namely,

P (|a11| > 2\/5) <2 "

Combining this with inequalities (3.17), (3.16), we have
P (||S|| < 14n + 4y/n) > 1 —6e " — C'eF".

Finally, the statement is obtained by choosing proper C, p, and using \/n < n. [

Proof of Lemma 3.5

Proof. It is equivalent to show that for any unit vector u, with high probability,

m

1
. Z(UTAiu)AZ‘ — 2uu !
1=1

)
<.
roq

If P is an orthonormal matrix, then

=||— Z ( PTA P)uA; > —2Puu' PT

%i ( (Pu) T A;( Pu)) A; — 2(Pu)(Pu) T

=|l— E u' (PTA;PYuP T A;P — 2uu’
m
1=1

1 s +~ ~
=|— Z uTAZ-uAi — Quu '
m 1=1

where in the second line we use unitary invariance of the operator norm, and in the last line we
denote P A;P by A}-. Since the GOE is invariant under orthogonal conjugation, g,’ and A; are

identically distributed. Hence, it suffices to prove the claim when u = eq, i.e.

(3
E E (IllA 26161
=1

< do,
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4

ro1’

where agil) is the (1,1) entry of A; and &y =

To show this, we apply Theorem 3.3, where S; = agil)Ai — 2elelT. This requires that the

operator norm of .S; is bounded, for each :. We address this by noticing that with high probability

15|l < 18n, Vi. To be precise, by Lemma 3.13 there exist constants C, p, such that
P(]|S;]] > 18n) < Ce™ ", i=1,...,m.
Taking the union bound over all the S;s leads to
P (mZaXHSlH > 18n) <mCe ", (3.18)

Next, we calculate 1> = 1>, ]E(Sf)” =m H]E(S%)H Let A = (a;;) denote Ay, S denote .

We have E(52) = E(aq12A?) — 46161T, and

n
(a14%),, =aly + Y afyai,
=2

n
2 42 2 [ 2 2 :
(a114%);; = aty | aj; + Z%k , Vi# L,
ki
n
2 42 2 L
(a114 )ij =an Z AikQjk, Vi F J.
k=1

It is easy to see thatE(a%lAQ) — diag(2n+10,2n+2, ..., 2n+2). Consequently, 12 = (2n+6)m.
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: _ 42
By Theorem 3.3, if m > min(32,00) nlogn, then

P is >4 | <2 —mdj
m 2| =00 )= T 2T 300) + 6
<9 —még
<2nexp | ———
2n(4 + 3d9) (3.19)
<2 —md
= Sexp 14n - max(1, dg)
< 2
_— nz'
Combining inequalities (3.18) and (3.19), we conclude that
1 & (i) 2
_ YA T _ —-pn 4
]P( m.ZanAZ 2e1eq §5O> >1—mCe 3
=1
O

Proof of Lemma 3.6

The formulation of the second order partial derivatives and their expectations is given in Ap-
pendix 3.7.2.

It is easy to see that for any Z € S, max ey |Z-|| < y/o1. Thus it is sufficient to prove that
for any two unitary vector u and y with high probability it holds that

5
<.

1 m
H— Z 2AiuyTAl- — 2uTyI — 2yuT
m roy

1=1

We can decompose y as y = Su + [ u | for a certain unit vector u | that is orthogonal to u,

)
where 32 + ﬁi = 1. Letdy = SroL” It suffices to prove the following two claims.

roql
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(i) For any unitary vector u, with high probability

1 m
— Z QAZ-uuTA?; — 2] — 2uu’
m 1=1

< dp.

(i) For any two orthogonal unit vectors v and u | , with high probability

1 m
E Z 2AzquAZ — QUJ_UT S 50.

1=1

Proof of (i)

If P is an orthonormal matrix, then

1 m

==Y 2P A;Pun PTA;P — 2 — 2uu’
m

=1

1 m
— 2A;Puu’ PA; — 21 — 2Puu' P’
m

=1

Y

A ~
= ||— Z 2AiuuTAi — 21 — QUUT
m 1=1

where ZZ' and A; have the same distribution. Hence we only need to prove the case where u = eq:

< dp,

1SNy (T
— Z 20y _of Qeleir
m =1

where v(1) = Ajeq is the first column of A;.
N nT
Let S; = 2(1)(@)1)(@) = ele]—). To apply Theorem 3.3, we need to show that with high
probability ||.S; || is bounded for each i and calculate > = 137 E(Sf) | =m HE(S%) -

Let S, v, A denote 51, o), and A1) respectively. It is easy to see that
ISI1 < 2[|olf* + 4 = 2(w + ) + 4,

where w = 37 _y a2, Asajy ~ N(0,2), agy, ~ N(0,1) for k # 1, we can see that a3, /2 and w
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are 2 distributed with degrees of freedom 1 and n — 1, respectively. Using the x? tail bound, we

have

P (a%I/Q > 2(vn +n) + 1) <e™,

Pw>5n—1)<e "™ k=2...,n.
It follows from the union bound that
P (||S|| > 26n +6) <2 ",

and consequently

P (max ||S;1] > 26n + 6) <2me "
(3

To calculate v2, we expand E(S52) as

]E(SQ) =4E ((UUT)2> —4(I + eleI)Q

— 4E <||U||2 mﬁ) — A(I + 3e1e] ).

Some simple calculations show that

n
(Il veT) =+ kz_;vk%ﬂ,

(Iw200T) = w4t + 3 vl j=2m,

k#1,j

n
<HUH2UUT>ﬂ = ka%jvl, Jj<l
k=1
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As vy ~ N(0,2), v; ~ N(0,1) for j # 1,

E <||v||2va>11 = 2n + 10,
E <||UH2UUT> =n+3, j=2,...,n,
JJ

E (HUH%UT) =0, G<l
J

Hence, E(S?) = diag(8n + 24,4n + 8, ..., 4n + 8) and thus v> = m(8n + 24).

If m > (128/ min(ég, d0))nlogn, then by applying Theorem 3.3 we can see

'

1<y (T
— Z 20y _of 26161r
m 1=1

—még
>0 | < 2nexp 56
8n + 24 + (Fn + 2)do

< 2nexp ((128/3)n max(1, 50))

< 2
_n2‘

Combining inequalities (3.21) and (3.20) leads to

(

2
n?’

1 X N
— Z 20y — 21 —2¢1e]
m 1=1

< (5()) >1—2me " —
Proof of (ii)

We only need to prove the case where u = e; and u | = es due to the same reason above. That

18,

1y (T

. Z 201 g — 26261T
=1

< dp,

where v(!) and q(i) are the first and second columns of A;.
N o aT
As before, let S; = 2(v(l)q(l) — €2€1T) and let S,v,q, A denote Sy, vV, ¢(1) and A1)

respectively. From the proof of (i), we can see that with probability at least 1 — 4e~" both ||v|| and
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|l¢|| are no larger than +/13n + 1. Since ||S]| < 2||v|| ||| + 2, we have

P (max ||S;]] > 26n + 4) < 4me™".
(3

I

E(SST) = 4E(|lq|*)E(vv ) + degeq .

Next, we calculate 2 = m max { H]E(SST) E(STS)H }

E(S'S) = 4E([[v|*)E(qq ") + deqe -

Some simple calculation shows that E(|[v||?) = E(|j¢||?) = n+ 1, E(ww") = I + ere{ and

E(qq") =1+ ege;. Hence,
E(SST) =4(n+ 1)1 +4(n+ 1)ete] + degeq,
E(STS) =4(n+ 1)1 +4(n+ 1)egeq + deqeq

and 2 = 8(n+1)m.If m > —(525—)71 log n, then by applying Theorem 3.3 we have
0

>00 ] <2 _m(%
n ex
0] = P 8n + 8+ (267”4)50

—mdy ) (3.22)

1= ) (7T
P(HE;QU()Q() —2616;—

<2
= SN (26nmax(1,(50)

< 2
_n2‘

This means,

2
< 5()) >1—4Ame " — —5-
n

Z 2v(i>q(i) — 26162
=1

1m
P(_
m_
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3.7.7 ADMM for Nuclear Norm Minimization

We reformulate the nuclear norm minimizing problem as

1 2
mi A(X) — X 2
min gy MO =07+ XL (3.23)

where A > 0 is the regularization parameter. A — 0 will enforce the minimizer X, satisfying the

affine constraint A(Xp,.) = b.

We apply ADMM to the dual problem of (3.23):

A
min Zlal? = aTb
acRM VeRnxn 2
subjectto ||V <1 (3.24)
Al(@) =V,

where we introduce an auxiliary variable V' to make this problem equality constrained.

The augmented Lagrangian of problem (3.24) can be written as
Az T T N 4T 2
Ly, X) = 5 llall? = a b+ 1y (V) + (X, AT (@) = V) + 7 [AT (@) = V|,

where X is the multiplier, 7 is the penalty parameter, and 1||_||§1 is the indicator function of the
unit spectral norm ball i.e. 1) <1(V) equals 0 if [[V|| < 1 and +o0 otherwise.
Let vec(-) denote the vectorization of a matrix, whose inverse mapping is denoted by mat(-).

We can rewrite the transformations as A(X) = Avec(X)and A" (o) = mat(ATa) = 37, oy A;,

where A is a m x n? matrix whose ith row is vec(A4;) .

The ADMM starts from initialization (ao, ¢ 0) and updates the three variables alternately.
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The updates can be computed in close forms:
oMl = (A +nAAT) ! (b + Avec(nVF — Xk)> :
m
VEHL = proj ( Z ai.HlAi + Xk/n) ,
1=1
m
Xkt xk W(Z&fﬂfli B Vk+1>’

=1

where proj(-) is the projection onto the unit spectral norm ball. Let X = U SV T be the singular
value decomposition of X,

proj(X) = Umin(, 1)V .

In fact, the update of V' can be combined with other steps without being computed explicitly. One

only has to iterate the following two steps:

aftl = (M + T]AAT)*1 (b + Avec(n Z afAi + xRl 2Xk)> ,
1=1

m
XhH = prox, (77 Z aerlAi + Xk> :
=1

where prox,(-) is the singular value soft-thresholding operator defined as

prox,, (X) = U max(X —n,0)V .

Ui

The sequence of multipliers {X k} converges to the primal solution of (3.23). To speed up the

update of o, the Cholesky decomposition of A + A AT is precomputed in our implementation.
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CHAPTER 4
RECTANGULAR MATRIX COMPLETION

We have seen that the Burer-Monteiro technique is remarkably effective for a family of low rank
random SDPs in the previous chapter. In this Chapter, we enlarge the collection of problems to
which the factored approach can be successfully applied, by analyzing the convergence properties
of gradient descent applied to the problem of rectangular matrix completion from incomplete mea-
surements. The standard matrix completion problem asks for the recovery of a low rank matrix
X* € R™*"2 given only a small fraction of observed entries. Let 2 be the set of m indices of the

observed entries. Fixing a target rank r < min(n1, no), the natural, but nonconvex objective is

min rank(X)
XeRm2 (4.1)

subjectto  X;; = X5, (i,7) € Q.

ij’

In order for this problem to be well-posed, it is important to understand when X* is identifiable
and, in particular, the unique minimizer of (4.1). Moreover, because the problem is in general
NP-hard, it is essential to identify tractable families of instances, together with efficient algorithms
having global convergence guarantees.

In the current work, we apply the factorization technique by “lifting” the matrix X™* to a pos-
itive semidefinite matrix Y* € R("1+12)x(n1+72) ip higher dimension. Lifting is an established
method that recasts vector or matrix estimation problems in terms of positive semidefinite matri-
ces with special structure. It has been applied to sparse eigenvector approximation [d’ Aspremont
et al., 2004] and phase retrieval [Candes et al., 2015a], where the lifted matrix is of rank one. As
explained in detail below, we can construct Y* to be of the same rank as X*, thus obtaining a
factorization Y* = Z*Z* | for some Z* € R("+12)X" and transforming the original matrix
completion problem into the problem of recovering the semidefinite factor Z*. We formulate this
as minimizing a nonconvex objective f(Z), to which we apply a gradient descent scheme, using

a particular spectral initialization. Our analysis of this algorithm establishes a lower bound on the
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number of matrix measurements that are sufficient to guarantee identifiability of the true matrix
and geometric convergence of the gradient descent algorithm, with explicit bounds on the rate.

In the following section we give a full description of our approach. Our theoretical results are
presented in Section 4.2, with detailed proofs contained in Section 4.6. Our analysis subsumes
the case where X* is positive semidefinite. In Section 4.3 we briefly review related work. The
experimental results are presented in Section 4.4, and we conclude with a brief discussion of future

work in Section 4.5.

4.1 Semidefinite Lifting, Factorization, and Gradient Descent

For any (n1 4+ ng) X r matrix Z, we will use Z(i) to denote its sth row, and Z;; and Zy, to denote
the top n1 and bottom ng rows. The operator, Frobenius and /», norm of matrices are denoted by

[I[[ [|/| 7 and [|-|| . respectively. We define || Z]|5 , = max;

Z ()

‘2 as the largest ¢ norm of its

rows, and similarly || Z|| 5 = max { 122,00 -

ZT‘
2

}. Let Pq : R™M*"2 — R™1%"2 be the

)

operator where
Xij if (i,5) €,
Pa(X)j = (4.2)
0 otherwise.
In this paper, we focus on completing an incoherent or “non-spiky” matrix X*. With U*¥*V*

denoting the rank-r SVD of X*, we assume X* is p-incoherent, as defined below.

Definition 4.1. The matrix X* is j-incoherent with respect to the canonical basis if its singular

[y . pr
U* — Vv — 4.3
“ ”200 = nl? || ||2(>o = 7127 ( )

vectors satisfy

where 11 is a constant.

Our main interest is the uniform model where m entries of X™* are observed uniformly at

random, though we shall analyze a Bernoulli sampling model, where each entry of X™* is observed

1. Note that pp > 1, since r = |[U*||% = >

N 2
v, <
47
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with probability p = m/nino. One can transfer the results back to the uniform model, as the
probability of failure under the uniform model is at most twice that under the Bernoulli model; see
[Candes and Recht, 2009; Candés and Tao, 2010].
Using the rank-r SVD of X*, we can lift X* to
U*E*U*T X* U*

1
Y* = N Ll = 7*7*" where Z* = *2. (4.4)
X* V*E*V* V*

The symmetric decomposition of Y* is not unique; our goal is to find a matrix in the set
S = {'2 e R(Fm2)XT | 7 — 7*R for some R with RR| = R R = J} @45
since for any Z € 8 we have X* = ZUZ‘I. Let ) denote the corresponding observed entries of

Y*, and consider minimization of the squared error

1 1 2
min 5 ST (22] - vp)? = min o HPQ(ZZT -7,
(1,)€Q

(4.6)

Note that Y* is not the unique minimizer of (4.6), nor is it the only possible positive semidefinite
lifting of X™*. For example, let P be an r X r nonsingular matrix, and form the matrices
U*E*%P U*E*%PQE*%U*T X*
gl _ 1 y! — . . . 4.7
V*E*jp—l X*T V*E*§P_2E*§V*T

Since ) does not contain any entry in the top-left or bottom-right block, Y’ is also a minimizer of
(4.6). Thus, the solution set of the lifted problem is much larger than the set S of actual interest.
For the sake of simple analysis, we shall focus on exact recovery of Y only, and thus impose

an additional regularizer to align the column spaces of Z;; and Zy, as in [Tu et al., 2016]. The
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regularized loss is

2 A

n I
Fa

5 0
‘ZTDZHF, where D = .48

1(2) = 5 |Palzz" - v*) "
5

While this apparently introduces an extra tuning parameter, our analysis establishes linear conver-
gence of the projected gradient descent algorithm when A\ = % and thus one may treat \ as a fixed
number.

It is discussed in [Chen and Wainwright, 2015] that one needs to ensure the iterates stay inco-

herent. Let C be the set of incoherent matrices

C= {Z NN Z g0 < W/nfir@ HZOH} (4.9)

where we assume  is known and Z 0 will be determined.

Our algorithm is simply gradient descent on f(Z), with projection onto C.

Let M = p~1Pq(UV T — X*). Then the gradient of f is given by

0 M
ViZ) = Z+A\DZZ'DZ. (4.10)
MT 0

The projection P, to the feasible set C has closed form solution, given by row-wise clipping:

o it 20| < /o2 120,
Pe(Z)iy =9 z, S 1 0 | @i
HZ@)H ' WHZ H otherwise.

Note that X0 = pipo(X *) is an unbiased estimator of X™* under the Bernoulli model. To
initialize, we thus construct Z9 from the top rank-r factors of X¥. This leads to the following
algorithm.

Remarks. (1) The step size 7 is normalized by HZ 0 H2 Our analysis will establish linear con-
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Algorithm 2: Projected gradient descent for matrix completion
input: , {XZ’; (i,7) € Q}, m,ni,no, r, A\, 1
initialization

p=m/ninz
U950V 0 " = rank-r SVD of p~1Pq(X™)
20 = [05.02,1/050%]

7t =Pe(2Y)
k<+1
repeat
MF = p1Po(2k 2k, — X*)
0 Mk
V(25 = [MkT 7k ¢ AxDzFzF D7k,

G P )

k+k-+1
until convergence;

output: 7 = Zk,)A( = Z(’}Z‘k/T.

vergence when taking step sizes of the form 7/07}, where 7 is a sufficiently small constant. We
replace o7 by HZ 0 || in the actual algorithm since it is unknown in practice. (ii) The feasible set

(4.9) depends on HZ OH as well. Under the above spectral initialization, our analysis shows that

when p > O(uk?r2logn/nq A ng), the term 4/ nf%zg |2°]| is an upper bound of 12*]]2,00 With
high probability (see Corollary 4.1 below). This means S is a subset of C. Note that this does not
change the global optimality of Z* and its equivalent elements, since f(Z*) = 0. In practice, we
find that the iterates of our algorithm remain incoherent, so that one may drop the projection step.
(iii) The column space regularizer (4.8) is needed in our analysis. We also found that when A = 0,
our algorithm typically converges to another PSD lifted matrix of X™*, with minor difference from
Y™ in the top-left and bottom-right blocks.

In the following section we state and sketch a proof of our main convergence result for this

algorithm.
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4.2 Main Result: Convergence Analysis

Theorem 4.1. Suppose that X* is of rank r, with condition number r = o7 /oy, and p-incoherent
as defined in Definition 4.1. Suppose further that we observe m entries of X chosen uniformly at
random. Let Y* = 7*Z* | be the lifted matrix as in (4.4) and write n = max(ny,ng). Then there

exist universal constants c, c1, ca, c3 such that if
m > cO/M“QKJQ max(u, logn)n, (4.12)

then with probability at least 1 — cyn™ 2 the iterates of Algorithm 2 converge to Z* geometrically,
when using regularization parameter X = 1/2, correctly specified input rank r, and constant step
size 1/oy withn < 3/ purle,

We shall analyze the Bernoulli sampling model, as justified in Section 4.1.

Similar to Chapter 3, let us define the distance to Z* in terms of the solution set S.
Definition 4.2. Define the distance between Z and Z* as

d(Z,Z*)=min||Z - Z|| . = i Z — Z*R||p.
( ) IZNHGIEH I RRTr:n}lzI%'R:[H I3

The next theorem establishes the global convergence of Algorithm 2, assuming that the input

rank is correctly specified. The proof sketch is given in the next subsection.

2.2
COUT™ R log n
> oH

Theorem 4.2. There exist universal constants c, c1, co such that if p . , with prob-
nyAng
ability at least 1 — c;n~C2, the initialization Z1 € C satisfies
1 % 1 *
d(Z*,77) < Vor (4.13)

S 3 max(y2r2k2, urlogn)

Moreover, there exist universal constants cs, c4, cs, cg such that if p

’

n1 Ang

when using constant step size 1/oy with n < 2042 and initial value Z' € C obeying (4.13), the
WATAR
51



kth step of Algorithm 2 with A\ = 1/2 satisfies

with probability at least 1 — c5n™ 6.
Remarks.

(i) After each update, the distance of our iterates to Z* is reduced by at least a factor of 1 —

O(1/12r2K3).

(ii) Hence, the output 7 satisfies d(f , Z*) < ¢ after at most

[2 log ! (1/(1 — 9T596 : g)) log (\/0_;5/45” iterations.

4.2.1 Proof Sketch

Our proof idea is of the same nature as the analysis in Candes et al. [2015b]; Zheng and Lafferty
[2015]. We show two appealing properties when sufficient entries are observed. First, our spectral

initialization produces a starting point within the O(c}) neighborhood of the solution set.

cur?k?logn

Lemma 4.1. There exist universal constants c,cy,cas, such that if p > then with

niy A ng
probability at least 1 — c¢yn~ 2,

1
d(zY, 7%y < d(ZY, z2%) < VT

r

To demonstrate this, we exploit the concentration around the mean of p~ 1P (X™). See Sec-
tion for the proof. Using this lemma, we can immediately show that Z* and all other elements of

S are contained in the feasible set (4.9).

Corollary 4.1. With probability at least 1 — cyn™%, || 2%y o, < \/ 57250 || 2°).
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The second crucial property is that f(Z) is well-behaved within the O(4/o}) neighborhood,
so that the iterates move closer to the optima in every iteration. The key step is to set up a local

regularity condition [Candes et al., 2015b] similar to Nesterov’s conditions [Nesterov, 2004].

Definition 4.3. Let Z = arg min }Z —Z H - denote the matrix closest to Z in the solution set.

ZeS |
We say that f satisfies the regularity condition RC' (e, «v, B) if there exist constants «, (5 such that
forany 7 € C satisfying d(Z, Z*) < €, we have
> |- =112 1 2
(V(2),Z2-2Z)> ~o7 |Z = Z||p+ 2= IV /(D)
« Bo7y
Using this condition, one can show the iterates converge linearly to the optima if we start close

enough to Z*.

Lemma 4.2. Consider the update ZF1 = P <Zk — (%Vf(Zk)). If f satisfies RC (g, a, ),
d(ZF,2*) < e and 0 < pu < min(«/2,2/), then

2
d(ZF 70y <\ 1= Lz, 7).
oK

The following lemma illustrates the local regularity of f(Z). Nesterov’s criterion is established
upon strong convexity and strong smoothness of the objective. Here we show analogous curvature
and smoothness conditions holds for f(Z) locally — within the O(,/oF) neighborhood — with high
probability. Interestingly, we found that to show the local curvature condition holds, it suffices to
set A = % The proof can be found in Section 4.6.3, for which we have generalized some technical

lemmas of [Chen and Wainwright, 2015].

Lemma 4.3. Let the regularization constant be set to X = % There exists universal constant

cmax(p2r?k?, prlogn)

¢, c1, co, such that if p > , then f satisfies RC’(@, 512/99, 13196u2r2ﬁ),

n1 A n9
with probability at least 1 — cyn™ 2.
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4.3 Related Work

Matrix completion is one instance of the general low rank linear inverse problem

find X of minimum rank such that A(X) = b, (4.14)

where A is an affine transformation and b = A(X™) is the measurement of the ground truth X™.
Considerable progress has been made towards algorithms for recovering X™* including both convex
and nonconvex approaches. One of the most popular methods is nuclear norm minimization, a con-
venient convex relaxation of rank minimization. It was first proposed in [Fazel, 2002; Recht et al.,
2010], and analyzed under a certain restricted isometry property (RIP). Subsequent work clarified
the conditions for reconstruction, and studied recovery guarantees for both exact and approxi-
mately low rank matrices, with or without noise [Candes and Recht, 2009; Candes and Tao, 2010;
Negahban and Wainwright, 2012; Chen, 2015]. One significant advantage for this approach is its
near-optimal sample complexity. Under the same incoherence assumption as ours, Chen [2015]
establishes the currently best-known lower bound of O(urn log2 n) samples. Using a closely re-

lated notion of incoherence, Negahban and Wainwright [2012] show that if X™* is “«a-nonspiky”

. X* .
with W < \/%7”2, then O(a2rn logn) samples are sufficient for exact recovery. However,
” )

convexity and low sample complexity aside, in practice the power of nuclear norm relaxation is
limited due to high computational cost. The popular algorithms for nuclear norm minimization
are proximal methods that perform iterative singular value thresholding [Cai et al., 2010; Tomioka
et al., 2010]. However, such algorithms don’t scale to large instances because the per-iteration
SVD is expensive.

Another popular convex surrogate for the rank function is the max-norm [Srebro et al., 2004;
Foygel and Srebro, 2011], given by [|X|| = miny_ ;7 [[Ullg o [V [|2,00- For certain types of
problems, the max-norm offers better generalization error bounds than the nuclear norm [Srebro
and Shraibman, 2005]. But practically solving large scale problems that incorporate the max-norm

is also non-trivial. In 2010, Lee et al. [2010] rephrased the max-norm constrained problem as an
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SDP, and applied Burer-Monteiro factorization. Although this ends up with an {5 o, constraint
similar to ours (4.9), we emphasize that the constraint plays a different role in our setting. While
[Srebro et al., 2004; Lee et al., 2010] use it to promote low rank solutions, our purpose is to
enforce incoherent solutions; and experimental results suggest that one can drop it. Moreover, the
convergence of projected gradient descent for this problem was not previously understood.

In a parallel line of work, the problem of developing techniques that exactly solve nonconvex
formulations has attracted significant recent research attention. In chronological order, Kesha-
van et al. [2010] proposed a manifold gradient method for matrix completion. They factorize
X* = U*s*V*T, where U* € R™*" UTU = nil,, and V* € R™2%" VTV = noly,.
Similar to our definition of S, the equivalence classes of U* and V* are Grassmann manifolds
of r dimensional subspaces. The authors then minimize the nonconvex objective F'(U,V) =

2

Pq(US vi—-X *)|| . over the manifolds. In each iteration, U and V' are updated

min g Rrxr
along their manifold gradients, followed by the update of the optimal scaling matrix S. This
algorithm can exactly exactly reconstruct the matrix, though the convergence rate is unknown.
However, its per-iteration update also has high computational complexity, see Section 4.4 for de-
tails. There are other manifold optimization methods for matrix completion including [Boumal
and Absil, 2011; Mishra et al., 2013; Vandereycken, 2013].

In the same year, Jain et al. [2010] suggested minimizing the squared residual |.A(X) — b||?
under a rank constraint rank(X) < r. While this constraint is nonconvex, projection onto the
feasible set can be computed using low rank SVD. Under certain RIP assumption on .4, Jain et al.
establish the global convergence of projected gradient descent for (4.14). This algorithm is named
Singular Value Projection (SVP). Yet in the setting of completion, only experimental support for
the effectiveness of SVP is provided. More importantly, SVP also suffers from expensive per-
iteration SVD for large scale problems.

Keshavan [2012]; Jain et al. [2013] further analysed the alternating minimization procedure
for (4.14). AltMin factorizes X = UV | where U € R™*" and V € R"2*" and alternately

2
solves HA(U VT) — bH2 over U and V/, while fixing the other factor. The authors obtain sample
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complexity bounds with kS, 71 K0 dependency, respectively. In 2014, Hardt [2014] improved the
bounds to 2x2. Notably, all these works assume the use of resampling—independent sequences
of samples .,k = 1,2,.... In other words, in every iteration we can sample the true matrix
under a certain Bernoulli model independently. However, in practice €2 is usually given and fixed.
To get around the dependence on the sample sets, they partition €2 into a predefined number of
subsets of equal size. However, sample sets obtained by partitioning are not independent, and
partitioning, if used in practice, does not make the most efficient use of the data. Thus, Hardt and
Wootters [2014] considered a new resampling scheme. They assume a known generative model of
{Q4}, where each (2, is obtained under a Bernoulli model with probability p, p = > ;. pg and
Q = UpQ. While not practical, under this assumption the authors obtain a sample complexity
that is logarithmic in .

Another theoretical disadvantage of the resampling scheme is that the sample complexity de-
pends on the desired accuracy ¢, as established by [Keshavan, 2012; Jain et al., 2013; Hardt, 2014;
Hardt and Wootters, 2014]. As the accuracy goes to zero, the sample complexity increases. In
contrast, our algorithm doesn’t require resampling, and the sample complexity is independent of ¢.

In 2014, Candes et al. [2015b] proposed Wirtinger flow for phase retrieval. Wirtinger flow
is a fast first-order algorithm that minimizes a fourth order (nonconvex) objective, geometrically
converging to the global optimum. While previous work [Candes et al., 2015a, 2013; Candes and
Li, 2014] lifts the phase retrieval problem into an SDP where the solution is rank one, this work
bridges SDP and first-order algorithms via the Burer-Monteiro technique. It has inspired further
research on related topics; last year, the authors of [Zheng and Lafferty, 2015; Tu et al., 2016; Bho-
janapalli et al., 2016a; Chen and Wainwright, 2015] considered factorizations for (4.14), assuming
X* is semidefinite, and proved global optimality of first-order algorithms under appropriate initial-
izations. Tu et al. [2016] have extended this algorithm to handle rectangular matrix via asymmetric
factorization, and have shown exact recovery of X*, assuming A satisfies a certain RIP. They use

lifting implicitly, factorizing X = ZUZ‘I and applying gradient updates on both factors Z;; and
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Zy simultaneously, with the nonconvex objective function

1 2 N 2
T 7 :-H 220 — X* —HZTZ _zlz H . 41
9(Zy, Zy) 2pPQ(UV )F+4 viv = 2ZvZv|, (4.15)

Their proof strategy also shows convergence of Z in the lifted space. For the specific case of matrix
completion, Chen and Wainwright [2015] obtained guarantees when X ™ is semidefinite. Our work
generalizes the results obtained in [Tu et al., 2016; Chen and Wainwright, 2015], extending the
recent literature on first-order algorithms for factorized models.

After completing this work we learned of independent research of Sun and Luo [2015], who
also analysed a gradient algorithm for rectangular matrix completion. Their formulation is similar
to ours, with additional Frobenius norm constraints on the factors. The authors established a sam-
ple complexity of O(r"k5) observations; in comparison our bound scales as O(r2#2). The authors
also analyzed block coordinate descent type alternating minimization, which cyclically updates the
rows of U and then the rows of V', showing exact recovery of this algorithm without resampling.
Recent independent work of Yi et al. [2016] analyzes a gradient scheme for Robust PCA. Under
the setting of partial observation without corruption, this is the standard matrix completion prob-
lem. In other related work, [Zhao et al., 2015; Wei et al., 2016] also study nonconvex optimization

methods for matrix completion, using algorithms that still require low rank SVD in each iteration.

4.4 Experiments

We conduct experiments on synthetic datasets to support our analytical results. As the column
space regularizer and incoherence constraint of our gradient method (GD) are merely for analytical

2
purpose, we drop them in all the experiments; simply optimize the /o loss % HPQ (ZZ = Y™) s

We compare GD with SVP, Opt Space, nuclear norm minimization (nuclear) and trust region
methods on Riemannian manifolds (t rustRegion). For nuclear, we rescale the standard
objective to be

min o [Pa(X = X[} + 1], @.16)
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Method Complexity

GD 2mr +m + n’r + 4nr
SVP O(nr)
optSpace O(mr3 + n%r? 4+ nrt + 1)
nuclear O(n3)
AltMin  O(mr?)

Table 4.1: Matrix completion: per-iteration computational complexities of different methods.

where A = 0 will enforce the minimizer fitting the observed values exactly. We use ADMM to
solve (4.16). It is based on the algorithm for the matrix approach in [Tomioka et al., 2010], and
can neatly handle the case A = 0. We emphasize there is no computational difference between
cases whether ) is zero or not. All methods are implemented in MATLAB. We use the toolbox
Manopt for trustRegion [Boumal et al., 2014] and the implementation of Opt Space from
the authors. For A1tMin, we use the same sample sets in every iteration. The experiments were

run on a Linux machine with a 3.4GHz Intel Core 17 processor and 8 GB memory.

4.4.1 Computational Complexity

Table 4.1 summarizes the per-iteration complexity of all the methods for completing a n X n ma-
trix. Since M* is a sparse matrix with m nonzero entries, and we have dropped the regularizer
and constraint, our method GD only needs 2mr + m + n2r operations to compute the gradient,
and 4nr operations to update the iterate. The computation of nuclear is dominated by singu-
lar value thresholding and updating the objective value, which require the O(n?’) cost full SVD.
Similarly, SVP needs O(n2r) operations to compute the rank-r SVD for low rank projection. For
OptSpace, O(mr + n?r+ nr2) operations are needed to compute the manifold gradient and line
search. The most expensive part is to determine the optimal scaling matrix S € R"*", which boils
down to solving a 72 by 2 dense linear system. In total O(mr?’ +n2r2 4 nrt + 7"6) operations are
used to construct and solve this system. For A1tMin, in every iteration we have to solve (11 +mn2)
linear systems of size  x r. See [Sun, 2015] for the exact formulation. The time cost for each

iteration is O(mrQ). One can see that GD reduces the computation than the others. Though the
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dominating terms for SVP and GD are in the same order, in practice the partial SVD are more

expensive than the gradient update, especially on large instances.

4.4.2 Runtime Comparison

We randomly generated a true matrix X * of size 4000 x 2000 and rank 3. It is constructed from the
rank-3 SVD of a random 4000 x 2000 matrix with i.i.d normal entries. We sampled m = 199057
entries of X™* uniformly at random, where m is roughly equal to 2nrlogn with n = 4000 and
r = 3. For simplicity, we feed SVP, Opt Space and GD with the true rank. For all these methods,
we use the randomized algorithm of Halko et al. [2011] to compute the low rank SVD, which is
approximately 15 times faster than MATLAB built-in SVD on instances of such size. We report
relative error measured in the Frobenius norm, defined as ||)? — X*||p/ || X*||p- For nuclear,
we set A = 0 to enforce exact fitting. The convergence speed of ADMM mildly depends on the
choice of penalty parameter. We tested 5 values 0.1, 0.2,0.5, 1, 1.5 and selected 0.2, which leads to
fastest convergence. Similarly, for SVP, we would like to choose the largest step size for which the
algorithm is converging. We evaluated 15, 20, 30, 35, 40 and selected 30. The step size is chosen
for GD in the same way. Five values 20, 50, 70, 75, 80 are tested for 1 and we picked 70. For
OptSpace, we compared fixed step sizes 0.50.10.050.010.005 with line search, and found the
algorithm converged fastest under line search. Figure 4.1a shows the results. GD is slightly slower
than t rustRegion and faster than competing approaches.

To further illustrate how runtime scales as the dimension increases, we run larger instances of
size 10000 x 5000 and 20000 x 5000, where the true rank is 40. The parameters are selected in the
same manner, and we terminate the computation once the relative error is below le 9. We report
the results of A1tMin GD, SVP and trustRegion in Figure 4.2a; nuclear, OptSpace do
not scale well to such sizes so that we didn’t include them. The runtime of A1tMin scales the

slowest, while the runtimes of GD and t rust Region increase slower than SVP.
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Figure 4.1: (a) Runtime comparison where X™* is 4000 x 2000 and of rank 3. 199057 entries are
observed. (b) Magnified plots to compare other methods except nuclear.

4.4.3 Sample Complexity

We evaluate the number of observations required by GD for exact recovery. For simplicity, we
consider square but asymmetric X*. We conducted experiments in 4 cases, where the randomly
generated X is of size 500 x 500 or 1000 x 1000, and of rank 10 or 20. In each case, we compute
the solutions of GD given m random observations, and a solution with relative error below le 6 is
considered to be successful. We run 20 trials and compute the empirical probability of successful
recovery. The results are shown in Figure 4.2b. For all four cases, the phase transitions occur
around m ~ 3.5nr. This suggests that the actual sample complexity of GD may scale linearly with

both the dimension n and the rank r.

4.5 Discussion

We propose a lifting procedure together with Burer-Monteiro factorization and a first-order algo-
rithm to carry out rectangular matrix completion. While optimizing a nonconvex objective, we

establish linear convergence of our method to the global optimum with O (-2 k21 max(p, log n))
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Figure 4.2: (a) Runtime growth of A1tMin, trustRegresion, GD and SVP. (b) Sample com-
plexity of gradient scheme.

random observations. We conjecture that O(nr) observations are sufficient for exact recovery,
and that the column space regularizer can be dropped. We provide empirical evidence showing
this simple algorithm is fast and scalable, suggesting that lifting techniques may be promising for

much more general classes of problems.

4.6 Proofs

4.6.1 Technical Lemmas

Another way of writing the objective function is

2m

£(7) = Qipl; ((Al, 7277y - bl>2 v 2 ”ZTDZH;,
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where [ is an index of {2, A; is a matrix with 1 at the corresponding observed entry and 0 elsewhere.

Let H = Z — Z, the gradient can be written as

r
VﬂZ):;§:<Q%ZZTy—m>Qh+Afﬂ?+ADZ<ZTDZ)
=1
1 2m -
-~ S <<Al, HZ' +ZHT + HHT>> (A + A )(Z + H) + AT
=1
We will use the following facts throughout the proof:

Zly o =125y < |/ ——0o* 4.17

H ||2,oo H HQ,OO = n /\n2017 ( )
ur

H <3 x 4.18
Il <310, @1
(A4 + AB,C) = (A, BCT + CBT), (4.19)
Z 17 is positive semidefinite, H ' Z is symmetric. (4.20)

Inequality (4.17) is a direct result of Definition 4.1. To see (4.18), note that [|H||y o <

1Z]l.00 + [|Z]l5.0 < y/nf%;QO'l + /A 01> and |0 — o] < 507 by the discussion of

initialization in Section 4.6.2. For (4.20), it holds that

argmin  ||Z — Z*R||% = AB",
RRT=RTR=I

where AAB is the SVD of Z* ' Z. Clearly, Z 17 is positive semidefinite, and H 7 =717 -
7Z'7=BABT ~Z'Zis symmetric.
Next, we list several technical lemmas that are utilized later. We will use ¢ to denote a numerical
constant, whose value may vary from line to line.
1
YAl UX2R
Lemma 4.4. For any Z of the form Z = = . |» where U,V, R are unitary matrices
Zy V2R
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and Y. = 0 is a diagonal matrix, we have

HZZT _ Z*Z*THF <9 HUZVT _ U*E*V*THF .

Proof. Recall that
1
A (’} U*ry*2

Z* = =
z5| v

where X* = U*S*V* . We have
’2

F

2 2 2
_ HUEUT _ U*E*U*THF + HvzvT _ V*Z*V*THF 42 HUEVT _ U*E*V*THF ,
4.21)

and
2 2
HUEUT _ U*Z*U*TH + HvzvT _ V*E*V*TH
E F . (4.22)
= 2SI} + 11 - (= U0 S U+ VTV T s T

‘We can obtain the lower bound

<27 UTU*TZ*U*TU+ VTV*TZ*V*TV>
r
_ ZUZ' (UTU*TZ*U*TU i VTV*TE*V*TV>
i=1
T r
= Y a Y ot (UTUNE+ (v TVIE) (4.23)
i=1 k=1

(24

T T
Y o> ok 2(UTUN) VIV,
=1 k=1

= 2%, UTUSTVET Y,

Y
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Combining (4.22) and (4.23), we obtain

2 2
HUZUT _ U*Z*U*THF n HVEVT _ V*E*V*THF

< 2 (ISl + 1547 - 22, UTo T2V TY))

9 2 - - (4.24)
— 9 (HUEVTHF + HU*E*V* HF owxvT U Ty >)
2
~ 9 HUEVT — Ul ’F
Plugging (4.24) back into (4.21), we obtain the lemma. ]

Recall that n = max(nq, ng). We will exploit the following two known concentration results.

Lemma 4.5 (Chen [2015], Lemma 2). For any fixed matrix X* € R™*"2, there exist universal

constants c, c1, co such that with probability at least 1 — cyn~ 2,

Hp_lpg(X*) - X"

logn logn
SC( D ||X*||oo+ D HX*Hoo,2>'

Lemma 4.6 (Candes and Recht [2009], Theorem 4.1). Define subspace
T= {M eR™M>XM2 . N\ =X + YV*Tfor some X and Y} : (4.25)

Let P be the Euclidean projection onto T'. There is a numerical constant ¢ such that for any
c prlogn

————, then with probability 1 — 3n_3, we have
52 niy A\ ng

6€ (0,1, ifp>
p t|PrPoPr — pPr|| < 0.

Lemma 4.7 upper bounds the spectral norm of the adjacency matrix of a random Erd&s-Rényi
graph. It is a variant of Lemma 7.1 of Keshavan et al. [2010], which uses known results of Feige

and Ofek [2005].

Lemma 4.7 (Chen and Wainwright [2015], Lemma 9). Suppose that Q0 C [d] x [d] is the set
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of edges of a random Erdds-Rényi graph with n nodes, where any pair of nodes is connected

with probability p. There exists two numerical constants c1, cy such that, for any § € (0,1], if

logd
> 615;)5 , then with probability at least 1 — %d*4, uniformly for all x,y € R" it holds that
1 d
Pt ) wyy < (L+0) [yl + e . [1z]l2 (Y]] - (4.26)
(i.1)€Q

We refer readers to [Keshavan et al., 2010] for a complete proof, in particular noticing that one
can choose p large enough so that the constant factor in the first term in (4.26) is only 1 + 9.
Lemma 4.8, 4.9 and 4.10 are direct generalizations of Lemma 4 and 5 of [Chen and Wainwright,

2015].

Lemma 4.8. There exists a constant ¢ such that, for any 6 € (0, 1], if

2

2.2
c log(ng +n r°K
p> < max ( g(n 2)7M

ny + n2 n1 Ang

):

52

then with probability at least 1 — %(nl + n9) ™4, uniformly for all H such that [Hllg,00 <

_pr o
34/ miAng 01 We have

2
=[Pt BT | < (1 0) I + 00 1H

Proof. 1t holds that

p o [Pt = 07 S gt
(i,j)€Q ) ) 4.27)
SRR LN Ll
(i.7)eQ

Since Q is a reduced sampling of Y € R("1172)x(n1+12) ypder a Bernoulli model, Lemma 4.7

c1 log(ny+n9)

is applicable here. Assume p > =5 (n1+12)

, we then have with probability at least 1 — %(nl +
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ng) ™4, forall H such that || H||y o, < 3,/7t5=07,

2 2 2
O b S D 101 N Y
1,j)€
a2 ) e ),
i€[n1+no) i€[n1+no)

< (10 [ HE + o/ 2 H YR HIE

(b) 9 9 81c312r20%2 (ny + ng)

< ||H||F(<1+5>||H||F+\/ ) .

where (a) follows from Lemma 4.7 and (b) follows from [ H[[5 o < 3, /7! /\nQ o7,

1620%;127"2/{27
§2(n1Ang)

Let us further assume p > , where v = n/(n1 A ng) is a fixed constant, then we

can bound
p L HPQ(HHT)H; < |H|% ((1 +0) | H |3 + 5a;> . (4.29)

log(ni+ng) p2r2kx?

ni+ng O’ niAng

The final threshold we obtain is thus p > 5% max ( ) for some constant c. [

1
cosn , then with probability at least 1 — 2n1_4 -
n2

Lemma 4.9. There exists a constant c, if p >
ni

2n2_4, uniformly for all matrices A, B such that AB" is of size (nq + na) x (nq + ng),
2
-1 T . 2 2 2 2
pt||Pa(aB)|[, < 2nmin { JAIF I1BIB .  IBIF 1413  }

Proof. Let Qy, = {j : (i,j) € L2} denote the set of entries sampled in the ith row of ABT. Note
that because of the structure of €2, at most n9 entries are sampled at the frist 1 rows, and at most

n1 entries are sampled at the rest no rows.
clogno
n2

Using a binomial tail bound, if p > for sufficiently large c, the event max; o [n1] |Qyz | <

clogn

2pno holds with probability at least 1 —nq 1 Similarly for the rest ng rows. Hence, if p >

for some constant ¢, with probability at least 1 — n1_4 — Ny 4, we have MAX; 11 4] |le| < 2pn.

ny A ng
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Conditioning on this event, we then have for all A, B of proper size,

9 ni1-+no
p Pt = T Y ST A By
i=1 jeQy
_1n1+n2 9 2

< Y 4al, X (B,

=1 jEQyz

1n1+n2 9

< p ; A()‘Qze[Tznlﬁi{TLQHQEMBHQ’OO

2 2
< 2n|AllF 1Bll2,0 -

Similarly we can prove with probability at least 1 — n1_4 ) 4

p|[Pa(aBT|[}, < 2n1BI3 1413 oo

]

The following lemma establishes restricted strong convexity and smoothness of the observation

operator for matrices in 7.

Lemma 4.10. Let T be the subspace defined in (4.25). There exists a universal constant c such

. c prlogn
that, if p > —
v = 82 nq A ng

, with probability at least 1 — 3n73, uniformly for all A € T, we have
p(1=0) | AlF < [Pa(A)lF < p(1+0) |AlF. (4.30)
Consequently, uniformly for all A, B € T,
P~ (Pa(A), Pa(B)) — (A, B)| < 8 || Allp 1Bl - (4.31)
Proof. By Lemma 4.6, with probability at least 1 — 3n~3, for any X € R™*"2 it holds that

p(1 =0) |X|[p < [IPrPoPr(X)|F < p(1+6) [ X]|F- (4.32)
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Let A be a matrix in 7. Rewriting ||PQ(A)||% = (PaPr(A), PaPr(A)) = (A, PrPoPr(A)),

and using the Cauchy-Schwarz inequality and (4.32) we can bound
IPa(A)IE < p(1+ ) Al (4.33)

In addition, we have

1Pa(A)F = (A, PrPoPr(A))
= (A, PrPaPr(A) — pPr(A) + pPr(A))

) (4.34)
> — Al p | (PrPoPr — pPr)(A)||p + 2 |All 7

a) 9
> p(1=29)[[Allz,
where (a) follows from Lemma 4.6. Combining (4.33) and (4.34) proves (4.30). To show (4.31),

let A" = ﬁ and B’ = ”éyﬂ . Both A’ + B’ and A’ — B’ are in T. We have
F F

0 2
(Pa). Pa(s) = 1{ [Pt + ) - o’ - 53 }

1
< Z{(l +8)p|| A+ B'||[5 — (1-op |4 - B||7 } (4.35)

_ %1{2579 <HA/H37+ HB/H@ +4P<A/’B/>}

where () follows from (4.30). Thus, we have
p~H(Pa(A), Pa(B)) = p~ Al p Bl (Pa(A"), Pa(B) < 8| Allp | Bllp + (A, B). (4.36)
Similarly, we can show

p HPo(A), Pa(B)) > =4 |Allg | Bl ¢ + (A, B). (4.37)
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Last, we want to show the projection onto feasible set C is a contraction.

Lemma 4.11. Let y € R" be a vector such that ||y||o < 6, for any x € R". Then

HPII l,<6(® yH < lz =yl

Proof. 1f ||z||9 < 6, then 7?||,H2§9(x) = x. Otherwise PH,”zSg(x) = 0z, where T = W Write

Yy = (ny)i + PxL (y), we have

Fw) = 0—yTH2+ [P, 438)

o7 — 1 = oz — T2

It suffices to show
(0 —y'2)? < (| —y' ) (4.39)
If y ' & < 0, then (4.39) holds because ||z|| > 6. If y 'z > 0, (4.39) still holds since ||z| > 6 >

lyll = y'z. O

4.6.2 Initialization

Proof of Lemma 4.1

Let § denote the upper bound of ||p~1Pg(X*) — X*|| asin Lemma 4.5, and let o1 > ... > o,

denote the singular values of p’lPQ(X *). By Weyl’s theorem, we have
lo; — o] <4, i€n]. (4.40)

Note this implies 0,41 < d,as ox,; = 0.

r+1
By definition, Z¥ = [U; V]E2 where UXV | is the rank-r SVD of p~ P (X*). According

69



to Lemma 4.4, one has

HZOZOT _ Z*Z*THF < 2 HUEVT - x|,

NS

Q@HUEVT _X*

) (4.41)

IN

/21 (HUEVT —p P (X

+ Hp_lpg(X*) —X*

,\
INS

2v/2r (8 + )
A4N2r6,

where (a) holds because rank(UXV T — X*) < 2r, (b) holds since HUZVT — p 1P (X*)

or41 < 0.

Let H = ZY — Z9. We want to bound d(Z", Z*)? = HH||% According to (4.20), H'Z" is
symmetric and Z 0770 is positive semidefinite. Hence we can write

0,07 |1
|2°2°" 727

F
0T | Z04T T|1?

—|\#z*" + 217 + 1 HF

—tr ((HTH)2 C2HTZ0? 4 2(HTHY(Z0' 20 + 4(HTH)(HTZO)>

(4.42)
—tr ( (HTH + \/§HTZO)2 +(4—2V2)(H"H)HTZ% + 2(HTH)(ZOTZO))
> (4 -2V (H H)(HTZ) +2(H H) (ZoTZO))

Y

:(4 B 2\/5) r ((HTH)(ZOTZO)> + (2\/5 — 2) HHZOTHQ

. . =0 - . . T=0 - ... .
where in the second line we used that 7 ' Z¥ is symmetric. Besides, as Z°  Z¥ is positive semidef-

inite, (4 — v/2) tr((HTH)(ZOTZO)) is nonnegative. Therefore,

9 _ 2
222" — 72z 7| > @eva-2)|[HZT | s az-nor|HIE. @43
F F

70



Combining (4.41) and (4.43), it follows that

2
0 a2 HZOZO B Z*Z*T”F 8r 2
d(Z20, 7)? < 52. 4.44
ST e S ey 4
Therefore, it suffices to show
A0 < 52
T (V2-1Doy
2
(@) r [logn logn
= c— X0 + X[ 2
AN P , (4.45)
(0) 0’1*2 prlogn urlogn
< cr—; |V
or \ p(ny Anog) p(n1 A ns)
1
S Eo-:v

where in (a) we replaced 0 using Lemma 4.5, and (b) holds since by our incoherence assump-

tion (4.3) we have

* Sk & T * * * - * x* MT
= < i N < <
X% = stV < otmax o, | [V ]| < o110 a0 1V .0 < o -
(4.46)
(c)
X o2 = HU*Z*V*TH < o} U*V*TH < ot | —— (4.47)
) 00,2 00,2 n1 A ng
Note that for (¢) we used HABT ) < [[All2,0 I1B]-
Hence, to obtain d(Z 0z *)2 < 1—1607’f , it suffices to have
> max c,ur?’/2/<alogn7 cur?x?logn _ cpr?i? logn' (4.48)
ni A n9 ni A ng niy A ng

Since P is just row-wise clipping, by Lemma 4.11 we have

2

2
d(Z\, 77V < HPC(ZO) -7, < HZO -7
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Proof of Corollary 4.1

By the incoherence assumption, we have [[Z*ly o, < 4/ n1MArn2 o7, see (4.17)

show 207 > 0’1*. From the above discussion, we can see that

By Wely’s theorem, we have |01 — 07| < %a,’f. As aresult, 201 > o7.

4.6.3 Regularity Condition

. It suffices to

Analogous to the restricted strong convexity (RSC) and restricted strong smoothness (RSS), we

show that with high probability our objective function f satisfies the local curvature and local

smoothness conditions defined below.

e Local Curvature Condition

There exists constant c1, co such that for any Z € C satisfying d(Z, Z*) < zlp /o¥,

(VH(Z), H) > e |H||% + s HHTDZH;.

e Local Smoothness Condition

There exist constants c3, ¢4 such that for any Z € C satisfying d(Z, Z*) < zlx“ /oy,

112
IVF(2)|% < cs||H|% + e HHTDZHF.
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Proof of the Local Curvature Condition

2m
_ % ( (AL HZ +ZHT + HHTY - (A +AZT)(Z+H),H>> FAt(H'T)

1
01 [~ T T
- ( (Aj,HZ +ZH'" +HH'"). (A, HZ +ZH' + 2HHT)> + Atr(H'T)
=1

a’ 2
1 12771 A B 2m
— {Z(AZ,HZ +ZH")? +22 (A, HHTY? +Y " 3(A), HZ —|—ZHT>(A1,HHT>}
p =1 =1 =1
+Atr(H'T)
b3 .

@ 1{ 2 23 §2m (A, HZ' +ZHT)? 2§mj2<A HHT)? } +At(H'T)
- a - T = Y ) r
D V2 : :

_ {( 32 2——I;Q}Jr/\tr(HTF)

(#i7)
> (— - §b2> + Atr(H'T)
=T

4

S R P L SR
(4.49)

where we used equation (4.19) for (i), the Cauchy-Schwarz inequality for (i), inequality (a —
b)? > % — b2 for (i44). Finally, in the last line we used Zlfl(Al, M)? = HPQ(M)”?7

— _ 2
We first lower bound %p_l HPQ(HZT + ZHT)HF. By the symmetry of €2, it is equal to

_ _ 2
p] HPQ(HUZXT/ + ZUH‘;) HF which expands to

v PatiZ)||) + 07t [Pa@o )| + 2 PatyZ)), PaZum])). @50)
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As both H, UZ ; and 7 UH{,r belong to 7', we use Lemma 4.10 to lower bound above three terms,

respectively. This gives us
1 T 2
! HPQ(HZT + ZHT)HF
_ 2 _ 2 _T — _ _
> (-0 ([ ozl + fomd]} ) + 22l 2om) - sl 2omT],
T 2 o
> (1—6) (HHUZH(F + HZUH‘IHF> +2HyZy Zy HY)
—T112 _ T 2
-8 ([|ozv |+ 20|
( Uty F+ Uy .
() * 2 2 AR 2T a
> (1= 20)07 (IHg | + | BvIIE) + 20Hy 2V, Zy Hy))

2 A
= (1—20)op |H|% + 2(HyZy, Zy Hy)).
4.51)

—_T2 _ 2
where we used HHUZ‘T/HF > o) HHUH% and HZUH‘IHF > o) HHVHQF for (iv).

Until now, we obtain

IR 5 P
(VH(Z), H) = (1= 20)of ||} + 2(Hy 20, Zu ) + Au(H ) = 2pt | Pa(aT)||

(4.52)
Next, we lower bound 2(Hy;Z ‘T/, ZyH) + Ae(H 'T) together. Rewriting
T = 0 ZyH{|_ 1 _ _ _
2HyZy. ZyHy) = (H, | UV Z) =1 5ZHT - DZH T D)2),
ZyH} 0 (4.53)

2727~ 77" =HHT +ZHT + HZ',
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and plugging in ' = DZZ1 DZ, we then have

2HyZy, ZyHy) + Ae(H ' T)

—~
S
~—

—~
=
~

—
o
~

v

1 — _ _ __ __ _
(H,5(ZH' - DZH'D)Z) + \(H,D(2Z" — ZZ"\DZ) + \MH,D(ZZ ' \DZ)
Y \H,D(ZZ \DH)
1 — _ _ _ _ 2
(H,5(ZHT = DZH" D)Z) + \H,D(27 ZZYDZ) + \ ”ZTDHHF
_ 2 1 — _ _ _ _ _

A HZTDHHF +(H,5(ZH" = DZH D)Z + \D(HH " +ZH + HZD(Z + H))
_ 2 1 _112 2 _

A ”ZTDHHF +5 HHTZHF +A HHTDHHF 43 w(H T DHHT DZ)

+ ()\ - %) tw(H'DZH DZ)

_ 2 _ 2 2
A HZTDHH L2 HZTDH + 3HTDHH _ Ty HHTDHH
> P2 P2 F

2 _ _
41 HHTZH + (A=) w5 DZHT DZ)
2 F 2
A= 2 1 _ _
5 HZTDHHF - g)\ IH|% + <>\ - 5) w(HTDZH DZ)

(4.54)

Equality (a) holds because Z'DZ = 0. We plug in (4.53) in (b). For (c), we use Z'DZ =

0 and that H'Z is symmetric. Finally, we take A = % and use Lemma 4.8 to upper bound

o s

2

15T 2 7 ) )
2 4 4 2
(VI(2),H) 2 (1= 20)0f |HI%+ 112 DH|[ — L IHIE = S(00+8) 171l — Soor | HI

5 17 s 5 o LiaT |2

= ((1 — 20)o7 — §(E +0) [|H|F - 550?) 121 + 5 ”Z DHHF'

(4.55)
For simplicity, we take 6 = %. We also have ||H ||% < %aﬁ. This leads to
227 1=71 2
2),H) = sor|[HIE+ £ |2 pa| 4.56
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Note that this lower bound holds with high probability uniformly for all Z € C such that
d(Z,7*) < %\/a—,’f, since Lemma 4.8 and 4.10 hold uniformly.
When the ground truth X™* is positive semidefinite, we don’t need to do lifitng nor impose
the regularizer. Using Lemma 4.10, we can lower bound 4 5D HPQ (H z' +ZH T H (1—
Sox | H|> 7 directly. Taking proper constants, we can obtain the standard restricted strong convex-
ity condition:

(Vf(Z).H)Z o |H|E-

Proof of the Local Smoothness Condition

To upper bound ||Vf(Z)||2F = max) | =1 (Vf(Z),W)|?, it suffices to show that for any

(Vf(Z),W)|? is upper bounded. We first write

n X r W of unit Frobenius norm,

(VI(Z),W)
2m
_1 3 ( AL HZ +ZHTY + (4, HHT>) (A + AD)Z + H), W) + Au(WT)
=1
2m

0ls (¢4, BZ" + 20Ty + (A, HHT)) (A, W2+ ZWT) 4 (A, WHT + HWT))
=1

+Ar(WTT)

’@

’B»—t

+ (Po(HZ' +ZHT), Po(WH + HWT)) + (Po(HHT ), Po(WH + HWT)>}

+Ar(W D),
(4.57)
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where we used (4.19) for (). Since (a + b+ ¢ +d + €)> < 5(a® + b% + 2 + d? + ¢2), we have

(Vf(2), W)

< %{(PMHZT +ZH),Po(WZ ' +ZW )2 4+ (Po(HH ), Po(WZ ' +ZWT))?

V(PoHZ +ZHT), Po(WHT + HW )2 + (Po(HHT), Po(WHT + HWT)>2}

+ 52 2 (W D)2

25 (Jpatoz” 2+ ot
=1

_ _ 2 2 —
. (‘ PoWZ' + ZWT)HF + HPQ(WHT +HWT) F) L5202 W

- @ 9 ) ®
(el Gl )
@ 3 @ .

la ~\ la la

‘PQ(ZWT)H; 42 ‘PQ(WHT)H; +2

-%(2,)’PQ(WZT)H;+2 ‘PQ(HWT)H;)

2 2
+5A %,
(4.58)

where we used the Cauchy-Schwarz inequality for (i7), and (a 4 b)% < 2(a? + b2) for (iii). We
then use Lemma 4.9 to upper bound (D, @), @, 3, ©), (7, and Lemma 4.8 for 3). Also since

|W| =1, one has

(Vf(2), W)
2 11712 4 * 2 1|2 2
< 5 (SnlHIFIZ )5 00+ (L4 0) 1HIE + 007 [ HIF) - (801 2]5 0 + 80 1H]3 0 )
+ 5N
— 400 (80|23 o + (L 0) NG+ 002 ) IHIE - (IZ]13 00 + 113,00 ) + 52 ITIE:

< 400urat (Surat + (1+6) [ H|[3 + 007 ) [ H|IF: + 572 T,
4.59)
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where in the last line we plugged in HZH2 o <y /ﬂa’f and || H|5 o, < 34 /ﬂa’f, i.e. (4.17) and
9 n ’ n

4.18).
Next, we bound
IT)% = HD(ZZT ~ZZ"\DZ + DZZTDZH;
<2 HD(ZZT - ZZT)DZH; +2 HDZZTDZH;
<o)z - 227|212 + 2120 |2 D2
up |HHT +ZHT + HZTHi 1Z)1% +2||Z|| HZTDHH; (4.60)

6 (HHHTH2 + HZHTH2 + HHZTHQ) 1Z)% +2||Z| HZTDHH2
F F F F

IN

~—
NS

— _ _ 2
6 (1HIE +21|Z)1*) 103 1212 + 2| Z)* || 2" D]

—~

_ 2
ZTDHH .
F

) 2 2 2
26 (| HI: + 401 ) 1HIF 12117 + 407

Inequality (@) holds because |AB| p < ||A]l ||B||p and || D|| = 1. To get (b), for the first term

in the 3rd line we expand ZZ T 77 T, for the second term we expand Z = Z + H and use
Z'DZ = 0. For (c), we use |AB||z < [JA|IBllp < ||All# || Bl - Last, (d) holds because

12 = 207.
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Finally, we combine (4.59) and (4.60). As before, take A = %, 0= 1%, and ||H||% < %07’5, we

obtain

IVF(2)|I%

< {400urat (8urat + (1+0) [ H|F + 607 ) + 3002 (| HII: + 40F) 212} |1 H|F

_ 2
+ 200207 ZTDH”
F
(a) * * 2 * 735 * 2 2 * 2
< S 400urof (Surof + (1+0) [H|[7 +d0F) + =0\ (| HIIF+201) ¢ 1HIIE (461)
_ 2
+ 200207 ZTDHH
F
®) 17 1\ 735 /1 29 42 =T 2
<4400 (84— + — |+ 2 (= 42 *H25*ZDHH
—{ (+256+16>+32 (16+>}’”‘71 IH]F+ 501 F

< 3209421202 | H||% + 507%

_ 2
ZTDHH ,
F

where for (a) we used || Z|| < |H| +||Z| < §\/oF + /20T < §./07, for (b) we used p,r > 1.
As before, this condition holds uniformly for all Z such that d(Z, Z*) < %I\/a_; and satisfying
the incoherence condition.
For the case X ™ is positive semidefinite, as we don’t need to impose the regularizer, standard

Proof of Lemma 4.3

Rearranging the terms in the smoothness condition (4.61), we can further bound

1= 2 2
1 HZTDHH > IV/(Z)|lF 3299
4 F 20u27“2/<oa’1* 20
IVA2)NF 128
= 13196p2r2k0t 512

or | H||%
(4.62)

2
or | H| % -
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Combining equation (4.56) and (4.62), it follows that

1 2
VfZ . 4.63

99
(V(2).H) > ¢ o7 |[HI +

Finally, by upper bounding the probability that Lemma 4.8, 4.9, or 4.10 fails, and the sample

probability p these lemmas require, we conclude that once

prlogn p2r2i? > ’ 464)

p > cmax ,
ny Ang ni/Ang

regularity condition (4.63) holds with probability at least 1 — cyn ™2, where ¢, c1, ¢ are constants.

4.6.4 Linear Convergence

Proof of Lemma 4.2

Let H* = ZF — ZF. Our iterate is Z¥+1 = Po(ZF — nV f(ZF)). Since P is just row-wise

clipping, by Lemma 4.11 we have

2 2
HPC (Zk - %wg’w) _zk g (4.65)
1 F

< HZ’“ vty -7

g1

F
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It follows that

szﬂ _ZkHQ
F

IN

A
NS

2
T, —
78— Lvf(zky - Z*
71 F

vl Splorely ot
1

1
(4.66)

2 2 2 9 1
2+ 2 |- 5
T VIZ) F o} a’

(-2 >HH’“H L Hw ol

(1= 20 I

;)

HF 601

F

where we use the definition of RC'(¢, a, 8) for (a) and 0 < n < min {«/2, 2/} for (b). Therefore,

~12
d(ZM 7%y = min || ZF = Z)]T <y /1 - 2—’7d(z’f Z%). (4.67)
’ 7S F arK ’
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Part 11

Sparse Graphs
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CHAPTER 5
FASTEST MIXING MARKOV CHAIN

The recurring theme of this thesis is to reformulate a problem so that the number of parameters
is the same as its intrinsic degrees of freedom, even if the resulting problem becomes nonconvex.
In the previous two chapters, we have studied the situation where the target matrices are of low
rank. However, in many other contexts, the matrices of interest might not be low-rank. Is there any
other structure we could exploit and apply similar methods? In this chapter, we focus on the graph
Laplacian matrix — a fundamental positive semidefinite matrix that connects graph theory, linear
algebra, numerical computation and many other related fields [Boyd, 2006; Spielman, 2010]. For
a connected graph with n nodes, the Laplacian matrix is of rank n — 1. However, when applying
Cholesky factorization — a special symmetric decomposition where the factor is lower-triangular
— to the graph Laplacian, the factors we obtained are often sparse. We consider the fastest mixing
Markov chain (FMMC) problem [Boyd et al., 2004; Boyd, 2006], where one needs to find the best
graph Laplacian matrix under certain constraints. We propose a nonconvex formulation for FMMC
based on the Cholesky factorization, and study a first order method where the sparsity of the factor

is utilized.

5.1 Graph Laplacian and Cholesky Factorization

The graph Laplacian is a core matrix representation of graph that naturally arises in many prob-
lems. It has various appealing algebraic properties and has received tremendous research interests.
For example, solving large scale linear systems is ubiquitous in scientific computing, and efficient
algorithms for solving systems in the Laplacian — more broadly, symmetric and diagonally domi-
nant matrices — have been emerging as a primitive for other numerical methods [Spielman, 2010].
Extensive studies have shown that those systems can be solved in nearly-linear time [Spielman and
Teng, 2004; Koutis et al., 2010; Cohen et al., 2014]. Our work is also inspired by the technical
advances in this field. Let us first define the graph Laplacian matrix.
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Definition 5.1. Ler G = (V, E) be a simple, undirected, weighted graph, where V is the set of
n nodes, £ C 'V x V is the set of m edges excluding self loops. We assume that v < j for any
(i,)) € E.

Let W be the weight matrix whether

wy ifedgel = (i,j) € Eorl=(j,i) € E,
Wz’j:

0 otherwise.

The graph Laplacian matrix is defined by
L=D-W, (5.1)

where D is a diagonal matrix with D;; = Z?:l Wij. Let w € R™ be the vector of edge weights,
C' be a n x m matrix such that the lth column have all zero entries except

Cil = 17 C;

gl = _17 (Zaj) € E> (52)

i.e. nodes 1 and j are connected by edge . The Laplacian matrix can also be written as
L= C’diag(w)CT, (5.3)

where diag(w) is a m X m diagonal matrix formed from w.

An important property of L is that it is positive semidefinite, where the smallest eigenvalue is
A = 01, The algebraic multiplicity of the eigenvalue O is equal to the number of connected
components of the graph. Throughout this chapter, we will assume that the graph is connected,
which implies

AL > A2 A1 > Ay =0,

1. We assume larger eigenvalues have smaller subscripts.
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The inspiration of our work comes from the line of research for fast solving linear system in
the graph Laplacian. There are two major approaches [Spielman, 2010]: variants of Gaussian
elimination and iterative methods. For Gaussian elimination methods, one first uses the Cholesky

decomposition to factorize L into the form

L=27"T,

where Z is a lower triangular matrix and has nonnegative diagonal entries.2 In particular, one
can often permute the rows and columns of L so that the factor Z is very sparse and can be
computed in nearly linear time. Popular permutation methods include minimum degree ordering
[Tinney and Walker, 1967], Cuthill-McKee reordering [Cuthill and McKee, 1969], approximate
minimum degree ordering [Amestoy et al., 1996], etc. Without an appropriate permutation, one
might observe the fill-in phenomenon: some nonzero entries that are not in L appear in Z. In the
sequel, we will assume that such good permutation is known and there is no fill-in.

In this chapter, we consider problems of choosing edge weights so that some function of L is
minimized. In particular, we look at the problem of constructing the fastest mixing Markov chain

for a given graph. We are interested in the following questions:

1. Given the Cholesky factor of a valid Laplacian, does the factor of the optimal Laplacian have

the same sparsity pattern, under the same permutation?

2. Can we build a nonconvex reformulation of FMMC, where the variable is the sparse Cholesky

factor? Can first order methods successfully find a global minimizer?
3. Will the resulting algorithm have low computational cost?

To answer these questions, the rest of this chapter is organized as follows. Section 5.2 briefly

describes the FMMC problem; more details can be found in Boyd et al. [2004]. In Section 5.3,

2. Cholesky decomposition is uniquely defined for positive definite matrix, where the diagonal entries of factors
are positive. We can extend it to positive semidefinite matrix by allowing zeros on the diagonal line, but such decom-
position might not be unique. For graph Laplacian matrix, one way to obtain a valid Z is to stop the decomposition
algorithm when the remaining matrix has dimension 2. In this case, we will have Z,,,, = 0.
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we introduce a variant of the ADMM algorithm and analyze its computational cost. Section 5.4
discusses related work. Empirical results are presented in Section 5.5. Conclusions and future

research directions are included in Section 5.6.

5.2 Problem Statement

We consider the discrete time Markov chain for sampling the nodes for a given undirected con-
nected graph GG. Each edge | € E is associated with a special edge weight w;, which is the tran-
sition probability between these two nodes. Our weight matrix is the transition matrix P € R"*"
where F;; = Pj; is the probability of transits between node ¢ and node j. The equilibrium distri-

bution is the uniform distribution 1/n1 since P is symmetric.

To ensure the matrix P describes a valid Markov chain defined on the graph, it has to satisfy
(a) the nonnegative constraint P > 0,
(b) the doubly stochastic constraint P1 =1, P = PT,
(c) the graph structure constraint P;; = 01if (i, j) ¢ E.

Let w(t) denote the probability distribution of the state at time ¢. The rate at which 7 ()
converges to the uniform distribution is determined by the second largest eigenvalue magnitude
(SLEM) of P:

p(P) = max|X(P)] = max {d2(P), —An(P)}. (5.4)

The smaller the SLEM, the faster the mixing rate.
We are interested in finding the edge probabilities that give the fastest mixing chain. Boyd et al.

[2004] show that the fastest chain and optimal SLEM can be exactly computed by the following
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program:

subjectto P >0
(5.5)

Pl=1 P=pP"

P;j =0, Vi# jsuchthat (i,7) ¢ E
This problem can be formulated as a semidefinite program. One easy way to see this is to note
that u(P) = HP —(1/ n)llTHQ, so that the minimization of u(P) is equivalent to minimizing a
constant +y satisfying the constraint —yI < P — (1/ n)llT =< ~I. As seen in previous chapters,
standard interior point solvers for SDPs are not feasible for modern large scale problems. Boyd
et al. [2004] give a projected subgradient method that can scale to much larger instances. We shall

refer to this algorithm as subgrad and mainly compare our approach to it.

5.3 Nonconvex Formulation and First Order Method

This section presents our approach to FMMC. We first discuss one key observation about the
sparsity pattern of Cholesky factor of Laplacian matrices. Based on it, we develop our algorithm

and discuss the computational cost.

5.3.1 Sparsity Pattern of Cholesky Factor

Through a sequence of experiments, we have found an interesting phenomenon: given a valid
graph Laplacian L of graph G where all the edges in £ have positive weights, we compute the
Cholesky factor Z of L. Let S be the set of nonzero entries of Z. Then for any other valid graph
Laplacian of the same graph, the nonzero entries of its Cholesky factor are contained in S.

Figure 5.1 illustrates this phenomenon. We randomly generated an Erd6s—Rényi graph of 5
nodes, the edge structure (including self-loops) is plotted in (a). Let Z™h pe the Cholesky factor
of the Laplacian obtained by the Metropolis-Hastings algorithm [Metropolis et al., 1953; Hastings,
1970]. The Metropolis-Hastings algorithm is a popular sampling technique. In our context, it gives

87



1@ @ @ r @
2 ® o o o
3 ® ® ©® © '® @& @® '® ® @
41 ® & O @ @ @ @
5 ® O ® o
1 2 3 4 5 1 2 3 4 1 2 3 4 5
nz=13 nz=38 nz=8
(a) graph structure (b) Zmh () ZW

XX

11 @

2 LA

3'® & O

4 e @

S5t L

1 2 3 4

nz=28
d) Z*

5

1 2

3
nz==6

(e) 7(2)

~ XX

1 2 3 4 5
nz=>5
(ﬂz(?ﬁ)

Figure 5.1: For arandomly generated Erd6s—Rényi graph, the sparsity patterns of adjacency matrix
and Cholesky factors of a few graph Laplacian matrices.

all-positive edge weights. Details of this method are explained in Section 5.4. Z (1) is associated

with a randomly generated all-positive weighting. Z*, 7 (2) and Zz®) correspond to the fastest

chain, and two random weightings where some edges have zero weights, respectively. We can see

that 2™ and Z(1) have the same sparsity pattern, which contains all the nonzero entries of Z*,

Z2) and Z®). Especially, the sparsity pattern of Z* is the same as Z™P. We have checked the

edge weights of the optimal chain and confirmed they are all positive.

This phenomenon is made precise in Theorem 5.1, see Section 5.7 for the proof. Motivated by

this observation, we restrict the update to this fixed sparsity pattern. The procedure is described in
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the following subsection.

Theorem 5.1. Let L = C diag(w)C'" be a valid Laplacian matrix of G, where w > 0. Let Z be
its Cholesky factor and S be the set of its nonzero entries. Then for any other valid Laplacian of

the same graph L' = C diag(w')C = Z’Z’T, we have

supp(Z') C S.

5.3.2 Algorithm: A Variant of ADMM

We first rewrite Problem 5.5 so that it is parameterized by L. By definition, the Laplacian matrix

L is equal to [ — P. The eigenvalues of P and L have the following relationship:

where \;(P) and \; are the ith largest eigenvalues of P and L, respectively. The SLEM of P can
also be translated as

p(L) = p(P) = max{l — A1, Ay — 1}.

The nonnegative, doubly stochastic and graph structure constraints of P are also equivalent to the

conditions
o w >0,
o ;<1 i+1=1,...,n.

The second condition ensures that the probability of staying at the same node is nonnegative. It is
equivalent to the expression Bw < 1, where B is a n X m matrix such that B;; = 1 if edge [ is

incident to node ¢ otherwise 0.
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Identifying those relationships, Problem 5.5 can be written as

I (L
min fi(L)
subjectto L = C' diag(w)C' " (5.6)

w>0, Bw<l.

Next, we apply the symmetric factorization ideas, and leading to

' z
miy f(2)
subjectto ZZ ' = C'diag(w)CT (5.7)

w >0, Bw < 1.

where

f(2) :maX{J%—l, 1—o? } (5.8)

n—1

and o1 > ... > o, are the singular values of Z. One can see this is still a convex function of Z,
but Problem 5.7 is nonconvex because of the quadratic equality constraint.

The crux of solving either Problem 5.6 or Problem 5.7 is how to couple with the equality con-
straints. That is, how we can ensure that L or ZZ | is a valid graph Laplacian. Projected gradient
descent methods may not be suitable since direct projection onto the constrained set is difficult.
Instead, we use a variant of the alternating direction method of multipliers (ADMM). ADMM is
an algorithm that originates from Gabay, Mercier, Glowinski and Marrocco in 1970s. It is a com-
bination of augmented Lagrangian methods for constrained optimization and dual decomposition,
and is often well suited for large scale problems [Boyd et al., 2011].

The augmented Lagrangian for Problem 5.7 is

Lp(Z,w, M) = f(Z) + Ly, pu<t(w) + (M, 22T — C diag(w)C")
(5.9

+£ HZZT - Cdiag(w)CTHZ,
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where M is the multiplier, and 1. (w) is an indicator function that equals zero if w satisfies C, and
otherwise is infinity. £, is nonconvex in I but convex in both M and w. Standard ADMM repeats

the following updates until convergence:

Zi+l = armeinﬁp(Z, w, Mt), (5.10)
witl = argwmin L7 w, MY, (5.11)
ML=t 4 p<zf+1zf+1T — Cdiag(wt“)OT), (5.12)

tt+1. (5.13)

Our algorithm is a variant of this. Instead of solving the nonconvex inner step (5.10), we take one
gradient update for Z, and this update only applies to a fixed subset of entries. Details of updating

Z and w are explained below.

e Update Z

The function f(Z) is a convex function. According to the derivation in Boyd et al. [2004]

and the chain rule 3, if f(Z)= a% — 1, then one subgradient of f at 7 is

Qun' 7 = 201uvT,

2

~_1 and

where u, v are singular vectors associated with 1. Analogously, if f(Z) =1 — o

u, v are singular vectors associated with o,,_1, the matrix

—ouu' Z = —20n_1uvT

3. https://people.eecs.berkeley.edu/ elghaoui/Teaching/EE227BT/Lectures/lect2_handout.pdf
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will be one subgradient. The subdifferential of f at Z is a convex hull of these subgradients:

of(Z) = conv( {201uvT \u'Zv =01, f(Z)= a% - 1}
(5.14)
U {—QUn_luvT \u' Zv=—0,_1, f(Z)=1— 07%_1})

Therefore, the subgradient of £,(Z, w', M) at Z' will be
g +2p (szfT ~ Cdiag(wh)CT + 1/th> . gl eaf(zh.

Hence, in every iteration, to obtain a subgradient, we will compute the top and bottom few

singular vectors of Z, or equivalently some eigenvectors of ZZ T

We restrict the update to a fixed sparsity pattern S. This will keep the iterates of Z sparse,
so that its eigenvalues and eigenvectors can be computed quickly. Empirically, we find that
initializing by the Metropolis-Hastings algorithm is effective and robust. Let L™? and Z™mh
be the Laplacian matrix and its factor corresponding to the output of the Metropolis-Hastings
algorithm. We choose S to be the subset of nonzero entries of Z mh We shall briefly review

this algorithm in Section 5.4.

Update w

We need to solve

0]
arg min h(w) = —H 727" +1/pM —C diag(w)C " (5.15)
w>0 2 F
Bw<1
where Z and M are fixed. Let ® = ZZ | + 1 /pM , we can rewrite
n 2
2
) =2 3 (@i = + 3 (20 3 wi)
l i=1 I1=(i,") (5.16)

= 2||¢ — w|* + ||diag(®) — Bulf?,
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Algorithm 3: Approximate projection of w
input: w, B

w < max {w, 0}

for nodei=1,... ,ndo

() =A{l|1= (")}

while Zlez(i) wp > 1do

Z(i)={l]l=(,-),w >0}

6 = min {minyegy vy, (Spezyw —1) N1T0)]}

wl:wl—é, lEI(i)
end

end

where (z'(l), j(l)) is the subscript of one entry of ® that corresponds to edge [, and we use
¢ to denote the vector that consists these entries. Note that ¢ can be simply read off from
the lower triangular part of ®. > 1=(i,") WI is the sum of the weights of all edges incident to

node 7, which is equal to the (B;), w).

Problem 5.16 can be solved by projected gradient descent, possibly with early termination.

The gradient of /A at w is
Vh(w) = 4(w — ¢) + 2(B" Bw — BT diag(®)). (5.17)

We use the approximate method proposed by Boyd et al. [2004] to project w onto the feasible
set {w|w > 0, Bw < 1}, see Algorithm 3. It first projects w onto the nonnegative orthant,

then compute one w satisfying the inequality constraint Bw < 1 by thresholding.

The whole algorithm is presented in Algorithm 4.

5.3.3 Computational Complexity

It is important to understand the per-iteration computational cost of our algorithm.
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Algorithm 4: Nonconvex ADMM variant for FMMC
initialization
w? output of Metropolis-Hastings
7Y = Chol(C diag(w®)C'T), MY =0

S < nonzero entries of £

t<+0,res « 0

repeat

// update F

VLy + gt +2p (res+ M'/p) Z, where g' € 0f(Z)
26 =2 —n'(VLy)s

// update w (Problem 5.16)
O «— ZH_lZH_lT—f— 1/th

¢ < (edge weight) entries read off from ¢

wit! = wt

repeat
Vh = 4wt 4+ ¢) + 2(BT Bw — BT diag(®))
wit « ApproxPro(w!tl — vVh)

until convergence;

// update M
res ¢ Zt+1zt+1T _ C diag(w!+1)CT
ML = Mt 4 p res

t+—t+1
until convergence;

First of all, with an appropriate ordering, we would expect L and its Cholesky factor Z to have
the same order of number of nonzero entries. For our particular choice of initialization, LU is
exactly (m -+ n)-sparse, so that the iterates { Z*} will have O(m) nonzero entries.

We found that the projected gradient descent algorithm for updating w usually converges very
quickly in a few iterations. The dominating computational cost is the update of Z?, for which we
need to compute the largest and smallest two singular values and associated left singular vectors
of Z!. One efficient way to obtain them is to compute the left eigenvectors of Z!Z a using the

Lanczos method [Lanczos, 1950].
94



To compute the eigenvalue decomposition of a n X n matrix, the Lanczos method first rotates
the ZtZt" into a tridiagonal matrix and computes its eigenpairs, then rotates the eigenvectors
back. The rotation is performed by generating and applying n Lanczos vectors one by one, called
the Lanczos iterations. To compute only the top eigenpair accurately, it suffices to run a constant
number of Lanczos iterations. Let k& denote this number. In O(mk) flops, we obtain a k x k
tridiagonal matrix, as the dominating computation in every iteration is to multiply Z!Z tT with
the Lanczos vector. Afterwards, one can use QR decomposition or the MRRR algorithm [Dhillon
et al., 2006] to get k eigenvalues and an orthonormal matrix Q € RF*F in O(kz) flops . The
eigenvectors of L are then obtained by multiplying the Lanczos vectors with ().

The smallest two eigenvectors can be computed in the shift mode: apply the Lanczos method
to compute the top two eigenvectors of (A + &) — ZtZ tT, where A1 is the largest eigenvalue of
VANA e we obtained.

Overall, the per-iteration runtime of the nonconvex ADMM is O(m). It should be noted that
there is no computational improvement compared to either subgrad or ADMM for solving Prob-
lem 5.6, since we need to compute the eigenvectors of Z!Z tT, which is comparable to computing

the eigenvectors of L' for the other two methods.

5.4 Related Work

Our thinking about the using nonconvex methods to optimize graph Laplacian is inspired by the
recent advances in solving linear systems in the Laplacian matrices [Lee et al., 2015; Kyng et al.,
2016]. The authors have shown that for every Laplacian matrix L there exists a constant factor ap-
proximation L, whose Cholesky factor Z only has O(n) nonzero entries. The sparsified Cholesky
factor Z can be computed in polynomial time via spectral vertex sparsification, a procedure that
recursively approximates the Schur complement of subsets of nodes without constructing the Schur

complement explicitly. While this is not fully developed in this thesis, our initial thought was to
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use O(n) sparse Z in the algorithm, either fixing or varying the sparsity pattern in every iteration.*

Using an O(n) sparse factor will reduce the per-iteration cost for computing the eigenvectors to
O(n), if such sparsification could be computed quickly. However, in practice we found that find-
ing the O(n) approximation is hard since the vertex sparsification algorithm is complex. There
is a much simpler sparsifier proposed by Kyng and Sachdeva [2016], which is based on purely
randomly sampling the edges. Nonetheless it only guarantees that the output Cholesky factor has
O(m log3 n) nonzero entries. Another crude way to achieve computational efficiency is to ran-
domly sample O(n) edges of the given graph, and use it as a replacement of the original graph.
For Erdds—Rényi graphs, the subsampled graph might still be connected, yet this might not be
feasible for graphs with more practical structures such as clusters, hubs, etc.

Another research field that led us to the FMMC problem is Markov Chain Monte Carlo sam-
pling (MCMC). MCMC is widely used in many scientific fields to randomly sample from a high
dimensional probability distribution. While asymptotically converging to the equilibrium distribu-
tion, determining when the chain is close to equilibrium is a challenging open question. As pointed
out in Boyd et al. [2004], although the problem of FMMC focuses on finding edge weights rather
than sampling itself — we hope that understanding the edge weights of the fastest chain can give
insights into how to improve the efficiency of practical MCMC simulations. For solving FMMC it-
self, our benchmark is the projected gradient descent algorithm subgrad proposed by Boyd et al.
[2004]. Regarding practical MCMC algorithms, the Metropolis-Hastings algorithm [Metropolis
et al., 1953; Hastings, 1970] is a commonly used random walk sampling technique that works as
follows. At current node x, one first samples a node y from a easily-computed proposal distribution
q(+|), then jumps to the candidate y with probability min {myq(z|y)/mzq(y|z), 1}; otherwise the
walk remains at node x. For our problem, /7 = 1 as the equilibrium distribution is uniform.
If we choose the natural proposal distribution ¢(-|z) = 1/d;, where d; is the degree of node i, we
will have that the transition probability between two connected (different) nodes 7 and j is equal to

min {1/d;,1/d;}. This means the Metropolis-Hastings chain only depends on local information —

4. If such pattern is fixed, we might expect suboptimality of the algorithm.
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one can sample the nodes while exploring the graph, without knowing the whole graph structure in
advance. Therefore, if the graph structure is known, the Metropolis-Hastings chain can be easily

computed in exact (m+n) time. We thus feed the solution of it to our algorithm as an initialization.

5.5 Experiments

This section presents empirical experiments to study the effectiveness of Algorithm 4. We are

interested to see

e whether the nonconvex ADMM converges to the global optimum, and

e whether ADMM or nonconvexification can provide a faster convergence rate than the pro-

jected subgradient method [Boyd et al., 2004].

Hence, we also considered the convex ADMM variant for solving Problem 5.6. The algorithm is
roughly the same as Algorithm 4, except the gradient update of Z is replaced by a gradient update
of L. All the methods are implemented in MATLAB and the experiments are conducted on a

Macbook Pro with 2.4G HZ CPU and 16GB memory.

5.5.1 Initialization of Nonconvex ADMM

We first inspect the convergence of Algorithm 4. Nonconvex functions might have saddle points
and local minima, so that a good initialization is important. Even for strict saddle problems like
phrase retrieval and positive semidefinite matrix sensing [Sun et al., 2016; Bhojanapalli et al.,
2016b], bad initialization could result in slow convergence. We have found that starting by the

following two edge weights are effective and robust:

e the output of Metropolis-Hastings w™ or

° wunlf = ApproxProjwzo, ngl(l)'

We randomly generated 10 Erd6s—Rényi graphs, where the probabilities of connecting every

two nodes vary from 0.05 to 0.5. For each graph, we compute the fastest mixing chain, and run
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Figure 5.2: (a) Optimal SLEM and the output of our approach using heuristic initialization. (b)
Comparing with random initialization.

our approach using the above two initializations. We use diminishing step size n’ = 0.2/ \/Zt) and
stop the computation after 500 iterations. The penalty parameter p for ADMM is fixed to be 1.
Figure 5.2(a) reports the SLEM of fastest chain and the SLEMs we obtained. We can see that for
both heuristic initializations, the algorithm is converging towards the global optimum.

A natural question to ask is whether random initialization works. If the algorithm under ran-
dom initialization also converges to the global optimum, it implies that the nonconvex objective
might have favorable geometry. For example, the nonconvex objective for positive semidefinite
matrix sensing and completion does not have spurious local minima. Hence, we also checked the
performance of our approach when it is initialize randomly: we generate a random Gaussian vec-
tor 3 ~ N(0, 1) and start from wY = Approxp roj(p). For this type of initialization, w9 often
contains many zero entries, and the initial Cholesky factor Z 0 s very sparse. If we use the sparsity
pattern of Z9, it is hard to observe convergence. Hence, we feed the algorithm with the sparsity
pattern obtained by Metropolis-Hastings, but randomly generated edge weights. We update the es-

timate for 1000 iterations, and the step size is determined by line search. The result is reported in
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Figure 5.3: Convergence comparison for a random Erdés—Rényi graph.

Figure 5.2(b). We have found random initialization performs worse than the other two heuristics.

5.5.2  Comparison with Other Methods

Figure 5.3 shows the convergence speed for different algorithms for two randomly generated
Erd6s—Rényi graph with 100 nodes. For the first graph, every pair of nodes is connected with
probability 0.1. In the second graph, this probability is increased to be 0.2.

Figure 5.4 plots the results for graphs generated from stochastic block model. In the first case,
there are two clusters in the graph, each has 50 nodes. The nodes are are randomly connected with
probability 0.1 if they are in the same cluster, otherwise with probability 0.02. The between-cluster
connection probability has been increased to 0.05 in the second case.

All the methods are initialized by the solution of Metropolis-Hastings, and use the same step
size n' = 0.2/+/t. In all these four cases, subgrad converges first. The rate of both convex and

nonconvex ADMM are comparable.
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Figure 5.4: Convergence comparison for a random graph in stochastic block model.
5.6 Discussion

We propose a nonconvex formulation based on Cholesky factorization to compute the fastest mix-
ing Markov chain on a given graph. We develop a variant of the ADMM algorithm for optimizing
the objective. Empirical results suggest that this algorithm may converge to a global minimizer,
with comparable rate and computational cost to subgrad and convex ADMM.

Unlike the results in previous chapters, the nonconvexified objective did not lead to faster
convergence or reduced computational Complexity. The computational cost is not reduced since
we did not avoid computing the eigenvectors. Further study needs to be carried out to provide
comprehensive understanding of both nonconvex ADMM and the FMMC problem.

For example, an alternative way to write SLEM as a function of L is MAaX||y (| =1,u/1=0 ]uTLu —

1|. This leads us to another nonconvex min-max formulation:

min max  (u! Lu—1)2, (5.18)
w>0,Bw<l ||ul|=1,u'1=0

where we square the absolute value to make the loss function differentiable. This loss function is

fourth order in terms of u and quadratic in terms of w. Simple and efficient algorithms that can
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solve this nonconvex problem, are worth exploring.

5.7 Proofs

5.7.1 Proof of Theorem 5.1

The proof has two steps. We first explicitly identify the columns of the Cholesky factor, then
discuss its sparsity pattern.

Step 1.

The operations to compute the Cholesky factorization of L can be considered as sequential
elimination of the nodes of GG. Let us define a chain of Schur complements as in Kyng and Sachdeva
[2016].

Let L = S be the Laplacian matrix of graph G = (V, E). Let M; denote the i column of a

matrix M. In the k-th iteration, we eliminate node & and define

T
(k) — glh=1) _ 1 gk=1) glk=1)
S\W=9 S(k—l)Sk Sy ) (5.19)
kk
which is the Schur complement of .S (k—1) respect to column k. We can see that the first £ columns
and rows of S(¥) are all zeros. Mathematically, if ng_l) =0, we set S (k) — g(k=1), Finally, we

will end this sequence with a zero matrix S (),

Now let us define d;, = SIEIZ_D and fi, = 1/d;, - S]E:k_l). Again, if ng_l) = 0, we shall set

them zero as well. It holds that
gk) — glk=1) _ di fify -
Observing S =0and L = S0, we have

Sk — 50 = S™aq pof] = Fdiag(d)FT, (5.20)
1 k=1

n
L =

k
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where f}. is the kth column of F'. F'is a lower-triangular matrix, since fj, inherits its sparsity

(k—1) (k—1)

pattern from .S, , and the first £ — 1 rows and columns of S are all zero. Consequently,

F diag(d)1/2 is the Cholesky factor of L.
Step 2.
It remains to show that the sparsity pattern of f. is contained in a certain fixed set, when the

initial edge weights are all positive. As the sparsity patterns of f;. and the kth column of S (k—1)

(k

are the same, it suffices to show that every Schur complement matrix S ) (except the last one) in

this chain is a Laplacian matrix of a fixed graph GG (k) and all the edge weights are positive.

(0)

We prove this by induction. The base case is f1 = S} . This is trivial by our assumption.

Suppose that .S (k1) is the Laplacian of graph G (k=1) with positive weights:
S* =N wao!, w>o. (5.21)
lin G(k=1)
Define
(S*=V) = > wCiCy, (522)

! incident to k in G(k—1)

where C is the incidence matrix defined in Definition 5.1. We can rewrite

S(ﬁk];l) Cj(\k)
- % ~ 7 T
5 = St (st Ly (5000), - L gD ginT (5.23)
Stk
Clearly,
S(fk_l) = > w GOy

[ not incident to k in G(*—1)

this is a Laplacian matrix of a new graph formed by eliminating node %k and associated edges from
G 1), where the remaining edges still have unchanged positive weights. A well known fact is
that C(%) is a Laplacian of the clique that contains all the neighbors of node £ in GE=1) see
Lemma 5.1. In particular, from Equation (5.27), we can see all edges in this clique have positive

weights.
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Hence, S(*) is the Laplacian for graph G (k)| which is formed by combining these two parts.
It contains nodes k, ..., n; the edges are the union of the remaining edges and the clique, where

overlapping edges have weights added up. Hence, the associated weights are all positive.
Lemma 5.1. C(¥) js g Laplacian of a clique formed by the neighbors of node k in G=1),

Proof. Without lose of generality, let us assume £ = 1 and denote the first row of S 0) by [d, —aT].

The vector a consists of the weights of edges incident to node 1, and d = a'l.

We then have

d a’
o) — Z wiere] —
[ incident to node 1 —a (1/d)aaT
d —a’ d —a'
= — (5.24)
—a diag(a) —a (1/d)aa’
0 0"
0 diag(a) — (1/d)aa’
Note that
0 o' -
NEEDY D L)L) ) ) (5.25)
0 aa ¢ incident to 1 j incident to 1
where C(i.5) is a vector whose ith entry is 1 and jth entry is -1. Besides, we also have d =

i incident to 1 W(1,7)> hence the diagonal entries are

2
w?, . , .
W —w gy -~ LA Y0y, (5.26)
2.5 (19) 2.5 (1,9)
To see the off-diagonal entries, we have
¢ _ diag(cM) = Z Z BB T (5.27)

E (Z j) (Z j)
- W ] . 2 )
7: inCident to 1 ] incide]lt to 1 J ( -])

JF#i
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It follows immediately that C' (1) is the Laplacian for the clique of neighbors of node 1 in elQ}

where the edge weight for (i, j) is w(y jywy )/ 25 w(1,j)- O
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CHAPTER 6
CONCLUSION

6.1 Summary

This thesis studies a new framework for optimizing semidefinite variables. We decompose the
target semidefinite variables into symmetric factors, and reformulate the problem so as to optimize
the factor. Depending on the nature of the problem, the structure of the factor, such as the low-rank
property or sparsity, are utilized to reduce the number of parameters and computational cost.

The first direct application of our technique is semidefinite programming. While SDP is usually
used as surrogate relaxations of difficult nonconvex problems, the newly proposed methods in this
thesis approach SDPs via nonconvexifying. When the factor is of low rank, same factorization
idea was proposed by Burer and Monteiro [2003]. We have shown that these simple methods
are remarkably effective for several problems of practice interests, with analytical convergence
guarantees and strong empirical performance. These algorithms are also fast, scalable, and easy
to implement, and hence are well suited for very large scale problems. We emphasize that our
technique is not limited to convex problems; the reformulation could be helpful for nonconvex

problems too.

6.2 Future Work

A contribution of this work is to indicate that the road between nonconvex and convex approaches
is in fact bidirectional. There might be other classes of problems for which nonconvex recast-
ing could be helpful. While the power and limits of convex approximation are both analyzed
and demonstrated for many problems, theoretical understanding of many nonconvex problems is
nascent. For example, though empirical results show that the nonconvex ADMM in Chapter 5
may converge to a global minimizer reliably, it still lacks theoretical support. The current sample

complexity obtained for both matrix sensing (Chapter 3) and completion (Chapter 4) are still sub-
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optimal. In contrast, the nuclear norm relaxation achieves the information theoretically optimal
bound. The transformation between two types of methods, and the potential trade-off between
statistical and computational properties, deserves further study.

The convergence result we obtained in this thesis reveals two distinctive features for the non-
convex objectives we consider in Chapter 3 and 4. First, for a local region near the global optimum,
the functions are essentially convex. Second, spectral initialization leads to a very good starting
point located in that well-behaved area. However, our work is not the final word on this subject.
Many recent advances have been made in understanding the geometry of nonconvex objectives.
Recent studies have shown that many nonconvex functions do not have spurious local minima,
and around each saddle point or local maximizer, these functions always have a negative direction
of curvature. Therefore, popular optimization algorithms such as stochastic gradient descent and
trust region methods can provably converge to a global minimizer with arbitrary initialization in
polynomial time [Sun et al., 2015]. Examples includes phase retrieval [Sun et al., 2016], dictio-
nary leanring [Sun et al., 2017], low rank positive semidefinite matrix sensing [Bhojanapalli et al.,
2016b] and completion [Ge et al., 2016], and orthogonal fourth order tensor decomposition [Ge
et al., 2015].

For standard semidefinite programming with m constraints, Boumal et al. [2016] studies the
geometry of the rank r» Burer-Monteiro reformulation. The authors show that when the search
space of SDP is compact, and the search space of the reformulated problem is a smooth manifold,
and one takes r large enough so that r(r + 1) > 2m, then for almost all cost matrices, spurious
local minima do not exist.

On the other hand, another line of interesting research considers measuring the suboptimality of
spurious local minima. Montanari [2016] and Mei et al. [2017] have studied the rank-constrained
version of SDPs arising in MaxCut and in synchronization problems. The authors have established
Grothendieck-type inequalities that prove all the local maxima and dangerous saddle points are
within a small multiplicative gap from the global maximum.

To conclude, it would be a fruitful to understand the geometry of more nonconvex objectives
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of interest, and more broadly, the landscape of nonconvex optimization.
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