
THE UNIVERSITY OF CHICAGO

SOME METRIC PROPERTIES OF PLANAR GAUSSIAN FREE FIELD

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF STATISTICS

BY

SUBHAJIT GOSWAMI

CHICAGO, ILLINOIS

AUGUST 2017



Copyright c© 2017 by Subhajit Goswami

All Rights Reserved





TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Liouville FPP and Liouville graph distance . . . . . . . . . . . . . . . . . . . 2

1.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Motivation and related works . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Effective resistance metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 LIOUVILLE FIRST-PASSAGE PERCOLATION . . . . . . . . . . . . . . . . . . 8
2.1 Upper bound on the expected distance . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Discussion on Watabiki’s prediction . . . . . . . . . . . . . . . . . . . 8
2.1.2 Discussion on non-universality . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Further related works . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 A historical remark and the proof strategy . . . . . . . . . . . . . . . 11
2.1.5 Conventions, notations and some useful definitions . . . . . . . . . . . 15

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 White noise decomposition of some Gaussian processes . . . . . . . . 16
2.2.2 Some variance and covariance estimates . . . . . . . . . . . . . . . . . 17

2.3 Inductive constructions for light paths . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Strategy I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Strategy II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Multi-scale analysis on expected weight of crossings . . . . . . . . . . . . . . 25
2.4.1 Strategy I: a recurrence relation involving dγ,n . . . . . . . . . . . . . 26
2.4.2 Strategy II: choosing the particular strategy . . . . . . . . . . . . . . 27
2.4.3 Strategy II: a recurrence relation involving dγ,n . . . . . . . . . . . . 31
2.4.4 Upper bound on dγ,n . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Proof of Theorem 2.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Adapting to discrete GFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 LIOUVILLE GRAPH DISTANCE . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1 Upper bound on the expected distance . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Liouville graph distance and Watabiki’s prediction . . . . . . . . . . . 43
3.2 Proof of Theorem 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 EFFECTIVE RESISTANCE METRIC . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1 Upper and lower bounds on effective resistance . . . . . . . . . . . . . . . . . 55

4.1.1 A word on proof strategy . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Generalized parallel and series law for effective resistances . . . . . . . . . . 58

4.2.1 Variational characterization of effective resistance . . . . . . . . . . . 58

iv



4.2.2 Variational characterization of effective conductance . . . . . . . . . 63
4.2.3 Restricted notion of effective resistance . . . . . . . . . . . . . . . . 66
4.2.4 Self-duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Preliminaries on Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 Some standard inequalities . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2 Smoothness of harmonic averages of the GFF . . . . . . . . . . . . . 74
4.3.3 A LIL for averages on concentric annuli . . . . . . . . . . . . . . . . . 78
4.3.4 A non-Gibbsian decomposition of GFF on a square . . . . . . . . . . 84

4.4 A RSW result for effective resistances . . . . . . . . . . . . . . . . . . . . . . 86
4.4.1 Effective resistance across squares . . . . . . . . . . . . . . . . . . . . 86
4.4.2 Restricted resistances across squares . . . . . . . . . . . . . . . . . . 90
4.4.3 From squares to rectangles . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.4 Bounding the growth of αN . . . . . . . . . . . . . . . . . . . . . . . 101
4.4.5 Resistance across rectangles and annuli . . . . . . . . . . . . . . . . . 105
4.4.6 Gaussian concentration and upper bound on point-to-point resistances 109

4.5 Asymptotic growth rate of logRZ2
η
(0, B(N)c) . . . . . . . . . . . . . . . . . . 114

5 SOME PROPERTIES OF THE RANDOM WALK DRIVEN BY PLANAR GFF 120
5.1 Recurrence, return probability and subdiffusivity . . . . . . . . . . . . . . . 120

5.1.1 Proof strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2 Cardinality of the level sets of GFF . . . . . . . . . . . . . . . . . . . . . . . 123
5.3 Proofs of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3.1 Points with moderate resistance to origin . . . . . . . . . . . . . . . . 129
5.3.2 Upper bound on heat-kernel and exit time . . . . . . . . . . . . . . . 132
5.3.3 Bounding the voltage from below . . . . . . . . . . . . . . . . . . . . 135
5.3.4 Proofs of the main results . . . . . . . . . . . . . . . . . . . . . . . . 142

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

v



LIST OF FIGURES

2.1 Subdivisions of a rectangular strip for the hierarchical construction of a crossing. 22
2.2 Linking two crossings through adjacent rectangles to form a longer crossing. . . 22
2.3 A simple hierachical construction of a rectangular crossing. . . . . . . . . . . . . 23
2.4 Subdivisions of two rectangular strips for the hierarchical construction of a crossing. 24
2.5 Linking two crossings at different altitudes. . . . . . . . . . . . . . . . . . . . . . 24
2.6 A different hierarchical construction of a rectangular crossing. . . . . . . . . . . 25
2.7 Connecting a point inside a square to a boundary segment using crossings through

interlocking rectangles with a fixed aspect ratio. . . . . . . . . . . . . . . . . . . 38
2.8 Connecting two points inside a square using paths from each of them to the

boundary segments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Connecting two points inside a square using a chain of balls with small LQG-
measure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 A path from the left boundary of a square to a specified portion of the right
boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 The geometric setting of the proof of Proposition 4.4.8. . . . . . . . . . . . . . . 97
4.3 The geometric setting underlying the key argument in the proof of Proposition 4.4.8. 99
4.4 The geometric setup for the proof of Lemma 4.4.10. . . . . . . . . . . . . . . . . 102
4.5 The geometric setting for a key argument in the proof of Proposition 4.4.9. . . . 104

vi



ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Professor Jian Ding, for introducing

me to the beautiful world of Gaussian free fields. It was an enormously eventful adventure

to explore diverse areas of this field with him as my guide. The current thesis, in that sense,

is a travelogue of the journey that I had with him.

I would also like to thank Professor Steve Lalley and Professor Greg Lawler, my thesis

committee members, who have been extremely helpful during my PhD career. The courses

offered by them have enriched me in numerous ways. I am honored to have them on my

thesis committee.

I would especially thank Professor Marek Biskup of UCLA for collaborating with me on

a project that culminated in Chapters 4 and 5.

I would further mention my friends in Chicago who made my stay in a foreign land into a

memorable experience. I am grateful to Somak Dutta and Rishideep Roy for their generous

help during my initial days in Chicago. I would specially thank Somak Dutta for teaching

me how to bike. I am also indebted to Soudeep Deb who took a lot of pains to make me

comfortable with a car.

Lastly I would like to thank my beloved parents for always being by my side.

vii



ABSTRACT

In this thesis we study the properties of some metrics arising from two-dimensional Gaussian

free field (GFF), namely the Liouville first-passage percolation (Liouville FPP), the Liouville

graph distance and an effective resistance metric.

In Chapter 1, we define these metrics as well as discuss the motivations for studying

them. Roughly speaking, Liouville FPP is the shortest path metric in a planar domain D

where the length of a path P is given by
∫
P eγh(z)|dz| where h is the GFF on D and γ > 0. In

Chapter 2, we present an upper bound on the expected Liouville FPP distance between two

typical points for small values of γ (the near-Euclidean regime). A similar upper bound is

derived in Chapter 3 for the Liouville graph distance which is, roughly, the minimal number

of Euclidean balls with comparable Liouville quantum gravity (LQG) measure whose union

contains a continuous path between two endpoints. Our bounds seem to be in disagreement

with Watabikis prediction (1993) on the random metric of Liouville quantum gravity in this

regime. The contents of these two chapters are based on a joint work with Jian Ding [32].

In Chapter 4, we derive some asymptotic estimates for effective resistances on a random

network which is defined as follows. Given any γ > 0 and for η = {ηv}v∈Z2 denoting a

sample of the two-dimensional discrete Gaussian free field on Z2 pinned at the origin, we

equip the edge (u, v) with conductance eγ(ηu+ηv). The metric structure of effective resistance

plays a crucial role in our proof of the main result in Chapter 4. The primary motivation

behind this metric is to understand the random walk on Z2 where the edge (u, v) has weight

eγ(ηu+ηv). Using the estimates from Chapter 4 we show in Chapter 5 that for almost every η,

this random walk is recurrent and that, with probability tending to 1 as T →∞, the return

probability at time 2T decays as T−1+o(1). In addition, we prove a version of subdiffusive

behavior by showing that the expected exit time from a ball of radius N scales as Nψ(γ)+o(1)

with ψ(γ) > 2 for all γ > 0. The contents of these chapters are based on a joint work with

Marek Biskup and Jian Ding [13].
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CHAPTER 1

INTRODUCTION

Gaussian free field (GFF) appears as a natural analogue of Brownian motion when one

replaces the underlying parameter space with a multi-dimensional domain. As such, two-

dimensional GFF is a canonical model for random surfaces. It is an extremely rich and

intriguing mathematical object emerging in a wide range of contexts in probability theory

and statistical physics. An important property peculiar to the two-dimensional GFF is

conformal invariance (see, e.g., [74]) which relates it to Schramm-Loewner Evolution (SLE)

in several ways (see [37], [70], [71]). Planar GFF has been found to be the scaling limit of

height function of uniform random planar domino tilings [51]. In [67] it was shown that the

fluctuations of the characteristic polynomial of a particular random matrix model tends to

the planar Gaussian free field conditioned to be harmonic outside the unit disk.

Several important properties of GFF have been explored. Among them are its various

metric properties which have attracted substantial amount of research in recent years. A

random pseudo-metric was defined in [56] via the zero-set of GFF on the metric graph whose

scaling limit (in the planar case) should describe the distance between CLE4 loops (see [79]).

[33] initiated the study on chemical distances of percolation clusters for level sets of planar

(discrete) GFF. In this thesis, we will focus on three other metrics namely the Liouville FPP

[36, 29, 32, 35], the Liouville graph distance [32] and an effective resistance metric [13]. In

the following two sections we discuss the contexts in which they arise along with the relevant

definitions. We will use these definitions in subsequent chapters where we discuss them in

greater detail.
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1.1 Liouville FPP and Liouville graph distance

1.1.1 Definitions

Let D ⊆ R2 be a bounded domain with smooth boundary. Denoting the euclidean dis-

tance between any two subsets S and S′ of R2 by d`2(S, S′), let us define Dδ = {v ∈ D :

d`2(v, ∂D) > δ} where δ > 0. For simplicity we will only consider domains D such that

V ≡ [0, 1]2 ⊆ Dε for some fixed ε. Let h be a (continuum) Gaussian free field (GFF) on D

with Dirichlet boundary condition. We will desist from providing a detailed introduction to

the GFF in this thesis for which there are several nice expositions (see e.g. [74, 9]). Although

h is not a function on D (it is a random distribution), it is regular enough so that we can

make sense of its Lebesgue integrals over sufficiently nice Borel sets in a rigorous way. In

particular we can take its average along a circle of radius δ around v (where d`2(v, ∂D) > δ)

and define the circle average process {hδ(v) : v ∈ D, d`2(v, ∂D) > δ} which is a centered

Gaussian field with covariance

Cov(hδ(v), hδ′(v
′)) =

∫
∂Bδ(v)×∂Bδ′(v′)

GD(z, z′)µvδ(dz)µv
′
δ′ (dz

′) .

Here Br(z) is the open ball with radius r centered at z, µzr is the uniform probability measure

on ∂Br(z) and GD(z, z′) is the Green function for domain D, which we define by

GD(z, z′) =

∫
(0,∞)

pD(s; z, z′)ds ,

where pD(s; z, z′) is the transition probability density of Brownian motion killed when exiting

D. It was shown in [43] that there exists a version of the circle average process which is

jointly Hölder continuous in v and δ of order ϑ < 1/2 on all compact subsets of {(v, δ) :

v ∈ D, 0 < δ < d`2(z, ∂D)}. Given such an instance of hδ and a fixed inverse-temperature

parameter γ > 0, the Liouville first-passage percolation (Liouville FPP) metric Dγ,δ(·, ·) is
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defined by

Dγ,δ(v, w) = inf
P

∫
P

eγhδ(z)|dz| , (1.1.1)

where P ranges over all piecewise C1 paths in V connecting v and w. The infimum is well-

defined and measurable since we are dealing with a continuous field on a compact space. In

fact Dγ,δ(·, ·) does not change if we only restrict to C1 paths.

The second notion of metric i.e. the Liouville graph distance comes from the so-called

Liouville quantum gravity (LQG) measure MD
γ . For any γ < 2, MD

γ is defined as the almost

sure weak limit of the sequence of measures MD
γ,n given by

MD
γ,n = eγh2−n(z)2−π

−1nγ2/2σ(dz) , (1.1.2)

where σ is the Lebesgue measure (the factor π−1 in the exponent is purely due to our

particular definition of Green function). Much on the LQG measure has been understood (see

e.g., [50, 43, 65, 66, 73] including the existence of the limit in (1.1.2), the uniqueness in law for

the limiting measure via different approximation schemes, as well as a KPZ correspondence

through a uniformization of the random lattice seen as a Riemann surface. Our focus in the

current thesis is the metric aspect of LQG. Given δ ∈ (0, 1), we say that a closed Euclidean

ball B ⊆ D is a (MD
γ , δ)-ball if MD

γ (B) ≤ δ2 and the center of B is rational (to avoid

unnecessary measurability considerations). The Liouville graph distance D̃γ,δ(v, w) between

v, w ∈ V is the minimum number of (MD
γ , δ) balls whose union contains a path between v

and w. It is called Liouville graph distance since it corresponds to the shortest path distance

in a graph indexed on Q2 where neighboring relation corresponds to the intersection of the

(MD
γ , δ) balls. A very related graph distance was mentioned in [60] which proposed to keep

dividing each squares until the LQG measure is below δ.

One can similarly consider Liouville FPP for discrete planar GFF (which was explicitly

mentioned in [7]). Given a two-dimensional box VN ⊆ Z2 of side length N , let ∂VN denote

the set of vertices in Z2 \ VN that have a neighbor in VN . The discrete GFF in VN with

3



Dirichlet boundary condition is a mean-zero Gaussian process {ηN,v : v ∈ Z2} such that

ηN,v = 0 for all v ∈ Z2 \ VN , and EηN,vηN,w = GVN (v, w) for all v, w ∈ VN ,

where GVN (v, w) is the Green’s function for simple random walk on VN i.e. the expected

number of visits to v by the simple random walk on Z2 started at u and killed upon hitting

∂VN . As before, for a fixed inverse-temperature parameter γ > 0, the Liouville FPP metric

Dγ,N (·, ·) on VN is defined by

Dγ,N (v1, v2) = min
π

∑
v∈π

eγηN,v , (1.1.3)

where π ranges over all paths in VN connecting v1 and v2.

1.1.2 Motivation and related works

Much effort has been devoted to understanding classical first-passage percolation (FPP),

with independent and identically distributed edge/vertex weights. We refer the reader to

[4, 47] and their references for reviews of the literature on this subject. We argue that FPP

with strongly-correlated weights is also a rich and interesting subject, involving questions

both analogous to and divergent from those asked in the classical case. Since the Gaussian

free field is in some sense the canonical strongly-correlated random medium, we see strong

motivation to study Liouville FPP.

Our primary motivation behind Liouville FPP and Liouville graph distance, however,

comes from the random metric associated with Liouville quantum gravity (LQG) [63, 43, 66].

Informally, LQG is a random surface whose “Riemannian metric tensor” can be described as

eγX(x)dx2, where X is a Gaussian free field on some planar domain D. Therefore the metrics

Dγ,δ and Dγ,N appear as natural approximations for the LQG metric. On the other hand,

one can interpret the LQG measure MD
γ (1.1.2) as the volume measure for LQG metric. By

analogy with the Euclidean scenario (i.e. when γ = 0), we then see that D̃γ,δ is yet another

4



natural approximation for the LQG metric.

We remark that the random metric of LQG is a major open problem in contemporary

probability theory, even just to make rigorous sense of it (we refer to [64] for a rather up-

to-date review). In a recent series of works of Miller and Sheffield, much understanding has

been obtained for the LQG metric (in the special case when γ =
√

8/3), and we note that an

essentially equivalent metric to Liouville graph distance was mentioned in [60] as a natural

approximation. While no mathematical result was obtained (perhaps not attempted either)

on such approximations, the main achievement of this series of works by Miller and Sheffield

(see [60, 61] and references therein) is to produce candidate scaling limits and to establish a

deep connection to the Brownian map. Our approach is different, in the sense that we aim

to understand the random metric of LQG via approximations by natural discrete metrics.

Furthermore, we expect that the Liouville FPP and Liouville graph distance are related

to the heat kernel estimate for Liouville Brownian motion (LBM), which is essentially a time

change of the standard Brownian motion by an exponential of GFF. In fact, we expect a

direct and strong connection between Liouville graph distance and the LBM heat kernel.

The mathematical construction (of the diffusion) for LBM was provided in [44, 8] and the

heat kernel was constructed in [45]. The LBM is closely related to the geometry of LQG; in

[26, 10] the Knizhnik–Polyakov–Zamolodchikov (KPZ) formula was derived from Liouville

heat kernel. In [59] some nontrivial bounds for LBM heat kernel were established. The

non-universality of the Liouville heat kernel over a class of log-correlated fields was shown in

[34]. A very interesting direction is to compute the heat kernel of LBM with high precision.

It is plausible that understanding the Liouville graph distance is of crucial importance in

computing the LBM heat kernel.
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1.2 Effective resistance metric

Let η = {ηv}v∈Z2 denote a sample of the discrete GFF on Z2 pinned to 0 at the origin.

Thus, {ηv : v ∈ Z2} is a centered Gaussian process such that

η0 = 0 and E(ηuηv) = GZ2\{0}(u, v) for all u, v ∈ Z2 ,

where GZ2\{0}(u, v) is the Green’s function for simple random walk on Z2 \ {0}. For γ > 0

and conditional on the sample η of the GFF, let {Xt}t≥0 be a discrete-time Markov chain

with transition probabilities given by

pη(u, v) :=
eγ(ηv−ηu)∑

w:|w−u|1=1 eγ(ηw−ηu)
1|v−u|1=1 , (1.2.1)

where | · |1 denotes the `1-norm on Z2.

The transition probabilities pη are such that the walk prefers to move along the edges

where η increases; the walk is thus driven towards larger values of the field. This has been

predicted (e.g., in [21, 22]) to result in a subdiffusive behavior. Furthermore the diffusive

exponent was predicted to undergo a continuous phase transition around a critical value of

γ.

Another way to look at this problem is to rewrite the transition kernel as,

pη(u, v) =
eγ(ηv+ηu)∑

w:|w−u|1 eγ(ηw+ηu)
1|v−u|1=1. (1.2.2)

This represents {Xt}t≥0 as a random walk among random conductances where conductance

of the edge (u, v) is given by eγ(ηu+ηv). A large body of literature has been dedicated to

Random Conductance Models in recent years (see [12, 52] for reviews). Unfortunately the

law of the conductance is not translation invariant in this case which makes most of the

existing theory in random conductance model inapplicable. Nevertheless, one can still hope

6



to be able to explain the subdiffusivity using the connection between random walks and

effective resistance of the underlying network (see [57]). Indeed, it turns out that all we

need is a delicate control on effective resistances which is a fundamental metric for a graph.

Properties of this metric like scaling limit etc. are of independent interest.
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CHAPTER 2

LIOUVILLE FIRST-PASSAGE PERCOLATION

2.1 Upper bound on the expected distance

The order of the expected Liouville FPP distance between any two points in V ≡ [0, 1]2 or

VN ≡ [0, N − 1]2 is of enormous importance. In particular the expected distance between

two facing boundaries of V (or VN ) seems to be the appropriate scaling factor for obtaining a

scaling limit of LFPP [29]. In the following result we obtain an upper bound on this quantity

(see (1.1.1), Chapter 1 for definition).

Theorem 2.1.1. There exists Cγ,D,ε > 0 (depending on (γ, ε,D)) and positive (small)

absolute constants c∗, γ0 such that for all γ ≤ γ0, we have

max
v,w∈V

EDγ,δ(v, w) ≤ Cγ,D,εδ
c∗ γ4/3

log γ−1 .

As we explain in Section 2.6, the proof of Theorem 2.1.1 can be adapted to derive a

similar result for the discrete GFF (see (1.1.3), Chapter 1).

Theorem 2.1.2. Given any fixed 0 < ε < 1/2, there exists Cγ,ε > 0 (depending on (γ, ε))

and positive (small) absolute constant c∗, γ0 such that for all γ ≤ γ0, we have

max
v,w∈VN,ε

EDγ,N (v, w) ≤ CγN
1−c∗ γ4/3

log γ−1 ,

where VN,ε is the square {v ∈ VN : d∞(v, ∂VN ) ≥ εN}.

Remark 2.1.3. Theorem 2.1.2 still holds if we restrict π to be a path within VN,ε in (1.1.3).

2.1.1 Discussion on Watabiki’s prediction

As already mentioned in the introductory chapter, the Liouville FPP and the Liouville

graph distance are two (related) natural discrete approximations for the random metric
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associated with the Liouville quantum gravity (LQG) [63, 43, 66]. Precise predictions on

various exponents regarding to LQG metric have been made by Watabiki [78] (see also,

[3, 2]). In particular, the Hausdorff dimension for the LQG metric is predicted to be

dH(γ) = 1 +
γ2

4
+

√
(1 +

γ2

4
)2 + γ2 . (2.1.1)

The prediction in (2.1.1) was widely believed. In a recent work [60], Miller and Sheffield

introduced and studied a process called quantum Loewner evolution. As a byproduct of their

work they gave a non-rigorous analysis on exponents of the LQG metric which matched

Watabiki’s prediction — we also note that in [60] the authors did express some reservations on

their non-rigorous analysis. For other discussions on Watabiki’s prediction in mathematical

literature, see e.g., [59, 48].

The precise mathematical interpretation of Watabiki’s prediction is not completely clear

to us. However, there are a number of reasonable “folklore” interpretations for Liouville FPP

that seem to be widely accepted. 1 For instance, see [2, Equation (17), (18)]. We would

like to point out that in [2, Equation (17)] the term ρδ was not defined — some reasonable

interpretations include ρδ = eγhδ(z) and ρδ = eγhδ(z)δ
γ2

2 as well as possibly replacing γ by

γ
dH(γ)

as suggested in the footnote. For all these interpretations, [2, Equation (18)] would

then imply that there exist constants c, C > 0 such that for sufficiently small but fixed γ > 0

the Liouville FPP distance between two generic points is between δCγ
2

and δcγ
2

as δ → 0.

However, Theorem 2.1.1 contradicts with all aforementioned interpretations of (2.1.1) for

Liouville FPP at high temperatures.

Currently, we do not have any reasonable conjecture on the precise value of the exponent

for Liouville FPP — we regard a precise computation of the exponent as a major challenge.

1. For instance, we learned from Rémi Rhodes and Vincent Vargas that, according to [78], the physically

appropriate approximation for the γ-LQG metric should involve infP
∫
P

e
γ

dH (γ)
hδ(z)|dz| , i.e., the parameter

in the exponential of GFF is γ/dH(γ) instead of γ.

9



2.1.2 Discussion on non-universality

Combined with [36], Theorem 2.1.2 shows that the weight exponent for first passage percola-

tion on the exponential of log-correlated Gaussian fields is non-universal, i.e., the exponents

may differ for different families of log-correlated Gaussian fields. In contrast, we note that

the behavior for the maximum is universal among log-correlated Gaussian fields (see e.g.,

[20, 19, 58, 27]) in a sense that their expectations are the same up to additive O(1) term

and that the laws of the centered maxima for all these fields are in the same universal family

known as Gumbel distribution with random shifts (but the random shifts may not have the

same law for different fields).

While non-universality suggests subtlety for the weight exponent of Liouville FPP, the

proof in the current chapter does not see complication due to such subtlety. In fact, our proof

should be adaptable to general log-correlated Gaussian fields with ?-scale invariant kernels

as in [42]. The following question remains an interesting challenge, especially (in light of the

non-universality) for log-correlated Gaussian fields for which a kernel representation is not

known to exist.

Question 2.1.4. Let {ϕN,v : v ∈ VN} be an arbitrary mean-zero Gaussian field satisfy-

ing |EϕN,vϕN,u − log N
1+‖u−v‖ ≤ K. Does an analogue of Theorem 2.1.2 hold for Cγ , c

∗

depending on K?

2.1.3 Further related works

In a recent work [48] some upper and lower bounds have been obtained for a type of distance

related to LQG and that their bounds are consistent with Watabiki’s prediction. We further

remark that currently we see no connection between our work and [60, 61, 48].

There has been a number of other recent works on Liouville FPP (while they focus on

the case for the discrete GFF, these results are expected to extend to the case of continuum

GFF). In a recent work [29], it was shown that at high temperatures the appropriately
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normalized Liouville FPP converges subsequentially in the Gromov-Hausdorff sense to a

random metric on the unit square, where all the (conjecturally unique) limiting metrics are

equivalent to the Euclidean metric. We remark that the proof method in the current chapter

bears little similarity to that in [29]. In a very recent work [35], it was shown that the

dimension of the geodesic for Liouville FPP is strictly larger than 1. In fact, in [35] it proved

that all paths with dimension close to 1 has weight exponent close to 1, which combined with

Theorem 2.1.2 yields that the lower bound on the dimension of the geodesic. While both the

proofs in [35] and this chapter use multi-scale analysis method, the details are drastically

different.

2.1.4 A historical remark and the proof strategy

Our proof strategy naturally inherits that of [31] which proved a weak version of Theo-

rem 2.1.2 in the context of Branching random walk (BRW), and we encourage the reader

to flip through [31] (in particular Section 1.2) which contains a prototype of the multi-scale

analysis carried out in the current chapter. In fact, prior to the work presented in this chap-

ter, we posted an article [30] on arXiv which proved that the weight exponent is less than

1− γ2/103. Our current results are stronger than [30]. In addition, the proof simplifies that

of [30] and is self-contained. As a result, the work in the current chapter supersedes [30].

However, some historical remarks might be interesting and helpful. During the work of

[30], we had in mind that the second leading term for the weight exponent is of order γ2 in

light of (2.1.1). As a result, we followed [31] and designed a strategy of constructing light

crossings inductively to prove an upper bound of 1−γ2/103. In the multi-scale construction,

the order of γ2 is exactly the order of both the gain and the loss for our strategy, and thus

a much delicate analysis was carried out in [30] since we fought between two constants for

the loss and the gain. A curious reader may quickly flip through [30] for an impression on

the level of technicality.

A key component in both [31, 30] is an inductive construction where one constructs light
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crossings in a bigger scale from crossings in smaller scale, where one switches between two

layers of candidate crossings in smaller scale based on the value of Gaussian variables in the

bigger scale (it is to be noted here that there is a hierarchical structure for both BRW and

GFF). In those papers, vertical crossings were used as switching gadgets to connect horizontal

crossings in top and bottom layers. A crucial improvement in this chapter arises from a simple

observation that a sloped switching gadget is much more efficient (see Figure 2.5). In order

to give a flavor of how it works we discuss the following toy problem.

Let Γ = Γ(γ) be a large positive number and {ζ(v) : v ∈ V Γ} be a continuous, centered

Gaussian field on the rectangle V Γ = [0,Γ] × [0, 1]. Suppose that ζ satisfies the following

properties:

(a) Var(ζ(v)) = 1 for all v ∈ V Γ.

(b) For any straight line segment L, Var(
∫
L ζ(z)|dz|) = O(|L|), where |L| is the (euclidean)

length of L. Furthermore if v ∈ R2 is orthogonal to L such that ||v|| = Ω(1), then

Var
(∫
L
ζ(z)|dz| −

∫
L+v

ζ(z)|dz|
)

= Θ(|L|) .

We want to construct a piecewise smooth path P connecting the shorter boundaries of V Γ

that has a small “random length” given by
∫
P eγζ(z)|dz|. Due to condition (a), we can

approximate eγζ(z) with 1+γζ(z)+ γ2

2 when γ is sufficiently small. Thus the random length

of P is approximately

(1 + γ2

2 )|P |+ γ

∫
P
ζ(z)|dz| . (2.1.2)

Henceforth we will treat the above expression as the “true” random length of P . Now

consider the segments L1 = [0,Γ] × {0.75} and L2 = [0,Γ] × {0.25}. Choose β such that

Γ� β � 1 and divide Li (here i ∈ [2]) into segments Li,1,Li,2, · · · ,Li,Γ/β of length β from

left to right. Given ij ∈ {1, 2} for each j ∈ [Γ/β] (called a strategy), we can construct a

crossing i.e. a path connecting the shorter boundaries of V Γ as follows. If ij = ij+1, let L′j
be the segment Lij ,j . Otherwise set L′j as the segment joining the left endpoints of Lij ,j
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and Lij+1,j+1 (the sloped gadget). It is clear that the segments L′1,L
′
2, · · · ,L

′
Γ/β

define a

crossing. The random length (see (2.1.2)) of this crossing is given by

(
1 +

γ2

2

)
Γ +

(
1 +

γ2

2

) ∑
j∈[Γ/β−1]

1{ij 6=ij+1}(|L
′
j | − β) + γ

∑
j∈[Γ/β]

∫
L′j
ζ(z)|dz| .

Since β � 1, |L′j | − β =
√
O(1) + β2 − β = O(β−1) whenever ij 6= ij+1. On the other

hand by condition (b),
( ∫
L′j
ζ(z)|dz| −

∫
Lij ,j

ζ(z)|dz|
)

is a centered Gaussian variable with

variance

Var
( ∫
L′j
ζ(z)|dz| −

∫
Lij ,j

ζ(z)|dz|
)

= O(|Lj |) = O(β) ,

whenever ij 6= ij+1 and thus

E
(
γ

∫
L′j
ζ(z)|dz| − γ

∫
Lij ,j

ζ(z)|dz|
)+

= O(
√
β) .

Therefore if we choose our strategy so that ij 6= ij+1 only on a fixed set J = {j1, j2, · · · , j|J |},

then we can bound (from above) the expected random length of the crossing by

(
1 +

γ2

2

)
Γ +

(
1 +

γ2

2

)
|J |Cβ−1 + γ|J |C ′

√
β + γ

∑
k∈|J |

E
( ∫
Lijk ,J

ζ(z)|dz|
)
. (2.1.3)

Here C,C ′ are positive constants and Lijk ,J is the union of segments Lijk−1
,jk−1+1, · · ·

,Lijk−1
,jk with j0 = 0. Now notice that

E
( ∫
Lijk ,J

ζ(z)|dz|
)

=
1

2
E(−1)ijk+1( ∫

L1,J

ζ(z)|dz| −
∫
L2,J

ζ(z)|dz|
)
,

as
∫
L1,J

ζ(z)|dz| and
∫
L2,J

ζ(z)|dz| are centered. But by condition (b),
∫
L1,j

ζ(z)|dz| −∫
L2,j

ζ(z)|dz| is a centered Gaussian variable with variance ≥ c(jk−jk−1)β for some positive
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constant c. Thus if we allow jk − jk−1 to be only large enough so that

γ

2
E
∣∣∣∣ ∫L1,j

ζ(z)|dz| −
∫
L2,j

ζ(z)|dz|
∣∣∣∣ ≥ 2(1 +

γ2

2
)Cβ−1 + 2γC ′

√
β ,

and set ij = 1 or 2 accordingly as
∫
L1,j

ζ(z)|dz| −
∫
L2,j

ζ(z)|dz| < or > 0, then

γE
( ∫
Lijk ,J

ζ(z)|dz|
)
≤ −2

(
(1 +

γ2

2
)Cβ−1 + 2γC ′

√
β
)
,

and

|J | =
Ω(Γ

β )(
(1+γ2

2 )Cβ−1+2γC ′
√
β

)2

βγ2

=
Ω(Γγ2)(

(1 + γ2

2 )Cβ−1 + 2γC ′
√
β
)2

.

Let us call the path given by this strategy as P ?. Plugging the previous two expressions into

(2.1.3), we find that the expected random length of P ? can be at most

(
1 +

γ2

2

)
Γ + |J |

(
(1 +

γ2

2
)Cβ−1 + 2γC ′

√
β
)
− 2|J |

(
(1 +

γ2

2
)Cβ−1 + 2γC ′

√
β
)

=
(
1 +

γ2

2

)
Γ− Ω(Γγ2)(

(1 + γ2

2 )Cβ−1 + 2γC ′
√
β
)2

(
(1 +

γ2

2
)Cβ−1 + 2γC ′

√
β
)

=
(
1 +

γ2

2

)
Γ− Ω(Γγ2)

γ
√
β + β−1

.

The above expression is minimized for β = Θ(γ−2/3) and the optimal value is Γ(1−Ω(γ4/3))

when γ is small. This shows, on a high level, why we get a contraction as in Theorem 2.1.1.

We remark that the simple observation on the slopped switching strategy is more natural

when considering continuous path in the plane — this is why our main proof focuses on the

case of continuous GFF. In the case for discrete GFF, we first bound the distance minimizing

the lengths over all continuous path and then argue that for each continuous path there is a

lattice path whose weight grows by a factor that is negligible.

We now give a brief guide on the organization. In Section 2.2, we introduce a new
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Gaussian field which has a simpler hierarchical structure than the circle average process

— our main proof will be carried out for this new field. In Section 2.3 we describe our

inductive construction on light crossings as scales increase and in particular we introduce

the aforementioned sloped switching gadget. In Section 2.4 we analyze the construction

in Section 2.3 and derive an upper bound on the weight exponent for the Gaussian field

from Section 2.2. In Section 2.5, we show that the circle average process of GFF is well-

approximated by the field from Section 2.2, thereby proving Theorem 2.1.1. Finally, in

Section 2.6 we explain how to adapt the proof to deduce Theorem 2.1.2.

2.1.5 Conventions, notations and some useful definitions

We assume that γ is small enough (less than some small, positive absolute constant) for our

bounds or inequalities to hold although we keep this implicit in our discussions. Γ is the

smallest (integral) power of 2 that is ≥ γ−2. Thus 1 ≤ Γγ2 < 2. (It will be clear from our

analysis that any exponent < −4/3 should work.) For any w ∈ R2, ` ∈ N and r > 0, V
r;w
`

denotes the rectangle w + [0, r2−`] × [0, 2−`]. We will suppress ` or w from this notation

whenever they are 0. We will also omit r when it is 1. We call two rectangles R and R′ to

be copies of each other if R can be obtained from R′ via translation and / or rotation by an

angle. The rectangles R and R′ are called non-overlapping is their interiors are disjoint. If

R and R′ have same dimensions then we say that they are adjacent if they share one of their

shorter boundary segments. A smooth path is a C1 map P : [0, 1] → R2. We also use P to

denote the image set of P which is a subset of R2. This distinction should be clear from

the context. For any rectangle R = [a, b] × [c, d] with sides parallel to the coordinate axes,

we define its left, right, upper and lower boundary segments in the obvious way and denote

them as ∂leftR, ∂rightR, ∂upR and ∂downR respectively. Thus ∂leftR is the path described by

(a, c + t(d − c)); t ∈ [0, 1] etc. For convenience, we will identify (and denote) the points in

R2 as complex numbers.

For (nonnegative) functions F (.) and G(.) we write F = O(G) (or Ω(G)) if there ex-
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ists an absolute constant C > 0 such that F ≤ CG (respectively ≥ CG) everywhere in

the domain. If the constant depends on variables x1, x2, . . . , xn, we modify these nota-

tions as Ox1,x2,...,xn(G) and Ωx1,x2,...,xn(G) respectively. F = Θ(G) if F is both O(G)

and Ω(G). For any positive integer i, the notations Ci and ci indicate positive, absolute

constants whose values are assumed to be same throughout this chapter. Similarly we use

Cx1,x2,··· ,xk , C
′
x1,x2,··· ,xk , C

′′
x1,x2,··· ,xk , · · · to denote fixed positive functions C,C ′, C ′′, · · · of

x1, x2, · · · , xk. However we keep these qualifications i.e. “positive”, “absolute constant”,

“depends on x1, x2, · · · , xk” etc. implicit in our discussion.

2.2 Preliminaries

2.2.1 White noise decomposition of some Gaussian processes

A white noise W distributed on R2 × R+ refers to a centered Gaussian process {(W, f) :

f ∈ L2(R2 × R+)} whose covariance kernel is given by E(W, f)(W, g) =
∫
R2×R+ fgdwds.

An alternative notation for (W, f) is
∫
R2×R+ fW (dw, ds), which we will use in this chap-

ter. For any D ∈ B(R2) and I ∈ B(R+), we let
∫
D×I fW (dw, ds) denote the variable∫

R2×R+ fD×IW (dw, ds), where fD×I is the restriction of f to D×I. Now define a Gaussian

process {h′δ(v) : v ∈ Dδ} as follows:

h′δ(v) =

∫
D×(0,∞)

( ∫
∂Bδ(v)

pD(s/2; v′, w)µvδ(dv
′)
)
W (dw, ds) (2.2.1)

Since GD(v, w) =
∫

(0,∞) pD(s; v, w)ds, it is easy to check that the processes hδ and hδ′

are identically distributed for all δ ∈ (0, diam(D)). This provides an automatic coupling

between hδ and a “convenient” field (to be defined shortly) which will be useful in our proof

of Theorem 2.1.1 in Section 2.5. Henceforth we will work with a probability space (Ω,F ,P)

on which a white noise is defined.

It turns out that the field {hδ}δ>0 can be reasonably approximated (see Section 2.5) by
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a new family of fields which enjoy certain nice properties. To this end, we define a Gaussian

process η ≡ {ηδ′δ (v) : v ∈ R2, 0 < δ < δ′ ≤ 1} as:

ηδ
′
δ (v) =

∫
R2×[δ2,δ′2]

p(s/2; v, w)W (dw, ds) . (2.2.2)

where p(s; v, w) is the transition probability density function of standard two-dimensional

Brownian motion. We can immediately deduce the following properties of η from this rep-

resentation:

(a) Invariance with respect to symmetries of the plane. Law of η remains same under any

distance preserving transformation (i.e. translation, rotation, reflection etc.) of R2.

(b) Scaling property. The fields {ηδ∗δ′δ∗δ (δ∗v) : v ∈ R2} and {ηδ′δ (v) : v ∈ R2} are identically

distributed for all 0 < δ < δ′ ≤ 1 and δ∗ ∈ (0, 1].

(c) Independent increment. The fields {ηδ′δ (v) : v ∈ R2} and {ηδ′′′δ′′ (v) : v ∈ R2} are indepen-

dent for all 0 < δ < δ′ < δ′′ < δ′′ ≤ 1.

We will suppress the superscript δ′ in ηδ
′
δ whenever δ′ = 1. Notice that

Var(ηδ(v)) =

∫
[δ2,1]

p(s; v, v)ds = π−1 log δ−1 . (2.2.3)

In Lemma 2.2.1 we show that Var(ηδ(v)− ηδ(w)) = O(
|v−w|2
δ2 ). As ηδ is a Gaussian process,

this property implies by Kolmogorov-Centsov theorem that there is a version of ηδ with

continuous sample paths. Thus we can work with a continuous version ηδ for any given δ

and hence for any fixed, finite collection of δ’s that we consider at any given instant.

2.2.2 Some variance and covariance estimates

Lemma 2.2.1. For all v, w ∈ R2, we have Var(ηδ(v)− ηδ(w)) ≤ |v−w|
2

δ2 .
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Proof. These follow from (2.2.2) by straightforward computations:

Var(ηδ(v)− ηδ(w)) = π−1
∫

[δ2,1]

1− e−
|v−w|2

2s

s
ds ≤ π−1

∫
s∈[δ2,1]

|v − w|2

2s2
ds ≤ |v − w|

2

δ2
.

We need similar results for a different class of random variables as well. To this end

let us define some new objects. Let P be a finite, non-empty collection of smooth paths

in R2. A random polypath (or simply a polypath) ξ from P is a collection of {0, 1}-valued

random variables {eξ,P }P∈P such that ∪P∈P:eξ,P=1P is a connected subset of R2. Thus

one can view ξ as a random sub-collection of P forming a connected set. We treat any

smooth path P as a polypath from P = {P} with eP,P = 1. We will often omit the

reference to P when it is clear from the context and simply say that ξ is a polypath. If

X = {X(v) : v ∈ D} is a continuous field and ξ is a polypath from P , then we define its weight

computed with respect to X or alternatively weight computed with X as the underlying field as

the quantity
∑
P∈P eξ,P

∫
P eγX(z)|dz|. For continuous random fields X = {X(v) : v ∈ R2}

and Y = {Y (v) : v ∈ R2}, and a polypath ξ such that (ξ,X) is independent with Y , consider

the random variable

Z(ξ,X, Y ; γ) =
∑
P∈P

eξ,P

∫
P

eγX(z)Y (z)|dz| . (2.2.4)

It is a simple consequence of Fubini’s theorem that EZ(ξ,X, Y ; γ) is finite if supw∈R2 E|Y (w)|

and supP∈P E
∫
P eγX(z)|dz| are both finite. In this case we can express Z(ξ,X, Y ; γ) =

E(Z(ξ,X, Y ; γ)|Y ) as

Z(ξ,X, Y ; γ) =
∑
P∈P

∫
P
E(eξ,P eγX(z))Y (z)|dz| . (2.2.5)

Furthermore, Z(ξ,X, Y ; γ) is a centered Gaussian variable if Y is a centered Gaussian field.

If X ≡ 0, we drop X and γ from the notation and write is simply as Z(ξ, Y ). Another
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quantity of interest is the expected weight of ξ computed with respect to X i.e.

L(ξ,X; γ)
def
=
∑
P∈P

∫
P
E(eξ,P eγX(z))|dz| . (2.2.6)

Now fix some N ∈ N, w ∈ R2 and ν ∈ R. For v ∈ {w,w+ ιν} (here ι =
√
−1) subdivide

the rectangle V
NΓ;v
2mΓ

into N non-overlapping translates of V Γ
2mΓ

namely R1,v, R2,v, · · · , RN,v

ordered from left to right. Suppose that ξj,v is a polypath contained in Rj,v such that

(ξj,v, X) is independent with η0.5 and L(ξj,v, X; γ) = 1. Our next lemma deals with the

random variables
∑
j∈[N ] Z(ξj,v, X, η0.5; γ).

Lemma 2.2.2. If NΓ−1 ≥ 1 and ν ≥ 0.1, then there exist c1 and C1 such that

√
Var
( ∑
j∈[N ]

Z(ξj,w+ιν , X, η0.5; γ)−
∑
j∈[N ]

Z(ξj,w, X, η0.5; γ)
)
≥ c1
√
NΓ− C1NΓ−1 .

On the other hand Var
(∑

j∈[N ] Z(ξj,w, X, η0.5; γ)
)

= O(NΓ +N2Γ−2) for all N .

Proof. First we will show that Var
(
Z(ξj,v, X, η0.5; γ) − Z(Γ∂upRj,v, η0.5)

)
is small. To this

end let u ∈ Rj,v. By Fubini, we can write Var
(
Z(Γ∂upRj,v, η0.5)− η0.5(u)

)
as

∫
[0,1]2

Cov
(
η0.5(vj + Γ−1s)− η0.5(u), η0.5(vj + Γ−1t)− η0.5(u)

)
dsdt ,

where vj is the upper-left vertex of the rectangle Rj,v. Since the diameter of Rj,v is O(Γ−1),

applying Lemma 2.2.1 to the last expression we get

Var
(
Z(Γ∂upRj,v, η0.5)− η0.5(u)

)
= O(Γ−2) (2.2.7)

for any u ∈ Rj,v. Now suppose Pj,v is the collection of paths corresponding to ξj,v. Denote,

for any path P in Pj,v, the quantity
∫
P E(eξj,v,P eγX(z))|dz| as qP,j,v. Using Fubini and
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(2.2.7) in a similar way as we used Fubini and Lemma 2.2.1 for (2.2.7), one gets

Var
(∫

P
E(eξj,v,P eγX(z))η(z)|dz| − qP,j,vZ(Γ∂upRj,v, η0.5)

)
= O(q2

P,j,vΓ−2) , (2.2.8)

for all P ∈ Pj,v. Since

Z(ξj,v, X, η0.5; γ) =
∑

P∈Pj,v

∫
P
E(eξj,v,P eγX(z))η(z)|dz| ,

and
∑
P∈Pj,v qP,j,v = L(ξj,v, X; γ) = 1, (2.2.8) gives us

Var
(
Z(ξj,v, X, η0.5; γ)− Z(Γ∂upRj,v, η0.5)

)
= O(Γ−2) .

Denoting
∑
j∈[N ] Z(Γ∂upRj,v, η0.5) as Zv,N , we then have

Var
(( ∑

j∈[N ]

Z(ξj,w+ιν , X, η0.5; γ)− Zw+iν,N
)
−
( ∑
j∈[N ]

Z(ξj,w, X, η0.5; γ)− Zw,N
))

= O(N2Γ−2) .

In order to estimate Var(Zw+ιν,N − Zw,N ), on the other hand, we can use the definition of

η0.5(v) in (2.2.2) and Fubini to obtain:

Var(Zw+ιν,N − Zw,N ) =
Γ2

π

∫
[0,N/Γ]2×[0.25,1]

s−1e−
(x−z)2

2s (1− e−
ν2

2s )dxdzds

= Ω(Γ2)

∫
[0.25,1]

∫
[0,N/Γ]

∫
[0,N/Γ]

s−1e−
(x−z)2

2s dxdzds

= Ω(NΓ) ,

where in the second step we used ν ≥ 0.1 and in the final step the fact
∫

[0,b] e−ax
2
dx =

Ωa,b(1). The last two displays yield the required bound on the standard deviation of∑
j∈[N ] Z(ξj,w+iν , X, η0.5; γ) −

∑
j∈[N ] Z(ξj,w, X, η0.5; γ). Var

(∑
j∈[N ] Z(ξj,w, X, η0.5; γ)

)
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can be bounded by similar computations.

2.3 Inductive constructions for light paths

In this section we will discuss algorithms to construct light paths between the shorter bound-

aries of V Γ when the underlying field is η2−n . Belowe we introduce some terms that will be

used repeatedly.

A polypath ξ is said to connect two polypaths ξ′ and ξ′′ if ξ always intersects ξ′ and ξ′′

considered as subsets of R2. More generally we say that the polypaths ξ1, ξ2, · · · , ξk form or

define a polypath if their union is always a connected subset of R2. A crossing for a rectangle

R is any polypath ξ that stays entirely within R and connects two shorter boundaries of R.

Depending on the value of current scale n, we will use one of two different strategies for

constructing a crossing crossn for V Γ. To be more precise, let 2anmΓ ≤ n < 2(an + 1)mΓ

where 2mΓ = Γ and an ∈ N ∪ {0}. We will use a simple strategy called Strategy I when

2anmΓ ≤ n < 2anmΓ + 2mΓ − 1 and a different strategy called Strategy II otherwise. We

detail these two strategies in separate subsections.

2.3.1 Strategy I

We will adopt an inductive approach. Consider the rectangle 0.5ι+ [0,Γ]× [0, 22anmΓ−1−n].

Notice that this is same as V
2n−2anmΓ+1Γ;0.5ι
n−2anmΓ+1 . Subdivide it into non-overlapping translates

of V Γ
n−2anmΓ+1 and denote them by R1;n−2anmΓ+1, R2;n−2anmΓ+1, · · · from left to right (see

Figure 2.1).

Now suppose that for all ` ≤ 2anmΓ − 1, we already have an algorithm A2anmΓ−1 that

constructs a crossing through V Γ and takes only the fields {η2−k}k∈[`] as input. Due to the

scaling and translation invariance property of η we can then use A2anmΓ−1 to construct a

crossing crossj;n through Rj;n−2anmΓ+1 using only the fields {η22anmΓ−1−n

2−k
}n−2anmΓ+1<k≤n

as its input. Henceforth whenever we talk about applying A`′ to construct a crossing at scale
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V Γ

R1;3 R2;3 R8;3

Figure 2.1: The rectangles R1;n−2anmΓ+1, R2;n−2anmΓ+1, · · · . Here n = 2anmΓ + 2.

n, we will suppress the statement that the fields used to construct it are {η2−(n−`′)

2−`
}n−`′<`≤n.

The remaining job is to link the pair of crossings crossj;n and crossj+1;n. This can be done

in a simple way which we call tying for convenience. We describe this technique in a general

setting as it will be used several times in the future. The reader is referred to Figure 2.2 for

an illustration.

R
R′

R1,2;1R1,2;2

R1,2;3

Figure 2.2: Tying crossR and crossR′. The crossings crossR and crossR′ are indicated

by purple lines. The two vertical blue lines indicate the crossings cross∗,R1,2;1 (left) and
cross∗,R1,2;2 (right). The horizontal blue line indicates the crossing cross∗,R1,2;3 .

Let k ∈ [n − 1]. Consider two adjacent copies of V Γ
k . Without any loss of generality

(because of the rotational invariance property of ηδ
′
δ ), assume that their longer boundary

segments are aligned with the horizontal axis. Call the left one as R = I × J and the

right one as R′ = I ′ × J ′. We want to link two crossings crossR and crossR′ through R

and R′ respectively to build a crossing for R ∪ R′. To this end define three additional

rectangles R1,2;1 = [rI − 2−k−mΓ , rI ] × J , R1,2;2 = [rI , rI + 2−k−mΓ ] × J and R1,2;3 =

[rI − 2−k−mΓ , rI + 2−k−mΓ ] × [`J , `J + 2−k−2mΓ+1], where `J and rI are the left and

right endpoints of J and I respectively. We use An−k−mΓ
to construct up-down crossings
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crossR1,2;1
and crossR1,2;2

for R1,2;1 and R1,2;2 respectively. Similarly we apply An−k−2mΓ+1

to construct a left-right crossing crossR1,2;3
through R1,2;3. Let us also make it clear that

A` constructs a straight line connecting midpoints of the shorter boundary segments of V Γ

when ` ≤ 0. Finally notice that the union of crossings crossR, crossR′ , crossR1,2;1
, crossR1,2;2

and crossR1,2;3
is a crossing for the rectangle R∪R′. We refer to this as the crossing obtained

from tying crossR and crossR′ .

Thus we tie together the sequence of crossings cross1;n, cross2;n, · · · , cross2n−2anmΓ+1;n

(i.e. every pair of successive crossings) to form crossn. Figure 2.3 provides an illustration of

this construction.

V Γ

R1;3 R2;3 R8;3

Figure 2.3: Construction of crossn using Strategy I. Here n = 2anmΓ + 2. The red
lines indicate the crossings crossj;n’s while the blue lines indicate the crossings used for tying
the pairs (crossj;n, crossj+1;n)’s.

2.3.2 Strategy II

This is our main strategy which employs switching using sloped gadgets in order to build

efficient crossings. Recall that n = 2(an + 1)mΓ − 1 in this case. Unlike in Strategy I here

we start with two strips V
Γ2;0.25ι
2mΓ

and V
Γ2;0.75ι
2mΓ

. We subdivide V
Γ2;0.75ι
2mΓ

and V
Γ2;0.25ι
2mΓ

into

non-overlapping translates of V
Γβ
2mΓ

where β is the smallest power of 2 that is ≥ γ−2/3.

Let us denote them as R1,1, R1,2, · · · , R1,Γ/β and R2,1, R2,2, · · · , R2,Γ/β respectively from

left to right. Similarly one can subdivide each Ri,j into non-overlapping translates of V Γ2

2mΓ

which we call as its blocks. See Figure 2.4 below for an illustration of this set-up. We

can use A2anmΓ−1 to construct a crossing crossR through each block R. Let Ri,j,left and
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R1,1

R2,1

R1,2

R2,2

R1,Γ/β−1

R2,Γ/β−1

R1,Γ/β

R2,Γ/β

V Γ

Figure 2.4: The rectangles Ri,j’s and its blocks. In this (hypothetical) example each
Ri,j consists of 8 blocks and thus Γ = 8.

Ri,j,right respectively denote the leftmost and rightmost blocks of Ri,j . We will construct

a new sequence of crossings which, when tied, gives a polypath connecting crossR1,j,left
and

crossR2,j,right
. Observe that, due to the choice of Γ and the fact d`2(V

Γ2;0.25ι
2mΓ

, V
Γ2;0.75ι
2mΓ

) =

Ω(1), there exists an integer Lγ and a copy S1,j of V
LγΓ
2mΓ

such that:

(I) The length of S1,j is at most d`2(cR1,j,left
, cR2,j,right

)+2/Γ where cR denotes the center

of a rectangle R.

(II) S1,j , R1,j,left and R2,j,right are arranged as in Figure 2.5.

R1,j

R1,j,left

R2,j

R2,j,right

S1,j

Figure 2.5: The rectangles R1,j,left, R2,j,right and S1,j. Each of the five rectangles com-

prising S1,j is a copy of V Γ
2mΓ

. Hence Lγ = 5 in this example. The red lines inside each
rectangle indicate the corresponding crossings.

It is clear from the arrangement depicted in (II) (or in Figure 2.5 for that matter) that

any crossing through S1,j intersects both crossR1,j,left
and crossR2,j,right

. Now subdivide

S1,j into Lγ non-overlapping copies of V Γ
2mΓ

and construct a crossing through each one
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of them using A2anmΓ−1. Tying these crossings would then give a crossing of S1,j which

connects crossR1,j,left
and crossR2,j,right

. Similarly we can construct a copy S2,j of V
LγΓ
2mΓ

and

a corresponding sequence of crossings which connect crossR2,j,left
and crossR1,j,right

after they

are tied. The Lγ non-overlapping copies of V Γ
2mΓ

comprising Si,j are also called its blocks.

Henceforth we will refer to the collection of blocks of Si,j ’s and Ri,j ’s as Blockγ . We now

have all the ingredients for defining our strategy which is essentially encoded by the numbers

ij ∈ [2]. Given these numbers, we define a collection Can of crossings as follows. If ij = ij+1,

we include crossR in Can for all the blocks R of Rij ,j . Otherwise we include crossR for all

the blocks R of Sij ,j as well as crossRij ,j,left
and crossR3−ij ,j,right

(notice that 3− ij switches 1

and 2). We refer to the collection of blocks included in Can from a “location” j as the bridge

at that location. Unless there is a switch at location 1 (as Si,1 can potentially intersect

R2 \ V Γ), the crossings in Can define a crossing for V Γ after we tie every pair of crossings

(crossR, crossR′) in Can for adjacent R,R′. See Figure 2.6 below for an illustration. The

particular choice of ij ’s will be determined by the field η0.5 which we discuss in the next

section.

Figure 2.6: Construction of crossn using Strategy II. In this example i1 = i2 = 2 and
i3 = 1; iΓ/β−1 = 1 and iΓ/β = 2. The red lines indicate the crossings in Can and the blue
lines indicate the crossings used to tie them.

2.4 Multi-scale analysis on expected weight of crossings

Let Dγ,n denote the total weight of crossn computed with η2−n as the underlying field and

dγ,n denote its expectation. In Sections 2.4.1 through 2.4.3 we will derive recurrence relations

involving dγ,n’s for n ∈ N. It is useful to recall at this point that dγ,n = Γ whenever n ≤ 0.
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In Section 2.4.4 we show how these relations lead to a bound on dγ,n.

2.4.1 Strategy I: a recurrence relation involving dγ,n

We will assume n > 0. For convenience we use [n]γ to denote n−2anmΓ+1. LetDγ,n,main de-

note the total weight of cross1;n, cross2;n, · · · , cross
2[n]γ ;n

(see Section 2.3.1) and Dγ,n,gadget

denote the total weight of crossings used to tie them. These weights are all computed with

respect to η2−n and thus Dγ,n = Dγ,n,main +Dγ,n,gadget. Notice that the weight of crossj;n

is Z(crossj;n, η
2−[n]γ

2−n , e
γη

2−[n]γ ; γ) (see (2.2.4) for the definition of Z(·, ·, ·; γ)). Hence from

Fubini and the translation invariance property of ηδ we get

EDγ,n,main ≤ Ee
γη

2−[n]γ (0)
2[n]γ

dγ,2anmΓ−1

2[n]γ
, (2.4.1)

where the divisor 2[n]γ comes from scaling property (compare to the situation when γ = 0).

From this point onwards any expression of the form “
dγ,k
2n−k

” would implicitly mean that the

divisor 2n−k originates from a similar consideration. Now since Var(ηδ(0)) = O(log δ−1) and

mΓ = O(log γ−1), the last display gives us

EDγ,n,main = (1 +O(γ2 log γ−1))dγ,2anmΓ−1 . (2.4.2)

As to the estimation of EDγ,n,gadget, recall from Section 2.3.1 that we spend three cross-

ings for tying the pair (crossj;n, crossj+1;n). Two of these are constructed usingA(2an−1)mΓ−1

and the other one using A2(an−1)mΓ
. Hence by a similar reasoning as used for (2.4.1), the

expected weight of these crossings is given by

2Ee
γη

2−[n]γ−mΓ
(0)dγ,(2an−1)mΓ−1

2[n]γ+mΓ
+ Ee

γη
2−[n]γ−2mΓ

(0)dγ,2(an−1)mΓ

2[n]γ+2mΓ−1
.

Since there are 2[n]γ − 1 many tyings, this implies (along with the variance bounds given by
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(2.2.3))

EDγ,n,gadget ≤ (1 +O(γ2 log γ−1))(2Γ−1dγ,(2an−1)mΓ−1 + Γ−2dγ,2(an−1)mΓ
) .

Combined with (2.4.2), the last inequality gives us

dγ,n ≤ (1 +O(γ2 log γ−1))(dγ,2anmΓ−1 + 2Γ−1dγ,(2an−1)mΓ−1 + Γ−2dγ,2(an−1)mΓ
) . (2.4.3)

2.4.2 Strategy II: choosing the particular strategy

As in Section 2.4.1, we begin with a decomposition of Dγ,n into two components. To this

end denote by Dγ,n,main the total weight of crossings in Can where n = 2anmΓ + 2mΓ − 1.

The other component Dγ,n,gadget is the total weight of gadgets that we use to tie pairs of

crossings (crossR, crossR′) in Can for adjacent R,R′ (see Section 2.3.2). All the weights are

computed with respect to the field η2−n . Dγ,n,main is the major component and will inform

our choice of strategy.

We, in fact, devise our strategy based on an approximate expression of E(Dγ,n,main|η0.5).

For this we need to analyze Dγ,n,main;j which is the combined weight of crossings through

all the blocks in the bridge at location j. In our analysis we rely heavily on the fact that

our strategy is determined by η0.5. Also along the way we make several approximations that

will be justified in a later subsection. Let us begin with the case ij = ij+1. In this case

E(Dγ,n,main;j |η0.5) =
∑

R∈Blockγ ,R⊆Rij ,j

Z(crossR, η
0.5
2−n , e

γη0.5 ; γ) .

Now we replace η0.5
2−n in the above expression with ηΓ−2

2−n which results in

approxj,1 =
∑

R∈Blockγ ,R⊆Rij ,j

Z(crossR, η
Γ−2

2−n , e
γη0.5 ; γ) .
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We further approximate eγη0.5(z) with 1 + γη0.5(z) and obtain a new expression as follows

(recall the definitions (2.2.5) and (2.2.6)):

approxj,2 =
∑

R∈Blockγ ,R⊆Rij ,j

Z(crossR, η
Γ−2

2−n , 1 + γη0.5; γ)

=
∑

R∈Blockγ ,R⊆Rij ,j

(
L(crossR, η

Γ−2

2−n ; γ) + Z(crossR, η
Γ−2

2−n , γη0.5; γ)
)

= βΓ
dγ,2anmΓ−1

Γ2
+ γ

∑
R∈Blockγ ,R⊆Rij ,j

Z(crossR, η
Γ−2

2−n , η0.5; γ)

= βΓ−1dγ,2anmΓ−1 + Zγ,n,ij ,j

where Zγ,n,ij ,j = γ
∑
R∈Blockγ ,R⊆Rij ,j

Z(crossR, η
Γ−2

2−n , η0.5; γ). Thus there is a “determinis-

tic” part and a “random” part in approxj,2. The small magnitude of γ is crucial for these

approximations. When ij 6= ij+1, i.e. there is a switch at the location j, deriving approxj,2

requires slightly more work. In this case

E(Dγ,n,main;j |η0.5) =
∑

R∈Blockγ ,R⊆Sij ,j∪Rij ,j,left∪R3−ij ,j,right

Z(crossR, η
0.5
2−n , e

γη0.5 ; γ) .

Similarly as before we ignore the contribution from η0.5
Γ−2 and the higher order terms in

eγη0.5(z) to obtain

approxj,1 =
∑

R∈Blockγ ,R⊆Sij ,j∪Rij ,j,left∪R3−ij ,j,right

Z(crossR, η
Γ−2

2−n , e
γη0.5 ; γ) ,

and

approxj,2 =
∑

R∈Blockγ ,R⊆Sij ,j∪Rij ,j,left∪R3−ij ,j,right

L(crossR, η
Γ−2

2−n ; γ) + Z
′
γ,n,ij ,j ,
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where

Z
′
γ,n,ij ,j = γ

∑
R∈Blockγ ,R⊆Sij ,j∪Rij ,j,left∪R3−ij ,j,right

Z(crossR, η
Γ−2

2−n , η0.5; γ) .

Recall from Section 2.3.2 that the total number of blocks in the bridge in this case is Lγ + 2.

From property (I) of Sij ,j and the elementary fact
√

1 + x2 = 1 + x2

2 + o(x2) as x → 0, we

get

Lγ
Γ

= β +
C ′γ,n
β

,

for some C ′γ,n = Θ(1). Hence the deterministic part in approxj,2 is

βΓ
dγ,2anmΓ−1

Γ2
+ C ′′γ,n

Γ

β

dγ,2anmΓ−1

Γ2
,

where again C ′′γ,n = Θ(1). Writing the random part Z
′
γ,n,ij ,j as

Z
′
γ,n,ij ,j = Zγ,n,ij ,j + Lossγ,n,ij ,j , (2.4.4)

we obtain in this case

approxj,2 = βΓ
dγ,2anmΓ−1

Γ2
+ C ′′γ,n

Γ

β

dγ,2anmΓ−1

Γ2
+ Zγ,n,ij ,j + Lossγ,n,ij ,j . (2.4.5)

Now from Lemma 2.2.2 we have

Var
(
γ

∑
R∈Blockγ ,R⊆Sij ,j

Z(crossR, η
Γ−2

2−n , η0.5; γ)
)

= γ2Γ2
d2
γ,2anmΓ−1

Γ4
O(β + β2Γ−2)

= O(Γ2γ2β)
d2
γ,2anmΓ−1

Γ4
.

The same bound holds for Var(Zγ,n,ij ,j) and (obviously) for Var(γZ(crossR, η
Γ−2

2−n , η0.5; γ))
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when R = Rij ,j,left or Rij ,j,right. Thus from (2.4.4) we get

Var(Lossγ,n,i,j) = O(Γ2γ2β)
d2
γ,2anmΓ−1

Γ4
.

As Lossγ,n,i,j ’s are centered Gaussian variables, the previous bound implies

∑
i∈[2]

E(Loss+
γ,n,i,j) = O(Γγ

√
β)
dγ,2anmΓ−1

Γ2
.

Incorporating this bound into (2.4.5), we get the following upper bound on the expectation

of approx2 =
∑
j∈[Γ/β] approxj,2.

E(approx2) ≤ dγ,2anmΓ−1 + E
∑

j∈[Γ/β]

Zγ,n,ij ,j + Cγ,n
(β−1+γ

√
β)dγ,2anmΓ−1

Γ Nswitch , (2.4.6)

where Cγ,n = Θ(1) and Nswitch is total number of “potential” switching locations (deter-

ministic). Since Zγ,n,ij ,j ’s are centered, we can write

E
∑

j∈[Γ/β]

Zγ,n,ij ,j =
1

2
E
∑

j∈[Γ/β]

(−1)ij+1(Zγ,n,1,j − Zγ,n,2,j) .

Hence we choose our strategy so that it gives a small value of the following expectation:

Eγ,n = E
(1

2

∑
j∈[Γ/β]

(−1)ij+1∆Zγ,n,j + Cγ,n(β−1 + γ
√
β)
dγ,2anmΓ−1

Γ
Nswitch

)
, (2.4.7)

where ∆Zγ,n,j = Zγ,n,1,j − Zγ,n,2,j . From Lemma 2.2.2 we can deduce that for any 1 ≤

j1 ≤ j2 ≤ dΓ/βe,

Var
( ∑
j1≤j≤j2

1

2
∆Zγ,n,j

)
= Ω(γ2)

d2
γ,2anmΓ−1

Γ4
(j2 − j1 + 1)βΓ2

(
1−O

(√(j2 − j1 + 1)β

Γ

))

≥ c2γ
2(j2 − j1 + 1)β

d2
γ,2anmΓ−1

Γ2
.
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As a consequence we have

E
∣∣∣∣ ∑
j1≤j≤j2

1

2
∆Zγ,n,j

∣∣∣∣ ≥ 2Cγ,n(β−1 + γ
√
β)
dγ,2anmΓ−1

Γ
(2.4.8)

whenever

j2 − j1 + 1 ≥
4C2

γ,n(β−1 + γ
√
β)2

2
πγ

2β
= N ′γ,n . (2.4.9)

Here we use the simple fact that E|Z| =
√

2
π for a standard Gaussian Z. Let Nγ,n be the

smallest power of 2 that is ≥ N ′γ,n. We are now ready to define our strategy. Set

ij =


0 if

∑
(kj−1)Nγ,n+1≤j′≤kjNγ,n ∆Zγ,n,j′ > 0 ,

1 otherwise ,

where kj ∈ N is such that (kj − 1)Nγ,n + 1 ≤ j ≤ kjNγ,n. It then follows from (2.4.7),

(2.4.8) and (2.4.9), and the choice of β as Θ(γ−2/3) that

Eγ,n ≤
Γ

Nγ,nβ
×−Cγ,n(β−1 + γ

√
β)
dγ,2anmΓ−1

Γ
= −Ω

( γ2

β−1 + γ
√
β

)
dγ,2anmΓ−1

= −Ω(γ4/3)dγ,2anmΓ−1 . (2.4.10)

Notice that this strategy ensures i1 = i2 i.e. there is no switch at location 1 which implies

we get a “legitimate” crossing (see the discussions at the end of Section 2.3.2).

2.4.3 Strategy II: a recurrence relation involving dγ,n

Let us first estimate the expected errors that we made in every stage of approximation in

the previous subsection. Denote the sum
∑
j∈[Γ/β] approxj,1 as approx1. Since the choice of

crossings in Can is independent with η0.5
Γ−2 , from Fubini and translation invariance of η we

get

EDγ,n,main = Ee
γη0.5

Γ−2(0)E(approx1) = (1 +O(γ2 log γ−1))E(approx1) .
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Next we take care of the approximation of approx1 with approx2. Since ex ≥ 1+x, it follows

that approx1 ≥ approx2. On the other hand, a reasoning similar to the one used for last

display gives us

E(approx1 − approx2) ≤ E(eγη0.5(0) − 1− γη0.5(0))
dγ,2anmΓ−1

Γ2
|Blockγ | .

It is straightforward that |Blockγ | = O(Γ2) and hence

E(approx1 − approx2) ≤ O(γ2)dγ,2anmΓ−1 .

Since E(approx2) ≤ dγ,2anmΓ−1 + Eγ,n (see (2.4.6), (2.4.7)), the bounds from the previous

displays and (2.4.10) together imply

EDγ,n,main ≤ dγ,2anmΓ−1(1− Ω(γ4/3)) . (2.4.11)

It only remains to deal with EDγ,n,gadget. In fact the argument that we used to bound

EDγ,n,gadget for Strategy I can be applied directly in this case to obtain

EDγ,n,gadget ≤ (2
dγ,(2an−1)mΓ−1

Γ3
EeγηΓ−3(0) +

dγ,2(an−1)mΓ

Γ4
Eeγη2Γ−4(0))|Blockγ | .

which implies

EDγ,n,gadget = O(1)(Γ−1dγ,(2an−1)mΓ−1 + Γ−2dγ,2(an−1)mΓ
) . (2.4.12)

Finally (2.4.11) and (2.4.12) give us

dγ,n ≤ dγ,2anmΓ−1(1− Ω(γ4/3)) +O(1)(Γ−1dγ,(2an−1)mΓ−1 + Γ−2dγ,2(an−1)mΓ
) . (2.4.13)
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2.4.4 Upper bound on dγ,n

We will use the recursion relations (2.4.3), (2.4.13) and an induction argument to derive an

upper bound on dγ,n. To this end let C2 be a positive, absolute constant (from (2.4.13))

such that

dγ,2(a+1)mΓ−1 ≤ dγ,2amΓ−1(1−C2γ
4/3) +O(1)

(dγ,(2a−1)mΓ−1

Γ
+
dγ,2(a−1)mΓ

Γ−2

)
, (2.4.14)

for all a ≥ 0. Fixing an a ∈ N ∪ {0}, we formulate our induction hypotheses as:

(a) dγ,2amΓ−1 ≤ Γ
(
1− C2γ

4/3

2

)a
.

(b) dγ,n ≤ 2Γ
(
1− C2γ

4/3

2

)an+1
for all n < 2amΓ.

Hypotheses (a) and (b) obviously hold for a = 0 since dγ,n = Γ for n ≤ 0. Now combined

with (2.4.14) and the fact Γ ≥ γ−2, these two hypotheses imply

dγ,2(a+1)mΓ
≤ Γ

(
1− C2γ

4/3

2

)a
(1− C2γ

4/3) +O(γ2)Γ
(
1− C2γ

4/3

2

)a−1

= Γ
(
1− C2γ

4/3

2

)a+1
(1− Ω(γ4/3) +O(γ2)) ≤ Γ

(
1− C2γ

4/3

2

)a+1
.

On the other hand for 2amΓ ≤ n < 2(a + 1)mΓ, we can apply (2.4.3) and hypotheses (a),

(b) to obtain

dγ,2(a+1)mΓ
≤ (1 +O(γ2 log γ−1))Γ

((
1− C2γ

4/3

2

)a
+O(γ2)

(
1− C2γ

4/3

2

)a−1
)

= Γ
(
1− C2γ

4/3

2

)a+1
(1 +O(γ4/3)) ≤ 2Γ

(
1− C2γ

4/3

2

)a+1
.

Thus by induction it follows that

dγ,n ≤ 2Γ
(
1− C2γ

4/3

2

)an+1
, (2.4.15)

for all n ≥ 0.
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2.5 Proof of Theorem 2.1.1

For the purpose of proving Theorem 2.1.1, we can identify hδ with its white noise decompo-

sition given in (2.2.1). Since this representation involves some special functions, it would be

helpful to have convenient notations for them. To this end we denote p(s; v, w)− pD(s; v, w)

as pD(s; v, w). Also for any function f defined on R+ × Dε × Dε and δ ≤ ε, the function

fδ(.; v, .) denotes the average
∫
∂Bδ(v) f(.; v′, .)µvδ(dv

′). Now notice that we can decompose

the difference hδ(v)− ηδ(v) into four components as follows:

hδ(v)− ηδ(v) = Gv;1 +Gv;2 +Gv;3 +Gv;4 ,

where

Gv;1 =

∫
D×[1,∞)

pδD(s/2; v, w)W (dw, ds) , Gv;2 =

∫
D×(0,δ2]

pδD(s/2; v, w)W (dw, ds) ,

Gv;3 = −
∫
R2×[δ2,1]

pδD(s/2; v, w)W (dw, ds) and

Gv;4 =

∫
R2×[δ2,1]

(
pδ(s/2; v, w)− p(s/2; v, w)

)
W (dw, ds) .

We will show that the variance of each component is OD,ε(1). Let us begin with Var(Gv;1).

Observe that

Var(Gv;1) =

∫
[1,∞)

∫
∂Bδ(v)×∂Bδ(v)

pD(s; v′, v′′)µvδ(dv
′)µvδ(dv

′′)ds

=

∫
[1,∞)

∫
∂Bδ(v)×∂Bδ(v)

p(s; v′, v′′)PD(s; v′, v′′)µvδ(dv
′)µvδ(dv

′′)ds , (2.5.1)

where PD(s; v′, v′′) is the probability that a (two dimensional) Brownian bridge of duration

s remains in D. Since squared absolute norm of a standard Brownian motion at time t is
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distributed as an exponential variable with mean 2t, a simple computation gives us

PD(s; v′, v′′) = O(1)(1− e−O
( (d`2

(v′,∂D)+|v′−v′′|)2

s

)
) .

Plugging this into (2.5.1) we get

Var(Gv;1) = O(1)

∫
[1,∞)

s−1(1− e−O
( (d`2

(v′,∂D)+|v′−v′′|)2

s

)
)ds

= O(1)

∫
[1,∞)

s−2(d`2(v′, ∂D) + |v′ − v′′|)2ds = O(diam(D)2) .

Next is Var(Gv;2) which can be evaluated as

Var(Gv;2) =

∫
(0,δ2]

∫
∂Bδ(v)×∂Bδ(v)

pD(s; v′, v′′)µvδ(dv
′)µvδ(dv

′′)ds

≤
∫

(0,δ2]

∫
∂Bδ(v)×∂Bδ(v)

p(s; v′, v′′)µvδ(dv
′)µvδ(dv

′′)ds

= (2π)−2
∫

(0,δ2]
s−1

∫
[0,2π]

e−
δ2(1−cos θ)

s dθds

= O(1)

∫
(0,δ2]

e−
Ω(δ2)
s s−1ds = O(1) .

For Var(Gv;3) we start with an upper bound:

Var(Gv;3) ≤
∫

[δ2,1]

∫
∂Bδ(v)×∂Bδ(v)

pD(s; v′, v′′)µvδ(dv
′)µvδ(dv

′′)ds

= O(1)

∫
[δ2,1]

∫
∂Bδ(v)×∂Bδ(v)

p(s; v′, v′′)P
D

(s; v′, v′′)µvδ(dv
′)µvδ(dv

′′)ds , (2.5.2)

where P
D

(s; v′, v′′) is the probability that a Brownian bridge of duration s hits ∂D. Like

PD(s; v′, v′′), we can use tail probabilities of appropriate exponentials to bound this as

P
D

(s; v′, v′′) = O(1)e−Ω
( (d`2

(v′,∂D)−|v′−v′′|)+2

s

)
.
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(2.5.2) and the previous bound together imply

Var(Gv;3) ≤ O(1)

∫
[δ2,1]

e−Ω
( (d`2

(v′,∂D)−|v′−v′′|)+2

s

)
ds = Oε(1) ,

We are only left with Var(Gv;4) now. Notice that

Var(Gv;4) =

∫
[δ2,1]

p(s; v, v)ds+

∫
[δ2,1]

∫
∂Bδ(v)×∂Bδ(v)

p(s; v′, v′′)µvδ(dv
′)µvδ(dv

′′)ds

−2

∫
[δ2,1]

∫
∂Bδ(v)

p(s; v′, v)µvδ(dv
′)ds

= I1 + I2 − 2I3 .

Since p(s; v′, v′′) ≤ (2π)−1s−1, it follows that I1 and I2 are bounded above by (2π)−1
∫

[δ2,1]
ds
s .

On the other hand.

I3 = (2π)−1
∫

[δ2,1]
e−

δ2

s s−1ds ≥ (2π)−1
∫

[δ2,1]
(1− δ2s−1)s−1ds .

Putting all these estimates together we get Var(Gv;4) = O(1). Thus Var(hδ(v) − ηδ(v)) =

OD,ε(1) for all v ∈ Dε. In addition we claim that

Var
(
(hδ(v)− ηδ(v))− (hδ(w)− ηδ(w))

)
= O

( |v − w|
δ

)
(2.5.3)

for all v, w ∈ Dε such that |v−w| ≤ δ. Thus, by Dudley’s entropy bound on the supremum

of a Gaussian process (see, e.g., [1, Theorem 4.1]) and Gaussian concentration inequality

(see e.g., [54, Equation (7.4), Theorem 7.1]) we deduce that

P
(

max
v∈V

(hδ(v)− ηδ(v)) > C3

√
log δ−1 + x

)
= e−ΩD,ε(x

2) , (2.5.4)

for all x ≥ 0. We will verify (2.5.3) shortly, but before that let us show how (2.5.4) leads to

a proof of Theorem 2.1.1. To this end define, for v, w ∈ V , Dη,γ,δ(v, w) = infP
∫
P eγηδ(z)|dz|
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where P ranges over all piecewise smooth paths in V connecting v and w. Also denote by

D
straight
h,γ,δ (v, w) the weight of the straight line joining v and w when the underlying field is

hδ. The following is straightforward:

Dγ,δ(v, w) ≤ eO(γ
√

log δ−1)DV,η,γ,δ(v, w)1EV +D
straight
h,γ,δ (v, w)1EcV

, (2.5.5)

where MV = maxv∈V (hδ(v)− ηδ(v)) and EV is the event {MV ≤ (C3 + 1)
√

log δ−1}. Let n

be the unique positive integer satisfying 2−n−1 < δ ≤ 2−n. Notice that for any point v ∈ V

and any boundary segment V ∂ of V , there exists a sequence of rectangles R1,v, R2,v, · · ·RK,v

with sides parallel to the coordinate axes such that:

(a) The shorter boundary of R1,v has length at most 2−n and has v as one of its endpoints.

(b) RK,v intersects V ∂ .

(c) The ratio of longer to shorter dimension of each Ri,v is Γ.

(d) Ri,v ⊆ V for all i ≤ K − 2.

(e) Ri,v ⊆ Ri+1,v for all i ≤ K − 2. Furthermore one of the shorter boundary segments of

Ri+1,v is same as one of the longer boundary segments of Ri,v for all such i.

(f) RK−1,v ∩ V (also RK,v ∩ V ) is a non-degenerate rectangle whose one boundary segment

is same as one of the shorter boundary segments of RK−1,v (respectively RK,v).

(g) RK−1,v ∩ V ⊆ RK,v ∩ V and one of the shorter boundary segments of RK,v is contained

in one of the longer boundary segments of RK−1,v.

(h) K = O(n).

Properties (a), (b), (d), (e), (f) and (g) imply that given any choice of a crossing Pi,v through

Ri,v, the union of P ?v , P1,v, · · · , PK,v contains a path between v and V ∂ that is contained

in V (see Figure 2.7). Here P ?v is the shorter boundary segment of R1,v containing v. Also

notice that if we connect each of v and w to each of the four boundary segments of V by some

paths in V , then there must exist a path from v and another path from w that intersect each

other and hence contains a path between v and w (see Figure 2.8). Therefore we can build
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v

V ∂

Figure 2.7: The rectangles R1,v, R2,v, · · · , RK,v. In this case K = 4. The portions of R3,v
and R4,v lying outside V have been omitted. The red curved lines indicate P1,v and P2,v.
The blue and brown curved lines respectively indicate the portions of P3,v and P4,v that lie
within V .

v w

Figure 2.8: Paths from v and w to each of the four boundary segments of V .

an efficient path between v and w by choosing Pi,v (or Pi,w) to be the crossing constructed

by An−dre where 2−r is the shorter dimension of Ri,v (respectively Ri,w). Recall again from

Subsection 2.3.1 that we only use the fields {η2−dre

2−`
}dre<`≤n to construct a crossing at scale

n using An−dre. Thus by (2.4.15), independent increment and the scaling property of η and

(2.2.3), we can bound the expected weight of Pi,v (or Pi,w) computed with respect to ηδ by

the following:

O(Γ)2
−(n−dre)Ω( γ4/3

log γ−1 )

2dre
2O(γ2)dre = O(Γ)δ

Ω( γ4/3

log γ−1 )
2−Ω(dre) .
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Consequently

EDη,γ,δ(v, w) = O(Γ)δ
Ω( γ4/3

log γ−1 )
. (2.5.6)

As to D
straight
h,γ,δ (v, w)1Ecv , we can use (2.5.4) and Cauchy-Schwarz inequality to obtain

EDη,γ,δ(v, w) ≤ e−ΩD,ε(log δ−1)

√
E
(
D

straight
h,γ,δ (v, w)

)2
. (2.5.7)

Since Var(hδ(v)− ηδ(v)) = OD,ε(1) and Var(ηδ(v)) = O(log δ−1), we get from Fubini

E
(
D

straight
h,γ,δ (v, w)

)2
=

∫
[0,1]2

eγ(hδ(x+0.5ι)+hδ(y+0.5ι))dxdy ≤ OD,ε(1)δ−O(γ2) . (2.5.8)

(2.5.5), (2.5.6), (2.5.7) and (2.5.8) together imply

EDγ,δ(v, w) = Oγ,D,ε(1)δ
Ω( γ4/3

log γ−1 )
,

which proves Theorem 2.1.1.

It only remains to verify (2.5.3). Since

(hδ(v)− ηδ(v))− (hδ(w)− ηδ(w)) = (hδ(v)− hδ(w))− (ηδ(v)− ηδ(w)) ,

it suffices to prove similar bounds for each of Var(hδ(v) − hδ(w)) and Var(ηδ(v) − ηδ(w)).

The latter can be obtained from Lemma 2.2.1. The bound on Var(hδ(v)−hδ(w)) was derived

(in a more general set-up) in the proof of [49, Proposition 2.1].

2.6 Adapting to discrete GFF

Let N = 2n, V Γ
N ≡ ([0,ΓN − 1]× [0, N − 1])∩Z2 and V

Γ,ε
N = ([−bεΓNc,ΓN + bεΓNc− 1]×

[−bεNc, N +bεNc+1])∩Z2. Consider a discrete Gaussian free field {ηγ,N (v) : v ∈ V Γ,ε
N } on

V
Γ,ε
N with Dirichlet boundary condition. By interpolation we can extend ηγ,N to a continuous
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field on the rectangle [−εΓN, (1+ε)ΓN ]× [−εN, (1+ε)N ]. After appropriate scaling we then

get a continuous Gaussian field η̃γ,N on the domain V Γ,ε = (−εΓ, (1 + ε)Γ)× (−ε, (1 + ε)).

It is clear that we need to find a suitable decomposition for the covariance kernel of ηγ,N in

order to get a decomposition of η̃γ,N similar to the white noise decomposition of ηδ. The

covariance between ηγ,N (v) and ηγ,N (w) is given by the simple random walk Green function

G
V Γ,ε
N

(v, w). There is a simple representation of G
V Γ,ε
N

(·, ·) as a sum of simple random walk

probabilities. However here we represent it in terms of lazy simple random walk probabilities

for reasons that would become clear shortly. To this end we write

G
V Γ,ε
N

(v, w) =
1

2

∞∑
k=0

Pv(Sk = w, τγ,ε > k) ,

where {Sk}k≥0 is a lazy simple random walk on Z2 i.e. it stays put for each step with

probability 1
2 and jumps to each of its four neighbors with probability 1

8 , Pv is the measure

corresponding to the random walk starting from v and τγ,ε is the first time the random walk

hits ∂V
Γ,ε
N . Emulating our approach to the approximation of circle average process with ηδ,

we replace τγ,ε in the above representation with the order of it expectation i.e. N2 (on V Γ
N ,

of course) and obtain a new kernel:

KN (v, w) =
1

2

N2−1∑
k=1

Pv(Sk = w) .

Notice that, thanks to the laziness of Sk, each matrix (Pv(St = w))
v,w∈V Γ,ε

N
is non-negative

definite. The similarity of this expression with the integral representation of the covariance

between ηδ(v) and ηδ(w) prompts the following decomposition of KN (·, ·):

KN (v, w) =
∑
k′∈[n]

1

2

∑
4k
′−1≤k<4k

′
Pv(Sk = w) =

∑
k′∈[n]

KN,k′(v, w) .
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Hence we can “approximate” η̃γ,N with a sum of independent, stationary fields ∆η̃N,k′ on VN

where the covariance kernel of ∆η̃N,k′ is “given” by KN,k′ . Denote η̃N,k′ =
∑
k′′∈[k′] ∆η̃N,k′′ .

It is immediate that the sequence of fields η̃N,k′ ’s are stationary and have independent

increments. Using standard results on discrete planar random walk and local central limit

theorem estimates (see, e.g., Chapters 2 and 4 in [53]) one can also prove the following

properties:

(a) Var(∆η̃N,k′(v)) = O(1) and Var(∆η̃N,k′(v)−∆η̃N,k′(w)) = 4n−k
′
O(|v−w|2) for all v, w.

Compare this to Lemma 2.2.1.

(b) For any straight line segment L of length at most Γ2k
′−n, Var(

∫
L∆η̃N,k′(z)|dz|) =

4k
′−n|L|. Here |L| is the length of L. Furthermore if v ∈ R2 is orthogonal to L, then

Var
(∫
L

∆η̃N,k′(z)|dz| −
∫
L+v

∆η̃N,k′(z)|dz|
)

= 4k
′−nΘ(|L|) ,

whenever |L| ≥ 2k
′−n and |v| = Θ(1). Compare this to a similar estimate derived in

the proof of Lemma 2.2.2 and also to the property (b) of the field ζ discussed in the

introduction.

We can now use strategies similar to those used for constructing crossn. Since the fields

η̃N,k′ ’s do not have rotational invariance, we will actually construct crossings in all possible

directions at any given scale (through appropriately scaled rectangles) and consider the

maximum expected weight of these crossings. In view of properties (a) and (b), we can then

obtain recursion relations like (2.4.3) and (2.4.13) on the maximum expected weight without

any significant change in the analysis. Next we build a (lattice) crossing P ?n of 1
N V

Γ
N from

the crossing Pn which we constructed for V Γ so that

E
( ∑
v∈P ?n

eγη̃N,n(v)) = Oγ,ε(N
1−Ω(γ4/3/ log γ−1)) .
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We can do this by following a procedure detailed in the proof of Lemma 3.2.4 in Chapter 3.

Indeed we have an analogous upper bound on Var(η̃N,n(v)− η̃N,n(w)) for adjacent v, w:

max
v,w∈V Γ

N ,|v−w|=1
Var(η̃N,n(v)− η̃N,n(w)) = 1 ,

which makes all the arguments employed in the proof of Lemma 3.2.4 work smoothly. The

approximation of η̃γ,N with η̃N,n can be tackled in a similar way as we tackled the approx-

imation of hδ with η
2−blog2 δc in Section 2.5. Once we have bounds on expected weights of

crossings between shorter boundaries of rectangles at all scales, we can use such crossings

to build an efficient path connecting any two given points in VN (we discussed this idea in

Section 2.5 in greater detail). This leads to a proof of Theorem 2.1.2.
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CHAPTER 3

LIOUVILLE GRAPH DISTANCE

3.1 Upper bound on the expected distance

There is also a similar upper bound on the expected Louville graph distance.

Theorem 3.1.1. There exists Cγ,D,ε > 0 (depending on (γ, ε,D)) and positive (small)

absolute constants c∗, γ0 such that for all γ ≤ γ0, we have

max
v,w∈V

ED̃γ,δ(v, w) ≤ Cγ,D,εδ
−1+c∗ γ4/3

log γ−1 .

3.1.1 Liouville graph distance and Watabiki’s prediction

There are also reasonable interpretations of Watabiki’s prediction in terms of Liouville graph

distance. The scaling exponent χ = − limδ→0
ED̃γ,δ(v,w)

log δ is expected to exist and is expected

to be given by (here we take v, w as two fixed generic points in the domain)

χ =
2

dH(γ)
= 1−Oγ→0(γ2) , (3.1.1)

where in the last step we plugged in (2.1.1). A similar interpretation to (3.1.1) appeared

in [48, Conjecture 1.14] though the graph structure considered in [48] is based on the

peanosphere construction of LQG and so far we see no mathematical connection to Li-

ouville graph distance considered in this thesis. Note that there is a difference of factor of

2, which is due to the fact that for the graph defined in [48] on average each ball contains

LQG measure about ε (in their notation) while in our construction each ball contains LQG

measure δ2. We see that Theorem 3.1.1 contradicts (3.1.1).
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3.2 Proof of Theorem 3.1.1

We will follow the notation convention laid down in the previous chapter as well as need

some new ones. To this end let D is the open, unit disk centered at the origin. For any closed

ball B ≡ cB + rD, we let B̃ denote the open ball cB + 4rD. If h? is a GFF with Dirichlet

boundary condition on some bounded domain D with smooth boundary, then for any δ > 0

and v ∈ Dδ, we denote the average of h? along the circle v + δ∂D as h?δ(v).

Now consider a GFF hD on D with Dirichlet boundary condition. If B̃ ⊆ D, then Markov

property (see [74, Section 2.6] or [9, Theorem 1.17 ]) of GFF states that hD = hD,B̃ +ϕD,B ,

where

• hD,B̃ is a GFF on B̃ with Dirichlet boundary condition (= 0 outside B̃).

• ϕD,B is harmonic on B̃.

• hD,B̃ , ϕD,B are independent.

This decomposition has a useful consequence for us as follows. Since ϕD,B is harmonic on

B̃, we get

hDδ (v) = h
D,B̃
δ (v) + ϕD,B(v) (3.2.1)

for all v ∈ B2∗
= cB + 2rD and δ ∈ (0, r]. The process {hD,B̃δ (v) : v ∈ B2∗

, 0 < δ ≤ r} is

independent with {ϕD,B̃(v) : v ∈ B2∗} and also with hDδ′ (w) for w ∈ D \ B̃, δ′ < d`2(w, B̃).

The following lemma shows that the field ϕD,B is smooth on B
2∗

.

Lemma 3.2.1. Let B ≡ cB + rD ⊆ D be a closed ball such that B̃ ⊆ D. Then we have for

all v, w ∈ B2∗

Var(ϕD,B(v)− ϕD,B(w)) = O
( |v − w|

r

)
.

Also,

sup

v∈B2∗
Var(hDr (cB)− ϕD,B(v)) = O(1) .
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Proof. Since hB̃r and ϕD,B are independent, we get from (3.2.1)

Var(ϕD,B(v)− ϕD,B(w)) ≤ Var(hDr (v)− hDr (w)) ,

for all v, w ∈ B2∗
.But we know (see the proof of [49, Proposition 2.1])

Var(hDr (v)− hDr (w)) = O
( |v − w|

r

)
,

which gives the required bound on Var(ϕD,B(v) − ϕD,B(w)). For the second part, notice

that

Var(hDr (cB)− ϕD,B(cB)) = Var(h
D,B̃
r (cB)) .

Thus it suffices to prove Var(h
D,B̃
r (cB)) = O(1) in view of the bound on Var(ϕD,B(v) −

ϕD,B(w)). But h
D,B̃
r (cB) is identically distributed as hD0.25(0) by the scale and translation

invariance of GFF and hence Var(h
D,B̃
r (cB)) is a finite constant (see the discussions in [74,

Section 2.1] and also [9, Theorem 1.9]).

Now consider a Radon measure µ on D and some δ > 0. We call a closed Euclidean

ball B ⊆ D with a rational center as a (µ, δ)-ball if µ(B) ≤ δ2. For any compact A ⊆ D,

let N(µ, δ, A) denote the minimum number of (µ, δ)-balls required to cover A. Our next

proposition provides a crude upper bound on the second moment of N(MD
γ , δ, A) (see (1.1.2)

for the definition of MD
γ ) when A is a segment inside D. We remark that the KPZ relation

proved in [43] gives the sharp exponent on the first moment of N(MD
γ , δ, A).

Proposition 3.2.2. Let H denote the straight line segment joining −0.25 and 0.25.For any

δ ∈ (0, 1), we can find a collection of (MD
γ , δ)-balls S (MD

γ , δ,H) such that

(a) Balls in S (MD
γ , δ,H) cover H.

(b) All the balls in S (MD
γ , δ,H) are contained in 0.25D.
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(c) For some C4,

E(|S (MD
γ , δ,H)|2) = Oγ(δ−2−C4γ) ,

Proof. For each k ∈ N, let Bk denote the collection of all (closed) balls of radius 2−k−1

whose centers lie in the set {−1
4 + 2−k−1,−1

4 + 32−k−1, · · · , 1
4 − 2−k−1}. The balls in Bk

are nested in a natural way. In particular any ball B in Bk has a unique parent Bk
′

in

Bk′ (where k′ ≤ k) such that B ⊆ Bk
′
. Let B(MD

γ , k, δ) denote the collection of balls in

Bk with MD
γ volume > δ2. We include a (MD

γ , δ)-ball B ∈ Bk in S (MD
γ , δ,H) if the MD

γ

volume of the most recent parent of B is bigger than δ2. Since the measure MD
γ is a.s. is

finite and has no atoms (see [43] and [9, Theorem 2.1]), it follows that S (MD
γ , δ,H) satisfies

condition (a) (and obviously (b)). It also follows from the construction that

|S (MD
γ , δ,H)| ≤ 2δ−1−C ′4γ +

∑
k>(1+C ′4γ) log2 δ

−1

|B(MD
γ , k, δ)| , (3.2.2)

where C ′4 > 1 is some fixed constant to be specified later. Observing that |B(MD
γ , k, δ)| is

the total number of balls in Bk with MD
γ volume > δ2 a naive bound can be obtained as

( ∑
k>(1+C ′4γ) log2 δ

−1

|B(MD
γ , k, δ)|

)2

≤
∑

k>(1+C ′4γ) log2 δ
−1

∑
B∈Bk

2
∑
k′≤k

∑
B′∈Bk′

1{MD
γ (B)>δ2,MD

γ (B′)>δ2}

≤
∑

k>(1+C ′4γ) log2 δ
−1

∑
B∈Bk

2
∑
k′≤k

∑
B′∈Bk′

1{MD
γ (B)>δ2}

≤
∑

k>(1+C ′4γ) log2 δ
−1

2k+1
∑
B∈Bk

1{MD
γ (B)>δ2} . (3.2.3)

Next we compute the probability that any given ball B ≡ cB + 2−kD in Bk has MD
γ volume

at least δ2. Since MD
γ (or MD

B,k) is the weak limit of measures MD
γ,n’s (respectively MD

B,k’s)
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defined in (1.1.2), we have

MD
γ (B) ≤ 4−k2−

kπ−1γ2

2 e
γhD

2−k
(cB) × e

γMD
B,k × 4kMD

γ,B(B) , (3.2.4)

where MB,k = max
v∈B2∗(ϕD,B(v)−hD

2−k
(cB)) and MD

γ,B is the LQG measure on B̃ obtained

from hD,B . From the scale and translation invariance property of GFF it follows that

4kMD
γ,B(B) is identically distributed as MD

γ (1
4D). Using this observation and (3.2.4) we

can write,

P(MD
γ (B) > δ2) ≤ P

(
hD

2−k(cB) ≥ 2

3γ
log(δ2k)

)
+ P

(
MD
B,k ≥

2

3γ
log(δ2k)

)
+ P(MD

γ (1
4D) ≥ 4k/3δ2/3) .

Since Var(hD
2−k

(cB)) = k log 2 + CB for |CB | = Θ(1) and δ1+C ′4γ > 2−k, the first term on

the right hand side of the previous display can be bounded as

P
(
η2−k(cB) ≥ 2

3γ
log(δ2k)

)
≤ P

(
Z ≥

C ′4k log 2

3
√
k log 2 + CB,γ

)
≤ e−C

′2
4 Ω(k) log 2 = 2−C

′2
4 Ω(k) .

Here Z is a standard Gaussian variable. Thus we can choose C ′4 big enough so that the

bound above becomes < 2−10k. From Lemma 3.2.1 we know that

max
v∈B

Var(ϕD,B(v)− hD
2−k(cB)) = O(1) and Var(ϕD,B(v)− ϕD,B(w)) ≤ O

( |v−w|
2−k

)
for all v, w ∈ B. Hence, similar to the derivation of (2.5.4), by Dudley’s entropy bound and

Gaussian concentration inequality we get for all sufficiently large k

P
(
MD
B,k ≥

2

3γ
log(δ2k)

)
≤ 2−10k .

The only remaining term is P(MD
γ (1

4D) ≥ 4k/3δ2/3). In order to bound this probability

we will use the fact that E
(
MD
γ (1

4D)
)4

< ∞ (see [50] and also [66, Theorem 2.11 and
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Theorem 5.5]). Hence by Chebychev’s inequality

P(MD
γ (1

4D) = Oγ(δ−8/3)2−8k/3 .

Plugging the last three estimates into the expression for the upper bound on P(Mγ(B) ≥ δ2)

we get

P(MD
γ (B) > δ2) ≤ Oγ(δ−8/3)2−8k/3 .

Taking expectation on both sides in (3.2.3) and using the bound above one gets:

E
( ∑
k>(1+C ′4γ) log2 δ

−1

|B(Mγ , k, δ)|
)2
≤

∑
k>(1+C ′4γ) log2 δ

−1

22k+1Oγ(δ−8/3)2−8k/3

= Oγ(δ−8/3)
∑

k>(1+C ′4γ) log2 δ
−1

2−2k/3 = Oγ(δ−8/3)δ2/3+8γ = Oγ(δ−2+8γ) .

The lemma follows from this bound and (3.2.2) for C4 = max (C ′4, 8).

The proof of Proposition 3.2.2 can be easily adapted to accommodate the following set-

ups.

Corollary 3.2.3. Let S ⊆ V be a closed square of length 2−k whose vertices lie in 2−kZ2.

Then for any δ ∈ (0, 2−k) we have

EN(MD
γ , δ, S)2 = Oγ,D,ε((2

kδ)−4−O(γ)2kO(γ)) .

Now given a δ ∈ (0, 1) and v, w ∈ V , we will construct a collection of (MD
γ , δ) balls

S(δ, v, w) such that the union of these balls contains a path between v and w. Thus it would

suffice to show

E|S(δ, v, w)| = Oγ,D,ε(1)δ
−1+Ω(

γ4/3

log γ−1 )

for proving Theorem 3.1.1. Before we describe the construction of S(δ, v, w), we need to

discuss a related construction which will be very useful. To this end define, for any fixed
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k > 4, the set Dk as 2−(k−3)Z2∩V . We can treat Dk as a subgraph of the lattice 2−(k−3)Z2.

The centers of the squares in Dk (i.e. the squares of side length 2−(k−3) with vertices in

Dk) form another set D?
k ⊆ V which will be treated as the dual graph of Dk. We can define

a LFPP metric D?
γ,k(·, ·) on D?

k in a similar way as in (1.1.3) with h2−k as the underlying

field and γ(1 + C4γ)/2 as the inverse temperature parameter (see Proposition 3.2.2 for the

definition of C4). The next lemma is a consequence of our proof of Theorem 2.1.1

Lemma 3.2.4. For all γ > 0 sufficiently small,

max
u,u′∈D?

k

ED?
γ,k(u, u′) = Oγ,D,ε(1)2k(1−Ω(γ4/3/ log γ−1)) .

Proof. Let V ?k denote the square [2−(k−3), 1 − 2−(k−3)]2 so that D?
k ⊆ V ?k . Following the

proof of Theorem 2.1.1 in the last chapter, we get a fixed, finite collection Pk(u, u′) of

piecewise smooth paths in V ?k between u, u′ ∈ V ?k and a (randomly chosen) simple, piecewise

smooth path Pk,γ(u, u′) ∈ Pk such that

E
( ∫

Pk,γ(u,u′)
eγ(1+C4γ)h

2−k (z)/2|dz|
)

= Oγ,D,ε(2
−kΩ(γ4/3/ log γ−1)) . (3.2.5)

In order to create a lattice path (i.e. in D?
k ) between u and u′ from Pk,γ(u, u′) we follow

a simple procedure. Starting from the initial point pk,γ;0 of Pk,γ(u, u′), wait until it exits

the smallest square S0 satisfying (a) pk,γ;0 ∈ S0, (b) d`2(pn,0, ∂S0) ≥ 2−(k−3) and (c) the

vertices of S0 are in D?
k . Repeat the same procedure with the exit point of Pk,γ(u, u′) and

continue until it reaches u′. At the end of this procedure we will get a sequence of squares

S0, S1, · · · , where each Si has diameter at most 32−(k−3) and the vertices of Si’s contain a

lattice path P ?k,γ(u, u′) between u and u′. Now let us recall from Section 2.5 in Chapter 2
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that

max
z,z′∈V ?k ,|z−z′|≤2−(k−3)

Var(h2−k(z)− h2−k(z′)) = O(1) , and

max
z∈V ?k

Var(h2−k(z)) = O(k) +OD,ε(1) .

Then from the arguments involving the extreme values of Gaussian processes as used for

(2.5.4), we can find C5 such that

P
(

max
z,z′∈V ?k ,|z−z′|≤2−(k−3)

(h2−k(z)− h2−k(z′)) ≥ C5

√
k + x

)
= e−ΩD,ε(x

2) , (3.2.6)

for all x ≥ 0. Now define an event Ek as

Ek =
{

max
z,z′∈V ?k ,|z−z′|≤2−(k−3)

(h2−k(z)− h2−k(z′)) ≤ (C5 + 1)
√
k
}
.

As the euclidean length of Pk,γ(u, u′) inside each Si is Ω(2−k), from (3.2.5) it follows that

E
(( ∑

z∈P ?k,γ(u,u′)

eγ(1+C4γ)h
2−k (z))1Ek) = O(2k)e(C5+1)

√
kOγ,D,ε(2

−kΩ(γ4/3/ log γ−1))

= Oγ,D,ε(2
k(1−Ω(γ4/3/ log γ−1))) .

On the other hand, from (3.2.6) and Cauchy-Schwarz inequality (similar to (2.5.7) and

(2.5.8)) we obtain

E
(( ∑

z∈Pk(u,u′)

eγ(1+C4γ)h
2−k (z))1Eck) = OD,ε(2

k)2−k(ΩD,ε(1)−O(γ2)) = OD,ε
(
2k(1−ΩD,ε(1))) ,

where Pk(u, u′) is the shortest path between u and u′ in the graph D?
k . Choosing P ?k,γ(u, u′)

and Pk(u, u′) on Ek and Eck respectively as a lattice path between u and u′, we get the

desired bound on ED?
γ,k(u, u′) from the previous two displays.
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We will call the path minimizing D?
γ,k(u, u′) as the (γ, k)-geodesic between u and u′.

Now given v, w in V , we pick squares vk and wk in Dk that contain v and w respectively.

There are several ways to do this and we follow an arbitrary but fixed convention. Define

S?(k, v, w) as the collection of squares in Dk which correspond to the points in the (γ, k)-

geodesic between c([v]k) and c([w]k) in D?k. Here c([v]k) and c([w]k) are the centers of squares

[v]k and [w]k respectively. Thus S?(k, v, w) is actually a chain of squares connecting v and

w (see Figure 3.1). An important observation is the following.

Observation 3.2.5. The euclidean distance between the boundary of any square in S?(k, v, w)

and D?
k is at least 2−(k−2).

Given S ∈ S?(k, v, w) that is not [v]k or [w]k, divide each boundary segment of S into 16 seg-

ments (with disjoint interiors) of length 2−(k+1). For any such segment T , let BT denote the

closed ball of radius 2−(k+2) centered at the midpoint of T . Thus T is a diameter segment of

BT . Cover T with the minimum possible number of (MD
γ,BT

, δe
−γhD

2−k
(c(S))/2

e−C6γ
√
k log 2)-

balls contained in BT where MD
γ,BT

is the LQG measure on B̃T constructed from hD,B̃T ,

c(S) is the center of S and C6 is an absolute constant to be specified later. Denote the

collection of all such balls from all the segments of ∂S as S(S, δ). If S = [v]k or [w]k, we

simply cover S with minimum possible number of (MD
γ , δ)-balls and include them in S(S, δ).

Finally define

S??(k, δ, v, w) =
⋃

S∈S?(k,v,w)

S(S, δ) .

It is clear that the union of balls in S??(k, v, w) contains a path between v and w. Figure 3.1

gives an illustration of this construction.

We will now describe the construction of S(δ, v, w). By Lemma 3.2.1, the bounds on

Var(hδ?(u)− hδ?(u′)) and Var(hδ?(v)), and tail estimates as used in (2.5.4) and (3.2.6), we

get C6 such that for all k sufficiently large (depending on D, ε)

(a) P(minu∈V h2−k(u) < −2C6k log 2) ≤ 2−3k and

(b) P(maxS maxB max
v∈B2∗(ϕD,B(v)− hD

2−k
(c(S))) > 2C6

√
k log 2) ≤ 2−3k,
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Figure 3.1: An instance of S??(k, δ, v, w). Squares in S?(k, δ, v, w) are filled with light
blue color. The black dotted points lie in D?

k . v (left) and w (right) are indicated as blue
dotted points. The red (lattice) path is the LFPP path between c([v]k) and c([w]k). The
green circles indicate the balls in S??(k, δ, v, w). Balls that lie parallel to the brown segments
define a chain of ball connecting v and w.

where in (b), S ranges over all squares in Dk and B ranges over all balls of radius 2−(k+2)

around S that we described in the last paragraph. Choose δ′ as the smallest number of the

form 2−k (where k ∈ N) such that δ′ ≥ δ1−2C6γ . Now if

min
u∈V

hδ′(u) < −2C6 log δ′−1

or if

max
S

max
B

max
v∈B2∗

(ϕD,B(v)− hD
2−k(c(S))) > 2C6

√
k log 2 ,

(we call the union of these two events as Eδ) simply cover the straight line segment joining

v and w with the minimum possible number of (MD
γ , δ)-balls. Otherwise (i.e. on Ecδ) set

S(δ, v, w) = S??(k′, δ, v, w) where δ′ = 2−k
′
. Notice that S??(k, δ, v, w) is a valid choice for
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S(δ, v, w) on Ecδ as

MD
γ (A) ≤ e

γmaxS maxB max
v∈B2∗(ϕD,B(v)−hD

2−k
(c(S)))

e
γhD

2−k
(c(S))

MD
γ,BT

(A)

for all BT and all compact A ⊆ BT (this again follows from the definition of LQG measure

as a weak limit).

Upper bound on E(|S(δ, v, w)|): Let us denote the σ-field generated by {hδ′(v) : v ∈ D?
k′}

as Fδ and the event {minv∈D?
k′
hδ′(v) ≥ −2C6 log δ′−1} as Fδ. We then have

E(|S(δ, v, w)|
∣∣Fδ) ≤ ∑

S∈S?(k′,v,w)

∑
T

E
(
N?(MD

γ,BT
, δe−γh

D
δ′ (c(S))/2e−C6γ

√
k′ log 2, T )

∣∣Fδ)1Fδ
+ E

(
N(MD

γ , δ, vw)1Eδ′ |Fδ
)

+ E
(
N(MD

γ , δ, [v]k′)|Fδ
)

+ E
(
N(MD

γ , δ, [w]k′)|Fδ
)
,

where T ranges over all the 16 × 4 segments of ∂S and N?(MD
γ,BT

, r, T ) is the minimum

possible number of (Mγ,BT , r)-balls contained in BT that are required to cover T . By

the Markov property of GFF (see the discussions around (3.2.1)) and Observation 3.2.5 it

follows that MD
γ,BT

is identically distributed as M
B̃T
γ and is independent with Fδ. The latter

is identically distributed as δ
′2

16M
D
γ by scale and translation invariance property of GFF. Also

on Fδ,

δe−γh
D
δ′ (c(S))/2e−C6γ

√
k′ log 2 < δδ′−C6γ ≤ δ′(1−2C6γ)−1−C6γ < δ′ .

We can then apply Proposition 3.2.2 to the first term in the right hand side of the previous

display to get

E|S(δ, v, w)| ≤ Oγ((δ/δ′)−1−C4γ/2)eC6γ
√

log 2k′(1+C4γ/2)E
( ∑
S∈S?(k′,v,w)

e
γ(1+C4γ)hδ′ (c(S))

2

)
+EN(MD

γ , δ, vw)1Eδ′ + EN(MD
γ , δ, [v]k′) + EN(MD

γ , δ, [w]k′) .
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The first term on the right hand side equals, by Lemma 3.2.4

Oγ(δ−2C6γ(1+C4γ/2))Oγ,D,ε(1)δ′−1+Ω(γ4/3/ log γ−1)

= Oγ,D,ε(δ
−2C6γ(1+C4γ/2))δ2C6γδ−1+Ω(γ4/3/ log γ−1) = Oγ,D,ε(δ

−1+Ω(γ4/3/ log γ−1)) .

The second term is O(1) as a consequence of bounds (a), (b), Corollary 3.2.3 and Cauchy-

Schwarz inequality (similar to (2.5.7) and (2.5.8)). The last two terms are Oγ,D,ε(δ
−O(γ))

by Corollary 3.2.3. Adding up these four terms, we get the required bound on E|S(δ, v, w)|.
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CHAPTER 4

EFFECTIVE RESISTANCE METRIC

4.1 Upper and lower bounds on effective resistance

As hinted in Section 1.2 of Chapter 1, the key to analyzing the random walk defined by (1.2.2)

(or equivalently (1.2.1)) is to estimate the effective resistances of the underlying network.

The precise statement is the subject of:

Theorem 4.1.1. Let us regard B(N) := [−N,N ]2∩Z2 as a conductance network where edge

(u, v) has conductance eγ(ηu+ηv). Let RB(N)η(u, v) denote the effective resistance between u

and v in network B(N). For each γ > 0 there are C,C ′ ∈ (0,∞) such that

max
u,v∈B(N)

P
(
RB(N)η(u, v) ≥ CeCt

√
logN

)
≤ C ′e−t

2
logN (4.1.1)

holds for each N ≥ 1 and each t ≥ 0. Moreover, for the corresponding network Z2
η on all

of Z2, there is a constant C̃ > 0 such that

lim sup
N→∞

logRZ2
η
(0, B(N)c)

(logN)1/2(log logN)1/2
≤ C̃, P-a.s. (4.1.2)

and, for each γ > 0 and each δ > 0, also

lim inf
N→∞

logRZ2
η
(0, B(N)c)

(logN)1/2/(log logN)1+δ
> 0, P-a.s. (4.1.3)

The effective resistance and further background on the theory of resistor networks are dis-

cussed in detail in Section 4.2. We note that, in light of monotonicity of N 7→ RZ2
η
(0, B(N)c),

the bounds in Theorem 4.1.1 readily imply recurrence of the random walk as well.
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4.1.1 A word on proof strategy

Theorem 4.1.1 is proved by a novel combination of planar and electrostatic duality, Gaussian

concentration inequality and the Russo-Seymour-Welsh theory, as we outline below.

Duality considerations for planar electric networks are quite classical. They invariably

boil down to the simple fact that, in a planar network, every harmonic function comes hand-

in-hand with its harmonic conjugate. An example of a duality statement, and a source of

inspiration for us, is [57, Proposition 9.4], where it is shown that, for locally-finite planar

networks with sufficient connectivity, the wired effective resistance across an edge (with the

edge removed) is equal to the free effective conductance across the dual edge in the dual net-

work (with the dual edge removed). However, the need to deal with more complex geometric

settings steered us to develop a version of duality that is phrased in purely geometric terms.

In particular, we use that, in planar networks with a bounded degree, cutsets can naturally

be associated with paths and vice versa.

The starting point of our proofs is thus a representation of the effective resistance, resp.,

conductance as a variational minimum of the Dirichlet energy for families of paths, resp.,

cutsets. Although these generalize well-known upper bounds on these quantities (e.g., the

Nash-Williams estimate), we prefer to think of them merely as extensions of the Parallel and

Series Law. Indeed, the variational characterizations are obtained by replacing individual

edges by equivalent collections of new edges, connected either in series or parallel depending

on the context, and noting that the said upper bounds become sharp once we allow for opti-

mization over all such replacements. We refer to Propositions 4.2.1 and 4.2.3 in Section 4.2

for more details.

Another useful fact that we rely on heavily is the symmetry η
law
= −η which implies that

the joint laws of the conductances are those of the resistances. Using this we can almost

argue that the law of the effective resistance between the left and right boundaries of a

square centered at the origin is the same as the law of the effective conductance between

the top and bottom boundaries. The rotation symmetry of η and the (electrostatic) duality
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between the effective conductance and resistance would then imply that the law of the

effective resistance through a square is the same as that of its reciprocal value. Combined

with a Gaussian concentration inequality (see [76, 18]), this would readily show that, for the

square of side N , this effective resistance is typically No(1).

However, some care is needed to make the “almost duality” argument work. In fact, we

do not expect an exact duality of the kind valid for critical bond percolation on Z2 to hold

in our case. Indeed, such a duality might for instance entail that the law of the conductances

on a minimal cutset (separating, say, the opposite sides of a square) in the primal network

is the same as the law of the resistances on the dual path “cutting through” this cutset.

Although the GFFs on a graph and its dual are quite closely related (see, e.g., [14]), we do

not see how this property can possibly be true. Notwithstanding, we are more than happy to

work with just an approximate duality which, as it turns out, requires only a uniform bound

on the ratio of resistances of neighboring edges. This ratio would be unmanageably too large

if applied the duality argument to the network based on the GFF itself. For this reason, we

invoke a decomposition of GFF (see Lemma 4.3.12) into a sum of two independent fields,

one of which has small variance and the other is a highly smooth field. We then apply the

approximate duality to the network derived from the smooth field, and we argue that the

influence from the other field is small since it has small variance.

We have so far explained only how to estimate the effective resistances between the

boundaries of a square. However, in order to prove our theorems, we need to estimate

effective resistances between vertices, for which a crucial ingredient is an estimate of the

effective resistances between the two short boundaries of a rectangle. Questions of this type

fall into the framework of the Russo-Seymour-Welsh (RSW) theory. This is an important

technique in planar statistical physics, initiated in [68, 72, 69] with the aim to prove uniform

positivity of the probability of a crossing of a rectangle in critical Bernoulli percolation.

Recently, the theory has been adapted to include FK percolation, see e.g. [38, 6, 41], and, in

[77], also Voronoi percolation. In fact, the beautiful method in [77] is widely applicable to
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percolation problems satisfying the FKG inequality, mild symmetry assumptions, and weak

correlation between well-separated regions. For example, in [40], this method was used to

give a simpler proof of the result of [6], and in [39], a RSW theorem was proved for the

crossing probability of level sets of the planar GFF.

Our RSW proof is hugely inspired by [77], with the novelty of incorporating the (resis-

tance) metric rather than merely considering connectivity. We remark that in [29], a RSW

result was established for the Liouville FPP metric, again inspired by [77]. It is fair to say

that the RSW result in this chapter is less complicated than that in [29], for the reason that

we have the approximate duality in our context which was not available in [29]. However, our

RSW proof has its own subtlety since, for instance, we need to consider crossings by whole

collections of paths simultaneously. The RSW proof is carried out in Section 4.4. Finally

in Section 4.5, we use some of these estimates along with a decomposition of η from [15] to

derive an asymptotic rate for the effective resistance between origin and ∂B(N).

4.2 Generalized parallel and series law for effective resistances

As noted above, our estimates of effective resistance between various sets in Z2 rely crucially

on a certain duality between the effective resistance and the effective conductance which will

itself be based on the distributional equality of η with −η. The exposition of our proofs thus

starts with general versions of these duality statements. These can be viewed as refinements

of [57, Proposition 9.4] and are therefore of general interest as well.

4.2.1 Variational characterization of effective resistance

Let G be a finite, unoriented, connected graph where each edge e is equipped with a resistance

re ∈ R+, where R+ denotes the set of positive reals. We will use G to denote both the

corresponding network as well as the underlying graph. Let V (G) and E(G) respectively

denote the set of vertices and edges of G. We assume for simplicity that G has no self-loops
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although we allow distinct vertices to be connected by multiple edges. For the purpose of

counting we identify the two orientations of each edge; E(G) thus includes both orientations

as one edge.

Two edges e and e′ of G are said to be adjacent to each other, denoted as e ∼ e′, if they

share at least one endpoint. Similarly a vertex v and an edge e are adjacent, denoted as

v ∼ e, if v is an endpoint of the edge e. A path P is a sequence of vertices of G such that any

two successive vertices are adjacent. We also use P to denote the subgraph of G induced by

the edge set of P .

For u, v ∈ V (G), a flow θ from u to v is an assignment of a number θ(x, y) to each

oriented edge (x, y) such that θ(x, y) = −θ(y, x) and
∑
y : y∼x θ(x, y) = 0 whenever x 6= u, v.

The value of the flow θ is then the number
∑
y : y∼u θ(u, y); a unit flow then has this value

equal to one. With these notions in place, the effective resistance RG(u, v) between u and v

is defined by

RG(u, v) := inf
θ

∑
e∈E(G)

re θ
2
e , (4.2.1)

where the infimum (which is achieved because G is finite) is over all unit flows from u to v.

Note that we sum over each edge e ∈ E(G) only once, taking advantage of the fact that θe

appears in a square in this, and later expressions.

Recall that a multiset of elements of A is a set of pairs {(a, i) : i = 1, . . . , na} for some

na ∈ {0, 1, . . . } for each a ∈ A. We have the following alternative characterization of

RG(u, v):

Proposition 4.2.1. Let Pu,v denote the set of all multisets of simple paths from u to v.

Then

RG(u, v) = inf
P∈Pu,v

inf
{re,P : e∈E(G), P∈P}∈RP

( ∑
P∈P

1∑
e∈P re,P

)−1
, (4.2.2)
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where RP is the set of all assignments {re,P : e ∈ E(G), P ∈ P} ∈ RE(G)×P
+ such that

∑
P∈P

1

re,P
≤ 1

re
for all e ∈ E(G) . (4.2.3)

The infima in (4.2.2) are (jointly) achieved.

Proof. Let R? denote the right hand side of (4.2.2). We will first prove Reff(u, v) ≤ R?. Let

thus P ∈ Pu,v and {re,P : e ∈ E,P ∈ P} ∈ RP subject to (4.2.3) be given. We will view

each edge e in G as a parallel of a collection of edges {eP : P ∈ P} where the resistance on eP

is re,P and, if the inequality in (4.2.3) for edge e is strict, a dummy edge ẽ with resistance

rẽ such that 1/rẽ = 1/re −
∑
P∈P 1/re,P . In this new network, P can be identified with a

collection of disjoint paths where (by the series law) each path P ∈ P has total resistance∑
e∈P re,P . The parallel law now guarantees

RG(u, v) ≤
( ∑
P∈P

1∑
e∈P re,P

)−1

which proves RG(u, v) ≤ R? as desired.

Next, we turn to proving that RG(u, v) ≥ R? and that the infima in (4.2.2) are achieved.

To this end, let θ? be the flow that achieves the minimum in (4.2.1). In light of the inequality

RG(u, v) ≤ R? it suffices to construct a collection of paths P? ∈ Pu,v and an assignment of

resistances {r?e,P : e ∈ P, P ∈ P?} such that

( ∑
P∈P?

1∑
e∈P r

?
e,P

)−1
≤

∑
e∈E(G)

re (θ?e)2. (4.2.4)

The argument proceeds by constructing inductively a sequence of flows θ(j) from u to v

(whose value decreases to zero) and a sequence of collections of paths Pj as follows. We

initiate the induction by setting

θ(0) := θ? and P(0) := ∅ and employ the following iteration for j ≥ 1:

60



• If θ
(j−1)
e = 0 for all e ∈ E(G), then set J := j − 1 and stop.

• Otherwise, there exists a path Pj from u to v such that θ
(j−1)
e > 0 for all e ∈ Pj .

Denote αj := mine∈Pj θ
(j−1)
e .

• Set Pj := Pj−1 ∪ {Pj} and let re,Pj :=
θ?e
αj
re for all e ∈ Pj .

• Set θ
(j)
e := θ

(j−1)
e − αj for all e ∈ Pj and θ

(j)
e := θ

(j−1)
e for all e 6∈ Pj , and repeat.

Since the set {e ∈ E(G) : θ
(j)
e = 0} is strictly increasing (and our graph is finite), the

procedure will stop after a finite number of iterations; the quantity J then gives the number

of iterations used. Note that the same also shows that the paths Pj are distinct.

We will now show the desired inequality (4.2.4) with P? := PJ and re,P := re,Pj for

P = Pj . First, abbreviating [J ] : = {1, . . . , J}, we have

∑
j∈[J ] : e∈Pj

αj = θ?e

for each e ∈ E(G). Employing the definition of re,Pj we get

∑
j∈[J ] : e∈Pj

α2
jre,Pj =

∑
j∈[J ] : e∈Pj

αjθ
?
ere = re (θ?e)2

and so ∑
e∈E(G)

∑
j∈[J ] : e∈Pj

α2
jre,Pj =

∑
e∈E(G)

re (θ?e)2 .

Rearranging the sums yields

∑
e∈E(G)

∑
j∈[J ] : e∈Pj

α2
jre,Pj =

∑
j∈[J ]

α2
j

( ∑
e∈Pj

re,Pj

)
,

where
∑
j∈[J ] αj = 1. Abbreviating Rj :=

∑
e∈Pj re,Pj , the right hand side of the preceding
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equality is minimized (subject to the stated constraint) at αj :=
1/Rj∑

j∈[J ] 1/Rj
, and therefore

∑
j∈[J ]

α2
j

( ∑
e∈Pj

re,Pj

)
≥
( ∑
j∈[J ]

1

Rj

)−1
.

This completes the desired inequality (4.2.4) including the construction of a minimizer

in (4.2.2).

A slightly augmented version of the above proof in fact yields:

Proposition 4.2.2. Let Tu,v be the set of all multisets of edges of G that, if considered as

a graph on V (G), contain a path between u and v. Then

RG(u, v) = inf
T ∈Tu,v

inf
{re,T :e∈E(G),T∈T }∈RT

( ∑
T∈T

1∑
e∈T re,T

)−1
, (4.2.5)

where RT is the set of all assignments {re,T : e ∈ E(G), T ∈ T } ∈ RE(G)×T
+ such that

∑
T∈T

1

re,T
≤ 1

re
for all e ∈ E(G) . (4.2.6)

The infima are jointly achieved for T being a subset of Pu,v.

Proof. Let R? denote the right-hand side of (4.2.5). Obviously, Pu,v ⊆ Tu,v so restricting the

first infimum to T ∈ Pu,v, Proposition 4.2.1 shows RG(u, v) ≥ R?. (This will also ultimately

give that the minimum is achieved over collections of paths.) To get RG(u, v) ≤ R?, let us

consider an assignment {re,T : e ∈ E(G), T ∈ T } satisfying (4.2.6). For each T ∈ T , let

PT denote an arbitrarily chosen simple path between u and v formed by edges in T . Then,

defining re,PT := re,T for each T ∈ T , we find that the assignment {re,PT : e ∈ E(G), T ∈ T }

satisfies (4.2.3). Now the claim follows from the simple observation that
∑
e∈PT re,pT ≤∑

e∈PT re,T .
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4.2.2 Variational characterization of effective conductance

An alternative way to approach an electric network is using conductances. We write ce :=

1/re for the edge conductance on e, and define the effective conductance between u and v

by

CG(u, v) := inf
F

∑
e∈E(G)

ce
[
F (e+)− F (e−)

]2
, (4.2.7)

where e± are the two endpoints of the edge e (in some a priori orientation) and the infimum

is over all functions F : V → R satisfying F (u) = 1 and F (v) = 0. The infimum is again

achieved by the fact that G is finite. The fundamental electrostatic duality is then expressed

as

CG(u, v) =
1

RG(u, v)
(4.2.8)

and our aim is to capitalize on this relation further by exploiting the geometric duality

between paths and cutsets. Here we say that a set of edges π is a cutset between u and v

(or that π separates u from v) if each path from u to v uses an edge in π.

Proposition 4.2.3. Let Πu,v denote the set of all finite collections of cutsets between u

and v. Then

CG(u, v) = inf
Π∈�u,v

inf
{ce,π : e∈E(G),π∈Π}∈CΠ

(∑
π∈Π

1∑
e∈π ce,π

)−1
, (4.2.9)

where CΠ is the set of all assignments {ce,π : e ∈ E(G), π ∈ Π} ∈ RE(G)×Π
+ such that

∑
π∈Π

1

ce,π
≤ 1

ce
for all e ∈ E(G) . (4.2.10)

The infima in (4.2.9) are (jointly) achieved.

Proof. The proof is structurally similar to that of Proposition 4.2.1. Denote by C? the

quantity on the right hand side of (4.2.9). We will first prove Ceff(u, v) ≤ C?. Pick Π ∈ Π

and {ce,π : e ∈ E(G), π ∈ Π} ∈ CΠ subject to (4.2.10). Now view each edge e as a series
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of a collection of edges {eπ : e ∈ π, π ∈ Π} where the conductance on eπ is ce,π and, if

the inequality in (4.2.10) is strict, a dummy edge ẽ with conductance cẽ such that 1/cẽ =

1/ce −
∑
π∈Π 1/ce,π. In this new network, Π can be identified with a collection of disjoint

cutsets, where the cutset π ∈ Π has total conductance
∑
e∈π ce,π. The Nash-Williams

Criterion then shows

CG(u, v) ≤
(∑
π∈Π

1∑
e∈π ce,π

)−1

thus proving CG(u, v) ≤ C? as desired.

Next, we turn to proving CG(u, v) ≥ C? and that the infima in (4.2.9) are attained. Let

F ? be a function that achieves the infimum in (4.2.7). This function is discrete harmonic in

the sense that LF ?(x) = 0 for x 6= u, v, where

Lf(x) :=
∑

y : y∼x
c(x,y)

[
f(y)− f(x)

]
.

In light of the inequality CG(u, v) ≤ C?, it suffices to construct a collection of cutsets Π?

and conductances {c?e,π : e ∈ π, π ∈ Π?} such that

( ∑
π∈Π?

1∑
e∈π c

?
e,π

)−1
≤

∑
e∈E(G)

ce
[
F ?(e+)− F ?(e−)

]2
. (4.2.11)

We will now define a sequence of functions F (j) satisfying

LF (j)(x) = 0, for x 6= u, v (4.2.12)

and a sequence of collections of cutsets Πj as follows. Initially, we set F (0) := F ? and

Π(0) := ∅. Abbreviating dF (e) := |F (e+) − F (e−)|, we employ the following iteration for

j ≥ 1:

• If F (j−1) is constant on V (G), then set J := j − 1 and stop.

• Otherwise, by (4.2.12) (and positivity of all ce’s) we have F (j−1)(u) 6= F (j−1)(v) and
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hence there exists a cutset πj separating u from v such that |dF (j−1)(e)| > 0 for all

e ∈ Pj . We take πj to be the closest cutset to u — that is, one that is not separated

from u by another such cutset — and define αj := mine∈πj dF
(j−1)(e).

• Set Πj := Πj−1 ∪ {πj} and let ce,πj :=
dF ?(e)
αj

ce for all e ∈ Pj .

• Set F (j)(e+) := F (j−1)(e+) − αj for all e ∈ πj , where e+ denotes the endpoint of e

with a larger value of F (j−1). For all other vertices x, set F (j)(x) := F (j−1)(x), and

repeat.

We see that the above procedure will stop after a finite number of iterations, since all

the cutsets πj are different by our construction. The number J is then the total number

of iterations used. The validity of (4.2.12) for all j = 1, . . . , J follows directly from the

construction.

In order to prove (4.2.11), we now proceed as follows. First, we have

∑
j∈[J ] : e∈πj

αj = dF ?(e)

and so, by the definition of αj ,

∑
j∈[J ] : e∈πj

α2
jce,πj =

∑
j∈[J ] : e∈Pj

αj dF
?(e)ce = (dF ?(e))2ce .

It follows that

∑
e∈E(G)

∑
j∈[J ] : e∈πj

α2
jce,πj =

∑
e∈E(G)

ce
[
F ?(e+)− F ?(e−)

]2
.

Rearranging the sums yields

∑
e∈E(G)

∑
j∈[J ] : e∈πj

α2
jce,πj =

∑
j∈[J ]

α2
j

( ∑
e∈πj

ce,πj

)
,

65



where
∑
j∈[J ] αj = 1. Abbreviating Cj :=

∑
e∈πj ce,πj , the right hand side of the preceding

equality is minimized (subject to the stated constraint) at αj :=
1/Cj∑

j∈[J ] 1/Cj
. Therefore,

∑
j∈[J ]

α2
j

( ∑
e∈πj

ce,πj

)
≥
( ∑
j∈[J ]

1

Cj

)−1

which completes the proof of (4.2.11) including the existence of minimizers in (4.2.9).

Propositions 4.2.1 and 4.2.3 seem to be closely related to various variational characteri-

zations of effective resistance/conductance by way of of optimizing over random paths and

cutsets. These are rooted in the Nash-Williams criterion and Terry Lyons’ random-path

method for bounding effective resistance (which can be shown to be sharp). The ultimate

statements of these characterizations can be found in Berman and Konsowa [11].

4.2.3 Restricted notion of effective resistance

Propositions 4.2.1 and 4.2.3 naturally lead to restricted notions of resistance and conductance

obtained by limiting the optimization to only subsets of paths and cutsets, respectively. For

the purpose of current chapter we will only be concerned with effective resistance. To this

end, for each collection A of finite sets of elements from E(G), we define

RG(A) := inf
{re,A:e∈E(A), A∈A}∈RA

( ∑
A∈A

1∑
e∈A re,A

)−1
, (4.2.13)

where E(A) :=
⋃
A∈AA and where RA is the set of all {re,A : e ∈ E(A), A ∈ A} ∈ RE(A)×A

+

such that ∑
A∈A

1

re,A
≤ 1

re
for all e ∈ E(A) . (4.2.14)

We refer to RG(A) as the effective resistance restricted to A. By taking suitable re,P , the

map A 7→ RG(A) is shown to be non-decreasing with respect to the set inclusion. We will

mostly be interested in RG(A) when A is a set of simple paths from u to v. The following
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result is analogous to metric property of effective resistance.

Lemma 4.2.4. Let P1,P2, · · · ,Pk be collections of paths such that for any choice of Pi from

Pi for each 1 ≤ i ≤ k, the graph union
⋃

1≤i≤k Pi contains a path between u and v. Then

RG(u, v) ≤
k∑
i=1

RG(Pi) .

Proof. Define the edge sets E1, E2, · · · , Ek recursively by setting E1 :=
⋃
P∈P1

E(P ) and

letting Ej :=
⋃
P∈Pj E(P ) \

⋃
i<j Ei for k ≥ j > 1. Let {re,P : e ∈ E(G), P ∈ Pi} be a

vector in RE(G)×Pi
+ satisfying (4.2.14) for all i. For each i = 1, . . . , k and each P ∈ Pi, define

ρi,P by

ρi,P :=

(∑
e∈E(P ) re,P

)−1∑
P∈Pi

(∑
e∈E(P ) re,P

)−1
.

Also for e ∈ Ei and P1, P2, · · · , Pk in P1,P2, · · · ,Pk respectively, define

re;P1,P2,··· ,Pk := re,Pi

∏
j 6=i

1

ρj,Pj
.

Notice that for any e ∈ Ei,

∑
Pj∈Pj ,
1≤j≤k

1

re;P1,P2,··· ,Pk
=
∑
Pi∈Pi

1

re,Pi
≤ 1

re
, (4.2.15)

where the first equality follows from the fact that
∑
P∈Pj ρj,P = 1 for all j and the last

inequality is a consequence of (4.2.14).
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The above definitions also immediately give

∑
e∈
⋃

1≤i≤k E(Pj)

re;P1,P2,··· ,Pk ≤
∑

1≤i≤k

∑
e∈E(Pi)

re,Pi∏
j 6=i ρj,Pj

=
∑

1≤i≤k

(∑
P∈Pi

1∑
e∈E(P ) re,P

)−1∏
1≤j≤k ρj,Pj

(4.2.16)

As (4.2.15) holds, Proposition 4.2.2 with T being the set of edges in P1, . . . , Pk yields

RG(u, v) ≤

( ∑
Pj∈Pj ,
1≤j≤k

1∑
e∈
⋃

1≤i≤k E(Pj)

re;P1,P2,··· ,Pk

)−1

≤

([ ∑
1≤i≤k

( ∑
P∈Pi

1∑
e∈E(P ) re,P

)−1
]−1 ∑

Pj∈Pj ,
1≤j≤k

∏
1≤j≤k

ρj,Pj

)−1

=
∑

1≤i≤k

( ∑
P∈Pi

1∑
e∈E(P ) re,P

)−1
,

(4.2.17)

where we again used that
∑
P∈Pj ρj,P = 1 in the last step. Since (4.2.17) holds for all choices

of {re,P : e ∈ E(G), P ∈ Pi} satisfying (4.2.14), the claim follows from (4.2.13).

A similar upper bound holds also for the effective conductance.

Lemma 4.2.5. Let P1, . . . ,Pk ∈ Pu,v be such that every path from u to v lies in
⋃

1≤i≤k Pi.

Then

CG(u, v) ≤
∑

1≤i≤k
RG(Pi)−1 .

Proof. This is a straightforward consequence of Proposition 4.2.1. Indeed, write RG(u, v)−1

as suprema of
∑
P∈P(

∑
e∈P re,P )−1 over P and re,P satisfying (4.2.3). Next bound the

sum over P by the sum over i = 1, . . . , k and the sum over P ∈ P ∩ Pi and observe, since

68



∑
P∈P∩Pi 1/re,P ≤

∑
P∈P 1/re,P ≤ 1/re, we have

k∑
i=1

∑
P∈P∩Pi

1∑
e∈P re,P

≤
k∑
i=1

RG(Pi)−1.

As this holds for all P and all admissible re,P , the claim follows from (4.2.8).

We note (and this will be useful later) that, in standard treatments of electrostatic theory

on graphs, the notions of effective resistance/conductance are naturally defined between

subsets (as opposed to just single vertices) of the underlying network. A simplest way to

reduce this to our earlier definitions is by “gluing” vertices in these sets together. Explicitly,

given two non-empty disjoint sets A,B ⊆ V (G) consider a network G′ where all edges in

(A×A) ∪ (B ×B) have been removed and the vertices in A identified as one vertex 〈A〉 —

with all edges in G with exactly one endpoint in A now “pointing” to 〈A〉 in G′ — and the

vertices in B similarly identified as one vertex 〈B〉. Then we define

RG(A,B) := RG′
(
〈A〉, 〈B〉

)
and CG(A,B) := CG′

(
〈A〉, 〈B〉

)
. (4.2.18)

Note that, for one-point sets, RG({u}, {v}) coincides with RG(u, v), and similarly for the

effective conductance. The electrostatic duality also holds, RG(A,B) = 1/CG(A,B).

4.2.4 Self-duality

The similarity of the two formulas (4.2.2) and (4.2.9) naturally leads to the consideration

of self-dual situations — i.e., those in which the resistances re can somehow be exchanged

for the conductances ce. An example of this is the network Z2
η where the distributional

identity η
law
= −η makes the associated resistances {re : e ∈ E(Z2)} equidistributed to the

conductances {ce : e ∈ E(Z2)}. To formalize this situation, given a network G we define

its reciprocal G? as the network with the same underlying graph but with the resistances

swapped for the conductances. An edge e in network G? thus has resistance r?e := 1/re,
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where re is the resistance of e in network G.

Lemma 4.2.6. Let D denote the maximum vertex degree in G and let ρmax denote the

maximum ratio of the resistances of any pair of adjacent edges in G. Given two pairs (A,B)

and (C,D) of disjoint, nonempty subsets of V (G), suppose that every path between A and B

shares a vertex with every path between C and D. Then

RG(A,B) ≥ 1

4D2ρmaxRG?(C,D)
. (4.2.19)

Proof. The proof is based on the fact that every path P between C and D defines a cutset πP

between A and B by taking πP to be the set of all edges adjacent to any edge in P , but not

including the edges in (A×A)∪ (B ×B). By the electrostatic duality we just need to show

CG(A,B) ≤ 4D2ρmaxRG?(A,B) . (4.2.20)

To this end, given any P ∈ PC,D let us pick positive numbers {r′e,P : e ∈ E(P), P ∈ P}

such that ∑
P∈P

1

r′e,P
≤ 1

ce
for all e ∈ E(P) . (4.2.21)

For any edge e and any path P ∈ P , let NP (e), NP(e) and N(e) denote the sets of all

edges in E(P ), E(P) and E(G) that are adjacent to e, respectively. For any e ∈ E(P)

and any P ∈ P , let θe,P := ce/r
′
e,P and note that θe,P ’s are positive numbers satisfying∑

P∈P θe,P ≤ 1 for all e ∈ E(P). As a consequence, if we define

ce,πP :=
ce∑

e′∈NP′(e)
θe′,P

|NP(e)| (4.2.22)

then {ce,πP : e ∈
⋃
P∈P πP , P ∈ P} satisfies (4.2.10). Now fix a path P in P and compute,
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invoking the definitions of D, ρmax and also Jensen’s inequality in the second step:

∑
e∈πP

ce,πP =
∑
e∈πP

ce∑
e′∈NP(e)

θe′,P
|NP(e)| ≤ 2D

∑
e∈πP

ce∑
e′∈NP (e)

θe′,P
|NP (e)|

≤ 2D
∑
e∈πP

( ce
|NP (e)|

∑
e′∈NP (e)

1

θe′,P

)
≤ 2D

∑
e∈E(G),e′∈P

e∼e′

ce
θe′,P

= 2D
∑
e′∈P

∑
e∈N(e′)

ce

θe′,P
≤ 4D2ρmax

∑
e′∈P

ce′

θe′,P
= 4D2ρmax

∑
e′∈P

r′e′,P .

(4.2.23)

Hence we get

CG(Π)(A,B) ≤
( ∑
P∈P ′

1∑
e∈πP ce,πP

)−1
≤ 4D2ρmax

( ∑
P∈P ′

1∑
e∈P r

′
e,P

)−1
. (4.2.24)

As this holds for any choice of P and positive numbers {r′e,P : e ∈ E(P), P ∈ P}

satisfying (4.2.21), we get (4.2.20) as desired.

A crucial fact underlying the proof of the previous lemma was that one could obtain a

cut set for P from a path P in P by taking union of all edges adjacent to vertices in P . In

the same setup, we get a corresponding result also for effective conductances. Indeed, we

have:

Lemma 4.2.7. For the same setting and notation as in Lemma 4.2.6, assume that for every

cutset π between C and D, the subgraph induced by the set of all edges that are adjacent to

some edge in π contains a path in PA,B. Then

CG(A,B)CG?(C,D) ≥ 1

4D2ρmax
. (4.2.25)

Proof. For any cutset π between C and D, let Tπ denote the set of all edges that are adjacent

to some edge in π. Thus Tπ contains a path in PA,B by the hypothesis of the lemma. Now
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given any Π ∈ ΠC,D, we pick positive numbers {c?e,π : e ∈
⋃
π∈Π Tπ, π ∈ Π} such that

∑
π∈Π

1

c?e,π
≤ 1

re
. (4.2.26)

Following the exact same sequence of steps as in the proof of Lemma 4.2.6, we now find

{re,Tπ : e ∈ π, π ∈ Π} satisfying (4.2.6) such that

(∑
π∈Π

1∑
e∈Tπ re,Tπ

)−1
≤ 4D2ρmax

(∑
π∈Π

1∑
e∈π c

?
e,π

)−1
.

Proposition 4.2.2 then implies

RG(A,B) ≤
(∑
π∈Π

1∑
e∈Tπ re,Tπ

)−1
≤ 4D2ρmax

(∑
π∈Π

1∑
e∈π c

?
e,π

)−1
.

As this holds for all choices of Π and {c?e,π : e ∈ π, π ∈ Π} satisfying (4.2.26), we get the

desired inequality (4.2.25).

4.3 Preliminaries on Gaussian processes

Before we move on to the main line of the proof, we need to develop some preliminary control

on the underlying Gaussian fields. The goal of this section is to amass the relevant technical

claims concerning Gaussian processes and, in particular, the GFF. An impatient, or otherwise

uninterested, reader may consider only skimming through this section and returning to it

when the relevant claims are used in later proofs.

4.3.1 Some standard inequalities

We start by recalling, without proof, a few standard facts about general Gaussian processes:

Lemma 4.3.1 (Theorem 7.1 in [54]). Given a finite set A, consider a centered Gaussian

72



process {Xv : v ∈ A}. Then, for x > 0,

P
( ∣∣∣max

v∈A
Xv − Emax

v∈A
Xv

∣∣∣ ≥ x

)
≤ 2e−x

2/2σ2
,

where σ2 := maxv∈A E(X2
v ).

Lemma 4.3.2 (Theorem 4.1 in [1]). Let (S, d) be a finite metric space with maxs,t∈S d(s, t) =

1. Suppose that there are β,K1 ∈ (0,∞) such that for every ε ∈ (0, 1], the ε-covering number

Nε(S, d) of (S, d) obeys Nε(S, d) ≤ K1ε
−β. Then for any α,K2 ∈ (0,∞) and any centered

Gaussian process {Xs}s∈S satisfying

√
E(Xs −Xs′)2 ≤ K2 d(s, s′)α, s, s′ ∈ S,

we have

E
(

max
s∈A
|Xs|

)
≤ K and E

(
max
s,t∈A

|Xs −Xt|
)
≤ K,

where K := K2(
√
β log 2 +

√
log(K1 + 1))Kα with Kα :=

∑
n≥0 2−nα

√
n+ 1.

As a consequence of Lemma 4.3.2 we get the following result which we will use in the

next subsection.

Lemma 4.3.3. Let B1, B2, . . . , BN be squares in Z2 of side lengths b1, b2, . . . , bN respectively

and let B := ∪j∈[N ]Bj. There exists an absolute constant C ′ > 0 such that, if {Xv}v∈B is

a centered Gaussian process satisfying

E(Xu −Xv)2 ≤ |u− v|
bj

, (u, v) ∈
N⋃
j=1

(Bj ×Bj),

then

Emax
v∈B

Xv ≤ C ′
√

logN
(

1 + max
v∈B

√
EX2

v

)
+ C ′ .

The following lemma, taken from [62], is the FKG inequality for Gaussian random vari-
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ables. We will refer to this as the FKG in the rest of the thesis.

Lemma 4.3.4. Consider a Gaussian process X = {Xv}v∈A on a finite set A, and suppose

that

Cov(Xu, Xv) ≥ 0, u, v ∈ A. (4.3.1)

Then

Cov
(
f(X), g(X)

)
≥ 0

holds for any bounded, Borel measurable functions f, g on RA that are increasing separately

in each coordinate.

As a corollary to FKG, we get:

Corollary 4.3.5. Consider a Gaussian process X = {Xv}v∈A on a finite set A such that

(4.3.1) holds. If E1, E2, · · · , Ek ∈ σ(X) are all increasing (or all decreasing), then

max
i∈[k]

P(Ei) ≥ 1−
(

1− P
( ⋃
i∈[k]

Ei
))1/k

.

This is known as the “square root trick” in percolation literature (see, e.g., [46]).

4.3.2 Smoothness of harmonic averages of the GFF

Moving to the specific example of the GFF we note that one of the most important properties

that makes the GFF amenable to analysis is its behavior under restrictions to a subdomain.

This goes by the name Gibbs-Markov, or domain-Markov, property. In order to give a precise

statement (which will happen in Lemma 4.3.6 below) we need some notations.

Given a set A ⊆ Z2, let ∂A denote the set of vertices in Z2 r A that have a neighbor

in A. Recall that a GFF in A ( Z2 with Dirichlet boundary condition is a centered Gaussian

process χA = {χA,v}v∈A such that

χA,v = 0 for v ∈ Z2 r A and E(χA,uχA,v) = GA(u, v) for u, v ∈ A,
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where GA(u, v) is the Green function in A; i.e. the expected number of visits to v for the

simple random walk on Z2 started at u and killed upon entering Z2 r A. We then have:

Lemma 4.3.6 (Gibbs-Markov property). Consider the GFF χA = {χA,v}v∈A on a set

A ( Z2 with Dirichlet boundary condition and let B ⊆ A be finite. Define the random fields

χcA = {χcA,v}v∈B and χ
f
A = {χfA,v}v∈B by

χcA,v = E
(
χA,v

∣∣χA,u : u ∈ ArB
)

and χ
f
A,v = χA,v − χcA,v.

Then χ
f
A and χcA are independent with χ

f
A

law
= χB. Moreover, χcA equals χA on Ar B and

its sample paths are discrete harmonic on B.

Proof. This is verified directly by writing out the probability density of χA or, alternatively,

by noting that the covariance of χcA is GA − GB , which is harmonic in both variables

throughout B. We leave further details to the reader.

By way of reference to the spatial scales that these fields will typically be defined over, we

refer to χ
f
A as the fine field and χcA as the coarse field. However, this should not be confused

with the way their actual sample paths look like. Indeed, the samples of χ
f
A will typically be

quite rough (being those of a GFF), while the samples of χcA will be rather smooth (being

discrete harmonic on B). Our next goal is to develop a good control of the smoothness of χcA

precisely. A starting point is the following estimate:

Lemma 4.3.7. There is an absolute constant c ∈ (0,∞) such that, given any ∅ 6= B̃ ⊆ B ⊆

A ( Z2 with B̃ connected and denoting

N := inf
{
M ∈ N : B̃ + [−M,M ]2 ∩ Z2 ⊆ B

}
, (4.3.2)

the coarse field χcA on B obeys

Var
(
χcA,u − χ

c
A,v

)
≤ c
(dist

B̃
(u, v)

N

)2
, u, v ∈ B̃, (4.3.3)
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where dist
B̃

(x, y) denotes the length of the shortest path in B̃ connecting x to y.

Proof. Let u, v ∈ B̃ first be nearest neighbors and let M := bN/2c. Using (f, g) to denote the

canonical inner product in `2(Z2) with respect to the counting measure, the Gibbs-Markov

property gives

Var
(
χcA,u − χ

c
A,v

)
=
(
δu − δv, (GA −GB)(δu − δv)

)
Since A 7→ GA is increasing (as an operator `2(Z2) → `2(Z2)) with respect to the set

inclusion, the worst case that accommodates the current setting is when A is the complement

of a single point and B is the square u+ B(M) = u+ [−M,M ]2 ∩ Z2. Focusing on such A

and B from now on and shifting the domains suitably, we may assume A := Z2 r {0}. Then

GA(x, y) = a(x) + a(y)− a(x− y), (4.3.4)

where a(x) is the potential kernel defined, e.g., as the limit value of GB(N)(0, 0)−GB(N)(0, x)

as N →∞. The relevant fact for us is that a admits the asymptotic form

a(x) = g log |x|+ c0 +O
(
|x|−2), |x| → ∞, (4.3.5)

where g := 2/π and c0 is a (known) constant.

There is another representation of Var
(
χcA,u − χcA,v

)
in terms of harmonic measures

which follows from the discrete harmonicity of the coarse field. Let HB(x, y), for x ∈ B

and y ∈ ∂B, denote the harmonic measure; i.e., the probability that the simple random walk

started from x first enters Z2 rB at y. Then

Var
(
χcA,u − χ

c
A,v

)
=
(
f,GAf

)
where

f(·) :=
∑
z∈∂B

[
HB(u, z)−HB(v, z)

]
δz(·). (4.3.6)
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In order to make use of this expression, we will need are suitable estimates for the harmonic

measure: There are constants c1, c2 ∈ (0,∞) such that for all M ≥ 1, any neighbor v of u

and B := u+B(M), from, e.g., [53, Proposition 8.1.4] , we have

HB(u, z) ≤ c1
M
, z ∈ ∂B, (4.3.7)

and ∣∣HB(u, z)−HB(v, z)
∣∣ ≤ c2

M
HB(u, z), z ∈ ∂B. (4.3.8)

For our special choice of A, using (4.3.6) we now write

Var
(
χcA,u − χ

c
A,v

)
=

∑
z,z̃∈∂B

[
HB(u, z)−HB(v, z)

][
HB(u, z̃)−HB(v, z̃)

](
a(z) + a(z̃)− a(z − z̃)

)
. (4.3.9)

Since z 7→ HB(u, z) is a probability measure for each u, the contribution of the terms a(z)

and a(z̃) vanishes. For the same reason, we may replace a(z − z̃) with a(z − z̃) − g logM

in (4.3.9). Now we apply (4.3.8) with the result

Var
(
χcA,u − χ

c
A,v

)
≤
( c2
M

)2 ∑
z,z̃∈∂B

HB(u, z)HB(u, z̃)|a(z − z̃)− g logM | .

Invoking (4.3.5) and (4.3.7), the two sums are now readily bounded by a constant inde-

pendent of M . This gives (4.3.3) for neighboring pairs of vertices. For the general case we just

apply the triangle inequality for the intrinsic (pseudo)metric u, v 7→ [Var(χcA,u − χ
c
A,v)]

1/2

along the shortest path in B̃ between u and v in the graph-theoretical metric.

Using the above variance bound, we now get:

Corollary 4.3.8. For each set A ⊆ Z2, let us write diamA(A) for the diameter A in the

graph-theoretical metric on A. For each δ > 0 there are constants c, c̃ ∈ (0,∞) such that for
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all sets 0 6= B̃ ⊆ B ⊆ A ( Z2 with B̃ connected and obeying

inf
{
M ∈ N : B̃ + [−M,M ]2 ∩ Z2 ⊆ B

}
≥ δ diam

B̃
(B̃) (4.3.10)

and for χcA denoting the coarse field on B for the GFF χA on A, we have

P
(

sup
u,v∈B̃

∣∣χcA,u − χcA,v∣∣ > c+ t
)
≤ 2e−c̃t

2
(4.3.11)

for each t ≥ 0.

Proof. The condition (4.3.10) ensures, via Lemma 4.3.7, that the variance of χcA,u − χ
c
A,v is

bounded by a constant times dist
B̃

(u, v)/N with N as in (4.3.2). The assumption (4.3.10)

then ensures that this is at most a δ-dependent constant. Writing this constant as 2/c̃ and

denoting

M? := sup
u,v∈B̃

∣∣χcA,u − χcA,v∣∣ ,
Lemma 4.3.1 gives

P
(
|M? − EM?| > t

)
≤ 2e−c̃t

2
.

It remains to show that EM? is bounded uniformly in A and B satisfying (4.3.10). For this

we note that, again by Lemma 4.3.7, an ε-ball in the intrinsic metric ρ(u, v) := [Var(χcA,u −

χcA,v)]
1/2 on B̃ contains an order-Nε ball in the graph-theoretical metric on B̃ which itself

contains an order-(Nε)2 ball in the `1-metric on B. Lemmas 4.3.3 thus applies with α := 1

and β := 2.

4.3.3 A LIL for averages on concentric annuli

The proof of the RSW estimates will require controlling the expectation of the GFF on

concentric annuli, conditional on the values of the GFF on the boundaries thereof. We will

conveniently represent the sequence of these expectations by a random walk. Annulus aver-
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ages and the associated random walk have been central to the study of the local properties

of nearly-maximal values of the GFF in [15]. However, there the emphasis was on estimating

the probability that the random walk stays above a polylogarithmic curve for a majority

of time, while here we are interested in a different aspect; namely, the Law of Iterated

Logarithm. The conclusions derived here will be applied in the proof of Proposition 4.4.9.

We begin with a quantitative version of the law of the iterated logarithm for a specific

class of Gaussian random walks.

Lemma 4.3.9. Set φ(x) :=
√

2x log log x for x ≥ 3 and let Z1, Z2, · · · , Zn be independent

random variables with Zi
law
= N (0, σ2

k) for some σ2
i > 0. Let s2

k :=
∑

1≤j≤k σ
2
j and suppose

that there are σ > 0 and d > 0 such that

σ2k − d ≤ s2
k ≤ σ2k + d, k ≥ 1.

Then there are cσ,d > 0, Cσ,d > 0 and Nσ,d > 0, depending only on d and σ, such that for

all n ≥ Nσ,d, the random walk Sk :=
∑

1≤j≤k Zj obeys

P
(

#
{

e
√

log n ≤ k ≤ n : Sk ≥ φ(s2
k)/2

}
≥ cσ,d log log n

)
≥ 1−

Cσ,d
log log n

. (4.3.12)

Proof. Since φ is regularly varying at infinity with exponent 1/2 and k 7→ s2
k is within

distance d of a linear function, one can find a > 1 and k1 sufficiently large (and depending

only on σ and d) such that

φ(s2
ak
− s2

ak−1) ≥ 6

7
φ(s2

ak
), k ≥ k1, (4.3.13)

and

φ(s2
ak−1) ≤ 2

9
φ(s2

ak
), k ≥ k1, (4.3.14)
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hold true. Now define a sequence of random variables as

T1 := Sa − S1, T2 := Sa2 − Sa, . . . Tbloga nc := Sabloga nc − Sabloga nc−1 .

Then T1, T2, · · · , Tbloga nc are independent with Tk
law
= N (0, s2

ak
− s2

ak−1). Then, for each k

with k1 ≤ k ≤ bloga nc, the inequality (4.3.13) and a straightforward Gaussian tail estimate

show

P
(
Tk ≥ 3

4φ(s2
ak

)
)
≥ P

(
Tk ≥ 7

8φ(s2
ak
− s2

ak−1)
)
≥ c

log(s2
ak
− s2

ak−1)
,

for some constant c > 0 depending only on σ and d. Thus, whenever n is such that√
bloga nc ≥ k1 holds true, we have

∑
√
bloga nc≤k≤bloga nc

P
(
Tk ≥ 3

4φ(s2
ak

)
)
≥ c′ log log n− c′′ , (4.3.15)

for some c′, c′′ > 0. By independence of T1, T2, · · · , Tbloga nc, the Chebyshev inequality gives

P
(

#
{√
bloga nc ≤ k ≤ bloga nc : Tk ≥ 3

4φ(s2
ak

)
}
≥ c′ log log n

2

)
≥ 1− c̃

log log n
(4.3.16)

for some constant c̃ ∈ (0,∞). A computation using a Gaussian tail estimate gives

P
(
Sak ≤ −

9
8φ(s2

ak
)
)
≤ (log s2

ak
)−81/64

for all k ≥ 1. Therefore

P
( ⋃
√
bloga nc≤k≤bloga nc

{
Sak ≤ −

9
8φ(s2

ak
)
})
≤ c̃′(log n)−17/128 , (4.3.17)

for some constant c̃′ ∈ (0,∞). On {Sak−1 ≥ −9
8φ(s2

ak−1)} ∩ {Tk ≥ 3
4φ(s2

ak
)}, (4.3.14) gives

Sak = Sak−1 + Tk ≥ −9
8φ
(
s2
ak−1

)
+ 3

4φ
(
s2
ak
)
≥ 1

2φ
(
s2
ak
)
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and so the bounds (4.3.16) and (4.3.17) imply (4.3.12).

We will apply Lemma 4.3.9 to a special sequence of random variables which arise from

averaging the GFF along concentric squares. For integers N ≥ 1, n ≥ 1 and b ≥ 2, denote

N ′ := bnN and, for each k ∈ {1, . . . , n}, define

Mn,k := E
(
χN ′,0

∣∣∣∣σ(χN ′,v : v ∈
⋃

n−k≤j≤n
∂B(bjN)

))
, (4.3.18)

Notice that we can also write Mn,k = E
(
χN ′,0|σ(χN ′,v : v ∈ ∂B(bn−kN))

)
due to the Gibbs-

Markov property of the GFF. We then have:

Lemma 4.3.10. For each integer b ≥ 1 as above, there are constants σ > 0 and d > 0 such

that for all N ≥ 1 and all n ≥ 1 the sequence {Mn,k −Mn,k−1}k=1,...,n−1 (with Mn,0 := 0)

satisfies the conditions of Lemma 4.3.9 with these (σ, d).

Proof. Since the Mn,k−Mn,k−1’s are differences of a Gaussian martingale sequence, they are

independent normals. So we only need to verify the constraints on the variances. Denoting

N ′′ := bn−kN , the Gibbs-Markov property of the GFF implies

Var(Mn,k) = GB(N ′)(0, 0)−GB(N ′′)(0, 0). (4.3.19)

Recalling our notation HB(x, y) for the harmonic measure, the representation

GB(x, y) = −a(x− y) +
∑
z∈∂B

HB(x, z)a(y − z)

gives

Var(Mn,k) =
∑

z∈∂B(N ′)

HB(N ′)(0, z)a(z)−
∑

z∈∂B(N ′′)

HB(N ′′)(0, z)a(z).

Now substitute the asymptotic form (4.3.5) and notice that the terms arising from c0 exactly

cancel, while those from the error O(|x|−2) are uniformly bounded. Concerning the terms
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arising from the term g log |x|, here we note that

sup
N≥1

∣∣∣ ∑
z∈∂B(N)

HB(N)(0, z) log |z| − logN
∣∣∣ <∞,

which follows by using log |x+r|−log |x| = O(|r|/|x|) to approximate the sum by an integral.

Hence we get

GB(N ′)(0, 0)−GB(N ′′)(0, 0) = g log(N ′)− g log(N ′′) +O(1)

= g log(b)(n− k) +O(1)

(4.3.20)

with O(1) bounded uniformly in N ≥ 1, n ≥ 1 and k = 1, . . . , n− 1.

Using the above setup, pick two (possibly real) numbers 1 < r1 < r2 < b and define

An,k := B
(
br2bkNc

)
rB

(
dr1bkNe

)◦
.

The point of working with the conditional expectations of χN ′ evaluated at the origin is that

these expectations represent very well the typical value of the same conditional expectation

anywhere on An,k. Namely, we have:

Lemma 4.3.11. Denote

∆n := max
k=1,...,n−1

max
v∈An,k

∣∣∣Mn,k − E
(
χN ′,v

∣∣χN ′,v : v ∈
⋃
n≥j≥n−k∂B(bjN)

)∣∣∣.
For each b ≥ 2 (and each r1, r2 as above) there are C̃ > 0 and N0 ≥ 1 such that for all

N ≥ N0 and all n ≥ 1,

P
(
∆n ≥ C̃

√
log n

)
≤ 1/n2 . (4.3.21)

Proof. Denote A′n,k := B(bk+1N) rB(bkN) and for v ∈ A′n,k abbreviate

χ̃k,v := E
(
χN ′,v

∣∣χN ′,v : v ∈
⋃
n≥j≥n−k∂B(bjN)

)
. (4.3.22)
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From the Gibbs-Markov property we also have

χ̃k,v = E
(
χN ′,v

∣∣χN ′,v : v ∈ ∂A′n,k
)
, v ∈ A′n,k.

As soon as N is sufficiently large, the domains A := B(N ′), B := A′n,k and B̃ := An,k obey

condition (4.3.10) with some δ ≥ 1 for all n ≥ 1 and all k ∈ {1, . . . , n− 1}. Corollary 4.3.8

then gives

P
(

max
u,v∈An,k

∣∣χ̃k,v − χ̃k,u∣∣ > c+ t
)
≤ 2e−c̃t

2
(4.3.23)

for some constants c, c̃ > 0 independent of N , n and k. This shows that the oscillation of

χ̃k on An,k has a uniform Gaussian tail, so in order to bound Mn,k − χ̃k,v = χ̃k,0 − χ̃k,v

uniformly for v ∈ An,k, it suffices to show that, for just one v ∈ An,k, also χ̃k,v − χ̃k,0 has

such a tail. Since this random variable is a centered Gaussian, it suffices to estimate its

variance. Here (4.3.22) gives

Var
(
χ̃k,v − χ̃k,0

)
≤ Var

(
χ̃k−1,v − χ̃k−1,0

)
. (4.3.24)

Corollary 4.3.8 can now be applied with A := B(N ′), B := B(bk+1N) and B̃ := B(br2bkNc)

to bound the right-hand side by a constant uniformly in N , n and k = 1, . . . , n−1. Combined

with (4.3.23), the union bound shows

P
(

max
v∈An,k

∣∣χ̃k,v −Mn,k

∣∣ > c′ + t
)
≤ 2e−c̃

′t2

with c′, c̃′ ∈ (0,∞) independent of N , n and k. Another use of the union bound now yields

(4.3.21), thus proving the claim.
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4.3.4 A non-Gibbsian decomposition of GFF on a square

As a final item of concern in this section we note that, apart from the Gibbs-Markov prop-

erty, our proofs will also make use of another decomposition of the GFF which is based

on a suitable decomposition of the Green function. This decomposition will be of crucial

importance for the development of the RSW theory in Section 4.4.

Lemma 4.3.12. Let {χN,v}v∈B(N) be the GFF on B(N) with Dirichlet boundary condition.

Then there are two independent, centered Gaussian fields {YN,}v∈B(N) and {ZN,v}v∈B(N)

such that the following hold:

(a) χN = YN + ZN a.s.

(b) Var(YN,v) = O(log logN) uniformly for all v ∈ B(N).

(c) Var(ZN,v − ZN,v) = O(1/ logN) uniformly for all u, v ∈ B(dN/2e) such that u ∼ v.

The distribution of {Zv,N}v∈B(N) is invariant under reflections and rotations that pre-

serve B(N).

Proof. Throughout the proof of the current lemma, we let {St : t ≥ 0} be the lazy discrete-

time simple symmetric random walk on Z2 that, at each time, stays put at its current position

with probability 1/2, or transitions to a uniformly chosen neighbor with the complementary

probability. We denote by P v the law of the walk with P v(S0 := v) = 1 and write Ev to

denote the expectation with respect to P v. Let τ be the first hitting time to the boundary

∂B(N). It is clear that

E(χN,vχN,u) =
1

2

∞∑
t=0

P v(St = u, τ ≥ t) .

In addition, thanks to laziness of St, the matrix (P v(St = u, τ ≥ t))u,v∈B(N) is non-negative

definite for each t ≥ 0. Therefore, there are independent centered Gaussian fields {YN,v : v ∈
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B(N)} and {ZN,v : v ∈ B(N)} such that

E(YN,vYN,u) =
1

2

blogNc2∑
t=0

P v(St = u, τ ≥ t)

and

E(ZN,vZN,u) =
1

2

∞∑
t=blogNc2+1

P v(St = u, τ ≥ t) .

At this point, it is clear that we can couple the processes together so that Property (a) holds.

Property (b) holds by crude computation which shows

VarYN,v ≤
blogNc2∑
t=0

P v(St = v) ≤ O(1)

blogNc2∑
t=0

1

t+ 1
= O(log logN) . (4.3.25)

It remains to verify Property (c). For any u, v ∈ B(dN/2e) and u ∼ v, we have that

|EZ2
N,v−EZN,vZN,u|

=
∣∣∣ ∞∑
t=blogNc2+1

P v(St = v, τ ≥ t)−
∞∑

t=blogNc2+1

P v(St = u, τ ≥ t)
∣∣∣

≤
∞∑

t=blogNc2+1

∣∣P v(St = v)− P v(St = u)
∣∣∣+

∞∑
t=0

Ev
∣∣PSτ (St = v)− PSτ (St = u)

∣∣ .
(4.3.26)

Since ∣∣P v(St = v)− P v(St = u)
∣∣ = O(n−3/2) ,

(see, e.g., [53, Exercise 2.2]), the first term on the right hand side is bounded by O(1/ logN).

The second term is O(1/N) by [53, Theorem 4.4.6] and the fact that u ∈ B(dN/2e). This

completes the verification of Property (c).
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4.4 A RSW result for effective resistances

Having dispensed with preliminary considerations, we now ready to develop a RSW theory

for effective resistances across rectangles. Throughout we write, for N,M ≥ 1,

B(N,M) :=
(
[−N,N ]× [−M,M ]

)
∩ Z2

for the rectangle of (2N+1)×(2M+1) vertices centered at the origin. Recall that B(N,N) =

B(N). The principal outcome of this section are Corollary 4.4.3 and Proposition 4.4.11. In

Corollary 4.4.18, these yield the proof of one half of Theorem 4.1.1. The proof of the other

half comes only at the very end of the chapter (in Section 4.5).

4.4.1 Effective resistance across squares

In Bernoulli percolation, the RSW theory is a loose term for a collection of methods for

extracting uniform lower bounds on the probability that any rectangle of a given aspect

ratio is crossed by an occupied path along its longer dimension. The starting point is

a duality-based lower bound on the probability of a left-right crossing of a square. In the

present context, the crossing probability is replaced by resistance across a square and duality

by consideration of a reciprocal network. An additional complication is that our problem

is intrinsically spatially-inhomogeneous. This means that all symmetry arguments, such as

rotations and reflections, require special attention to where the underlying domain is located.

In particular, it will be advantageous to work with the GFF on finite squares instead of the

pinned field in all of Z2.

If S is a rectangular domain in Z2, we will write ∂leftS, ∂downS, ∂rightS and ∂upS to

denote the sets of vertices in S that have a neighbor in Z2rS to the left, down, right and up

of them, respectively. (Notice that, unlike ∂S, these “boundaries” are subsets of S.) Given

any field χ = {χv}v∈S recall that Sχ denotes the network on S associated with χ. We then
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abbreviate

RLR;S,χ := RSχ
(
∂leftS, ∂rightS

)
and

RUD;S,χ := RSχ
(
∂upS, ∂downS

)
.

Our first estimate concerning these quantities is:

Proposition 4.4.1 (Duality lower bound). Let χM denote the GFF on B(M) with Dirichlet

boundary conditions. There is ĉ = ĉ(γ) ∈ (0,∞) and for each ε > 0 there is N0 = N0(ε, γ)

such that for all N ≥ N0 and all M ≥ 2N ,

P
(
RLR;B(N),χM

≤ eĉ log logM
)
≥ 1

2
− ε . (4.4.1)

The same result holds also for RUD;B(M),χM
, which is equidistributed to RLR;B(N),χM

.

The proof requires some elementary observations that will be useful later as well:

Lemma 4.4.2. Let A be a finite subset of Z2 and χ1 = {χ1,v}v∈A, χ2 = {χ2,v}v∈A be two

random fields on A. Then for any u, v ∈ A we have,

RAχ1+χ2
(u, v) ≤ RAχ1

(u, v) max
u′,v′∈A
u′∼v′

e
−γ(χ2,u′+χ2,v′) . (4.4.2)

Furthermore,

E
(
RAχ1+χ2

(u, v)
∣∣χ1
)
≤ RAχ1

(u, v) max
u′,v′∈A
u′∼v′

E
(
e
−γ(χ2,u′+χ2,v′)

∣∣χ1
)

(4.4.3)

and

E
(
CAχ1+χ2

(u, v)
∣∣χ1
)
≤ CAχ1

(u, v) max
u′,v′∈A
u′∼v′

E
(
e
γ(χ2,u′+χ2,v′)

∣∣χ1
)
. (4.4.4)
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Proof. Let θ be a unit flow from u to v. Then (4.2.1) implies

RAχ1+χ2
(u, v) ≤

∑
u′,v′∈A,u′∼v′

[θ(u′,v′)]
2e
−γ(χ1,u′+χ1,v′)e

−γ(χ2,u′+χ2,v′) .

Hereby (4.4.2) follows by bounding the second exponential by its maximum over all pairs

of nearest neighbors in A and optimizing over θ. The estimate (4.4.3) is obtained similarly;

just take the conditional expectation before optimizing over θ. The proof of (4.4.4) exploits

the similarity between (4.2.1) and (4.2.7) and is thus completely analogous.

Proof of Proposition 4.4.1. Our aim is to use the fact that, in any Gaussian network, the

resistances are equidistributed to the conductances. We will apply this in conjunction with

the estimate in Lemma 4.2.7. Unfortunately, this estimate requires a hard bound on the

maximal ratio of resistances at neighboring edges. These ratios would be undesirably too

large if we work with the GFF network directly; instead we will invoke the decomposition

of χM into the sum of Gaussian fields YM = {YM,v}v∈B(N) and ZM = {ZM,v}v∈B(N) as

stated in Lemma 4.3.12 and apply Lemma 4.2.7 to the network associated with ZM only.

We begin by estimating the oscillation of ZM across neighboring vertices. From prop-

erty (c) in the statement of Lemma 4.3.12 and a standard bound on the expected maximum

of centered Gaussians, we first get

sup
N≥1

E
(

max
u,v∈B(N)
|u−v|1≤2

(ZM,u − ZM,v)
)
<∞ .

Using this bound and property (c), Lemma 4.3.1 shows that for each ε > 0 there is c1 ∈ R

such that for all N ≥ 1,

P
(

max
u,v∈B(N)
|u−v|1≤2

(ZM,u − ZM,v) ≥ c1

)
≤ ε . (4.4.5)

Now observe that the pairs (∂leftB(N), ∂rightB(N)) and (∂upB(N), ∂downB(N)) satisfy the
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conditions of Lemma 4.2.7. Using R?
UD;B(N),ZM

to denote the top-to-bottom resistance in

the reciprocal network, combining (4.2.25) with the last display yields

P
(
RLR;B(N),ZM

R?UD;B(N),ZM
≤ 64e2c1γ

)
≥ 1− ε . (4.4.6)

A key point of the proof is that, since the law of ZM is symmetric with respect to rotations

of B(M), the fact that ZM
law
= −ZM implies

R?UD;B(N),ZM

law
= RLR;B(N),ZM

.

The union bound then shows

P
(
RLR;B(N),ZM

≤ 8ec1γ
)
≥ 1− ε

2
. (4.4.7)

Lemma 4.4.2 and the independence of YM and ZM now give

E
(
RLR;B(N),χM

∣∣ZM) ≤ RLR;B(N),ZM
max

u,v∈B(N)
u∼v

Ee−γ(YM,u+YM,v). (4.4.8)

Lemma 4.3.12 shows VarYM,v ≤ c′ log logM for some constant c′ ∈ (0,∞) and so the maxi-

mum on the right of (4.4.8) is at most e2c′γ2 log logM . Taking ĉ > 2c′γ2, the desired bound

(4.4.1) now follows (for N sufficiently large) from (4.4.7–4.4.8) and Markov’s inequality.

With only a minor amount of additional effort, we are able to conclude a uniform lower

bound for the resistance across rectangles.

Corollary 4.4.3. Let ĉ be as in Proposition 4.4.1. For each ε > 0 there is N ′0 = N ′0(γ, ε) such

that for all N ≥ N ′0, all M ≥ 16N and all translates S of B(4N,N) contained in B(M/2),

we have

P
(
RLR;S,χM ≥ e−2ĉ log logM) ≥ 1

2
− ε . (4.4.9)
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The same applies to RUD;S,χM for any translate S of B(N, 4N) contained in B(M/2).

Proof. Replacing effective resistances by effective conductances in the proof of Proposi-

tion 4.4.1 (and relying on Lemma 4.2.6 instead of Lemma 4.2.7) yields

P
(
RLR;B(N),χM

≥ e−ĉ log logM
)
≥ 1

2
− ε (4.4.10)

for all N ≥ N0. Since

RLR;B(4N),χM
≤ RLR;B(4N,N),χM

this bound extends to the rectangle B(4N,N). Now consider a translate S of this rectangle

that is contained in B(M/2). Taking M ′ := 8N and let S̃ be the translate of B(M ′) that is

centered at the same point as S. Considering the Gibbs-Markov decomposition into a fine

field χ
f

S̃
and a coarse field χc

S̃
on S̃, we then get

P
(
RLR;S,χM ≥ ec̃γe−ĉ log logM

)
≥ P

(
R

LR;S,χf
S̃

≥ e−ĉ log logM ′
)
− P

(
max
u∈S
|χc
S̃,u
| ≤ c̃

)
.

Since S and S̃ are centered at the same point, the first probability is at least 1
2 − ε by our

extension of (4.4.10) to rectangles. The second probability can be made arbitrarily small

uniformly in N by taking c̃ large. The claim follows.

Remark 4.4.4. Despite our convention that constants such as c, c̃, c′, etc may change meaning

line to line, the constant ĉ will denote the quantity from Proposition 4.4.1 throughout the

rest of this chapter.

4.4.2 Restricted resistances across squares

As noted already in the introduction, our approach to the RSW theory is strongly inspired

by [77] which is itself based on inductively controlling the crossing probability (in Bernoulli
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α

β

N B(N)

Figure 4.1: An illustration of the geometric setting underlying the definition of
the restricted effective resistance RN,[α,β],χ in (4.4.11).

percolation) between ∂leftB(N) and a portion of ∂rightB(N). We will now setup the rel-

evant objects and notations and prove estimates that will later serve in an argument by

contradiction.

For the square B(N) and α, β ∈ [−N,N ] ∩ Z with α ≤ β, consider the subset of

∂rightB(N) defined by

∂
[α,β]
rightB(N) := ({N} × [α, β]) ∩ Z2

Let PN ;[α,β] denote the set of paths in B(N) that use only the vertices in ((−N,N) ×

[−N,N ])∩Z2 except for the initial vertex, which lies in ∂leftB(N), and the terminal vertex,

which lies in ∂
[α,β]
rightB(N). With these notions in place, we now introduce the shorthand

RN,[α,β],χ := RB(N)χ

(
PN ;[α,β]

)
= RB(N)χ

(
∂leftB(N), ∂

[α,β]
rightB(N)

)
. (4.4.11)

Our first goal is to define a quantity αN which will mark, in rough terms, the point of

transition of α 7→ RN,[0,α],χ2N
from large to small values.

We first need a couple of simple observations. Note that PN ;[0,N ] ∪ PN ;[−N,0] includes
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all paths starting on ∂leftB(N) and terminating on ∂rightB(N). Lemma 4.2.5 then shows

1

RLR;B(N),χ2N

≤ 1

RN,[0,N ],χ2N

+
1

RN,[−N,0],χ2N

while the symmetry of both the law of χ2N and the square B(N) with respect to the reflection

through the x axis implies RN,[0,N ],χ2N

law
= RN,[−N,0],χ2N

. By Proposition 4.4.1, there is N0

such that

P
(
RLR;B(N),χ2N

> eĉ log log(2N)) ≤ 2/3

as soon as N ≥ N0. The square-root trick in Corollary 4.3.5 then shows

P
(
RN,[0,N ],χ2N

> 2eĉ log log(2N)) ≤√2/3 < 0.82 (4.4.12)

as soon as N ≥ N0.

Next we note that, by Lemma 4.3.7,

sup
N≥1

max
v∈B(3N/2)

u∼v

Var(χ2N,v − χ2N,u) <∞.

Hence, there is C ′ ∈ (0,∞) such that χ := χ2N obeys

max
v∈B(N)

P
(

max{χv−e2 − χv+e1 , χv−e2+e1 + χv−e2 − χv − χv+e1} ≥ C ′
)
≤ 0.005 (4.4.13)

for all N ≥ 1. Now set C1 := 2(2eC
′γ + 1), define φN : {0, . . . , N} → [0, 1] by

φN (α) := P
(
RN,[α,N ],χ2N

> (4 + C1) eĉ log log(2N))

92



and, noting that α 7→ φN (α) is non-decreasing with φN (0) < 0.82 (cf (4.4.12)), let

αN :=


min

{
α ∈ {0, . . . , bN/2c} : φN (α) > 0.99

}
if φN (bN/2c) > 0.99,

bN/2c, otherwise .

This definition implies the following inequalities:

Lemma 4.4.5. For C ′ as in (4.4.13), define C2 := 4(2eC
′γ + 1)2 and let ĉ, N0 and C1 be

as above. Then the following two properties hold for all N ≥ N0:

(P1) For all α ∈ {0, . . . , αN},

P
(
RN,[α,N ],χ2N

≤ 5C2eĉ log log(2N)) ≥ 0.005. (4.4.14)

(P2) If αN < bN/2c, then for all α ∈ {αN , . . . , N},

P
(
RN,[α,N ],χ2N

≥ (4 + C1) eĉ log log(2N)) > 0.99 (4.4.15)

and

P
(
RN,[0,α],χ2N

≤ 4eĉ log log(2N)) ≥ 0.17 . (4.4.16)

Proof. We begin with (P1). Since φN (α) ≤ 0.99 for α ∈ {0, . . . , αN − 1}, for all such α we

have

P
(
RN,[α,N ],χ2N

≤ (4 + C1) eĉ log log(2N)) ≥ 0.01 . (4.4.17)

In order to deal with α = αN , we will will need:

Lemma 4.4.6. For χ := χ2N and v being the point with coordinates (N − 1, αN ), we have

{
RN,[αN ,N ],χ2N

> C1RN,[αN−1,N ],χ2N

}
⊆
{

max
{
χv−e2 − χv+e1 , χv−e2+e1 + χv−e2 − χv − χv+e1

}
≥ C ′

}
.

(4.4.18)
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Deferring the proof of this lemma until after this proof, we now combine (4.4.17) for α :=

αN − 1 with (4.4.13) to get

P
(
RN,[αN ,N ],χ2N

≤ (4 + C1)C1eĉ log log(2N)
)

≥ P
(
RN,[αN−1,N ],χ2N

≤ (4 + C1) eĉ log log(2N), RN,[αN ,N ],χ2N
≤ C1RN,[αN−1,N ]

)
≥ 0.01− 0.005 = 0.005 .

(4.4.19)

Since (4 + C1)C1 ≤ 5C2, the bound (4.4.14) holds for α := αN as well. Thanks to the

upward monotonicity of α 7→ RN,[α,N ],χ2N
, the inequality then extends to all α ≤ αN .

The first inequality in (P2) evidently holds by our choice of αN . As for the second

inequality, Lemma 4.2.5 shows

1

RN,[0,N ],χ2N

≤ 1

RN,[0,α],χ2N

+
1

RN,[α,N ],χ2N

and this then implies

{
RN,[0,N ],χ2N

≤ 2eĉ log log(2N), RN,[α,N ],χ2N
> (4 + C1) eĉ log log(2N)}
⊆
{
RN,[0,α],χ2N

≤ 4eĉ log log(2N)}.
Invoking (4.4.12) and the definition of αN , the probability of the event on the right is than

at most 0.99− 0.82 = 0.17.

We still owe to the reader:

Proof of Lemma 4.4.6. Suppose χ is such that the complementary event to that on the right

of (4.4.18) occurs. We will show that then the complement of the event on the left occurs

as well. For this, let θ be the optimal flow realizing the effective resistivity in (4.4.11) and

let θ(x, y) denote its value on edge (x, y). To reduce clutter of indices, write r(x, y) for

the resistance of edge (x, y). Abbreviate t := v + e1, u := v − e2 and w := u + e1 =
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(N,αN − 1). Our aim is to reroute θ(v, t) through u to w. Define a flow θ̃ by setting

θ̃(v, u) := θ(v, u) + θ(v, t), θ̃(u,w) := θ(u,w) + θ(v, t) and θ̃(v, t) := 0 and letting θ̃e := θe for

all other edges e. The only edges where θ̃ might expend more energy than θ are the edges

(v, u) and (u,w). To bound the change in energy, we note

r(v, u)θ̃(v, u)2 ≤ r(v, u)
[
θ(v, u) + θ(v, t)

]2
≤ 2r(v, u)θ(v, u)2 + 2r(v, t) eC

′γθ(v, t)2
(4.4.20)

with the second inequality due to the containment in the complement of the event on the

right of (4.4.18). Similarly we have

r(u,w)θ̃(u,w)2 ≤ 2r(u,w)θ(u,w)2 + 2r(v, t) eC
′γθ(v, t)2.

Hence we get RN,[αN−1,N ],χ2N
≤ (2 + 4eC

′γ)RN,[αN ,N ],χ2N
= C1RN,[αN ,N ],χ2N

, thus prov-

ing (4.4.18).

4.4.3 From squares to rectangles

We now move to bounds on resistance across rectangular domains. As in Bernoulli percola-

tion, a fundamental tool in this endeavor is the FKG inequality which, in our case, will be

used in the following form:

Lemma 4.4.7. Consider a finite S ⊆ Z2 and a Gaussian process {χv}v∈R with Cov(χu, χv) ≥

0 for all u, v ∈ S. Suppose that P1,P2, · · · ,Pn are collections of paths in S that satisfy the

conditions of Lemma 4.2.4 for a pair of disjoint subsets (A,B) of S. Then for any r > 0,

we have

P
(
RSχ(A,B) ≤ nr

)
≥

n∏
i=1

P
(
RSχ(Pi) ≤ r

)
.

Proof. This is an immediate consequence of Lemma 4.2.4, the monotonicity of RSχ(Pi) in

individual edge resistances, and the FKG inequality in Lemma 4.3.4.
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The principal outcome of this subsection is:

Proposition 4.4.8. There are c0, C3 ∈ (0,∞) such that for all N ≥ N0 for which αN ≤

2αb4N/7c holds, all M ≥ 8N and any shift S of B(4N,N) satisfying S ⊆ B(M/2),

P
(
RLR;S,χM ≤ C3eĉ log logM) ≥ c0 . (4.4.21)

The same applies to RUD;S,χM for any shift S of B(N, 4N) that obeys S ⊆ B(M/2).

By Proposition 4.4.1 the bound holds for left-to-right resistance of centered squares. We

will employ a geometric argument combined with the FKG inequality to extend the bound

from squares to rectangular domains. The main technical tool is Lemma 4.2.4 which, in

a sense, permits us to bound resistance by path-connectivity considerations only. We will

actually use a different argument depending on whether αN equals, or is less than bN/2c.

Proof of Proposition 4.4.8, case αN = bN/2c. Here we will need the bound (4.4.14), but for

the underlying domain not necessarily centered at the box which defines the underlying field.

Thus, for S a translate of the square B(N) such that S ⊆ B(M/2), let RS,[α,β],χM
denote

the quantity corresponding to RN,[α,β],χM
for the square S and the underlying field given

by χM . In light of (4.4.14), Corollary 4.3.8 and Lemma 4.4.7 show that, for some constant

C ′3 ∈ (0,∞) depending only on C1 and C2,

P
(
RS,[αN ,N ],χM

≤ C ′3eĉ log logM) ≥ 0.001 (4.4.22)

holds for all N ≥ N0, all M ≥ 8N and all squares S as above that are contained in B(M/2).

Thanks to invariance of the law of χM under rotations of B(M), the same bound holds also

for the “rotated” quantities; namely, those dealing with “up-down’ resistivities.

Now let S be a translate by x ∈ Z2 of the rectangle B(4N,N) such that S ⊆ B(M/2)
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Pi

Pi ′

Pi″

Pi+1

Pi+1′

Pi+1″

N

Figure 4.2: The setting of the proof of Proposition 4.4.8, case αN = bN/2c. The
collection of paths shown suffices to ensure a left-to right crossing through the four shown
translates of B(N). The key points to observe are that Pi intersects both P ′i and P ′′i while
P ′′i intersects P ′i+1, for each i.

and let us regard S as the union of the squares

Si := x+ (i− 5)Ne1 +B(N), i = 1, . . . , 7.

For each i ∈ {1, . . . , 7}, consider the following collections of paths: First, let Pi be the set

of all paths in Si that cross Si left to right (with only the initial and terminal point visiting

the left and right boundaries of Si). Then (referring to parts of the boundary as if Si were

the square B(N)), let P ′i be the collection of paths that connects the bottom of the square

to the [−N,−αN ] portion of the top boundary, and let P ′′i be the path between the bottom

of the square to the [αN , N ] portion of the top boundary. The key point (implied by the

fact that αN = bN/2c) is now that, for any choice of paths Pi ∈ Pi, P ′i ∈ P
′
i and P ′′i ∈ P

′′
i

and any i = 1, . . . , 7, the graph union of the triplet of paths (Pi, P
′
i , P
′′
i ) is connected and,

for each i = 1, . . . , 6, the graph union of (Pi, P
′
i , P
′′
i ) is connected to the graph union of

(Pi+1, P
′
i+1, P

′′
i+1); see Fig. 4.2.

It follows that the graph union of the seven triplets of paths contains a left-to-right
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crossing of the rectangle S and, by Lemma 4.2.4, we thus get

RLR;S,χM ≤
7∑
i=1

(
RSi,χM (Pi) +RSi,χM (P ′i) +RSi,χM (P ′′i )

)
.

In light of the definition (4.4.11) (and, for simplicity of computation, restricting Pi to paths

that terminate only at the top [αN , N ] portion of the right boundary), (4.4.22) and the FKG

inequality now give (4.4.21) with C3 := 21C ′3 and c0 := 10−63.

Proof of Proposition 4.4.8, case αN < bN/2c. Here, in addition to (4.4.15) which, as before,

we bring to the form (4.4.22), we will also need (4.4.16) — this is why we need αN < bN/2c

— which we extend using Corollary 4.3.8 and Lemma 4.4.7 to the form

P
(
RS,[0,αN ],χM

≤ C ′′3 eĉ log logM) ≥ 0.01 (4.4.23)

for some C ′′3 ∈ (0,∞), all N ≥ N0 and all translates S of B(N) such that S ⊆ B(M/2).

The same bound holds also for all rotations and reflections of these quantities.

Abbreviate K := b4N/7c and note that K < N < 2K for N large enough. Let us first

deal with S being a translate of the rectangle ([−N, 3N−2K]×[−N,N ])∩Z2 by some x ∈ Z2

subject to the restriction S ⊆ B(4K). Consider the squares

S1 := x+B(N), S2 := x+ 2(N −K)e1 +B(N)

and

S3 := x+ (N −K)e1 + αKe2 + [−K,K]2 ∩ Z2

and note that S1 ∪ S2 = S and S3 ⊆ S1 ∩ S2; see Fig. 4.2. Define the following collections

of paths: First, let P1 be all paths in S1 from the left side to the [0, αN ] portion of the right

side. Similarly, let P2 be all paths in S2 from the [0, αN ] portion of the left side to the right

side of S2. Next we define the following collections of paths in S3:
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Figure 4.3: An illustration of the geometric setting underlying the key argument in
the proof of Proposition 4.4.8, case αN < bN/2c. Here K := b4N/7c and αN ≤ 2αK .
Examples of paths P1 ∈ P1, P3 ∈ P3, P4 ∈ P4 and P5 ∈ P5 are shown in black. Together
with any choice of paths P2 ∈ P2, P6 ∈ P6 and P7 ∈ P7 (shown in gray), these enforce a
left-to-right crossing of the rectangle.

(1) the set P3 of all paths from the top to the bottom sides of S3,

(2) the set P4 of all paths from the left side of S3 to the [αK , K] portion of the right side,

(3) the set P5 of all paths from the left side of S3 to the [−K,−αK ] portion of the right

side,

(4) the set P6 of all paths from the [αK , K] portion of the left side of S3 to the right side,

and

(5) the set P7 of all paths from the [−K,−αK ] portion of the left side of S3 to the right

side.

The key point is that, thanks to the assumption αN ≤ 2αK , for any choice of paths Pi ∈ Pi,

the graph union of these paths will contain a left-to-right path crossing S; see Fig. 4.2. By
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Lemma 4.2.4,

RLR,S,χM ≤
7∑
i=1

RSi,χM (Pi),

where S4 = · · · = S7 := S3. From here we get (4.4.21) for all 2(2N−K)×2N rectangles S ⊆

B(M/2) with C3 := 21 max{C ′3, C
′′
3 } and c0 := 10−14.

In order to prove the desired claim, consider a translate S of B(4N,N) by x ∈ Z2 entirely

contained in B(M/2) and note that, letting k := d 4N
N−K e, and we can cover S by the family

of rectangles S′0, . . . , S
′
k and S′′1 , . . . , S

′′
k−1 defined as follows:

S′j := xj +
(
[0, 2(2N −K)]× [−N,N ]

)
∩ Z2, j = 0, . . . , k,

where xj := x+ 2(N −K)je1 for all j = 0, . . . , k− 1 and xk := x+ [8N − 2k(N −K)]e1,

which ensures that all S′i lie inside S (and thus inside B(M/2)), and

S′′j := yj +
(
[−N,N ]× [0, 2(2N −K)]

)
∩ Z2, j = 1, . . . , k − 1,

where yj − xj are such that all S′′j lie in B(M/2) (this is possible because 2(2N −K) <

16N) and such that S′j ∩ S
′′
j ⊆ S′j+1 for each j = 1, . . . , k − 1. Assuming each S′j and S′′j

contains a path connecting the shorter sides of the rectangle, the graph union of these paths

then contains a left-to-right crossing of S. Lemma 4.2.4 then gives

RLR,S,χM ≤
k∑
j=0

RLR,S′j ,χM
+
k−1∑
j=1

RUD,S′′j ,χM
.

In light of our earlier proof of (4.4.21) for rectangles of dimensions 2N × 2(2N − K), we

get (4.4.21) for 2N × 8N rectangles as well with C3 := 21(2k + 1) max{C ′3, C
′′
3 } and c0 =

10−14(2k+1).
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4.4.4 Bounding the growth of αN

It appears that Proposition 4.4.8 could be more than sufficient for proving uniform upper

bound on resistance across rectangles, provided we can somehow guarantee that N 7→ αN

does not grow faster than exponentially with N . This is the content of:

Proposition 4.4.9. For each c0 ∈ (0, 1) and each C3 ∈ (0,∞), there exists an integer C5 > 8

such that if, for some N ≥ 1,

P
(
RLR;S,χ16N

≤ C3eĉ log log(16N)) ≥ c0 (4.4.24)

holds all translates or rotates S of B(4N,N) contained in B(8N), then we have αN ′ ≥ N

for at least one N ′ ∈ {8N, . . . , C5N}.

The proof will be based on the following lemma:

Lemma 4.4.10. Suppose that, for some c0, C3 ∈ (0,∞) and some N ≥ 1, (4.4.24) holds for

all translates and rotates of B(4N,N) contained in B(8N). There are c1 and C4, depending

only on c0 and C3, respectively, such that whenever K > 2N is such that αK ≤ N and

M ≥ 16K,

P
(
RLR,S,χM ≤ C4eĉ log logM) ≥ c1 (4.4.25)

holds for all translates and rotates of B(4K,K) contained in B(8K).

Proof. We will first prove this for rectangles S of the form B(2K,K). Consider the squares

S1 := −Ke1 +[−K,K]2∩Z2 and S2 := Ke1 +B(K) and let S′1, . . . , S
′
4 be the four maximal

rectangles of dimensions N × 4N , labeled counterclockwise starting from the one at the

bottom, contained in the annulus B(2N) r B(N)◦. Let P1 be a path in S1 connecting the

left-hand side to the [0, αK ] portion of the right-hand side and, similarly, P2 is the path in S2

connecting the [0, αK ]-portion of the left-hand side to the right hand side. Let P ′1, . . . , P
′
4

be paths (in S′1, . . . , S
′
4, respectively) between the shorter sides of S′1, . . . , S

′
4, respectively.
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αK
N

K

P1 P2P1′

P2′

P3′

P4′

Figure 4.4: The geometric setup for the proof of Lemma 4.4.10. The graph union of
paths P1, P2, P

′
1, . . . , P

′
4 contains a left-to-right crossing of the 4K × 2K-rectangle.

Then the assumption αK ≤ N implies that the graph union of P1, P2, P
′
1, . . . , P

′
4 contains a

path in S connecting the left side to the right side; see Fig. 4.4. Combining (4.4.25) with

(4.4.23) (in which N is replaced by K), we get the claim for S with C4 := 2C ′′3 + 4C3 and

c1 := 10−4(c0)4.

To extend this to rectangles S of the form B(4K,K), we note that these can be covered

by four translates and two rotates of B(2K,K) such that the existence of a crossing between

the shorter sides in each of these rectangles forces a crossing of S. Thanks to Lemma 4.4.7,

the desired bound then holds for S as well; we just need to multiply the above C4 by 6 and

raise the above c1 to the sixth power.

We are now ready to give:

Proof of Proposition 4.4.9. The proof is by way of contradiction; indeed, we will prove that

if such N ′ does not exist, then we will ultimately violate the first inequality in (P2) in

Lemma 4.4.5 for a sufficiently large square. This will be done by showing that a path from

the left side of the square B(N ′) to the [0, αN ′ ] part of the right side can be re-routed to

instead terminate in the [αN ′ , N
′]-part of the right side. The re-routing will be achieved
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by showing existence of a path winding around an annulus of inner “radius” at least αN ′

centered at the point øN ′ := (N ′, 0).

We will focus on N ′ of the form N ′ := bnN , where b := 8 and n ≥ 1. Fix such an n

(and thus N ′) and, for k = 1, . . . , n, let Bn,k := øN ′ + B(bkN). Consider also the annulus

An,k := øN ′ +B(4bkN) rB(2bkN)◦ and define the conditional field

χ4N ′,k;v := χ4N ′,v − E
(
χ4N ′,v

∣∣∣∣σ(χ4N ′,u : u ∈
⋃

n−k≤j≤n
∂Bn,j

))
.

By the Gibbs-Markov property of the GFF, {χ4N ′,k;v : v ∈ An,k} has the law of the val-

ues on An,k of the GFF in B(bk+1N) r B(bkN)◦ with Dirichlet boundary condition. Let

RAn,k;χ4N ′,k
denote the sum of the resistances between the shorter sides of the four maximal

rectangles contained in An,k, in the field χ4N ′,k.

Assuming αN ′ ≤ N , Lemma 4.4.10 in conjunction with Corollary 4.3.8 and Lemma 4.4.7

show that, for some C ′4 ∈ (0,∞) and c2 > 0:

P
(
RAn,k;χ4N ′,k

≤ C ′4eĉ log logN ′) ≥ c2 . (4.4.26)

Let m be the smallest integer such that (1− c2)m ≤ 0.01, let C1 be as in the first inequality

in (P2) in Lemma 4.4.5 and let C̃ be the constant from Lemma 4.3.10. Define

M̃n,k := min
v∈An,k

E
(
χ4N ′,v

∣∣∣∣σ(χN ′,u : u ∈
⋃

n−k≤j≤n
∂Bj,n

))
.

Lemma 4.3.10 (dealing with the LIL for the sequence Mn,k) and Lemma 4.3.11 (dealing with

the deviations ∆n) tell us that there is a positive integer m′ > 100 satisfying

P
(

#
{
k = 1, . . . ,m′ − 1: γM̃k,m′ ≥ 0.5 log

C ′4
C1

+ log 5 + C̃γ
√

logm′
}
< m

)
≤ 0.01 + 0.01 = 0.02 . (4.4.27)
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α
N

N

Figure 4.5: The geometric setting for a key argument in the proof of Propo-
sition 4.4.9. Once αN is less than the inner radius of the depicted annulus,
RB(N)χ(PN ;[αN ,N ]) is bounded by RB(N)χ(PN ;[0,αN ]) plus the sum of the resistances be-

tween the shorter sides of the four maximal rectangles contained in the annulus.

Putting together (4.4.26), (4.4.27), the choices of m and m′ along with Lemmas 4.3.11 and

4.4.2 we get for all N such that c log
(
1 +

(m′+1) log 8
logN

)
≤ log 5,

P
(
∃k ∈ {1, . . . ,m′} : RAk,m′ ;χC5N

≥ C1eĉ log logN) ≤ 0.02 + 0.01 = 0.03 , (4.4.28)

where C5 := 8m
′+1.

We are now ready to derive the desired contradiction. Lemma 4.2.4 gives us that if

αN ′ ≤ N for all 8N ≤ N ′ ≤ C5N , then

P
(
RB(N ′)χN ′

(PN ′;[αN ′ ,N ′]) ≤ RB(N ′)χN ′
(PN ′;[0,αN ′ ]) + C1eĉ log logN

)
≥ 1− 0.03 = 0.97 .

(4.4.29)

From the second inequality in (P2) in Lemma 4.4.5 we have

P
(
RB(N ′)χN ′

(PN ′;[0,αN ′ ]) ≤ 4eĉ log logN ′) ≥ 0.17 .
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The last two displays and the FKG imply

P
(
RB(N ′)χN ′

(PN ′;[αN ′ ,N ′]) ≤ (4 + C1) eĉ log logN ′
)
> 0.17× 0.97 > 0.16 .

in contradiction with the first inequality in (P2) in Lemma 4.4.5. The claim follows.

4.4.5 Resistance across rectangles and annuli

As a consequence of the above arguments, we are now ready to state our first unrestricted

general upper bound on the effective resistance across rectangles:

Proposition 4.4.11. There are constants C6, c3 ∈ (0,∞) and N1 ≥ 1 such that for all

N ≥ N1, all M ≥ 16N and for every translate S of B(4N,N) contained in B(M/2), we

have

P
(
RLR;S,χM ≤ C6eĉ log log(M)) ≥ c3 . (4.4.30)

The same applies to RUD;S,χM for translates S of B(N, 4N) with S ⊆ B(M/2).

We begin by showing that (4.4.24) holds (with the same constants) along an exponentially

growing sequence of N . This is where Proposition 4.4.8 and Proposition 4.4.9 come together.

Lemma 4.4.12. Let c0 and C3 be as in Proposition 4.4.8. There is c ∈ (0,∞) and an

increasing sequence {Nk : k ≥ 1} of positive integers such that, for each k ≥ 1, we have

14Nk − 1 ≤ Nk+1 ≤ cNk (4.4.31)

and the bound

P
(
RLR;S,χ16Nk

≤ C3eĉ log log(16Nk)) ≥ c0 (4.4.32)

holds for all translates S of B(4Nk, Nk) contained in B(8Nk).

Proof. We will construct {Nk : k ≥ 1} by induction. Suppose that N1, . . . , Nk have already

been defined. Since (4.4.32) holds for Nk, Proposition 4.4.9 shows the existence of an L ∈
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[8Nk, C5Nk] with αL ≥ Nk. Define a sequence {Lj : j ≥ 0} by L0 := L and Lj+1 := min{L ∈

N : b4L/7c = Lj} and note that Lj ≤ c(7/4)jL for some numerical constant c′ ∈ (0,∞).

Now if αLi+1
> 2αLi is true for i = 0, . . . , j − 1, then

2jNk ≤ 2jαL < αLj ≤ Lj ≤ c′(7/4)jL ≤ c′(7/4)jC5Nk. (4.4.33)

The fact that 7/4 < 2 implies that this must fail once j is sufficiently large; i.e., for some j ∈

{0, . . . , C ′5}, where C ′5 depends only on C5. We thus let j ≥ 1 be the smallest such that

αLj ≤ 2αLj−1
and set Nk+1 := Lj . Then (4.4.31) holds by the inequality on the right of

(4.4.33) and the fact that Nk+1 ≥ L1 ≥ (7/4)L − 1 ≥ 14Nk − 1. The bound (4.4.32) is

implied by Proposition 4.4.8.

To start the induction, we just take the above sequence {Lj} with L := 1 and find the

first index j for which αLj ≤ 2αLj−1
. Then we set N1 := Lj and argue as above.

From here we now conclude:

Proof of Proposition 4.4.11. Let {Nk} be the sequence from Lemma 4.4.12. Invoking Corol-

lary 4.3.8 and Lemma 4.4.7, the bound (4.4.32) shows that, for each M ≥ 16Nk and any

translate S of B(4Nk, Nk) contained in B(M/2),

P
(
RLR;S,χM ≤ C ′3eĉ log log(M)) ≥ c′0. (4.4.34)

holds with some constants C ′3, c
′
0 ∈ (0,∞) independent of k and M . By invariance of the

law of χM with respect to rotations of B(M), the same holds for the resistance RUD;S,χM

for all rotations of B(4Nk, Nk) contained in B(M/2).

Now pick N ≥ N1 and let k be such that Nk ≤ N < Nk+1. For M ≥ 16N ≥ 16Nk,

consider a translate S of B(4N,N) contained in B(M/2). Let m := min{r ∈ N : (3r+1)N ≥

Nk+1}; by (4.4.31) this m is bounded uniformly in k. We then find rectangles Si, i = 1, . . . ,m

that are translates of B(4Nk, Nk) such that Si+1 = 3Ne1 +Si for each i = 1, . . . ,m− 1 and
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are centered along the same horizontal line as S and positioned in such a way that they all

lie inside B(M/2). Next we find translates S′1, . . . , S
′
m−1 of B(Nk, 4Nk) such that Si∩Si+1,

which is a translate of B(N), is contained in S′i for each i = 1, . . . ,m − 1. We can again

position these so that S′i ⊆ B(M/2) for each i.

It is clear from the construction that if, for each i = 1, . . . ,m, we are given a path in Si

and, for each i = 1, . . . ,m− 1, a path in S′i and these paths connect the shorter sides of the

rectangle they lie in, then the graph union of all these paths contains a path in S between

the left side and right side thereof. Lemma 4.2.4 then gives

RLR;S,χM ≤
m∑
i=1

RLR;Si,χM +
m−1∑
i=1

RUD;S′i,χM
. (4.4.35)

All of the rectangles lie in B(M/2) and so (4.4.34) applies to the resistivities on the right

of (4.4.35). Lemma 4.4.7 then readily gives (4.4.32) with C6 := (2m − 1)C ′3 and c3 :=

(c′0)2m−1.

In addition to resistance across rectangles, the proofs in Section 5.3 will also require an

lower bound for resistances across annuli. For N < M , let A(N,M) := B(M) rB(N)◦ and

denote

∂inA(N,M) := ∂B(N) and ∂outA(N,M) := ∂B(M)◦

Note that ∂inA(N,M) ⊂ A(N,M) as well as ∂outA(N,M) ⊂ A(N,M). We have:

Lemma 4.4.13. There C7, c4 ∈ (0,∞) such that for all N sufficiently large and A :=

A(N, 2N),

P
(
RAχ4N

(∂inA, ∂outA) ≥ C7e−3ĉ log log(4N)
)
≥ c4.

Proof. Let S1, S2, S3, S4 denote the four maximal rectangles contained in A. We assume

that the rectangles are labeled clockwise starting from the one on the right. Now observe

that every path in A from ∂inA to ∂outA contains a path that is contained in, and connects
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the longer sides of, one of the rectangles S1, S2, S3, S4. It follows that

RAχ4N
(∂inA, ∂outA) ≥ RLR,S1,χ4N

+RUD,S2,χ4N
+RLR,S3,χ4N

+RUD,S4,χ4N
.

The claim will follow from the FKG inequality if we can show that, for some p > 0 and C ′7 >

0,

P
(
RLR,S,χ4N

≥ C ′7e−3ĉ log log(4N)) ≥ p (4.4.36)

holds for all translates S of ([0, N ]× [0, 4N ])∩Z2 contained in B(2N) and all N sufficiently

large. (Indeed, then c4 := p4 and C7 := 4C ′7.)

We will show this using the duality in Lemma 4.2.6, but for that we will first need to

invoke the decomposition χ4N = Y4N + Z4N from Lemma 4.3.12. First, for any r, A > 0,

P
(
RLR,S,χ4N

≥ r
)
≥ P

(
RLR,S,Z4N

≥ r/A
)
− P

(
RLR,S,χ4N

< ARLR,S,Z4N

)
Passing over to conductances, from Lemma 4.4.2 we then get, as before,

P
(
RLR,S,χ4N

< ARLR,S,Z4N

)
≤ 1

A
eĉ log log(4N),

while the duality in Lemma 4.2.6 gives, as in the proof of Proposition 4.4.1,

P
(
RLR,S,Z4N

R?UD,S,Z4N
≥ e−2γc1/64

)
≥ 1− ε.

Finally, we use Lemma 4.4.2 one more time to get

P
(
R?UD,S,Z4N

≤ r̃
)
≥ P

(
RUD,S,χ4N

≤ r̃/A
)
− 1

A
eĉ log log(4N).

If we set r̃/A := C6eĉ log log(4N), Proposition 4.4.11 bounds the first probability below by c3.

Now take A := Ce3ĉ log log(4N) for C large and work your way back to get (4.4.36).
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4.4.6 Gaussian concentration and upper bound on point-to-point

resistances

In order to get the tail estimate on the effective resistance in Theorem 4.1.1, we need to

invoke a concentration-of-measure argument for the quantity at hand. Recall the notation

RAχ(P) for the effective resistance in network Aχ restricted to the collection of paths in P .

Proposition 4.4.14. Suppose χ is a Gaussian field on B(N) with Var(χx) ≤ c1 logN for

all u ∈ B(N) and c1 independent of N . Let Aχ be a subnetwork of B(N)χ and let P be

a finite collection of paths within A between some given source and destination. There is a

constant c2 ∈ (0,∞) such that for all N ≥ 1, all t ≥ 0 and all γ > 0,

P
(∣∣logRAχ(P)− E logRAχ(P)

∣∣ ≥ t
√

logN
)
≤ 2e−c2γ

−2t2 .

For the proof, we will need:

Lemma 4.4.15. Let A be a subnetwork of B(N) and P be a finite collection of paths within A

between some given source and destination. Let g : RV (A) → R be defined by

g(x) := max
q∈Q

log
( ∑
P∈P

1∑
e∈P

e−γ(xe−+xe+)qe,P

)
,

where Q is the set of all q = (qe,P )e∈E(A),P∈P ∈ RE(A)×P
+ such that

∑
P∈P

1

qe,P
≤ 1 for all e ∈ E(A) .

Then g is a Lipschitz function relative to the L∞ norm on RV (A) with Lipschitz constant

2γ.
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Proof. Define a new real-valued function, also denoted by g, on RV (A) × RE(A)×P
+ via

g(x,q) := log
( ∑
P∈P

1∑
e∈P

e−γ(xe−+xe+)qe,P

)
.

Then for any q ∈ Q and x,y ∈ RV (A) it is clear that

|g(x,q)− g(y,q)| ≤ 2γ||x− y||∞ .

Hence g(x) = maxq∈Q g(x,q) is 2γ- Lipschitz relative to the L∞ norm as well.

Proof of Proposition 4.4.14. This follows directly from the Gaussian concentration inequal-

ity (see [76, 18]) and Lemma 4.4.15.

We are now ready to give a version of the upper bound in Theorem 4.1.1, albeit for a

network arising form a GFF on a finite subset of Z2:

Lemma 4.4.16. There is c1 ∈ (0,∞) depending only on γ and a constant c′′ ∈ (0,∞) such

that

P
(
RB(N)χM

(u, v) ≥ c1(logM) et
√

logM
)
≤ 2c1(logM) e−c

′′t2

holds for all N ≥ 1, all M ≥ 32N and all t ≥ 0.

Proof. Combining Proposition 4.4.11 with Corollary 4.4.3, for each ε > 0 there is N ′′0 =

N ′′0 (γ, ε) such that if N ≥ N ′′0 , M ≥ 32N and S is a translate of B(4N,N) contained

in B(M/2), then we have

P
(∣∣logRLR;S,χ2M

∣∣ ≤ 2ĉ log log(2M) + logC6

)
≥ ε. (4.4.37)

Decomposing χ2M on B(M) into a fine field χ
f
M and a coarse field χcM , the fact that

| logRLR;S,χ2M

∣∣ ≥ | logR
LR;S,χfM

∣∣− 2γmax
u∈S

∣∣χcM ∣∣
110



along with χ
f
M

law
= χM shows

P
(∣∣logRLR;S,χM

∣∣ ≤ 2ĉ log log(2M) + logC6 + 2c̃γ
)
≥ ε− P

(
max
u∈S

∣∣χcM ∣∣ > c̃
)
.

The last probability tends to zero as c̃→∞ uniformly in M ≥ 1 and so, by choosing c̃ large,

there is a constant C7 ∈ (0,∞) such that, for all N ≥ N ′′0 ,

P
(∣∣logRLR;S,χM

∣∣ ≤ 2ĉ log log(2M) + logC7

)
≥ ε/2 (4.4.38)

holds for all M ≥ 32N and all translates of B(4N,N) contained anywhere in B(M).

Since (4.4.38) gives us an interval of width of order log logM where
∣∣logRLR;S,χM

∣∣ keeps

a uniformly positive mass, the Gaussian concentration in Proposition 4.4.14 shows that, for

some constants c′, c′′ ∈ (0,∞),

E
∣∣logRLR;S,χM

∣∣ ≤ c′
√

logM

and also

P
(∣∣logRLR;S,χM

∣∣ > t
√

logM
)
≤ 2e−c

′′t2 (4.4.39)

hold for every t ≥ 0. The proof has so far assumed N ≥ N ′′0 ; to eliminate this assumption

we note that Var(χM,v) ≤ c̃ logM uniformly in v ∈ B(M) and so the union bound gives

P
(
max
v∈S

∣∣χM,v| > t
√

logM
)
≤ 2|S|e−

1
2 c̃
−2t2 .

Since |S| ≤ (4N ′′0 + 1)2 while | logRLR;S,χM | is at most 2γmaxv∈S
∣∣χM,v| times an N ′′0 -

dependent constant, by adjusting c′′ we make (4.4.39) hold for all N ≥ 1. Due to rotation

symmetry, the same bound holds also for RUD;S,χM and any translate S of B(N, 4N) con-

tained in B(M).

Now fix M ≥ 32 and let u, v ∈ B(M). Then one can find a collection of rectangles of the
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form B(N, 4N) or B(4N,N) with 32N ≤M that are contained in B(M) and satisfy:

(1) There are at most c1 logM of such rectangles with c1 ∈ (0,∞) independent of M .

(2) If a path is chosen connecting the shorter sides in each of these rectangles, then the

graph union of these paths contains a path from u to v.

By Lemma 4.2.4, this construction dominates RB(N)χM
(u, v) by the sum of the resistances

between the shorter sides of these rectangles. The FKG inequality, (4.4.39) and a union

bound then imply

P
(
RB(N)χM

(u, v) ≥ c1(logM) et
√

logM
)
≤ 2c1(logM) e−c

′′t2

This is the desired claim.

In order to extend this to the network with the underlying field η, we first note:

Lemma 4.4.17. Let η denote the GFF on Z2 pinned at the origin. There are C1, c1 ∈ (0,∞)

and N1 ≥ 1 such that for all N ≥ N1, all M ≥ 16N and for every translate S of B(4N,N)

contained in B(M/2), we have

P
(
RLR;S,η ≤ C1e2ĉ log log(M)) ≥ c1 . (4.4.40)

The same applies to RUD;S,χM for translates S of B(N, 4N) with S ⊂ B(M/2).

Proof. We will assume that M is the minimal integer such that S ⊂ B(M/2). Note that

this means that M/N is bounded. We proceed in two steps, first reducing η to the GFF

in Λ := B(M) r {0} and then relating this field to χM . Using the Gibbs-Markov property,

the field η can be written as χΛ + χc, where χΛ, the fine field, has the law of the GFF

on Λ while the coarse field χc is η conditional on its values outside of B(M). Now pick

an x ∈ B(M) r B(M/2)◦ such that x is at least M/6 lattice steps from both B(M/2)
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and B(M)c. For any r, A > 0 we then have

P
(
RLR;S,η ≤ r

)
≥ P

(
RLR;S,η ≤ r, ηc(x) ≥ 0

)
≥ P

(
RLR;S,ηΛ

≤ r/A, ηcx ≥ 0
)
− P

(
RLR;S,η > ARLR;S,ηΛ

, ηcx ≥ 0
)

(4.4.41)

Noting that both events are increasing functions of η, for the first probability on the right

we get

P
(
RLR;S,ηΛ

≤ r/A, ηcx ≥ 0
)
≥ 1

2
P
(
RLR;S,ηΛ

≤ r/A
)

using the FKG inequality. For the second probability we set

ϕu := ηcu −
Cov(ηcu, η

c
x)

Var(ηcx)
ηcx, u ∈ B(M/2),

and note, since Cov(ηcu, η
c
x) ≥ 0, we have

RLR;S,η ≤ RLR;S,ηΛ+ϕ on {ηcx ≥ 0
}
.

But the above definition ensures that ϕ is independent of ηcx and a calculation using the ex-

plicit form of the law of ηc gives that maxv∈Λ Var(ϕv) is bounded by a constant independent

of M . Markov’s inequality and (4.4.3) then bound the last probability in (4.4.41) by c′/A

for some constant c′ ∈ (0,∞) independent of A or M .

Next let gM : Z2 → [0, 1] be discrete harmonic on Λ with gM (0) := 1 and gN (u) := 0

whenever u 6∈ B(M). Let χ̃ have the law of χM (0)g(·) but assume that χ̃ is independent

of χΛ. The Gibbs-Markov property shows

χ̃+ χΛ
law
= χM .

A direct use of Lemma 4.4.2 is hampered by the fact that Var(χ̃(0)) is of order logM .

However, this is not a problem when S is at least distance δM from the origin because then
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gN (x) = O(1/ logM). Letting K := bN/3c, we now note that each translate S of B(4N,N)

contains a translate S̃ of B(4N,K) which is at least distance N from the origin and is aligned

with one of the longer side of S. Lemma 4.4.2 then gives, for any b ∈ R,

R
LR;S̃,χΛ+χ̃

≥ e−c
′′bR

LR;S̃,χΛ
≥ e−c

′′bRLR;S,χΛ
, on {χ̃(0) ≤ b logN}

for some c′′ > 0. Hence

P
(
RLR;S,χΛ

≤ r/A
)
≥ P

(
R

LR;S̃,χΛ+χ̃
≤ e−c̃br/A

)
− P

(
χ̃(0) > b logN

)
. (4.4.42)

Now set r := C1e2ĉ log log(M), A := eĉ log log(M) and pick any b > 0. Then the last probability

in both (4.4.41) and (4.4.42) tends to zero as N →∞, while, as soon as C1 is large enough,

the first probability on the right of (4.4.42) is uniformly positive by Proposition 4.4.11 and a

routine use of the FKG inequality (to get us from rectangles of the form B(4N,K) to those

with aspect ratio 4). The claim follows.

Using exactly the same argument as in the proof of Lemma 4.4.16, we then get:

Corollary 4.4.18. Let η be the GFF in Z2 r {0}. There are C,C ′ ∈ (0,∞) such that

P
(
RB(N)η(u, v) ≥ C eCt

√
logN

)
≤ C ′e−t

2
logN

holds for all N ≥ 1 and all t ≥ 0.

This is one half of Theorem 4.1.1; the other half will be shown in the next section.

4.5 Asymptotic growth rate of logRZ2
η
(0, B(N)c)

Proof of Theorem 4.1.1. Here the bound (4.1.1) has already been shown in Corollary 4.4.18,

so we just have to focus on (4.1.2–4.1.3). We will use a decomposition of η from [15,

Proposition 3.12]. Let b := 8 and consider the annuli A′k := B(bk+1) r B(bk)◦ and
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Ak := B(4bk) rB(2bk) for all k ≥ 0. Then

ηv =
∑
k≥0

[
bk(v)Xk + ψk,v + η

f
k,v

]
, (4.5.1)

where bk : Z2 → R is a function such that

bk(v) = −1 if v 6∈ B(bk) and
∣∣bk(v)

∣∣ ≤ cb`−k if v ∈ B(b`) ⊆ B(bk), (4.5.2)

while {Xk : k ≥ 0} are random variables and {ψk : k ≥ 0} and {ηfk : k ≥ 0} are random fields

(all measurable with respect to η) that are independent of one another and distributed as

centered Gaussian with the specifics of the law determined as follows:

(1) limk→∞Var(Xk) = g log b,

(2) writing χck for the coarse field obtained as the conditional expectation of the GFF

on B(bk) given its values on ∂B(bk−1), we have

ψk
law
= χck − E(χck|χ

c
k,0),

(3) η
f
k is the fine field on A′k.

For ψk, we in addition have the following variance estimate,

Var(ψk,v) ≤ cb`−k, v ∈ B(b`) ⊆ B(bk). (4.5.3)

See [15, Lemma 3.7] for (4.5.2) and [15, Lemma 3.8] for (4.5.3).

Clearly, only one of the fine fields χ
f
k can contribute in (4.5.1) for each given v and

χk,v = 0 unless v ∈ B(bk). Setting (with some abuse of our earlier notation),

∆k := max
v∈Ak

∣∣∣∑
j>k

bjXj +
∑
j≥k

ψj,v

∣∣∣
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[15, Lemma 3.8] shows that, for some constants c, c′ ∈ (0,∞),

P
(
∆k ≥ c+ t

)
≤ e−c

′t2 , t ≥ 0. (4.5.4)

The first half of (4.5.2) then lets us write

ηv +
k∑
j=0

Xk − χ
f
k,v ≤ ∆k, v ∈ Ak.

We now set Sk :=
∑k
j=0Xk and note that the Nash-Williams estimate and Lemma 4.4.2

imply

RB(N+1)η

(
0, ∂B(N)

)
≥ max
k=1,...,n−1

[
e−2γ(∆k−Sk)R

Ak,η
f
k

(
∂inAn,k, ∂

outAn,k
)]

(4.5.5)

where n := max{k ≥ 0: bk ≤ N}.

Our aim is to study the maximum in (4.5.5) and show that it grows at least as exponential

of
√
n/(log n)1+δ. To this end, we define the sequence of record values of the sequence Sn

as follows: Set τ0 := 0 and for m ≥ 1 let

τm := inf
{
k > τm−1 : Sk ≥ Sτm−1 + 1

}
.

Then we have:

Lemma 4.5.1. {τm − τm−1 : m ≥ 1} are independent with a uniform bound on their tail,

P
(
τm − τm−1 > t

)
≤ c√

t
, t ≥ 1, (4.5.6)

for some constant c > 0. In particular, for each δ > 0 there is c′ ∈ (0,∞) such that

P(τm > t) ≤ c′m√
t
, t ≥ 1. (4.5.7)
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holds for all m ≥ 1.

Postponing the proof temporarily, we note that (4.5.7) shows

P
(
τm > m2(logm)2+2δ

)
≤ c′

(logm)1+δ
, m ≥ 2. (4.5.8)

A Borel-Cantelli argument then gives

sup
m≥1

τm

m2(logm)2+2δ
<∞, a.s. (4.5.9)

(This is first proved for m running along powers of 2 and then extended by monotonicity of

both numerator and denominator.) In particular, for n large enough, the sequence S1, . . . , Sn

will see at least
√
n/(log n)1+δ record values as defined above. If it were not for the terms

∆k and R
Ak,η

f
k

(∂inAn,k, ∂
outAn,k), this observation would bound the maximum in (4.5.5)

by what we want, so we have to ensure that these terms do not spoil this.

Consider the events

Ek :=
{

∆k ≤ log log k
}

and

Fk :=
{
R
Ak,η

f
k

(
∂inAn,k, ∂

outAn,k
)
≥ Ce−3ĉ log log(bk)

}
.

By (4.5.4) and Markov’s inequality, there is an a.s. finite n0 such that

n∑
k=1

1Ec
k
≤ 1

2

√
n

(log n)1+δ
, n ≥ n0.

(Again, we prove this for n running along powers of 2 and then fill the gaps by monotonicity.)

This means that at least half of the record values by time n occur at indices where Ek occurs,

i.e., ∑
m≥1

1Eτm∩{τm≤n} ≥
1

2

√
n

(log n)1+δ
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as soon as n is large enough. But the events Fk are independent of each other and of all of

Ej ’s and τm’s and, since Lemma 4.4.13 tells us infk≥1 P(Fk) > 0 for some C > 0, the longest

run of 1’s in the sequence {1F c
τm

: τm ≤ n} has length at most c̃ log n. It follows that, for n

large, the event Ek ∩ Fk occurs for some k of the form k = τm for some m = m(n) ≥ 1

subject to τm ≤ n and τm′ > n for m′ := m − dc log ne. This shows m = n1/2+o(1) and so

m ≥ m′/2 once n is large enough. From (4.5.9) we now conclude

Sτm ≥ m ≥ m′

2
≥ c

τm′

(log τm′)
1+δ
≥ c′

√
n

(log n)1+δ

for some constants c, c′ ∈ (0,∞) as soon as n is large enough. Since also Ek ∩ Fk occur for

k := τm, using this in (4.5.5) yields

logRB(N+1)η

(
0, ∂B(N)

)
≥ 2γc′

√
n

(log n)1+δ
− 2γ log log n− 3ĉ log log(bn) + logC .

The bound (4.1.3) follows.

Proof of Lemma 4.5.1. We will follow the proof of [15, Lemma 4.16]. Since the sequence

{Sn : n ≥ 1} has independent (centered) Gaussian increments, we can embed it into a path

of standard Brownian motion by putting Sn = Btn where tn := Var(Sn). By property (1)

above, we have tn − tn−1 → g log b as n → ∞. Consider the process W (k) which is zero

outside the interval [tk, tk+1] and on this interval,

W (k)(s) :=
tk+1 − s
tk+1 − tk

Btk +
s− tk

tk+1 − tk
Btk+1

−Bs, tk ≤ s ≤ tk+1.
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The independence of increments of Brownian motion now gives

P
(
Btk+s −Btk ≤ 2 + log(1 + s) : s+ tk ∈ [tk, tn]

)
≥ P

(
Btj −Btk ≤ 1: j = tk, . . . , tn

) n−1∏
j=k

P
(

max
s∈[tj ,tj+1]

W (j)(s) ≤ 1 + log(1 + tj − tk)
)
.

Since W (k) are Brownian bridges on intervals of bounded length, and maxima thereof thus

have a uniformly Gaussian tail, the product on the right-hand side is positive uniformly in n.

It follows that, for c−1 being a uniform lower bound on the product,

P
(
τm − τm−1 ≥ t

)
≤ cP0(Bs ≤ 2 + log(1 + s) : s ≤ c̃t

)
where c̃ := infn≥1(tn − tn−1). The probability on the right is at most c′/

√
t by, e.g., [15,

Proposition 4.9]. This proves (4.5.6). The bound (4.5.7) now follows from standard estimates

of sums of independent heavy-tailed random variables.
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CHAPTER 5

SOME PROPERTIES OF THE RANDOM WALK DRIVEN BY

PLANAR GFF

5.1 Recurrence, return probability and subdiffusivity

In this chapter we will study the random walk defined in Section 1.2 using the effective

resistance estimates from previous chapter. For convenience of the reader, we will discuss

the setup once again before presenting our main results.

Let η = {ηv}v∈Z2 denote a sample of the discrete GFF on Z2 pinned to 0 at the origin.

Thus {ηv}v∈Z2 is a centered Gaussian process such that

η0 = 0 and E(ηuηv) = GZ2\{0}(u, v) for all u, v ∈ Z2 ,

where GZ2\{0}(u, v) is the Green function in Z2 \ {0}. For γ > 0 and conditional on

the sample η of the GFF, let {Xt}t≥0 be a discrete-time Markov chain with transition

probabilities given by

pη(u, v) :=
eγ(ηv−ηu)∑

w:|w−u|1=1 eγ(ηw−ηu)
1|v−u|1=1 , (5.1.1)

where | · |1 denotes the `1-norm on Z2. We will write Pxη for the law of the above random

walk such that Pxη (X0 = x) = 1 and use Exη to denote the corresponding expectation. We

also write P for the law of the GFF and use E (as above) to denote the expectation with

respect to P.

The transition kernel pη depends only on the differences {ηx − ηy : x, y ∈ Z2} whose law

is, as it turns out, invariant and ergodic with respect to the translates of Z2. The Markov

chain {Xt}t≥0 is thus an example of a random walk in a stationary random environment.

The main conclusion we prove about this random walk is then:
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Theorem 5.1.1. For each γ > 0 and each δ > 0,

lim
T→∞

P
(

e−(log T )1/2+δ
T−1 ≤ P 0

η (X2T = 0) ≤ e(log T )1/2+δ
T−1

)
= 1 . (5.1.2)

Furthermore, {Xt}t≥0 is recurrent for P-almost every η.

We also prove a version of subdiffusivity for the expected exit time from large balls:

Theorem 5.1.2. Let τB(N)c denote the first exit time of {Xt : t ≥ 0} from B(N) :=

[−N,N ]2 ∩ Z2. For each δ > 0, we then have

lim
N→∞

P
(
Nψ(γ)e−(logN)1/2+δ

≤ E0
ητB(N)c ≤ Nψ(γ)e(logN)1/2+δ

)
= 1 , (5.1.3)

where

ψ(γ) :=


2 + 2(γ/γc)2, if γ ≤ γc :=

√
π/2,

4γ/γc, otherwise.

(5.1.4)

The bounds on the expected hitting time indicate that |XT | should scale as T
1

ψ(γ)
+o(1)

for large T . Although we expect this to be true, we have so far only been able to prove a

corresponding lower bound:

Theorem 5.1.3. For P-almost every η and each δ > 0,

P 0
η

(
|XT | ≥ e−(log T )1/2+δ

T
1

ψ(γ)

)
−→
T→∞

1 in probability, (5.1.5)

where ψ(γ) is as in (5.1.4).

We note that Theorems 5.1.2 and 5.1.3 are consistent with the predictions in [21, 22] for

general log-correlated fields. In particular, (5.1.5) confirms the prediction for the diffusive

exponent of the walk from [21, 22] as a lower bound. The reason why the bounds in (5.1.3)

are not sufficient is that we do not know whether τB(N)c scales with N proportionally to its

expectation. A full proof of subdiffusive behavior thus remains elusive.
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As mentioned several times before, the technical approach that makes our analysis pos-

sible stems from the following simple rewrite of the transition kernel,

pη(u, v) =
eγ(ηv+ηu)∑

w:|w−u|1 eγ(ηw+ηu)
1|v−u|1=1. (5.1.6)

This represents {Xt}t≥0 as a random walk among random conductances where the edge

(u, v) is given a conductance eγ(ηu+ηv). As it turns out, the change of the behavior of the

expected exit time at the critical point γc (see Theorem 5.1.2) arises, in its entirety, from

the asymptotic

πη
(
B(N)

)
= Nψ(γ)+o(1), N →∞ . (5.1.7)

This is because, as a consequence of Theorem 4.1.1, point-to-point effective resistances in

the associated random conductance network Z2
η behave, for points at distance N , as No(1)

for every γ > 0.

5.1.1 Proof strategy

Apart from Theorem 4.1.1 which is a key ingredient of our proofs, substantial work is needed

on the random walk side as well. The upper bound on the return probability is proved in

Section 5.3.1 using the methods drawn from [52]. The lower bound on the return probability

is more subtle as it requires showing that the effective resistivity from 0 to v in B(N)

is bounded by the sum of the resistances from 0 to ∂B(N) and from v to ∂B(N). This

amounts to bounding a difference of effective resistances, which is not immediate from the

estimates obtained in Chapter 4.

We approach this by invoking a concentric decomposition of the GFF along a sequence of

annuli, which permits representing of the typical value of the resistance as an exponential of

a random walk. The Law of the Iterated Logarithm then shows that the natural fluctuations

of the effective resistance (which are of order eO(
√

logN)) can be beaten in at least one of

the annuli. These key steps are the content of Proposition 5.3.8 and Lemma 5.3.9. As an

122



immediate consequence, we then get recurrence.

5.2 Cardinality of the level sets of GFF

In this section, we estimate the cardinality of the sets of points where the GFF equals

(roughly) a prescribed multiple of its absolute maximum. The main use of this is to prove

Lemma 5.3.2 where we obtain a lower bound on πη(B(N)) (see (5.1.7)).

Recall that from [20, 19] we know that the family of random variables

max
v∈B(N)

χN,v − 2
√
g logN − 3

4

√
g log logN (5.2.1)

is tight as N →∞. The level sets we are interested in are of the form

AN,α :=
{
v ∈ B(bN/2c) : χN,v ∈ (αm̃N , αm̃N + 1)

}
, (5.2.2)

where m̃N := 2
√
g logN and α ∈ (0, 1). Our conclusion about these is as follows:

Theorem 5.2.1. For any α0 ∈ (0, 1) there are c = c(α0) > 0 and κ = κ(α0) > 0 such that

for all 0 ≤ αN ≤ α0 and all δ ≥ e−(logN)1/4
the bound

P
(
|AN,αN | ≤ δE|AN,αN |

)
≤ cδκ (5.2.3)

holds for all N sufficiently large. The same statement holds also for the GFF on B(N)r{0}.

The exponent linking the cardinality of the level set to the linear size of the underlying

domain has been computed in [25] building on [17] where the leading-order growth-rate of

the absolute maximum was determined. While much progress on the maxima of the GFF

has been made recently, notably with the help of modified branching random walk (MBRW)

introduced in [20], the methods used in these studies do not seem to be of much use here.

Indeed, in order to make use of the modified branching random walk one needs to invoke a
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comparison between the GFF and MBRW, which is conveniently available for the maximum

(using Slepian’s lemma [75]), but does not seem to extend to the cardinality of the level sets.

Another possible approach to consider is the intrinsic dimension of the level sets (see

[24]), but this would not give a sharp estimate as we desire. Our approach to Theorem 5.2.1

is much simpler, being a combination of the second moment method (which directly applies

to GFF) and the “sprinkling method” which was employed in [28] in the context of the

GFF. We remark that the second moment method has recently been used to prove that a

suitably-scaled size of the whole level set admits a non-trivial distributional limit [16].

Proof of Theorem 5.2.1. The proof is actually quite easy when α < 1/
√

2, but becomes

more complicated in the complementary regime of α. This is due to well known failure

of the second-moment method in these problems and the need for a suitable truncation to

make it work again. The first half of the proof thus consists of the set-up, and control, of

the truncation.

Pick N ≥ 1 large and let n := max{k : 2k < N/8}. For v ∈ B(bN/2c), write B(v, L) :=

v+B(L) and, for k = 1, . . . , n, set, abusing of our earlier notation, An,k(v) := B(v, 2k+1)r

B(v, 2k). Note that An,k(v) ⊂ B(b3N/4c) for all k = 1, . . . , n. Then for all x, y ∈ An,k(v)

and with g := 2/π,

E(χN,vχN,x) = g(log 2)(n− k) +O(1)

and

E(χN,xχN,y) ≥ g(log 2)(n− k) +O(1)

hold with O(1) uniformly bounded in N and x, y as above. Next denote

χ̄N,k,v :=
1

|An,k(v)|
∑

u∈An,k(v)

χN,u .
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A straightforward calculation then shows that

Var(χ̄N,k,v) = g(log 2)(n− k) +O(1) (5.2.4)

and

E(χ̄N,k,vχN,v) = g(log 2)(n− k) +O(1),

again, with O(1) uniform in N . It follows that there are numbers ax = aN,k,v,x with

|ax − 1| = O(1/(n − k)) and a Gaussian process Yx = YN,k,v,x which is independent of

χ̄N,k,v and obeys Var(Yx) = g(log 2)k +O(1) such that

χN,x = axχ̄N,k,v + Yx, x ∈ {v} ∪ An,k(v).

Further, we have that

max
x∈An,k(v)

E(YvYx) = O(1) (5.2.5)

again with O(1) uniform in N .

For ε > 0, r > 0 and 0 ≤ αN ≤ α0, define the event

Ev,ε,r,αN :=
{
χN,v ∈ (αN m̃N , αN m̃N + 1)

}
∩

n⋂
k=1

{
χ̄N,k,v ≤ αN

n− k
n

m̃N + ε[k ∧ (n− k)] + r
}
.

We claim that for ε :=
(1−α0)

10 and r := rα0 sufficiently large, we have

P
(
Ev,ε,r,αN

)
≥ 1

2P
(
χN,v ∈ (αN m̃N , αN m̃N + 1)

)
. (5.2.6)

In order to prove (5.2.6), note that by (5.2.4)

E
(
χ̄N,k,v

∣∣χN,v ∈ (αN m̃N , αN m̃N + 1)
)

= αN
n− k
n

m̃N +O(1)
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and

Var
(
χ̄N,k,v

∣∣χN,v) ≤ 4(n− k)k

n
.

Abbreviating sk := αN
n−k
n m̃N + ε[k ∧ (n− k)] + r, from these observations we have

n∑
k=1

P
(
χ̄N,k,v ≥ sk

∣∣∣χN,v ∈ (αN m̃N , αN m̃N + 1)
)

≤
n∑
k=1

e−ε((n−k)∧k+r+O(1))/100 ≤ 1/2 ,

where the last inequality holds for all r ≥ r(α0) where r(α0) ∈ (0,∞). This yields (5.2.6).

Now we are ready to apply the second moment method. We will work with

Z :=
∑

v∈B(bN/2c)
1Ev,ε,r,αN

From (5.2.6) and a calculation for the Gaussian distribution we get

EZ ≥ 1

2
E|AN,αN | ≥

c√
n

4(1−α2
N )n (5.2.7)

for some constant c > 0. Our next task is a derivation of a suitable upper bound on VarZ.

From (5.2) and (5.2.5) we get that, for any v ∈ B(bN/2c) and with cr > 0 a constant

depending on r but not on v or N ,

∑
u∈B(bN/2c)

P(Eu,ε,r,αN ∩ Ev,ε,r,αN )

≤
n∑
k=1

∑
x∈An,k(v)

P
(
χN,u, χN,v ∈ (αN m̃N , αN m̃N + 1), χ̄N,k,v ≤ xk

)

≤
n∑
k=1

∑
u∈An,k(v)

∫ x`

−∞
P
(
Yv ∧ Yu ≥ αN m̃N − s

)
P(χ̄N,k,v ∈ ds)

≤ cr
n∑
k=1

1√
n− k

( 1√
k

)2
4−α

2
N (n−k)4(1−2α2

N )k42εαN [(n−k)∧k] .

(5.2.8)
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Here the last inequality follows from the fact that, once we write the integral using the explicit

form of the law of χ̄N,k,v, the integrand is maximized at s := sk and decays exponentially

when s is away from sk. Combined with (5.2.7), the preceding inequality implies that

VarZ
(EZ)2

≤ cr

n∑
k=1

n√
n− k

( 1√
k

)2
4−(1−α2

N )(n−k)42εαN [(n−k)∧k] = O(1) .

This implies

P(Z ≥ EZ) ≥ c (5.2.9)

for some c = c(α0) > 0 sufficiently small uniformly in N ≥ N1 for some N1 large.

It remains to enhance the lower bound in (5.2.9) to a number sufficiently close to one.

To this end, pick an integer M with N1 ≤M ≤ e(logN)1/4
, let L := bN/(2M)c and consider

a collection of boxes V1, . . . , VL2 of the form Vi := v1 + B(M) contained in B(bN/2c). For

u ∈ Vi, i = 1, . . . , L2, define the coarse fields

χcN,i,u = E
(
χN,u

∣∣χN,x : x ∈ ∂Vi
)
. (5.2.10)

By Lemma 4.3.3 and [19, Lemma 3.10], we get that

Emax
v∈Vi
|χcN,i,v − χ

c
N,i,vi

| ≤ O(1) .

In addition, as is easy to check, VarχcN,i,vi
≤ 4 logM . Introducing the event

E :=
{
χcN,i,v ≥ −40 logM : v ∈ Vi, 1 ≤ i ≤ L2},

we obtain that

P(Ec) = O(M−1) . (5.2.11)

Conditioning on E and on the values {χN,v : v ∈ ∂Vi, 1 ≤ i ≤ L2}, the GFF in each square

of Vi are independent of each other. Further, the Gaussian field on Vi dominates the field
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obtained from subtracting 40 logM from the GFF on Vi with Dirichlet boundary condition

on ∂Vi. Write

AN,αN ,i :=
{
v ∈ Vi : χN,v ∈ (αN m̃N , αN m̃N + 1)

}
.

By a straightforward first moment computation, we see that

E|AN,αN | ≤M400E|AN,αN+40 logM/m̃N ,i
| .

Therefore, applying (5.2.9) to Vi we get that

P
(
|AN,αN ,i| ≥M−400E|AN,αN |

∣∣ E) ≥ c .

By conditional independence, we then get that

P
(

max
1≤i≤L2

|AN,αN ,i| ≥M−400E|AN,αN |
∣∣ E) ≥ 1− (1− c)L

2
.

Combined with (5.2.11), it gives

P
(
|AN,αN | ≥M−400E|AN,αN |

)
≥ 1−O(M−1)− (1− c)L

2
.

Choosing M so large that δ < M−400 < 2δ (assuming that δ is sufficiently small), this

readily gives the claim for the GFF on B(N) with Dirichlet boundary condition.

In the case that the GFF on B(N) r {0}, the same calculation goes through by consid-

ering instead the level set restricted to the square (bN/4c, 0) +B(bN/2c) and replacing χN

in (5.2.10) by η. We leave further details to the reader.

5.3 Proofs of the main results

Here prove our main results. We begin with some preparatory claims; the actual proofs start

to appear in Section 5.3.2.
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5.3.1 Points with moderate resistance to origin

Our proofs will require restricting to subsets of Z2 of points with only a moderate value of

the effective resistance to the origin and/or the boundary of a box centered there in. Here

we give the needed bounds on cardinalities of such sets.

Lemma 5.3.1. Denote A(N, 2N) := B(2N) rB(N)◦. For any δ > 0, we have

P
( ∑
v∈A(N,2N)

πη(v) 1
{RB(N)η (0,v)>e(logN)1/2+δ}

> Nψ(γ)e−(logN)δ
)
≤ e−(logN)δ (5.3.1)

as soon as N is sufficiently large.

Proof. Abbreviate, as in (4.3.5), g := 2/π. We will proceed by a straightforward first-moment

estimate, but first we have to localize the problem to a finite box. Write η = ηf+ηc where ηf

is the fine field on the box B(4N). Since Var(ηcv) ≤ Var(ηv), the variance of ηc is bounded by

a constant times logN uniformly on B(N) and so, combining Corollary 4.3.8 with a bound

at one vertex,

P
(

min
v∈A(N,2N)

ηcv ≤ −(logN)1/2+δ/2
)
≤ ce−c̃(logN)δ .

On the event when ηc ≥ −(logN)1/2+δ/2 we have

RB(N)η(0, v) ≤ R
B(N)fη

(0, v) e2γ(logN)1/2+δ/2

and so comparing this with the restriction on the effective resistivity in (5.3.1) we may as

well estimate the probability in (5.3.1) for η replaced by χ4N .

Here we will still need to employ a truncation to keep the field χ4N below its typical

maximum scale. The following crude estimate based on a union bound is sufficient,

P
(

max
v∈B(N)

χ4N,v ≥ 2
√
g logN + (logN)δ

)
≤ ce−c̃(logN)δ

for some constants c, c̃ ∈ (0,∞). Writing FN for the complementary event and inserting FN
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in the probability in (5.3.1) with η replaced by χ4N , Markov’s inequality bounds the result

by

N−ψ(γ)e(logN)δ
∑

v∈A(N,2N))

E
(
πχ4N (v)1

{RB(N)χ4N
(0,v)>e(logN)1/2+δ}

∣∣∣FN) . (5.3.2)

Now η 7→ πη(v) is increasing while {RB(N)η(0, v) > e(logN)δ} is a decreasing event. Since

the conditioning on FN preserves the FKG inequality, the quantity in (5.3.2) is no larger

than

1

P(AN )2
N−ψ(γ)e(logN)δ

∑
v∈B(N)

E
(
πχ4N (v); FN

)
P
(
RB(N)χ4N

(0, v) > e(logN)1/2+δ
)

Corollary 4.4.18 bounds the last probability by e−c̃(logN)2δ
so we just have to compute the

sum of the expectations of πη4N (v)’s.

Pick a pair of nearest neighbors u and v, with v ∈ A(N, 2N), and let X := χ4N,u+χ4N,v.

Disregarding the event FN , a straightforward moment computation using Var(χ4N,v) ≤

g logN + c for v ∈ A(N, 2N) shows

E
(
eγX

)
= e

1
2γ

2Var(X) ≤ cN2γ2g, v ∈ A(N, 2N). (5.3.3)

On the other hand, a change of measure argument gives

E
(
eγX ;FN

)
≤ e

1
2γ

2Var(X)P
(
X ≤ 4

√
g logN + 2(logN)δ − γVar(X)

)
≤ cN2γ2g P

(
X ≤ 4(

√
g − γg) logN + 3(logN)δ

) (5.3.4)

For γ > γc := 1/
√
g, the probability itself decays as N−2(1−γ/γc)2

ec
′(logN)δ . Invoking the

definition of ψ(γ) in (5.1.4), the inequalities (5.3.3–5.3.4) thus give

E
(
πχ4N (v); FN

)
≤ cNψ(γ)−2ec

′(logN)δ , v ∈ A(N, 2N).

130



Summing over v ∈ A(N, 2N), the claim follows.

Consider now the set

ΞN := {0} ∪
{
v ∈ A(N, 2N) : RB(4N)η(0, v) ≤ e(log T )1/2+δ

}
. (5.3.5)

With the help of the above lemma we then show:

Lemma 5.3.2. For each δ > 0, there is c > 0 such that for all N sufficiently large,

P
(
πη(ΞN ) ≤ Nψ(γ)e−(logN)δ

)
≤ c

(logN)2
.

Proof. In light of Lemma 5.3.1, it suffices to show that

P
( ∑
v∈A(N,2N)

πη(v) ≤ 3Nψ(γ)e−(logN)δ
)
≤ c

(logN)2
(5.3.6)

Thanks to the Gibbs-Markov property, it actually suffices to show this (with δ replaced by

δ/2) for η replaced by χN and A(N, 2N) replaced by a box B(N). (Indeed, we just need to

take a translate B of B(N) with B ⊂ A(N, 2N) and then use the Gibbs-Markov property on

a translate of B(b3N/2c) centered at the same point as B. The contribution of the coarse

field is estimated using Corollary 4.3.8.)

The argument for (5.3.6) is different depending on the relation between γ and γc. For γ ≥

γc we use that the maximum of the GFF has doubly-exponential lower tails (see [28]). Invok-

ing the Gibbs-Markov property we then conclude that, with probability at least e−(logN)c ,

for some c > 0, there is at least one point u where

χN,u ≥ 2
√
g logN − ĉ log logN (5.3.7)

for some large enough C > 0. As χN,u−χN,v, for u and v neighbors, have bounded (in fact,

stationary) variances, a union bound shows that (5.3.7) will hold also for the neighbors of u.
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On this event, and denoting by v a neighbor of u,

∑
v∈B(N)

πχN (v) ≥ eγ(χN,u+χN,v) = N4
√
gγe−c

′ log logN .

Since 4
√
gγ = 4(γ/γc) equals ψ(γ) for γ ≥ γc, we are done here.

Concerning γ < γc, here will will apply Theorem 5.2.1 for α := γ/γc. Recall the notation

AN,α for the level set in (5.2.2). A straightforward computation using the explicit form of

the Gaussian probability density shows

P
(
x ∈ AN,α

)
≥ c

logN
N−2α2

,

and so E(|AN,α|) ≥ cNψ(γ)/ logN . Theorem 5.2.1 now guarantees that |AN,α| ≥ δE(|AN,α|)

occurs with probability O(δc). This statements permits even setting δ := 1/(logN)c
′
,

whereby the claim readily follows.

We also record an upper estimate on the total volume of πη:

Lemma 5.3.3. For any δ > 0, we have

P
( ∑
v∈B(N)

πη(v) > Nψ(γ)e(logN)δ
)
≤ e−(logN)δ (5.3.8)

as soon as N is sufficiently large.

Proof. This follows directly from the Markov inequality and the calculations in (5.3.3–5.3.4).

5.3.2 Upper bound on heat-kernel and exit time

The starting point of our proofs is an upper bound on the return probability for the random

walk. We remark that numerous methods exist in the literature to derive such bounds.

Some of these are based on geometric properties of the underlying Markov graph such as
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isoperimetry and volume growth, others are based on resistance estimates. The most natural

approach to use would be that of [5] (see also [52]); unfortunately, this does not seem possible

due to our lack of required uniform control of the resistance growth. Instead, we base our

presentation on the general strategy outlined in [55, Chapter 21.5]. We begin by restating,

and proving, one half of Theorem 5.1.1:

Lemma 5.3.4. For each δ > 0,

lim
T→∞

P
(
P 0
η (X2T = 0) ≤ e(log T )1/2+δ

T−1
)

= 1 . (5.3.9)

Proof. Pick δ > 0 and a large integer T , and recall the notation ΞT for the set in (5.3.5).

Consider the random walk {X̃t : t ≥ 0} on the network B(4T )η; this walk starts at 0 and

moves around B(4T ) indefinitely using the transition probabilities (1.2.2) that are modified

on the boundary of B(4T ) so that jumps outside B(4T ) are suppressed. Let {Yt : t ≥ 0}

record the successive visits of X̃ to ΞT . Then Y is a Markov chain on ΞT with stationary

distribution

ν(x) :=
πη(x)

πη(ΞT )
. (5.3.10)

Let τ0 := 0, τ1, τ2, etc be the times of the successive visits of Y to 0. Define

σ̂ := inf
{
k ≥ 1: τk ≥ T and Yk = 0

}
.

Then we have

TP 0(X̃T = 0) ≤ E0
( T−1∑
t=0

1{X̃t=0}

)
≤ E0

( T−1∑
k=0

1{Yk=0}
)
≤ E0

( σ̂−1∑
k=0

1{Yk=0}
)
, (5.3.11)

where the first inequality comes from the monotonicity of T 7→ P 0(X̃T = 0) and the second
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inequality reflects the fact that 0 ∈ ΞT . Since Yσ̂ = 0, by, e.g., [55, Lemma 10.5] we have

E0
( σ̂−1∑
k=0

1{Yk=x}
)

= E0(σ̂)ν(x). (5.3.12)

(This is proved by noting that the object on the left is a stationary measure for the walk Y

of total mass E0(σ̂).) By conditioning on YT we further estimate

E0(σ̂) ≤ T + max
u∈ΞT

Eu(σ0),

where σ0 := inf{k ≥ 0: Yk = 0} and note that

Eu(σ0) ≤ πη(ΞT )RB(4T )η(0, u) ≤ πη(ΞT ) e(log T )1/2+δ
, u ∈ ΞT ,

by the commute-time identity of [23] (cf [57, Corollary 2.21]). Combining this with (5.3.11–

5.3.12) and (5.3.10) we then get

P 0(X̃T = 0) ≤ 1

T
πη(0) e(log T )1/2+δ

,

which proves (5.3.9) because, due to the jumps being only to nearest neighbors, the walk X̃

coincides with the walk X up to time at least 4T .

This now permits to give:

Proof of Theorem 5.1.3. A standard calculation based on reversibility and the Cauchy-Schwarz

inequality yields

P 0(X2T = 0) ≥
∑

x∈B(N)

P 0(XT = x)Px(XT = 0)

= πη(0)
∑

x∈B(N)

P 0(XT = x)2

πη(x)
≥ πη(0)

P 0
(
XT ∈ B(N)

)2
πη
(
B(N)

) .

(5.3.13)

134



Invoking the upper bound on the heat-kernel and Lemma 5.3.3, we get that with probability

tending rapidly to one as N and T tend to infinity, we have

P 0(XT ∈ B(N)
)
≤
[ 1

T
e(log T )1/2+δ

Nψ(γ)e(logN)δ
]2
. (5.3.14)

Setting T := Nψ(γ)e(logN)1/2+2δ
gives the desired claim.

The same conclusion could in fact be inferred from the following claim which constitutes

one half of Theorem 5.1.2:

Lemma 5.3.5. For each δ > 0 and all N sufficiently large,

P
(
E0(τB(N)c) > Nψ(γ)e(logN)1/2+δ

)
≤ e−(logN)δ .

Proof. By the hitting time identity (or, alternatively, the commute time identity)

E0(τB(N)c) ≤ RB(N+1)η

(
0, ∂B(N)

)
πη
(
B(N)

)
The claim then follows from Corollary 4.4.18 and Lemma 5.3.3.

5.3.3 Bounding the voltage from below

We now move to the proofs of the requisite lower bounds. Here the focus will be trained on

the expected exit time which we write using the hitting time identity as

E0(τB(N)c) = RB(N+1)η

(
0, ∂B(N)

) ∑
v∈B(N)

πη(v)φ(v), (5.3.15)

where, using our convention that ∂B(N) is the external boundary of B(N),

φ(v) := P v(τ0 < τ∂B(N))
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is the electrostatic potential, a.k.a. voltage, in B(N) with φ(0) = 1 and φ vanishing

on ∂B(N). Estimating (5.3.15) from below naturally requires finding a sufficiently good

lower bound on φ. The idea is to recast the problem using a simple electric network and

invoke suitable effective resistance estimates. The following computation will be quite useful:

Lemma 5.3.6. Consider a resistor network with three nodes, {1, 2, 3}, and for each i, j let

cij denote the conductance of the edge (i, j). Let Rij denote the effective resistance between

node i and node j. Then,

c12

c12 + c13
=
R13 +R23 −R12

2R23
. (5.3.16)

Proof. Let us represent the network by an equivalent network, now with nodes {0, 1, 2, 3}

whose only edges are from 0 to each of 1, 2, 3. Denoting the conductances of these edges by

c1, c2, c3 respectively, the Y -∆ transform shows

cij =
cicj

c1 + c2 + c3
, 1 ≤ i < j ≤ 3.

Next let us introduce the associate resistances ri := 1/ci. The Series Law then gives Rij =

ri + rj for all 1 ≤ i < j ≤ 3. A computation shows that, for all cyclic permutations (i, j, k)

of (1, 2, 3),

ri =
1

2
(Rij +Rik −Rjk).

Some algebra then shows that the ratio on the left of (5.3.16) equals r3
r2+r3

. This is then

checked to agree with the right-hand side.

Using this lemma we then get:

Corollary 5.3.7. For any v ∈ B(N) r {0} and φ as above,

2RB(N+1)η

(
0, ∂B(N)

)
φ(v)

= RB(N+1)η

(
0, ∂B(N)

)
+RB(N+1)η

(
v, ∂B(N)

)
−RB(N+1)η(0, v). (5.3.17)
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Proof. As v 6∈ {0} ∪ ∂B(N), we may apply the network reduction principle to represent

the problem on an effective network of three nodes, with node 1 labeling v, node 2 marking

the origin and node 3 standing for ∂B(N). Since φ is harmonic on B(N) r {0}, it is also

harmonic on the effective network. But there φ(v) is just the probability that the random

walk at v jumps right to 0 in the first step. Using conductances, this probability is exactly the

expression on the left of (5.3.16). Plugging in the effective resistances, the claim follows.

A key point is to bound the expression involving effective resistances on the right of

(5.3.17) from below. This is the subject of:

Proposition 5.3.8. Let DN,η(v) denote the difference on the right of (5.3.17). For any

δ ∈ (0, 1), we then have

lim
N→∞

P
(

min
v∈B(bNe−(logN)δc)

DN,η(v) ≥ logN
)

= 1. (5.3.18)

For the proof we recall the annulus decomposition of the GFF from Section 4.3.2. Let b :=

8 and for a given N ≥ 1 and n ∈ N, set N ′ := bnN . Define the annuli

A′n,k := B(bn−k+1N) rB(bn−kN)◦, k = 1, . . . , n− 1. (5.3.19)

and

An,k := B(4bn−kN) rB(2bn−kN)◦, k = 1, . . . , n− 1. (5.3.20)

Note that An,k ⊂ A′n,k. Write η = ηc + χ2N ′ , where ηc is the coarse field on B(2N ′) and

χ2N ′ is the corresponding fine field. Denote

∆′ := max
v∈B(N ′)

|ηcv|.
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Define Mn,k as in (4.3.18) and for 1 ≤ ` < m ≤ n let

∆`,m := max
k=`,...,m−1

max
v∈An,k

∣∣∣Mn,k − E
(
χN ′,v

∣∣χN ′,v : v ∈
⋃
n≥j≥n−k∂B(bjN)

)∣∣∣.
(Both objects are measurable with respect to η.) Similarly to Lemma 4.3.11 we get

P
(

∆`,m ≥ C̃
√
m− `

)
≤ 1

(m− `)2
(5.3.21)

as soon as m− ` is sufficiently large.

Let χ
f
k,v denote the fine field on A′n,k,

χ
f
k,v := E

(
χ2N ′,v

∣∣∣χ2N ′,u : u ∈ ∂An,k
)
, v ∈ An,k,

(we think of χ
f
k as set to zero outside A′n,k) and χck := χ2N ′ − χ

f
k be the corresponding

coarse field. The definitions ensure

max
k=`,...,m

max
v∈An,k

∣∣ηv − (χ
f
k,v +Mn,k)

∣∣ ≤ ∆`,m + ∆′.

Note also that Mn,k and χ
f
k′ are independent as long as k ≥ k′.

Next recall that RA,η, for A an annulus in Z2, denotes the sum of the effective resistances

in network Aη between the shorter sides of the four maximal rectangles contained in A.

Recall also that RA,η(∂inA, ∂outA) denotes the effective resistance in Aη between the inner

and outer boundaries of annulus A. We define the events:

E?n,k :=
{
R
An,k,χ

f
k

(∂inAn,k, ∂
outAn,k) ≥ e−3ĉ log log(b−kN ′)

}
∩
{
Mn,k ≤ −C?

√
k log log(k)

}
(5.3.22)
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and

E??n,k :=
{
R
An,k,χ

f
k

≤ eĉ log log(b−kN ′)
}
∩
{

min
v∈An,k

ηck,v ≥ − log log(N ′)
}
. (5.3.23)

Here ĉ is the constant Proposition 4.4.1 and C? is fixed via:

Lemma 5.3.9. For each δ > 0 there are n0 ≥ 1, N0 ≥ 1, c1 ∈ (0,∞) such that one can

choose C? ∈ (0,∞) in the definitions of E?n,k and E??n,k so that, for all N ≥ N0 and all

n ≥ n0,

P
(
∃k?, k? : e

√
log n < k? < k? < n, E?n,k? ∩ E

??
n,k?

occurs
)
≥ 1− c1

log log n
.

Proof. Abbreviate by E?k the first event on the right of (5.3.22). This event is measurable

with respect to χ
f
k and so {Ek : k = 1, . . . , n} are independent. By Lemma 4.4.13, P(E?k) ≥ p

holds for some p > 0 and all k as soon as N ≥ N0. We are first interested in a simultaneous

occurrence of E?k and {Mn,k ≤ −C?
√
k log log(k)}.

Recalling that k 7→Mn,k is a random walk, define the stopping time

Tn := inf
{
k : e
√

log(n) ≤ k ≤ n, Mn,k ≤ −2C?
√
k log log(k)

}
.

Then, for C? sufficiently small, Lemma 4.3.9 shows

P
(
Tn > n/4

)
≤ c1

log log n

for some constant c1 ∈ (0,∞). Since the increments of Mn,k are independent centered

Gaussians with a uniform bound on their tail, for the event

Gn,k :=
{
Mn,k+j+1 −Mn,k+j ≤ log(k) : 0 ≤ j ≤ log(k)2

}
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the fact that Tn ≥ e
√

log(n) yields

P
({
Tn ≤ n/4

}
∩ Gn,Tn

)
≥ 1− 2c1

log log n

as soon as n is larger than a positive constant. Under a similar restriction on n, we then

also have

{
Tn ≤ n/4

}
∩ Gn,Tn ⊆

⋂
Tn≤k≤Tn+(log Tn)2

{
Mn,k ≤ −C?

√
k log log(k)

}

Therefore, on the event on the left, E?k ∩ {Mn,k ≤ −C?
√
k log log(k)} will not occur for

some k < n/2 only if the sequence {1Ec
k

: 1 ≤ k ≤ n} contains a run of 1’s of length at least

log(n)2. This has probability n(1− p)blog(n)c2 . As p > 0, we get

P
( ⋃

1≤k<n/2
E?k ∩

{
Mn,k ≤ −C?

√
k log log(k)

})
≥ 1− 2c1

log log n

as soon as n is larger than some positive constant.

For event E??n,k, the fact that the coarse field ηc on An,k has uniformly bounded variances

implies, via Corollary 4.3.8,

P
( ⋃

0≤k−n/2≤(log n)2

{
min
v∈An,k

ηck,v ≥ − log log(N ′)
})
≥ 1− c′(log n)2e−c

′′(log logN ′)2

for some c′, c′′ > 0. Proposition 4.4.11 in turn shows that the first event on the right of

(5.3.23) has a uniformly positive probability. The claim then follows as before.

Now we can complete:

Proof of Proposition 5.3.8. Fix N ′ ≥ 1 large and, given δ ∈ (0, 1), let n be the largest integer

such that N := b−nN ′ > N ′e−(logN ′)δ . (We are assuming the setting of Lemma 5.3.9.)
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Abbreviate kn := e
√

log n and suppose that the event

E?n,k? ∩ E
??
n,k?
∩
{

∆′ ≤ log log(N ′)
}
∩

⋂
kn≤k≤n

{
∆kn,k ≤ C̃

√
k
}

(5.3.24)

occurs for some k?, k? with kn ≤ k? < k? ≤ n. Then

RAn,k? ,η
(
∂inAn,k? , ∂

outAn,k?
)
≥ e−2γ(∆′+Mn,k?+∆kn,k?)R

A?
n,k?

,χf
k?

(
∂inAn,k? , ∂

outAn,k?
)

≥ e2γ[C?
√
k? log log k?−C̃

√
k?−log log(N ′) ] e−3ĉ log log(N ′)

≥ ec̃
√
k? log log k?

(5.3.25)

holds for some constant c̃ > 0, where we used that k? ≥ kn implies
√
k? � log log(N ′) as

soon as N ′ is sufficiently large. Similarly, abbreviating mn,k := minv∈An,k η
c
k,v, we get

RAn,k? ,η ≤ e−2γ(mn,k?−∆′)R
An,k? ,χ

f
k?

≤ e4γ log log(N ′) eĉ log log(N ′)

≤ RAn,k? ,η
(
∂inAn,k? , ∂

outAn,k?
)
− log(N ′)

(5.3.26)

where we again used that
√
k? � log log(N ′).

Now observe that if v ∈ B(N), then the Nash-Williams estimate implies

RB(N ′),η
(
v, ∂B(N ′)

)
≥ RB(N ′),η

(
v, ∂inAn,k?

)
+RAn,k? ,η

(
∂inAn,k? , ∂

outAn,k?
)

(5.3.27)

while the Series Law gives

RB(N ′),η(0, v) ≤ RB(N ′),η
(
0, ∂outAn,k?

)
+RB(N ′),η

(
v, ∂outAn,k?

)
+RAn,k? ,η

Since k? < k? implies that An,k? lies outside An,k? , we also have

RB(N ′),η
(
v, ∂inAn,k?

)
≥ RB(N ′),η

(
v, ∂outAn,k?

)
(5.3.28)
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Combining (5.3.26–5.3.28) we thus get that DN ′,η(v) ≥ logN ′ for all v ∈ B(N) as soon as

the event in (5.3.24) occurs. The claim now follows (for N replaced by N ′) from (5.3.21)

and Lemma 5.3.9.

5.3.4 Proofs of the main results

We will now move to prove the remaining part of our main results. Fix δ ∈ (0,∞) small,

abbreviate Nδ := Ne(logN)δ and consider the set

Ξ?N := {0} ∪ ∂B(N)

∪
{
v ∈ A(Nδ, 2Nδ) : RB(N+1)η(0, v) ∨RB(N+1)η(v, ∂B(N)) ≤ e(logN)1/2+δ

}
.

We again claim:

Lemma 5.3.10. For each δ > 0, there is c > 0 such that for all N sufficiently large,

P
(
πη(Ξ?N ) ≤ Nψ(γ)e−(logN)δ

)
≤ c

(logN)2
. (5.3.29)

Proof. Using the same proof, Lemma 5.3.1 applies also for resistivity RB(N)η(v, ∂B(N)). In

light of

RB(N+1)η

(
v, ∂B(N)

)
≤ RB(N+1)η(v, u), u ∈ ∂B(N),

Corollary 4.4.18 applies to RB(N+1)η(v, ∂B(N)) just as well. Combining this with (5.3.6),

we now proceed as in the proof of Lemma 5.3.2 to get the result.

We are now ready to give:

Proof of Theorem 5.1.2. The upper bound has already been shown in Lemma 5.3.5, so we

just need to derive the corresponding lower bound. For this we write (5.3.15) as a bound and
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apply (5.3.17) with Proposition 5.3.8 to get that, with probability tending to one as N →∞,

E0(τB(N)c) ≥ RB(N+1)η

(
0, ∂B(N)

) ∑
v∈Ξ?N

πη(v)φ(v) ≥ πη(Ξ?N ) log(N) (5.3.30)

The claim then follows from Lemma 5.3.10.

We then use the lower bound on the expected exit time to also get:

Proof of Theorem 5.1.1. The upper bound on the return probability has already been proved

in Lemma 5.3.4, so we will focus on the lower bound and recurrence. Consider again the

random walk X̃ on B(N + 1) and let Y be its trace on Ξ?N . Let τ̂∂B(N) := inf{k ≥ 0: Yk ∈

∂B(N)}. Then

E0(τ̂∂B(N)) ≤ TP0(τ̂∂B(N) ≤ T ) + P0(τ̂∂B(N) > T )
(
T + max

v∈Ξ?Nr∂B(N)
Ev(τ̂∂B(N))

)
= T + P0(τ̂∂B(N) > T ) max

v∈Ξ?Nr∂B(N)
Ev(τ̂∂B(N))

(5.3.31)

The hitting time estimate in conjunction with the definition of Ξ?N gives

Ev(τ̂∂B(N)) ≤ πη(Ξ?N ) e(logN)1/2+δ
, v ∈ Ξ?N r ∂B(N)

whereby we get

P0(τ̂∂B(N) > T ) ≥ πη(Ξ?N )−1e−(logN)1/2+δ(
E0(τ̂∂B(N))− T

)
.

Since (5.3.30) applies also for the expectation of τ̂∂B(N), the choice N := T 1/ψ(γ)e(logN)δ

implies E0(τ̂∂B(N)) ≥ 2T and thus, using (5.3.30) one more time,

P0(τ̂∂B(N) > T ) ≥ e−(logN)1/2+δ
.
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But τ̂∂B(N) ≤ τ∂B(N) := inf{k ≥ 0: Xk ∈ ∂B(N)} and so we get

P0(XT ∈ B(N)
)
≥ P0(τ∂B(N) > T ) ≥ e−(logN)1/2+δ

as well. Using this in (5.3.13), the desired lower bound then follows from, e.g., (5.3.6).

It remains to show recurrence. Here we note that (5.3.25) and (5.3.27) along with

Lemma 5.3.9 imply that RB(N),η(0, ∂B(N))→∞ in probability along a sufficiently rapidly

growing deterministic sequence of N ’s. Since the sequence of resistances is increasing in N ,

the convergence holds almost surely. By a well known criterion, this implies recurrence.

144



REFERENCES

[1] R. J. Adler. An introduction to continuity, extrema and related topics for general
gaussian processes. 1990. Lecture Notes - Monograph Series. Institute Mathematical
Statistics, Hayward, CA.

[2] J. Ambjørn and T. G. Budd. Geodesic distances in Liouville quantum gravity. Nuclear
Phys. B, 889:676–691, 2014.

[3] Jan Ambjørn, Jakob L. Nielsen, Juri Rolf, Dimitrij Boulatov, and Yoshiyuki Watabiki.
The spectral dimension of 2d quantum gravity. Journal of High Energy Physics,
1998(02):010, 1998.

[4] Antonio Auffinger, Michael Damron, and Jack Hanson. 50 years of first passage perco-
lation. Preprint, available at http://arxiv.org/abs/1511.03262.

[5] Martin T. Barlow, Thierry Coulhon, and Takashi Kumagai. Characterization of sub-
Gaussian heat kernel estimates on strongly recurrent graphs. Comm. Pure Appl. Math.,
58(12):1642–1677, 2005.

[6] Vincent Beffara and Hugo Duminil-Copin. The self-dual point of the two-dimensional
random-cluster model is critical for q ≥ 1. Probab. Theory Related Fields, 153(3-4):511–
542, 2012.

[7] Itai Benjamini. Random planar metrics. In Proceedings of the International Congress
of Mathematicians. Volume IV, pages 2177–2187. Hindustan Book Agency, New Delhi,
2010.
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