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ABSTRACT

In this thesis we study the properties of some metrics arising from two-dimensional Gaussian
free field (GFF), namely the Liouville first-passage percolation (Liouville FPP), the Liouville
graph distance and an effective resistance metric.

In Chapter 1, we define these metrics as well as discuss the motivations for studying
them. Roughly speaking, Liouville FPP is the shortest path metric in a planar domain D
where the length of a path P is given by fp 7h(2) |dz| where h is the GFF on D and v > 0. In
Chapter 2, we present an upper bound on the expected Liouville FPP distance between two
typical points for small values of 7 (the near-Euclidean regime). A similar upper bound is
derived in Chapter 3 for the Liouville graph distance which is, roughly, the minimal number
of Euclidean balls with comparable Liouville quantum gravity (LQG) measure whose union
contains a continuous path between two endpoints. Our bounds seem to be in disagreement
with Watabikis prediction (1993) on the random metric of Liouville quantum gravity in this
regime. The contents of these two chapters are based on a joint work with Jian Ding [32].

In Chapter 4, we derive some asymptotic estimates for effective resistances on a random
network which is defined as follows. Given any v > 0 and for n = {ny},cz2 denoting a
sample of the two-dimensional discrete Gaussian free field on Z?2 pinned at the origin, we
equip the edge (u, v) with conductance Y (u+1) - The metric structure of effective resistance
plays a crucial role in our proof of the main result in Chapter 4. The primary motivation
behind this metric is to understand the random walk on Z? where the edge (u,v) has weight
(b)) Using the estimates from Chapter 4 we show in Chapter 5 that for almost every 7,
this random walk is recurrent and that, with probability tending to 1 as T" — oo, the return
probability at time 27" decays as T-1+o(1) 1 addition, we prove a version of subdiffusive
behavior by showing that the expected exit time from a ball of radius /N scales as N b(7)+o(1)
with 9 () > 2 for all v > 0. The contents of these chapters are based on a joint work with
Marek Biskup and Jian Ding [13].
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CHAPTER 1
INTRODUCTION

Gaussian free field (GFF) appears as a natural analogue of Brownian motion when one
replaces the underlying parameter space with a multi-dimensional domain. As such, two-
dimensional GFF is a canonical model for random surfaces. It is an extremely rich and
intriguing mathematical object emerging in a wide range of contexts in probability theory
and statistical physics. An important property peculiar to the two-dimensional GFF is
conformal invariance (see, e.g., [74]) which relates it to Schramm-Loewner Evolution (SLE)
in several ways (see [37], [70], [71]). Planar GFF has been found to be the scaling limit of
height function of uniform random planar domino tilings [51]. In [67] it was shown that the
fluctuations of the characteristic polynomial of a particular random matrix model tends to
the planar Gaussian free field conditioned to be harmonic outside the unit disk.

Several important properties of GFF have been explored. Among them are its various
metric properties which have attracted substantial amount of research in recent years. A
random pseudo-metric was defined in [56] via the zero-set of GFF on the metric graph whose
scaling limit (in the planar case) should describe the distance between CLE,4 loops (see [79]).
[33] initiated the study on chemical distances of percolation clusters for level sets of planar
(discrete) GFF. In this thesis, we will focus on three other metrics namely the Liouville FPP
[36, 29, 32, 35], the Liouville graph distance [32] and an effective resistance metric [13]. In
the following two sections we discuss the contexts in which they arise along with the relevant
definitions. We will use these definitions in subsequent chapters where we discuss them in

greater detail.



1.1 Liouville FPP and Liouville graph distance

1.1.1 Definitions

Let D C R? be a bounded domain with smooth boundary. Denoting the euclidean dis-
tance between any two subsets S and S’ of R? by dyp, (S, S, let us define Dg = {v € D :
dg,(v,0D) > 0} where § > 0. For simplicity we will only consider domains D such that
V = [0,1]? C D for some fixed €. Let h be a (continuum) Gaussian free field (GFF) on D
with Dirichlet boundary condition. We will desist from providing a detailed introduction to
the GFF in this thesis for which there are several nice expositions (see e.g. [74, 9]). Although
h is not a function on D (it is a random distribution), it is regular enough so that we can
make sense of its Lebesgue integrals over sufficiently nice Borel sets in a rigorous way. In
particular we can take its average along a circle of radius § around v (where dy, (v, 0D) > §)
and define the circle average process {hs(v) : v € D,dy,(v,0D) > 6} which is a centered

Gaussian field with covariance

Cov(hs(w). hy(s) = | Gz, 2 Yub(d=)uls (d).
OB;(v)x OBy (v')

Here By (z) is the open ball with radius 7 centered at z, p7 is the uniform probability measure

on 0B, (z) and Gp(z,2') is the Green function for domain D, which we define by

Gz ) = / pp(s: 2 2')ds
(0,00)

where pp(s; 2, 2’) is the transition probability density of Brownian motion killed when exiting
D. It was shown in [43] that there exists a version of the circle average process which is
jointly Hélder continuous in v and § of order ¥ < 1/2 on all compact subsets of {(v,9) :
v € D,0<§ <dy(z,0D)}. Given such an instance of hs and a fixed inverse-temperature

parameter v > 0, the Liouville first-passage percolation (Liouville FPP) metric D, 5(-,) is



defined by

D, s(v,w) = i%f/Pewa(z)\dz\ : (1.1.1)

where P ranges over all piecewise C1 paths in V connecting v and w. The infimum is well-
defined and measurable since we are dealing with a continuous field on a compact space. In
fact D, 5(-,-) does not change if we only restrict to C! paths.

The second notion of metric i.e. the Liouville graph distance comes from the so-called
Liouville quantum gravity (LQG) measure M$ . For any v < 2, M,? is defined as the almost

sure weak limit of the sequence of measures M%n given by
1,2
MP, = he=nGlo=m 07 25 () (1.1.2)

where o is the Lebesgue measure (the factor 7~1 in the exponent is purely due to our
particular definition of Green function). Much on the LQG measure has been understood (see
e.g., [50, 43, 65, 66, 73] including the existence of the limit in (1.1.2), the uniqueness in law for
the limiting measure via different approximation schemes, as well as a KPZ correspondence
through a uniformization of the random lattice seen as a Riemann surface. Our focus in the
current thesis is the metric aspect of LQG. Given 6 € (0, 1), we say that a closed Euclidean
ball B C D is a (Mg,é)—ball if MQ(B) < 6% and the center of B is rational (to avoid
unnecessary measurability considerations). The Liouwville graph distance D%(g(v, w) between
v,w € V is the minimum number of (]\Léj ,0) balls whose union contains a path between v
and w. It is called Liouville graph distance since it corresponds to the shortest path distance
in a graph indexed on Q% where neighboring relation corresponds to the intersection of the
(M%7 ,0) balls. A very related graph distance was mentioned in [60] which proposed to keep
dividing each squares until the LQG measure is below d.

One can similarly consider Liouville FPP for discrete planar GFF (which was explicitly
mentioned in [7]). Given a two-dimensional box Viy C Z? of side length N, let 0V} denote

the set of vertices in Z2 \ Vi that have a neighbor in Vjy. The discrete GFF in Vi with

3



Dirichlet boundary condition is a mean-zero Gaussian process {ny,, : v € Z2} such that
nn,w =0 for all v € 72\ Vy , and Enn N w = Gy (v, w) for all v,w € Vi,

where Gy, (v, w) is the Green’s function for simple random walk on Vi i.e. the expected
number of visits to v by the simple random walk on Z?2 started at « and killed upon hitting
OVy. As before, for a fixed inverse-temperature parameter v > 0, the Liouville FPP metric

Dy n(++) on Vi is defined by

D, n(v1,v2) = m;nZeWNv“, (1.1.3)

vem

where 7 ranges over all paths in Vj; connecting v1 and vs.

1.1.2 Motiwvation and related works

Much effort has been devoted to understanding classical first-passage percolation (FPP),
with independent and identically distributed edge/vertex weights. We refer the reader to
[4, 47] and their references for reviews of the literature on this subject. We argue that FPP
with strongly-correlated weights is also a rich and interesting subject, involving questions
both analogous to and divergent from those asked in the classical case. Since the Gaussian
free field is in some sense the canonical strongly-correlated random medium, we see strong
motivation to study Liouville FPP.

Our primary motivation behind Liouville FPP and Liouville graph distance, however,
comes from the random metric associated with Liouville quantum gravity (LQG) [63, 43, 66].
Informally, LQG is a random surface whose “Riemannian metric tensor” can be described as
X (x)de, where X is a Gaussian free field on some planar domain D. Therefore the metrics
D, s and D, n appear as natural approximations for the LQG metric. On the other hand,
one can interpret the LQG measure M,yD (1.1.2) as the volume measure for LQG metric. By

analogy with the Euclidean scenario (i.e. when v = 0), we then see that D%(g is yet another
4



natural approximation for the LQG metric.

We remark that the random metric of LQG is a major open problem in contemporary
probability theory, even just to make rigorous sense of it (we refer to [64] for a rather up-
to-date review). In a recent series of works of Miller and Sheffield, much understanding has
been obtained for the LQG metric (in the special case when vy = \/8_/3), and we note that an
essentially equivalent metric to Liouville graph distance was mentioned in [60] as a natural
approximation. While no mathematical result was obtained (perhaps not attempted either)
on such approximations, the main achievement of this series of works by Miller and Sheffield
(see [60, 61] and references therein) is to produce candidate scaling limits and to establish a
deep connection to the Brownian map. Our approach is different, in the sense that we aim
to understand the random metric of LQG via approximations by natural discrete metrics.

Furthermore, we expect that the Liouville FPP and Liouville graph distance are related
to the heat kernel estimate for Liouville Brownian motion (LBM), which is essentially a time
change of the standard Brownian motion by an exponential of GFF. In fact, we expect a
direct and strong connection between Liouville graph distance and the LBM heat kernel.
The mathematical construction (of the diffusion) for LBM was provided in [44, 8] and the
heat kernel was constructed in [45]. The LBM is closely related to the geometry of LQG; in
26, 10] the Knizhnik-Polyakov-Zamolodchikov (KPZ) formula was derived from Liouville
heat kernel. In [59] some nontrivial bounds for LBM heat kernel were established. The
non-universality of the Liouville heat kernel over a class of log-correlated fields was shown in
[34]. A very interesting direction is to compute the heat kernel of LBM with high precision.
It is plausible that understanding the Liouville graph distance is of crucial importance in

computing the LBM heat kernel.



1.2 Effective resistance metric

Let n = {nv},ez2 denote a sample of the discrete GFF on 7?2 pinned to 0 at the origin.

Thus, {1, : v € Z*} is a centered Gaussian process such that
no=0 and E(n,n) = GZQ\{O}(U, v) for all u,v € Z?,

where G2\ gy (u,v) is the Green’s function for simple random walk on Z? \ {0}. For v > 0
and conditional on the sample 7 of the GFF, let {X;};>0 be a discrete-time Markov chain

with transition probabilities given by

( ) 67(77v_77u) ) (1 2 1)
u,v) = ) - N
pn Z'lU|’u)—u|1:]_ 67(77w—77u) "U u|1 1

where | - |1 denotes the /!-norm on Z2.

The transition probabilities p; are such that the walk prefers to move along the edges
where 7 increases; the walk is thus driven towards larger values of the field. This has been
predicted (e.g., in [21, 22]) to result in a subdiffusive behavior. Furthermore the diffusive
exponent was predicted to undergo a continuous phase transition around a critical value of
7.

Another way to look at this problem is to rewrite the transition kernel as,

&Y (Mu+nu)

= 1 _1- 1.2.2
Palts¥) Zw:|w—u\1 o1 (uta) [0 ul=1 ( )

This represents {X;};>0 as a random walk among random conductances where conductance
of the edge (u,v) is given by Y (utm) - A large body of literature has been dedicated to
Random Conductance Models in recent years (see [12, 52] for reviews). Unfortunately the
law of the conductance is not translation invariant in this case which makes most of the

existing theory in random conductance model inapplicable. Nevertheless, one can still hope



to be able to explain the subdiffusivity using the connection between random walks and
effective resistance of the underlying network (see [57]). Indeed, it turns out that all we
need is a delicate control on effective resistances which is a fundamental metric for a graph.

Properties of this metric like scaling limit etc. are of independent interest.



CHAPTER 2
LIOUVILLE FIRST-PASSAGE PERCOLATION

2.1 Upper bound on the expected distance

The order of the expected Liouville FPP distance between any two points in V = [0,1]? or
VN =[0,N — 1]2 is of enormous importance. In particular the expected distance between
two facing boundaries of V' (or Vjy) seems to be the appropriate scaling factor for obtaining a
scaling limit of LEPP [29]. In the following result we obtain an upper bound on this quantity

(see (1.1.1), Chapter 1 for definition).

Theorem 2.1.1. There exists Cy p . > 0 (depending on (v,€, D)) and positive (small)

absolute constants c¢*,~y such that for all v < 7y, we have

. A3

C
max ED. s(v,w) <C 5 logy= 1
vaweV %5( yw) < v,D,€

As we explain in Section 2.6, the proof of Theorem 2.1.1 can be adapted to derive a

similar result for the discrete GFF (see (1.1.3), Chapter 1).

Theorem 2.1.2. Given any fized 0 < € < 1/2, there exists Cy e > 0 (depending on (v,€))

and positive (small) absolute constant ¢*, vy such that for all v < ~g, we have

4/3
e

max ED v,w) < CyN logy~1
v,WEVN ¢ %N(j )_ ! 7

where Vi ¢ is the square {v € Viy : doo(v,0Vy) > eN}.

Remark 2.1.3. Theorem 2.1.2 still holds if we restrict 7 to be a path within Vy . in (1.1.3).

2.1.1 Discussion on Watabiki’s prediction

As already mentioned in the introductory chapter, the Liouville FPP and the Liouville

graph distance are two (related) natural discrete approximations for the random metric
8



associated with the Liouville quantum gravity (LQG) [63, 43, 66]. Precise predictions on
various exponents regarding to LQG metric have been made by Watabiki [78] (see also,

13, 2]). In particular, the Hausdorff dimension for the LQG metric is predicted to be

dH(fy):1+7£+\/(1+7—2)2+72. (2.1.1)

The prediction in (2.1.1) was widely believed. In a recent work [60], Miller and Sheffield
introduced and studied a process called quantum Loewner evolution. As a byproduct of their
work they gave a non-rigorous analysis on exponents of the LQG metric which matched
Watabiki’s prediction — we also note that in [60] the authors did express some reservations on
their non-rigorous analysis. For other discussions on Watabiki’s prediction in mathematical
literature, see e.g., [59, 48].

The precise mathematical interpretation of Watabiki’s prediction is not completely clear
to us. However, there are a number of reasonable “folklore” interpretations for Liouville FPP
that seem to be widely accepted. ! For instance, see 2, Equation (17), (18)]. We would
like to point out that in [2, Equation (17)] the term ps was not defined — some reasonable
interpretations include ps = ¥ (*) and ps = eThs (2)§ ﬁ as well as possibly replacing v by
#(7) as suggested in the footnote. For all these interpretations, [2, Equation (18)] would
then imply that there exist constants ¢, C' > 0 such that for sufficiently small but fixed v > 0
the Liouville FPP distance between two generic points is between 5C7 and 697 as § — 0.
However, Theorem 2.1.1 contradicts with all aforementioned interpretations of (2.1.1) for
Liouville FPP at high temperatures.

Currently, we do not have any reasonable conjecture on the precise value of the exponent

for Liouville FPP — we regard a precise computation of the exponent as a major challenge.

1. For instance, we learned from Rémi Rhodes and Vincent Vargas that, according to [78], the physically

appropriate approximation for the 4-LQG metric should involve infp || P eTam () |dz| , i.e., the parameter
in the exponential of GFF is /d (vy) instead of +.



2.1.2  Discussion on non-universality

Combined with [36], Theorem 2.1.2 shows that the weight exponent for first passage percola-
tion on the exponential of log-correlated Gaussian fields is non-universal, i.e., the exponents
may differ for different families of log-correlated Gaussian fields. In contrast, we note that
the behavior for the maximum is universal among log-correlated Gaussian fields (see e.g.,
20, 19, 58, 27]) in a sense that their expectations are the same up to additive O(1) term
and that the laws of the centered maxima for all these fields are in the same universal family
known as Gumbel distribution with random shifts (but the random shifts may not have the
same law for different fields).

While non-universality suggests subtlety for the weight exponent of Liouville FPP, the
proof in the current chapter does not see complication due to such subtlety. In fact, our proof
should be adaptable to general log-correlated Gaussian fields with x-scale invariant kernels
as in [42]. The following question remains an interesting challenge, especially (in light of the
non-universality) for log-correlated Gaussian fields for which a kernel representation is not

known to exist.

Question 2.1.4. Let v € Vy} be an arbitrary mean-zero Gaussian field satisfy-
YN N
ing |[Eon yoNu — logm < K. Does an analogue of Theorem 2.1.2 hold for Cy,c*

depending on K7

2.1.8 Further related works

In a recent work [48] some upper and lower bounds have been obtained for a type of distance
related to LQG and that their bounds are consistent with Watabiki’s prediction. We further
remark that currently we see no connection between our work and [60, 61, 48].

There has been a number of other recent works on Liouville FPP (while they focus on
the case for the discrete GFF, these results are expected to extend to the case of continuum

GFF). In a recent work [29], it was shown that at high temperatures the appropriately

10



normalized Liouville FPP converges subsequentially in the Gromov-Hausdorff sense to a
random metric on the unit square, where all the (conjecturally unique) limiting metrics are
equivalent to the Euclidean metric. We remark that the proof method in the current chapter
bears little similarity to that in [29]. In a very recent work [35], it was shown that the
dimension of the geodesic for Liouville FPP is strictly larger than 1. In fact, in [35] it proved
that all paths with dimension close to 1 has weight exponent close to 1, which combined with
Theorem 2.1.2 yields that the lower bound on the dimension of the geodesic. While both the
proofs in [35] and this chapter use multi-scale analysis method, the details are drastically

different.

2.1.4 A historical remark and the proof strateqy

Our proof strategy naturally inherits that of [31] which proved a weak version of Theo-
rem 2.1.2 in the context of Branching random walk (BRW), and we encourage the reader
to flip through [31] (in particular Section 1.2) which contains a prototype of the multi-scale
analysis carried out in the current chapter. In fact, prior to the work presented in this chap-
ter, we posted an article [30] on arXiv which proved that the weight exponent is less than
1—~2/103. Our current results are stronger than [30]. In addition, the proof simplifies that
of [30] and is self-contained. As a result, the work in the current chapter supersedes [30].

However, some historical remarks might be interesting and helpful. During the work of
[30], we had in mind that the second leading term for the weight exponent is of order ~2 in
light of (2.1.1). As a result, we followed [31] and designed a strategy of constructing light
crossings inductively to prove an upper bound of 1 —72 / 103. In the multi-scale construction,
the order of 72 is exactly the order of both the gain and the loss for our strategy, and thus
a much delicate analysis was carried out in [30] since we fought between two constants for
the loss and the gain. A curious reader may quickly flip through [30] for an impression on
the level of technicality.

A key component in both [31, 30] is an inductive construction where one constructs light

11



crossings in a bigger scale from crossings in smaller scale, where one switches between two
layers of candidate crossings in smaller scale based on the value of Gaussian variables in the
bigger scale (it is to be noted here that there is a hierarchical structure for both BRW and
GFF). In those papers, vertical crossings were used as switching gadgets to connect horizontal
crossings in top and bottom layers. A crucial improvement in this chapter arises from a simple
observation that a sloped switching gadget is much more efficient (see Figure 2.5). In order
to give a flavor of how it works we discuss the following toy problem.

Let I' = T'(y) be a large positive number and {¢(v) : v € VI'} be a continuous, centered
Gaussian field on the rectangle V' = [0, x [0,1]. Suppose that ¢ satisfies the following
properties:

(a) Var(¢(v)) =1 for all v € VT,

(b) For any straight line segment £, Var( [ ((2)|dz|) = O(|£]), where |£]| is the (euclidean)

length of £. Furthermore if v € R? is orthogonal to £ such that |[v]| = Q(1), then

Var /ﬁ C(2)ldz| - /L, _ Cldel) = ec).

We want to construct a piecewise smooth path P connecting the shorter boundaries of 14

that has a small “random length” given by [p e15(2)|dz|. Due to condition (a), we can
2

approximate ¢7¢(?) with 14 ~¢ (2) + % when 7 is sufficiently small. Thus the random length

of P is approximately

(1+”72)|P|+7/Pg(z)|dz|. (2.1.2)

Henceforth we will treat the above expression as the “true” random length of P. Now
consider the segments £1 = [0,I'] x {0.75} and Lo = [0,T"] x {0.25}. Choose § such that
['> 3> 1 and divide £; (here 7 € [2]) into segments L; 1, L; 9, - ,L; r/p of length § from
left to right. Given i; € {1,2} for each j € [I'/§] (called a strategy), we can construct a
crossing i.e. a path connecting the shorter boundaries of VI as follows. If iy =111, let E;-

be the segment ﬁz'j,j‘ Otherwise set E;- as the segment joining the left endpoints of Eij,j

12



and £z'j+1,j+1 (the sloped gadget). It is clear that the segments E’l, Lh .- ’Ei“/ﬂ define a

crossing. The random length (see (2.1.2)) of this crossing is given by

2 2

G+ Dr+0+5) S 1L -+ 3 / (=)=,

jell/B-1] SV

Since 8 > 1, |E’-| - B = \/O(l) +62 -8 = O(ﬁ_l) whenever i; # i;41. On the other
hand by condition (b), ( [y ¢ ﬁ/ 2)|dz| — f c, (z)|dz]) is a centered Gaussian variable with

variance

Var( / ((2)ldz] - / C()ldz]) = O(L;]) = O(B).

whenever i; # i;,1 and thus

/c )ldz] — / (@Nd=l)t = O(V/B).

Therefore if we choose our strategy so that i; # ;41 only on a fived set J = {j1, jo, " - ,j|J|},

then we can bound (from above) the expected random length of the crossing by

2 2
(1+%)r+ (1+%)|J|05—1 +AIIC B4 Y E(/ C(2)ldz]) . (2.1.3)
Lij

kel|J|

, .. _. : 7 . . o ..
Here C,C" are positive constants and szk’ J 1Is the union of segments Lljk_lquJrl’

L . with jo = 0. Now notice that

ijflhyk
zj +1
B(f, o) = gt L con - [ ce),

Z]k,

as le’J ((2)|dz| and fZZ,J ((z)|dz| are centered. But by condition (b), le’j ((2)|dz| —

fz2 ((2)|dz] is a centered Gaussian variable with variance > ¢(jj — jp_1)/ for some positive
7]

13



constant c. Thus if we allow j; — jr_1 to be only large enough so that

%E’ L cwme- [ e 2 20+2 )5+ 1C'B,
Ly oy

and set 7; = 1 or 2 accordingly as le’jg 2)|dz| — f£2 z)|dz| < or > 0, then

([ e < -2(a+ T)os 50 V).

ﬁz‘jk,J
and r
| = Q(5) B Q%)
_ = S
(a+3c51emevE) ((1+F)CB-1 +290'V)
By?

Let us call the path given by this strategy as P*. Plugging the previous two expressions into

(2.1.3), we find that the expected random length of P* can be at most

2

I+ )05 L 2yC"VB) =2l (1 + Phopt 4o 1C'v/B)
= (1+ %2)1“ - ” me ) 5 ((1 + ;)Cﬁ_l + 270’\/5)
((1+ %)Cs71 + 29C'VB)
Yy Uy
WB+BH

(1+

The above expression is minimized for 5 = ©(y2/3) and the optimal value is ['(1 —Q(y%/3))
when v is small. This shows, on a high level, why we get a contraction as in Theorem 2.1.1.

We remark that the simple observation on the slopped switching strategy is more natural
when considering continuous path in the plane — this is why our main proof focuses on the
case of continuous GFF. In the case for discrete GFF, we first bound the distance minimizing
the lengths over all continuous path and then argue that for each continuous path there is a
lattice path whose weight grows by a factor that is negligible.

We now give a brief guide on the organization. In Section 2.2, we introduce a new

14



Gaussian field which has a simpler hierarchical structure than the circle average process
— our main proof will be carried out for this new field. In Section 2.3 we describe our
inductive construction on light crossings as scales increase and in particular we introduce
the aforementioned sloped switching gadget. In Section 2.4 we analyze the construction
in Section 2.3 and derive an upper bound on the weight exponent for the Gaussian field
from Section 2.2. In Section 2.5, we show that the circle average process of GFF is well-
approximated by the field from Section 2.2, thereby proving Theorem 2.1.1. Finally, in

Section 2.6 we explain how to adapt the proof to deduce Theorem 2.1.2.

2.1.5 Conventions, notations and some useful definitions

We assume that v is small enough (less than some small, positive absolute constant) for our
bounds or inequalities to hold although we keep this implicit in our discussions. I' is the
smallest (integral) power of 2 that is > v72. Thus 1 < I'y? < 2. (It will be clear from our
analysis that any exponent < —4/3 should work.) For any w € RQ, ¢ eNandr >0, V[;w
denotes the rectangle w + [0,727] x [0,27¢]. We will suppress ¢ or w from this notation
whenever they are 0. We will also omit r when it is 1. We call two rectangles R and R’ to
be copies of each other if R can be obtained from R’ via translation and / or rotation by an
angle. The rectangles R and R’ are called non-overlapping is their interiors are disjoint. If
R and R’ have same dimensions then we say that they are adjacent if they share one of their
shorter boundary segments. A smooth path is a C'! map P : 0,1] — R2. We also use P to
denote the image set of P which is a subset of R2. This distinction should be clear from
the context. For any rectangle R = [a,b] x [¢,d] with sides parallel to the coordinate axes,
we define its left, right, upper and lower boundary segments in the obvious way and denote
them as Ojef; R, Oright B, up R and Oqown I respectively. Thus Jjeg R is the path described by
(a,c+t(d — c));t € [0,1] etc. For convenience, we will identify (and denote) the points in
R? as complex numbers.

For (nonnegative) functions F(.) and G(.) we write F' = O(G) (or (G)) if there ex-
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ists an absolute constant C' > 0 such that F' < CG (respectively > CG) everywhere in
the domain. If the constant depends on variables x1,x9,...,z,, we modify these nota-
tions as Oz ao,...2,(G) and Quy 25 . 2,(G) respectively. F = O(G) if F is both O(G)
and Q(G). For any positive integer i, the notations C; and ¢; indicate positive, absolute

constants whose values are assumed to be same throughout this chapter. Similarly we use

/ " s . T
Crywg,op Oy g,y Oy g,y -+ b0 denote fixed positive functions C, €7, C7, - -+ of
x1,9, - ,x. However we keep these qualifications i.e. “positive”, “absolute constant”,
“depends on x1,x9,--- ,x;” etc. implicit in our discussion.

2.2 Preliminaries

2.2.1 Whate noise decomposition of some Gaussian processes

A white noise W distributed on R? x R refers to a centered Gaussian process {(W, f) :
f e LZ(R2 x RT)} whose covariance kernel is given by E(W, f)(W, g) = Jr2wgr+ fodwds.
An alternative notation for (W, f) is [po g+ fW(dw,ds), which we will use in this chap-
ter. For any D € B(R?) and I € B(RT), we let [p, ; fW(dw,ds) denote the variable
Jr2srt [Dx1W (dw,ds), where fp,r is the restriction of f to D x I. Now define a Gaussian

process {hj(v) : v € Dy} as follows:

hs(v) = /Dx((),oo) (/63B5(v) pp(s/2;0", w)ps(dv"))W (dw, ds) (2.2.1)

Since Gp(v,w) = f(O,oo) pp(s;v,w)ds, it is easy to check that the processes hs and hg
are identically distributed for all 6 € (0,diam(D)). This provides an automatic coupling
between hg and a “convenient” field (to be defined shortly) which will be useful in our proof
of Theorem 2.1.1 in Section 2.5. Henceforth we will work with a probability space (€2, F,P)
on which a white noise is defined.

It turns out that the field {hs}s~o can be reasonably approximated (see Section 2.5) by

16



a new family of fields which enjoy certain nice properties. To this end, we define a Gaussian

process 1 = {ngl(v) weR?0< < <1} as:

nd (v) = / p(s/2: v, )W (duw, ds) . (2.2.2)
R2x[§2,62]

where p(s;v,w) is the transition probability density function of standard two-dimensional
Brownian motion. We can immediately deduce the following properties of n from this rep-

resentation:

(a) Invariance with respect to symmetries of the plane. Law of i remains same under any

distance preserving transformation (i.e. translation, rotation, reflection etc.) of R2.

(b) Scaling property. The fields {ng:g/(é*v) :v € R?} and {ngl(v) - v € R?} are identically

distributed for all 0 < 6 < § <1 and §* € (0,1].

(¢) Independent increment. The fields {ng/(v) v € R?} and {ng,,,”(v) :v € R?} are indepen-

dent forall 0 < § < ¢ < " < 6" < 1.

We will suppress the superscript ¢ in ng/ whenever ¢ = 1. Notice that

Var(ns(v)) = /[62 . p(s;v,0)ds = 7 Llogd 1. (2.2.3)
w2
In Lemma 2.2.1 we show that Var(ns(v) — ns(w)) = O( [v 650‘ ). As ng is a Gaussian process,

this property implies by Kolmogorov-Centsov theorem that there is a version of 75 with
continuous sample paths. Thus we can work with a continuous version 7 for any given

and hence for any fixed, finite collection of §’s that we consider at any given instant.

2.2.2 Some variance and covariance estimates

[o—wl?

52

Lemma 2.2.1. For all v,w € R?, we have Var(nz(v) — ng(w)) <
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Proof. These follow from (2.2.2) by straightforward computations:

lv—wl|?

1—e 25 — 2 — 2
e—dS S 7T1/ |U ;U| dS S |U 2w| . D
21 s 62,1] 28 )

Var(ng(v) — n5(w)) = 7! /

(0%,

We need similar results for a different class of random variables as well. To this end
let us define some new objects. Let P be a finite, non-empty collection of smooth paths
in R2. A random polypath (or simply a polypath) & from P is a collection of {0, 1}-valued
random variables {Gg’P}Pep such that Upep:e&leP is a connected subset of RZ. Thus
one can view ¢ as a random sub-collection of P forming a connected set. We treat any
smooth path P as a polypath from P = {P} with epp = 1. We will often omit the
reference to P when it is clear from the context and simply say that £ is a polypath. If
X ={X(v) : v € D} is a continuous field and € is a polypath from P, then we define its weight
computed with respect to X or alternatively weight computed with X as the underlying field as
the quantity Y pepec p [p e1X(#)|dz|. For continuous random fields X = {X(v) : v € R?}
and Y = {Y'(v) : v € R?}, and a polypath £ such that (&, X) is independent with Y, consider

the random variable

Z(EX,Yiy) = > egp/ Xy (2)|dz] . (2.2.4)

PeP

It is a simple consequence of Fubini’s theorem that EZ (£, X, Y’; ) is finite if sup , cp2 E[Y (w)]

and suppep E [p eVX(Z)|dz| are both finite. In this case we can express Z(&,X,Y;v) =

E(Z(§, X, Y;7)[Y) as

Z(6,X,Y;:7) = Z/ (e p? X ENY (2)|dz] . (2.2.5)

PePpP

Furthermore, Z (&, X,Y';7) is a centered Gaussian variable if Y is a centered Gaussian field.

If X =0, we drop X and 7 from the notation and write is simply as Z(£,Y). Another
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quantity of interest is the expected weight of & computed with respect to X i.e.

LX) = [ Bleg por X)) (2.2.6)
pep’F

Now fix some N € N, w € R? and v € R. For v € {w,w+ w} (here : = \/—1) subdivide
the rectangle VQZXHI;;U into N non-overlapping translates of VQFTHF namely Ry 4, R2.4, -, RNy
ordered from left to right. Suppose that {;, is a polypath contained in R;, such that
(&0, X) is independent with 75 and L(§;,, X;7) = 1. Our next lemma deals with the

random variables ;¢ [N] Z(&j.0: X 10.537)-

Lemma 2.2.2. If NT™1 > 1 and v > 0.1, then there exist ¢; and Cy such that

JE[N] JEIN]

\/Var( Z Z(& i Xm0.537) — Z Z(&ja0s X, 105:7)) > 1 VNT — O1NT L.

On the other hand Var ( Zje[N] 7(€j’w,X, m0.5:7)) = O(NT + N2172) for all N.

Proof. First we will show that Var(?(gv, X, n0.5;7) — 7(F8upRj7U, 170.5)) is small. To this

end let u € R;,,. By Fubini, we can write Var(?(FE)upRj’v, n.5) — no.5(u)) as

/[0 " Cov (770.5(Uj +T71s) —g.5(u), mo5(v; + T 1) — 770.5(U)>d8dt,

where v; is the upper-left vertex of the rectangle R; . Since the diameter of R;, is o1,

applying Lemma 2.2.1 to the last expression we get
Var(Z(Toup R, m0.5) — 10.5(u)) = OT?) (2.2.7)

for any u € R;,. Now suppose Pj,, is the collection of paths corresponding to &; ,,. Denote,

for any path P in P;,, the quantity [p ]E(ngv7pe’YX(Z))|dZ| as qpjy- Using Fubini and
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(2.2.7) in a similar way as we used Fubini and Lemma 2.2.1 for (2.2.7), one gets

Var(/PE(egj’v7pevX(2))77(z)|dz| - qP’jw?(Faupij, 770_5)> = O(q%’ij_Q)’ (2.2.8)

for all P € P;,. Since

20 Xomsin) = 3 [ Bleg,, p X Onia)lds]

PePjy

and ZPGPN qpjo = L&, X57) =1, (2.2.8) gives us
Var(Z (& 0, X.m0.5:7) — Z(L0upRjnsm0.5)) = O(02).

Denoting )~ ;e Z(TOupRjy:m0.5) as Zy , we then have

Var(( Z 7(5j,w+LuaX:770.537> Zw—l—wN Z Z 6] w> X510.5;7) _7w,N))
JEN] JEN]

— O(N?T7?).

In order to estimate Var(zwﬂy’ N — 710, ~ ), on the other hand, we can use the definition of
no.5(v) in (2.2.2) and Fubini to obtain:
- r2 p oz v2

Var(?wﬂ,,’N—Zw’N) = = ON/TEx[0.25.1] s e (1—e" 2s)dxdzds

= Q(?) / / / da:dzds
0.25,1] J[0,N/T] ON/F

where in the second step we used v > 0.1 and in the final step the fact f[O b e—ar? gy —

Q,p(1). The last two displays yield the required bound on the standard deviation of

> ieN] Z(&Gwtivs Xom0.537) — 2 jein) 2 Eans X m0.557)- Var( 3 eng Z (s X, m0.5:7))
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can be bounded by similar computations. O]

2.3 Inductive constructions for light paths

In this section we will discuss algorithms to construct light paths between the shorter bound-
aries of V' when the underlying field is N9—n. Belowe we introduce some terms that will be
used repeatedly.
A polypath ¢ is said to connect two polypaths ¢ and & if ¢ always intersects ¢ and &
considered as subsets of R2. More generally we say that the polypaths &1, &9, - - - , & form or
define a polypath if their union is always a connected subset of RZ. A crossing for a rectangle
R is any polypath ¢ that stays entirely within R and connects two shorter boundaries of R.
Depending on the value of current scale n, we will use one of two different strategies for
constructing a crossing cross,, for VI To be more precise, let 2apmp < n < 2(ap + 1)mp
where 2" = I' and a,, € NU{0}. We will use a simple strategy called Strategy I when
2apmp < n < 2apmr + 2mp — 1 and a different strategy called Strategy II otherwise. We

detail these two strategies in separate subsections.

2.3.1 Strategy 1

We will adopt an inductive approach. Consider the rectangle 0.5.+ [0, T'] x [0, 22anmf—1_”].

: - gn—2anmrripyg 5,
Notice that this is same as Vn_Qaan+1

. Subdivide it into non-overlapping translates
of VE_QaanJA and denote them by R1.,—24,mp+1; B2:n—2anmp+1, - - - from left to right (see
Figure 2.1).

Now suppose that for all £ < 2apmp — 1, we already have an algorithm Asgg, pp—1 that
constructs a crossing through VI and takes only the fields {1, } kelr] 88 input. Due to the
scaling and translation invariance property of n we can then use Agg, ;mp—1 to construct a
92apmp—1-n

crossing cross;., through R;.,, 24, mp41 using only the fields {772,k }n_zanmp+1<k§n

as its input. Henceforth whenever we talk about applying Ay to construct a crossing at scale
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R1;3 Ry . . ! . . o Rg.3

)

Figure 2.1: The rectangles Ri., 24, mp+1, B2:n—2a,mp+1, - Here n = 2apmp + 2.

n, we will suppress the statement that the fields used to construct it are {ngiéniﬂ) bt <t<n-
The remaining job is to link the pair of crossings cross;.,, and cross;q.,. This can be done
in a simple way which we call tying for convenience. We describe this technique in a general
setting as it will be used several times in the future. The reader is referred to Figure 2.2 for
an illustration.

Ry9.1R1 2,2

Figure 2.2: Tying crossp and crossp. The crossings crossp and crossps are indicated
by purple lines. The two vertical blue lines indicate the crossings cross*f121 (left) and
cross™ .22 (right). The horizontal blue line indicates the crossing cross™ 1.3,

Let k € [n — 1]. Consider two adjacent copies of Vkr. Without any loss of generality
(because of the rotational invariance property of ngl ), assume that their longer boundary
segments are aligned with the horizontal axis. Call the left one as R = I x J and the
right one as R = I’ x J'. We want to link two crossings crossp and crossp through R
and R’ respectively to build a crossing for R U R’. To this end define three additional
rectangles Ry 9.1 = [r — Z_k_mf,r[] x J, R19.0 = [rp,r1 + Z_k_mf] x J and Ry93 =
[rp — 2750 pp 4 27k s (05 05 + 27F72mr L] where £ and 7y are the left and

right endpoints of J and I respectively. We use A;,_j_p,. to construct up-down crossings
22



CTOSSR, 5, and crossg, ,, for Ry 9.1 and Ry 9,0 respectively. Similarly we apply A, 9041
to construct a left-right crossing cross Ry 23 through Rj o.3. Let us also make it clear that
Ay constructs a straight line connecting midpoints of the shorter boundary segments of T
when ¢ < 0. Finally notice that the union of crossings crossp, crosspr, cross Ry 2.1 CTOSSRy 5.
and crossg, ., is a crossing for the rectangle RUR'. We refer to this as the crossing obtained
from tying crossp and crosspr.

Thus we tie together the sequence of crossings crossy.y, crosso.y,, - - - ; CTOSSgn—2anmp+1.,
(i.e. every pair of successive crossings) to form crossy,. Figure 2.3 provides an illustration of

this construction.

VP

[

R1;3 R2;3 . . ! . . . Rg;g

[ I |

Figure 2.3: Construction of cross, using Strategy I. Here n = 2a,mp + 2. The red
lines indicate the crossings cross;.;’s while the blue lines indicate the crossings used for tying
the pairs (cross;.p,, cross;ji1.,)’s.

2.3.2  Strategy 11

This is our main strategy which employs switching using sloped gadgets in order to build
efficient crossings. Recall that n = 2(a,, + 1)mp — 1 in this case. Unlike in Strategy I here

2. 2. 2. 2.
pE20250 3 TBOTS a0 TR0 gy 0%0.250

we start with two strips omp oy oy omp into

r'p

non-overlapping translates of V2mF 2/3,

where [ is the smallest power of 2 that is > v~
Let us denote them as Ry 1, Ri9,- - 7R171“/6 and Rg 1, Rgo,- - ’R2,F/ﬁ respectively from
left to right. Similarly one can subdivide each R; ; into non-overlapping translates of VQI;ZF
which we call as its blocks. See Figure 2.4 below for an illustration of this set-up. We

can use Agq, mp—1 to construct a crossing crossg through each block R. Let R; j ey and
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Ri1 Ry Ryr/s-1 Ryr/s

Ro Roo Ror/s-1 Rorys

Figure 2.4: The rectangles R; ;’s and its blocks. In this (hypothetical) example each
R; ; consists of 8 blocks and thus I' = 8.

R; ; right respectively denote the leftmost and rightmost blocks of R; ;. We will construct

a new sequence of crossings which, when tied, gives a polypath connecting crosspg, ileft and

2. 2.
%0250 T ,0.75L> _

CI'OSSR2 2mp » P 2mr

. Observe that, due to the choice of I' and the fact dj. (
,J,right 2

Q(1), there exists an integer Ly and a copy S7 j of VQLnZ; such that:

(I) The length of Sy ; is at most dp, ( +2/T" where cp denotes the center

CRy 1ot ch,j,right)

of a rectangle R.

(IT) S1,5, By jlee and Ry j iigny are arranged as in Figure 2.5.

Ry j left n
L
% T | lj
Sl’]
R j right
R2,] ot
— ==
=

Figure 2.5: The rectangles Ry jiefi, 12 jright @and S1,;. Each of the five rectangles com-

prising 57 ; is a copy of VQI;TLF' Hence L, = 5 in this example. The red lines inside each
rectangle indicate the corresponding crossings.

It is clear from the arrangement depicted in (II) (or in Figure 2.5 for that matter) that

any crossing through S ; intersects both cross Ry 1eft and cross Ry right” Now subdivide

S51,j into L~ non-overlapping copies of V21;np and construct a crossing through each one
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of them using Agg, ;mp—1. Tying these crossings would then give a crossing of Sy ; which
connects cross Ry 1eft and cross Ry right” Similarly we can construct a copy 59 ; of VQ%@Yf and
a corresponding sequence of crossings which connect cross Raj 1eft and cross Ry right after they
are tied. The L~ non-overlapping copies of VQFTRF comprising .S; ; are also called its blocks.
Henceforth we will refer to the collection of blocks of \S; ;’s and R; ;’s as Block,. We now
have all the ingredients for defining our strategy which is essentially encoded by the numbers
i; € [2]. Given these numbers, we define a collection %, of crossings as follows. If i; =i, 1,
we include crossp in 6q,, for all the blocks R of R;, ;. Otherwise we include crossp for all

the blocks R of SZ-]. j as well as crossp, iloft

i and crossg, .

S ight (notice that 3 —i; switches 1
and 2). We refer to the collection of blocks included in %, from a “location” j as the bridge
at that location. Unless there is a switch at location 1 (as S; 1 can potentially intersect
R2 \ VF), the crossings in %, define a crossing for VT after we tie every pair of crossings
(crossg, crosspy) in 6y, for adjacent R, R'. See Figure 2.6 below for an illustration. The

particular choice of i;’s will be determined by the field 79 5 which we discuss in the next

section.

Figure 2.6: Construction of cross, using Strategy II. In this example i1 = io = 2 and
i3 = 1; iF/ﬁ—l =1 and il“/ﬂ = 2. The red lines indicate the crossings in ¢y, and the blue
lines indicate the crossings used to tie them.

2.4 Multi-scale analysis on expected weight of crossings

Let Dy denote the total weight of cross, computed with 7y—n as the underlying field and
d~,n denote its expectation. In Sections 2.4.1 through 2.4.3 we will derive recurrence relations
involving d- s for n € N. It is useful to recall at this point that d , = I" whenever n < 0.
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In Section 2.4.4 we show how these relations lead to a bound on dy j.

2.4.1 Strategy I: a recurrence relation involving d.

We will assume n > 0. For convenience we use [n]y to denote n—2apmr+1. Let Dy 5, main de-

note the total weight of crossy.p, crosso.,, - - - , cross (see Section 2.3.1) and Dy ;, sadget

2[”]’}/;7}
denote the total weight of crossings used to tie them. These weights are all computed with
respect to ng—n and thus Dy n = Dy main + Doy gadget- Notice that the weight of cross;,,
is Z(crossj;n,ng:lln]w,ewf["h;fy) (see (2.2.4) for the definition of Z(-,-,-;v)). Hence from
Fubini and the translation invariance property of 75 we get
¥~ gy (0) 5], Gr2ammp—1
ED+ n,main < Ee 27y T2l == (2.4.1)
2 nly

where the divisor 27 comes from scaling property (compare to the situation when v = 0).

From this point onwards any expression of the form would implicitly mean that the

« d%k 9
on—k
divisor 2" ¥ originates from a similar consideration. Now since Var(n;(0)) = O(log 6 1) and

mp = O(logy™1), the last display gives us

EDs pmain = (1+ O0(v*logy™1))dy 2a,mp—1 - (2.4.2)

As to the estimation of ED, ;, sadget, recall from Section 2.3.1 that we spend three cross-
ings for tying the pair (cross;.,, cross;41.,). Two of these are constructed using A(Qan—l)mp—l

and the other one using .AQ( Ymp- Hence by a similar reasoning as used for (2.4.1), the

an—1

expected weight of these crossings is given by

oFe o~ lnly—mp (0) y (2an—1)mp—1 + B~y —2mp (0) @y 2(an—1)mr
o[nly+mr olnly+2mp—1"

Since there are 2"y — 1 many tyings, this implies (along with the variance bounds given by
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(2.2.3))

P 1 1 9
ED’y,n,gadget < (1+0(y"logy™))(2T dv,(?an—l)mpfl +T d’y,2(an71)mp)'

Combined with (2.4.2), the last inequality gives us
Dy < (14021087 )y 21 +27 (3011 + T2 (0 1ymr) - (2:4:3)

2.4.2 Strategy II: choosing the particular strategy

As in Section 2.4.1, we begin with a decomposition of D~ ; into two components. To this
end denote by Dy j, main the total weight of crossings in ¢, where n = 2apmp + 2mp — 1.
The other component D, , oadget 18 the total weight of gadgets that we use to tie pairs of
crossings (crossg, crossps) in 6, for adjacent R, R’ (see Section 2.3.2). All the weights are
computed with respect to the field ny—n. Dy j main is the major component and will inform
our choice of strategy.

We, in fact, devise our strategy based on an approximate expression of E(D~ , main|70.5)-
For this we need to analyze D. j main;; Which is the combined weight of crossings through
all the blocks in the bridge at location j. In our analysis we rely heavily on the fact that
our strategy is determined by 79 5. Also along the way we make several approximations that

will be justified in a later subsection. Let us begin with the case i; = ¢;,1. In this case

E(D%n,main;j’no.f)) = Z 7(CrOSSRa 773‘—5m eTM05: ) .
REBIOCky,RgRiT]‘

. . . -2 . .
Now we replace 778'_5n in the above expression with ng_n which results in
— -2
approx; | = Z Z(crossp, ng,n , €105~

RGBIOCkW,RgRZ’j J
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We further approximate eM0.5(2) with 1 + vno.5(2) and obtain a new expression as follows

(recall the definitions (2.2.5) and (2.2.6)):

_ -2
approx;o = Z Z(crossp, Ugfn, L+ 9m0.5;7)
REBlockv,RQRij,j
2 A r—2
= Z (L(crossR, No—n v) + Z(crossg, Mo—n»Y10.5 7))
REBlockW,RQRij,j
d 2apmp—1 = r—2
= [r-LEn 4y > Z(crossg, fly—n+710.5:7)

ReBlock, ,RgRij g

—1 -
- 5F drY’Zaan*l + Z’77na7']a.7

7 _ 7 r—2 . . « LI
where Z ;. 5 =7 ZREBlock«,,RgRij,j Z(crossR, My—n,M0.5;7)- Thus there is a “determinis-
tic” part and a “random” part in approx;o. The small magnitude of v is crucial for these
approximations. When 4; # 4,11, i.e. there is a switch at the location j, deriving approx; o

requires slightly more work. In this case

Y 0.5 .
E(D’y,n,main;j 1m0.5) = E Z (crossg, No—n; eT05: ) .
ReBlocky, RES;; jUR; , jleft VB3 —i,j right

Similarly as before we ignore the contribution from nIQ'E’Q and the higher order terms in

e10.5(2) to obtain

_ r-2 ‘
approx; = Z Z(crossp, No—n 705 )
ReBlocky, RCS;; jUR;; jlettVI3—i; j right

and

r—2, Vi
approx; o = Z L(crosspg, 1y—n;7) + ARRINE
ReBlocky, RCS;; jUR;, jlettUR3—i; jright
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where

— — F_2
Zymiijg =7 > Z(cross R, My—n»10.5;7) -
ReBlocky, RC Sy, jUR; ; j etV I3—i; j right

Recall from Section 2.3.2 that the total number of blocks in the bridge in this case is L + 2.
From property (I) of Sz-j ,j and the elementary fact V1 + 2 =1+ %2 + o(x?) as © — 0, we

get
L C’
J:B+ﬂ,
r B

for some C’&n = O(1). Hence the deterministic part in approx; 5 is

51’\ d%Qaan_l C” E d%Qaan—l
2 ’Yv”ﬁ 2 ’

where again C,’Y’,n = O(1). Writing the random part Ziy,n,ij,j as

-/

Z’Vv”a?jaj - Z"}/,TL,’L],] + LOSSfY,nvijaj’ (244)
we obtain in this case
d _ rd _ _
¥,2apmr—1 1/ ¥,2apmr—1
approx; 9 = 61“#F + C'%HB#F + Zymyijg+Lossynii - (2.4.5)

Now from Lemma 2.2.2 we have

d2
= —2 2apmp—1 _
Var(v > Z(CYOSSR,ng—n,no.av)) = T* L= =0 (8 + 57T %)

REBIOCk»y,RQSi y

J7

d2 2 1
2.2 ,4An M —

= O(I""B) : T4 —.

The same bound holds for Var(Z%n,Z-jJ-) and (obviously) for Var(yZ(crossp, 775,73,7705;7))
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when R = R;. jlef; OF R jright- Thus from (2.4.4) we get

2
2.2 o B.20,mp 1
Var(Loss, p..7) = O™y B)T :

As Lossy 5, 4,;'s are centered Gaussian variables, the previous bound implies

Qapmp—1
Z]ELoss,ynw O(y+/B) 7 amr .
i€[2]

Incorporating this bound into (2.4.5), we get the following upper bound on the expectation

of approxg = > je[T/ 8] BPPTOX; o

(B~ ! +'Y\/B)d'y,2anm1—\fl
I

E(approxg) < dy 2a,mp—1 + E Z Ynyigg T Cym Nowitch » (2-4.6)

SV
where C- , = O(1) and Ngyiten is total number of “potential” switching locations (deter-

ministic). Since Z. ;. ;’s are centered, we can write
'7,71,'6‘7 2] ’

E Z 7%7%@';',3' E Z Z]H 7n717j_7%n,2,j>-
Jel/p] JEr/B]

Hence we choose our strategy so that it gives a small value of the following expectation:

1 = _ dy 2a,mp—1
E’Y,n = E<§ Z (_1)ZJ+1AZ’Y,n,j + C’%n(ﬁ ! + Vﬁ)%Nswitch> ) (2~4~7)
Jjell/pl
=7

where AZ, ;, ;

71 < je < [T/8],

vl — 7%%2&. From Lemma 2.2.2 we can deduce that for any 1 <

— 2o, . T
AZoynj) = Q(%)%m—ﬁﬂ)m(l_O(WD 131+ W))

N | —

Var( Z
J1<55<j2

. ,2 mp—1
> 972 (jp — j1 +1)f—LEmIT S .20 mF :
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As a consequence we have

d _
> 20, (871 + 7y/B) L2 =1 (2.4.8)

E
r

1, —
Z §AZ%n,j

J1<5<]2

whenever

40’%,n(571 + ’7\/3)2 N

. (2.4.9)
2,28 o

Jo—Jj1+1=>

Here we use the simple fact that E|Z| = \/g for a standard Gaussian Z. Let Ny be the

smallest power of 2 that is > Né,n. We are now ready to define our strategy. Set

i . 0 lf Z(kjj—l)N%n‘FlS],SkJN"/,n AZ’Y,nvj/ > 0 )
j =
1 otherwise,

where k; € N is such that (kj — 1)Nyp, +1 < j < kjNyp. It then follows from (2.4.7),
(2.4.8) and (2.4.9), and the choice of 3 as O(y~2/3) that

2

_ dy 2 -1 ol
< _ 1 fdnmr—2 (T \4
= ny,nﬂ X C’%n(ﬁ +'7\/E) T <ﬂ_1 +7\/B> ~v,2a,mp—1

= —Q("3)dy 20,mp-1 - (2.4.10)

Eyn

Notice that this strategy ensures 77 = i9 i.e. there is no switch at location 1 which implies

we get a “legitimate” crossing (see the discussions at the end of Section 2.3.2).

2.4.3 Strategy II: a recurrence relation involving d. ,

Let us first estimate the expected errors that we made in every stage of approximation in

the previous subsection. Denote the sum ) je[/5) APPTOX; | as approx;. Since the choice of

0.5

o2 from Fubini and translation invariance of n we

crossings in %y,, is independent with 7
get
71925 (0) 9, 1
EDy 5 main = Ee "T72"E(approxy) = (1 4+ O(y" logy™"))E(approxy ) .
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Next we take care of the approximation of approx; with approxy. Since e* > 1+, it follows
that approx; > approxs. On the other hand, a reasoning similar to the one used for last

display gives us
E(approx; — approxy) < E(¢703(0) —1 — 7770.5(0))%@10&% :
It is straightforward that |Block,| = O(I'?) and hence
E(approx; — approxs) < O(v?)dy. 2, mp—1-

Since E(approxa) < dy 24,mp—1 + Eyn (see (2.4.6), (2.4.7)), the bounds from the previous

displays and (2.4.10) together imply
ED*y,mmain < d%?anmp—l(l - 9(74/3)) . (2.4.11)

It only remains to deal with ED., ;, sadget- In fact the argument that we used to bound

ED~  gadget for Strategy I can be applied directly in this case to obtain

d _ _ d _
ED%n,gadget < (2 ’Ya(Qaanl)mF 1E6777F73(0) 4 WEG’YU2F4(O))|BIOCI{V| ‘

which implies

ED%n,gadget = 0(1)(F_1d~y,(2an—1)mp—1 + F_2d'y,2(an—l)mp> : (2-4-12)

Finally (2.4.11) and (2.4.12) give us

d’y,n < d'y,2anmp—1(1 - 9(74/3)) + 0(1)(F_1d%(2an71)mp—1 + F_Qd%Q(an—l)mp) - (2.4.13)
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2.4.4  Upper bound on d

We will use the recursion relations (2.4.3), (2.4.13) and an induction argument to derive an
upper bound on dy . To this end let Co be a positive, absolute constant (from (2.4.13))

such that

2a—1)mp—1 d7,2(a—1)mp)
2.4.14

d

for all @ > 0. Fixing an a € NU {0}, we formulate our induction hypotheses as:
4/3
(a) dy2amp-1 <T(1 - S5=)".
02’74/3 an+1
(b) dypm <2T(1— =2—) for all n < 2amp.

Hypotheses (a) and (b) obviously hold for a = 0 since dy;, = I' for n < 0. Now combined

with (2.4.14) and the fact T' > 772, these two hypotheses imply

Cloyd/3 Cond/3
dyaasmy € (1= =)= Coy"}) + 06N (1 - =2 —)"

Coy*/3

Cor o110y 3) 4 02 < (1 -

)a+1

On the other hand for 2amp < n < 2(a + 1)mp, we can apply (2.4.3) and hypotheses (a),

(b) to obtain

0274/3 4/3

)" +0(?)(1 - 023

4/3
)a+1(1 +O0(3) < oT (1 - 02’; )a—i-l

")

dyotartyme < (1+0(F1ogy )T ((1-

4/3
= r(1- 02’;

Thus by induction it follows that

0274/3

dyp < 20(1— 22 yonth (2.4.15)

for all n > 0.
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2.5 Proof of Theorem 2.1.1

For the purpose of proving Theorem 2.1.1, we can identify hs with its white noise decompo-
sition given in (2.2.1). Since this representation involves some special functions, it would be
helpful to have convenient notations for them. To this end we denote p(s; v, w) —pp(s;v,w)
as Pp(s;v,w). Also for any function f defined on R™ x D¢ x D, and § < ¢, the function
f‘s(.; v,.) denotes the average faB(g(v) (s, .)ug(dv'). Now notice that we can decompose

the difference hg(v) — ng(v) into four components as follows:
hs(v) —ns(v) = Gv;l + G’U;2 + Gv;3 + Gv;4 )

where

Gua = [ bz )W ds) Gua = [ pls/2i0w)W(du.ds),
Dx|[1,00) Dx (0,57
Gp:3 = —/ ﬁ(SD(s/Z;v,w)W(dw,ds) and
R2x[§2,1]
Gy = / (p5(5/2; v,w) — p(s/2;v,w))W(dw, ds) .
’ R2x[§2,1]

We will show that the variance of each component is Op ((1). Let us begin with Var(Gy.1).

Observe that

Var(Go) = [ f P50 0 (A () ds
[1,00) JOBg(v)x0Bs(v)

= / / p(s; U/’ v")@D(s; U/, U’/)ug(dvl)ug(dvﬁ)ds, (2.5.1)
[1,00) JOBgs(v)x9dBg(v)

where 2P (s;0",0") is the probability that a (two dimensional) Brownian bridge of duration

s remains in D. Since squared absolute norm of a standard Brownian motion at time ¢ is
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distributed as an exponential variable with mean 2¢, a simple computation gives us

(dgy (v DD)+]o/ —"|)?

2D (54, ") = 0(1)(1 — ¢ O ; ).

Plugging this into (2.5.1) we get

(dg, (' OD)+]' —v"|)?

Var(Gp.1) = 0(1)/[100)3—1(1_50( ; )ds

= O(l)/ S_Z(dg2(v,, dD) + [v' — o"|)2ds = O(diam(D)?) .
[1,00)
Next is Var(G,2) which can be evaluated as

Var(Go) = [ P30/, o) (o) (o) s
(0,02] JOBs(v)xdBj(v)

<[] p(s: 0! W) (oY (do”)ds
(0,52] aBd(v)XaB(g(v)

62(170089)
= (277)2/ 31/ e s dfds
(0,0%] [0,27]

0(52)

= 0(1)/ e s s lds=0(1).
(0.6%]

For Var(G.3) we start with an upper bound:

Var(Gug) < [ P (5500 Yl (o) ") s
162,1) JOBs (v) x0Bs(v)

:O(l)/ / p(s;vl,v”)?D(s;U/,v”)ug(dv/)ug(dv")ds, (2.5.2)
52,1] JoB;(v)x0Bs(v)

where @D(s; v’,v") is the probability that a Brownian bridge of duration s hits dD. Like

pD (s;0',0"), we can use tail probabilities of appropriate exponentials to bound this as

2
(dg, (v D)~/ —"|)

@D(s;v/,v”) =0(1)e" ( s
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(2.5.2) and the previous bound together imply

o2 (o/ D)~ o/~ +2

Var(G,.3) < O(l)/ e s ds = O¢(1),

[62,1]

We are only left with Var(G,,.4) now. Notice that

Var(Gp.4) = / p(s;v,v ds+/ / p(s; v, 0" g (dv" )l (dv”)ds
’ [62,1] §62,1] JOBs(v)x0Bs(v)

—2/ / p(s;v’, v)pd(dv')ds
52,1] JoBs (v
= I1+1r—2I3.

Since p(s; v, 0") < (27r)_13_1, it follows that I and I are bounded above by (27T)_1 f[(;z 1] %
On the other hand.

2
Is = (2m) ! /2 o= % s 1ds > (2#)_1/ (1—6%2s"1)s 1ds.
[0%,1]

[02,1]

Putting all these estimates together we get Var(Gy.4) = O(1). Thus Var(hs(v) — ns5(v)) =

Op (1) for all v € De. In addition we claim that

Var((h(0) — 15(0) — (hs(ow) — ms(w)) = 0 ) (253

for all v, w € D¢ such that |v —w| < §. Thus, by Dudley’s entropy bound on the supremum
of a Gaussian process (see, e.g., [1, Theorem 4.1]) and Gaussian concentration inequality

(see e.g., [54, Equation (7.4), Theorem 7.1]) we deduce that

P(max(hs(v) — n5(v)) > C34/logd—1 + z) = o~ 0D , (2.5.4)

veV

for all x > 0. We will verify (2.5.3) shortly, but before that let us show how (2.5.4) leads to

a proof of Theorem 2.1.1. To this end define, for v,w € V, D, - 5(v,w) = infp [p V15(2) | dz|
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where P ranges over all piecewise smooth paths in V' connecting v and w. Also denote by
thfyagght (v, w) the weight of the straight line joining v and w when the underlying field is
hs. The following is straightforward:

D

O(yy/logd—1 traight
ysw,w) <e (vvlog )Dvm’%g(v,w)lEv+DZ;‘T}g (v, w)lpe (2.5.5)

where My = max,cy (hs(v) —15(v)) and Ey is the event { My < (C3+1)y/logd—1}. Let n
be the unique positive integer satisfying 2771 < § < 27" Notice that for any point v € V'
and any boundary segment VO of V/, there exists a sequence of rectangles Ry y, R9 y, -+ B¢y
with sides parallel to the coordinate axes such that:

a

(
(b
(
(

) The shorter boundary of Ry, has length at most 27" and has v as one of its endpoints.
) R, intersects 142

c¢) The ratio of longer to shorter dimension of each R; , is I'.

d) R, CV foralli <K —2.

(e) Rjy € Rjq1, for all i < K — 2. Furthermore one of the shorter boundary segments of
R; 11, is same as one of the longer boundary segments of R; ,, for all such i.

(f) Rg—1,NV (also Rk, NV) is a non-degenerate rectangle whose one boundary segment
is same as one of the shorter boundary segments of R _1 ,, (respectively R ,).

(g) Rk—1,NV C R, NV and one of the shorter boundary segments of R, is contained
in one of the longer boundary segments of Rg_1 .

(h) K = O(n).

Properties (a), (b), (d), (e), (f) and (g) imply that given any choice of a crossing P; ,, through
R; 4, the union of Py, Py, - , Pic ,, contains a path between v and V9 that is contained
in V' (see Figure 2.7). Here P is the shorter boundary segment of Ry , containing v. Also
notice that if we connect each of v and w to each of the four boundary segments of V' by some

paths in V| then there must exist a path from v and another path from w that intersect each

other and hence contains a path between v and w (see Figure 2.8). Therefore we can build
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v

Figure 2.7: The rectangles Ry ,, Roy, -, Rf - In this case K = 4. The portions of R3,
and Ry, lying outside V' have been omitted. The red curved lines indicate Py, and Py .
The blue and brown curved lines respectively indicate the portions of P3, and Py, that lie
within V.

Figure 2.8: Paths from v and w to each of the four boundary segments of V.

an efficient path between v and w by choosing P; ,, (or P; ) to be the crossing constructed
by A,,_ ] where 27" is the shorter dimension of R; , (respectively R; ,,). Recall again from
Subsection 2.3.1 that we only use the fields {ngiy] }W <t<p to construct a crossing at scale
n using A, _r,7. Thus by (2.4.15), independent increment and the scaling property of 1 and
(2.2.3), we can bound the expected weight of P; ,, (or P;,,) computed with respect to 75 by

the following:

74/3
logy—

1)

4/3
200711 Z ()5 ioer=T)g-("])
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Consequently
4/3
ol
logy™

Q(

T)

ED, . 5(v,w) = O(T)3 (2.5.6)

As to th;aisght(v, w)lpe, we can use (2.5.4) and Cauchy-Schwarz inequality to obtain

ED, . 5(v,w) < e~ D08 5_1>\/ E(DSMEM () 1)) (2.5.7)

7,7,6 h,y,6

Since Var(hs(v) —ns(v)) = Op (1) and Var(n;s(v)) = O(log 6~ 1), we get from Fubini

E(th?;aisght(v, w))2 = /[O e ev(h(g(I—Q—O.BL)-&-h(;(y—i—O.fn))dxdy < OD,E(l)(S—O(VQ) ‘ (258)

(2.5.5), (2.5.6), (2.5.7) and (2.5.8) together imply

which proves Theorem 2.1.1.

It only remains to verify (2.5.3). Since

(hs(v) = n5(v)) = (hs(w) = ns(w)) = (hs(v) = hs(w)) — (ns(v) — 15(w)),

it suffices to prove similar bounds for each of Var(hg(v) — hs(w)) and Var(ns(v) — ns(w)).
The latter can be obtained from Lemma 2.2.1. The bound on Var(hg(v) —hs(w)) was derived

(in a more general set-up) in the proof of [49, Proposition 2.1].

2.6 Adapting to discrete GFF

Let N =2 VE = ([0,TN = 1] x [0, N —1]) N Z? and Vy'* = ([~ [el N|,TN + [ N] — 1] x
[—[eN], N+ |eN]| +1])NZ2. Consider a discrete Gaussian free field iy n(v) v e VZS’E} on

VJS’E with Dirichlet boundary condition. By interpolation we can extend 7, y to a continuous
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field on the rectangle [—e['N, (14 €)' N] x [—€eN, (1+¢€)N]. After appropriate scaling we then
get a continuous Gaussian field 7,y on the domain Ve = (—el, (14 )T) x (—e, (1 +€)).
It is clear that we need to find a suitable decomposition for the covariance kernel of 7, y in
order to get a decomposition of 7, n similar to the white noise decomposition of 7s. The
covariance between 7., (v) and 7y y(w) is given by the simple random walk Green function
GVJS,g(v, w). There is a simple representation of GVJ\F[‘(" -) as a sum of simple random walk
probabilities. However here we represent it in terms of lazy simple random walk probabilities

for reasons that would become clear shortly. To this end we write

1 o0
Gre(v,w) =2 > PU(Sp =w, e > k),
N k=0
where {Sj};>0 is a lazy simple random walk on Z? ie. it stays put for each step with
probability % and jumps to each of its four neighbors with probability %, PY is the measure
corresponding to the random walk starting from v and 7, ¢ is the first time the random walk
hits (?VZE’E. Emulating our approach to the approximation of circle average process with 7,
we replace 7 ¢ in the above representation with the order of it expectation i.e. N 2 (on VJI\;,
of course) and obtain a new kernel:

1 N2-1
Kn(v,w) =5 > PUSE =w).
k=1

Notice that, thanks to the laziness of S}, each matrix (PY(Sy = w)) I, IS non-negative

v weVy
definite. The similarity of this expression with the integral representation of the covariance

between 75(v) and ng(w) prompts the following decomposition of K (-, -):

Ky (v,w) = Z % Z PY(S), = w) = Z[ Ky (v, w).
k'eln

K'eln] 4k -1<p<qk ]
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Hence we can “approximate” 77, y with a sum of independent, stationary fields Arjy s on Viy
where the covariance kernel of Afjy 3/ is “given” by K js. Denote 7jy jr = > K e[K] Anp g
It is immediate that the sequence of fields 7y j/’s are stationary and have independent
increments. Using standard results on discrete planar random walk and local central limit
theorem estimates (see, e.g., Chapters 2 and 4 in [53]) one can also prove the following

properties:

(a) Var(Afpy p(v)) = O(1) and Var(Afjy j(v) — Afjy g (w)) = 4”’k/0(|v—w|2) for all v, w.

Compare this to Lemma 2.2.1.

(b) For any straight line segment £ of length at most rok'—n Var( [, Ay p(2)|d2]) =

4k/_”|£|. Here |£] is the length of £. Furthermore if v € R? is orthogonal to £, then

Var( [ Aozt - [ My gel)lisl) = 40,
v

whenever |L£| > 2K =1 and lv| = ©(1). Compare this to a similar estimate derived in
the proof of Lemma 2.2.2 and also to the property (b) of the field ¢ discussed in the

introduction.

We can now use strategies similar to those used for constructing cross,. Since the fields
NN k’s do not have rotational invariance, we will actually construct crossings in all possible
directions at any given scale (through appropriately scaled rectangles) and consider the
mazimum expected weight of these crossings. In view of properties (a) and (b), we can then
obtain recursion relations like (2.4.3) and (2.4.13) on the maximum expected weight without
any significant change in the analysis. Next we build a (lattice) crossing P}y of %V]{; from

the crossing P, which we constructed for V1" so that

B( Y @nl®) = 0, (N2 g1
veP)
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We can do this by following a procedure detailed in the proof of Lemma 3.2.4 in Chapter 3.

Indeed we have an analogous upper bound on Var(ijy ,,(v) — 7n ,(w)) for adjacent v, w:

max Var(ijy n(v) — N p(w) =1,
VWV Jv—w|=1

which makes all the arguments employed in the proof of Lemma 3.2.4 work smoothly. The
approximation of 7, y with 7y, can be tackled in a similar way as we tackled the approx-
imation of hs with No—llogy 6] N1 Section 2.5. Once we have bounds on expected weights of
crossings between shorter boundaries of rectangles at all scales, we can use such crossings
to build an efficient path connecting any two given points in Vj (we discussed this idea in

Section 2.5 in greater detail). This leads to a proof of Theorem 2.1.2.
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CHAPTER 3
LIOUVILLE GRAPH DISTANCE

3.1 Upper bound on the expected distance

There is also a similar upper bound on the expected Louville graph distance.

Theorem 3.1.1. There exists C,, p. > 0 (depending on (v,€, D)) and positive (small)
absolute constants c¢*,~y such that for all v < vy, we have
—1+c* 7473

max ED. s(v.w) < C ) logy~
’U,'lUEV ’775( ’ ) - 77D7€

1

3.1.1 Liouuville graph distance and Watabiki’s prediction

There are also reasonable interpretations of Watabiki’s prediction in terms of Liouville graph

ED%(;(U,’LU)

log is expected to exist and is expected

distance. The scaling exponent y = —limg_,

to be given by (here we take v, w as two fixed generic points in the domain)

X=——=1-0,50), (3.1.1)

where in the last step we plugged in (2.1.1). A similar interpretation to (3.1.1) appeared
in [48, Conjecture 1.14] though the graph structure considered in [48] is based on the
peanosphere construction of LQG and so far we see no mathematical connection to Li-
ouville graph distance considered in this thesis. Note that there is a difference of factor of
2, which is due to the fact that for the graph defined in [48] on average each ball contains
LQG measure about € (in their notation) while in our construction each ball contains LQG

measure 62. We see that Theorem 3.1.1 contradicts (3.1.1).
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3.2 Proof of Theorem 3.1.1

We will follow the notation convention laid down in the previous chapter as well as need
some new ones. To this end let D is the open, unit disk centered at the origin. For any closed
ball B = cg + rD, we let B denote the open ball cg + 4rD. If h* is a GFF with Dirichlet
boundary condition on some bounded domain D with smooth boundary, then for any § > 0
and v € Dg, we denote the average of h* along the circle v + §OD as h’g(v).

Now consider a GFF h® on ® with Dirichlet boundary condition. If B C D, then Markov
property (see [74, Section 2.6] or [9, Theorem 1.17 ]) of GFF states that h® = n®.8 + 2B

where

e W8 is a GFF on B with Dirichlet boundary condition (= 0 outside B).

e 9B is harmonic on B.

o P8 P8 are independent.

This decomposition has a useful consequence for us as follows. Since @973 is harmonic on

B, we get

WS () = b2 P () + 2B (v) (3.2.1)

for all v € B> = cg +2rD and 6 € (0,7]. The process {h?’B(v) TV € EQ*,O <d<r}is
independent with {cpg’g(v) TvE §2*} and also with h?, (w) for w e ®\ B,§ < dg, (w, B).

The following lemma shows that the field ¢ is smooth on B>

Lemma 3.2.1. Let B=cp+rD C® be a closed ball such that B C®. Then we have for
all v,w € B
v —w
Var(p® P (v) - 0B (w)) = o(L=1)

r

Also,

sup Var( () — ¢ (0)) = O(1).
veB™*
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Proof. Since h§ and 28 are independent, we get from (3.2.1)
Var(® P (v) — ¢ P (w)) < Var(h? (v) = b (w)),

for all v, w € B> But we know (see the proof of [49, Proposition 2.1])

Var(h2 (v) — n2(w)) = o (=)

r

which gives the required bound on Var(¢®B(v) — ¢®B(w)). For the second part, notice
that

Var(h (cg) — ¢ B(cp)) = Var(h P (cp))

Thus it suffices to prove Var(h?’B(cB)) = O(1) in view of the bound on Var(p®B(v) —
©9B(w)). But h?’B(cB) is identically distributed as h](I)D.%(O) by the scale and translation
invariance of GFF and hence Var(h?’B(cB)) is a finite constant (see the discussions in [74,

Section 2.1] and also [9, Theorem 1.9]). O

Now consider a Radon measure g on ® and some 6 > 0. We call a closed Euclidean
ball B C ® with a rational center as a (u,d)-ball if u(B) < 62. For any compact A C D,
let N(p,0,A) denote the minimum number of (u,d)-balls required to cover A. Our next
proposition provides a crude upper bound on the second moment of N(M,Hy), 9, A) (see (1.1.2)
for the definition of My ) when A is a segment inside . We remark that the KPZ relation

proved in [43] gives the sharp exponent on the first moment of N (Mg) ,0,A).

Proposition 3.2.2. Let ‘H denote the straight line segment joining —0.25 and 0.25.For any
d € (0,1), we can find a collection of (M?,(S)-balls y(M?,(S, H) such that

(a) Balls in Y(MJ?,(S,/H) cover H.

(b) All the balls in Y(MP, 6, H) are contained in 0.25D.
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(c) For some Cy,
E(l.7/(M}),6,1)?) = 055727917,

Proof. For each k € N, let ;. denote the collection of all (closed) balls of radius 27*~1
whose centers lie in the set {—21[ +27k=1 —%1 + 327k ,21[ —27k=11 The balls in %,
are nested in a natural way. In particular any ball B in 2, has a unique parent B¥ in
By (where k' < k) such that B C B¥. Let %(M?, k,d) denote the collection of balls in
Ay, with M,IYD) volume > 2. We include a (M?, d)-ball B € &, in Y(M,IYD), 9, H) if the Ml?
volume of the most recent parent of B is bigger than 2. Since the measure My) is a.s. is
finite and has no atoms (see [43] and [9, Theorem 2.1]), it follows that . (Mg) .0, H) satisfies

condition (a) (and obviously (b)). It also follows from the construction that

17 (MP,6,4)] < 26717C7 ¢ S 1B(MP, k,0)], (3.2.2)
k>(1+C)v)logy 61

where C%) > 1 is some fixed constant to be specified later. Observing that L%’(M?, k,9)| is

the total number of balls in %}, with My volume > 02 a naive bound can be obtained as

(X melra)

k>(1+C)v)logg 61

< > >o2y > LMD (B)>62, M (B')>62)

k>(1+C)v)logy 6—1 BEB), K <k B'€%,,

< > 22> D, Lovp(B)>52)

k>(1+C)y)logy 6~ 1 BESBy, k' <k B'c€ %y

1
> e Loup(B)>62} - (3.2.3)
k> (14C77) logy -1 Be%,

IN

Next we compute the probability that any given ball B = cg + 27kD in A has ]\/[9 volume

at least 2. Since M,]]y) (or Mﬂg’k) is the weak limit of measures Mé?n’s (respectively M]g’k’s)
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defined in (1.1.2), we have

k142 D D
MP(B) <4 Fo Mok oMbk gk P (), (3.2.4)

where Mp ;. = max 2. (2B (v) —hHQ)fk (cp)) and M?B is the LQG measure on B obtained

from APB. From the scale and translation invariance property of GFF it follows that
4kMEB(B) is identically distributed as M%D) (%ﬁ) Using this observation and (3.2.4) we

can write,

2 2
P(MY(B) > 6%) < P(hy (cp) > 51og(52’€)) +P(Mp,, > 51og(52’€))

+P(MP(ID) > 4¥/35%/3).

Since Var(hIZle(cB)) = klog2 + Cp for |Cg| = ©(1) and S1HC1Y > 27k the first term on

the right hand side of the previous display can be bounded as

/
P(ny-r(cp) > 33 log(82%)) < IP(Z > Caklog? ) < o~ CPOR)log2 _ 9=CPO(k)
ot

o 3,/klog2+0377

Here Z is a standard Gaussian variable. Thus we can choose C’i big enough so that the

bound above becomes < 2710%  From Lemma 3.2.1 we know that

max Var(p (0) = b (ep)) = O(1) and Var(¢®P (v) — B (w) < O(4=)

for all v,w € B. Hence, similar to the derivation of (2.5.4), by Dudley’s entropy bound and

Gaussian concentration inequality we get for all sufficiently large k
2
P(Mp, > 3—10g((52k)) < 2710k,
’ Y

The only remaining term is P(M. D(iﬁ) > 4k/352/3) " In order to bound this probability
we will use the fact that ]E(M]D)(Zliﬁ)) < oo (see [50] and also [66, Theorem 2.11 and

47



Theorem 5.5]). Hence by Chebychev’s inequality

P(MP (D) = 0,(578/3)278%/3.

Plugging the last three estimates into the expression for the upper bound on P(My(B) > %)
we get

P(MP(B) > 6%) < 0,(578/3)278k/3.

Taking expectation on both sides in (3.2.3) and using the bound above one gets:

2
]E< Z ‘%(M% k, 5)’) < Z 22k+107<578/3)278k/3

k>(1+C)v)logg 61 k>(14+C}v)logy 61

— 07(5—8/3) Z 9—2k/3 _ Ov<5—8/3)52/3+87 _ 07(5_%87) .
k>(1+C}v)logy 61

The lemma follows from this bound and (3.2.2) for Cy = max (C}, 8). O

The proof of Proposition 3.2.2 can be easily adapted to accommodate the following set-

ups.

Corollary 3.2.3. Let S CV be a closed square of length 27K whose vertices lie in 27 F72.

Then for any § € (0,27%) we have
EN(MP,5,8)? = 0, p ((2F6)~4-00)2k00)).

Now given a § € (0,1) and v,w € V, we will construct a collection of (M$ ,0) balls
S(0,v,w) such that the union of these balls contains a path between v and w. Thus it would
suffice to show

44/3
logy~

—149( 7)

EIS(5, v, w)| = Oy p (1)

for proving Theorem 3.1.1. Before we describe the construction of S(d,v,w), we need to

discuss a related construction which will be very useful. To this end define, for any fixed
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k > 4, the set 7, as 2-(k=3)72NV . We can treat 9. as a subgraph of the lattice 2~ (k=3)72,
The centers of the squares in ;. (i.e. the squares of side length 2~ (k=3) with vertices in
;) form another set Z;; C V which will be treated as the dual graph of Z;,. We can define
a LFPP metric D;,k(V -) on 7} in a similar way as in (1.1.3) with hy—x as the underlying
field and (1 4+ Cy47y)/2 as the inverse temperature parameter (see Proposition 3.2.2 for the

definition of Cy). The next lemma is a consequence of our proof of Theorem 2.1.1

Lemma 3.2.4. For all v > 0 sufficiently small,

max ED;’k(u,U/) =0 D’6(1)2k(1_9(74/3/logV_l)) :

uu' €T} b
Proof. Let V;* denote the square [2=(k=3) 1 — 2= (k=3)12 5o that 75y C V. Following the
proof of Theorem 2.1.1 in the last chapter, we get a fired, finite collection Py (u,u’) of
piecewise smooth paths in V]: between u, v € Vk* and a (randomly chosen) simple, piecewise

smooth path Py, - (u,u’) € Py, such that

E( /P ( )ev(ucﬂ)hg_k(z)/zwzw _ 0, p (27K ogy Y. (3.2.5)
K,y u,u

In order to create a lattice path (i.e. in ZF) between u and v’ from Py, - (u,u’) we follow
a simple procedure. Starting from the initial point py .9 of Pkﬁ(u, u), wait until it exits
the smallest square Sy satisfying (a) py .0 € So, (b) dgy(Pn,0,950) > 2= (k=3) and (c) the
vertices of Sy are in Z;;. Repeat the same procedure with the exit point of P, - (u, u') and
continue until it reaches u’. At the end of this procedure we will get a sequence of squares

(k=3)

So, S1, - -+, where each S; has diameter at most 32~ and the vertices of S;’s contain a

lattice path P} 7(u, u) between u and u/. Now let us recall from Section 2.5 in Chapter 2
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that

max Var(ho—1(2) — hy_1(2')) = O(1), and
z,z'EVI:,|zfz’|§2_(k_3) 2 2

2@} Var(hy—k(2)) = O(k) + Op (1)

Then from the arguments involving the extreme values of Gaussian processes as used for

(2.5.4), we can find Cj such that

IP’( max (hg—r(2) — hy—i(2)) > CsVk + x) — o ele?) : (3.2.6)
z,z’EVk*,|z—z’|§2—(k—3)

for all z > 0. Now define an event £}, as

Ep = max (ho—1(2) — hy (")) < (Cs5 + DVE}.
{Z,ZIEV]:,|ZZ/|§2_(,€_3) 2 2 }

As the euclidean length of P, - (u, u') inside each S; is Q(27%), from (3.2.5) it follows that

E(( 3 e’Y(l+C4’Y)h2—k(Z))1Ek> _ O(gk)6(05-1-1)\/%0%1)’6(2—k9(74/3/log’Y_l))
zGP];,Y(u,u’)

— O,p (2F(1=9(Y2 [ 1ogy™1)y

On the other hand, from (3.2.6) and Cauchy-Schwarz inequality (similar to (2.5.7) and

(2.5.8)) we obtain

E(( Z 67(1+C4’Y)h2—k(2))1Eg) - OD’E(Qk)gfk(QD,e(l)*O(’YQ)) =Op. (Qk(lfﬂD,e(l))) :
2€ Py (u,u’)

where Py (u,u) is the shortest path between u and «’ in the graph Z;. Choosing P,:ﬁ(u, u')
and Pj(u,u’) on Ej, and EY respectively as a lattice path between u and u', we get the

desired bound on ]EDZ; A u') from the previous two displays. ]
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We will call the path minimizing D;yk(u,u’) as the (v, k)-geodesic between u and u'.
Now given v, w in V| we pick squares vy and wy in 7, that contain v and w respectively.
There are several ways to do this and we follow an arbitrary but fixed convention. Define
S*(k,v,w) as the collection of squares in ;. which correspond to the points in the (v, k)-
geodesic between c([v]y,) and c([w]y,) in D¥. Here c([v]) and c([w]};) are the centers of squares
[v];, and [w]; respectively. Thus S*(k,v,w) is actually a chain of squares connecting v and

w (see Figure 3.1). An important observation is the following.

Observation 3.2.5. The euclidean distance between the boundary of any square in S*(k, v, w)

and .@]’; is at least 2~ (F=2).

Given S € §*(k, v, w) that is not [v]; or [w];, divide each boundary segment of S into 16 seg-
ments (with disjoint interiors) of length 2~ (k+1)  For any such segment T, let Bt denote the
closed ball of radius 2~ (¥*2) centered at the midpoint of T'. Thus T is a diameter segment of
Brp. Cover T with the minimum possible number of (M,fBT, 5e_7h§*k(c(s))/ze_067m)—
balls contained in By where M 5 By is the LQG measure on ET constructed from h” ’ET,
c(S) is the center of S and Cp is an absolute constant to be specified later. Denote the
collection of all such balls from all the segments of 95 as S(5,0). If S = [v], or [w];, we
simply cover S with minimum possible number of (M$ ,0)-balls and include them in S(5, ).
Finally define

Sk svw)= | S(8,9).
SeS*(kv,w)

It is clear that the union of balls in S**(k, v, w) contains a path between v and w. Figure 3.1
gives an illustration of this construction.

We will now describe the construction of S(§,v,w). By Lemma 3.2.1, the bounds on
Var(hgs(u) — hgx(u')) and Var(hg«(v)), and tail estimates as used in (2.5.4) and (3.2.6), we

get Cg such that for all & sufficiently large (depending on D, €)

(a) P(miny,ey hy—x(u) < —2Csklog2) < 273k and

(b) P(maxg maxp maxvegg*(ngvB(v) — hQD_k(c(S))) > 206v/klog2) < 273K,
o1
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Figure 3.1: An instance of S*(k,d,v,w). Squares in S*(k,d,v,w) are filled with light
blue color. The black dotted points lie in 7. v (left) and w (right) are indicated as blue
dotted points. The red (lattice) path is the LEPP path between ¢([v];.) and ¢(Jw]). The
green circles indicate the balls in S*™(k, d, v, w). Balls that lie parallel to the brown segments
define a chain of ball connecting v and w.

where in (b), S ranges over all squares in ;. and B ranges over all balls of radius 9~ (k+2)

around S that we described in the last paragraph. Choose ¢’ as the smallest number of the

form 2% (where k € N) such that &' > 6172667, Now if

min hg (u) < —2Cg log 5
ucV

or if

maX MEx max (pPB(v) — hé),k(c(S))) > 2Cg\/ klog2,
veB™

(we call the union of these two events as Ej) simply cover the straight line segment joining

v and w with the minimum possible number of (M,? ,0)-balls. Otherwise (i.e. on EY) set

S(6,v,w) = S**(k',5,v,w) where §' = 9= Notice that S*™(k,0,v,w) is a valid choice for
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S(d,v,w) on ES as

D.B(,\_ 1D D
MP(A) < & g (PP (AN AP AN D (4
,Br
for all By and all compact A C By (this again follows from the definition of LQG measure

as a weak limit).

Upper bound on E(|S(d,v,w)|): Let us denote the o-field generated by {hy(v) : v € 75}

as §5 and the event {min%@;/ hg(v) > —2Cglog 8’1} as Fs. We then have

]E(]S(é,v,w)“&;) < Z ZE(N*(M’QBT’66_7h5(0(s))/2efc67\/ kllogQ,T)‘gé)]-F&
SeS* (K ww) T

+ B(N(My,6,70)1,,[35) + E(N (MY, 6, [v]p)35)

+ E(N(MP, 5, [w])[35) ,

where T ranges over all the 16 x 4 segments of S and N*(M 5 BT T) is the minimum
possible number of (M, g,.,r)-balls contained in By that are required to cover T. By
the Markov property of GFF (see the discussions around (3.2.1)) and Observation 3.2.5 it
follows that M 5 By is identically distributed as M§ T and is independent with §s. The latter
is identically distributed as %?M,ﬂy) by scale and translation invariance property of GFF. Also

on F(;,
5677h§(c(5))/2€—6’6%/k’log2 < 55/~ C67 < 5/(1=2C67) ' —Cey <4

We can then apply Proposition 3.2.2 to the first term in the right hand side of the previous

display to get

s (14+Cy g (e(S))
E|S(5,v,w)| S 07((5/5/)_1_047/2)6067 IOng‘ (1—|—C4’}//2)E< Z e’Y + 4’72 1) )

SeS* (k' w,w)
D ¢ — D D
+EN (M7, , vw)lEé, + EN(M;’, 0, [v]) + EN(M, 6, [w]y) -
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The first term on the right hand side equals, by Lemma 3.2.4

07(5—206’}/(14'04’)//2))07 (1)6/—1+Q('Y4/3/ log 7_1)

Die

(62067 (14C17/2)) 5206751400/ logy ™) _ g (5= 140"/ /logy 1)y |

- O%D,e

v,D€

The second term is O(1) as a consequence of bounds (a), (b), Corollary 3.2.3 and Cauchy-
Schwarz inequality (similar to (2.5.7) and (2.5.8)). The last two terms are O%D’e(é_O(’V))

by Corollary 3.2.3. Adding up these four terms, we get the required bound on E|S(d, v, w)|.
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CHAPTER 4
EFFECTIVE RESISTANCE METRIC

4.1 Upper and lower bounds on effective resistance

As hinted in Section 1.2 of Chapter 1, the key to analyzing the random walk defined by (1.2.2)
(or equivalently (1.2.1)) is to estimate the effective resistances of the underlying network.

The precise statement is the subject of:

Theorem 4.1.1. Let us regard B(N) := [—=N, N]?NZ? as a conductance network where edge
(u,v) has conductance €"lut) - Let RB(N)n(u, v) denote the effective resistance between u

and v in network B(N). For each vy > 0 there are C,C" € (0,00) such that

max IP’(RB(N) (u,v) > CeCtVIOgN> < Cle log N (4.1.1)
u,v€B(N) m
holds for each N > 1 and each t > 0. Moreover, for the corresponding network Z% on all

of Z2, there is a constant C > 0 such that

log Ry2 (0, B(N)°)
lim sup 1

< C, P-a.s. 4.1.2
Nosoo  (log N)1/2(loglog NY1/2 — e ( )

and, for each v > 0 and each 6 > 0, also

log Ro (0, B(N)®)
lim inf 1

> 0, P-a.s. 4.1.3
N—oo (log N)1/2/(10g log N)1+5 ( )

The effective resistance and further background on the theory of resistor networks are dis-
cussed in detail in Section 4.2. We note that, in light of monotonicity of N +— Ry2(0, B(IV)€),
i

the bounds in Theorem 4.1.1 readily imply recurrence of the random walk as well.
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4.1.1 A word on proof strateqy

Theorem 4.1.1 is proved by a novel combination of planar and electrostatic duality, Gaussian
concentration inequality and the Russo-Seymour-Welsh theory, as we outline below.

Duality considerations for planar electric networks are quite classical. They invariably
boil down to the simple fact that, in a planar network, every harmonic function comes hand-
in-hand with its harmonic conjugate. An example of a duality statement, and a source of
inspiration for us, is [57, Proposition 9.4], where it is shown that, for locally-finite planar
networks with sufficient connectivity, the wired effective resistance across an edge (with the
edge removed) is equal to the free effective conductance across the dual edge in the dual net-
work (with the dual edge removed). However, the need to deal with more complex geometric
settings steered us to develop a version of duality that is phrased in purely geometric terms.
In particular, we use that, in planar networks with a bounded degree, cutsets can naturally
be associated with paths and wvice versa.

The starting point of our proofs is thus a representation of the effective resistance, resp.,
conductance as a variational minimum of the Dirichlet energy for families of paths, resp.,
cutsets. Although these generalize well-known upper bounds on these quantities (e.g., the
Nash-Williams estimate), we prefer to think of them merely as extensions of the Parallel and
Series Law. Indeed, the variational characterizations are obtained by replacing individual
edges by equivalent collections of new edges, connected either in series or parallel depending
on the context, and noting that the said upper bounds become sharp once we allow for opti-
mization over all such replacements. We refer to Propositions 4.2.1 and 4.2.3 in Section 4.2
for more details.

Another useful fact that we rely on heavily is the symmetry 7 faw —n which implies that
the joint laws of the conductances are those of the resistances. Using this we can almost
argue that the law of the effective resistance between the left and right boundaries of a
square centered at the origin is the same as the law of the effective conductance between
the top and bottom boundaries. The rotation symmetry of  and the (electrostatic) duality
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between the effective conductance and resistance would then imply that the law of the
effective resistance through a square is the same as that of its reciprocal value. Combined
with a Gaussian concentration inequality (see [76, 18]), this would readily show that, for the
square of side NV, this effective resistance is typically N o(1),

However, some care is needed to make the “almost duality” argument work. In fact, we
do not expect an exact duality of the kind valid for critical bond percolation on Z2 to hold
in our case. Indeed, such a duality might for instance entail that the law of the conductances
on a minimal cutset (separating, say, the opposite sides of a square) in the primal network
is the same as the law of the resistances on the dual path “cutting through” this cutset.
Although the GFFs on a graph and its dual are quite closely related (see, e.g., [14]), we do
not see how this property can possibly be true. Notwithstanding, we are more than happy to
work with just an approximate duality which, as it turns out, requires only a uniform bound
on the ratio of resistances of neighboring edges. This ratio would be unmanageably too large
if applied the duality argument to the network based on the GFF itself. For this reason, we
invoke a decomposition of GFF (see Lemma 4.3.12) into a sum of two independent fields,
one of which has small variance and the other is a highly smooth field. We then apply the
approximate duality to the network derived from the smooth field, and we argue that the
influence from the other field is small since it has small variance.

We have so far explained only how to estimate the effective resistances between the
boundaries of a square. However, in order to prove our theorems, we need to estimate
effective resistances between vertices, for which a crucial ingredient is an estimate of the
effective resistances between the two short boundaries of a rectangle. Questions of this type
fall into the framework of the Russo-Seymour-Welsh (RSW) theory. This is an important
technique in planar statistical physics, initiated in [68, 72, 69] with the aim to prove uniform
positivity of the probability of a crossing of a rectangle in critical Bernoulli percolation.
Recently, the theory has been adapted to include FK percolation, see e.g. [38, 6, 41], and, in

[77], also Voronoi percolation. In fact, the beautiful method in [77] is widely applicable to
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percolation problems satisfying the FKG inequality, mild symmetry assumptions, and weak
correlation between well-separated regions. For example, in [40], this method was used to
give a simpler proof of the result of [6], and in [39], a RSW theorem was proved for the
crossing probability of level sets of the planar GFF.

Our RSW proof is hugely inspired by [77], with the novelty of incorporating the (resis-
tance) metric rather than merely considering connectivity. We remark that in [29], a RSW
result was established for the Liouville FPP metric, again inspired by [77]. It is fair to say
that the RSW result in this chapter is less complicated than that in [29], for the reason that
we have the approximate duality in our context which was not available in [29]. However, our
RSW proof has its own subtlety since, for instance, we need to consider crossings by whole
collections of paths simultaneously. The RSW proof is carried out in Section 4.4. Finally
in Section 4.5, we use some of these estimates along with a decomposition of 7 from [15] to

derive an asymptotic rate for the effective resistance between origin and 0B(N).

4.2 Generalized parallel and series law for effective resistances

As noted above, our estimates of effective resistance between various sets in Z2 rely crucially
on a certain duality between the effective resistance and the effective conductance which will
itself be based on the distributional equality of  with —n. The exposition of our proofs thus
starts with general versions of these duality statements. These can be viewed as refinements

of [57, Proposition 9.4] and are therefore of general interest as well.

4.2.1  Variational characterization of effective resistance

Let & be a finite, unoriented, connected graph where each edge e is equipped with a resistance
re € R4, where R4 denotes the set of positive reals. We will use & to denote both the
corresponding network as well as the underlying graph. Let V(&) and E(®) respectively

denote the set of vertices and edges of . We assume for simplicity that & has no self-loops
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although we allow distinct vertices to be connected by multiple edges. For the purpose of
counting we identify the two orientations of each edge; E(®) thus includes both orientations
as one edge.

Two edges e and ¢’ of & are said to be adjacent to each other, denoted as e ~ €', if they
share at least one endpoint. Similarly a vertex v and an edge e are adjacent, denoted as
v ~ e, if v is an endpoint of the edge e. A path P is a sequence of vertices of & such that any
two successive vertices are adjacent. We also use P to denote the subgraph of & induced by
the edge set of P.

For u,v € V(®), a flow 0 from u to v is an assignment of a number 6(z,y) to each
oriented edge (z,y) such that 0(z,y) = —0(y,z) and >_ ., _, 0(z,y) = 0 whenever z # u, v.
The value of the flow 6 is then the number >_ ., 6(u,y); a unit flow then has this value
equal to one. With these notions in place, the effective resistance Rg(u,v) between u and v

is defined by

Rg(u,v) == iralf Z re 02 (4.2.1)
ecE(®)

where the infimum (which is achieved because & is finite) is over all unit flows from u to v.
Note that we sum over each edge e € E(®) only once, taking advantage of the fact that 0,
appears in a square in this, and later expressions.

Recall that a multiset of elements of A is a set of pairs {(a,i): i = 1,...,n,} for some
ng € {0,1,...} for each a € A. We have the following alternative characterization of

R (u,v):

Proposition 4.2.1. Let By denote the set of all multisets of simple paths from u to v.
Then

1 -1
Rg(u,v) = _inf inf < —) , (4.2.2)
PEPuy {rep: e€E(®), PEPYeRp \ £, > ccpTeP
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(&)xP

where Rp is the set of all assignments {r. p : e € E(&), P € P} € ]Rf such that

1 1
Z < — foralle € E(G). (4.2.3)
pep'el e

The infima in (4.2.2) are (jointly) achieved.

Proof. Let R* denote the right hand side of (4.2.2). We will first prove Rug(u,v) < R*. Let
thus P € Py and {r, p: e € B, P € P} € Rp subject to (4.2.3) be given. We will view
each edge e in & as a parallel of a collection of edges {ep: P € P} where the resistance on ep
is 7, p and, if the inequality in (4.2.3) for edge e is strict, a dummy edge € with resistance
e such that 1/rg = 1/re — Y pep 1/7e p. In this new network, P can be identified with a
collection of disjoint paths where (by the series law) each path P € P has total resistance

Y ecP e p- The parallel law now guarantees

1 -1
o < (¥ )
I_;) ZGGP Tevp
which proves Rg(u,v) < R* as desired.
Next, we turn to proving that Rg(u,v) > R* and that the infima in (4.2.2) are achieved.
To this end, let 8* be the flow that achieves the minimum in (4.2.1). In light of the inequality
Rg(u,v) < R* it suffices to construct a collection of paths P* € B, and an assignment of

resistances {r’ p : e € P, P € P*} such that

3 ;ylg S e (00> (4.2.4)

*
.
Pep* 2.cePTe,p cCB(®)

The argument proceeds by constructing inductively a sequence of flows 0() from u to v
(whose value decreases to zero) and a sequence of collections of paths P; as follows. We
initiate the induction by setting

9(0) .= ¢g* and PO := @ and employ the following iteration for j > 1:
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If Qéj_l) =0 for all e € F(®), then set J := j — 1 and stop.

Otherwise, there exists a path P; from u to v such that f¢

. j—1
Denote o := minge p, Hé] ),

Set Pj:=P;j_1 U{PF;} and let Te,pj "= %re for all e € P;.

(-1

> (0 for all e € Pj.

Set, 07 1= 0™ — a; for all e € Pj and 0 := 097 for all e & P;, and repeat.

Since the set {e € E(8): ng) = 0} is strictly increasing (and our graph is finite), the

procedure will stop after a finite number of iterations; the quantity J then gives the number

of iterations used. Note that the same also shows that the paths P; are distinct.

We will now show the desired inequality (4.2.4) with P* := P; and r, p = 7, p; for

P = Pj. First, abbreviating [J]: = {1,...,J}, we have

Z Ozjzeg

]E[J] BEPj

for each e € F(&). Employing the definition of 7, p; we get

DR DA

JE[J]: ecP; JE[J]: e€P;

and so

Z Z O‘?re,Pj = Z Te (92)2~

ecE(®) je[J]: ecP; ecE(®)

Rearranging the sums yields

Z Z Oé?Te,Pj = Z OZ?( Z Te,Pj>7

ecE(®) je[J]: ecP; J€E[J] ecP;

where Zje[.]] aj = 1. Abbreviating R; := Zeer re,p;» the right hand side of the preceding
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equality is minimized (subject to the stated constraint) at o := 5 /B and therefore

sl B

S ()2 (X )

jelr]  eel; jeln)

This completes the desired inequality (4.2.4) including the construction of a minimizer

in (4.2.2). m
A slightly augmented version of the above proof in fact yields:

Proposition 4.2.2. Let Ty, be the set of all multisets of edges of & that, if considered as

a graph on V(®), contain a path between u and v. Then

1 —1
Res(u,v) = _inf inf ( —) , (4.2.5)
TE€Tup {rem:ecE(6),TeT}eRT TeT > eeT Te, T
. . ) E(®)xT
where Ry is the set of all assignments {rop: e € E(8),T € T} € RY such that

1 1

< — foralle € E(G). (4.2.6)
Ter'eT e

The infima are jointly achieved for T being a subset of Py -

Proof. Let R* denote the right-hand side of (4.2.5). Obviously, Py, C Tu,v 80 restricting the
first infimum to 7~ € Py, Proposition 4.2.1 shows Rg(u, v) > R*. (This will also ultimately
give that the minimum is achieved over collections of paths.) To get Rg(u,v) < R*, let us
consider an assignment {r,r: e € E(®),T € T} satisfying (4.2.6). For each T' € T, let
Pr denote an arbitrarily chosen simple path between u and v formed by edges in 7T". Then,
defining 7. p, := 7o 7 for each T' € T, we find that the assignment {r, p,.: e € E(®),T € T}

satisfies (4.2.3). Now the claim follows from the simple observation that ) . ppTrepr <

ZBEPT TG,T’ ]
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4.2.2  Variational characterization of effective conductance

An alternative way to approach an electric network is using conductances. We write ce :=
1/re for the edge conductance on e, and define the effective conductance between u and v
by

Clo (u,v) = inf S e [Fles) — Fleo)]?, (4.2.7)
ecE(®)

where e+ are the two endpoints of the edge e (in some a priori orientation) and the infimum
is over all functions F': V' — R satisfying F'(u) = 1 and F(v) = 0. The infimum is again
achieved by the fact that & is finite. The fundamental electrostatic duality is then expressed

as
1

Cg(u,v) = —R@(U, o)

(4.2.8)

and our aim is to capitalize on this relation further by exploiting the geometric duality
between paths and cutsets. Here we say that a set of edges 7 is a cutset between u and v

(or that m separates u from v) if each path from u to v uses an edge in 7.

Proposition 4.2.3. Let 11, denote the set of all finite collections of cutsets between u

and v. Then

1 ~1
Ce(u,v) = _inf inf ( —) , 4.2.9
6( ) Ilety v {cen: ecE(®),mell}ely gt Zeeﬂ- Ce,m ( )

where €11 is the set of all assignments {cer: e € E(®),m € II} € Rf(ﬁ)XH such that

! < E foralle € E(®). (4.2.10)

C C
rell ©" €

The infima in (4.2.9) are (jointly) achieved.

Proof. The proof is structurally similar to that of Proposition 4.2.1. Denote by C* the
quantity on the right hand side of (4.2.9). We will first prove Cog(u,v) < C*. Pick IT € IT

and {cer: e € E(®), 7 € II} € €y subject to (4.2.10). Now view each edge e as a series
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of a collection of edges {er : e € m,m € II} where the conductance on ey is ce 5 and, if
the inequality in (4.2.10) is strict, a dummy edge é with conductance ¢z such that 1/c; =
1/ce =Y reml/cen- In this new network, II can be identified with a collection of disjoint
cutsets, where the cutset m € II has total conductance Ze@r ce,r- The Nash-Williams

Criterion then shows

1 1
Cg(u,v) < (7%1:1 —ZeEW Ce,ﬂ>

thus proving Cg(u,v) < C* as desired.
Next, we turn to proving Cg(u,v) > C* and that the infima in (4.2.9) are attained. Let
F* be a function that achieves the infimum in (4.2.7). This function is discrete harmonic in

the sense that LF™*(z) = 0 for « # u,v, where

Yy y~x

In light of the inequality Cg(u,v) < C*, it suffices to construct a collection of cutsets IT*

and conductances {cg r: e € 7,7 € II*} such that

( > ;)_1 < ) e [F*(e4) — F*(e)]?. (4.2.11)

c*
el 2icen CEm e€E(®)

We will now define a sequence of functions FU) satisfying
,CF(j)(x) =0, for x # u,v (4.2.12)

and a sequence of collections of cutsets II; as follows. Initially, we set F' 0) .= F* and
110) .= . Abbreviating dF(e) := |F(ey) — F(e_)|, we employ the following iteration for

Jj>1
o If FU=1) is constant on V(®), then set J := j — 1 and stop.

e Otherwise, by (4.2.12) (and positivity of all ¢¢’s) we have FU~1(u) £ FU=D(v) and
64



hence there exists a cutset 7; separating u from v such that |dF (g _1)(e)| > 0 for all
e € Pj. We take m; to be the closest cutset to u — that is, one that is not separated

from u by another such cutset — and define a;j := mineer; dF (J *1)(6).

dF*(e)

e Set II; :=II; 1 U{m;} and let cex; := ~a; Ce for all e € P;.

e Set FU(ey) = FUD(ey) - aj for all e € 7, where e denotes the endpoint of e
with a larger value of FU~1). For all other vertices z, set F)(z) := FU~1 (), and

repeat.

We see that the above procedure will stop after a finite number of iterations, since all
the cutsets m; are different by our construction. The number J is then the total number
of iterations used. The validity of (4.2.12) for all j = 1,...,J follows directly from the
construction.

In order to prove (4.2.11), we now proceed as follows. First, we have

Z aj = dF*(e)

JE[J]: ecm;

and so, by the definition of o,

Z ajzce,ﬂj = Z o dF*(e)ce = (dF™(e))?ce .

JelJ]: ecm; JE[J]: ecP;

It follows that

Z Z oz?ce,ﬁj = Z ce [F*(eyq) — F*(e_)]Q.

ecE(®) je[J]: ecm; e€E(®)

Rearranging the sums yields

Z Z Oé?cejrj = Z[ O‘?( Z Ce,ﬂ'j>7
jelJ

ecE(®) je[J]: ecT; ] €ET;
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where Zje[J] aj = 1. Abbreviating C; := Ze@rj Ce,mjs the right hand side of the preceding

equality is minimized (subject to the stated constraint) at o := Z/#/C Therefore,
J

jel L

S Tem) 2 (X 4)

jell cem; jel
which completes the proof of (4.2.11) including the existence of minimizers in (4.2.9). O

Propositions 4.2.1 and 4.2.3 seem to be closely related to various variational characteri-
zations of effective resistance/conductance by way of of optimizing over random paths and
cutsets. These are rooted in the Nash-Williams criterion and Terry Lyons’ random-path
method for bounding effective resistance (which can be shown to be sharp). The ultimate

statements of these characterizations can be found in Berman and Konsowa [11].

4.2.8  Restricted notion of effective resistance

Propositions 4.2.1 and 4.2.3 naturally lead to restricted notions of resistance and conductance
obtained by limiting the optimization to only subsets of paths and cutsets, respectively. For
the purpose of current chapter we will only be concerned with effective resistance. To this

end, for each collection A of finite sets of elements from E(®), we define

Rg(A) = inf

1 —1
_ ( —> , (4.2.13)
{re,a:e€B(A), A€A}eR AN £ Y ecATe A

where E(A) := (e 4 A and where R 4 is the set of all {r, 4 : e € E(A), A€ A} € RE(A)XA
such that
1 1
> < —foralle € E(A). (4.2.14)
Aca e Te

We refer to Rg(A) as the effective resistance restricted to A. By taking suitable r, p, the
map A — Rg(A) is shown to be non-decreasing with respect to the set inclusion. We will

mostly be interested in Rg(A) when A is a set of simple paths from u to v. The following
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result is analogous to metric property of effective resistance.

Lemma 4.2.4. Let P1,Pa,--- , P} be collections of paths such that for any choice of P; from

P; for each 1 < i <k, the graph union Ulgigkz P; contains a path between u and v. Then

Proof. Define the edge sets Fq, Fo,--- , Ej. recursively by setting £y := UPEP1 E(P) and
letting £ = UPer E(P)\ U< Ei for k > j > 1. Let {ro p: e € E(&),P € P;} be a

vector in Rf(ﬁ)xpi satisfying (4.2.14) for all i. For each i = 1,...,k and each P € P;, define

pi.p by

<Ze€E P) 7“6,P)_1
ZPEPZ(ZBGE Te P) b

Also for e € E; and P, P, -+, P, in Py, Pa,- -, P}, respectively, define

pi,p =

7

Te Pl,PQ, eP | |
P
jP
JFi

Notice that for any e € Ej,

1
< —, (4.2.15)
Te

e,b;

PJEP €P1,P2, Pk‘ E
1<j<k

where the first equality follows from the fact that pep; Pjp = 1 for all 7 and the last

inequality is a consequence of (4.2.14).
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The above definitions also immediately give

Z Te P17P2, Pk — Z Z

e€Ui<i<i E(F)) 1<i<k ecE(P, HJ#Z p] P;
. (4.2.16)
- Z (ZPEP" ZeeE(P) Te,P)
2 lhgzreip,

As (4.2.15) holds, Proposition 4.2.2 with T" being the set of edges in Py, ..., P} yields

-1
1
Re(u,v) < ( )
P;}]’ Z ) Te;Plv-PZ?"'?Pk

1<j<k e€lUi<i<k B(P;

([ > (Z m)_l}_l > ] pjvpj>1 (4.2.17)

1<i<k PeP; P;jeP;, 1<j<k

1<j<k
1 1
-2 ( 2 D_ccE(P) 7"e7P> ’

1<i<k PeP;

IN

where we again used that > Pep; Pj.P = 1 in the last step. Since (4.2.17) holds for all choices
of {re.p: e € E(8), P € P;} satisfying (4.2.14), the claim follows from (4.2.13). O

A similar upper bound holds also for the effective conductance.

Lemma 4.2.5. Let P1,..., Py € Py be such that every path from u to v lies in Ulgigk P;.
Then

Co(u,v) < > Re(P) ',
1<i<k

Proof. This is a straightforward consequence of Proposition 4.2.1. Indeed, write R (u,v) ™!
as suprema of Y pcp (D .cp re7p)_1 over P and r, p satisfying (4.2.3). Next bound the

sum over P by the sum over ¢ = 1,...,k and the sum over P € P N'P; and observe, since
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ZPEPHPZ- 1/re p < > pep 1/re p < 1/re, we have

k

2

=1 PePnNP; ZBGP e

<

’L:
As this holds for all P and all admissible 7 _p, the claim follows from (4.2.8). O

We note (and this will be useful later) that, in standard treatments of electrostatic theory
on graphs, the notions of effective resistance/conductance are naturally defined between
subsets (as opposed to just single vertices) of the underlying network. A simplest way to
reduce this to our earlier definitions is by “gluing” vertices in these sets together. Explicitly,
given two non-empty disjoint sets A, B C V(&) consider a network &’ where all edges in
(A x A)U (B x B) have been removed and the vertices in A identified as one vertex (A) —
with all edges in & with exactly one endpoint in A now “pointing” to (A) in &' — and the

vertices in B similarly identified as one vertex (B). Then we define
Rg(A,B) == Rg/((A),(B)) and Cg(A,B) = Cg/((A),(B)). (4.2.18)

Note that, for one-point sets, Rg({u},{v}) coincides with Rg(u,v), and similarly for the

effective conductance. The electrostatic duality also holds, Rg (A, B) = 1/Cg(A, B).

4.2.4  Self-duality

The similarity of the two formulas (4.2.2) and (4.2.9) naturally leads to the consideration
of self-dual situations — i.e., those in which the resistances r. can somehow be exchanged
for the conductances c.. An example of this is the network Z% where the distributional
identity n fa —n makes the associated resistances {re: e € E(Z?)} equidistributed to the
conductances {ce: e € FE(Z?)}. To formalize this situation, given a network & we define
its reciprocal &* as the network with the same underlying graph but with the resistances

swapped for the conductances. An edge e in network &* thus has resistance r} := 1/r¢,
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where r. is the resistance of e in network &.

Lemma 4.2.6. Let ® denote the maximum vertex degree in & and let pmax denote the
mazximum ratio of the resistances of any pair of adjacent edges in &. Given two pairs (A, B)
and (C, D) of disjoint, nonempty subsets of V (&), suppose that every path between A and B

shares a vertex with every path between C and D. Then

1
Rg(A, B) > : 4.2.19

Proof. The proof is based on the fact that every path P between C' and D defines a cutset 7p
between A and B by taking wp to be the set of all edges adjacent to any edge in P, but not

including the edges in (A x A) U (B x B). By the electrostatic duality we just need to show

Co(A, B) < 49%praxRe+ (A, B) . (4.2.20)

To this end, given any P € B¢ p let us pick positive numbers {r/ ,, : e € E(P),P € P}

such that

1 1
> —— < —forallee E(P). (4.2.21)
pep e

For any edge e and any path P € P, let Np(e), Np(e) and N(e) denote the sets of all
edges in E(P), E(P) and E(®) that are adjacent to e, respectively. For any e € E(P)
and any P € P, let 0, p := ce /ré’ p and note that ¢, p’s are positive numbers satisfying
> peplep < 1foralle € E(P). As a consequence, if we define
Ce
Cemp 1= Z—Q/P|Np(e)| (4.2.22)

€ )
e’€Npi(e)

then {cerp: e € Upep mp, P € P} satisfies (4.2.10). Now fix a path P in P and compute,
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invoking the definitions of ®, pmax and also Jensen’s inequality in the second step:

S cemp= Y. Z 9 —————|Np(e)| <20 ) ﬁwp(@ﬂ
eETp eETp IENP e'.P eETp /ENP() e'\p
1 Ce
— )<
292( 2 9/p)_2© 2 Ocr p 4.2.23
e€mp e’eNp(e) ¢ cCE(6),dcP ¢ (4.2.23)
e~e'

Z Ce

e€N(e C,t
=20 3 T a0 3 =40 >
e'eP eleP €

Hence we get

1 -1 1 -1
Ce(I)(A, B) < ( 3 —> < 4©2pmax< 3 —,) L (4.2.24)
pep! Zeeﬂ'p Ce,mp Pep! ZEEP 7ﬁe,P
As this holds for any choice of P and positive numbers {r, , : e € E(P),P € P}

satisfying (4.2.21), we get (4.2.20) as desired. O

A crucial fact underlying the proof of the previous lemma was that one could obtain a
cut set for P from a path P in P by taking union of all edges adjacent to vertices in P. In
the same setup, we get a corresponding result also for effective conductances. Indeed, we

have:

Lemma 4.2.7. For the same setting and notation as in Lemma 4.2.6, assume that for every
cutset m between C' and D, the subgraph induced by the set of all edges that are adjacent to

some edge in m contains a path in Py g. Then

Ce (A, B)Cg+(C, D) > (4.2.25)

492 Pmax .

Proof. For any cutset m between C' and D, let Tr denote the set of all edges that are adjacent

to some edge in 7. Thus T contains a path in P4 g by the hypothesis of the lemma. Now
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given any Il € II¢ p, we pick positive numbers {cf ;: e € U ey T, 7 € I} such that

11
> <. (4.2.26)
mell Cg’ﬂ- e

Following the exact same sequence of steps as in the proof of Lemma 4.2.6, we now find

{re, : e € m,m € I} satisfying (4.2.6) such that

(Esons) s@m(Te_ )

7T€H ZBETﬂ— ,re,Tﬂ— WEH ecT C@,'/T

Proposition 4.2.2 then implies

Re(AB) < (Y ) a0 )

rell ZEETﬂ— TevTﬂ' rell ecT Ce,’ﬂ'

As this holds for all choices of II and {cf r: e € m,7 € II} satisfying (4.2.26), we get the
desired inequality (4.2.25). O

4.3 Preliminaries on Gaussian processes

Before we move on to the main line of the proof, we need to develop some preliminary control
on the underlying Gaussian fields. The goal of this section is to amass the relevant technical
claims concerning Gaussian processes and, in particular, the GFF. An impatient, or otherwise
uninterested, reader may consider only skimming through this section and returning to it

when the relevant claims are used in later proofs.

4.83.1 Some standard inequalities

We start by recalling, without proof, a few standard facts about general Gaussian processes:

Lemma 4.3.1 (Theorem 7.1 in [54]). Given a finite set A, consider a centered Gaussian
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process { X, : v € A}. Then, for x >0,

“

where 02 = max,c 4 B(X2).

max X, — Emax X,
vEA vEA

—22/952
zx)szem/”,

Lemma 4.3.2 (Theorem 4.1 in [1]). Let (S,d) be a finite metric space with max, ycg d(s,t) =
1. Suppose that there are 3, K1 € (0,00) such that for every e € (0,1], the e-covering number
Ne(S,d) of (S,d) obeys Ne(S,d) < Kie P, Then for any a, Ko € (0,00) and any centered

Gaussian process {Xs}ses satisfying
E(Xs — Xy)2 < Kod(s,s")?, 5,8 €9,

we have

E(IsneajldXsD <K and E(£2§|XS—XH) <K,

where K = Ko(y/Blog2 + /log(Ky + 1)) Ko with Ko := 3,502 "*v/n + 1.

As a consequence of Lemma 4.3.2 we get the following result which we will use in the

next subsection.

Lemma 4.3.3. Let By, Bo, ..., By be squares in 72 of side lengths b1,ba, ..., by respectively
and let B := Uje[N]Bj- There exists an absolute constant C' > 0 such that, if {Xy}yep 18

a centered Gaussian process satisfying

2

g‘“;“‘, v) e B x B;),

J j=1

E(X, — Xy)?

then

EmaXXU < C’VlogN(l +maé<\/]EX3> +C’.
S

vEB

The following lemma, taken from [62], is the FKG inequality for Gaussian random vari-

73



ables. We will refer to this as the FKG in the rest of the thesis.

Lemma 4.3.4. Consider a Gaussian process X = {Xy}pea on a finite set A, and suppose
that
Cov(Xy, Xy) >0, u,v € A. (4.3.1)

Then
Cov (f(X),9(X)) >0

holds for any bounded, Borel measurable functions f,g on R4 that are imcreasing separately

in each coordinate.
As a corollary to FKG, we get:

Corollary 4.3.5. Consider a Gaussian process X = {Xy}yea on a finite set A such that
(4.3.1) holds. If £1,&9,- -+ , &, € o(X) are all increasing (or all decreasing), then

1/k
maxP(;) > 1 - (1 —IP’( U gl)> |

1€[k]

This is known as the “square root trick” in percolation literature (see, e.g., [46]).

4.3.2  Smoothness of harmonic averages of the GFF

Moving to the specific example of the GFF we note that one of the most important properties
that makes the GFF amenable to analysis is its behavior under restrictions to a subdomain.
This goes by the name Gibbs-Markov, or domain-Markov, property. In order to give a precise
statement (which will happen in Lemma 4.3.6 below) we need some notations.

Given a set A C Z2, let A denote the set of vertices in Z2 \. A that have a neighbor

in A. Recall that a GFF in A C Z? with Dirichlet boundary condition is a centered Gaussian

process X4 = {XA,v}vea such that

Xap =0 for ve 72\ A and  E(xauXaw) =Galu,v) for u,ve A,
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where G 4(u,v) is the Green function in A; i.e. the expected number of visits to v for the

simple random walk on Z? started at u and killed upon entering Z2 ~. A. We then have:

Lemma 4.3.6 (Gibbs-Markov property). Consider the GFF x4 = {XAv}vea on a set

AC 72 with Dirichlet boundary condition and let B C A be finite. Define the random fields

X% = (o tven and xly = (), boe by

o = EQe | Xaui € ANB) and ), = Xa0 =X

Then XQ and X are independent with Xﬁl faw XB- Moreover, x4 equals x4 on A\ B and

its sample paths are discrete harmonic on B.

Proof. This is verified directly by writing out the probability density of x 4 or, alternatively,
by noting that the covariance of x¢ is G4 — G, which is harmonic in both variables

throughout B. We leave further details to the reader. O]

By way of reference to the spatial scales that these fields will typically be defined over, we

refer to Xﬁ as the fine field and x§ as the coarse field. However, this should not be confused

with the way their actual sample paths look like. Indeed, the samples of Xﬁl will typically be
quite rough (being those of a GFF), while the samples of x¢ will be rather smooth (being

discrete harmonic on B). Our next goal is to develop a good control of the smoothness of x4

precisely. A starting point is the following estimate:

Lemma 4.3.7. There is an absolute constant ¢ € (0,00) such that, given any ) # B C B C

A C 72 with B connected and denoting
N :=inf{M € N: B+ [-M, M|* nZ? C B}, (4.3.2)
the coarse field x§ on B obeys

Var(xihu — X?Aﬂ)) <c u,v € B, (4.3.3)



where distB(x,y) denotes the length of the shortest path in B connecting x to y.

Proof. Let u,v € B first be nearest neighbors and let M := | N/2|. Using (f, g) to denote the
canonical inner product in ¢?(Z2) with respect to the counting measure, the Gibbs-Markov
property gives

Var (x5 = X0) = (00— 60, (Ga = G) (0w — 30)

Since A — G4 is increasing (as an operator (2(Z%) — (?(Z?)) with respect to the set
inclusion, the worst case that accommodates the current setting is when A is the complement
of a single point and B is the square u + B(M) = u + [~ M, M)?> N Z2. Focusing on such A

and B from now on and shifting the domains suitably, we may assume A := Z2 < {0}. Then

Galz,y) = a(z) +aly) — a(z —y), (4.3.4)

where a(z) is the potential kernel defined, e.g., as the limit value of Gg(x)(0,0) =G g(n(0, )

as N — oo. The relevant fact for us is that a admits the asymptotic form
a(z) = glog|z| +co+ O(|z[7%), 2] = oo, (4.3.5)

where ¢ := 2/7 and ¢ is a (known) constant.

There is another representation of Var(xilju — Xil,v) in terms of harmonic measures
which follows from the discrete harmonicity of the coarse field. Let HB (x,y), for x € B
and y € 0B, denote the harmonic measure; i.e., the probability that the simple random walk

started from z first enters Z2 ~ B at y. Then

Var(x, = Xa,) = (f,Gaf)

where
FO) =Y [HP (u,2) — HP (v,2)]6. (). (4.3.6)
2€0B
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In order to make use of this expression, we will need are suitable estimates for the harmonic
measure: There are constants ¢, co € (0,00) such that for all M > 1, any neighbor v of u
and B :=u+ B(M), from, e.g., [53, Proposition 8.1.4] , we have

a

HB(u,2) < i z € 0B, (4.3.7)

and

‘HB(u,z)—HB(v,z)’ SCMZHB(U,Z), z € 0B. (4.3.8)

For our special choice of A, using (4.3.6) we now write

‘Varcxiﬂt_fxiﬂ)
= > [HP(u,2) = HP (v, 2)] [HP (u,2) — HP (v,2)] (a(2) + a(2) —a(z — 2)).  (4.3.9)
2,2€0B
Since z — HP (u, z) is a probability measure for each u, the contribution of the terms a(z)

and a(2) vanishes. For the same reason, we may replace a(z — Z) with a(z — 2) — glog M

in (4.3.9). Now we apply (4.3.8) with the result

2
Var(xfil’u — Xil,v) < <;4—2> Z HB(u, z)HB(u, Z)a(z — 2) — glog M| .
2,2€0B

Invoking (4.3.5) and (4.3.7), the two sums are now readily bounded by a constant inde-
pendent of M. This gives (4.3.3) for neighboring pairs of vertices. For the general case we just
apply the triangle inequality for the intrinsic (pseudo)metric u,v +— [Var(x% , — x% v)]l/ 2

along the shortest path in B between u and v in the graph-theoretical metric. O]
Using the above variance bound, we now get:

Corollary 4.3.8. For each set A C 72, let us write diam 4(A) for the diameter A in the

graph-theoretical metric on A. For each § > 0 there are constants ¢, ¢ € (0,00) such that for
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all sets 0 # B C B C A C Z? with B connected and obeying
inf{M € N: B+ [-M,M]?NZ* C B} > § diam 3(B) (4.3.10)
and for x§ denoting the coarse field on B for the GFF x 4 on A, we have

=2
]P’( sup ‘Xfél’u - Xfél’v} > ¢+ t) <2 (4.3.11)
uweB

for each t > 0.

Proof. The condition (4.3.10) ensures, via Lemma 4.3.7, that the variance of X , — x4, 18
bounded by a constant times dist 5(u,v)/N with N as in (4.3.2). The assumption (4.3.10)
then ensures that this is at most a d-dependent constant. Writing this constant as 2/¢ and

denoting

M* = Sup_ |Xf4,u B Xil,v
u,vEB

Y

Lemma 4.3.1 gives

P(|M* —EM*| > t) < 20",

It remains to show that EM™ is bounded uniformly in A and B satisfying (4.3.10). For this
we note that, again by Lemma 4.3.7, an e-ball in the intrinsic metric p(u, v) := [Var(x$ ,, —
1/2

XG4 )]/ % on B contains an order-Ne ball in the graph-theoretical metric on B which itself

contains an order-(Ne)? ball in the ¢!-metric on B. Lemmas 4.3.3 thus applies with a := 1

and [ := 2. n

4.3.8 A LIL for averages on concentric annuli

The proof of the RSW estimates will require controlling the expectation of the GFF on
concentric annuli, conditional on the values of the GFF on the boundaries thereof. We will

conveniently represent the sequence of these expectations by a random walk. Annulus aver-
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ages and the associated random walk have been central to the study of the local properties
of nearly-maximal values of the GFF in [15]. However, there the emphasis was on estimating
the probability that the random walk stays above a polylogarithmic curve for a majority
of time, while here we are interested in a different aspect; namely, the Law of Iterated
Logarithm. The conclusions derived here will be applied in the proof of Proposition 4.4.9.
We begin with a quantitative version of the law of the iterated logarithm for a specific

class of Gaussian random walks.

Lemma 4.3.9. Set ¢(z) := 2z loglogz for x > 3 and let Zy,Zo,- -+ , Zy, be independent
random variables with Z; faw N(0, 0]%) for some 02»2 > 0. Let s% = Zlgjgk 032 and suppose

that there are o > 0 and d > 0 such that
02k—d§sz§02k+d, k>1.

Then there are c5 q > 0, Cy g > 0 and N, g > 0, depending only on d and o, such that for

alln > N 4, the random walk Sy, := Zlgjgk Z; obeys

Ca,d

- 4.3.12
log log n (43.12)

P(#{evlog” <k<n:Sp>é(s2)/2} > ca’dloglogn) > 1

Proof. Since ¢ is regularly varying at infinity with exponent 1/2 and k s% is within
distance d of a linear function, one can find @ > 1 and k; sufficiently large (and depending

only on ¢ and d) such that
10) 2 _ g2 > —6¢ 2 k>k 4.3.13
(Sak Sak—1) =5 (Sak% Z r, (4.3.13)

and

O(s2h1) S co(s2), k= ki, (4.3.14)
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hold true. Now define a sequence of random variables as

T :=85,—951, Toh:= Sa2 —Sa, ... T[loga n| = Salloga”J B Sauoga”J_l )

law

Then 17,715, - - ’TUOga n| are independent with T3, = N(0, sik — Szk—l)' Then, for each k
with k1 <k < |log, n], the inequality (4.3.13) and a straightforward Gaussian tail estimate

show

C
P(Ty > 30(s%,)) > P(T} > To(s2, — %)) > ,
( 1" ) ( 87 a ) 10g(52k - 52k-1)

for some constant ¢ > 0 depending only on ¢ and d. Thus, whenever n is such that

V/|log, n] > kq holds true, we have

Z P(T}, > %fqb(szk)) > ' loglogn — ', (4.3.15)
[log, n]<k<|log,n]

for some ¢/, ¢’ > 0. By independence of T}, T, - - - , TUOga n|> the Chebyshev inequality gives

]P’(#{\/Lloga n] <k < llogan): Ty > $o(s2) } > Cllog%) >1 (4.3.16)

B loglogn

for some constant ¢ € (0,00). A computation using a Gaussian tail estimate gives
9 2 2 \—81/64
P(S i < —g¢(3ak)) < (log s k) /
for all kK > 1. Therefore

(U (s B0)) Ao TR s
[log, n] <k<[log, ]

for some constant & € (0,00). On {Sr-1 > —%d)(szk_l)} N{T}, > %qﬁ(szk)}, (4.3.14) gives

Sy =Sph—1+ T} > —%Qb(SZk—l) + %¢(Szk) 2 %QS(SZ’@)
80



and so the bounds (4.3.16) and (4.3.17) imply (4.3.12). O

We will apply Lemma 4.3.9 to a special sequence of random variables which arise from
averaging the GFF along concentric squares. For integers N > 1, n > 1 and b > 2, denote

N":=b"N and, for each k € {1,...,n}, define

U(XN,’U;UG U aB(bJ'N))), (4.3.18)

My = E(XN/,O
n—k<j<n

Notice that we can also write M, j, = E(XN/70|0-(XN/,’U: v E 8B(bn_kN))) due to the Gibbs-

Markov property of the GFF. We then have:

Lemma 4.3.10. For each integer b > 1 as above, there are constants ¢ > 0 and d > 0 such
that for all N > 1 and all n > 1 the sequence {M,, . — My, .1} =1 p—1 (with Mpg:=0)

satisfies the conditions of Lemma 4.3.9 with these (o,d).

Proof. Since the M, ;. — M, j._1’s are differences of a Gaussian martingale sequence, they are
independent normals. So we only need to verify the constraints on the variances. Denoting

N .= p""k N the Gibbs-Markov property of the GFF implies
Var(MnJC) = GB(N’) (O, 0) - GB(N”) (07 0) (4319)
Recalling our notation HZ (x,y) for the harmonic measure, the representation

Gp(r,y) = —a(x—y)+ Y HY(z,2)a(y - 2)
2€0B

gives

Var(M,, 1) = Z HB(N,)(O,z)a(z)— Z HB(NH)(O,Z)a(z).
2€0B(N") z€0B(N”)

Now substitute the asymptotic form (4.3.5) and notice that the terms arising from ¢( exactly

cancel, while those from the error O(|z|~2) are uniformly bounded. Concerning the terms
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arising from the term glog |z|, here we note that

sup Z HB(N)(O,Z)log|z|—logN < 00,
N21' coB()

which follows by using log |x+r|—log|z| = O(|r|/|x|) to approximate the sum by an integral.

Hence we get

G p(n7)(0,0) — Gy (0,0) = glog(N') — glog(N") + O(1)

= glog(b)(n — k) + O(1)

(4.3.20)

with O(1) bounded uniformly in N > 1, n>1land k=1,...,n— 1. ]

Using the above setup, pick two (possibly real) numbers 1 < r; < r9 < b and define

A= B(LrgkaJ) ~ B(frlka])o.

)

The point of working with the conditional expectations of y s evaluated at the origin is that
these expectations represent very well the typical value of the same conditional expectation

anywhere on A,, ;. Namely, we have:

Lemma 4.3.11. Denote

Ap = max max ’Mn,k —E(xnro | XN/ V€ UanankaB(lﬂN)) ‘
k=1,...,n—1 veA, | ’

For each b > 2 (and each r1,ry as above) there are C >0 and Ng > 1 such that for all

N > Ng and alln > 1,

P(A, > Cy/logn) < 1/n%. (4.3.21)

Proof. Denote A,n,k .= B(BFTIN) <\ B(b*N) and for v € A,n,k abbreviate

Xkw = E(XN 0 | X700 v € Ups jon—_k0BW/N)). (4.3.22)
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From the Gibbs-Markov property we also have

Xkow = ]E(XN/,U ‘ XN/ U E aA;%k) , v E A;z,k'

)

As soon as N is sufficiently large, the domains A := B(N'), B := A/ | and B = A, ), obey
condition (4.3.10) with some § > 1 for all n > 1 and all kK € {1,...,n — 1}. Corollary 4.3.8
then gives

~12
P(u max k\;z,w — | > e+ t) < 9 (4.3.23)

for some constants ¢, ¢ > 0 independent of N, n and k. This shows that the oscillation of
Xk on Ay i has a uniform Gaussian tail, so in order to bound M, 1. — Xy = Xk,0 — Xk
uniformly for v € A, , it suffices to show that, for just one v € A, 1, also Xj , — Xg,0 has
such a tail. Since this random variable is a centered Gaussian, it suffices to estimate its

variance. Here (4.3.22) gives

Var (Yo — Xr0) < Var(Yr—1,0 — Xr—1,0)- (4.3.24)

Corollary 4.3.8 can now be applied with A := B(N'), B := B(b**1N) and B := B(|rob*N|)
to bound the right-hand side by a constant uniformly in N, n and k = 1,...,n—1. Combined

with (4.3.23), the union bound shows

- / ~&t?
IP( max ‘Xk,v _Mn,k‘ >c +t> < 2e
k

vEA,,

with ¢/, &@ € (0, 00) independent of N, n and k. Another use of the union bound now yields

(4.3.21), thus proving the claim. O
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4.8.4 A non-Gibbsian decomposition of GFF on a square

As a final item of concern in this section we note that, apart from the Gibbs-Markov prop-
erty, our proofs will also make use of another decomposition of the GFF which is based
on a suitable decomposition of the Green function. This decomposition will be of crucial

importance for the development of the RSW theory in Section 4.4.

Lemma 4.3.12. Let {xn ,},ep(n) be the GFF on B(N) with Dirichlet boundary condition.
Then there are two independent, centered Gaussian fields {Yn },ep(n) and {Zn v }veB(N)

such that the following hold:
(a) xN =YN + ZN a.s.
(b) Var(Yy ) = O(loglog N') uniformly for all v € B(N).
(¢c) Var(Zn , — ZNn ) = O(1/log N) uniformly for all u,v € B([N/2]) such that u ~ v.

The distribution of {ZmN}veB(N) 18 invariant under reflections and rotations that pre-

serve B(N).

Proof. Throughout the proof of the current lemma, we let {Sy : ¢ > 0} be the lazy discrete-
time simple symmetric random walk on 72 that, at each time, stays put at its current position
with probability 1/2, or transitions to a uniformly chosen neighbor with the complementary
probability. We denote by PV the law of the walk with PY(Sy := v) = 1 and write EY to
denote the expectation with respect to PV. Let 7 be the first hitting time to the boundary
OB(N). It is clear that

1 00
E(XN,UXN,u) = §ZPU(St =U,T > t).
t=0

In addition, thanks to laziness of S, the matrix (P"(S; = u, 7 > t)), e (1) is non-negative

definite for each ¢ > 0. Therefore, there are independent centered Gaussian fields {Yy ,,: v €
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B(N)} and {Zy,,: v € B(N)} such that

[log N |2

> PUSi=uT>t)

t=0

N | —

E<YN71}YN,u) =

and

1
E(ZnoZNa) =5 >, PUSi=ur>1).
t=|log N |2+1

At this point, it is clear that we can couple the processes together so that Property (a) holds.

Property (b) holds by crude computation which shows

llog N |2 [log NJ?
VarYy ,, < % PY(S; = v) < O(1) % e O(loglog N) . (4.3.25)

It remains to verify Property (c). For any u,v € B([N/2]) and u ~ v, we have that

|EZ]2V7U_EZN,UZN,U|

00 00
- Y Psi=erz- Y PUSi—uwrz0)
t=|log N |2+1 t=|log N |2+1

< 3 |PUSi=v) - PU(S; = u)( + 3" BV P57 (S = v) — P (S; = ).
t=0

(4.3.26)
Since

|PY(S = v) — PY(Sy = u)| = O(n~3/?),

(see, e.g., [53, Exercise 2.2]), the first term on the right hand side is bounded by O(1/log N).
The second term is O(1/N) by [53, Theorem 4.4.6] and the fact that « € B([N/2]). This

completes the verification of Property (c). O
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4.4 A RSW result for effective resistances

Having dispensed with preliminary considerations, we now ready to develop a RSW theory

for effective resistances across rectangles. Throughout we write, for N, M > 1,
B(N,M) := ([-N, N] x [-M, M]) N Z*

for the rectangle of (2N +1) x (2M +1) vertices centered at the origin. Recall that B(N, N) =
B(N). The principal outcome of this section are Corollary 4.4.3 and Proposition 4.4.11. In
Corollary 4.4.18, these yield the proof of one half of Theorem 4.1.1. The proof of the other

half comes only at the very end of the chapter (in Section 4.5).

4.4.1 Effective resistance across squares

In Bernoulli percolation, the RSW theory is a loose term for a collection of methods for
extracting uniform lower bounds on the probability that any rectangle of a given aspect
ratio is crossed by an occupied path along its longer dimension. The starting point is
a duality-based lower bound on the probability of a left-right crossing of a square. In the
present context, the crossing probability is replaced by resistance across a square and duality
by consideration of a reciprocal network. An additional complication is that our problem
is intrinsically spatially-inhomogeneous. This means that all symmetry arguments, such as
rotations and reflections, require special attention to where the underlying domain is located.
In particular, it will be advantageous to work with the GFF on finite squares instead of the
pinned field in all of Z2.

If S is a rectangular domain in Z2, we will write oS, OqownS, Oright S and OupS' to
denote the sets of vertices in S that have a neighbor in Z2 \. S to the left, down, right and up
of them, respectively. (Notice that, unlike 0, these “boundaries” are subsets of S.) Given

any field x = {Xv}yeg recall that S\ denotes the network on S associated with x. We then
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abbreviate

RLR;S,X = RSX (81eft57 a1rightS)

and

RUD;S,X = RSX (aupsa adowns)-
Our first estimate concerning these quantities is:

Proposition 4.4.1 (Duality lower bound). Let x s denote the GFF on B(M) with Dirichlet
boundary conditions. There is ¢ = ¢(7y) € (0,00) and for each € > 0 there is Ny = No(e,7)

such that for all N > Ng and all M > 2N,

—e. (4.4.1)

DN | —

¢loglog M
P(RLR;BW),XM < efO5T8 ) >

The same result holds also for Ryp.g(nr) which is equidistributed to Ryg.p(N),

XM’ M’

The proof requires some elementary observations that will be useful later as well:

Lemma 4.4.2. Let A be a finite subset of Z2 and x1 = {X1,0}vea, x2 = {x20}vea be two

random fields on A. Then for any u,v € A we have,

Ry (u,v) < Ry, (u,v) max e o TXo) | (4.4.2)

u' w'eA
' ~v!

X1+X2

Furthermore,

=7 (Xo,u/ TX207)
E(Ray, 4y, v) | x1) < Ray, (u,0) u/I’Iqu?é(AE(e T2 X2 | ) (4.4.3)

U/N’U/

and

(X2, TX2,01)
E(C’AX1+X2 (u,v) | x1) < Ca,, (u,v) ulriljgéiAE(e | x1) - (4.4.4)
U/NU/
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Proof. Let 6 be a unit flow from u to v. Then (4.2.1) implies

2, =YX 1/ X107 o =Y (X X2
N D S ) At
u v eAu ~v!
Hereby (4.4.2) follows by bounding the second exponential by its maximum over all pairs
of nearest neighbors in A and optimizing over 6. The estimate (4.4.3) is obtained similarly;
just take the conditional expectation before optimizing over 6. The proof of (4.4.4) exploits

the similarity between (4.2.1) and (4.2.7) and is thus completely analogous. O

Proof of Proposition 4.4.1. Our aim is to use the fact that, in any Gaussian network, the
resistances are equidistributed to the conductances. We will apply this in conjunction with
the estimate in Lemma 4.2.7. Unfortunately, this estimate requires a hard bound on the
maximal ratio of resistances at neighboring edges. These ratios would be undesirably too
large if we work with the GFF network directly; instead we will invoke the decomposition
of s into the sum of Gaussian fields Yar = {Yaso}vepv) and Zayr = {Zarvtvepv) as
stated in Lemma 4.3.12 and apply Lemma 4.2.7 to the network associated with Z,; only.
We begin by estimating the oscillation of Z,; across neighboring vertices. From prop-
erty (c) in the statement of Lemma 4.3.12 and a standard bound on the expected maximum

of centered Gaussians, we first get

sup E( max (Z -7 ) < 00.
N>1 u,vGB(N)( M Mﬂ))
|lu—v]1<2

Using this bound and property (c), Lemma 4.3.1 shows that for each ¢ > 0 there is ¢; € R

such that for all N > 1,

]P’( max (2 -7 >c> <e. 4.4.5
u,vGB(N)( Mu M,v) Z €)= ( )
lu—v]1<2

Now observe that the pairs (O B(IV), Oright B(IV)) and (QupB(N), Ogown B(IN)) satisfy the
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conditions of Lemma 4.2.7. Using RBD; B(N).Zs to denote the top-to-bottom resistance in

the reciprocal network, combining (4.2.25) with the last display yields

2
P(RLR;B(N)ZMRED;B(N),ZM < Gde m) >1—e. (4.4.6)

A key point of the proof is that, since the law of Z;; is symmetric with respect to rotations

of B(M), the fact that Zy taw —Z)r implies

* law
ROp.B(N),Zy — TLRB(N), Zar-

The union bound then shows

1—e€
IED(RLR;B(N),ZM < 86017) Z 5 (4.4.7)
Lemma 4.4.2 and the independence of Y,; and Zj; now give
*’Y(Y ,quY ,U)
E(RLR:B(N) s | ZM) < RLR:B(N), 20 nolex Ee™ TMMuTEM v, (4.4.8)
u~v

Lemma 4.3.12 shows VarY); ,, < ' loglog M for some constant ¢’ € (0,00) and so the maxi-
mum on the right of (4.4.8) is at most 02¢/7* loglog M_ Taking ¢ > 2¢72, the desired bound

(4.4.1) now follows (for N sufficiently large) from (4.4.7-4.4.8) and Markov’s inequality. [

With only a minor amount of additional effort, we are able to conclude a uniform lower

bound for the resistance across rectangles.

Corollary 4.4.3. Let ¢ be as in Proposition 4.4.1. For each € > 0 there is N(/) = Né(v7 €) such
that for all N > N|, all M > 16N and all translates S of B(4N,N) contained in B(M/2),
we have

P(RLR.S.y, =€ 2Closlosdy > ¢ (4.4.9)

N —
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The same applies to Ryp.g,y,, for any translate S of B(N,4N) contained in B(M/2).

Proof. Replacing effective resistances by effective conductances in the proof of Proposi-

tion 4.4.1 (and relying on Lemma 4.2.6 instead of Lemma 4.2.7) yields

e—éloglogM> > ¢ (4.4.10)

| —

IP’<RLR;B(N>,><M =

for all N > Ny. Since

RLR;BAN) s < FLR.BANN) X1

this bound extends to the rectangle B(4N, N). Now consider a translate S of this rectangle
that is contained in B(M/2). Taking M’ := 8N and let S be the translate of B(M’) that is
centered at the same point as S. Considering the Gibbs-Markov decomposition into a fine

field Xé and a coarse field X% on S, we then get

¢y .—¢loglog M

- /
> IP’(R ;> e_doglogM> —P(max\x‘i | < E) :
Xg Su

LR,S, uesS

Since S and S are centered at the same point, the first probability is at least % — ¢ by our
extension of (4.4.10) to rectangles. The second probability can be made arbitrarily small

uniformly in N by taking ¢ large. The claim follows. O

Remark 4.4.4. Despite our convention that constants such as ¢, ¢, ¢/, etc may change meaning
line to line, the constant ¢ will denote the quantity from Proposition 4.4.1 throughout the

rest of this chapter.

4.4.2  Restricted resistances across squares

As noted already in the introduction, our approach to the RSW theory is strongly inspired

by [77] which is itself based on inductively controlling the crossing probability (in Bernoulli
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B(N)

Figure 4.1: An illustration of the geometric setting underlying the definition of
the restricted effective resistance Ry [, g, in (4.4.11).

percolation) between O B(NN) and a portion of Opgpi B(N). We will now setup the rel-
evant objects and notations and prove estimates that will later serve in an argument by
contradiction.

For the square B(N) and o, € [-N,N] NZ with o < [, consider the subset of
ight B(IV) defined by

AP B(N) := ({N} [, B]) N 22

Let Pp[q,5) denote the set of paths in B(N) that use only the vertices in ((=N,N) x

[~ N, N]) N Z? except for the initial vertex, which lies in djo¢, B(N), and the terminal vertex,

which lies in 8}%;’533(]\/ ). With these notions in place, we now introduce the shorthand
R = Ry, (P —R B(N), 020 B(N 4411
Na8lx = BBV (PNifa,8) = B, Qe BINV), Oy BIN)). (4.4.11)

Our first goal is to define a quantity ap which will mark, in rough terms, the point of

transition of o — Ry [0,0] from large to small values.

»X2N

We first need a couple of simple observations. Note that PN;[O, N Y PN;[— N,0] includes
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all paths starting on Jjeg B(NV) and terminating on 0o B(N). Lemma 4.2.5 then shows

1 < 1 . 1
BIRB(N)xany ~ BNJONxon  LIN[=N,0]xon

while the symmetry of both the law of x9 and the square B(N) with respect to the reflection

law

through the x axis implies RN,[O,N] = RN,[_N70]7X2N' By Proposition 4.4.1, there is Ny

'X2N
such that

P(RLRp(N) x> o8 ¥Y)) < 2/3

as soon as N > Ny. The square-root trick in Corollary 4.3.5 then shows
PR 0.N] gy > 268 18N)) < /273 < 0.82 (4.4.12)

as soon as N > Nj.

Next we note that, by Lemma 4.3.7,

sup  max  Var(xan, — XoN.u) < 00.
N>1vEB(3N/2) v o
u~v

Hence, there is ¢’ € (0, 00) such that y := yax obeys
Gr%a&(v)]}p(max{Xv—eg — Xv+eps Xv—ea+er T Xv—eg — Xv — Xv+61} > Cl) <0.005 (4.4.13)
v

for all N > 1. Now set Cy := 2(2¢C"7 + 1), define ¢y : {0,..., N} — [0,1] by

on(a) = P(RM[O@N],XQN > (4+C)) eéloglog(2N))
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and, noting that a — ¢ («) is non-decreasing with ¢ (0) < 0.82 (cf (4.4.12)), let

min{a € {0,...,[N/2]}: oy (a) > 0.99} if o ([ N/2]) > 0.99,
[N/2], otherwise .
This definition implies the following inequalities:

Lemma 4.4.5. For C' as in (4.4.13), define Cy := 4(2eC,7 +1)2 and let ¢, Ny and Cy be

as above. Then the following two properties hold for all N > Ny:

(P1) For all a € {0,...,an},

PR fa.N] oy < 5C2e7198108CN)) > 0,005, (4.4.14)

(P2) If ayy < |N/2], then for all « € {ap,..., N},
PR (o N ygy = (4+ C1) 108108V = 0 99 (4.4.15)

and

PRy 0.0 yoy < 4e7081052N)) > 017, (4.4.16)

Proof. We begin with (P1). Since ¢n(a) < 0.99 for a € {0,...,any — 1}, for all such a we
have

(RN [0, N]xqy S (4+C1)e08108EN)) > 0,01 (4.4.17)

In order to deal with a = ajpy, we will will need:

Lemma 4.4.6. For x := xon and v being the point with coordinates (N — 1, ), we have

{RN7[aN5N]aX2N > ClRN’[aN_LN}’XQN} (4 4 18)

C {maX{XU—eg — Xvter, Xv—ea+e; T Xv—es — Xv — Xv—i—el} > Cl}
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Deferring the proof of this lemma until after this proof, we now combine (4.4.17) for o :=

ay — 1 with (4.4.13) to get

P<RN JanN]xay S (4 Cl)cleéloglog(m))

cloglog(2N
z P<RN7[0‘N*LN]7X2N < (4+Cp)e™® ol )’ BN Jan Nl xon = ClRN,[OéN*LN})

> 0.01 — 0.005 = 0.005 .
(4.4.19)

Since (4 4+ C1)C1 < 5C9, the bound (4.4.14) holds for « := ap as well. Thanks to the

upward monotonicity of a — R N,[a,N] the inequality then extends to all a < apy.

YX2N’

The first inequality in (P2) evidently holds by our choice of ap. As for the second
inequality, Lemma 4.2.5 shows
1 1 1
<

< +
RNv [OvN]7X2N RN? [Ova]aXQN RN? [OévNLXQN

and this then implies

< 9otlog 10g(2N)7 RN,

{RN,[O,N],XQN > > (4+ C’l)eéloglog(QN)}

[057N}7X2N
< 4etlog 10g(2N)}.

g {RN7 [Ova]aX2N -
Invoking (4.4.12) and the definition of ay, the probability of the event on the right is than
at most 0.99 — 0.82 = 0.17. O]

We still owe to the reader:

Proof of Lemma 4.4.6. Suppose Y is such that the complementary event to that on the right
of (4.4.18) occurs. We will show that then the complement of the event on the left occurs
as well. For this, let 6 be the optimal flow realizing the effective resistivity in (4.4.11) and
let 6(z,y) denote its value on edge (x,y). To reduce clutter of indices, write r(x,y) for

the resistance of edge (x,y). Abbreviate t := v + ey, u :== v —eg and w = u + €] =
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(N,apy —1). Our aim is to reroute (v,t) through u to w. Define a flow § by setting
0(v,u) == 0(v,u) +6(v,t), O(u,w) = O(u, w)+0(v,t) and f(v,t) := 0 and letting A, := b, for
all other edges e. The only edges where § might expend more energy than 6 are the edges

(v,u) and (u,w). To bound the change in energy, we note

r(v,u)é(v,u)2 < r(v,u) [9(1}, u) + 0(v, t)}Q
(4.4.20)
< 2r(v,u)0(v, u)? + 2r (v, t) 60/79(1}, t)?

with the second inequality due to the containment in the complement of the event on the

right of (4.4.18). Similarly we have
r(u, w)0(u, w)? < 2r(u, w)0(u, w)? + 2r(v, t) eC,WG(v,t)Q.

Hence we get RN,[aN—l,N] 2+ 4eCl7)RN7[ = ClRN,[ thus prov-

YX2N S ( aN?N]7X2N aN?N]7X2N’
ing (4.4.18). O

4.4.8  From squares to rectangles

We now move to bounds on resistance across rectangular domains. As in Bernoulli percola-
tion, a fundamental tool in this endeavor is the FKG inequality which, in our case, will be

used in the following form:

Lemma 4.4.7. Consider a finite S C Z? and a Gaussian process {xuv }per with Cov(xu, Xv) >
0 for all u,v € S. Suppose that Py, Pa,--- ,Pn are collections of paths in S that satisfy the
conditions of Lemma 4.2.4 for a pair of disjoint subsets (A, B) of S. Then for any r > 0,
we have

n

P(Rg, (A, B) <nr) > [[P(Rs, (Pi) < 7).
i=1

Proof. This is an immediate consequence of Lemma 4.2.4, the monotonicity of Rg (P;) in

individual edge resistances, and the FKG inequality in Lemma 4.3.4. [
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The principal outcome of this subsection is:

Proposition 4.4.8. There are ¢y, Cy € (0,00) such that for all N > Ny for which ay <

2004n7) holds, all M > 8N and any shift S of B(4N, N) satisfying S € B(M/2),
P(RLR;S,XM < C«geéloglogM) > - (4.4.21)

The same applies to Ryp.s.y,, for any shift S of B(N,4N) that obeys S C B(M/2).

By Proposition 4.4.1 the bound holds for left-to-right resistance of centered squares. We
will employ a geometric argument combined with the FKG inequality to extend the bound
from squares to rectangular domains. The main technical tool is Lemma 4.2.4 which, in
a sense, permits us to bound resistance by path-connectivity considerations only. We will

actually use a different argument depending on whether oy equals, or is less than | N/2].

Proof of Proposition 4.4.8, case oy = | N/2]. Here we will need the bound (4.4.14), but for
the underlying domain not necessarily centered at the box which defines the underlying field.
Thus, for S a translate of the square B(N) such that S € B(M/2), let Rg, g] ,, denote
the quantity corresponding to RN’[% Bl for the square S and the underlying field given
by xas- In light of (4.4.14), Corollary 4.3.8 and Lemma 4.4.7 show that, for some constant

C4 € (0,00) depending only on C and Co,
]P)(RS’[CYN»N],XM < CéeéloglogM) > 0.001 (4.4.22)

holds for all N > Ny, all M > 8N and all squares S as above that are contained in B(M/2).
Thanks to invariance of the law of x5, under rotations of B(M), the same bound holds also

for the “rotated” quantities; namely, those dealing with “up-down’ resistivities.

Now let S be a translate by € Z? of the rectangle B(4N, N) such that S C B(M/2)
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Figure 4.2: The setting of the proof of Proposition 4.4.8, case ay = |N/2]. The
collection of paths shown suffices to ensure a left-to right crossing through the four shown
translates of B(NN). The key points to observe are that P; intersects both PZ-’ and PZ-” while
PZ.” intersects Pi’ 41, for each i.

and let us regard S as the union of the squares
S;:=x+ (i—5)Ney + B(N), i=1,...,7.

For each ¢ € {1,...,7}, consider the following collections of paths: First, let P; be the set
of all paths in S; that cross S; left to right (with only the initial and terminal point visiting
the left and right boundaries of S;). Then (referring to parts of the boundary as if S; were
the square B(N)), let 73{ be the collection of paths that connects the bottom of the square
to the [—=N, —a ] portion of the top boundary, and let PZ” be the path between the bottom
of the square to the [ap, N] portion of the top boundary. The key point (implied by the
fact that ay = [N/2]) is now that, for any choice of paths P; € P;, P/ € P! and P!" € P/
and any ¢ = 1,...,7, the graph union of the triplet of paths (P;, Pi’ , PZ.” ) is connected and,

for each + = 1,...,6, the graph union of (PZ',PZ-/ , P") is connected to the graph union of

2

(Piy1, PZ'I—H’ P{Q_l); see Fig. 4.2.

It follows that the graph union of the seven triplets of paths contains a left-to-right
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crossing of the rectangle S and, by Lemma 4.2.4, we thus get

7
RLR;S,XM < Z(RSi,XM(Pi) + RSi,XM (Pz/) + RSi,XM (Pz//)>
=1

In light of the definition (4.4.11) (and, for simplicity of computation, restricting P; to paths
that terminate only at the top [a, N] portion of the right boundary), (4.4.22) and the FKG

inequality now give (4.4.21) with C3 := 21C% and ¢ = 10763, O

Proof of Proposition 4.4.8, case oy < | N/2]. Here, in addition to (4.4.15) which, as before,
we bring to the form (4.4.22), we will also need (4.4.16) — this is why we need a < | N/2]

— which we extend using Corollary 4.3.8 and Lemma 4.4.7 to the form

P(Rg L, < Cgetloslosdly > g 1 (4.4.23)

07aN]aX

for some CY € (0,00), all N > Nj and all translates S of B(N) such that S C B(M/2).
The same bound holds also for all rotations and reflections of these quantities.

Abbreviate K := [4N/7]| and note that K < N < 2K for N large enough. Let us first
deal with S being a translate of the rectangle ([—N, 3N —2K]x [N, N])NZ?2 by some = € Z>

subject to the restriction S C B(4K). Consider the squares
Si:=x+ B(N), Sy:=x+2(N—K)ey + B(N)

and

Sy :=x+ (N — K)ey + ages + |[—K, K> N 72

and note that S1 U Sy = 5 and S3 C 51N S9; see Fig. 4.2. Define the following collections
of paths: First, let P; be all paths in Sq from the left side to the [0, ] portion of the right
side. Similarly, let Py be all paths in Sy from the [0, o] portion of the left side to the right

side of S9. Next we define the following collections of paths in S3:
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Figure 4.3: An illustration of the geometric setting underlying the key argument in
the proof of Proposition 4.4.8, case oy < |N/2|. Here K := |[4N/7| and ay < 20k.
Examples of paths P, € P1, Py € P3, P4 € Py and P5 € Py are shown in black. Together
with any choice of paths Py € Py, Pg € Pg and P; € P; (shown in gray), these enforce a
left-to-right crossing of the rectangle.

(1) the set Pg of all paths from the top to the bottom sides of Ss,
(2) the set Py of all paths from the left side of S5 to the [a -, K] portion of the right side,

(3) the set P5 of all paths from the left side of S3 to the [— K, —aj] portion of the right

side,

(4) the set Pg of all paths from the [a -, K| portion of the left side of S5 to the right side,

and

(5) the set Py of all paths from the [— K, —a| portion of the left side of S5 to the right

side.

The key point is that, thanks to the assumption ay < 2a, for any choice of paths P; € P;,

the graph union of these paths will contain a left-to-right path crossing S; see Fig. 4.2. By
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Lemma 4.2.4,

7
RiR S < D RBsp (P
=1

where Sy = --- = S7 := S3. From here we get (4.4.21) for all 2(2N — K') x 2N rectangles S C
B(M/2) with C3 := 21 max{C}, C}} and ¢y := 10714,

In order to prove the desired claim, consider a translate S of B(4N, N) by = € 72 entirely
contained in B(M/2) and note that, letting k := [%1, and we can cover S by the family
of rectangles S('), e S]’C and Si’, o 75}14:/—1 defined as follows:

Shi=a;+ ((0,22N — K)] x [-N,N])nZ? j=0,...,k

where z; := 2 +2(N — K)jeq forall j =0,...,k—1and zj, := 2+ [8N — 2k(N — K)]eq,
which ensures that all S/ lie inside S (and thus inside B(M/2)), and

ST =y;+ ([-N.N] x [0,2@2N - K))nZ* j=1,... k-1,

where y; — x; are such that all S;’ lie in B(M/2) (this is possible because 2(2N — K) <

16N) and such that S;- N S}' C S}_H for each j = 1,...,k — 1. Assuming each Sg- and Sé-’
contains a path connecting the shorter sides of the rectangle, the graph union of these paths

then contains a left-to-right crossing of S. Lemma 4.2.4 then gives

k k—1
RS xa S D BLr s + 2 Bup,sty
j=0 j=1

In light of our earlier proof of (4.4.21) for rectangles of dimensions 2N x 2(2N — K), we

get (4.4.21) for 2N x 8N rectangles as well with C3 := 21(2k + 1) max{C4, C5} and ¢y =

10—14(2k+1)' n
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4.4.4 Bounding the growth of ay

It appears that Proposition 4.4.8 could be more than sufficient for proving uniform upper
bound on resistance across rectangles, provided we can somehow guarantee that N — ap

does not grow faster than exponentially with N. This is the content of:

Proposition 4.4.9. For each cg € (0,1) and each Cg € (0, 00), there ezists an integer Cs > 8

such that if, for some N > 1,
P(RLR;SaXIEiN < C3eéloglog(16]\7)) > (4.4.24)

holds all translates or rotates S of B(4N,N) contained in B(8N), then we have apys > N

for at least one N' € {8N,...,C5N}.
The proof will be based on the following lemma:

Lemma 4.4.10. Suppose that, for some cy, C3 € (0,00) and some N > 1, (4.4.24) holds for
all translates and rotates of B(4N, N) contained in B(8N). There are ¢; and Cy, depending
only on cq and Cs, respectively, such that whenever K > 2N 1is such that ag < N and
M > 16K,

P(RLR 5.y, < Caetlo8108M) > ¢ (4.4.25)

holds for all translates and rotates of B(4K, K) contained in B(8K).

Proof. We will first prove this for rectangles S of the form B(2K, K). Consider the squares
S1:=—Kej+[-K,K]?NZ? and Sy := Ke; + B(K) and let S, ..., S’} be the four maximal
rectangles of dimensions N x 4N, labeled counterclockwise starting from the one at the
bottom, contained in the annulus B(2N) ~\ B(N)°. Let P; be a path in S7 connecting the
left-hand side to the [0, a ] portion of the right-hand side and, similarly, Ps is the path in Sg
connecting the [0, ag]-portion of the left-hand side to the right hand side. Let Pl’, e ,Péi

be paths (in Si, e Sfl, respectively) between the shorter sides of S7, ..., Sfp respectively.
101



Figure 4.4: The geometric setup for the proof of Lemma 4.4.10. The graph union of
paths Pp, Po, Pll, . 7P11 contains a left-to-right crossing of the 4K x 2K-rectangle.

Then the assumption apr < N implies that the graph union of Pp, P», P{, ey Pi contains a
path in S connecting the left side to the right side; see Fig. 4.4. Combining (4.4.25) with
(4.4.23) (in which N is replaced by K'), we get the claim for S with Cy := QC’é' + 4C53 and
c1 == 10"4(c)t.

To extend this to rectangles S of the form B(4K, K'), we note that these can be covered
by four translates and two rotates of B(2K, K') such that the existence of a crossing between
the shorter sides in each of these rectangles forces a crossing of S. Thanks to Lemma 4.4.7,
the desired bound then holds for S as well; we just need to multiply the above C4 by 6 and

raise the above ¢q to the sixth power. O]
We are now ready to give:

Proof of Proposition 4.4.9. The proof is by way of contradiction; indeed, we will prove that
if such N’ does not exist, then we will ultimately violate the first inequality in (P2) in
Lemma 4.4.5 for a sufficiently large square. This will be done by showing that a path from
the left side of the square B(N') to the [0, ap] part of the right side can be re-routed to
instead terminate in the a7, N']-part of the right side. The re-routing will be achieved
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by showing existence of a path winding around an annulus of inner “radius” at least oy
centered at the point ¢p7 := (N’,0).

We will focus on N’ of the form N’ := v N, where b := 8 and n > 1. Fix such an n
(and thus N’) and, for k = 1,...,n, let B, j, := o/ + B(b*N). Consider also the annulus

Ap i = 0n1 + B(4bEN) \ B(26N)° and define the conditional field

(7<X4N’,u: u € U aBn,j>).

XAN' kv = XaN',p — E <X4N’,v
n—k<j<n

By the Gibbs-Markov property of the GFF, {X4N’,k;v: v E An,k} has the law of the val-
ues on A, ;. of the GFF in B(bFTIN) < B(b*N)° with Dirichlet boundary condition. Let

Ry N denote the sum of the resistances between the shorter sides of the four maximal

n,k X4N/,
rectangles contained in A;, ¢, in the field x4nv t.
Assuming apr < N, Lemma 4.4.10 in conjunction with Corollary 4.3.8 and Lemma 4.4.7

show that, for some Czll € (0,00) and ¢9 > 0:
A !
]P(RAn,k;X;lN/,k < C’ieClOgIOgN) > 9. (4426)

Let m be the smallest integer such that (1 —cg)" < 0.01, let C be as in the first inequality

in (P2) in Lemma 4.4.5 and let C' be the constant from Lemma 4.3.10. Define

M, . := min E /
n,k UeAn,k <X4N Ky

‘7<XN’,u3 u € U aBjm)).

n—k<j<n

Lemma 4.3.10 (dealing with the LIL for the sequence M, ;) and Lemma 4.3.11 (dealing with

the deviations Ay,) tell us that there is a positive integer m’ > 100 satisfying

N ! _
P(#{k =1,....m —1:yM .0 > 0.510g0—4+10g5+0'y\/10gm’} < m)
’ 1

< 0.01+0.01 = 0.02. (4.4.27)
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Figure 4.5: The geometric setting for a key argument in the proof of Propo-
sition 4.4.9. Once ap is less than the inner radius of the depicted annulus,
RB(N)X(PN;[aN,N]) is bounded by RB(N)X(PN;[O,aN}) plus the sum of the resistances be-
tween the shorter sides of the four maximal rectangles contained in the annulus.

Putting together (4.4.26), (4.4.27), the choices of m and m’ along with Lemmas 4.3.11 and

/
4.4.2 we get for all N such that clog (1 + %) < log5,

Pk e {l,...,m'}: Ry, ooy 2 Cpeflo8loe Ny < 0,02 4+ 0.01 = 0.03, (4.4.28)

where C5 := gm'+1,
We are now ready to derive the desired contradiction. Lemma 4.2.4 gives us that if

apr < N for all 8N < N' < CsN, then

¢loglog N . _
P(RB(N/)XN/ (PN’;[aN/,N’}) < RB(N/)XN/ (PNI3[07C“N/]) + (e ) >1—-0.03=0.97.
(4.4.29)

From the second inequality in (P2) in Lemma 4.4.5 we have

IP)(RB(N’)X ,(PN"[O CVN/]) < 4eéIOg10gN/) > 0.17.
N b b
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The last two displays and the FKG imply
¢loglog N’
IP(RB(N/)XN/ (Pt v]) < (44 C) e 108108 ) > 0.17 x 0.97 > 0.16.
in contradiction with the first inequality in (P2) in Lemma 4.4.5. The claim follows. O]

4.4.5 Resistance across rectangles and annuli

As a consequence of the above arguments, we are now ready to state our first unrestricted

general upper bound on the effective resistance across rectangles:

Proposition 4.4.11. There are constants Cg,c3 € (0,00) and N1 > 1 such that for all
N > Ny, all M > 16N and for every translate S of B(4N,N) contained in B(M/2), we
have

P(RLR.S.xy, < Coct281081) > ¢5. (4.4.30)

The same applies to Ryp.s,y,, for translates S of B(N,4N) with S C B(M/2).

We begin by showing that (4.4.24) holds (with the same constants) along an exponentially

growing sequence of N. This is where Proposition 4.4.8 and Proposition 4.4.9 come together.

Lemma 4.4.12. Let ¢y and C3 be as in Proposition 4.4.8. There is ¢ € (0,00) and an

increasing sequence {N}.: k > 1} of positive integers such that, for each k > 1, we have
14Nk -1 S Nk—|—1 S CNk (4431)
and the bound
P(RLRhS’XlGNk < OgeéIOgIOg(MNk)) > (4.4.32)

holds for all translates S of B(4N}., Ni.) contained in B(8N},).

Proof. We will construct {N,.: k > 1} by induction. Suppose that Ny, ..., N; have already

been defined. Since (4.4.32) holds for Ny, Proposition 4.4.9 shows the existence of an L €
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[8N},, C5 Ni] with af, > Nj.. Define a sequence {L;: j > 0} by Ly := L and L1 := min{L €
N: |4L/7] = L;} and note that L; < ¢(7/4)J L for some numerical constant ¢/ € (0,00).

Now if AL q > 2ap, is true fori=0,...,7—1, then
2Ny, < Vap < ap, < Lj <d(T/4) L < (7/4) C5Ny. (4.4.33)

The fact that 7/4 < 2 implies that this must fail once j is sufficiently large; i.e., for some j €
{0,..., C’é}, where C’é depends only on C5. We thus let j > 1 be the smallest such that

ar; < 2ap; , and set Niiq := Lj. Then (4.4.31) holds by the inequality on the right of

1
(4.4.33) and the fact that Ny, > L1 > (7/4)L — 1 > 14N} — 1. The bound (4.4.32) is
implied by Proposition 4.4.8.

To start the induction, we just take the above sequence {Lj} with L := 1 and find the

first index 7 for which « L <2« L Then we set N1 := L; and argue as above. O
From here we now conclude:

Proof of Proposition 4.4.11. Let {N}.} be the sequence from Lemma 4.4.12. Invoking Corol-
lary 4.3.8 and Lemma 4.4.7, the bound (4.4.32) shows that, for each M > 16N}, and any
translate S of B(4N}., N) contained in B(M/2),

P(RLR;5.y, < Chetloeloeld) > o (4.4.34)

holds with some constants Cé, 06 € (0,00) independent of £ and M. By invariance of the
law of X with respect to rotations of B(M), the same holds for the resistance Ryp.g,y,,
for all rotations of B(4N}, Nj) contained in B(M/2).

Now pick N > Nj and let k be such that Ny, < N < Npyy. For M > 16N > 16N,
consider a translate S of B(4N, N) contained in B(M/2). Let m := min{r € N: (3r+1)N >
Nii1}; by (4.4.31) this m is bounded uniformly in k. We then find rectangles S;, i = 1,...,m

that are translates of B(4Ny, N}.) such that S; .1 = 3Nej; +.5; foreachi=1,...,m—1 and
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are centered along the same horizontal line as S and positioned in such a way that they all
lie inside B(M/2). Next we find translates S7,...,S! _; of B(Ny,4Ny) such that S; NS4,
which is a translate of B(V), is contained in SZ’- for each i = 1,...,m — 1. We can again
position these so that S/ C B(M/2) for each i.

It is clear from the construction that if, for each ¢+ = 1,...,m, we are given a path in .5;
and, foreach 2 =1,...,m — 1, a path in SZ{ and these paths connect the shorter sides of the
rectangle they lie in, then the graph union of all these paths contains a path in S between

the left side and right side thereof. Lemma 4.2.4 then gives

m m—1
RLR;Sxar = Z RLR:S; o Z RUD;SZQXM' (4.4.35)
1=1 1=1

All of the rectangles lie in B(M/2) and so (4.4.34) applies to the resistivities on the right
of (4.4.35). Lemma 4.4.7 then readily gives (4.4.32) with Cg := (2m — 1)C% and c3 :=

(06)2’”_1. O

In addition to resistance across rectangles, the proofs in Section 5.3 will also require an
lower bound for resistances across annuli. For N < M, let A(N, M) := B(M) ~ B(N)° and
denote

OMA(N, M) := OB(N) and 9°“A(N, M) := dB(M)°
Note that 9MA(N, M) C A(N, M) as well as 9°"A(N, M) c A(N, M). We have:

Lemma 4.4.13. There Cy7,cqy € (0,00) such that for all N sufficiently large and A :=
A(N,2N),
]P<RAX4N (5inA, aoutA) > C7e—3élog log(4N)> > ¢y

Proof. Let 51,959,553, 54 denote the four maximal rectangles contained in A. We assume
that the rectangles are labeled clockwise starting from the one on the right. Now observe

that every path in A from 9™ A to 9°"* A contains a path that is contained in, and connects
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the longer sides of, one of the rectangles S7, 59,53, 54. It follows that

in out
Ry, (OMA0%A) > RiR 5 vun T BUD,Soxun T BLR.S3oxan + BUD,Suvan -

The claim will follow from the FKG inequality if we can show that, for some p > 0 and C’é >
0,

P(RLR gy, = Che 3¢loslosdN)y > (4.4.36)

holds for all translates S of ([0, N] x [0,4N]) NZ? contained in B(2N) and all N sufficiently
large. (Indeed, then ¢4 := p* and Cy = 4C§.)
We will show this using the duality in Lemma 4.2.6, but for that we will first need to

invoke the decomposition x4y = Yin + Z4n from Lemma 4.3.12. First, for any r, A > 0,

P(RLR, Sy = 7) 2 P(RLR,5,2yy 2 7/A) = P(RLRS x4y < ARLR,S,Zyy)
Passing over to conductances, from Lemma 4.4.2 we then get, as before,

1 cloglog(4N
P<RLRaSaX4N < ARLR75724N) S Ze ( )’

while the duality in Lemma 4.2.6 gives, as in the proof of Proposition 4.4.1,
IP’(RLR, 52un BOD.5.200 > e—2V01/64) >1—e
Finally, we use Lemma 4.4.2 one more time to get
PR320y < 7) 2 P(RUD gy < /A) — celoEIo8am),

If we set 7/A := Cgetlos log(4N) Proposition 4.4.11 bounds the first probability below by c3.

Now take A := Ce3¢108108(4N) {51 ¢ Jarge and work your way back to get (4.4.36). O
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4.4.6  Gausstan concentration and upper bound on point-to-point

resistances

In order to get the tail estimate on the effective resistance in Theorem 4.1.1, we need to
invoke a concentration-of-measure argument for the quantity at hand. Recall the notation

R Ay (P) for the effective resistance in network Ay restricted to the collection of paths in P.

Proposition 4.4.14. Suppose x is a Gaussian field on B(N) with Var(xz) < c¢1log N for
all w € B(N) and cq independent of N. Let Ay be a subnetwork of B(N)y and let P be
a finite collection of paths within A between some given source and destination. There is a

constant cg € (0,00) such that for all N > 1, allt > 0 and all v > 0,

242

P(!logRAX(P) —ElogRAX(P)} >t logN) < 2e 27

For the proof, we will need:

Lemma 4.4.15. Let A be a subnetwork of B(N) and P be a finite collection of paths within A

between some given source and destination. Let g: RY(4) 5 R be defined by

1
g(x) := maxlog( ),
(x) qeO ];) 3 e—y(xef—kx@r)q P
ecP
. E(A)xP
where Q is the set of all q = (qe,p)ecp(a),Pep € RY such that

1
Z <1 foralle € E(A).
pep de.P

Then g is a Lipschitz function relative to the Loo morm on RY(A) with Lipschitz constant

27.
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(4) x REAP iy

Proof. Define a new real-valued function, also denoted by g, on RY

Then for any q € Q and x,y € RY(A) it is clear that

l9(x,aq) — g(y,q)| < 27|[x — ¥l -

Hence g(x) = maxqeg g(X,q) is 27- Lipschitz relative to the Lo norm as well. O

Proof of Proposition 4.4.14. This follows directly from the Gaussian concentration inequal-

ity (see [76, 18]) and Lemma 4.4.15. O

We are now ready to give a version of the upper bound in Theorem 4.1.1, albeit for a

network arising form a GFF on a finite subset of Z?:

Lemma 4.4.16. There is c1 € (0,00) depending only on v and a constant ¢’ € (0,00) such
that

_ c”t2

IP’(RB(N)XM(U, v) > c1(log M) etm> < 2ci(logM)e
holds for all N > 1, all M > 32N and all t > 0.

Proof. Combining Proposition 4.4.11 with Corollary 4.4.3, for each ¢ > 0 there is N =
N{/(v,€) such that if N > Nf, M > 32N and S is a translate of B(4N,N) contained
in B(M/2), then we have

P<|10g RLR:S,yay| < 2¢10glog(2M) + log 06) > e, (4.4.37)

Decomposing xops on B(M) into a fine field X& and a coarse field X, the fact that

[log RLR;S xons | 2 1108 Ry o7 | = 2ymax|xy|
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along with Xﬂ faw X s shows

]P’(}log RLR'SXM‘ < 2¢loglog(2M) + log Cg + 267) > € — P(max‘xf\/[‘ > 6).
B uesS

The last probability tends to zero as ¢ — oo uniformly in M > 1 and so, by choosing ¢ large,

there is a constant C7 € (0, 00) such that, for all N > N/,
P(‘log RLR;S,XM| < 2¢loglog(2M) + log C7) > €/2 (4.4.38)

holds for all M > 32N and all translates of B(4N, N) contained anywhere in B(M).
Since (4.4.38) gives us an interval of width of order loglog M where |log RyR. S,x M| keeps
a uniformly positive mass, the Gaussian concentration in Proposition 4.4.14 shows that, for

some constants ¢, ¢’ € (0, 0),

E|10g RLR;S,XM‘ < d\/log M

and also

”t2

P([log RLg;s x| > tv/og M) < 2 (4.4.39)

hold for every ¢t > 0. The proof has so far assumed N > N(/)' ; to eliminate this assumption

we note that Var(x,s,) < ¢log M uniformly in v € B(M) and so the union bound gives

P(max| s o] > 1v/Iog M) < 2]8le 5%
Since [S]| < (4Ng + 1)2 while |log RIR.S, | 18 at most 2y maxyeg|xasp| times an N{-
dependent constant, by adjusting ¢’ we make (4.4.39) hold for all N > 1. Due to rotation
symmetry, the same bound holds also for Ryp.g ,,, and any translate S of B(N,4N) con-
tained in B(M).
Now fix M > 32 and let w,v € B(M). Then one can find a collection of rectangles of the
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form B(N,4N) or B(4N, N) with 32N < M that are contained in B(M) and satisfy:
(1) There are at most ¢ log M of such rectangles with ¢; € (0, 00) independent of M.

(2) If a path is chosen connecting the shorter sides in each of these rectangles, then the

graph union of these paths contains a path from u to v.

By Lemma 4.2.4, this construction dominates RB(N)XM (u,v) by the sum of the resistances
between the shorter sides of these rectangles. The FKG inequality, (4.4.39) and a union

bound then imply

DP)<RB(N) (u,v) > c1(log M) djm) < 2¢1(log M) o't

XM

This is the desired claim. O]
In order to extend this to the network with the underlying field n, we first note:

Lemma 4.4.17. Let n denote the GF'F on 72 pinned at the origin. There are Cq,c1 € (0,00)
and N1 > 1 such that for all N > Ny, all M > 16N and for every translate S of B(4N, N)
contained in B(M/2), we have

IP)(RLR;S,U < Cle%loglog(M)) >C]. (4.4.40)

The same applies to Ryp.s.y,, for translates S of B(N,4N) with S C B(M/2).

Proof. We will assume that M is the minimal integer such that S C B(M/2). Note that
this means that M /N is bounded. We proceed in two steps, first reducing n to the GFF
in A := B(M) \ {0} and then relating this field to x5;. Using the Gibbs-Markov property,
the field n can be written as xp + x©, where xp, the fine field, has the law of the GFF
on A while the coarse field x© is 7 conditional on its values outside of B(M). Now pick

an x € B(M) ~ B(M/2)° such that x is at least M/6 lattice steps from both B(M/2)
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and B(M)°. For any r, A > 0 we then have

P(Rrr;s,y <7) > P(RLR;S, <75 n°(2) > 0)

P
P(RiR.5., < 7/A, 05 > 0) —P(RrR:s, > ARLR:Sm,» Te > 0)
(4.4.41)

v

Noting that both events are increasing functions of n, for the first probability on the right
we get

IPD(RLR;S,UA < T/Av 77:% > 0) > ]P)(RLR;S,UA < T/A>

N | —

using the FKG inequality. For the second probability we set

c Cov(ng: n%) .

= B(M/2
Pu nu VaI'(T]%) 773;» u € ( / )7

and note, since Cov(n$,n5%) > 0, we have

Ririsy < RirSmp+e o0 {3 2 0}.

But the above definition ensures that ¢ is independent of 1% and a calculation using the ex-
plicit form of the law of n° gives that max, 5 Var(ypy) is bounded by a constant independent
of M. Markov’s inequality and (4.4.3) then bound the last probability in (4.4.41) by ¢//A
for some constant ¢’ € (0, 00) independent of A or M.

Next let gps: Z2 — [0, 1] be discrete harmonic on A with gy;(0) := 1 and gy (u) := 0
whenever u ¢ B(M). Let x have the law of x;7(0)g(-) but assume that x is independent

of xpA. The Gibbs-Markov property shows

. 1
X+ XA gVXM-

A direct use of Lemma 4.4.2 is hampered by the fact that Var(x(0)) is of order log M.

However, this is not a problem when S is at least distance M from the origin because then
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gy(x) =0(1/log M). Letting K := [ N/3], we now note that each translate S of B(4N, N)
contains a translate S of B(4N, K) which is at least distance N from the origin and is aligned

with one of the longer side of S. Lemma 4.4.2 then gives, for any b € R,

—"y —"b ~
RLR;§7XA+>Z > e RLR;S’,XA e © RIR;S vy on {x(0) < blog N}
for some ¢’ > 0. Hence

P(RLR.5.y, < 7/A) > P(R < e Pr/A) —P(x(0) > blog N). (4.4.42)

LR;S.xA+X =

Now set r 1= Cye2¢loglog(M) = A .— eloglog(M) anqg pick any b > 0. Then the last probability
in both (4.4.41) and (4.4.42) tends to zero as N — oo, while, as soon as C is large enough,
the first probability on the right of (4.4.42) is uniformly positive by Proposition 4.4.11 and a
routine use of the FKG inequality (to get us from rectangles of the form B(4N, K) to those

with aspect ratio 4). The claim follows. O
Using exactly the same argument as in the proof of Lemma 4.4.16, we then get:

Corollary 4.4.18. Let i be the GFF in Z> ~. {0}. There are C,C" € (0,00) such that
IP’(RB(N)n(u,v) > CeCtv logN) < Cle log N

holds for all N > 1 and all t > 0.

This is one half of Theorem 4.1.1; the other half will be shown in the next section.

4.5 Asymptotic growth rate of log Rz:(0, B(N)®)

Proof of Theorem 4.1.1. Here the bound (4.1.1) has already been shown in Corollary 4.4.18,
so we just have to focus on (4.1.2-4.1.3). We will use a decomposition of n from [15,

Proposition 3.12]. Let b := 8 and consider the annuli A} := B(bFT1) O B(W)° and
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A == B(4bF) < B(2b%) for all k > 0. Then

Mo = D [0k (0) X5 + Y + 0, | (4.5.1)
k>0

where by, : Z? — R is a function such that
bp(v) = —1ifv g BOY) and |by(v)] < "% if v e BOY) € BOF), (4.5.2)

while { X, : k > 0} are random variables and {¢}.: £ > 0} and {77]]:: k > 0} are random fields
(all measurable with respect to 1) that are independent of one another and distributed as

centered Gaussian with the specifics of the law determined as follows:
(1) limy_, o0 Var(Xy) = glogb,
(2) writing xj, for the coarse field obtained as the conditional expectation of the GFF
on B(b¥) given its values on dB(b* 1), we have

1
Uk = X5 — E(GIXE.0)s

(3) 77£ is the fine field on A .

For v}, we in addition have the following variance estimate,
Var(vy,) < '™, wve B0 C BOM). (4.5.3)

See [15, Lemma 3.7] for (4.5.2) and [15, Lemma 3.8] for (4.5.3).

Clearly, only one of the fine fields X£ can contribute in (4.5.1) for each given v and

Xk = 0 unless v € B (bF). Setting (with some abuse of our earlier notation),

Ak = max ‘ E ijj —+ E wj,v
UEAk . .
J>k Jj>k
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[15, Lemma 3.8] shows that, for some constants ¢, ¢’ € (0, 00),
P(Ap>c+t) <e T >0 (4.5.4)

The first half of (4.5.2) then lets us write

k
770+ZX]€_X£,U§A]€? v E Ag.
7=0

We now set Sj, 1= Z?:O X}, and note that the Nash-Williams estimate and Lemma 4.4.2

imply

Rp(n+1),(0,0B(N)) > max [e—MAk—Sk) Ryl (0™ Ay, 1, aoutAmk)] (4.5.5)

where n := max{k > 0: 0F < N}.
Our aim is to study the maximum in (4.5.5) and show that it grows at least as exponential
of v/n/(log n)1+5. To this end, we define the sequence of record values of the sequence Sy,

as follows: Set 7 := 0 and for m > 1 let
Tm = inf{k: > Tm—1: Sk > S, 1+ 1}.

Then we have:

Lemma 4.5.1. {7, — 7,,—1: m > 1} are independent with a uniform bound on their tail,

Pl — Tt > 1) < —,  t>1, (4.5.6)

NG >

for some constant ¢ > 0. In particular, for each 6 > 0 there is ¢ € (0,00) such that

Pl >1) < = t>1. (4.5.7)



holds for all m > 1.
Postponing the proof temporarily, we note that (4.5.7) shows

/

2 2426 ¢
A Borel-Cantelli argument then gives
Tm
sup 5795 < O° a.s. (4.5.9)

m>1m?(logm)

(This is first proved for m running along powers of 2 and then extended by monotonicity of
both numerator and denominator.) In particular, for n large enough, the sequence Sy, ..., Sy
will see at least y/n/(log n)1+5 record values as defined above. If it were not for the terms
Ap and R Apar] (8inAn7k, 9°" A, k), this observation would bound the maximum in (4.5.5)

by what we want, so we have to ensure that these terms do not spoil this.

Counsider the events

E = {Ak < loglog k}

and

Fp = {RAk’n]J: ((r)inAn’]’€7 8OUtAn,k) > (Cle—3¢log log(bk)}‘

By (4.5.4) and Markov’s inequality, there is an a.s. finite ngy such that
n
1 Vn
lpe < ————— > ng.
> B = 2 logn) 1+ =70
k=1
(Again, we prove this for n running along powers of 2 and then fill the gaps by monotonicity.)

This means that at least half of the record values by time n occur at indices where E}. occurs,

ie.,

Z . o1 Vn
ETmm{TmSn} ) 1+6
m>1 2 (log n>
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as soon as n is large enough. But the events [}, are independent of each other and of all of
Ej’s and 7p,’s and, since Lemma 4.4.13 tells us infj,>1 P(F},) > 0 for some C' > 0, the longest
run of 1’s in the sequence {1 FS *Tm < n} has length at most ¢logn. It follows that, for n
large, the event Ej N Fj occurs for some k of the form k = 7, for some m = m(n) > 1
subject to 7, < n and 7,,; > n for m’ ;== m — [clogn]. This shows m = nt/2to() and so

m > m'/2 once n is large enough. From (4.5.9) we now conclude

ml Tm/ / \/ﬁ
o =

S >
i = “og 7)TH0 = (logn) 10

m

>m >

for some constants ¢, ¢’ € (0,00) as soon as n is large enough. Since also Ej, N F}, occur for

k := Tm, using this in (4.5.5) yields

log Rp(n 1), (0,0B(N))
NG

> 2y —Y——
= (logn)1+5

— 2yloglogn — 3¢loglog(b") + log C'.

The bound (4.1.3) follows. O

Proof of Lemma 4.5.1. We will follow the proof of [15, Lemma 4.16]. Since the sequence
{Sp: n > 1} has independent (centered) Gaussian increments, we can embed it into a path
of standard Brownian motion by putting Sy, = By, where t,, := Var(Sy). By property (1)
above, we have t,, — t,,_1 — glogb as n — oco. Consider the process W) which is zero

outside the interval [tj, ¢}, 1] and on this interval,

¢ — —
wh(s) = B =g 7% p

= t Bg, lp < 8 < tpy1.
tee1 — bk " byl —tg

tey1 —
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The independence of increments of Brownian motion now gives

]P)<Btk+8 - Btk <2+ 10g<1 + 8): 5+ tk € [tlmtn])

EIP’(B# “ By <1ij=ty,... tn> H]P’( max  WW(s) < 1—|—log(1—|—tj—tk)).
! s€[tj b+l

Since W(¥) are Brownian bridges on intervals of bounded length, and maxima thereof thus
have a uniformly Gaussian tail, the product on the right-hand side is positive uniformly in n.

It follows that, for ¢~1 being a uniform lower bound on the product,
P(7im — Tim—1 > t) < PY(Bs <2 +log(l +s): s < ét)

where ¢ := inf,>1(t, — t,—1). The probability on the right is at most ¢//v/t by, e.g., [15,
Proposition 4.9]. This proves (4.5.6). The bound (4.5.7) now follows from standard estimates

of sums of independent heavy-tailed random variables. O
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CHAPTER 5
SOME PROPERTIES OF THE RANDOM WALK DRIVEN BY
PLANAR GFF

5.1 Recurrence, return probability and subdiffusivity

In this chapter we will study the random walk defined in Section 1.2 using the effective
resistance estimates from previous chapter. For convenience of the reader, we will discuss
the setup once again before presenting our main results.

Let n = {nv},cz2 denote a sample of the discrete GFF on 7?2 pinned to 0 at the origin.

Thus {nv},c72 is a centered Gaussian process such that
no=0 and E(n,n) = GZQ\{O}(u, v) for all u,v € Z2,

where G2, {0}(u,v) is the Green function in Z? \ {0}. For v > 0 and conditional on
the sample n of the GFF, let {X;};>0 be a discrete-time Markov chain with transition

probabilities given by

) 1 5.1.1
pn(U7v) - Zw:|w—u|1=1 &Y (Mw—"u) o—uhi=1 (5.1.1)

where | - |1 denotes the /-norm on Z2. We will write Py for the law of the above random
walk such that Py(Xp = z) =1 and use Ej to denote the corresponding expectation. We
also write P for the law of the GFF and use E (as above) to denote the expectation with
respect to P.

The transition kernel p; depends only on the differences {n; —ny: x,y € Z2} whose law
is, as it turns out, invariant and ergodic with respect to the translates of Z2. The Markov
chain {X;};>0 is thus an example of a random walk in a stationary random environment.

The main conclusion we prove about this random walk is then:
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Theorem 5.1.1. For each v > 0 and each § > 0,

1) 19
im P(e—ﬂogT)” Pl < PO(Xyp = 0) < olos D) T =1 (5.1.2)
—00

Furthermore, {Xt}>0 ts recurrent for P-almost every 7.
We also prove a version of subdiffusivity for the expected exit time from large balls:

Theorem 5.1.2. Let TB(N)e denote the first exit time of {X;:t > 0} from B(N) =
[—N,N]>NZ2. For each § > 0, we then have

]\}Enoop(NlﬂW)e—(lOgN)l/%é < EgTB(N)C < Nw(V)e(logN)1/2+§> =1, (5.1.3)

where

2+ 2(v/70)%, if v < e = /)2,
Y(7) = (5.1.4)

4y /e, otherwise.

1
—— 1
The bounds on the expected hitting time indicate that |Xp| should scale as T¥() Fo(l)

for large T'. Although we expect this to be true, we have so far only been able to prove a

corresponding lower bound:

Theorem 5.1.3. For P-almost every n and each § > 0,

5 1
Pg(lXﬂ > o~ (log M)/ Tw(’Y)) — 1 in probability, (5.1.5)
T—o0

where () is as in (5.1.4).

We note that Theorems 5.1.2 and 5.1.3 are consistent with the predictions in [21, 22] for
general log-correlated fields. In particular, (5.1.5) confirms the prediction for the diffusive
exponent of the walk from [21, 22] as a lower bound. The reason why the bounds in (5.1.3)
are not sufficient is that we do not know whether TB(N)e scales with N proportionally to its

expectation. A full proof of subdiffusive behavior thus remains elusive.
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As mentioned several times before, the technical approach that makes our analysis pos-

sible stems from the following simple rewrite of the transition kernel,

&Y (Mu+1u)

pU(U,U> = Zw|w Ny e’Y(Uw‘FUu) 1|U—u\1=1' (516)
Jw—ulfy

This represents {X;};>0 as a random walk among random conductances where the edge
(u,v) is given a conductance eVut) - Ag it turns out, the change of the behavior of the
expected exit time at the critical point 7. (see Theorem 5.1.2) arises, in its entirety, from
the asymptotic

m(B(N)) = NYO+e) - N o0, (5.1.7)

This is because, as a consequence of Theorem 4.1.1, point-to-point effective resistances in
the associated random conductance network Z% behave, for points at distance N, as N o(1)

for every v > 0.

5.1.1 Proof strategy

Apart from Theorem 4.1.1 which is a key ingredient of our proofs, substantial work is needed
on the random walk side as well. The upper bound on the return probability is proved in
Section 5.3.1 using the methods drawn from [52]. The lower bound on the return probability
is more subtle as it requires showing that the effective resistivity from 0 to v in B(N)
is bounded by the sum of the resistances from 0 to 0B(N) and from v to OB(N). This
amounts to bounding a difference of effective resistances, which is not immediate from the
estimates obtained in Chapter 4.

We approach this by invoking a concentric decomposition of the GFF along a sequence of
annuli, which permits representing of the typical value of the resistance as an exponential of
a random walk. The Law of the Iterated Logarithm then shows that the natural fluctuations
of the effective resistance (which are of order eO(m)) can be beaten in at least one of

the annuli. These key steps are the content of Proposition 5.3.8 and Lemma 5.3.9. As an
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immediate consequence, we then get recurrence.

5.2 Cardinality of the level sets of GFF

In this section, we estimate the cardinality of the sets of points where the GFF equals
(roughly) a prescribed multiple of its absolute maximum. The main use of this is to prove
Lemma 5.3.2 where we obtain a lower bound on m;(B(N)) (see (5.1.7)).

Recall that from [20, 19] we know that the family of random variables

3
max —2./glog N — — log log N 5.2.1
e XN Vglog 1 V9loglog (5.2.1)

is tight as N — 0o. The level sets we are interested in are of the form

AN o= {v € B(IN/2)): Xy € (i, ariy + 1)} , (5.2.2)

where mpy = 2,/glog N and o € (0,1). Our conclusion about these is as follows:

Theorem 5.2.1. For any ag € (0,1) there are ¢ = c¢(a) > 0 and k = k(ag) > 0 such that

for all0 < apn < ag and all 6 > e_(logN)l/4 the bound
P(JAN ap| < OE[AN o) < cd” (5.2.3)

holds for all N sufficiently large. The same statement holds also for the GFF on B(N)~{0}.

The exponent linking the cardinality of the level set to the linear size of the underlying
domain has been computed in [25] building on [17] where the leading-order growth-rate of
the absolute maximum was determined. While much progress on the maxima of the GFF
has been made recently, notably with the help of modified branching random walk (MBRW)
introduced in [20], the methods used in these studies do not seem to be of much use here.

Indeed, in order to make use of the modified branching random walk one needs to invoke a
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comparison between the GFF and MBRW, which is conveniently available for the maximum
(using Slepian’s lemma [75]), but does not seem to extend to the cardinality of the level sets.

Another possible approach to consider is the intrinsic dimension of the level sets (see
[24]), but this would not give a sharp estimate as we desire. Our approach to Theorem 5.2.1
is much simpler, being a combination of the second moment method (which directly applies
to GFF) and the “sprinkling method” which was employed in [28] in the context of the
GFF. We remark that the second moment method has recently been used to prove that a

suitably-scaled size of the whole level set admits a non-trivial distributional limit [16].

Proof of Theorem 5.2.1. The proof is actually quite easy when o < 1/4/2, but becomes
more complicated in the complementary regime of a. This is due to well known failure
of the second-moment method in these problems and the need for a suitable truncation to
make it work again. The first half of the proof thus consists of the set-up, and control, of
the truncation.

Pick N > 1 large and let n := max{k: 2¥ < N/8}. For v € B(|N/2]), write B(v, L) :=
v+ B(L) and, for k = 1,...,n, set, abusing of our earlier notation, A4,, j.(v) := B(v, PAREDEN
B(v,2%). Note that Ay k(v) C B(|3N/4]) for all k =1,...,n. Then for all z,y € A,, 1.(v)
and with g := 2/,

E(xNuXN,z) = 9(log2)(n — k) + O(1)

and

E(XNzXNy) = glog2)(n — k) + O(1)

hold with O(1) uniformly bounded in N and z,y as above. Next denote

B 1
XN,kwv = TA (o) Z XN -
A, 2
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A straightforward calculation then shows that

Var(Xn ko) = g(log2)(n — k) + O(1) (5.2.4)
and
E()ZN,k,UXN,v) = g(log2)(n — k) + O(1),
again, with O(1) uniform in N. Tt follows that there are numbers a; = apy j,, With

laz — 1| = O(1/(n — k)) and a Gaussian process Yz = Yp 1, , which is independent of
XN k,p and obeys Var(Yy) = g(log 2)k + O(1) such that
z = XN ko T Y, e {v}UA,k(v).

XN

)

Further, we have that

E(Y,Y,) = O(1 5.2.5
xeﬂajff(v) (YoYz) (1) (5.2.5)

again with O(1) uniform in N.

For e > 0,r >0 and 0 < ap < «p, define the event

Eyeray = {XN,U € (aymy,anmy + 1)}

n—=k

n
N ﬂ {XN,k,v <ay

mN+e[kA(n—k)]+r}.
k=1

n
We claim that for e := (L_ﬁ—'—o) and r := rq, sufficiently large, we have
P(Everay) = 5P(Xnw € (anmiy, ayiy + 1)) . (5.2.6)

In order to prove (5.2.6), note that by (5.2.4)

n—=k

E(XN ko | XN € (anmy, aymy +1)) = ay my + O(1)
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and
4(n — k)k

var(XN,k‘,U ‘ XN,v) < n

Abbreviating sy, := ozN"T_kﬁlN + €[k A (n — k)] + r, from these observations we have

n
> P()ZN,JW e ‘ XN € (anTy, anmy + 1))
k=1
n

- Ze_e((n—k)/\k-l-?”-l-O(l))/lOO <1/2,
k=1

where the last inequality holds for all » > r(«g) where r(ag) € (0,00). This yields (5.2.6).

Now we are ready to apply the second moment method. We will work with

2= Z 1Ev,e,r,aN

veB(|N/2])

From (5.2.6) and a calculation for the Gaussian distribution we get

1 c 2
> = > = y(-ay)n 2.
EZ > SEIA o] = <= (5.2.7)

for some constant ¢ > 0. Our next task is a derivation of a suitable upper bound on VarZ.
From (5.2) and (5.2.5) we get that, for any v € B(|N/2]) and with ¢, > 0 a constant

depending on r but not on v or NV,

Z ]P)(EU,E,T‘,OKN N EU,G,T,O{N)
ueB(N/2])

]

(XN,u, XN € (anmy, aymy + 1), XN ko < 9%)

n vy (5.2.8)
SZ Z / P(Yv/\Yu ZO(NmN—(S)P()_(N’]{;,U € ds)

<oy ! <Lk)24a%v(nk)4(l2a%\,)k42€aN[(nk)/\k]'
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Here the last inequality follows from the fact that, once we write the integral using the explicit
form of the law of Xy .., the integrand is maximized at s := s and decays exponentially
when s is away from s;.. Combined with (5.2.7), the preceding inequality implies that

1

VarZ " n
Ez)? = CT]; Jn—k <\/E

>24_(1—a%v)(n—k)42€aN[(n_k)/\k] =0(1).
This implies
P(Z >EZ) > c (5.2.9)

for some ¢ = ¢(ag) > 0 sufficiently small uniformly in N > Nj for some N large.

It remains to enhance the lower bound in (5.2.9) to a number sufficiently close to one.
To this end, pick an integer M with Nj < M < ellog N)1/4, let L :=|N/(2M)| and consider
a collection of boxes V1,..., V72 of the form V; := v1 + B(M) contained in B(|N/2]). For

ueVy,i=1,... , L2, define the coarse fields

X?V,i,u = E(XN,u | XNz' T € avz) . (5.2.10)

By Lemma 4.3.3 and [19, Lemma 3.10], we get that

Emax xfy;p = Xl < OQ)-
(2

In addition, as is easy to check, Varvav i < 4log M. Introducing the event
£ = {X%ﬂi,v > —40logM:veV;,1 <1< LQ},
we obtain that
P(E) = O(M™1). (5.2.11)

Conditioning on £ and on the values {xy,: v € 9V;,1 <i < L?}, the GFF in each square

of V; are independent of each other. Further, the Gaussian field on V; dominates the field
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obtained from subtracting 40 log M from the GFF on V; with Dirichlet boundary condition

on 9V;. Write

ANayi={veVii xny € (anmn, anmy + 1)}

By a straightforward first moment computation, we see that

400
ElAN ay| < MTTE[AN o y+4010g M/ il -
Therefore, applying (5.2.9) to V; we get that
—4
P(lAN il 2 M ElAyayl[£) 2 c.
By conditional independence, we then get that

_ 2
P( max |An .yl = M VEAy ]| >1- (01— .
1<i<L?

Combined with (5.2.11), it gives

P(lAnay| > M4 ORAy ) >1—0M ) = (1-)F.

Choosing M so large that § < M 400 < 2§ (assuming that ¢ is sufficiently small), this
readily gives the claim for the GFF on B(NN) with Dirichlet boundary condition.

In the case that the GFF on B(NV) ~\ {0}, the same calculation goes through by consid-
ering instead the level set restricted to the square (| N/4],0) + B(|N/2]) and replacing x

in (5.2.10) by 1. We leave further details to the reader. O

5.3 Proofs of the main results

Here prove our main results. We begin with some preparatory claims; the actual proofs start

to appear in Section 5.3.2.
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5.3.1 Points with moderate resistance to origin

Our proofs will require restricting to subsets of 72 of points with only a moderate value of
the effective resistance to the origin and/or the boundary of a box centered there in. Here

we give the needed bounds on cardinalities of such sets.

Lemma 5.3.1. Denote A(N,2N) := B(2N) ~ B(N)°. For any § > 0, we have

P mn(v) 1 > N¢(’Y)e—(log]\[)6> < e—(IOgN)5 5o
<U€A(ZN:,2N) ! {RB(N)n(0,11)>e(10gN)1/2+6}

as soon as N is sufficiently large.

Proof. Abbreviate, as in (4.3.5), g :== 2/m. We will proceed by a straightforward first-moment
estimate, but first we have to localize the problem to a finite box. Write n = nf +n¢ where nf
is the fine field on the box B(4N). Since Var(n$) < Var(n,), the variance of ¢ is bounded by
a constant times log NV uniformly on B(/N) and so, combining Corollary 4.3.8 with a bound

at one vertex,

. 5
]P’( min ¢ < —(log N 1/2"“5/2) < co—Clog N)®.
vEA(N2N) Ty < ~(log ) -

On the event when 7¢ > —(log N)Y/219/2 we have

(0, 0) 210 N)/21972

B(N)
and so comparing this with the restriction on the effective resistivity in (5.3.1) we may as
well estimate the probability in (5.3.1) for n replaced by x4 -

Here we will still need to employ a truncation to keep the field x4n below its typical

maximum scale. The following crude estimate based on a union bound is sufficient,

IP’( max_ Y4n.o > 2v/9log N + (log N)‘S> < co—cllog N)’
vEB(N) ’

for some constants ¢, ¢ € (0,00). Writing F for the complementary event and inserting Fiy
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in the probability in (5.3.1) with 1 replaced by x4, Markov’s inequality bounds the result
by

N gllog N)° 3 E(”mw(“)

sy Fx). (332)
vEA(N,2N))

1
{BB(N) (0,0)>ellos N

5
Now 7 — 7y(v) is increasing while {RB(N)n (0,v) > el98N)°Y is a decreasing event. Since
the conditioning on Fj preserves the FKG inequality, the quantity in (5.3.2) is no larger

than

1
P(An)?

— o g (0]
N7V Deloe N N7 Ry (0); Fx)P(Rp,, (0,0) > eloEN)
veB(N)

1 /2+5>

5 5
Corollary 4.4.18 bounds the last probability by e—Clog N)* oo o just have to compute the
sum of the expectations of my,, (v)’s.
Pick a pair of nearest neighbors v and v, with v € A(N,2N), and let X := x4y 4, +X4N 0

Disregarding the event Fly, a straightforward moment computation using Var(x4n,) <

glog N + ¢ for v € A(N,2N) shows
E(X) = e27"VarX) < NP9y e A(N,2N). (5.3.3)

On the other hand, a change of measure argument gives

E(e7X; Fy) < e27"VarlX )IED<X < 4/glog N + 2(log N)® — War(X))
(5.3.4)
< NP9 IP’(X < 4(/g — v9) log N + 3(log N)5>

For v > v. := 1/,/g, the probability itself decays as N—2(1=7/7¢)? o (log N). Invoking the

definition of ¥ (7) in (5.1.4), the inequalities (5.3.3-5.3.4) thus give

E(myy (v); Fv) < NV =2 M08 N) e A(N,2N).
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Summing over v € A(N,2N), the claim follows. O

Consider now the set
=y = {0} U {v € A(N,2N): Ry, (0,0) < e<1°gT>1/M}. (5.3.5)

With the help of the above lemma we then show:

Lemma 5.3.2. For each § > 0, there is ¢ > 0 such that for all N sufficiently large,

C

= V(7)o-(log NP o ¢
P(”n(uN)SN Ve o8 > < (log V)2

Proof. In light of Lemma 5.3.1, it suffices to show that

P < 3N¥() —<1°gN)‘S> < ¢ 5.3.6
(UEA(%QN) il = ) ~ (log N)? (5:3.6)

Thanks to the Gibbs-Markov property, it actually suffices to show this (with 0 replaced by
d/2) for n replaced by y and A(N,2N) replaced by a box B(N). (Indeed, we just need to
take a translate B of B(N) with B C A(N,2N) and then use the Gibbs-Markov property on
a translate of B(|3N/2]) centered at the same point as B. The contribution of the coarse
field is estimated using Corollary 4.3.8.)

The argument for (5.3.6) is different depending on the relation between v and .. For v >

7 we use that the maximum of the GFF has doubly-exponential lower tails (see [28]). Invok-

ing the Gibbs-Markov property we then conclude that, with probability at least e~ (log V),
for some ¢ > 0, there is at least one point u where
XNu = 2¢/glog N — cloglog N (5.3.7)

for some large enough C' > 0. As xy,, — XNy, for u and v neighbors, have bounded (in fact,

stationary) variances, a union bound shows that (5.3.7) will hold also for the neighbors of w.
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On this event, and denoting by v a neighbor of w,

Z Ty (V) > YOXNutXNw) — NAVGYe—C loglog N
veEB(N)

Since 4,/g7 = 4(7/vc) equals () for v > 7, we are done here.

Concerning v < ¢, here will will apply Theorem 5.2.1 for a := 7/~.. Recall the notation
AN o for the level set in (5.2.2). A straightforward computation using the explicit form of
the Gaussian probability density shows

C _9,2
Pz € Axa) 2 o N7

and so E(| Ay o]) > ¢NY(V) /1log N. Theorem 5.2.1 now guarantees that AN.ol > SE(JAN o)
occurs with probability O(0¢). This statements permits even setting 6 := 1/(log N )Cl,

whereby the claim readily follows. O]
We also record an upper estimate on the total volume of m:
Lemma 5.3.3. For any 0 > 0, we have
IP’( Z m(v) > Nw(v)e(logN)d) < o~ (log N)? (5.3.8)
veEB(N)
as soon as N s sufficiently large.

Proof. This follows directly from the Markov inequality and the calculations in (5.3.3-5.3.4).
O

5.3.2  Upper bound on heat-kernel and exit time

The starting point of our proofs is an upper bound on the return probability for the random
walk. We remark that numerous methods exist in the literature to derive such bounds.

Some of these are based on geometric properties of the underlying Markov graph such as
132



isoperimetry and volume growth, others are based on resistance estimates. The most natural
approach to use would be that of [5] (see also [52]); unfortunately, this does not seem possible
due to our lack of required uniform control of the resistance growth. Instead, we base our
presentation on the general strategy outlined in [55, Chapter 21.5]. We begin by restating,

and proving, one half of Theorem 5.1.1:

Lemma 5.3.4. For each § > 0,

lim ]P’(P

] 0(Xor = 0) < e(logTWMT*l) —1. (5.3.9)
— 00

Proof. Pick 6 > 0 and a large integer 7', and recall the notation Zp for the set in (5.3.5).
Consider the random walk {X;: ¢ > 0} on the network B(4T )n; this walk starts at 0 and
moves around B(47T) indefinitely using the transition probabilities (1.2.2) that are modified
on the boundary of B(4T') so that jumps outside B(47T) are suppressed. Let {Y;: t > 0}
record the successive visits of X to Z7. Then Y is a Markov chain on Z7 with stationary

distribution

v(z) = 7::2(51;) (5.3.10)

Let 79 := 0, 71, T, etc be the times of the successive visits of Y to 0. Define

0= inf{kz 1: 7. > 7T and Y} :0}.

Then we have

T-1 T-1 6—1
TP (Xp =0) < EO< O 1{)@:0}) < E0< 3 1{Yk:0}) < E0< 3 1{Yk:0}>, (5.3.11)
t= k=0 k=0

where the first inequality comes from the monotonicity of 7" +— PO()?T = 0) and the second

133



inequality reflects the fact that 0 € Zp. Since Yz = 0, by, e.g., [55, Lemma 10.5] we have

o—1

EO< ! {Yk:x}) = E(6)v(x). (5.3.12)

k=0

(This is proved by noting that the object on the left is a stationary measure for the walk Y

of total mass EY(4).) By conditioning on Y7 we further estimate

E%(6) < T + max E%(0y),

uEET
where og := inf{k > 0: Y}, = 0} and note that

1/2+6
9

E"(00) < m(E7) Rpar), (0,u) < m(E7) ellosT) u € Er,

by the commute-time identity of [23] (cf [57, Corollary 2.21]). Combining this with (5.3.11-

5.3.12) and (5.3.10) we then get

~ 1
POy = 0) < 2 my(0) e85,
which proves (5.3.9) because, due to the jumps being only to nearest neighbors, the walk X

coincides with the walk X up to time at least 47'. O
This now permits to give:

Proof of Theorem 5.1.3. A standard calculation based on reversibility and the Cauchy-Schwarz

inequality yields

PUXor=0)> Y  PYXp=a)P"(Xp=0)
x€B(N)

- PO(Xp=a  P(Xy € BN)
- 77(0) Z 7T77(ZE) — n ) WU(B(N))

: (5.3.13)
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Invoking the upper bound on the heat-kernel and Lemma 5.3.3, we get that with probability

tending rapidly to one as N and T tend to infinity, we have

2
(X7 € B(N)) < [T/ noelloa V)], (5.3.14)
Setting T' := NY()olog N)1/2+20 gives the desired claim. ]

The same conclusion could in fact be inferred from the following claim which constitutes

one half of Theorem 5.1.2:

Lemma 5.3.5. For each 6 > 0 and all N sufficiently large,
]P(EO(TB(N)c) > N1/’(7)e(1°gN)1/2+6) < o~ (logN)
Proof. By the hitting time identity (or, alternatively, the commute time identity)
E°(rp(nye) < Rp(y 11), (0,0B(N))my (B(N))
The claim then follows from Corollary 4.4.18 and Lemma 5.3.3. m

5.3.3  Bounding the voltage from below

We now move to the proofs of the requisite lower bounds. Here the focus will be trained on

the expected exit time which we write using the hitting time identity as

EO(TBW)C):RB(N+1)n(o,aB<N)) > m)e), (5.3.15)
vEB(N)

where, using our convention that dB(N) is the external boundary of B(N),

o(v) = P(10 < ToB(N))
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is the electrostatic potential, a.k.a. voltage, in B(/N) with ¢(0) = 1 and ¢ vanishing
on 0B(N). Estimating (5.3.15) from below naturally requires finding a sufficiently good
lower bound on ¢. The idea is to recast the problem using a simple electric network and

invoke suitable effective resistance estimates. The following computation will be quite useful:

Lemma 5.3.6. Consider a resistor network with three nodes, {1,2,3}, and for each i,j let
c;j denote the conductance of the edge (i,j). Let R;; denote the effective resistance between

node i and node j. Then,
c12 I3+ Reg — Ryo

5.3.16
c12 +c13 2R93 ( )

Proof. Let us represent the network by an equivalent network, now with nodes {0, 1,2, 3}
whose only edges are from 0 to each of 1,2, 3. Denoting the conductances of these edges by

1, ¢2, c3 respectively, the Y-A transform shows

c--—L 1<i<i<3
1] = ) > J > 9.
c1+co +c3

Next let us introduce the associate resistances r; := 1/c;. The Series Law then gives R;; =
r; +rjforall1 <i<j<3. A computation shows that, for all cyclic permutations (4, j, k)
of (1,2,3),

i = %(Ri]’ + Rix — Rjg).

Some algebra then shows that the ratio on the left of (5.3.16) equals FT_ET—S This is then

checked to agree with the right-hand side. O
Using this lemma we then get:

Corollary 5.3.7. For any v € B(N) ~ {0} and ¢ as above,

2Rp(N+1), (0, 0B(N))¢(v)

= Rp(n41),(0,0B(N)) + Rp(n11), (v,0B(N)) = Rp(n41),(0,0). (5.3.17)
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Proof. As v ¢ {0} UOB(N), we may apply the network reduction principle to represent
the problem on an effective network of three nodes, with node 1 labeling v, node 2 marking
the origin and node 3 standing for OB(N). Since ¢ is harmonic on B(N) ~ {0}, it is also
harmonic on the effective network. But there ¢(v) is just the probability that the random
walk at v jumps right to 0 in the first step. Using conductances, this probability is exactly the

expression on the left of (5.3.16). Plugging in the effective resistances, the claim follows. [J

A key point is to bound the expression involving effective resistances on the right of

(5.3.17) from below. This is the subject of:

Proposition 5.3.8. Let Dy ,(v) denote the difference on the right of (5.3.17). For any

§ € (0,1), we then have

lim ]P’( min Dy.(v) > log N) ~1 (5.3.18)
N=0o N yeB(| Ne—(og N)? |

For the proof we recall the annulus decomposition of the GFF from Section 4.3.2. Let b :=

8 and for a given N > 1 and n € N, set N’ := b""N. Define the annuli
A= BOFIN)CBOTENY, k=1, n—1. (5.3.19)

and

Apg = BAYEN) S BEOWPNY, k=1,...,n— L. (5.3.20)

Note that A, C Al . Write n = 1° + xop7, where ¢ is the coarse field on B(2N') and

X9 is the corresponding fine field. Denote

A= max |n¢.
e 75|
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Define M,, . as in (4.3.18) and for 1 <4 <m < n let

App = max max ‘MTLJf_E(XN/U‘XN,’U LV E Unzjzn_kaB(ij))’.
k=l,..;m—1 vEAy ’ )

(Both objects are measurable with respect to 7.) Similarly to Lemma 4.3.11 we get

~ 1
P(Agmzcvm_g> < —5 (5.3.21)
’ (m —10)
as soon as m — { is sufficiently large.
Let X£ , denote the fine field on A/ |
Xﬁ,v = E<X2N’,v X2N’,u: u € aAn,k;), NS An,ka

(we think of X£ as set to zero outside A;l k) and X7 = XoN' — X£ be the corresponding

coarse field. The definitions ensure

f /
max  max - + M <Ay, +A".
k=(,...m vEA, \ ‘Th} (Xk,v n’k)| tm
Note also that M, ;. and Xi, are independent as long as k > k.
Next recall that R4 ,, for A an annulus in 72, denotes the sum of the effective resistances
in network A; between the shorter sides of the four maximal rectangles contained in A.
Recall also that R A’n(ﬁinA, 9°UA) denotes the effective resistance in A, between the inner

and outer boundaries of annulus A. We define the events:

: Y —k 7
k= {RAnk,Xi((?mAn’k,(9°utAn7k) > ¢~ 3¢loglog(b™"N )} N {ank < -C* k;loglog(k)}

(5.3.22)
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and

~ —k at/
o . [p < otloglog(b N)}m{ in ¢ > —loglog(N' } 5.3.23
ok { An,k»d; <e Ugﬁ:k Ngw = — 108 og(N') ( )

Here ¢ is the constant Proposition 4.4.1 and C* is fixed via:

Lemma 5.3.9. For each § > 0 there are ng > 1, Nog > 1, ¢1 € (0,00) such that one can
choose C* € (0,00) in the definitions of £, and & so that, for all N > Ny and all

n > ny,

IP(EIk*,k*: eViogn —px « <, EF o NE occurs> >1-— _a
™ TR loglogn

Proof. Abbreviate by Ej the first event on the right of (5.3.22). This event is measurable

with respect to X,J: andso {E}: k= 1,...,n} are independent. By Lemma 4.4.13, P(E7) > p

holds for some p > 0 and all k as soon as N > Ny. We are first interested in a simultaneous

occurrence of E} and {M,, ;. < —C*y/kloglog(k)}.

Recalling that &k — M, 1. is a random walk, define the stopping time
Ty = inf{k: VI8 <k <, M, < —20*\/kloglog(k)}.

Then, for C* sufficiently small, Lemma 4.3.9 shows

€1

for some constant ¢; € (0,00). Since the increments of M,, ;. are independent centered

Gaussians with a uniform bound on their tail, for the event

Gk = {Mn,k+j+1 — M, jyj <log(k): 0<j < 10g(k)2}

)
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the fact that T, > e log(n) yields

2c1

P({Tn < nfah N, ) 21 - 0

as soon as n is larger than a positive constant. Under a similar restriction on n, we then

also have

(T, <n/4} NG, 1, C N {My, ) < —C*\/kloglog(k)}

T <k<Tp+(log Ty)?

Therefore, on the event on the left, £ N {M, ; < —C*\/kloglog(k)} will not occur for
some k < n/2 only if the sequence {1 B 1 < k < n} contains a run of 1’s of length at least

log(n)2. This has probability n(1 — p) [log(n)]? | Ag p >0, we get

IP’( U Epn{M, < —C’*Vkloglog(k:)}) >1 2

"~ logl
1<k<n/2 oglogm

as soon as n is larger than some positive constant.
For event £, the fact that the coarse field 7° on A,, ;. has uniformly bounded variances

implies, via Corollary 4.3.8,

(U {min = - loglos)}) 2 1 dliogmetosios
0<k—n/2<(logm)? ok

for some ¢’,c” > 0. Proposition 4.4.11 in turn shows that the first event on the right of

(5.3.23) has a uniformly positive probability. The claim then follows as before. O
Now we can complete:

Proof of Proposition 5.53.8. Fix N’ > 1 large and, given § € (0,1), let n be the largest integer

such that N := b~"N’ > N’e_(logN/)é. (We are assuming the setting of Lemma 5.3.9.)
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Abbreviate ky, := eV1°8™ and suppose that the event

Ex e NER, N{A <loglog(N)}n [ {Ap,k < CVE} (5.3.24)
kn<k<n

occurs for some k*, kyx with ky < k* < ky < n. Then

. / .
RAn (8lnAn,k*> aoutAn’k*) > e—2’Y(A —|—Mn,k*—|—Akn,k*)R f (amAn’k*7 aoutAn,k‘*)

A*,k*’Xk*

X
n
> e?'y[C*\/k* Tog log k*—CVk*—log log(N') | o—3¢log log(N")

> SVFToETog

(5.3.25)

holds for some constant ¢ > 0, where we used that k* > k, implies V&* > loglog(N') as
soon as N is sufficiently large. Similarly, abbreviating my, 1= Minye Ap g nlcw), we get

< e_27(mn,k*_A/)R ;< e4’yloglog(N’) eéloglog(N’)

R
An,k* 1 — An,k*vxk* =

(5.3.26)

< Ry (0™ Ap o, 07" Ay ) — log(N)

n,k* 5T

where we again used that vk* > loglog(N').

Now observe that if v € B(N), then the Nash-Williams estimate implies
RB(N’),n (U, 8B(N’)) > RB(N’),U (U, 8inAn’k*) + RAn oxsT (8inAn’k*, GOUtAn,k*) (5.3.27)
while the Series Law gives

R(n1),(0,0) < Rp(nr) (0,07 Ay ) + R ey (0,0 Ap i) + Ra,

Since k* < ky implies that A,, j« lies outside A, ;. , we also have
RB(N’)m (U, 811114”’]{;*) > RB(N’),n (U, aoutAmk*) (5.3.28)
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Combining (5.3.26-5.3.28) we thus get that Dy, (v) > log N’ for all v € B(N) as soon as
the event in (5.3.24) occurs. The claim now follows (for N replaced by N’) from (5.3.21)

and Lemma 5.3.9. O

5.3.4  Proofs of the main results

We will now move to prove the remaining part of our main results. Fix § € (0,00) small,

5
abbreviate Ny := Nel°8N)* and consider the set

E?\f :={0} UOB(N)

U {v € A(Ns,2N5): Ry, (0.0) V Ris(vgny, (1, OB(N)) < ellos M)V

We again claim:

Lemma 5.3.10. For each 6 > 0, there is ¢ > 0 such that for all N sufficiently large,

C

Ip)(ﬂ-n(g}*v) < N¢(7)e—(logN)5) < m
0g

(5.3.29)

Proof. Using the same proof, Lemma 5.3.1 applies also for resistivity RB(N)n<U7 OB(N)). In
light of

RB(NH)n(v,aB(N)) SRB(NJrl)n(U,u), uEaB(N),

Corollary 4.4.18 applies to RB(NJFUU(U, OB(N)) just as well. Combining this with (5.3.6),

we now proceed as in the proof of Lemma 5.3.2 to get the result. [
We are now ready to give:

Proof of Theorem 5.1.2. The upper bound has already been shown in Lemma 5.3.5, so we

just need to derive the corresponding lower bound. For this we write (5.3.15) as a bound and
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apply (5.3.17) with Proposition 5.3.8 to get that, with probability tending to one as N — oo,

EY(rp(v)e) = Rp(v1), (0,0B(N)) D my(v)g(v) = my(ER) log(N) (5.3.30)

VEEY,
The claim then follows from Lemma 5.3.10. O
We then use the lower bound on the expected exit time to also get:

Proof of Theorem 5.1.1. The upper bound on the return probability has already been proved
in Lemma 5.3.4, so we will focus on the lower bound and recurrence. Consider again the
random walk X on B(N + 1) and let Y be its trace on EN- Let Topy) :=inf{k > 0: Y} €

OB(N)}. Then

~

E(Fop(v)) < TP (Fopv) < T) + PU(Fapvy > T)(T+ _max — E'(Fypy)))
VEENNOB(N)

— T +P(# >T max  EY(+
(ToB(N) )UGE}‘V\{)B(N) (TaB(N))

(5.3.31)

The hitting time estimate in conjunction with the definition of Z%; gives
~ —_ log N)1/2+6 _
EU(TBB(N)) < m(EN) ellos V) , v € EN N IB(N)

whereby we get

1/2+46
(

P (7pp(n) > T) > my(2x) e W8N B (7 p ) = T).

Since (5.3.30) applies also for the expectation of TOB(N)» the choice N := T1/¥(1)e(logN)?

implies EO(%(?B(N)) > 2T and thus, using (5.3.30) one more time,

P (7gpy) > T) = o (08N>,
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But 7op(n) < Top(w) = inf{k > 0: X}, € OB(N)} and so we get

5
P (X7 € B(N)) > P(rypn) > T) > o~ (log N)1/2+
as well. Using this in (5.3.13), the desired lower bound then follows from, e.g., (5.3.6).

It remains to show recurrence. Here we note that (5.3.25) and (5.3.27) along with
Lemma 5.3.9 imply that RB(N),n(Ov OB(N)) — oo in probability along a sufficiently rapidly
growing deterministic sequence of N’s. Since the sequence of resistances is increasing in N,

the convergence holds almost surely. By a well known criterion, this implies recurrence. [J
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