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ABSTRACT

In this work we establish solvability and uniqueness for the D9 Dirichlet problem and
the Ry Regularity problem for second order elliptic operators L = —div(AV:) + bV- in
bounded Lipschitz domains, in which the drift b is bounded, as well as their adjoint operators
L! = — div(A'V-) — div(b-). The methods that we use are estimates on harmonic measure,
and the method of layer potentials.

The nature of our methods applied to Do for L and Rs for Lt leads us to impose a specific
size condition on div b in order to obtain solvability. On the other hand, we show that Ro
for L and Dy for L! are uniquely solvable, only by assuming that A is Lipschitz continuous

(and not necessarily symmetric) and b is just bounded.

viil



CHAPTER 1
INTRODUCTION

In this work we will be interested in boundary value problems for the equation
Lu = —div(AVu) + bVu =0
as well as the adjoint equation
L'y = — div(A'Vu) — div(bu) = 0,

in a Lipschitz domain Q C R?, which is open and bounded. We will always assume that
d > 3.

The boundary value problems we will be interested in are the Dirichlet problem, Dy:

Lu =0, in
u=f, on 0f) for f € LF(09),

[l e a0y < o0,

and the Regularity problem, Ry:

Lu =0, in Q
u=f, on 0f) for f e Wl’p(ag)a

1(V)* [l o(a02) < oo,

and similarly for the equation Liu = 0 in €, where u* denotes the nontangential maximal

function of u on 0€2; that is,

u*(q) = sup |u(x)l,
z€l'(q)

where I'(¢) C Q is a family of suitably chosen cones, which are based at g € 0f.
1



We will show that under specific regularity conditions on the coefficients, those problems
are uniquely solvable in €2, with constants depending only on the relevant norms of the
coefficients, the Lipschitz character of 2 and the diameter of 2.

The methods we will use will be, first, the properties of harmonic measure for Dy for
the operator L, and second, the method of layer potentials for the other problems. In order
to do this, we first assume that A is symmetric (which is a crucial assumption in applying
the Rellich estimates), and we then pass to non-symmetric A with an integration by parts
argument, appearing in [KP01]. This passage will require to increase the assumed regularity
on A in the case of Ry for L!, but no such assumption will be needed in the case of the
equation Lu = 0.

The theorems that will be shown are the following (also appearing in theorems 11.0.2

and 11.0.3). The term div b will mean the divergence of b, in the sense of distributions.

Theorem 1.0.1. Let Q C R? be a bounded Lipschitz domain, and let A be uniformly elliptic
and Lipschitz, b € L*°(Q) and divb € LPd(Q) in the sense of distributions. Then there exists

a constant € > 0 such that, for any p € (2—¢, 00), the Dirichlet problem D), for the equation

—div(AVu) +bVu =0

is uniquely solvable in 2, with constants depending on d, p, the ellipticity of A, the Lipschitz
norm of A, ||b||co, || div b||p,, the diameter of €2, and the Lipschitz character of .
(Here, pg = 2 for d = 3, and pg = d/2 for d > 4.)

Theorem 1.0.2. Let Q C R? be a bounded Lipschitz domain, and let A be uniformly elliptic

and Lipschitz, b € L°°(£2). Then, the Regularity problem Ry for the equation

—div(AVu) +bVu =0

is uniquely solvable in 2, with constants depending on d, the ellipticity of A, the Lipschitz
2



norm of A, [|b]|e0, the diameter of 2, and the Lipschitz character of (.

For the adjoint equation we will show the following theorems (also appearing in theorems

11.0.4 and 11.0.5).

Theorem 1.0.3. Let Q C R? be a bounded Lipschitz domain, let A be uniformly elliptic

and Lipschitz, and b € L°°(€2). Then, the Dirichlet problem Dy for the equation

— div(A'Vu) — div(bu) = 0

is uniquely solvable in ), with constants depending on d, the ellipticity of A, the Lipschitz

norm of A, ||b||so, the diameter of €2, and the Lipschitz character of €.

Theorem 1.0.4. Let © C R% be a bounded Lipschitz domain, and let A be uniformly
elliptic and C1¢, b € C’O‘(Rd) and divb € Ld(Rd). Then, the Regularity problem Ry for the
equation

— div(A'Vu) — div(bu) = 0

is uniquely solvable in Q, with constants depending on d, the ellipticity of A, the C1® norm
of A, ||b]|ce, || div b||4, the Lipschitz character of 2 and the diameter of €.

If A is symmetric, it is enough to assume that it is Lipschitz and not 1.

The problems we consider are classical, and there has been much work on those for
operators not involving drifts; for a comprehensive list of past results, we refer to [AAAT11]
and [Ngul6], as well as the references therein. A couple of results for operators with drifts
include solvability for some large p > 1, as in [KP01], or solvability under specific smallness
assumptions on the Lipschitz constant of the domain, as in [DPP07]. We also refer to [HLO1]
for more results on equations with drifts.

We remark that solvability of Dy and Rs is the endpoint result for the best range of

exponents for which solvability can be obtained. As we explain, using the theory of weights
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we can extend the theorems on the Dirichlet problem from p = 2 to p € (2 — ¢, 00). Also,
using the theory of the Hardy space H1, it is expected that a similar extension can be
done for the Regularity problem, but in this case the range obtained is p € (1,2 + ¢), as in
[DK87]. Simple counterexamples involving harmonic functions in cones [Ken94] show that,
for Lipschitz domains, those ranges for p are optimal.

It is to be noted that we are assuming Holder continuity of b in the case of the Regularity
problem L?, but in the other cases there is no continuity assumption on b. This continuity
assumption is used in the continuity properties of Vu, if Ltu = 0: if b is Holder continuous,
then Vu is continuous, but no such assumption is required in order to obtain the analogous
result for solutions of Lu = 0. For the Dirichlet problem for L! we rely on solvability of Ry
for L first, using properties of the single layer potential that have been established without
assuming continuity of b.

Moreover, we need a size assumption on divb for Dy for L, as well as Ry for L. On the
other hand, no such assumption is needed for Ry for L, as well as Dy for L*. An assumption
like this is crucial for the method we will follow in this work (using the Rellich estimates),
which shows solvability of the problems discussed above for the optimal exponent p = 2.

Note that this also is consistent with the duality that is discussed in [HKMP15].

1.1 Summary

A short summary of this work is now in order.

In chapter 2 we will start with the various definitions, and we will describe the setting for
the problems. We then proceed, in chapter 3, to show various properties of solutions to the
equations Lu = 0 and Ltu = 0: that is, continuity of u, and continuity of Vu. We will then
turn to the Rellich estimates, which will be our main tool in approaching our problems. We
show two local estimates, one for L and one for L; the one for L' requiring an assumption

on div b.



The next step will be, in chapter 4, the construction of solutions to the inhomogeneous
equations Lu = F and L'u = F, for various F. Since the operators L, L! are not necessarily
coercive, we will construct the solutions using the Fredholm alternative, following the argu-
ments in [EvalO] and the estimates in [GTO01]. It is to be noted that we will use an adjoint
operator similar to the one appearing in section 5 of [LSW63] in order to construct solutions
for measures. However, our solutions are not expected to be continuous up to the boundary
for general domains, and we will have to restrict our attention to the space of bounded and
continuous functions. The main difficulty that also arises is the exact dependence of the
various constants on the coefficients, and how to pass to non Lipschitz coefficients b, since
this will be one of our assumptions in some constructions.

In chapter 5 we proceed to the construction of Green’s function, which will be used later in
the formula for harmonic measure, as well as the method of layer potentials. There has been
some work on similar constructions, for example in [IR05], [DHM16] and [HLO1], but our
case is not covered by the previous ones, the main difference with [DHM16] being the absence
of coercivity. For this reason, we will construct Green’s function for the adjoint equation
first, since we obtain the correct dependence on the coefficients, using arguments similar to
the ones appearing in [GW82]. Using a symmetry relation between Green’s function for L
and the corresponding for L!, we will then construct Green’s function for L. Furthermore,
using Green’s representation formula for solutions, we then recover the correct dependence
of the constants involved in the constructions of solutions in chapter 4. We also proceed
to showing pointwise bounds on the derivative of Green’s function, which are crucial in the
development of the method of layer potentials, as well as various estimates that will be later
used in arguments involving the continuity method.

Chapter 6 involves construction of harmonic measure, and various estimates on nontan-
gential maximal functions, following [JK82] (we also refer to [Ken94] for a summary of those

results). We then apply those estimates in chapter 7, which treats solvability and uniqueness



for the Dirichlet problem for the equation Lu = 0, in the case where A is symmetric. A
crucial component in this development is the Rellich estimate for the equation Ltu = 0 (and
not the corresponding estimate for L), hence a regularity assumption on the divergence of b
is imposed. This assumption involves just the divergence of b, and not any specific deriva-
tives of b, and this is a crucial observation in our passage to non symmetric coefficients A in
chapter 11.

In chapter 8 we turn our attention to the Regularity problem for the equation Lu =
0. The first step involves uniqueness for R9. We then define the single layer potential,
which is a singular integral operator on L2 functions defined on the boundary of a Lipschitz
domain 2. We also show convergence properties relying on the similar properties of the
analogous potentials for equations that do not involve drifts (as in [KS11], also in [MT99]
and [MMTO01]), using estimates on differences of Green’s functions from chapter 5. We then
proceed to showing that the single layer potential of any function in L2 (0Q) is a solution
to the equation Lu = 0, and its maximal function is bounded. Then, using a global analog
of the Rellich estimate, we show that boundary values of the single layer potential operator
span all of W1’2(OQ), thus showing solvability of Ry for the equation Lu = 0, for symmetric
matrices A. In this development, no assumption on the derivatives of b is required.

In chapter 9 we treat the Dirichlet problem for the equation Liu = 0. We first show
uniqueness, and, inspired by [HKMP15], we use the adjoint of the single layer potential from
chapter 8, to obtain existence of solutions for symmetric matrices A. In order to show this,
we do not reduce our case to the operators without a drift, as in chapter 8; instead, we
rely on boundedness of a maximal truncation operator in order to obtain boundedness of
the nontangential maximal functions, and a density argument to show what are the correct
boundary values for the adjoint of the single layer potential. As in chapter 8, no assumption
on the derivatives of b is required.

Chapter 10 treats the Regularity problem for L!. Here, we assume that b is Holder



continuous, in order to have a similar formula for the derivative of the single layer potential
as in chapter 8. We show the global Rellich estimate for symmetric matrices A, which is
more complicated to obtain compared to the one in chapter 8, since the Rellich estimate for
L' is more involved than its analog for L; for this purpose, we have to show estimates that
involve parts of our domain that are close to the boundary.

Finally, in chapter 11, we pass to non-symmetric coefficients, using an integration by
parts argument appearing in [KPO1]. Specifically, we transform the matrix A to a matrix
with symmetric coefficients, thus reducing to an equation with a new drift, which satisfies
the divergence assumptions under which the Dirichlet and the Regularity problem have been

shown to be solvable.



CHAPTER 2
PRELIMINARIES

In this chapter we will discuss the various definitions and the setting of the problems, and

we will perform some preliminary constructions.

2.1 Definitions

We say that A is uniformly elliptic with ellipticity A, if there exists A > 0 such that, for

almost all x € 2, and all y € R with y # 0,
Myl2 < (A < Ayl 2.1
lyl|” < (A(z)y,y) < ly|”. (2.1)

In the following, we will write A € M,(Q2) to denote that A satisfies (2.1) in Q. If A is
also symmetric, we will write A € M{(Q2). The matrices in M) (€2) will always be assumed
to be bounded.

The regularity assumption on A will be Lipschitz continuity; that is, for a constant y > 0,

for all z,y € Q,

|A(z) — Ay)| < plz —yl. (2.2)

To make the statements of the theorems more succinct, we will write A € M) ,(Q), if
A € My (Q2) and A also satisfies (2.2). Miu(Q) will denote the matrices in M) ,(§2) that are
symmetric.

We will denote by C2°(£2) the space of infinitely differentiable functions in €2, which are
compactly supported in 2. Moreover, we will be working in the classical Sobolev space
WLP(Q), where p > 1, which consists of functions v € LP(Q) such that their derivative,
in the distributional sense, is an LP(2) function. Also, Wllo’f (©) will denote the space of

functions u, such that u¢ € WP(Q) for any ¢ € C2°(Q).
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In addition to the above, VVO1 P (Q) will denote the closure of C2°(Q) in W1P(Q). Finally,
the dual space to WP(Q) will be denoted by W~1P(Q).

Let a be the bilinear form which is defined by
alu,v) = / AVuVov + bVu - v.
Q

For any element F € W~12(Q), a function u € Wé’cl(Q) is a weak solution to the equation
Lu = F, if a(u,¢) = F¢ for all ¢ € C°(Q).

Denote the space of bounded and continuous functions in © by Cj(£2), and define B(2) =
Cy(Q2)*. Note that there exists a description of B(€2) via the space of measures on the Stone-

Cech compactification of Q, but we will not need this description in this work. Then, for

any p € B(f), a function u € VV&)’S(Q) is a weak solution to the equation Lu = p, if

a(u,8) = {j1,6) for all ¢ € CX(Q).

In order to treat the adjoint equation Liu = 0, we also define the bilinear form
ol (u,v) = / AUV + bV - .
Q

For any u € B(2), a function u € Wli)’cl(Q) is a weak solution to the equation Liu = p, if

ot (u, ¢) = (i, @) for all ¢ € C°(Q). Note also that a(u,v) = af (v, u) for all v,u € WH2(Q).
A function u € I/Vli’cl(ﬂ) is a subsolution to the equation Lu = 0, if a(u,¢) < 0 for all
¢ € CX(Q) with ¢ > 0 in . Similarly, we define supersolutions.

Finally, for o € (0, 1], we denote by C*(Q2) the space of Holder continuous functions in

(); that is, functions such that the seminorm

b(z) — b(y)|
|z —y|*

llgneoy =sup { rye oty

is finite. We then define the norm [|bljco = [|bllco + [|b]lca. We also define C1 to be



functions b such that Vb lies in C“, with the norm

1bllgra = 1blloc + [Vl ce-

2.2 Three extension lemmas

In the following we will need to extend our coefficients, which are defined in 2, to either
a neighborhood of 2 or the whole space R, controlling the various norms associated with

them. We show how to achieve this in the following lemmas.

Lemma 2.2.1. Let © C R?% be an open domain and A € M) (). Then, there exists
Ac M)\’CM(Rd) such that A = A on Q, where C' depends only on d.

If Ae Miu(Q), then there exists an extension A € Micu(]Rd).

Proof. Consider the extension operator &y : Lip(Q2) — Lip(Rd), appearing in [Ste70, p. 172],
which is given by
Eof(x) = fop)d (),
k

and for each fixed z, the sum is in fact finite. Set A = EpA; that is,

oaij(x) =Y aij(pp) o) (x),

k

for all 4,7 = 1,...d. Then, theorem 3 in [Ste70, p. 174] shows that A is Cp-Lipschitz

continuous on RY, with C depending only on d. Moreover, for any = ¢ 2 and y € RY with

10



y # 0,

< > yzy] Z gOam yzyj Z Z Qg4 (r ¢]€ yzyj

S am (pk)yiys | o1(x) =D (Alp)y, y) Dk (@)
k k
Z)\y|2¢k —)\]y\2
k
since (¢ ) is a partition of unity, and all the functions ¢ are positive. Since A is an extension
of A, the same inequality holds for x € €2, which shows that A s A-uniformly elliptic in RY,
If A is symmetric, the definition of A shows that A is also symmetric, which completes

the proof. O

The next lemma shows how we can extend A to also be periodic; thi will be a useful
property in order to consider fundamental solutions in all of R? for the equation — div(AVu).

We will follow remark 6.2 in [KS11] for this purpose.

Lemma 2.2.2. Let Q C R? be an open domain, with diam(Q2) < 1/4, and 0 € Q. Suppose
also that A € M) ,(€2). Then, there exists an extension Ay, of A, which is 1- periodic, and

also Ap € My (R?), where g depends on d, X and p.

Proof. Since 0 € Q and diam(Q2) < 1/4, we obtain that Q C @1 C Q2 C @, where

3 319 7 719 1179
Q1:|:_§a§:| 9 Q2:|:_1_6’E:| ) Q:|:_§a§:|

Fix now a smooth cutoff ¢ which is supported in ()9, with ¢ =1 in ()1, and define
Ap = A+ (1— )AL,

where I is the identity matrix, and A is the extension that appears in lemma 2.2.1. Since A
11



is C'u-Lipschitz, we obtain that Ay is pg Lipschitz, where p depends on d, A and p, since
the gradient of ¢ will be involved in the estimate. Moreover, since A and A are A-uniformly
elliptic, the same will be true for Ay.

Note now that, since ¢ = 0 in Q2, Ay = Al in Q2. Therefore, if we extend Ay, by A/
in @\ @2, we can then extend periodically to the rest of R by translations of (), which

completes the proof. O
Finally, we turn to Lipschitz extensions of drifts.

Lemma 2.2.3. Let Q C R? be an open domain, and b € Lip(€). Then there exists an

extension b of b in R, such that b € Lip(R?), and HBHLOO(Rd) = |6l oo ()

Proof. We will use the extension operator from lemma 2.2.1, and set
b(x) = Eob(x Z b(py.) oy (@

From theorem 3 in [Ste70, p. 174], b is Lipschitz in R, and b extends b, hence [||| Loo(Rd) =

16l .00 (q2)- Since now (¢;) is a partition of unity and all the ¢} are positive, we obtain that
)] < Y bR)ldg(e) < Y bl oo () o @) = 1ol oo ()
k k
hence HEHLOO(]Rd) < ||b”Loo(Q). O

2.3 Lipschitz domains

For the next definitions, we will follow [Ver84, p. 575-577], and [KS11].
Let 2 C R? be bounded. We say that € is a Lipschitz domain, if for each ¢ € 02 there

exists a neighborhood U C R4 containing ¢ and a Lipschitz function ¢ : R 5 R such

12



that, after translation and rotation,
UnQ={(@,t)|t> ¢y} na

We also define a coordinate cylinder Z = Z(q,r), for ¢ € 92, and r > 0, to be a cylinder

with radius equal to r, that also has the following properties.
i) The bases of Z are some positive distance from 0S.

ii) There is a rectangular coordinate system for RY, (2,t), with t- axis containing the axis

of Zi-
iii) There is a Lipschitz function ¢ = ¢, : R¢1 = R.
iv) ZNnQ=Zn{(@,t)|t > ¢z(a")}

v) 4= (0,¢2(0)).

We will call the pair (Z, ¢) a coordinate pair.

By compactness, it is possible to cover 02 by coordinate cylinders Z; = Z;(q;,rq), for
¢ € 082, i = 1,...N such that, for any i there exists a coordinate pair (Z,¢;) with
ZF = cqZi(q,rq) (the dilation with respect to ¢), and cq =10 (1 + ||ng5j||oo)1/2.

Given a Lipschitz domain there exists M > 0 such that, for any covering of coordinate
cylinders, [[V@;[joc < M. The smallest such number is called the Lipschitz constant for 2.

In order to quantify the results that will follow, given a Lipschitz domain with the fore
mentioned properties, we will say that Q € II(M, N).

Note now that, given any ¢ € 09, ¢ belongs to one of the coordinate cylinders Z; =

caZ;(q;,rq). Therefore, there exists a coordinate cylinder Z(g, 10rqg) that contains ¢, it is a

subset of Z, with axis parallel to the axis of Z, and height comparable to 7q.

13



Definition 2.3.1. For ¢ € 9Q and r € (0, 10rq), we define

Ar(q) = Z(q,r)N0Q, Tr(q) = Z(q,r) N,

where Z(q,r) is a dilation of Z(q, 10rq) as above, with respect to q.

A constant C' will be said to depend on the Lipschitz character of Q, if Q € TI(M, N) for

some M, N, and the constant can be made uniform for any Q € II(M, N).

Lemma 2.3.2. Let ) be a Lipschitz domain. Then rq is bounded above and below by

constants that only depend on d, diam(§2) and the Lipschitz character of €.

Proof. Since the coordinate cylinders Z;* cover 0f2, we have that

N N N
o0 <o | |Jzrnoa| <> o(Z(g.car) N0Q) = 0(Acgrg(a:)) < NCyry !
=1 =1 =1

From the isoperimetric inequality, o(0f2) is bounded below by a constant that depends on
diam(Q2) and d; therefore, rq is bounded below by a constant depending only on d, diam(f),
and the Lipschitz character of 2. Since the coordinate cylinder Z! cannot contain all of €,
we also obtain that rq is bounded above by a constant that depends on diam(f2) and d,

which completes the proof. n
Note also that the definition of a Lipschitz domain shows the next lemma.

Lemma 2.3.3. For any Lipschitz domain €2, there exists a ball B C €2 which is compactly

supported in €2, such that, for any ¢ € 012,

Z(q,s0) N B =0,

where the number s > 0 is bounded above and below by constants that depend on the

diameter of €2 and the Lipschitz character of €.
14



Definition 2.3.4. Given a bounded Lipschitz domain Q C R% A € M) ,(Q) and b €
L°°(Q), we call a constant C' a good constant, if it depends on d, A, u, ||b]|co, diam(£2), and

the Lipschitz character of €.

Note that the diameter of €2 is allowed in the definition above, since we are assuming that
b € L*°(Q), which is not a scale invariant space for b for the equation considered; therefore,
it is to be expected that the constants will depend on the size of the domain.

Given ¢ € 09, I'(q) will denote an open, circular, doubly truncated cone with two
nonempty, convex components, with vertex at ¢, and one component in {2 and the other in
RY \ Q. The component interior to 2 will be denoted by I';(¢) and the component exterior to
Q) will be denoted by T'¢(q). Assigning a cone I'(q) to each ¢ € 99, we call the family {T'(¢)}
regular if there is a finite covering of 92 by coordinate cylinders, as described above, such
that for each (Z(p,7),¢) there are three cones, a, f and =, each with vertex at the origin

and axis along the axis of Z such that

aCB\{0} Cn,

and for all (z,¢(x)) =q € %Z* N osY,

a+qCT(q) €T(g) \{q} € B+gq,

(v+@)i CANZ* (v+q)e CZ°\ Q.

We now turn to the definition of the nontangential maximal function.

Definition 2.3.5. Let () be a Lipschitz domain, and let v :  — R. We then define the

non-tangential maximal function of u, for ¢ € 92, by

u*(q) = sup |u(z)].
zel;(q)
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Similarly, we define the nontangential maximal function for functions defined outside 2.

Finally, we state the next theorem on approximating Lipschitz domains by domains that

are smooth, which is theorem 1.12 in [Ver84].
Theorem 2.3.6. Let () be a Lipschitz domain. Then,

i) There is a sequence of C*° domains, 2; C ©Q, and homeomorphisms A; : 9Q — 0Q;
such that sup,cpn ¢ — Aj(q)] — 0 as j — oo, and Aj(q) € T'(q) for all j € N and
q € 09)

ii) There is a covering of 92 by coordinate cylinders Z so that, given a coordinate pair,
(Z, ), then Z* N 0€); is given for each j as the graph of a C°° function ¢; such that
¢; — ¢ uniformly, [|[V¢;llco < [[V|loo and Vo; — V¢ pointwise almost everywhere

and in every LI(Z* NRI71), 1< ¢ < 0

iii) There are positive functions 7; : 9 — Ry, bounded away from zero and infinity
uniformly in j, such that for any measurable set £ C 99, [ g Tjdo= i) A;(E) doj, and

so that 7; — 1 pointwise almost everywhere and in every L4(92), 1 < ¢ < oo

iv) The normal vectors to €2, v(A;(q)) converge pointwise almost everywhere and in every
L1(09), 1 < g < o0, to v(q). An analogous statement holds for locally defined tangent

vectors.

v) There exists a C vector field, h, in R? such that (h(A(q),v(Nj(g))) = C > 0 for

all 7 and g € 012, for some C depending only on h and the Lipschitz constant for €.

This approximation scheme will be denoted by 2; 1 Q.
Consider now a Lipschitz domain €2, and a large ball B containing 2. A similar construc-
tion can be carried out for the Lipschitz domain 2B\ €2, where 2B is the double ball of B,

and we obtain a sequence U; 1 (2B \ Q). Eventually, for j large, the sets U; will contain the
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boundary of B. Then, for those j, set Q; = B\ Uj, and note that Q; is an approximation
scheme similar to the above, but then the sequence Q; decreases to € (as in definition 1.13

in [Ver84]).

2.4 Function spaces

The definition that follows provides the setting for the space of drifts for which solvability

of the Dirichlet problem for the equation Lu = 0 will be shown.

Definition 2.4.1. Let @ C R? be a Lipschitz domain, and p > 1. We define Dry(€2) to
be the space of bounded vector functions b on €2, such that their distributional divergence

belongs to LP(Q); that is, there exists C' > 0 such that, for all ¢ € C2°(Q),

b < .
\ / w\ <Clol ey

We also define the Dry-norm of b € Dr(Q2) to be

10l = Wbl oo () + [ div bl Lo(2);

where || divb||1p () is the infimum of the C'in the inequality above, for ¢ € CZ°(€).

In some cases, we will need to assume some further regularity on b, together with the

fact that b € Dry. For this purpose, we give the next definition.

Definition 2.4.2. Let Q C R? be a Lipschitz domain, and p > 1, « € (0, 1]. We then define
with the norm

161D, () = [1bllDr, () + [1bllca(q)-
17



We now turn to Lorentz spaces.

Definition 2.4.3. For p € [1,00), the Lorentz space LL() is the space of measurable

functions f : 2 — R such that

_ 1/p
171120y = sup (1A77(0)) < ox.

where A is the distribution function of f; that is, A(t) = [{z € Q||f(z)| > t}].

Note that, if f € LL(€Q), Chebyshev’s inequality shows that

||f||L§j(Q) < [ fllzr(0)-

The Lorentz norm also bounds the p norms of lower order: from estimate 1.12 in [GW82], if

Q C R is bounded, p € [1,00) and § € (0, p — 1], then

1 5
1 lz-sy < ()77 1217 11£ ] 110, (2.3)

Next, we turn to class of Gehring weights, which are functions that satisfy the reverse

Hoélder inequality, the definition of which can also be found in [Geh73].

Definition 2.4.4. Let  be a Lipschitz domain and p > 1. We say that f € LP(99Q)

belongs to the class By(092), if there exists a constant C' > 0 such that, for any surface ball

1/p
(f 1P da) <cf il
Ar(q) Ar(q)

The main property of the B), weights we will use is their ability to self-improve. Specifi-

Ar(q) € 04,

cally, similarly to lemma 3 in [GehT73], we obtain the next proposition.

Proposition 2.4.5. Let Q be a Lipschitz domain, p > 1, and f € B,(9). Then, there

exists ¢ > 0, which depends only on d, p and the B), constant of f, such that f € Byy-(09).
18



Finally, we define weak derivatives on the boundary of a Lipschitz domain €2, and the

space W1P(09).

Definition 2.4.6. Let Q be a Lipschitz domain. Then, we say that f € W1P(9Q) if
f € LP(09) and if for each coordinate pair (Z, ¢) there exist LP(ZN0N2) functions g1, ... 941,

so that, for every h € C°(Z NRI~1),

/d h(z)gi(x, p(v)) dr = —/  Oih(x) f(x, $()) da.
R~ Rd—1

In local coordinates, we then define (as in [Ver84, pg. 580])

~Vrfp) = (g ®),...¢7 1 ),0) - <(gi1 @),...g8 1), 0), V(p)> -v(p).

Then V7 f(p) is normal to v(p) almost everywhere on 0f2, and it is independent of the choice

of coordinates. We also define the norm

| llwioany = 1 zgoa) + 1921l ooy

In the special case p = 2, W1’2(8Q) becomes a Hilbert space, with the inner product

<f7 g>w1,2(39) = /aQ (f g+ Vrpf- VTg) do.

For p € (1,00), we denote the dual of W1P(9Q) by W—1P(9Q). The fact that the dual
to LP(0Q) is Lp/(aﬂ), where p’ is the conjugate exponent to p, and reflexivity of LP(992) for

p € (1,00) imply the next lemma.
Lemma 2.4.7. W1P(9Q) is reflexive, and for every F € W—1P(9Q), there exists a unique
fe Wl’p/(aQ) such that
Fo= [ 19491 Vrg
o9
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for all g € WHP(9Q). We will then write F' = R, f.

For any p € (1,00), consider the canonical embedding operator

Ep : LPI(QQ) — W_l’p(aﬁ), (Epf)g = /aQ fgdo

for all g € WHP(9Q). Under this embedding of Lp,(ﬁQ) in W~LP(99), we will show that
the image Ep(Lp/(aQ)) is dense in W~1P(99Q); we first show the local analog in the setting
of RA-1,

Lemma 2.4.8. Let B be a ball in R and p € (1,00). Then, Ep(Lp,(B)) is dense in
W—LP(B), where Ep, : Lp/(B) — W~LP(B) is the canonical embedding, and W~1P(B) =
(Whp(B))".

Proof. Let g € (W~LP(B))*, which is such that

(9, Pf) =0

for all f € LPI(B). From reflexivity of W~1P(B), there exists § € W1P(B), such that
(Pf,g)=0

for all f € Lp/(B). This implies that, for any f € Lp/(B), J5 f3 =0, therefore g = 0, hence
g = 0. This shows that every element of (W ~1P(9Q))* that vanishes on Ep(Lp/(B)), has
to be identically zero, hence the Hahn-Banach theorem shows that Ep(Lp/(B)) is dense in

w—LP(B). O
Lemma 2.4.9. The image of Lp,((?Q) in W~1P(9Q) under E, is dense in W~1P(9Q).

Proof. Let F € W=1P(0Q) and ¢ > 0. Then, from lemma 2.4.7, F = Rpf for some

Fewtv (09).
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Consider the coordinate cylinders (Z;, ¢;), j = 1,... N that cover €2, and let (¢;) be a
partition of unity subordinate to the Z;. Let also g € Wl’p(aQ), B; C R be the basis of

the cylinder Z;, and define

fil@) = flz,¢5(x),  gj(x) = g(z,05(z)), ¥j(x) = ¥;(w, d;(x)),

~ ~ /
for x € B;. Then, since f € Wl’p/(aQ), we obtain that f;i; € Wol’p (Bj).
Denote the d — 1 dimensional gradient by V. Using the definition of the tangential

gradient, we compute in local coordinates in 92N Z;,

Vrf Vrg=Vf;j Vi — <@fjwj> <6§j77/j>7

where v; is the unit normal in 99 N Z;. Hence, setting 6; = /1 + |V¢j]2, we compute
N
Fo= [ (f9+V1iVig) do=3" (fg+ VriVrg) vy do

N
=50 [ (s + 9955 — (93 (Va5 4305
Jj=1""3

Consider now, for j = 1,... N, the operator

Fii= [ (Ra+¥E-Vi= (%) (Vi) v
j
Since fj € lep/(Bj) and szja@j are bounded, Fj € Wﬁl’p(Bj).
Let now € > 0. Then, from lemma 2.4.8, for every j = 1,... N, there exists iLj e v

such that

||PjiL] — Fj“Wfl,p(Bj) < eE.

where Pj ; Lp/(Bj) — W*Lp(Bj) is the canonical embedding. Also, for ¢ € 92N Z;,
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q = (v, ¢;(x)) for some = € Bj; we then define h;(q) = h;(z), and we extend h; by zero on
OS2\ Z;. We then obtain that h; € Lp/(aﬂ N Z;). Define also

N
h=Y hj

j=1

Then, we compute, for g € WhP(9Q),

N
Phg):/ hgdo = / gdo = /B-g-9~,
i 9 Zamzj ;Bjj”

therefore
N ~ ~ ~ ~
[Fg = Pyh(g)l < 3 |Fya; = Pihy(35)] < Z 125h; = Eylly-vo(s,) 1G5l s,
j=1
N
<3 Gillwrags,) < OV oo,
7=1
This shows that || F' — Pph||W_17p(8Q) < CN ¢, which completes the proof. O
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CHAPTER 3
A PRIORI ESTIMATES

In this chapter we will discuss some a priori estimates related to solutions of the equations

Lu=0and Ltu = 0.

3.1 The Cacciopoli estimate

We begin with the Cacciopoli estimate, which is a reverse Poincare inequality for solutions

of the equation Lu = 0.
Lemma 3.1.1. Let Q be a Lipschitz domain, and let A € M)(Q2), b € L°°(Q).

i) Let u € VVI})’CQ(Q) be a solution to Lu = 0 in Q. Then, for all balls B, C € such that

By, is compactly supported in €2,

1
/ Vu? < C (1 + —2> / u?,
B, r By

where C'= C(d, A, [|b||0)-

i) Ifu e W1’2(Q) is a nonnegative solution in €2, that vanishes on A, (¢q) for some ¢ € 952,

then the same inequality holds in Ag,.(q).

Proof. Let ¢ be a smooth cutoff which is supported in By, ¢ = 1 in By, and |V¢| < C/r.

We then use u¢? as a test function, to obtain that
/ AVUV (ug?) + bVu - ug? = 0,
Q
which shows that

)\/ |¢Vu|2§/AVuVu-¢2§ —2/ Avuv¢-u¢—/ bVu - ug?.
Q Q Q Q)
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To bound the last two terms, we use the Cauchy inequality with §, to obtain that

= /Q AVUVS - ud — /Q DV - ug? < Cll6VullaluVellz + [budlalloVullz

= (ClluVell2 + [lbugl[2)[| 6V ull2

1
< 5 (Cluvsla + [busl2)? + dll6Vull3

Choosing § = A\/2, we obtain

[ 16vu? < Cluvol + Clusl =€ [ (16 + 1702
Q Q

where C' depends on d, A and ||b||so. This shows that

2 2 1 2
/B VaP <0 [ (1oP +VoP? <0(1+ )/Bu

which is the desired estimate.

For the second estimate, we let ¢ be a smooth cutoff which is supported in To,.(q), ¢ = 1
in 77(q), and |V¢| < C/r. We then apply the same argument as above in T5,(q), noting
that ug? € Wy (Tor(q)). 0

We now show that the same inequality holds for solutions to the equation Lfu = div f.
Lemma 3.1.2. Let Q be a Lipschitz domain, and let A € M)(Q2), b € L>(Q), and f €
L2(Q).

)LetuEW

loc

2(Q) be a solution to Liu = div f in Q. Then, for all balls B, C Q such

that Bsg, is compactly supported in 2,

/BT|W|2<C(H >/ u+/ 12,

where C'= C(d, A, [|b]|0)-
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ii) If u € W2(Q) is a nonnegative solution of Lfu = 0 in © that vanishes on Ag,.(g) for

some ¢ € 0f), then the same inequality holds in As,.(q).

Proof. The proof is similar to the proof of proposition 3.1.1. Let ¢ be a smooth cutoff which
is supported in Bo,, ¢ = 1 in By, and |[V¢| < C/r. We then use ug? as a test function, to

obtain that

/ AVUT (u6?) + bV (u?) - 1 = / V),
Q Q

which shows that

/g)AVuVu-qbz < —Z/QAVqub-ugb—/Qqu-ugbz—/QQngzS-ugb—i-/QfV(ungZ)

< (2luVollz + [[budllz + [|foll2) |oVull2 + 2[od]l2 + [|foll2) [[uV ]2,

and the uniform ellipticity of A shows that

MoVulg < @[uVéllz + [budlla + 1 f12)lloVull2 + (2[bg ]2 + | foll2) [uV 2

Hence, using the Cauchy inequality with d, we obtain that

/ 6Vl < ClluVe3 + Cllugl3 + C|lf13 = C/<r¢\2+ \V¢\2>u2+/ fol?,
Q Q Q

where C' depends on d, A and ||b]|sc. The estimate now follows.
For the second estimate, we apply the same argument in 75, (q) for ¢ vanishing outside

T5,-(q), being equal to 1 in T7(q), and |V¢| < C/r, noting that u¢2 € WOL2<T2’I“(Q))' L

3.2 Low regularity estimates

In this section we will use the ellipticity of the equation to show how we can gain LP regularity.

We first show a local weak reverse Holder inequality for solutions to the equation Lu = 0.
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Lemma 3.2.1. Let (2 be a bounded domain, A € M) ,(2), and b € L>(Q2). Suppose that a
ball By, is compactly supported in €, and, for some p € (1,d), u € WP(By,) is a solution
to the equation Lu = 0 in . Let also By, C Bﬂr be concentric balls, with 1 < a < 8 < 2.
Then there exists a constant ¢ depending only on d, p, i1, A such that, if » < ¢, then

C
< =

190l e 3,y < = IVulzos,,),

where C'is a constant that depends on d, p, i, A, ||b]|co, and 5 — .

Proof. Let v = a—_‘_Tﬂ, and set By = Boy, Bo = By, B3 = Bg,. Note that, since constants

are solutions to the equation, we can assume that the average of u over By is 0. Let ¢ be a
a smooth cutoff which is supported in Bo, it is equal to 1 in By, and |V¢| < ﬁ, where

C = C(d). Let also 1y, be a sequence of mollifiers, with |V,| < Cn for all n € N, and set

UV =up, vy = *Uy.

Note then that v, € 02(3_3), and v, = 0 on 0B3 for n sufficiently large. In addition, we

compute

div(AVv) = div(AVu - ¢ + AV¢ - u) = div(AVu) - ¢ + AVuVe + AVVu + div(AVe) - u

=b0Vu- ¢+ (A+ AYVuVe + div(AVe) - u = f,

where we used that u solves the equation Lu = 0 in . In addition,

C

C
/1l (By) < WHVUHLP(B;:,) + m”uHLp(Bg)7

and since u has average 0 over B3, we can apply Poincare’s inequality to obtain that

C
1o (Bs) < —IVUllLo(By) (3.1)

r
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where C' now also depends on the difference § — o and p.
Let now = € Bs. Since Bs is compactly supported in €, the function y — ¢y (z — y)
is compactly supported in 2 for n sufficiently large. Therefore, since v solves the equation

div(AVwv) = f, we obtain that

/ A(y)Vou(y) Vi (z — y) dy = —/ Ay)Vu(y)Vy(n(r —y)) dy = / fW)n(x —y) dy,
0 Q Q

which shows that

(aijaiv) * ijn(x) = [ xp(x). (3.2)

Consider now the constant coefficient operator Lo = a;;(20)0;;. Note that, from estimate

9.37 in [GTO1], if n is sufficiently large,

IV*0nll Lo(By) < CapallLovallpo(sy)- (3.3)

But, we compute, for x € Bs,

[ Lovn ()| < ajj(zo) — aij(2)[|0;jon(@)] + |aj;(2)0;5vn(z)]

< uBr|0;jon ()] + |a;j(2)0;jvn(2)| < 2ur|0;jon ()] + |a;j(2)0;jvn(z)].

This shows that

2
IVFunllzeBy) < Capakrll0ijonllLe(By) + laijOijvnll L, (B,):

and if we choose r < 20(wg) such that Cy ), \ur < 1/2, we obtain that

IV0nll 1o (By) < Cllaijdionll L, (By)-
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We now compute, in Bs,

a;;j0ijon = a;;0;(v * 05bn) — (a;;0;v) * Ojtbn + f Py

= aij(aiv * (991/)71) — (awalv) * jwn + f*p,

where we also used (3.2). But, if we set By = By ,,(0), we compute

a;;j(2)(0v * 0jibn ) () — (a;;0;v) * Ojibn (1) = /B (aij(x) — ajj(x —y)) Opv(x —y)0jbn(y) dy,

n

and the last integral is bounded by

C
st = losnlay < T i)y (a =l

n

< ond / D0(y)| dy
Bl/n

1/p
<C (nd/ 10;v(y) [P dy) :
Bl/n(x)

This shows that

1/p
0;v(y) [P dy) + | f * nl.

|ai;jOijvn| < C (nd/
By (@)

n

If we consider the LP norm, we obtain that, for large n,

/ (Cnd / |aw<y>|pdy) dr < Cnf / / Dru(y)|P dedy
By Bl/n(m) B3 Bl/n(y)

<c / B;0(y) P dy,
B3

therefore
laijOijonllLp(By) < ClIVullpo(sy) + Cllfll Lp(By)-
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Plugging this back to (3.3) and letting n — oo, we finally obtain that

C
. 2
lim sup [V=vnl| 1o(y) < Ifllze(my) < - IVUllLo(sy): (3.4)

for all n sufficiently large, where we also used (3.1).

(Note also that, up this point, we have only used that p € (1,0)).

Since now vy, is a mollification of v in 2 and v = v in By, we obtain that Vv, — Vu
in LP(B1). Therefore, there exists a subsequence of (vp) such that Vv ~— Vu almost
everywhere in Bj. Since now v, vanishes close to 0B3 for large n, Fatou’s lemma and

Sobolev’s inequality show that

C
. : 2
IVull o (5, < Timsup [|Vog, || e gy < Climsup [V7ug, l zo(py) < ZI1VUllo(sy),

where we used (3.4) in the last step. This completes the proof. ]
We also turn to the analog for solutions to the adjoint equation.

Lemma 3.2.2. Let Q be a bounded domain, A € M) ,(Q2) and b € Lip(f2). Suppose
that, for some p € (1,d), u € Wl’p(Q) is a solution to the equation L'u = 0 in Q. Then,

loc
we Wk (Q).

loc

Proof. We mimic the proof of lemma 3.2.1: let U be compactly supported in §2, and consider
aset Uy with U C Uy C V C Q, where all inclusions are compact. Let ¢ be a a smooth cutoff
which is supported in Uy and it is equal to 1 in U. Let also ¢, be a sequence of mollifiers,

with |V, < Cn for all n € N, and set
V= U, vp = U xYy.

Note then that v, € C?(Bs), and v, = 0 on dBg for n sufficiently large. In addition, we
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compute

div(AVv) = div(AVu - ¢ + AV - u) = div(AVu) - ¢ + AVuVo + AVPVu + div(AVe) - u

= —divh-up —bVu - ¢+ (A+ AHVuVe + div(AVe) - u = f,

where we used that u solves the equation Liu = 0 in Q. Since now u is bounded and
Vu € WHP(V), we obtain that f € LP(V).

Let now x € V. Since V is compactly supported in €, the function y — ¥, (x — y) is
compactly supported in € for n sufficiently large. Therefore, since v solves the equation

div(AVwv) = f, we obtain that

/ A(y)Vo(y) Vi (z —y) dy = —/ A(y)Vo(y)Vy(n(x —y)) dy = / fy)n(z —y) dy,
Q Q Q)

which shows that

(aijOv) x Ojhn () = [ * Yn(z). (3.5)

Consider now the constant coefficient operator Lo = a;;(z0)0;;. Note that, from estimate

9.37 in [GTO01], if n is sufficiently large,

IV?0nll 2oy < CapallLovall Lovy- (3.6)

But, we compute, for x € V,

| Lovn ()] < laj;j(zo) — a;j(2)]|0;j0n(2)] + |ai;(2)0;vn(z)]

< - diam(V)[0;50n ()] + |aij(2)0;jvn ()| < 2ur|0j50n ()] + |aij(2)djvn(x)|.

30



This shows that
IV2vall oy < Capan - diam(V)|1ijvnl| vy + llaijdigonll vy
and if the diameter of V' is small enough, we obtain that
IV*vnll 1o (By) < CllaijOijonll L, (By)-

We now compute, in Bs,

a;;0;jon = a;j;0 i(v % 0; z/zn) (aijaiv) * 0jtbn + f % Un

= a;;(0jv x 0j9n) — (a;j0;v) % Ojtn + f * b,

where we also used (3.2). But, if we set By = By, (0), we compute

aji(x)(Opv * 059 ) (x) — (a;;0;0) * O () = /B (aij(z) — ajj(x —y)) Opv(x —y)0j¢n(y) dy,

and the last integral is bounded by

n

C
/B wlyl|0sv(x — y)]10;¢n(y)| dy n/Bl/n(x)l v(Y)[|0j¢n(x — y)| dy

< ond / 0;0(y)] dy
1/

n\Z

1/p
<C (nd/ |00 (y) [P dy) :
Bl/n(x)

This shows that

1/p
0;0(y) [P dy) + | f * n.

|aijOjvn| < € (nd/
By ()

n
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If we consider the LP norm, we obtain that, for large n,

/ (cnd / |aiv<y>|pdy) dz < Cnt / / D0y dedy < C / Dro(w)|P dy,
Uo By () V By n(y) 14

therefore

laijOijvnllLo@y) < ClIVull pory) + Clfll Loy)-

Plugging this back to (3.6) and letting n — oo, we finally obtain that ||V21)n||Lp(V) is
bounded.

The last estimate shows that (Vuy,) is bounded in W1P(V). From the Rellich-Kondrachov
compactness theorem and almost everywhere convergence, there exists a subsequence (Vuy, )
which converges to a function w, weakly in wlhp (V), and almost everywhere in V. Then
w € WHP(U), hence w € LP"(U). But, Vv, converges to Vu almost everywhere in U,
hence u = w € LP" (U). Since also the sequence (vy,) is bounded in W1P(U7), we obtain that

w e LP"(U), hence u € WLP*(U), which completes the proof. O
By iterating the previous lemmas over smaller domains, we obtain the next propositions.

Proposition 3.2.3. Let Q be a bounded domain, A € M) ,(f2), and b € L>(Q2). Suppose
that, for some p € (1,2), u € Wl’p(Q) is a solution to the equation Lu = 0 in Q. Then

loc

u e WhQ), with

loc
||U||W1,2(U) < C||U||W1,p(U1)
for any U C Uy C €2, where all inclusions are compact.

Proposition 3.2.4. Let 2 be a bounded domain, A € M) ,(€2), and b € Lip(2). Suppose
that, for some p € (1,2), u € Wﬁ)’f(Q) is a solution to the equation Liu = 0 in . Then
1,2 .
u € Wi o (Q), with
lullyre@ry < Cllullyipen)

for any U C Uy C €2, where all inclusions are compact.
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3.3 Local estimates on the gradient

The assumption that b € L%°(Q2) together with the fact that A is Lipschitz and elliptic
guarantee that solutions to the equation Lu = 0 in €2 have gradients that are locally Holder

continuous. This will be shown in the next proposition.

Proposition 3.3.1. Let Q2 be a bounded domain, and let A € M) ,(Q2) and b € L>(€2). Let
also B, be a ball in €2, such that its double By, is compactly supported in 2. Then, there

exists a € (0, 1) such that, for any solution u € WI})’CQ(Q) of the equation — div(AVu)+bVu =

Vu(z) — Vu(y)| < g <|$ ; y')a (]{BQT IU|2> 1/27

for all ,y € B, where C depends on d, A, 1, ||b]|cc and diam(€2); that is, Vu is localy Holder

0 in €,

continuous.

Proof. Suppose first that r < ¢, where ¢ is the constant that appears in the proof of lemma

3.2.1. Fix an irrational number s € (1,3/2). Then, Hélder’s inequality shows that

d/s—d/2
Hvu”LS(BBM/lG) =T ol HVUHLz(Bsn/m)' (3.7)

We now set £ = [%], and we note that k is the first integer such that

< >

w | =

11 k=1 _1
s d ~d

ISH I

the fact that s < 3/2 guarantees that such a k > 2 exists, with the inequalities being strict

since s is irrational. We also consider a sequence

15
§:q>02>-~->ck>ck+1:§,
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and we set p; = s, and py, 1 = pyy, for m =1,...k; then, form=1,...k+ 1,

1 1 m-1

We then apply lemma 3.2.1 for o = ¢;;,41 and 8 = ¢, m = 1,... k, to obtain that

C
< —IVullppm (B, )

IVull g1, (o) < 5

where C' also depends on the difference ¢, — ¢p,4-1. This will show that

¢ d/s—d/2—k
IVl s (5, vy < F IV LBy 000 < O IVUl L2y, )

(B3ir/16) =

where C' is also depends on the sequence (¢, ), and where we used (3.7) in the last step.

Recall now the definition of v, from the proof of lemma 3.2.1, where the construction
takes place for o = 3/2 and 5 = ¢;. Since vy, is a mollification of v and v = v in By, /2, there
exists a subsequence vy, such that Vug ~— Vu almost everywhere in Bg,. 5. But, estimate
(3.4) in the proof of lemma 3.2.1 shows that

C
< —MIVullpprii g

: 2
ll;}n_}s()%p ||V Un||ka+1 (B37'/2) ~

ckr)'
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Since pg41 > d, Morrey’s inequality shows that, for almost every z,y € By,

|Vu(x) — Vu(y)| < limsup |[Vop(z) — Vop(y)]

n—oo

< limsup Cla =y~ P [V20n | i i, )
n—00 r/2

< Cla — '~ P d/s =027 |G u ) 1o

o «
<C <|$ y|> Td/sfd/2+osz71||vu”L2(

r

o 1/2
<C (|l‘ - y|> T,d/S—FOé—k‘—l (][ |VU|2) :
r Bs1,/16

where « = 1 —d/py11 € (0,1). But, we compute

B31r/16)

Bsir/16)

d d d d 1k
——l—oz—k'———l—l———k—l———i—l—d(———)—k—l—O,
s s Pl+1 s s d

which shows that

1/2

|Vu(x) — Vu(y)| < C (uj ; y|)a <]é31r/16 |Vu|2> :

But, from Cacciopoli’s inequality,

1/2 1/2
(f rvmﬂ <C(f, we)
B31r/16 " \J By,

and this completes the proof. O]

The last proposition leads to the following corollary.

Corollary 3.3.2. Let  be a bounded domain, and let A € M) ,(€2) and b € L>°(2). Let

also By be a ball in €2, such that its double Bsy, is compactly supported in 2. Then, for any
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solution u of the equation — div(AVu) +bVu =0 in €,

o N
Ve < 5 (f, 1)

where C' depends on d, \, p, ||b]|cc and diam(£2). Hence, u is locally Lipschitz in 2, with

u(e) — u(y)| < (]é ) W) /2

for any x,y € B,

Proof. Fix x € By. Then, for any y € By, proposition 3.3.1 shows that

1/2
|w<x>|s|w<y>|+|w<:c>—w<y>|sww<y>|+§(]é |u|2) |

We now integrate for y € B, and we apply the Cauchy-Schwartz inequality, to obtain that

1/2 1/2 1/2
vuwl< f, Wi S(f W) < (f wa) TS (f ue)
B r Bay T r Bay

We now apply Cacciopoli’s inequality, and this completes the proof. O

We also obtain the next qualitative corollary, by combining the last estimate with the

low regularity estimates from the previous section.

Corollary 3.3.3. Let (2 be a bounded domain, A € M) ,(2) and b € L°°(€2). Suppose that
U C Q is compactly supported, and u € VV&)’?(Q) is a solution to Lu = 0 in €2, for some

p > 1. Then wu is continuously differentiable in U.

Proof. Let U C Uy C €2, where all inclusions are compact. From proposition 3.2.3, we
then obtain that u € Wl’Q(UO). We then cover Uy by balls such that their doubles are
contained in 2 and we apply corollary proposition 3.3.1 to each one of them to obtain that

u is continuously differentiable in U, which finishes the proof. O
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3.4 Local estimates on the gradient for L'

We now turn to showing that the gradient of a solution to the equation Liu = 0 is locally

Holder continuous, provided that b is Holder continuous. We begin with a lemma.

Proposition 3.4.1. Let  be a bounded domain, A € M) ,(Q2) and b € C*(Q2) for some
€ (0,1]. Consider a ball B with radius r, such that 168 C 2, and let g € C*(16B). Let

also u be an W12(Q) solution of the equation Liu = divg in Q. Then,

C 1z
IVellooas) < srra (£, 1)+ Crlolzan) + Clallcoaan)

where C' depends on d, A, 1, [|b]| 0, and diam(£2).

Proof. We can assume that r = 1; the general case can be then recovered after a dilation.

First, note that theorem 8.22 in [GTO01] shows that u € C#(8B) for some 3 € (0,1).
Hence, if v = min{e, 8}, the function f = bu belongs to C7(8B). Note also that u solves
the equation

— div(AVu) = div(bu) + divg = div(f + g),
and f+ g € C7(8B). Hence we can apply estimate 2.2 in [KS11] to obtain that
N
Vulleanqum <€ (£ 1) +CI5 +allonn(sy

therefore Vu € C7(4B). In particular, Vu is bounded in 4B, therefore w is Lipschitz in 4B,

hence f = bu € C*(4B). Then, again from estimate 2.2 in [KS11],

1/2
Wulcoass) <€ (£ 1) +CIE + allgnaamy
therefore u € C“(2B).
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We can now apply theorem 8.32 in [GTO01], for the domains B C 2B, to obtain that

IVullco.apy < Cllullpo 2y + 119l Lo 2B) + l9ll co.a 2y

1/2
<C <]£B |u|2) + 191l oo 2) + 9l co0(2m):

where we also used theorem 8.17 in [GT01]. This completes the proof. O

We also obtain local Lipschitz continuity of solutions to the adjoint equation, as the next

corollary shows.

Corollary 3.4.2. Let 2 be a bounded domain, A € M) ,(©2) and b € C*(Q). Consider a
ball B with radius 7, such that 168 C Q, and let g € C%(16B). Let also u be an W12(Q)

solution of the equation Liu = div ¢ in Q. Then,

o 1/2
Vel < S (£, 4 )+l + Crlalones, )

where C' depends on d, \, i, |[b|| c0,o and diam(€2).

Proof. Let x € B. Then, for any y € B,

Vu(z)] < [Vu(z) = Vu(y)| + [Vu(y)| < [Vullgoap,)lz = yl* + [Vu(y)l

< [IVullgo.a(p,)r® + [Vuly)l,

and after integrating for y € B, we obtain that

1/2
Vu| < [|Vull o,a r¢ 4+ (7[ Vu 2)
| | = H ||C' (Br) Brl |

1/2
/ |u|2) |
Bo,

where we also used Cacciopoli’s inequality (lemma 3.1.2). We then use proposition 3.4.1 to
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bound || Vul| 50, (B,) and we consider the supremum for = € By to conclude the proof. [

3.5 Global estimates

In this section we will show two global results. The first will be an L2 control of the gradient

of a solution from the solution itself, and the second is the maximum principle.
Lemma 3.5.1. Let Q be a bounded domain, and suppose that A € M)(Q2), b € L*(Q).
Let also u € W(}’Q(Q) be a solution to the equation Lu = f, for f € L*(Q). Then

IVul3 < Clluli3 + CIIf 113,

where C' depends on A and ||b]|sc-

Proof. We use the definition of solution with u as a test function, to obtain that

/AVuVu+qu-u:/fu,
Q Q

which shows that, for any § > 0,

A Vul? < /Q AVuVu = /Q bVu -t /Q Fu < [BlloolValallullz + 1 £ll2llull2

1
< dlbllool[ Va3 + g\lbllooHUIlg + A ll2llull2

Choosing § = we then obtain the desired inequality. O]

A
2||b]|cc+1°
We now turn to the maximum principle for subsolutions of the equation Lu = 0 in €.
We will need a notion of inequality on the boundary of €2 for Sobolev functions; for this
purpose, we will use the supremum in the W2 sense (definition in section 8.1 in [GT01]).

To show the next proposition, we will follow the proof of theorem 8.1 in [GTO01].
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Proposition 3.5.2. Let A € M,(Q), b € L®(Q), and let v € W12(Q) be a subsolution of
Lu = 0. Then,

supu < supu,
Q o9

and the suppg is considered in the W12-sense.

Proof. Note first that, since u is a subsolution, for any v & Wol’z(Q) with v > 0,
/ AVuVU+qu~v§0:>/AVUVv§ —/ bVu - v.
Q Q Q

If supgn u = oo, then the inequality is valid. Suppose now that ky = supynu < oo, and
suppose that kg < supgu = k1. Let k € [kg, k1), and define v, = (u — k)T € Wol’Q(Q). We

then have that 0;v, = O;u - X[u>k]» therefore

/ AVvk . Vl)k < —/ vak * Vs
Q Q

and the ellipticity of A and the Sobolev inequality show that

A /Q IVorl? < [1blloo o]l 2+ Vol 2 supp(up) [Y9 < Cyllblloo | Vo |22 lsupp(up) V4, (3.8)

where supp(vj,) denotes the support of ..
If ||Vvk||L2(Q) = 0, then v}, is a constant. Since v;, € W(}Q(Q), this constant has to be

zero, therefore (u — k)™ = 0 in 0. Therefore, u(z) < k for all z € Q, so

k1 =supu < k,
Q

which is a contradiction. Therefore HV'UkHLQ(Q) > 0, which shows that ||b||c # 0. Hence,
(3.8) shows that
—di i —
[supp(og)| > AC oIl
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Since this inequality does not depend on k, it should be true as k — supg u; therefore
—1/n
supp (o, )| = 1",

which shows that u attains its supremum at a set of positive measure. Since also v is
integrable, this supremum should be finite, therefore k1 < oo.

Let now v = (u — ko) ™. Let also

| =supv = sup(u — ko)™ =k — ko > 0,
Q Q

which is also finite, since k; < oo. Then, for any € > 0, if we use l_;’ - as a test function,
we obtain that
/ AVuv - Vo < / bVu-v / bVuv -v
o(l—v+e)?2 =~ Jol—-v+e  Jol—v+e
Set now
[+¢
= log(l — log(l — =log ———.
we =log(l +¢) —log(l —v+¢) 08T

Since [+e >0 —v+ec and | — v+ ¢ > 0, we obtain that w, € Wol’Q(Q), therefore

A . .
A/|vw5|2g/AW€w€:/W_WQ:_/M
Q Q Q(l—v+e) Ql—v+e

= —/Qbng v < [blloolIVeell2flvlla < 2bllool| Veel|2l2 2,
since 0 < v < [. This shows that, for any ¢ > 0,
IVawella < A [blloo|€2'/2,
and Sobolev’s inequality shows that

wellor < Cgll Vawellz < IAYblloo Q2.
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Letting ¢ — 0, we obtain that wy = log! — log(l — v) is integrable, therefore v = [ only on a

set of measure zero. But, if z € Q with u(z) = kq,
u(x) —kg =k —ko=1>0=v(z) = (u—ko)T(2) =1,

so u achieves its supremum only on a set of measure 0. But this is a contradiction, which

completes the proof. O
We also obtain the next analog for supersolutions.

Proposition 3.5.3. Let A € M,(Q), b € L>®(Q), and let u € W12(Q) be a supersolution
of Lu = 0. Then,

infu > inf u.
Q 0N

Proof. We apply proposition 3.5.2 to —u, which is an W1’2(Q) subsolution of Lu =0. [
We are thus led to the maximum principle for solutions.

Theorem 3.5.4. Let A € My(Q), b € L>°(Q), and let u € W12(Q) be a solution of Lu = 0.
Then, for almost all x € 2,

infu < wu(z) <supu.
o ()_agg)

We will also need a version of the maximum principle that will hold for the inhomogeneous

equation Lu = f.

Theorem 3.5.5. Let Q be a bounded domain, and let A € M,(Q2), b € L°°(Q2). Let
pE [1, %), and F € W=bP(Q). Ifu € Wol’Q(Q) is a solution to the equation Lu = F in
), then

lulloo() < CIE Ny 1oy

where C' depends on d, p, A, ||b]|cc and diam(£2).
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Proof. The proof can be found in [GTO01], theorem 8.16. Note that the suprema on the

boundary in this proof are equal to 0, since we are assuming that u € I/VO1 ’Q(Q). O

3.6 Local estimates

For matrices A that are just uniformly elliptic (and not Lipschitz continuous), we will need
the local regularity estimates which appear in [GT01]. We begin with theorem 8.20, which

is Harnack’s inequality.

Proposition 3.6.1. Let 2 be a bounded domain, A € M,(2) and b € L*°(Q2). Suppose
that u € Wl’Z(Q) is a nonnegative solution to the equation Lu = 0, or Lfu = 0 in Q. Let

also B, be a ball, such that By, C 2. Then,

supu < C'inf u,
B, By

where C' depends on d, \, ||b||cc and diam(€2).

We also refer to the next continuity results, which are theorems 8.22 and 8.27 in [GT01],

respectively.

Proposition 3.6.2. Let €2 be a bounded domain, A € M (£2) and b € L°°(Q2). Suppose that
u € WH2(Q) is a solution to the equation Lu = F, or Lfu = F in Q, where F € W~LP(Q),

pE [1, d%‘ll> Let also Bgr(z) C Q be a ball. Then, for all r € (0, R),
0SCR, (z) U < or® (R—a sup |u| + ||F||W_1,p(9)) ,
Bp(z)

where C' depends on d, A, ||b||o, diam(§2) and p.

For the next proposition to hold, note that we need some regularity on the boundary; in

our case, we will assume that our domain is Lipschitz.
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Proposition 3.6.3. Let €2 be a Lipschitz domain, A € M,(2) and b € L*°(Q2). Let also
q € 99, and R > 0. Suppose that u € W2(Q) is a solution to the equation Lu = F, or
L'u = F in Q, which vanishes on Agp(q)), and where F € W—LP(Q), p € [1, %) Then,
for all r € (0, R),

OSCT, (1) U < Cr® (R—a sup |u| + ||F||W_1,p(m> ,

Tr(z)

where C' is a good constant that also depends on p.
Finally, we will need the next equicontinuity result, which follows from theorem 8.24.

Proposition 3.6.4. Let ) be a bounded domain, A, € M)(Q2) and b, € L%°(Q), with
1bn o < M for some M > 0. Let K C Q be compact, and suppose that u, € WH2(Q) are
solutions to the equations Luy, = 0, or Lfu, = 0 in  which are uniformly bounded in K.

Then, (uy) is equicontinuous in K.

3.7 The Rellich estimate for L

We now turn our attention to the Rellich estimate. This is the main estimate that relates
tangential with normal derivatives of solutions on the boundary of a domain, and it will be
the basis of our approach to the Dirichlet and Regularity problems.

Let ©Q be a smooth domain with Lipschitz constant M. Let also A € M f,M(Q) (the
symmetry assumption will be crucial here) and b € L°(Q2), and let ¢ € 9. Suppose also
that » > 0 is given, such that r < rq, where rq is as in section 1.1.

Suppose now that v : @ — R is a C1(Q) N Wli’g(ﬂ) solution of Lu = 0 in €. Consider a
smooth cutoff 6y in R?, with 6y = 1 in T;(¢) (from definition 2.3.1), 6y supported in Th,(q),

0 <6y <1and |Vl < C/r. Then, if e; is the unit vector field in the direction of the axis
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of Tr(q) and dju denotes (Vu, eg), we compute

div((AVu, Vu) eg) — 2div(dquAVu) = 0;((AVu, Vu)) — 204udiv(AVu) — 2 (VIu, AVu)

= (04A - Vu,Vu) — 204u - bVu,
since A is symmetric. Therefore, after multiplying with 6, we obtain that

div(0g (AVu, Vu) eg) — 2div(0pdgu - AVu) =

0o (04A - Vu, Vu) — 20004u - bV u + 0400 (AVu, Vu) — 205u (AVu, Vo) .

Note now that the domain T5,.(¢q) is Lipschitz. Therefore, using the divergence theorem
in a domain slightly smaller than T5,(¢) (such that the solution is twice differentiable there),

an approximation argument and the support properties of 6y, we obtain the identity

/ B0 ((AV, V) (eg, v) — 2 (Y, eg) (AVu, 1)) do —
A2T(Q)
/ (0o (O4A - Vu, Vu) — 20004u - bV u + 0400 (AVu, Vu) — 20,u (AVu, Vb)) d.
To:(q

(3.9)

We now treat the left hand side, and we compute

(AVu, Vu) (eg, v) = (AVu, Vu) leg, v) + 0%u (AVu, v) (eg, v)

((AVU, Vou) — 0%u (AVu, V>) (eq, V) +2(AVu,v) <ed, u - 1/> ,
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where d0u is the normal derivative of u on 9. Therefore, since

(AVu,v) <ed, O - V> = (AVu,v) (eq, Vu — Vu)

= (AVu,v) (e4, Vu) — (AVu,v) (eq, Vu) ,

we obtain that

(AVu,Vu) (eq,v) —2(Vu,eq) (AVu,v) =

((AVu, Vou) — 0% (AVu, 1/)) (eq;v) — 2 (AVu,v) (Vu, eq) .
For the term in the parenthesis, we write

(AVu, Vyu) — 0% (AVu, v) = <AVU, Vou— 0u - y>
= <A(VTu + 8% - v), Vpu — u - V>

= (AVpu, Vpu) — (Av, v) [00ul?,

where we used that A is symmetric on the last step. Plugging in (3.9), we obtain the Rellich

identity

/ fo ((AVTu, Vru) (eg,v) — (Av,v) [0)ul* (eq, v) — 2 (AVu,v) (Vu, 6d>> do =
Aor(q)

/ (00 (04A - Vu, Vu) — 20p0,ubVu + 0400 (AVu, Vu) — 20qu (AVu, Vo)) dz. (3.10)
2T(Q)

We arrange the terms so that the |0u|? stays on the left hand side. Since 0 < 6 < 1
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and |egy| = 1, we obtain that

/ 00 (eq,v) (Av, 1) |0%u[? do <
AZT‘(Q)
/ 00| Vrul| (AVu,v) | (eq,v) do +/ 0o (AVpu, Vou) [* (eg, v) do+
AQT(Q) A2T(Q)

/ ({8 A - Vi, V)| + 2 0,ubVu| + 900 (AT, V| + 2 |90 (AVw, Vo)) da.
27‘(q

Now, (e4,v) < 1, and also

leq V) = <€d> (—Vo,1) > 1 S 1

(—Vo. 1)/~ J/NoP+1  VaMZt1

In addition, |V6y| < C/r and (Av,v) > Av|?> = A, from the ellipticity of A, therefore

/ 00|0%u|? do < c/ 00|V u|| (AVu, v) |da+C/ 00|V pul? do
A2T(Q) A2T(Q)

2r(q)

C
e / (VA + [Blloc) [V2? + & / Vul? dr,
TQr(q) r

Ty (q)

where C' depends on d, A and M.

We now add the term fAzr(Q) 60|V rul? to both sides, to obtain that

/ 00| Vu|? do < C/ 00|V 7ul|Oyu| do + C/ 00|V rul? do
A2r(‘]) AQT‘(Q)

2r(q)

C
ve [ bl Vol + S [ (9l ds,
TQT(q) r TZT(Q)

and since

/ 00|8yu|2da:/ 60| (AVu, v) |2da§(]/ 60| Vu|? do,
AZT(Q) AZT(Q) AQr(q)
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we obtain

/ 0o|0yu|? do < c/ 00|V rul |8, ul
AQT(Q) AQr(q)

+C/ 00|V pul? do + C <1+7’_1> / Vu|? da.
Aoy (q) Tor(q)

Finally, we apply the Cauchy-Schwartz inequality on the first term on the right hand side,

and the Cauchy inequality with d, to obtain that

/ [(AVu, 1) |? do < c/ IV pul? do + ¢ IVul? dz,
Ar(q) 2r Q) r T2T(Q)

where C depends on d, \, p, [|b]|co, M and rq, since 1 < rq/r. Therefore, we are led to the

next proposition.

Proposition 3.7.1. [First Local Rellich estimate] Let € be a smooth domain with Lipschitz
constant M. Let also A € Miu(Q), b € L®(Q), and suppose that u : @ — R is a

cl@)n VVE)’CQ(Q) solution of Lu = 0 in €. Then, for every g € 02 and r < rq,

C
/ 0, u|? do < C’/ \Vul|? do + = IVul?,
Ar(q) 2r(q) " J Ty (q)

where d,u = (AVu,v), C' depends on d, A, s, ||b]|co, M and rq, and where rq is defined in

section 1.1.

3.8 The Rellich estimate for L!

We now show the local Rellich estimate for the equation L'u = 0; that is, u solves the
equation

— div(A'Vu) — div(bu) = 0.

Let 2 be a smooth domain with Lipschitz constant M. Let also A € My M(Q) (as in
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the proof of the Rellich estimate for L, the symmetry assumption will be crucial here),
b € Lip(Q2), and let g € 9. Suppose also that r > 0 is given, such that r < rq, where rq is
as in section 1.1.

Suppose now that u : Q@ — R is a C1(Q) N VVE)’(?(Q) solution of Lu = 0 in €. Consider
a cutoff 6y, with 6y = 1 in T;-(¢q) (from definition 2.3.1), 6y supported in To,-(¢q), 0 <y < 1
and |VO| < C/r. Then, if e; is the unit vector field in the direction of the ¢ axis and dju

denotes (Vu, eg), we compute

div((AVu, Vu) eg) — 2div(0quAVu) = 04((AVu, Vu)) — 204u div(AVu) — 2 (VIgu, AVu)
= (04A - Vu, Vu) + 204u div(bu)

= (04A - Vu, Vu) + 2bVu - Oqu + 2divb - udyu,
since A is symmetric. Therefore, after multiplying with 6, we obtain that

div(fy (AVu, Vu) eg) — 2div(0g0uAVu) =

0y (04AVu, Vu) + 2000,ubVu + 20y div b - udgu + g6y (AVu, Vu) — 204u (AVu, Vo) .

So, as in the proof of the Rellich estimate for L, the divergence theorem and the support

properties of 6y show that

/ B0 ((AV, V) (eg, 1) — 2 (Vu, ) (AVu, 1)) dor <
AQT(Q)

c
/ Va2 + [bl[Vul? + 2| div bl [uvu] + S [Vul2.
Ty Q) r

We now treat the left hand side exactly as in the proof of the Rellich estimate for the equation
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Lu = 0, to finally obtain that

/ 0o|0yu|? do < c/ IVrul? do
Aoy (q) Az (q)

C
+o/ LVl + b][Vul? + 2| div bl[uVu| + S |Vul2.
TQT(q) r

We are then led to the following estimate for solutions to the adjoint equation.

Proposition 3.8.1. [Local Rellich estimate for the adjoint] Let €2 be a smooth domain with
Lipschitz constant M. Let also A € My M(Q)’ b € Lip(Q), and suppose that v : Q — R is a

cl)n Wli’g(ﬂ) solution of Lfu = 0 in Q. Then, for every ¢ € 9Q and r < rq,

/ 0,ul? do < c/ Vrul? do + C | div b|[uVu| + 9/ Vul?,
Ar(q) T2T(Q) TQT(Q) r T27“(Q)

where C' depends on d, \, p, ||b]|co, M and rq, and where rq is defined in section 1.1.
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CHAPTER 4
SOLVABILITY IN VARIOUS SPACES

4.1 Solvability in W~1%(Q)

The goal of this section is to treat solvability of the equations Lu = F and L'u = F when
F ¢ W~12(Q). For this purpose, we will follow the arguments in [Eval0]: we will change the
equation so that the bilinear form that it defines is coercive, and we will pass to solvability
for the original equation using the Fredholm alternative.

In the following, for v € R, we will need to consider the bilinear form
oy (u,v) = / AVuVv + bVu - v + yuv,
Q

as well as its adjoint form

t

ar (u,v) = ay(v,u).

We will then say that u € Wli)’cl(Q) is a solution to the equation Lu+~yu = 0, if ay(u, ¢) = 0
for all ¢ € C2°(Q2). Similarly, we will say that u € VVI})’C1 (Q) is a solution to the equation

Lhu+yu =0, if ol (u, ¢)=0 for all ¢ € C2°(Q).

Proposition 4.1.1. Let  C R? be a bounded domain, and A € M, (Q), with b € L2(Q).
Then there exists a constant 7 > 0 depending only on A and ||b]|cc such that, for any

F e W=12(Q), the equation
—div(AVu) + bVu +yu = F

has a unique weak solution u € VVO1 ’Z(Q). If we denote u = g,F, then the operator g, :
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w—12(Q) — W01’2(Q) is bounded and onto, and also

||gPyF||W01’2(Q) < OHFHW_L?(Q)a

where C' depends on d, A and ||b]| 0.
Proof. Note first that the bilinear form - is continuous on T/VO1 ’Q(Q), since, for u,v €
1,2
WO (Q)7
oy (u, )] < / |AVu||Vu| + [bVuv| 4+ y|uy|
Q

< ClIvull2l[Vollz + IblcolVul2livliz + vlull2llvilz < Cllull iz gyl 2 )

where we used the Cauchy-Schwartz inequality.

For coercivity of a., note that since A is uniformly elliptic, then for every u € VVO1 ’2(Q),

ay(u,u):/AVuVu+/qu-u+/7u2
Q Q Q

2 2
> N[Vullz = [IbllolVull2]ullz + vllull2

2 o |b 2 2
> AVullz = [[bllocd | Vully = == l[ulls + ~lull2,
for any § > 0, from Cauchy’s inequality. Let now
A [blloo +1
0= ——r, = —>0.
bl +D’ 7745

Note that 7 depends only on A and [|b]|so. Moreover, X — ||b]|ood > 4, therefore

16l
46

DO | >

A 2 2 2 2
oy (u, u) > §||VU||2 - ullg +yllullz > S[[Vul]3 > C||U||W0172(Q)7 (4.1)

where we also used the Sobolev inequality. Therefore, for this «, ay is continuous and
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coercive, where the coercivity constant and the continuity constant depend only on d (from
the Sobolev inequality), A, and ||b||cc. Therefore, the Lax-Milgram theorem shows that, for

any F' € W12(Q), there exists a unique u € Wol’Q(Q) such that

/ AVuVo +bVu - ¢ + yuop = Fo,
Q

for any ¢ € C2°(£2). We now write u = g,F, and we apply the definition of solution for u

as a test function; then, coercivity of a, shows that

P
C||U||W01,2 < ay(u,u) = Fu < ||F||W—L2(Q)|

@ 2oy

therefore the operator g : w—2(Q) — W(}’Q(Q) is bounded, with the bound depending
only on d, A and [|b]|cc-

Finally, to show that g is onto, consider u € VVO1 ’Q(Q), and set
Fv= / AVuVv 4+ bVu - v,
Q
for v € WOI’Q(Q). We then have that F' € W‘LQ(Q), and also g F" = u. This completes the

proof. O

To pass to the original equation Lu = 0, we use the Fredholm alternative, as the next

proposition shows.

Proposition 4.1.2. Let 2 be a bounded domain, A € M,(Q2), and b € L°(2). Then, for

any I' € W‘LQ(Q), the equation
—div(AVu) + bVu = F

has a unique weak solution u € T/VO1 ’Q(Q).
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Proof. Consider first the number v that appears in proposition 4.1.1, and also the operator

gy WE2(Q) — Wol’z(Q). Consider also the operator T : L?(Q) — W~12(Q), with

Tf0) = [ fo
Q
for all v € W()1’2(Q). Since the embedding Wol’z(Q) < L?(Q) is compact, the operator
K =Tonxgy: W L2(Q) - w12(Q)

is compact.

Suppose now that F,G € W~12(Q), and G = KG + F. Then, for any v € W&’z(Q),

a(gyG,v) Zav(ng,v)—/QvgfyG-vz <G,v>—/ﬂvgfyG-'v
:<KG—|—F,U>—/’yg»}/G-U:<F,U>+<KG,U>—/’)/Q»}/G~U
Q Q

= <F7 v> Y

therefore u = g,G € Wol’Q(Q) solves the equation Lu = F'. Hence, if G — KG = 0, then
u = g,G solves the equation Lu = 0, therefore the maximum principle (theorem 3.5.4) shows
that g,G = 0. Since g, is injective, this implies that G = 0; therefore, the operator I — K
is injective.

We now use compactness of K, and we apply the Fredholm alternative to obtain that
I — K : W= 12(Q) - w~12(Q) is bijective. The open mapping theorem shows then that

I — K is invertible. Therefore the operator

_ _ 1,2
g:gyo(]—K) Loy I’Q(Q)%WO’ (Q)
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is bounded. So, if F € W~12(Q) and u = gF, then
lu—Kglu=(I-K)(g;'u)=F
g’y u g’y u_( )(g’y u)_ ’
therefore u = g(gy L) e W(} ’2(9) solves the equation Lu = F. Uniqueness now follows
from the maximum principle. n

By considering the adjoint operator ¢¢, we can show solvability of the equation Ltu = F.

Proposition 4.1.3. Under the same conditions as in proposition 4.1.2, for every F &
W—L2(Q), the equation

—div(A'Vu) — div(bu) = F
has a unique solution u € W& ’Q(Q).

Proof. Consider the v that appears in proposition 4.1.1, and the operator
_ _ 1,2
g=gyo(I—K)"L:w2(Q) - W, (Q)

that appears in the proof of proposition 4.1.2. Note first that ¢ is a composition of two
bijective operators, therefore it is bijective.

Suppose now that F € W~12(Q), and set u = g'F. By identifying W—12(Q)* with
W&’z(Q), we can consider that gt : W12(Q) — WOI’Q(Q). Then, if ¢ € W&’Z(Q), there
exists G € W12(Q) such that ¢ = ¢G, and then

ol (u,¢) = a(6,u) = algC,u) = (G,u) = (G.g'F) = (F.9G) = (F.u),

therefore u = g'F solves the equation Liu = F.

For uniqueness, suppose that u € VVO1 ’Q(Q) solves the equation L'u = 0. Then, for any
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G e Ww=2(Q),
(G, u) = a(gG,u) = o' (u, gG) =0,

therefore u = 0, and the proof is complete. O

4.2 Solvability for measures

In chapter 2 we defined the spaces C(2) and B(€2). In this section we will show solvability
of the equations Lu = p and L*u = p, where p € B(Q). We will later apply the theorems in
this section for Dirac masses, in order to construct Green’s function.

In order to construct those solutions, we will consider the operators from the previous
section and we will restrict their domains so that their images are contained in Cp(€2); this
procedure will require pointwise estimates on the solutions. We will then consider their
adjoint operators, which will be defined on B(2).

We first show solvability for the adjoint equation.

Proposition 4.2.1. Let © be a bounded domain, A € M,(€2), and b € L*°(Q2). For every
w € B(R), the equation
—div(A'Vu) — div(bu) =

has a unique weak solution, which belongs to W(} P(Q) for every p € <1, %), and also

satisfies the inequality

el 1y < Colllsen
where C) is a constant that depends on d, A, ||b]| o0, diam(€2), and p.

Proof. Consider the operator g : W™12(Q) — W&’Q(Q) that appears in proposition 4.1.2,

which maps F € W~12(Q) to the solution u € WOLQ(Q) of the equation

—div(AVu) +bVu = F.
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Using proposition 3.6.2 we conclude that v € C(€2). Moreover, from theorem 3.5.5, this op-
erator maps W~ 1P (Q) to Cy(€2), and its norm is a constant C}, which depends on d, A, ||b| o,
diam(Q), and p. This shows that g* maps B(Q) = C},(Q)* to W~1P(Q)*, which we identify

with Wol’p(Q); hence, for any u € B(€2), we obtain that

19l 1y < ol ey

Given ¢ € C2°(Q2), and for v € Wol’p(Q), set
Fyv = /Q AVPVvu + bV - v.

Then F, € WLP(Q) for all ¢ € C(Q). Since Q is bounded, W1P(Q) € W12(Q),
therefore Fy € W—L2(Q). Also, g is injective on W~12(1), so we obtain that gFy = ¢,
hence C2°(Q) is contained in the image of g : W1P(Q) — C;(Q).

We will now show uniqueness: set X to be the subspace of W~1P(Q) that contains all the
Fy. Note that X is dense in W—12(Q), since g : W12(Q) — Wol’2(Q) is an isomorphism,
and X = ¢~ 1(C°(Q)). Since the inclusion W~1P(Q) — W~12(Q) is continuous, this
will mean that X is dense in W~1P(Q). Therefore, if u € W& P(Q) solves the equation

— div(A'Vu) — div(bu) = 0, then for every ¢ € C2°(1),

0= a'(u,¢) = a(p,u) = a(gFy,u) = (F4,u),

therefore Gu = 0 for all G € X. But X is dense in W~1P(Q), therefore u = 0.

Let now p € B(Q), and set u = gy € Wg’p(Q). Let also ¢ € C2°(Q2). Then, we compute

o (u,9) = al(é,u) = algFy,u) = (Fu) = (F.g'n) = (1, gFy)
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Therefore u = g'y1 solves the equation Liu = p, and also

t
Jullyi gy = I8l < Collullsgoy:

O

We now proceed to show the analogous result for the equation Lu = p. To do this, we
would need pointwise bounds for solutions to the equation L'u = 0, which might not hold.
For this reason, we will transform our operator to a coercive operator, and then use the

Fredholm alternative. We first show the next lemma.

Lemma 4.2.2. Suppose that b € Lip(Q2), and v > 0 is sufficiently large. Then, for every
w € B(Q), the equation

—div(AVu) +bVu +yu =
has a weak solution u € W(}’p(Q), for any p € (1, %)

Proof. First, fix p € (1, %) Consider also a constant v > 0 which is larger than the one

appearing in proposition 4.1.1, and also
v > divb.

Consider now the operator g% - Wh2(Q) - WOI’Q(Q), which is the adjoint to g, : W12(Q) —
W(}Q(Q), and where the last operator appears in proposition 4.1.1. Let F' € W—12(Q) and
v e Wol’Q(Q). Since g is onto Wol’Q(Q), there exists G € W™12(Q) such that ¢G = v.

Therefore,

O‘g(gtF> U) = a7(¢a gtF) = a’Y(g’Yga gtF) = <G> gtF> = <F7 gG> = <Fa U> .
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Hence, g, maps F € WL2(Q) tou e Wol’Q(Q), such that
—div(AVu) — div(bu) +yu = 0,
and, since b is almost everywhere differentiable, this is equivalent to
—div(AVu) — bVu + (y — divb)u = 0.

We now use proposition 8.22 in [GT01] to conclude that gfy maps W~LP(Q) to C(Q). Our
choice of 7 shows now that proposition 8.16 in [GTO01], is applicable for the equation Lfu +

~vu = 0, hence there exists a constant C' > 0, such that

9% Fll () < ClIFlhy-10(0).

SO gfy - W=LP(Q) = Cp(Q) is bounded.
Denote by g%T the adjoint of g% : WLP(Q) — Cp(Q); then g%T : B(Q) — Wol’p(Q) is
bounded. Let p € B(f2) and set u = gfyT,u € W&’p(Q). As in the proof of proposition 4.2.1,

if p € C2°(Q), there exists F € W~1P(Q) such that g%F = ¢. Then, we compute
ay(u,6) = b (6, u) = ol (gh Fu) = (Fou) = (F.gf ) = (gL F ).
therefore gfyTu =u € T/VO1 P(Q) is a solution to the equation
—div(AVu) + bVu + yu = p.

This completes the proof. O

To pass to the equation Lu = u, we use the Fredholm alternative, as the next proposition

shows.
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Proposition 4.2.3. Suppose that b € Lip(€2), and let p € B(£2). Then, there exists a unique

weak solution u of the equation
—div(AVu) +bVu = p

in €2, which also belongs to Wol’p(Q) for every p € (1, d%dl)

Proof. The proof is similar to the proof of proposition 4.1.2; we begin by fixing a p €

<1, d%‘l1> Consider the v that appears in lemma 4.2.2, and the operators
_ 1
g WEP(Q) = Cy(Q),  go =g B(Q) — W P(Q).

Consider also the operator Ty : LP(Q2) — B(Q2), with (T f, ¢) = / fo for every ¢ € Cp(Q).
Q

Since the embedding i : I/VO1 P(Q) < LP(Q) is compact, the operator
Ko=Tpoio~gy:B(Q) — B(Q)

is compact.
Suppose now that p,v € B(Q), and v = Kov + p. If ¢ € C2°(Q), note that there exists
F € W~LP(Q) such that g%F = ¢. We then compute

a(gov, ¢) = o' (¢, gov) :Oéty@%FagOV)_/Q’W‘QOV: <F7goV>—/Qv¢-gov
= <F,g§TV> —/Qwﬁ-g(w= <93F,V> —/Qw-gov
— (6. Kov + 1)~ [ 10900 = (6. + (6. Kow) = [ 6+ gov
Q) Q
= (o, 1) + (&, To(i(vgov))) — /Qw - gov
= (¢, 1),
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therefore u = ggv solves the equation Lu = pu.
Let now g > d be the conjugate exponent to p. Since we have assumed that p > 1, we

have that ¢ < co. We now consider the operator
T : Cy(Q) = LY(Q),
such that Tf = f for all f € C}(Q). Note then that, if f € C3(Q) and g € LP(Q),

<f,T~’tg> = <Tf,g> = /Qfg = (Tog, f) -

After identifying L9(Q)* with LP(€2) (which is possible, since p € (d, 00)), the last equality
shows that T} is equal to 7%, the adjoint of T': C,(Q) — L94(Q). Therefore, if we consider

the adjoint i’ : LI(Q) — W~LP(Q), and we set

K =gl oi' o T : Ch(Q) = Cp(Q),

we obtain that

K'=T"o (") o (ygh)! = Ty 0i 0 vgp = K.

Since Ky is compact, we obtain that K is also compact.

We now show that I — Ky is injective. To do this, it is enough to show that I — K is
injective, from compactness of K. For this purpose, suppose that f € Cy(Q) is such that
f=Kf. Set F=i(Tf) € W=LP(Q), then F belongs also to W~12(Q), since Q is bounded.
Then,

Vo E =gy oi o T)f = Kf = f,
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and g% maps W*1’2(Q) to W01’2(Q), therefore f € W01’2(Q). Hence, for every ¢ € Wol’Q(Q),

ol(1,0) = o gh 0 = [ afo=taf.0) = [ afo=o.

But then, proposition 4.1.3 shows that f = 0, hence I — K is injective, therefore I — K is
injective as well.
We now apply the Fredholm alternative to obtain that I — Ky : B(Q2) — B(f) is bijective,

therefore its inverse is also bijective, hence the operator
Go = g0 (I = Ko) ™' : BQ) = WP (@)
is bounded. Hence, if p € B(2) and we set u = gop, we obtain that
g5 tu— Kogy tu = (I — Ko)gg v = p,

therefore u solves the equation Lu = p. Uniqueness follows from the fact that I — K is

injective, and this concludes the proof. O

In the last proof, we could show injectivity of I — K without passing through injectivity
of I — K by using, for example, a uniqueness result for VVO1 P(Q) solutions to the equation
Lu = 0, where p is strictly smaller than 2. We avoid using a result like this by showing
first that J — K is injective, since this is reduced to uniqueness for VVO1 ’Q(Q) solutions to the

equation Liu = 0.
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CHAPTER 5
GREEN’S FUNCTION

5.1 Preliminary constructions

In this section we will apply the results of the previous chapter to specific measures, in order
to construct Green’s functions for L and L! in the case where b € Lip(€Q).
Suppose that €2 is a bounded domain, and set d, to be the Dirac mass at x € €). Then,

we have the following lemma.

Lemma 5.1.1. Let 2 be a bounded domain, and z € 2. Then, 6, € B(€2), and [0z 5(q) = 1.

Moreover, if g € L1(9), then the functional Ty which maps f to [, fg belongs to B(f2), with

1TyllBeoy = lgllp -

Proof. For any f € Cj(2), we compute

€0z, M) = 1F (@) < [ fll ooy = 1l ey )

hence 6, € B((?), and [|0z[|5() < 1. To show the reverse inequality, we test against the

function A = 1, and we compute

1= g(z)| = [(dz, /)| < 6zl gyll9llcy ) = 102l 5(2)-

The proof for the second claim is similar. Indeed, if f € C(€2), we compute

181 = [ 13] < 1lieiay ol iy < alloao o

therefore Ty € B(Q2), and || Ty||5(q) < [l9]l r1(0)- The reverse inequality follows from applying

Lusin’s theorem to the function sgn(g), which completes the proof. O
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Given A uniformly elliptic and bounded, b € Lip(Q2) and y € Q, we apply proposition
4.2.3 and the previous lemma to obtain that there exists a solution Gy to the equation
LGy = oy, where 9y is the Dirac delta at y € . The same proposition also shows that
Gy € Wol’p(Q) for all p € [1, %) We then set G(z,y) = Gy(z) for z € 2, and we note

that

/Q (A(2)V-G(z, 9)Vo(2) + b(2)V:Clzry) - 6(2)) dz = B(y),

for all ¢ € C2°(Q2). We call G Green’s function for the equation Lu = 0 in €.

For the adjoint equation, consider A to be uniformly elliptic and bounded, b € L*°(Q)
and z € Q. We then apply proposition 4.2.1 to obtain that there exists a solution G% to
the equation L'GYL = ;. Since ||6z| B(q) = 1, the same proposition also shows that, for any
JS [17 %),

HGZ'HWOLP(Q) < Cpa

where O is a constant that depends on d, A, [|b]|c, diam(f2), and p. We then set G*(z,z) =

GL(2) for z € Q, and we note that

| (AIV:610)90(:) + 62 V6(:) - 61 (z,)) d = o)

for all ¢ € C°(Q). We call Gt Green’s function for the equation Liu = 0 in Q.

Note that we have established existence of Green’s function for the equation Lu = 0
only for b that are Lipschitz. Moreover, it is not clear at this point how the VVO1 P (Q2) norms
of GG relate to the given quantities. In the following, we will establish existence of Green’s
function for b € L*°(Q), and show good pointwise and L estimates on Green’s function and
its derivative.

To show those properties, we will follow the arguments appearing in the Griiter-Widman
paper on Green’s function [GW82], but first we need to show the symmetry relation between
G and GY, in proposition 5.1.3. For the proof of this proposition (as well as other arguments
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that will appear later, for example in the proof of proposition 5.2.1) we need to construct
specific families of approximations to G, G and show that they satisfy various boundedness

and continuity properties. This is done in the next lemma.

Lemma 5.1.2. Let Q be a bounded domain, A € M,(f2) and b € Lip(2). Fix z,y € Q.

Then, for n,m € N large enough, there exist Gy, GL, € W&’Q(Q), such that

1

0 1B1/n (W) /By, (y)

w, Ywe W, (Q),

and also

1
/ AVGE Vo +0Vw -G, = ——— / w, Yw e W, (Q),
QO 1B1/m (@) By ()

In addition, the following properties hold.
i) Forany n € Nand z € Q, Gp(2) >0

ii) For any p € [1, %), |GL, < Cp, uniformly in y and m, and G, € W&’p(Q)

HWOLP(Q)

iii) There exist subsequences (G, ), (Gfm), such that G, — G(-,y) and Gfm — GY(-, x)

weakly in every I/VO1 P(Q), strongly in LP(Q), and almost everywhere in Q, where p €
d
1a%)

_d_

iv) |GL|l 4 < C uniformly in y and m, and Gy, € LI (Q)
rd=2

v) For any compact K C Q with y ¢ K, (Gy) is uniformly bounded and equicontinuous

in K.

In the above, C'is a constant that depends on d, A, ||b||cc and diam(€2), and C), also depends

on p.
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Proof. Let N, M € N such that By, (y), By/p(z) € €, and for n > N,m = M we define

en = 1/n,6pm = 1/m, and

fn = |B€n(y)‘71XBgn(y)v gm = |B5m<x>|71XBam($)‘

Note that fn, gm € L?(Q); hence, propositions 4.1.2 and 4.1.3 show that there exist unique

solutions Gy, GL, € Wol’Q(Q) to the equations Lu = fy,, L'G!, = gy, therefore

/ AVGL Vo + VG v = ——— w, Ywe Wy (9Q),
Q

and also

/ VG Vw4 bVw - G = — w, Yw e Wy*(Q).

Q | Bs,,, (%)| JBs, ()

For positivity of G, note that G,, € W()1’2(Q) is a supersolution to the equation Lu = 0,
therefore the maximum principle (proposition 3.5.3) shows that G, > 0 in .

Consider now the measures du, = f,dx, dv;, = gmdx, then lemma 5.1.1 shows that
tins Vm € B(Q), with norm 1. Moreover, we see that LGy, = pp, and LG = vy,; therefore,
proposition 4.2.3 shows that, for any p € [1,%), Gy € Wol’p(Q). In addition, from
proposition 4.2.1, there exists a constant Cj depending only on d, A, ||b|sc and diam(£2),

such that |G, < Cp. Therefore (ii) is proved.

Iy
For (iii) consider any p € <1,d%'l1>. From part (ii), (Gy,) and (GL)) are bounded in
W& P(Q); therefore, there exist subsequences Gl,.» Gfm, such that

t t
Gkn — gy, Glm — g.T?
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weakly in W&’p(Q), for some gy, gL, € W&’p(Q). Then, for every ¢ € C2°(£2),

/Q AV V6 +bVgy- 6= lim /Q AVGy, V6 + VG, -

1
T S
niae |Bl/kn(y)| By, (y)
= o(y),

therefore gy, € I/VO1 P(Q) solves the equation Lgy = 0y. Uniqueness of solutions in proposi-
tion 4.2.3 shows that g, = Gy (Green’s function for L at y), and similarly, uniqueness in

proposition 4.2.1 shows that gt = G (Green’s function for L! at z, therefore
Gr, = Gy, G — G,

weakly in W(} P (Q). Therefore, from the Rellich-Kondrachov compactness theorem, there
exist further subsequences, still denoted by (Gj, ), (G"lfm), which converge to Gy and Gt in
LPo(€)) and almost everywhere in €.

_a_
We now come to the LS~? bounds for an. For this purpose fix s > 0, and set

Q" = {2 € Q|G (2) > s}.

Consider also the positive part

w(z) = (é - %Y e W),

Then, w = 0 outside Q7" and 0 < w < 1/s, therefore, using w as a test function we obtain

1
/ AtVG%VGﬁn-(an)_QqL/ bvafn-(an)—lzB— v <
am om 1 Bs,,,(@)| JBs (2)

)

®w | =
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which implies that

Atvat vat (Gt )y 2 < - — bVGt Gyt
m m m

IA

e o GG

1
S
1.
S
(wam/ NG[)lgcs{

where C' depends on d, \, ||b|cc and diam(Q), since (Gf,)™1 < 1/s in Q7 and where we also

IA

used (i) for p = 1. Therefore, if we set wy(z) = (log G, — log s)™, the last estimate shows

that

C
/ |Vw|? < A_l/ AVuwoVuwy < —,
Qm Qm S

S S

and Sobolev’s inequality shows that

d—2 d—2

Gt d27£l2 2d \ d 1 C
/ (log?m) < C(d) / wg_g < C(d)A™ / AVwOVwogg.

d—2
But, G}, > 2s in QF}, so we obtain that s|Q2f'| @ < C for all s > 0, which shows that

IGLll 4 <C
L

d_
To show the L2 (©) bound on Gy, we follow the same procedure: fix r > 0, and set
QF ={z € Q|Gn(z) >r}.
Consider also the positive part

m@:<1—5i5>+ewﬁ%m.

r
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Then, v = 0 outside 27, and 0 < v < 1/r, therefore, using v as a test function we obtain

1
o

which implies that

/ AVG, VG - (Gp) 2 < = — / VG - v
Qn Qn

s Bl [ 19Gu
r Qg}

< (1 + ||b||oo/ IVGn|> < ort
Qp

since Gy, € WH1(Q), from part (i); the only difference here being that C might depend on

— X

IA

the derivatives of b. Therefore, if we set vy(x) = (log Gy, — logr)™, the last estimate shows

that

C
[ vl <t [ avuvi <<,
on on r

and Sobolev’s inequality shows that

2 \ T d=2
Gp\ a2 - 2d 1\ 4 . C
log — <C vy <C AVygVug < —.
o\ ; o r
d— ~
But, G, > 2r in 3, so we obtain that T|Qﬁ|72 < C for all s > 0, which shows that
_d_
Gy € L2,

For equicontinuity of (Gy,), consider K C U C Q\ {y}, where all inclusions are compact,
and consider a covering of U by balls B;, such that their doubles 4 B; are compactly supported
in Q\ {y}. Let r; be the radius of B;, set ¢; = §(4B;, 02 ), and let £ be the minimum of the
g;, and 7 be the minimum of the r;. Then, for n > el G, e W1’2(4BZ~) and it is a positive

solution of the equation Lu = 0 in 4B;. Consequently, from the Cacciopoli inequality (lemma
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3.1.1), we obtain that

C C C 2
][ |VGn|2 < —2][ G,% < —28up{Gn(z)2|z €2B;} < — (][ Gn) , (5.1)
B; 2B; ~ 2B;

i s i T s

where C' depends on d, A and ||b]|so, and where the last inequality follows from Harnack’s
inequality (proposition 3.6.1) to Gy, in 4B;.
)

Now, we use estimate (2.3) with p = d%'lQ and § = p — 1; since b= 6%, we obtain

)

)
G :Cr.—d/ Gn < Cr42B,|P |Gl 20 5.
fB w=Crt [ Gu <O 2BiRGul o,

(2—d)

1 )

_ 2 =
= Cr; 12B3|||Gll ppo,) < Cr

where we used part (iii) in the last step. Harnack’s inequality now shows that (Gj,) is

uniformly bounded in 2B;. In addition, combining with (5.1), we obtain that

. 2 .
][ VG| < % (Cri?—d> = Cp2 2 < G2
Bi ’r‘Z.

This shows that (Gy,), with respect to n, is bounded in W12(2B;); hence (Gy,) is bounded
in Wh2(U). We then apply proposition 3.6.4 to obtain that (Gy,) is equicontinuous in K,
which finishes the proof. m

We can now use the previous approximations as test functions, to show the symmetry

relation G(x,y) = G!(y, x) for all 2,y € Q with z # y.

Proposition 5.1.3. Let Q be a bounded domain, A € My(2), and b € Lip(Q). If G, G* are

Green’s functions for the equations Lu = 0, Lfu = 0 in Q respectively, then
G(w,y) = G'(y, @)

for every z € 2 and almost every y € Q, with x # y.
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Proof. Fix x,y €  with x # y, and consider the construction that appears in lemma 5.1.2.
Since Gy, Gt € Wol’Q(Q), we can use them as test functions: set v = G, and w = Gy, to
obtain that

/ AVG,VGL, + VG, - GL, = / Gl
Q Bl/n(y)

and also

1
/ AVGL VG, + VG, -Gl = ———— Gh.
Q |Bl/m(x)| By /()

Since the integrals on the left hand sides of the two equations above coincide, we obtain that

for all n,m € N that are large enough (in the notation of lemma 5.1.2),

1 o 1

B, W By ) ™ B, @1 By, @) "

n

(5.2)

Consider now a small closed ball B centered at x, which is far from 02 and y, and fix
n. From lemma 5.1.2, every Gy, is continuous in B, hence letting m — oo in (5.2) and using

that Gfm converges to GY in L1 (B1/k,(y)), we obtain that

1

—_— Gl = Gy, (z,y).
B, )] S, ) ©= = Cral¥)

Moreover, from lemma 5.1.2, (Gy,) is uniformly bounded and equicontinuous in K, therefore
there exists a subsequence (G, ) that converges uniformly to a continuous function in K.
Since G, converges to Gy almost everywhere, we obtain that G, — Gy uniformly in B;

therefore, from Lebesgue’s differentiation theorem, for almost every y € Q with y ¢ B,

1
Gly,z) =Gl(y) = lim ———— Gt = lim G (z,y) = G(x,y).

By considering smaller balls B, we obtain the equality for all x € €2 and almost every y € €2,

whenever y # x; this completes the proof. n
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5.2 The pointwise estimates

In this section we will drop the assumption on differentiability of b and show pointwise
estimates on G and G!. We first show the size bounds and the pointwise estimates for

Green’s function for the adjoint equation L'u = 0.

Proposition 5.2.1. Let Q C R% be a bounded domain, and let A € M,(Q), b € Lip(Q).
There exists a function G* : (Q x Q) \ {(z,2)|z € Q} — [0,00) that satisfies the following

properties.

i) For any z € , and any p € [1, %), |GE(—, x) < Cp, uniformly in .

Iy

ii) For all ¢ € C2°(Q), o' (G (—,z), ¢(—)) = ¢(x): that is,
/Q (At(z)VZGt(z, )V (z) +b(2)V(z) - Gz, x)) dz = ¢(x).

iii) For all z,y € Q, Gt(y,z) < Clz —y|>~%
iv) |GH(—,2z)|| 4 < C, uniformly in .
L{2(Q)
All the constants C' depend on d, A, ||b|c and diam(£2), and C) also depends on p. In

particular, the constants do not depend on the derivatives of b.

Proof. First, note that positivity of Gi, follows from combining proposition 5.1.3 with lemma
5.1.2.

Fix z € Q, let € > 0, so that B = B:(z) C 2. Consider the construction in lemma
5.1.2; it is shown there that, for any p € [1, %), there exists a subsequence such that

Gt

Im

— G(—, ) weakly in I/VO1 P(Q), strongly in LP(€2), and pointwise in €. Moreover, it is
also shown that

IGLI 4 <C,
L2
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where C' depends on d, A, ||b]|cc and diam(§2). Set now
O ={z€Q|G] (2)>s}, Qs={z€QGL(2) > s}.

Since an — Gtx almost everywhere, we obtain that for any fixed s, Xam — XQ, almost

everywhere, as m — o0o. Therefore, the dominated convergence theorem shows that

which shows the uniform LZ¢~? bound on Gtx; that is,

d—2
IG5 2 =sup (s0|T ) <€ (5.3)
2

s>0

where C' depends on d, \, ||b||oc and diam(2).

We now turn to the pointwise upper bound for Gtm. We fix z # x € Q, and set = |z — x|
We will consider the following cases: B, j5(x) € €2, and B, j5(x) Z 2.

In the first case, B, /4(z) € Q\ Bg, j4(z), and GL is a positive solution to the equation

L'vw=0in B, /4(z). We now apply Harnack’s inequality (proposition 3.6.1), to obtain that

GL(2) < sup{GLy)ly € B, 4(=)} < C f at.
Br/4(z)

where C' depends on d, A, ||b]| and diam(2). Now, we use estimate (2.3) with p = d;iQ and

0 =p—1; since g = %, we obtain

][ Gl =Cr / e
Br/4(z) Br/4(z)

5
< Or—d|BT/4(z)|p||G§:”L§Z(Br/4($))
< Or B, () < r2 )
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where we also used (5.3). Therefore, in this case, GL(z) < Cr2~% = C|z — 2>~

If, now, BT/Q(SE) Z ©: in this case, consider a larger domain Q such that Br/g(:c) CQ,
and extend the operator L to L on Q. In Q we consider Green’s function G, for the operator
L!. Then, the estimate above shows that G?(z,z) < Cr2=?, If G is Green’s function for the

operator L in €, lemma 5.1.2 shows that

G(z,2) = Gl (z,2) < Cr*~ <.

Note now that, if Gi(z, z) is the approximation of G(z, z) constructed in proposition 5.1.3,

then, for fixed z and n € N,
Gy (= 2) = G, (=, 2) € WH(Q)

is a solution to Lu = 0 in 2, which is nonnegative on 92. Then, the maximum principle

(proposition 3.5.2) shows that, for all z € Q,
Gy, (z,2) — ékn(x, z) <0.
Therefore

GL(z) = G(z,2) = lim Gy, (r,2) < lim ékn(m,z) = G(z,2) < Cr?,

n—oo n—oo

y|27d

which implies that, in all cases, we have that G*(z,z) < C|z — , where C' depends on

d, A\, ||b]|co and diam(€). O

Note that in the previous proposition, none of the constants depend on the derivatives
of b. This fact leads us to the next theorem, in which the differentiability assumption on b

is dropped.
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Theorem 5.2.2. Let Q C RY be a bounded domain, and let A € M) (), b € L>®(Q). There

exists a function G? : (A x Q) \{(z,z)|z € Q} — [0, 00) that satisfies the following properties.

i) For any = € Q, and any p € [1, %), |GE(—, ) < Cp, uniformly in z.

lwo)

ii) For all ¢ € C°(Q), o' (GH(—,z), (=) = ¢(x): that is,
/Q (A'()V-CH ) Vo(2) + B()Vo(2) - GL(z.) ) dz = o).

iii) For all z,y € ), Gt(y,:r) < Clx — ?J|27d-

iv) |G (=, o)l a
LI (@)

All the constants C' depend on d, A, ||b]|sc and diam(€2), and C), also depends on p.

< (), uniformly in z.

Proof. Let p € [1, %) Consider a mollification of b: that is, b, € Lip(Q2), ||bn|lcc < [|0]|co
for all n € N, and b, — b in Ld(Q). From proposition 5.2.1, we can construct Green'’s

function va’n, for every point x € €, such that
/ ANVGE' g + 0V - GE" = ¢(z) Vo € CP(Q),
Q
where Gé’n also satisfies the estimates
t, 2—d t,
G ()] < Cla— 32, 1GE gy < G

where C'is a constant that depends d, A, ||b||c, diam(£2), and Cj, also depends on p. Hence,
there exists a subsequence G%k" which converges to a function va € VVO1 P weakly in W& P
strongly in LP(Q2), and almost everywhere in €. In particular, this function does not depend

on p. Then, for any ¢ € C2°(Q2), we compute

/Q AWVGLY ¢ + bV - GL = Jim ) AVGE Y6+ bve - GLF = 4().
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From almost everywhere convergence of ny’k” to GL, we obtain the pointwise bound (iii)

and the Lorentz bound (iv), which completes the proof. H

The final step involves the construction of Green’s function without any differentiability
assumption on b. Since we now have a pointwise bound on Green’s function, we will bound

its derivative using an analog of Cacciopoli’s inequality.

Lemma 5.2.3. Let (2 be a bounded domain, and let A € M) (Q2), b € Lip(€2). If Gy is Green’s
function for L at y, then for every p € [1, d%dl) there exists a constant C)p, depending on

d, A, ||b]|oc, p and diam €2, such that |G < Cp, uniformly in y.

HWOLP(Q)
Proof. Without loss of generality, assume that diam(2) < 1.

Let r > 0 and y € €2, and consider a smooth cutoff ¢ which is equal to 1 in Bo,.(y)\ Br(y),
it is equal to 0 in B, /5(y) and outside B3, (y), and [V¢| < C/r. Consider also the functions
Gy € WOI’Q(Q) that appear in the proof of lemma 5.1.2. Using Gp¢? € WOI’Q(Q) as a test

function, we obtain that
Q
which implies that

A / IVG|20? < / AVGVGy, - ¢ = — / 2AVG V- G+ bV Gy, - Gpo?
Q Q 9]

1/2 1/2 1/2
2.2 2 2 2,2
gc(/ﬂww ¢) ((/Qw |Gn|) T lbllso (/Qanas) )

and the last estimate shows that

/ VG2 < C / VRIGA + C / G242,
Q QO Q

where C' depends on A and ||b||c. Considering the support properties of ¢, using the previous
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estimate we obtain

/ VG? = / VG262 < / VG262
Bor(y)\Br(y) By (y)\Br(y) Q

<c / VPIG + C / G242
Q Q

C
<~ |G ? +C/ Gl
" J B3y \B, 2 B3y \B;. ()

_C’(%Jrl)/ G2
r B3 \B,./2(y)

If, now, p € [1, %), then, from Holder’s inequality,

p/2
/ VGalP < ( / |vc;n12) | Boy ()72
Bar (y)\Br(y) Bar (y)\Br(y)
p/2

p/2
<Gy (iz + 1) (/ |Gn|2> rdpf2,
r B3 \B; 2 (y)

Hence, if r < 1, we obtain that 1 < diam(2)/r, so

p/2
/ VG, P < C, (/ |Gn|2> Fd—pd/2—p
Boyr (y)\Br(y) B3T\Br/2(y)

If » > 1 the same inequality holds, since then (Bs,(y) \ Br(y)) N Q = 0, because we have
assumed that diam(2) < 1.

We now extend the operator L to an operator L on Bs(y), and let Gy be Green’s function
for L at y, and Gy, be the sequence constructed in lemma 5.1.2. Note that G, and G,, are
in Wh2(Q), Gy, — Gy, is a solution to Lu = 0 in €, and, from proposition 5.2.1, G, > 0 on

0f). Therefore, from the maximum principle, G,, < G, in Q, hence

p/2
/ VG| < Cp (/ |én|2> rd=pd/2=p,
By (y)\Br(y) BST\Br/Q(y)
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Let now K be a compactly supported subset of Bo(y)\{y}. Then, lemma 5.1.2 shows that Gn
is uniformly bounded and continuous in K. Hence, for some subsequence, the same lemma
shows that ékn — é’y uniformly. Hence, for every r € (0,1), the dominated convergence

theorem shows that

p/2
lim sup VG, IP < Cp limsup/ ‘ékn|2> yad—pd/2—p
n—00 J Bo,.(y)\Br(y) n—=00 J B3, \B, 5(y)
i p/2
<Cp / lim sup \Gknl2> pd—pd/2=p
B3’V‘\BT/2(y) n—0o0
) p/2
<a| [ rGy<x>|2) /27
B3y \B,.2(y)

We now use the pointwise bound on G? from proposition 5.2.1, and the symmetry relation

from proposition 5.1.3, to conclude that

p/?
limsup/ ‘VGkn‘P < Cp (/ ly — x]Q(Qd)) yad—pd/2—p
n—r00 BQT(y)\BT(y) B3T‘\B7‘/2(y)

p/2
< Cp (/ (r/2)2(2—d)) rd—pd/2—p
B37’\B7‘/2(y)

== CpTddl»pidp == Cp?ﬂa7

where @ = p + d — dp; since p < %, we obtain then that o > 0. Therefore, since a

subsequence of G, converges to Gy in VVO1 P we obtain that

|VG |p < Cpr?,
/ngy)\BT(y) e

where Cj is a constant that depends on d, A, ||b||oc and p.

Finally, we apply this inequality for r = 277, j € N and we add the resulting terms, to
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finally conclude

oo oo
/Q NS /B VGyIP < Cp277% < Cp,
j=0

a1-i (y) \Bo—i (V) =0

since a > 0, which implies that the series converges, and where C) depends on d, A, ||b]|0c
and p. To bound the L norm of Gy we use the pointwise bound from proposition 5.2.1, and

the symmetry relation from proposition 5.1.3. This completes the proof. O]
We are now in position to construct Green’s function for bounded drifts b.

Theorem 5.2.4. Let O C R be a bounded domain, and suppose that A € My\(Q2), b €
L°°(Q). There exists a function G : (2 x Q) \ {(z,z)|x € Q} — [0,00) that satisfies the

following properties.

i) For any y € Q, and any p € [1, %), IG(—,y) < Cp, uniformly in p

Iy

ii) For all ¢ € C°(Q), a(G(—,y),9(—)) = ¢(y): that is,
| (A6 0900 + U V-Gl - 612)) d= = oly)

iii) For all z,y € Q, G(x,y) < Clz — y|?>~¢.
In the above, C' depends on d, A, ||b]|~ and diam(f2), and C) also depends on p.

Proof. The proof is identical to the proof of theorem 5.2.2. For the good bound on the

norm ||Gy we apply lemma 5.2.3. In addition, for the pointwise bound we use the

lwo)
pointwise bound from proposition 5.2.1, and the symmetry relation from proposition 5.1.3.

This completes the proof. O

We conclude this section with the following estimates on I/VO1 ’2(Q) solutions to the equa-

tions Lu = F and Ltu = F in Q.

79



Proposition 5.2.5. Let §2 be a bounded domain, A € M,(Q2), and b € L*(2). Then,
for every F € W~L2(Q), there exists a unique solution u € I/VO1 ’2(9) of the equation

—div(AVu) + bVu = F in Q, and also

Jullya2q) < CIF w120

where C' depends on d, \, ||b||oc and diam(2).

Proof. Existence and uniqueness follows from proposition 4.1.2. To show the estimate, con-

sider the v that appears in proposition 4.1.1, and let ug € W&Q(Q) be the solution to
—div(AVug) + bVug + yug = F

in €2, which exists from proposition 4.1.1. Then, the same proposition shows that

< CllFlly-12(q),

HUOHWOLQ(Q)

where C' is a good constant. Let now

v(z) = ”Y/QG(%Q)UO(W dy,

then we compute that v € Wol’Q(Q) is the solution to — div(AVv) + bVv = yug in Q. From

the pointwise estimates on Green’s function in theorem 5.2.4 and lemma 3.5.1, we obtain

o1y < Cllollz2(e) + Cllvuoll 20y < Cluoll 20y < CIFllyw-12(0)

where C' is a good constant, since v is a good constant. If we now set w = ug — v, we
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compute
— div(AVw) + bVw = — div(AVug) + bVug — div(AVe) + bVo = F,
therefore w = u. Hence

Jullyr2(q) < luollyrigy + [0l 2 < CIF 120,

where C' is a good constant, which completes the proof. O
We also show the analog of the last proposition for the adjoint equation Lfu = 0.

Proposition 5.2.6. Let 2 be a bounded domain, A € M,(Q2), and b € L*(Q2). Then,
for every F' € W~12(Q), there exists a unique solution u € Wol’z(Q) of the equation

—div(AVu) — div(bu) = 0 in Q, and also

Jullyr20) < CIF w1200,

where C' depends on d, A, ||b||cc and diam(2).

Proof. Recall the definition of the operator g : W~12(Q) — Wol’Q(Q) from proposition 4.1.2,
that sends F € W~12(Q) to u = gF € WOI’2(Q), which is the unique solution of Lu = F' in
Q). Then, proposition 5.2.5 shows that

HgHW*l»?%W(}Q <C

for some C' that depends only on d, \, ||b||sc and diam(£2). This shows that ||¢¢|| 12 <

W-125W, " =
C. But, from proposition 4.1.3, gt : W™12(Q) — WOLQ(Q) sends F € W12(Q) to the

unique VVO1 ’Q(Q) solution of Ltu = F in Q, which completes the proof. O
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5.3 Estimates on the gradients of G, G

In this section we will assume that A is Lipschitz continuous, to obtain pointwise bounds

and Holder continuity on the derivative of Green’s function and its adjoint.

Proposition 5.3.1. Let B be a ball of radius 2p, and A € M) ,(B), b € L>(B). Then, for
any ,y € By,
VaG(o,y)| < Cla—y' ™,

where C' depends on d, \, p, ||b]|cc and p.

Proof. Let r = |z —y|/16, then Ba,(z) C By, and also y ¢ Ba,(x). Set now u(z) = G(z,y),

then u is a solution of the equation L'u = 0in By, (r). From theorem 5.2.4, u € Wol’p(Bgr (v))

for p = ﬁ, therefore proposition 3.2.3 shows that u € W12(B(y)). Hence, corollary

3.3.2 shows that

1/2

1/2
C 2 C ][ 2-d
o0 < — < — _ ,
IVull oo,y (@)) < - (]éﬂ@u) < - ( 5(0) |z — >

where we used the pointwise estimates on G, from theorem 5.2.4. But, for z € By(z),
2=yl =l —yl—|z—2[> |z —y| —r =15,

therefore

r

1/2
C _ _ _
VG2, y)| < [Vull oo, ())<= (7[ r? d) = Crl = = Clz — y|' 7,
By ()

which completes the proof. O]

We also obtain local Holder continuity of the gradient of Green’s function.
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Proposition 5.3.2. Let B be a ball of radius 2p, and suppose that A € M) ,(B), b €
L®°(B). Let also G' be Green’s function for Lu = 0 in B. Then there exists a € (0,1) such

that, for all 1,29 € By, y € Ba),
VaG21,y) = VaGlaa, )] < C oy =y~ 4 fag = o' =07) for = 2o,

where C' depends on d, \, p, ||b]|cc and p.
Proof. For simplicity, assume that B is centered at 0. Without loss of generality, assume

that |y — 21| < |y — x2|. Set Gy(x) = G(z,y), and define

r .
R = - min{ly — 9, p}.

First, suppose that |z; — 29| > R. Consider two cases: if |y — z9| < p, the estimate in

proposition 5.3.1 shows that

IVGy (1) — VGy(wa)] < Clag —y|' ¢ + Clag — y|'
= Clay — y|*lzy =y + Clag — y| |z — yH 00
< Clag — ol (Jon =y~ + oy — ' ~4)
< CER)™ (o =y~ + fag =y =17)

< 5%y — x| (|$1 — [P |y — y\l_d_a) :
If, now, |y — xo| > p, we have that

ly — 22| < (Jy| + |z2])* < (2p + p)* = 3%p® = 395*R?,
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since x9 € By. Therefore, as above, we obtain

VGy(a1) = VGy(az)| < Cloy —y|' ™ + Clag —y|' ™
< Clay = y|” (Jor — '~ + fag =y~
< C15°R” (Jar =yl 4 fop — g1

< C15%y — 21| (Jor = 70+ Jap — !0

which shows the estimate in all cases when |21 — 23] > R.
Suppose now that |x1 — zo| < R. Then x1 € Bg(x9), and, if x € Byg(xy), we obtain

that
2 3
2 —yl > |vo —y| — v — 22| > |29 — Y| - 2R > Iw2—y|—5|$2—y|=5!962—y|,
and also
2] < |z — 20| + |12] < 2p,

therefore Byp(w9) C Bo,. Therefore, x + G(x,y) is a solution of Lu = 0 in Byp(z2), hence

proposition 3.3.1 shows that

N 1/2
C —
VsGilar) - ViGlan) < (572 (f |G<as,y>|2)
Bap(x2)

< Clay — 29| R g — y>74

1+«
—d—a (172 =Y
= Clay — 9|y — y|* ¢ a(‘ 7 ‘) :

If, now, R = %|:172 — y|, we obtain the required bound. On the other hand, if R = %p, then

1+ 1+
(|$2}g y’) “ S <%) “ — 101+Oé
)
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which shows that the bound also holds in this case, and completes the proof. O]

The same argument as above, using corollary 3.3.2 instead of proposition 3.3.1, shows

the next estimate.

Proposition 5.3.3. Let B be a ball of radius 2p, and suppose that A € M) ,(B), b €

L%°(B). Let also G be Green’s function for Lu = 0 in B. Then for all x1,29 € By, y € B,

Gla1,y) = Glaz,y)] < C (Jor =y~ 4 foo = y1'=7) fo1 — o],

where C' depends on d, \, p, ||b]|cc and p.

We now turn to the analogous estimates for the gradient of G'. We first show the

pointwise estimate.

Proposition 5.3.4. Let B be a ball of radius 2p, and A € M), ,(B), b € C*(B), for some

a € (0,1]. Then, for any z,y € By,
VG (y,z)| < Clo -y,

where C' depends on d, \, p, ||b]|ce and p.

Proof. Let (by) be a mollification of b, where all the by, € Lip(Q), and b, — bin L. Consider
also the operator L!, = —div(AVu) — div(bpu), and set uy, = (y) = GL (y,z) to be Green’s
function for L}’ in B, centered at .

Let r = |x — y|/16, then By, (y) C B), and also ¢ Ba,(y). Then u is a solution of the
d
-1

equation Ltu = 0 in Ba,(y). From proposition 5.2.1, uy, € Wol’p(Bgr(y)) for p = Nd=1)"

therefore proposition 3.2.4 shows that u, € WLQ(Br(y)). Hence, corollary 3.4.2 shows that

c 2 1/2 c . 1/2
1Vt oo s—(f %J s—(f b—ﬂ) ,
2<(B,200) = 5\ T N\ s
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where C depends on d, \,  and ||b||ce, and where we used the pointwise estimates on GZ,

from proposition 5.2.1. But, for z € By (y),
[z =zl 2 e =yl =y — 2| > |z —y[ —r=15r,

therefore

1/2
|Vt || .00 < <][ 7‘2_d> < Cori—d,
LB, j5(y)) B.(4)

where C' depends on d, A\, u and [|b]|ca.

Note now that, from proposition 5.2.1, (uy,) is uniformly bounded in B;-(y); hence, propo-
sition 3.4.1 shows that (Vu,,) is equicontinuous in By (y). Hence, there exists a subsequence
(ug, ) which converges to some u in C1(B,(y)). But, as in theorem 5.2.2, a subsequence of
(ug, ) converges weakly to G!(-,x) almost everywhere in B, (y). This shows that G!(-,z) is

continuously differentiable in By (y), and also
Vy G (y, 2)| < IVyG' ()l oo, () < lim sup [V [ oo, () < crtd,

which completes the proof. n
We also show the Hélder estimate on the gradient of VG.

Proposition 5.3.5. Let B be a ball of radius 2p, and suppose that A € M), ,(B), b € C%(B),
for some o € (0,1]. Let also G be Green’s function for the equation Liu = 0 in B. Then,

for all y1,y2 € By, v € By,
VG ) = VG (o, 2)| < C (g = al =" 4 g — a0 g — 3l

where C' depends on d, \, p, ||b]|ce and p.

Proof. For simplicity, assume that B is centered at 0. After applying a mollification argument
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similar to the proof of proposition 5.3.4, it is enough to assume that b € Lip(B).
Without loss of generality, assume that |z — y1| < |z — ya|. Set GL(y) = G*(y, z), and
define

1.
R = ¢ min{|z — g, p}.

First, suppose that |y; — y2| > R. Consider two cases: if |x —ya| < p, then proposition 5.3.4

shows that

VG (1) — VGL(y2)| < Clyr — a' ™%+ Clyp — a7
= Clyy — =[*|y1 — 21" + Clya — 2|yg — x| 77
< Clyp =l (Iyr — ol =+ Jyo — o] =1
< CER® (|Jyr — a0 + [y — 2! ~0)

< C5%y1 — y2|” <!y1 — 2Ty — -fc\l_d_a) :
If, now, | — y2| > p, we have that
|z — 2| < (|2 + [32])* < (20 + p)* =3%p" = 395" R,
since yo € B,. Therefore, as above, we obtain

IVGL(y1) — VGL(y2)| < Clyr — 2|9 + Clyg — =4
< Clyz =l (Jyg — o'~ + o — af 71
< C-15“R* (\yl — 17 gy — x\l_d_a)

1—d— 1-d—
< €15y — gl (I — o'~ [y — 2710,

which shows the estimate in all cases when |y; — yo| > R.
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Suppose now that |y; —ya| < R. Then y; € Br(y2), and, if z € Bog(y2), we obtain that
2 3
e —al 2y — a2l = |z ol 2 Jyp — @] = 2R 2 |y2 — 2] — <ly2 — 2] = ¢ |y2 — 2],
and also

|z] <z —yo| + [y2| < 2p,

therefore Byg(y2) C Bg,. Therefore, z G!(z, ) is a solution of L'u = 0 in Byp(ys),

hence proposition 3.4.1 shows that

1/2
C (ly1 — o “ t 2
VyG (1, 2) = Vy G (y2.0)| < & (—) <][ |G (2, )] )
! : ! i R R Bor(y2)

< Clyp — yo|*“R™ 1 yg — > 1

14+«
i Yo —
= Cli —y2|0‘|y2—x|1 d-a (’—R|> .

If, now, R = %\yg — x|, we obtain the required bound. On the other hand, if R = %p, then

1+ 1+
(’yQR_ l") “ S (%) “ — 101-1—0[
1%

which shows that the bound also holds in this case, and completes the proof. O

The same argument as above, using corollary 3.4.2 instead of proposition 3.4.1, shows

the next estimate.

Proposition 5.3.6. Let B be a ball of radius 2p, and suppose that A € M), ,(B), b € C%(B).

Let also G' be Green’s function for L'u = 0 in B. Then for all y1,yy € By, x € By,

Glyr,w) = Glya @) < € (lyn — 2+ yo = 2"~ lyn = al,

where C' depends on d, A, 1, [|bl|ca(p) and p.
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5.4 Mixed derivatives

We now turn our attention to properties of the function V,G(z,y), as a function of y. We

first show the next lemma.

Lemma 5.4.1. Let B be a ball of radius p, and suppose that A € M) ,(B), b € L>(B).

Fix also x € B. Then, for any i € {1,...d}, the function

uly) = 07 G(x,y)

: 1,2
1S a V[/lOC

(B \ {z}) solution to the equation L'u = 0 in B\ {z}, where 0 denotes the i-th

partial derivative with respect to x.

Proof. Assume first that b € Lip(2).

Let U C B\ {z} be compactly supported, and consider a set V with U CV C B\ {z},
where all inclusions are compact. Then there exists g > 0 such that By (z) NV = 0. Let
also |h| < eq, fix i € {1,...d}, and consider the function

an(y) = G(x + hei,iyl) — G(z, y).

d

Note first that, from proposition 5.1.3 and theorem 5.2.2, g, is a VVO1 2(d=1) (B) solution of
L'uw = 0 in V; hence, since b is Lipschitz, proposition 3.2.4 shows that gn € W172(V). In
addition, for y € V, we have that y ¢ Ba. (x), hence G(-,y) is a solution of Lu = 0 in
By ¢y (x), therefore it is continuously differentiable in Be(z), from proposition 3.3.1. Hence,

the mean value theorem shows that

| _ G(:Ij' + h@i,y) — G(xay>

; <|V:G(zy) < Clz =yl

|91 ()

for some z lying on the segment [z, z + he;], where we also used proposition 5.3.1. But then
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z € B (z), and since y ¢ B £0 (x), we obtain that
lgn(y)] < Clz —y|t T < Ot = .

This shows that, for |h| < £, gj, is a uniformly bounded solution of L'u = 0 in V, with
respect to h.
Consider now a covering of U by a finite number of balls B; = By, (z;), i =1,... N, such

that 4B; C V. Then, Cacciopoli’s inequality shows that

/ Vgpl” < = / 2 < OO("ZB CCo5i (5.4)
r}
hence Vg, € L?(B;), with a uniform bound on its norm, for |h| < ¢, where this bound de-
pends on d, \, ||b]|s and diam(€2). Therefore Vg, € L?(U) uniformly, hence (gj,) is uniformly
bounded in W12(U7), with respect to h.
From weak compactness, we obtain the existence of a function gg € Wl’Q(U ) such that,
for a sequence hy, — 0,

12
Ihe 7 905 weakly in WH2(U).

From the definition of weak solution, we have that gg is a weak solution of Lfu = 0 in U.
In addition, the Rellich compactness theorem and almost everywhere convergence show that

there exists a subsequence g¢¢,,, with ¢, — 0, such that

It o0 905 almost everywhere in U.

Pick a y € U such that this convergence holds. Then, we obtain that

go(y) = lim g, (y) = lim G(z +tne;,y) — G(z,y)

n—00 n—00 tn

= 07 G(z,y),
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since G(-,y) is continuously differentiable in Be,(z), and y ¢ By (). But, go € Wh2(U) is
a solution to L'u = 0 in U, therefore 07 G(x,y) is a solution to L' = 01in U, at least when
b € Lip(B).

In order to pass to non differentiable drifts, let (by,) be a mollification of b, consider the
operator Lu = — div(AVu) + b, Vu, let G, be Green’s function for this operator in B, and
set

Gn(x + hej,y) — Gp(x,
gg(y): n zi) n(Z,y)

as above. Since 07 Gp(x,y) is the weak W12(V) limit of a subsequence (ggm), as n — 09,
(5.4) shows that (07Gp(z,-)) is bounded in W12(V). Therefore, the sequence (Gy(x,-)) is
bounded in W22(V). In addition, a subsequence (0f G}, (x,-)) converges weakly in wh2(v)
to a solution v of L'u = 0. Moreover, a subsequence of G k, (7, ) converges almost everywhere
to G(z,-) in V, and the derivatives with respect to x of this subsequence converge almost
everywhere in V; this shows that 07 G(z, ) = visa W12(B) solution to Lfu = 0 in V', which

completes the proof. n

We can now show estimates for the adjoint variable of the derivative of Green’s function.

Proposition 5.4.2. Let B be a ball of radius 2p, and suppose that A € M) ,(B), b €
L>®(B). Let also G be Green’s function for the equation Lu = 0 in B. Then, for all

Y1,y2 € Bp, € By,
VaGla,m) = VaGlw, )] < Clyr =yl (Jyr — 24 + Jyo =207,

where v € (0,1) and C depend on d, A, , ||b]|sc and p.

Proof. For simplicity, assume that B is centered at 0. Without loss of generality, assume

that |y; — 2| < |y — z|. Set Gy(z) = G(z,y), and define

1.
R = ¢ min{|z — o, p}.
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First, suppose that |y; — yo| < R. Fix # € By, i € {1,...d}, and set g;(y) = 0 G(x,y).

Then y; € Bgr(y2), and if y € Bog(y2), then
) 3
ly—z| >|y2 — 2| —|y2 —y| > |y — x| —2R > |y2—x|—g|y2—x| Zglyz—xl,

hence the pointwise bounds on VGy (theorem 5.2.4) show that g; is bounded in Baog(y2),
with

19i(y)| < Clyg — x|*~4,

In addition, lemma 5.4.1 shows that g; € W12(Byp(ys)) is a solution to the equation

L'u = 0, therefore theorems 8.20 and 8.22 in [GT01] show that

N 1/2
Y1 — Y2 - _
wmm—%@msc(L774)<f |mﬁ < Clys — ol Ry — af
Bar(y2

«
g Yo — T
= Clin = e — a0 (B2 )

where « is a good constant. If now R = |yo — z|/5 we obtain the estimate. On the other

(o5 <() -+

which shows the bound in this case as well.

hand, if R = p/5, then

For the case |y; —y2| > R, we follow the first part of the proof of proposition 5.3.2; which

only uses the pointwise bounds on the gradient of GG, to obtain the inequality. [

5.5 Continuity arguments estimates

Fix a uniformly elliptic matrix A, and denote the operator — div(AVu) + bVu by L, and
also denote Green’s function for the equation Lyu = 0 by Gp(z,y). In what follows, we will

need to estimate the difference between Gj, and Gy,, as well as VG, and VG, .

92



To accomplish this, we first show a lemma.

Lemma 5.5.1. Let » > 1, and consider two numbers p1, po with
r—1
p1,p2 > ——d, r(p1+pp —2d) +d <0.

Then, for every z,y € ]Rd,

dz
< Oyl — T(p1+p2—2d)+d‘
/Rd |z — z|"(d=P1)|y — z|r(d—p2) — alr =yl

Proof. Let x —y = a, set z = w + x, and write

/ dz _/ dw =+ 1
R |z — 2[7@=PD |y — or@=p2)  Jpa [ @p1)|q — frld=p2) 1T F

where for I; we integrate over U; = {|w| < |a — w|}, and for I we integrate over Us =
{lwl > la —wl}.

We will bound I7, the estimate for I being similar. We split 7 as

2

/ du -/ dw — Il
vin{ful> ) [l @0 — w22 " Sy fjufs ) ful e — wr@e) — 2T

We then estimate

0.0}
S/ l ‘ V(ijpl = — Od/ pd—lpr(p1+p2—2d) dp = C«d|a|r(p1+pQ_201)+d7
ol > fl R al/2
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and, for Iy, since |w| < |a|/2, we have that |w — a| > |a|/2, so

dw
IL<C 7“(1?2—65)/ =
4> d|a’| |w|<|(217\ ’w’r(d—pl)

|al/2

= Cya|"PrHP2—2d)+d

since the hypotheses imply that 7(p; — d) + d > 0. This shows the bound for 7, and the
proof is complete. O
We then have the following estimates.

Proposition 5.5.2. Let B be a ball with radius p, and A € M) ,(€2). Suppose also that
b1,by € L°°(B). Then, there exists C' = C(d, p, A, i1, ||b1|loo; [|62]|00, p) such that, for every

x,y € B with x # y,

Gy, (@, 9) = Gy (2,9)| < Cllbr = ball 2a gyl =y > 77

and also

VG, (2,9) = VaGiy (2, 9)] < Cllby = bol p2a ) lx — />~

Proof. Without loss of generality, assume that b € Lip(B); we can then recover the case
b € L*°(B) using a mollification argument.
Let © # y in B, and let GZZ be Green’s function for the adjoint equation LZZu =0. We

then obtain that

/B (A()V:Gy (2,9) V=G, (2,2) + b1 (2) V=G, (2, 9) G, (,2) ) d= = G (y,2),  (5.5)

since the poles of Gy, (-,z), VG, (-, 7), and GZQ(-,y),VGbl(-,x) occur at different points,
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from the pointwise bounds. In addition,

/B (At(z)VZGZ2(Z,x)Vsz1(z,y) + b2(2) V.G, (2, y)GZ2(z,m)> dz = Gy, (z,9).

We now subtract the identities above, to obtain

/B (b1(2) — b2(2)) V.G, (2,9) Gy (2, 2) dz = Gy, (1, y) — G, (y,7) = Gy, (2, y) — Gy, (7, ),
(5.6)

where we also used proposition 5.1.3. Therefore, from the pointwise bounds on Green’s

function and its derivative, if r = 26%1 is the conjugate exponent to 2d, then

, 1/r
dz)
" 1/r
< |lb1 = ball 24y (/Rd = — @Dy — Z,r(d—2))

Set now p; = 1, po = 2 in the previous lemma. Since r < %, we obtain that %d <1l=

|Gb1<I,y) - Gb2<l’,y)| < ||b1 - b2||L2d(B) (/;P ’Vszl(z,y)Gzz(z,x)

p1 < 2 = pg, and also r > 1, therefore
r(pr+p2—2d)+d<p+p—d=3—-d<0,
therefore the hypotheses of lemma 5.5.1 are satisfied. Hence, we obtain that

_ 1/r
|Gy, (2, y) = Gy (., 9)] < |lb1 = bl p2a( (C|x '@ 2d)+d)

= Clb1 = ball p2a e =y~ 4717,

which shows the first estimate.

Fix now y € B, and set v(x) to be the left hand side of (5.6). We can then compute that
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v is weakly differentiable in B, and

Vou(x) = /B(bl(z) — bg(z))Vszl(z,y)Vfo)Q(z,x) dz,

therefore we obtain that

VG, (2, y) — VoG, (2, y) = /B(bl(z) —02(2)) VG, (2,4)Va Gy, (7, 2) dz.

This shows that, as before,

d 1/r
9.6y 0.3) = VG 0) < I~ el ([, |Z_y‘r(d_1)fx_z‘r(d_1)) ,

and lemma 5.5.1 shows the second estimate. [

We also treat the derivative of Green’s function with respect to the adjoint variable.
Proposition 5.5.3. Let B be a ball with radius p, and A € M) ,(2). Suppose also that
b1,bo € CQ(B) Then, there exists C' = O(dapv A, Ky ||b1||0a, ||52||C’Ofyp) such that

VG, (4, 7) = VyGh (4, 2)] < Cllby = ball gy, |z — yI* >4,

for every z,y € B with x # y.

Proof. Let r = |z —y|/32, and set u(z) = Gil(z,:ﬁ) - Gfm(z, x), for z € Byg, = Bigr(y). We

then compute, in By,

—div(AVu) — div(bju) = — div(AVG} ) — div(bi G}, ) + div(AVG] ) + div(b1G})

= div((by — bp)G},) = divg.
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We now apply corollary 3.4.2, to obtain that
c )\ 12
Vel < 5 (£, W2) "+ Claliean) + € ol v,
2r
For the last term, we compute

l9llcoa(p,,) = (01 = b2)GY llcoa g,

< [b1 = b2l oo (By,) |Gy 0.0 By, + 101 = B2l 0.0 By 1GH, | L0 (o)

< llbr = balleaqm,) (IVGH Iz ("™ + 1GH, I (52,)) -

Using proposition 5.3.4 we then obtain that

lgllcoa(py,y = b1 = ballca (B, (Crl—drl—a + 7"2_d>

< Clby = ballga(pyyr®

In addition,

91l zo0(25) < llbx = ball (5, 1Ghy By < Cllbt = bl oo,y

Moreover, using propositions 5.1.3 and 5.5.2,

C ) 1/2 e t t 2 12
- (][B we) =3 (]é G} 212) — G e, 0 2
1/2
(][BQT ’Gbl(:Ea Z) - Giz(l', Z)‘2d2ﬁ)

1/2
151 = boll 20 (][ o — zr5—2ddz)
By

r

<

Q =xlQ 31Q

N b2HL2dT5/2_d = Cllby — b2’|L2dT3/2_d7

<
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therefore

IVl oo,y < Cllbt = ball 2™ 2~ + Cllby = bal oo (,,y72 ¢ + Cllby — ballca(py,yr®
< Ollby = ballga(py,)r™? ™% = Cllb1 — ballcapy, )|z — ¥~
The last estimate completes the proof. 0
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CHAPTER 6
HARMONIC MEASURE

In this chapter we will be concerned with the classical Dirichlet problem, and we will define
harmonic measure for the equation Lu = 0 in a Lipschitz domain 2. We will then show how
the harmonic measure relates to Green’s function, and we will show estimates analogous to

the ones appearing in [Ken94][; for a more comprehensive treatment, we also refer to [JK82].

6.1 The classical Dirichlet problem

We turn our attention to the Dirichlet problem for the equation Lu = 0 with boundary data
f e C(092). We first give the following definition.

Definition 6.1.1. Let Q be a Lipschitz domain, A € M,(Q2), and b € L°°(R). Given
f e C(09), we say that u € I/VI})’S(Q) N C(Q) is a weak solution to the Dirichlet problem
with data f,

Lu=0, in

u=f, on 02,

if u is a weak solution of Lu = 0 in 2, and u = f on 0f2.

It is the case that we can always solve the Dirichlet problem with boundary values in
C(09), only assuming that A is bounded and uniformly elliptic and b is bounded. In order

to show this, we first treat the case of f being Lipschitz.

Proposition 6.1.2. Let Q be a Lipschitz domain, A € M) (§2), and b € L*(2). Then there

exists a € (0, 1) such that, for every f € Lip(df2), the Dirichlet problem

—div(AVu) + bVu =0, in 2
u=f, on 0f)
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has a unique weak solution in W12(Q) N C*(Q).

Proof. Uniqueness follows from the maximum principle (theorem 3.5.4). For existence, let

f € Lip(99), and extend f to a Lipschitz function f € Lip(R%). For v € W&’Q(Q), define
Fv=a(f,v) = / AV Vv +bVf 0.
Q

Since f is Lipschitz, we obtain that £ € W~12(Q), therefore proposition 4.1.2 shows that
there exists ug € Wol’z(Q) such that, for all v € W&’Q(Q), a(ug,v) = Fv. Note that, from
propositions 3.6.2 and 3.6.3, ug € C*(Q).

Set u = f —ug € WH2(Q). Since f is Lipschitz, we obtain that v € C*(Q). In addition,

for every v € WOI’Q(Q), we compute
a(u,v) = af,v) — a(ug,v) =0,

which shows that u is a solution of Lu = 0 in 2. Since ug has trace 0 on 052, this shows that

u has trace f on 0f), and continuity of u shows that u = f on 0. O]

By a density argument, we can show solvability of the Dirichlet problem for all f €

Wh2(Q) N CoQ).

loc

Theorem 6.1.3. Under the same assumptions as in proposition 6.1.2, for any f € C(99),
the Dirichlet problem
—div(AVu) +bVu =0, in Q
u=f, on 0f,

has a unique weak solution u € W&)’f NCQ).

Proof. For uniqueness, consider two solutions u,v of the Dirichlet problem with data f.
Then, u —v € VVO1 ’Q(Q) solves Lu = 0, therefore the maximum principle (theorem 3.5.4)

shows that u — v = 0 in €2, hence u = v.
100



For existence, consider a sequence (fp) of Lipschitz functions which converge to f in
(C(O), | - lso)- Let also u, € WH2(Q) N C(Q) be the weak solutions with trace fy, to the
equation, whose existence is guaranteed by proposition 6.1.2. Then, the maximum principle

(theorem 3.5.4) shows that

[un = uml|pooq) < 1fn = fmllLoo(a0)-

The supremum is the usual in this case, since the u,, are continuous, and the f,, are Lipschitz
functions. This shows that the sequence (uy) is Cauchy in (C(Q), || - ||s), therefore a con-
vergent subsequence of (uy), still denoted by (uy), converges uniformly to some u € C(Q).
Then, u = f on 0f).

To show that u € Wé’f(Q), let U C Q be compactly supported. Cover U by N balls
By, - -+ By of radius §, where 26 is the distance from K to 0€2. Then, Cacciopoli’s inequality
shows that (u;,) is uniformly bounded in W12(By,), so it has a weakly convergent subsequence
in W172(Bk). By repeating this process for all of the B}, we have that a subsequence of (uy,),
still denoted by (uy), converges to some v € W12(U) weakly in WH2(U) and strongly in
L2(U). Hence, a further subsequence converges to v almost everywhere in U. Since a further
subsequence converges uniformly to u, this shows that v € W12(U), therefore u € W&)’S(Q).

We now show that « is a solution in Q: let ¢ € CZ°(2) and K = supp¢. Consider also a

subsequence (uy,) as above, which converges to u weakly in WLQ(K ). Then,

/ AVuVeo +bVu - ¢ = lim / AVupVo + bVuy - ¢ =0,
QO n—o0 QO

since the uy are solutions to the equation. Hence w is a solution in €. O
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6.2 Construction of harmonic measure

Consider a Lipschitz domain Q, let A € M,(€2), and b € L°°(Q2). For a fixed zg € 2, we
consider the functional

Tug: C(09) 5 R, Tyof = u(xp),

where u is the continuous weak solution of Lu = 0 in 2 with boundary data f, which exists
from theorem 6.1.3. The maximum principle shows that Ty, is a positive linear functional

on C(09), therefore there exists a positive Borel measure w0 such that

u(zo) = /8 Norao!

The choice f = 1 also shows that w0 is a probability measure on 9€2. w™® will be called the
harmonic measure for the equation Lu = 0 in €2, centered at x(.

Two basic properties of harmonic measure are the following.
Proposition 6.2.1. i) If 21,29 € Q, then W't << w?2.

ii) If £ C 0Q is a Borel set, then u(x) = w?(F) is a solution in 2, with boundary values

Xg on 09, in the sense of W12(Q) (as in the definition in section 8.1 in [GT01]).

Proof. For the first part, suppose that £ C 02 with w?2(F) = 0. From regularity of the
harmonic measure, there exists a sequence of open sets (Ey) in 02 that contain F, such that
wr2(Ep) < 1/n.

Let now f € C(92) be a nonnegative function which is supported in E, with f = 1
on F, and let u be the solution of Lu = 0 with data f. Then u > 0 from the maximum

principle, so u + % > (0 in . Therefore, Harnack’s inequality (proposition 3.6.1) shows that,
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for some C' = Cyy 2,

o0 n
<C<u(x2)—|——>—l: /fdaum?—l—u
n o0
gC/ fdwx2+0_1—0wx2(En)+C_l
E, n n

c C-1
<=+

n n

Letting n — oo shows then that w1 (F) = 0.

For the second part, write £ = [);cy U; UN, where w”(N) = 0 and (Uj) is a decreasing
sequence of open subsets of 0€2; it is then enough to show that w”(U) is a solution, for
all U C 0f2 which are open. For this purpose, let K; C 02 be an increasing sequence
of compact sets, with J;cy K = U. Let also g; be a continuous function which satisfies
XK; < 9i < Xu, and let u; be the solution to Dirichlet’s problem, with data g;, which exists
from theorem 6.1.3. From the maximum principle (theorem 3.5.4), 0 < u; < 1 throughout €.
Therefore, from compactness of solutions (proposition 3.6.4), there exists a subsequence Ui,

which converges to a solution ug in €2, uniformly in compact subsets of 2. But, for z € €,

ui, (z) = / 0 (@) —— | xu(@)dw®(q) = W (U),
o0 k—o0 Jo0

from the dominated convergence theorem. Hence w®(U) is a solution in 2. The previous
convergence, as well as the convergence of the boundary values (gzk) to xy also shows that

w®(U) is equal to xgr in the sense of W12(Q) on 99, which completes the proof, O

Of particular importance is the following representation formula for the harmonic mea-

sure, which holds in smooth domains.
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Proposition 6.2.2. Suppose that (2 is smooth, and A € M) ,(Q), b € Lip(Q2). Then

dw™(q) = =0

VAt

G(xo,q) do(q) Vg € €,
where o is the surface measure on 02, G is Green’s function for the equation
Lu = —div(AVu) + bVu =0

in €2, and v 4+ denotes the conormal derivative associated with Lt

Proof. Set Ggo (z) = G'(z, (), and note that then GI;O is Green’s function for the adjoint
equation Ltu = 0 in Q, with pole at xq. Let f € Lip(9Q), and consider F € Lip(Rd) which
is a Lipschitz extension of f, with /' = 0 and VF = 0 in a neighborhood By = B¢, (zq)
of zg. Then u — F € VVO1 ’Q(Q), and since Vu is bounded close x, the defining property of

Green’s function shows that
/QAtVGfEOV(u — F)+b(x)V(u—F)- Gio dx = u(xg) — F(xg) = u(zg),
which implies that
/QAV(U — F)VGL, +b(x)V(u— F)- Gl dr = wu(z).

Since now u is a solution of Lu = 0 in 2, Vu is bounded close to g and GZO is bounded
away from x(, and after approximating Gfpo with C2°(Q) functions, the last identity shows
that

/Q AVFVG, +bWVF -Gl de = —u(x).

But, A,b and ) are smooth, hence theorem 8.12 in [GT01] shows that GZO is smooth away

from zg. Hence, LthxO = 0 pointwise, away from xq. In addition, the support properties of
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F' show that

—u(zg) = /Q . A'VGE VF+bVF -G
0
= / div(F - A'VGL,) — Fdiv(A'VGL) + div(bGL, F) — div(bGl, ) F
Q\By

_ / F <At(q)VGtxo(q), y(q)> do + / F(— div(A'VGL ) - div(bGL,))
I(N\Bo) Q\Bo

f(q)- 93 ,,G" (g, w0) do(q),
o0

from the divergence theorem, the fact that LthxO = 0 pointwise away from zq, and the

support properties of F'. This concludes the proof. O

6.3 Estimates on harmonic measure

We now turn to the basic estimates on harmonic measure. Throughout this section we will
assume that €2 is a Lipschitz domain, A € M,(€2), and b € L°°(2). In order to show our
estimates, we will follow the method that is outlined in [Ken94].

Consider the number rq that appears in the definition of the Lipschitz character; then,
given any point ¢ € 92 and 0 < r < rq, the ball By, (q) lies in a coordinate cylinder. Also,

for any point ¢ € 02 and 0 < r < rq, there exists a point A;(q) € 2 such that

r < |Ar(q) —ql, 0(Ar(q)) < cor,

with the constant ¢q only depending on the Lipschitz constant of ). The points A;(q) will
be the analogs of the similar points in the definition of an NTA domain.
The next lemma is a consequence of the Harnack inequality, after applying a Harnack

chain argument [Ken94].

Lemma 6.3.1. Let 2 be a Lipschitz domain, A € M)(Q2) and b € L*>(Q). Let also
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x1,x9 € Q, with d(x1),d(z9) > € and |x] — 29| < 2K . Then, for every positive solution u

to Lu = 0 or Lfu = 0 in ©Q, we have that
—k k
C " u(zg) < wu(xy) < C%u(xg),

where C' depends on d, ), ||b||oc and diam(2).

The main estimates that we will show connect L harmonic measure to Green’s function

for the equation Lu = 0. We will first need the following lemma, originally due to Carleson

(lemma 4.4 in [JK82]).

Lemma 6.3.2. Let Q C R? be a Lipschitz domain, and A € M, (Q), b € L>®(Q). For any
nonnegative solution u to Lu = 0 or L'u = 0 in © which vanishes continuously on Ao,(q),

and any r < rq, we have that
Vo € Tr(q), ulz) < Cu(Ar(q)),

where C' depends on d, \, ||b||0, diam(€2) and the Lipschitz constant of €.

Proof. After normalizing, we can suppose that u(Ay(¢)) = 1. From theorem 8.27 in [GT01],
there exists a constant ¢y, only depending on d, A, ||b||0, the Lipschitz constant of 2 and

diam(€2), such that for all p € 9Q and s < rq,

sup {u(o)] € Toys(p)} < 5 sup {ulo)le € Tu(p)}. (6.1)

Now, by lemma 6.3.1, there exists a constant co such that, if u(y) > cg and y € Ty-(q), then
i(y) < cfhr. Set c3 = cg, where h = N + 3, and where N is such that 2V > ¢o.

Suppose now that, for some yo € T7(q), u(yg) > c3 = cg. Then, 0(yg) < cl_hr. So, if the
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distance d(yq) is achieved at p € 092,

n 3
Iq—p|Slq—y|+|y—p|<r+c1hr<§r.

Therefore, from (6.1), we obtain that
sup{u()le € T, nex, ()} > 2 supfu()le € 7o ()} > 2Vulyn) >

Therefore, there exists y € TC,thNT(p) such that u(yy) > cg+1. Let the distance d(y1) be
1

achieved at q; € 9. Inductively, we construct two sequences (yn), (¢n) such that

ulyr) = B S(u) =l — arl < " Fr, yp € Tcl—h—k—Nr(ka—l)-
But,

h—k

_ —h—k—
e —al <k — @il + law — yp—1l +lyp—1 —al < ("7 + ¢ ")+ |yr—1 — ql,

and, since |yg — ¢| < r, we obtain that
k . .
by —al <r+ ) (" N e < 2r,
=1

from the choice of N. Hence, y;. € T5.(q), and y;, contains a subsequence that converges

to Agy(g), while u(y;) does not converge to 0, and this is a contradiction. Hence, for all

yo € Tr(q), u(yo) < c3. O

We are now in position to prove the estimates that connect harmonic measure with

Green’s function.

Lemma 6.3.3. Let r < rq, and ¢ € 092. Then there exists a constant C' depending on
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d, \, ||b||s and the Lipschitz constant of €, such that
Vo € Br/Q(Ar(Q))7 w'(Ar(q)) > C.

Proof. Let ¢ be a cutoff function which is equal to 1 in Tr/Z(q), it is supported in T}-(¢q), and
also satisfies that 0 < ¢ < 1. Let u be the solution to the classical Dirichlet problem for L,
with data ¢. Since ¢ < XA, (q) and wP(Ar(q)) is a solution with data XA, (q) On 00 from

proposition 6.2.1, the maximum principle shows that
r € Q= w(Ar(q) > u(z).

Now, set v = 1 — u, then v is a solution in ) that vanishes on A;(¢). From the maximum

principle, 0 < v < 1 in €, therefore, from theorem 8.27 in [GTO01], we obtain that

v(z) < C ('“” - q')ﬁ vz € T, 5(9)-

r

Now, since |Ar/200 (q) — q| < C’O%[—) = r/2, we can apply this inequality to Ar/200<q)= to

obtain that v(A, 5¢,(q)) < €278 therefore
wAT/wO(q)(Ar(q)) >1-0275

Since now w”(Ar(q)) is a positive solution in €2, lemma 6.3.1 completes the proof. O

Lemma 6.3.4. Let r < rq. Then, for all ¢ € 092,
Vo € Q\ B, p(Ar(q), 972G(x, Ar(g)) < Cw®(Ar(g)),

where C' depends on d, A, ||b||oc and the Lipschitz constant of €.

Proof. If z is on the boundary of B, /5(Ar(g)), the pointwise estimates on Green’s function
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(in theorem 5.2.4) we obtain that
r2G (@, Ar(g) < CrT e = Ao < €
and, from lemma 6.3.3,

w'(Ar(q)) > C,

which implies that r9~2G(z, Ar(q)) < Cw®(Ar(q)) for z on the boundary of Beyr(Ar(q)).
On the other hand, G vanishes on 02, so the same estimate holds for x € 0€). Since
r=2G(x, Ar(q)) — Cw™(Ar(q)) is a solution of the equation Lu = 0 in Q \ B, j2(Ar(q)), the

estimate follows from the maximum principle. O
For the reverse inequality, we show the next lemma.

Lemma 6.3.5. If () is a Lipschitz domain, then there exists a constant C' which depends on
d, A\, ||b]| oo, diam(£2) and the Lipschitz constant of 2, such that, if ¢ € 9 and r < rq, then,
for all x ¢ Ba,(q),

w!(Ar(g)) < Cr72G(w, Ar(q)).

Proof. Fix 1 < a < f < v < 2. Let ¥ be a smooth cutoff function, which is supported in
T, (q), is equal to 1 in Ty (q), and satisfies the bounds 0 < ¢ < 1, and [Vi)| < C/r. Consider
now the classical solution u to Lu = 0, with boundary data . Since then yx Ar(q) < u on

0€), from the maximum principle we obtain
w!(Ar(q)) < uly).
Now, u — 1) € Wol’Q(Q), and, from the fact that u is a solution we get that

u(y) = — /Q A(2)V(2) V2 Gz, y) + b(@) V(e)Ci (. y) dr, ae.y e Q\ Bylq).
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Therefore, for any y satisfying this equality, we obtain that

W (Ar(g)) < uly) < © / VoG (. )] d + / b(2) Vi ()G (z, )| de
r TBT(Q) T,BT(Q)

1/2
C _
< —d/2 (/ VG (x,y)| dw) + Cr b oG (Ar(9), )
r T,Br q)
. 1/2
< ot/ (—2/ |Gt($,y)!2diﬂ> + Cr b oG (Ar(q), )
r TW"(Q)
< Cr'2GN(Ar(g), y)
for some constant C' depending on d, A, ||b||0, diam(£2) and the Lipschitz constant of 2, where
we also used Cacciopoli’s inequality and the estimate in lemma 6.3.2. Then, proposition 5.1.3

shows that
WY (Ar(q)) < Cri2G(y, Ar(q))

for almost all y € 2\ Ba,(g). Since the functions involved are continuous, we obtain the

inequality for all y € Q \ Ba,(q). O
As a corollary of lemmas 6.3.4 and 6.3.5, we obtain the following comparison.

Proposition 6.3.6. If (2 is a Lipschitz domain, then for all 0 < r < rq and ¢ € 012,
W (Ar(g) = 172G, Arlg)), Vo € Q\ Bay(q),

with C' being a good constant. In particular, w? is a doubling measure on 0f); that is, for
every x € €, there exists C' = C > 0 which also depends on d, A, ||b]|s0, diam(€2) and the

Lipschitz constant of €2 such that, for every ¢ € 92 and r > 0,

w*(A2r(q)) < Cw(Ar(q)).
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To obtain the fact that w”® is doubling, we use the Harnack inequality for » > 0 sufficiently
small, such that z € Q\ Ba,(q) for every ¢ € 9.
The previous connection between the harmonic measure and Green’s function leads to

the next lemma.

Lemma 6.3.7 (Comparison Principle). Let u, v be positive solutions of Lu = 0 in 2, which

vanish continuously on Ag,.(¢q), and r < rq. Then,

Vi € Tr(Q), Cflu(AT(Q>)

Proof. For r < rq, consider the Lipschitz domain T' = T}.(¢q). Let x € T, and consider the

following partition of 97"\ 0€2: set

L1 ={x € 0T\ 0Q|i(z) > cr}

Ly = {z € 9T\ 99|6(x) < cr},

where §(z) denotes the distance from x to 092. Denote the harmonic measure for 7' with
respect to = by w}. First, Lo contains a surface ball of radius comparable to r, therefore,

from the doubling property of w7 (proposition 6.3.6), we obtain that
Wh(0Q\ OT) = wh(L1 U Ly) < Cwi(Ls)

where C' is a good constant. Now, by lemma 6.3.2, since u vanishes on A.-(q), we obtain

that u(z) < Cu(Ar(q)). Therefore, the function

s &% 5~ Mwh (09 \ OT)

is a solution in 7', which is 0 on 02 (since u vanishes there), and is nonpositive on 92\ 9T
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(since the harmonic measure is equal to 1 there). Therefore, we obtain that
u(z) < Cwp(0Q\ 0T)u(Ar(q)) Yz € T.

Also, if © € L9, since Lo is about r-far from 0€2, we obtain that v(z) > Cv(A(q)). Similarly,
we obtain that

v(z) > Culb(La)o(Ar(q) Vo € T,

which shows the second statement. By interchanging the roles of u and v, we also obtain

the first statement. O

6.4 Maximal functions

Fix zg € Q, and let w = w™0. For a Borel measure v on 02, we define the Hardy-Littlewood

maximal function of v with respect to w,

B 1 B lV|(A)
Morlg) = swp s | b = sup FES

In particular, for a function f € L1(99Q), we define

1
M f(q) = Zuaqu/A |fldw.

From the doubling property of w, the usual estimates for the Hardy-Littlewood maximal
function hold; that is, M,, is weakly (1,1) bounded, and strongly (p,p) bounded, for p €
(1, 00] (see for example [Ste93]).

Our goal is to express any solution u of the equation Lu = 0 in ) as an integral of its
boundary values, integrated with respect to the measure w. For this purpose, we define the

kernel function K (z,q), which is the Radon-Nikodym derivative of w® with repect to w at
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the point ¢ € 0€2; or, equivalently,

K(z,q) = lim

o) (6.2)

This kernel function exists, and also K (z,-) € L1 (99, dw), since w® is absolutely continuous

with respect to w, which follows from proposition 6.2.1. Then, for all f € L1 (99, dw?),

(@)= [ flo)dw®(q) = / (@)K (2, q)deq).
o0 o0

To obtain the relation between the maximal functions defined above and the nontangen-
tial maximal function, we will need estimates on the kernel K. For this purpose, we first
prove the Carleson-Hunt-Wheeden lemma (lemma 4.11 in [JK82]), which will follow from

the comparison principle.

Lemma 6.4.1. Suppose that r < rq, and let A = A(qg,7), A = A(g,s) € Algg,7/2).

Then, there exists C' = C'(M) such that, for all x € Q \ B(qq, 2r), we have that

< o lwArl@) (A,

Proof. Note that, from proposition 6.3.6, we have to show that (since x is far from ¢y and

q),

~ 2-d G(@ As(0))
G Arlao), Asla)) =T me 2 5y

or, equivalently,

Ar(qo), As(q)) 1>
G(z,As(q))  — G(x,Ar(qo))

For this purpose, set u(y) = G(A,(qp),y) and v(y) = G(x,y). Since |A-(q0) — qo| > cor and

|z —qo| > 2r, this implies that u and v are solutions to Lu = 0 in T¢yr(qp), which also vanish
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on Acyr(qo). Therefore, from the comparison principle, we obtain that

G(Ar(q0), As(q)) _ u(As(q)  ulAr(q)) _ G(Ar(90), Acyr(go))
G(z, As(q)) v(As(q) v(Ar(qo0)) G($aAcor(Q)) .

First, the distance from A;(qg) to Aeyr(go) is comparable to r, and is also comparable to
the distances of Ay (go) and A¢yr(qo) to 052, therefore, from the pointwise bounds on Green’s

function, we obtain that

G(Ar(a0), Acor(a0)) = [Ar(a0) — ACOT(QO)F_d = 7’2_d:

therefore it only suffices to show that

G(z, Acr(d0)) = G2, Ar(q0)) & v(Acyr(0)) = v(Ar(q0)).

But, this is a corollary of lemma 6.3.1, since v is also a solution in 2\ By(x). O

The previous lemma leads to the pointwise bound of the kernel K.

Lemma 6.4.2. Let qp € 09, and A = Ay(qp). Define also A; = A(qo,277), and R; =
A] \ Aj—l' Then, .
C27™
w(Aj)

sup{ K (A, q)lg € Rj} <

where C' = C(Q2), and a = a(1Q2).

Proof. Suppose first that j is such that 2/ < min{2rg, |z — qo|} = Mp.
Consider ¢ € R;, and let s > 0. Then, if s is sufficiently small, we have that Ag(q) C

Rj C Aj. Therefore, from lemma 6.4.1, if A; = Ayj,.(qo), We obtain that

Now, since As(q)NA; = 0, the function u(r) = w*(As(q)) is a positive solution in Ty;-1,.(qp)
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which vanishes continuously on A;, hence, from proposition 3.6.3 and lemma 6.3.2,

A1 = AN _ e (8s(0) )
A0 = ) < Culay) (B < ey

from the similarity estimate above. This shows that, for sufficiently small s,

wA(Bslg) _ €25
(B = wldy)

and the result follows by taking the limit as s — 0.
For the rest of the j, since we have finitely many j such that R; # 0 and 20+ > My,

it is enough to show that

sup{K (A, q)lq € 92\ Apy9(q0)} < C.

For this purpose, consider a ball Ag(q), with Ag(q) C Q\ AMO/Q(CIO)' Then, similarly to the

above,

wh(As(g) = u(A) < Cu(Apy,4(00)) < Culz) = w"(As(q)),

where we also used Harnack’s inequality. The result now follows again by taking the limit

as s — 0. O

The last lemma leads to the following theorem, which relates the maximal functions M, f

and u*.

Theorem 6.4.3. Let v be a finite Borel measure on 0f) and set

u(z) = | K(z,q)dv(q).
o0

Then, v* < CMyv. In addition, if v is positive, we have that M,v < Cu*.

115



Proof. Let p € 09, and x € ['n(q). Set r = |z —p[, Aj = Agj,(p), and Rj = Aj\ Aj_q. We

then write

w(w) = [ K(z.q)dv(q) = /

o0 Ay s(p)

K(z,q)dv(q) + K(x,q)dv(q).

For the summands, note that, for fixed ¢ € R;, from lemma 6.4.2, we obtain that

CoFi / VA s
< dv| < C———=> < 027PI My, (p),
UJ(A) Rj| | OJ(A) w( )

IR0
ANA; J J

therefore the sum is dominated by C'M,,(p). For the first integral, note that for ¢ € A,(p),

lemma 6.4.1 and (6.2) show that

which concludes the first claim.

For the second claim, note that if v is a positive measure, then for any r > 0

C
u(z) > /Ar(p)K(cc,q) dv(q) > M/Ar(p) dv(q),

which completes the proof. n
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CHAPTER 7
THE DIRICHLET PROBLEM FOR L

In this chapter we turn our attention to the Dirichlet problem for the equation Lu = 0, with
boundary data in LP(0f2). We will follow the method outlined in [Ken94], and we will use

the estimates in the previous chapter in order to obtain solvability.

7.1 Formulation, and the weight property

Definition 7.1.1. Let €2 be a Lipschitz domain, and p € (1,00). We say that D), for Lu = 0
is solvable in €, if there exists C' > 0 such that, for every f € C(09), the solution v : Q@ — R

of Lu = 0 in €2 with boundary data f satisfies the estimate |[u*|[zp90) < C|lfllzr(90)-

Alternatively, we could have defined solvability for D), such that the nontangential bound-
ary values of the solution lie in LP(052), and the bound on the nontangential maximal function
holds. However, our definition above will imply this property after a density argument, as
we will show later (proposition 7.3.4).

In the next theorem (which is analogous to theorem 1.7.3 in [Ken94]) we show that the
Dirichlet problem is solvable if and only if the harmonic measure kernel satisfies a weight

property. For this purpose, recall the space Bp, defined in definition 2.4.4.

Theorem 7.1.2. Let Q@ C R? be a Lipschitz domain, A € M) (), and b € L>(9).
Suppose also that the classical Dirichlet problem is solvable in €2, and that w << ¢. Then
Dy, is solvable in €2 if and only if the kernel k£ = Z—;’ is in By (9€). In this case, the constant
in Dy, is comparable to the By norm of k, with the comparability constants depending only

on d,p, A\, i1, ||b||o, the Lipschitz constant of 2, and diam(£2).

Proof. Suppose that k € By (99), and let f € C(99), and u be the solution of Lu = 0 with

boundary data f. From the self improving property of B, functions (proposition 2.4.5),
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there exists a constant € > 0, depending only on d,p’ and the B]’D constant of k, such that

ke By, Therefore, if A is a surface ball and s < p is the conjugate exponent to p’ + e,

ﬁfAlf\de@/A\f\kdaéﬁ(/Alf\sda>1/s (/Akp'wa)“l“

=C (ﬁ /A |f|5d°') e C(Mo (|f1%)*.

Therefore, M, f < C(My(|f]*))Y/5. So, from the Hardy-Littlewood maximal theorem, since

p/s > 1, we obtain

/ Mo fP do < C / (M, (1f15)P/* do
o) o)
s\p/s _ P
SC/aQ(IfH do c/mm do.

But, from theorem 6.4.3, applied to v = fw, we have that «* is bounded pointwise by C'M,, f,

therefore

/ WP do < C / 1P do
Q oN

where C' depends on s and the constant appearing in the B,y property of k. Therefore, D),
is solvable in €.

Conversely, suppose that D), is solvable in 2. Let A C 9{) be a surface ball, and consider
a positive and continuous function f : 9Q — R, which is supported on A, with || f[| zp(a) < 1.

Then, for any ¢ € A,

1 1
m/Akfdazm/AdeSwa(Q>

Raise this relation to the p power, and integrate it for ¢ € A: then, if u is the solution to
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Lu =0 in  with boundary data f,

(Gt fukse) =y fypestor oo

C
[u*|P do < ——
[A] Ja

1
Iflpda <0

C
< = :
Al Joa A

from theorem 6.4.3 (since f > 0, so the measure v = fw is positive) and the fact that D) is

Cw(A)
/A kfdo < \A|1/p

solvable in €2. Therefore,

hence, by duality,

, 1/p Cw(A) 1 , 1/p'
kK d < 2 —/ kP d ) ¢ / kd
</A “) = Ay T <|Ar i rA\ Al A

therefore k € B,y, with constant C' only depending on the constant appearing in D). O]

The monotonicity property of Bp/ weights leads to the following corollary.

Corollary 7.1.3. If D, is solvable in 2 for some p € (1,00), then there exists € > 0 such

that Dy is solvable in  for all g € (p — €, 00).

7.2 Solvability of the Dirichlet problem

In this section, we turn to solvability of the Dirichlet problem, for symmetric matrices A.
The results above show that, in order to show solvability for the range (1,2+¢), it is enough
to show that the harmonic measure kernel is in Bg(0€2). This will be done first in smooth
domains, and we will pass to Lipschitz domains using an approximation argument.

For the next lemma, we will assume that the ball B that appears in lemma 2.3.3 is

centered at 0.
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Lemma 7.2.1. Let @ € R? be a bounded C° domain, and suppose that A is smooth,
A€ Miu(Q), and b € Lip(2). Then k(q) = ‘%70 € L%(09), and, for all r < rq, sq and
q € 09,

D=

_ 240 <9 -
<J(AT(Q>> /Ar(q) e ) S O(AT(Q)) /AT(Q) v ’

where C' is a good constant that also depends on the Drp,-norm of b, and s appears in

lemma 2.3.3. (Here, pg =2 for d = 3, and pg = d/2 for d > 4.)

Proof. Set G*(x) = G'(x,0) to be Green’s function for the equation L'u = 0, with pole at

0. Then, from proposition 6.2.2, we obtain that for all ¢ € 052,
dw(q) = =0, G (q) do(q) = k(g) = —0,G"(q).

Consider now r > 0, with r» < rq, sq. Consider also the ball B that appears in lemma 2.3.3,
which we assume it is centered st 0. Then, To.(¢) N B = (), therefore G! is a solution of
L!'GY = 0 in Ty,(g). From theorem 8.12 in [GTO01], G* € W22(Q\ B), hence the Rellich
estimate for the adjoint equation (proposition 3.8.1), is applicable. Note that G! vanishes

on 99, therefore V3G = 0; hence, using Carleson’s estimate (lemma 6.3.2) we obtain that

/ |0yGt|2d0§€/ |VGf|2+c/ | div |Gt - VG|
Ar(q) " J Ty (q) Tar(q)

< ¢ VG2 + G (Ar(q) / |div bV
r TZT(Q) TZT(Q)

2 3
(s ™)
TZT(q)

since G vanishes on 99Q. Now, from the boundary Cacciopoli inequality for the adjoint

<< [VG'? + CG! (Ar(q)) </ | div b|2>
r T2r(q) TZT(q)
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equation (lemma 3.1.2) and lemma 6.3.2, we obtain that

1 1

2 2
/ aVth do < < G2 + CGH (A (q)) (/ |divb|2> (%/ |Gf|2>
AT(Q) r T4r(‘1) TZT‘(Q) r T4T(Q)

2
< (0rt3 4 O div bl gy ) (C(AN@))

We now consider the two cases d = 3 and d > 4 separately.

If d = 3, then we have shown that

Ar (q)

0G| do <€ (1472 divbl g, ) (6104 (@)” <€ (61 (Ara))”

= ort3 (G (An(a))

where C' depends on the Lipschitz character of Q (since r < rq,sq) and the L? norm of
div b.
If, now, d > 4, then we apply Holder’s inequality for the exponent p = d/4, to obtain

that
4/d
|divb|d/2> Tara) |4 < O div b2,

/ |divb|? < ( /
T2T(Q) T2'r(

which implies that

q9)

2
[ 0GP e < 0t (G Ana)) = O (GO0, AR,
Ar(q)
where C' also depends on the d/2-norm of divb. Therefore, in all cases, we have shown that

/ 9, G2 do < Or=3 (G(0, Ar(g)))?
Ar(q)
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But, from lemma 6.3.4, the last quantity is bounded by
2
Cr3 (G0, Ar(0))? £ €18 (1 %(Ar(a))) = Cr' T (Ar(a).

This finally shows that
[ < ortteana)?,
Ar(q)

which concludes the proof. O]

For arbitrary Lipschitz domains and b € Drp,(€2), we will approximate with smooth
domains to finally obtain that k € Bs(0f2), with the constants being good constants.
Denote by L 4 j, the operator — div(AVu)+bVu; then, the main approximation argument

to pass to Lipschitz domains is contained in the next lemma.

Lemma 7.2.2. Let Q C R% be a Lipschitz domain, and consider the approximation scheme

Q; 1§ from theorem 2.3.6, with 0 € €2; for all j. Suppose that the following hold.
i) Ae M, (), A;j € My ,(2;), and XQj(Aj — A) — 0, almost everywhere in €.
i) [|bl| oo (), ”ijLoo(Qj) < M, and xq,(bj —b) — 0, almost everywhere in €.

Let also k, k; denote the harmonic measure with respect to 0 for L = Ly in Q and

Lj= LAj,bj in €}, respectively. Then, for all f € C(Rd),
/ k}jf dO’j E— kf do.
00, j=oo Jon
Proof. Let u € VVI})’CQ(Q) N C(Q) be the solution of Lu = 0 in  with boundary values f on

0f), which exists from theorem 6.1.3. Then, corollary 3.3.2 shows that u is Lipschitz in Q_]

Let now u; € WLQ(QJ') NC*(Q;) be the solution of Lju = 0 in Q;, with boundary values u

122



on 9€2;, which exists from proposition 6.1.2. We now define
1,2 o
Vi =uj—u € WO7 (Q])QC(QJ), f] = (A] —A)VU S LQ(QJ), gj = (bj —b)Vu € L2(QJ),

where f;,9; € LQ(Qj) since u € Wé’f(Q), hence Vu € L2(Qj). Then, almost everywhere

convergence in (i), (ii) and the dominated convergence theorem show that

12 _ L 2 12
165320y = [, X015 = AIVUZ — 0. lgyli3aey) O

We also compute
Ljvj = —Lju = —div(A;Vu) + b;Vu = —div(f;) + g;,
therefore v; solves the equation L;v; = F € W_l’Q(Qj), with
F;o = »/Qj [iVo+g;-o
for all ¢ € WS’Q(QJ-). Then, for all such ¢,

|Fjo| < /Q 116l +lajllol < (177220, + l9illz2ay)) 1912,

j J
therefore HFjHW*LQ(Qj) < HfjHL?(Qj) + CngHL2(Qj)' Hence, proposition 5.2.5 shows that,

for a good constant C,

HUjHWOlQ(Qj) < ClFjllw-12(0) < Clifillz2,) + Cllgillzz ;) T 0. (7.1)

Set now 0 = d(x,0d8)/2, then for large j € N we obtain that Bs = Bs(0) € ;. Consider

now a subsequence (vp;); then, (7.1) shows that a subsequence of (vmnj) converges to 0
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almost everywhere in Bs. Also, for © € By, the maximum principle shows that

[0 ()] < Ju(@)] + |uj(2)] < 20l oo 00),

hence the (v;) are uniformly bounded in Bs. Therefore, equicontinuity of solutions (propo-
sition 3.6.4) shows that there exists a further subsequence (vlmnj) that converges uniformly
to a continuous function in By. Since (Umnj) converges to 0 almost everywhere in By, we
obtain that (vlmnj (0)) converges to 0 as j — oo. Therefore, any subsequence of (v;(0)) has
a subsequence that converges to 0; this shows that v;(0) — 0.

The definition of harmonic measure now shows that

J—00

/5(2j kju ddj = UJ(O) = U(O) + Uj(()) — U(O) = /39 kf de. (7.2)

Since now u € C(Q) and f € C(R?), v — f is uniformly continuous in €. Since also u — f
is equal to 0 on 09, given € > 0, there exists § > 0 such that, if x € Q with §(z) < §, then

|u(z) — f(z)] < e. Also, from theorem 2.3.6,

sup [Aj(q) —q| =0,
qeIN

therefore there exists jo € N such that, for all j > jo, dist(9€;,09Q) < 6. Hence, for j > jo,

we compute

k“uda‘—/ kifdo;
/GQJ» A N Ee

J

s/mkjlu—ﬂdo—js sup [u(z) — f(2)] <+,

j ,TE@Q]'

since kj is a probability measure on 0€2;. Combining with (7.2), we obtain that

lim kifdoj = / kf do,
=00 Jog, o0
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which completes the proof. O]

Using the previous approximation lemma, we will show that the harmonic measure kernel
belongs to By for any Lipschitz domain. In order to obtain Lipschitz approximations to drifts
b € Dry(2), we will have to ensure that the divergence of the approximations belongs to L?;
for this purpose, we will carefully mollify b, so that the mollification “matches” the rate in

which €2; approximates €2.

Proposition 7.2.3. Let © C R be a bounded Lipschitz domain with 0 € €, and Bg(0) € Q.
Suppose also that A € My M(Q)’ and b € Dry,(€2). Then k(q) = %—“Jao(q) e L2(09), and

1

1 9 ’ ¢ /
- k4 d < — kd
(‘AT(QN/AT(q) U) S 1A @ ag

for all surface balls Ay(q), where C'is a good constant that also depends on the Drp,-norm

of b, and p; appears in lemma 7.2.1.

Proof. First, extend b by 0 outside 2. We will construct a mollification of b: consider a
smooth function ¢ which is positive, supported in B(0,1), and has integral 1. Let §; > 0
be the distance from 9€; to dQ2, and consider m; € N such that 1/m; < d;. Set ¢m(z) =

mip(ma) for m € N, and define

bi(2) = b iy () = [ bl = ), ()

First, every b; is in C*° (R?). In addition, for all ¢ € Ceo(€24),

/Q bV = /Q | /Q Dz = y)m; () Vo(r) dyde = /Q | ( /Q bz = y)Ve(x) dy> Y, (y)do

_/ (/ b(2)Vo(z+ y) dz) Um; (y)dy.
Q; Qj—y
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Now, since ¢, is supported in Bl/mj (0), we obtain that 2; —y C Q and ¢(z+y) € C°(9).

Therefore, since b € Dry,,(€2), the inner integral above can be written as

/Q._yb(Z)V¢(z+y) dzr| = '/Qb(z)v¢(2+y) dr

< [l divhf ooy ol ra
LPa=1(Q)

therefore

/Q. bV

J

),
-

J

< Il divbllpa el sa / b, W)y
P () /9y

( / b(z)Vo(z +y) dx) Um; (y)dy
Qj—y

| byt + ) de| vy o)y
Qj—y

= [Idiv bl zraolloll ea
Lra~t(Q)

since the integral of ¢; in By /mj(O) is equal to 1. Since the previous estimate holds for all

¢ € C2°(€2), we obtain that || div ijLpd(Qj) < || div bl zpa (q)- Note also that [|b;][oc < |[b]]oo,

therefore

1651lDr,, () = [1divblipr, ()-

Consider now the same mollification for A; that is, set A;j(z) = A * ¢m;(z). Then the

coefficients A;, b; satisfy the hypotheses of lemma 7.2.2, therefore

/ k}jf dO’j E— /{Jf do,
99, j=oo Jon

in the notation of the same lemma.
We will first show the inequality for r < rq, sq. For this purpose, let ¢ € 02, and consider

the cylinder Z(q,r). Consider also a positive function fy € Lip(Ay(q)), and extend it to a
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function f € Lip(Rd), which is supported in Z(q,3r/2) and also satisfies the inequality

/ P < z/ fol?.
oQ Ar(q)

For ¢ € Ay(q), let q; € 9825 be the point on 0€); that lies above ¢, in the direction of the
axis of Z(q,r). Then, if we set A%(qj) = Z(q,r) N 082, the support properties of f, the
Cauchy-Schwartz inequality and lemma 7.2.1 (which is applicable, since A; € M §7M<Qj) and
bj € Dryp,(€2;)) show that

1/2 1/2
kifdo; = |  kifdo;< | [ k2 do; / *do
/am 314 /A’ 7j) s = </A%r(%') ’ UJ) ( A%r(%’)f 0j)

27"( J

. 1/2
g—,/, ki do; - / f2da-)
o285, (q) 040 7 <A%T<qj> :

o 1/2
<~ | k:dos - / f2da~> 7
o12(A(q)) /A;,xqj) T (A%qu ’

where we used that A%r(qj) is about equal to rd=1 where C'is a good constant, which also
depends on the Drp(€2) norm of b. Hence, letting j — oo and applying lemma 7.2.2, we

obtain that

1/2
C
k;fdag—nmsup/, k:~da-</, f2da-)
/39 Ul/Q(AT(Q)) j—oo JA3 (g5) 7\ U (a5) ’

j

2r

o 1/2

§—limsup/A k;dos; - (/ f2d0> ,
oV AN) oo I ) T g

J
2r

since f is continuous on RZ. From our choice of f, we obtain that

1/2
C
kf dag—hmsup/, k:do; - / f2da> ,
/AT(Q) ’ o1 2(Ar(q)) jooo I (45) 7 (Ar(q) ’

J
2r
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and since this inequality holds for all fy € Lip(Ay(gq)), we obtain that

1/2
C
k% do g—hmsup/, k:do;. (7.3)
(jiam ) 1 2(A(q)) jooo (e T

To treat the last term, let g be a continuous function which is supported in Z(q, 3r) and it

is equal to 1 in Z(q,2r). We then apply lemma 7.2.2, to obtain that

limsup/ , kjdoj < limsup/ kjgdo; :/ kg do
j—oo JA) (q5) j—oo JOK; o0

s/‘ kdo = w(Ase(g)) < Cw(Ar(g)),
A3T (q)

from the doubling property of w. Plugging the last inequality in (7.3), we obtain that, for

r<<rQ,sq,

1/2
2 o M _ 01/2 "
</AT(Q)k ’ > : o1/2(Ar(q)) ¢ (AT@)][AT(Q)kd '

The last inequality shows that k € L2(9Q). In addition, if 7 > rq, we have that

[£13109] w?(Ar(g) _ [IKI3109] w*(Ar(q))
W (Ar(q)) 1Ar(Q)] T w(Arg(q)) [Ar(g)l

/ K2do < ||k <
A'r (Q)

and we use that 1 = w(0Q) < cw(Arg(q)), from the doubling property of w. A similar

inequality holds if r > sq, therefore k € Bo(092). ]

As a corollary of the fact k € By(09€2), we obtain the next theorem on solvability of the

Dirichlet problem.

Theorem 7.2.4. Let Q C RY be a bounded Lipschitz domain, and set p; = 2 for d = 3,
and pg = d/2 for d > 4. Suppose that A € MiM(Q) and b € Dry,(2). Then there exists

€ > 0 such that D) is uniquely solvable in § for all p € (2 — €, 00), with the constant being
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a good constant that also depends on p and HbHDrpd'

Proof. From proposition 7.2.3, the harmonic measure kernel & = ‘i%) belongs to By (02),
with its norm being a good constant that also depends on ||bHDrpd. Proposition 2.4.5 then
shows that k € By (0) for any ¢ € (1,2 4 6), where § is a good constant. Hence, theorem
7.1.2 shows that the Dirichlet problem D, for the equation Lu = 0 in €2 is solvable, for any
p € (2 — g,00), where 2 — ¢ is the conjugate exponent to 2 + 4, with bounds being good

constants that also depend on p and ||b||Drpd' O

Note that, in the theorem above, A has to be symmetric. Later on, we will be able to
drop this assumption.
7.3 Existence and uniqueness for data in L?

When D), is solvable in (2, we can show existence and uniqueness of solutions for the Dirichlet

problem with data in LP(02). We will first need a lemma.

Lemma 7.3.1. Suppose that D is a Lipschitz domain above the graph of a Lipschitz function

¢ : B — R with Lipschitz constant M, where B C RI-1 g a ball; that is,

D= {(xo,t) c Rd’t > ¢<x0)}.

Consider the set

Dgz{xED‘ggé(a:)gé}.

Then, there exists C' = Cy > 0 such that, for all ¢ > 0, if z = (xq,t) € D¢, then

St—qb(:ro)SC&.

DO ™
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Proof. Let x = (z¢,t) € De. Then,

< 6(x) < o(x, (w0, ¢(x0)) = £ — P(x0),

DO ™

which shows the first inequality. For the second, suppose that the distance d(zx) is achieved
at a point (yg, ¢(yg)), for some yg € B. Then |yg — z0|? + |¢(yo) — t|> = 0%(x) < €2, which

implies that |yg — zg| < e and |¢(yg) — t| < e. Therefore,

t —d(xo) <[t — o(yo)l + [¢(yo) — ¢(w0)| < e+Mlyp — x| < (M + 1)e,

so we can take C' = M + 1. O

We will also need a version of the Cacciopoli inequality over sets that are not necessarily

balls.

Lemma 7.3.2. Let D be a Lipschitz domain above a domain U C RIL of the graph of a

Lipschitz function 1; that is,

D= {(xo,t) e R4 x R‘t > ¢(I‘0)} :

and consider a cube () C ]Rd_l, with side length e, such that its triple 3¢ is subset of U.

Let also ¢y > 1. Then, if u : D — R is a solution of Lu = 0, there exists C' = C (M) such

(zg)+coe (zo +3cos
/ / IVu(zg, t)|? deodt < —/ / w(z)|? dzodt.
Y(xg)+e /2 P(zo)+e /4

Proof. Let

that

and consider a smooth cutoff function ¢ which is supported on B, /100(0), is nonnegative,
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and has integral 1. Consider the convolution ¢y = x, * ¢. Then ¢ is smooth, it is equal to
1 in Uy, it is supported in Us, and also |V¢g| < C/e. The proof is now similar to the proof

of lemma 3.1.1. ]

The next proposition guarantees uniqueness for the Dirichlet problem with data in LP,

whenever Dy, is solvable.

Proposition 7.3.3. Let 2 be a Lipschitz domain, A € M{(2) and b € L°°(Q2). Suppose
that u € Wé’f(Q) is a solution to the equation —div(AVu) + bVu = 0 in €, such that
u — 0 on 0f2 nontangentially, almost everywhere with respect to the surface measure. Let

also p € (1,00), and suppose that [[u*[|1»(90) < 00. If Dp is solvable in £, then u = 0 in €.

Proof. Let y € Q. For € > 0, set
Qe ={z € Qi(r) <e}, Re=Qoc\ Q.

Consider a smooth cutoff ¢ which is 1 outside g, 0 in Qs, and |V¢e| < C/e. Suppose
that e is small enough, such that GZ is a solution of LtGé =0 in T19<(q), for any g € 0S.

Then, we obtain that

) = ul)oety) = || ALV (ude) + 09 (1),
hence

uly) = / ANG Ve - u+ ANG V- g + bV u - ¢-Gy + bV ¢ - uG,
Q
= / ANVGEV e - u+ AV (GLoe)Vu+ bV - ¢:GL + bV - uGl — A'V¢.Vu - Gl dx
Q

= / ANGLV e - udr + / bV e - uG) do — / AN G V- Glde =T + I + I,

£ €

since u is a solution in €2, and from the support properties of ¢..
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Consider now the covering of 02 by coordinate cylinders Z;, for ¢ = 1,... N. Then, if €

is small enough, we obtain that

N
R. C UZﬁR6

'Cz

1

]

Fix i, and suppose that Z; has basis B;, where B; C R%1 is a ball. Consider a cube Q with
side length I, such that B; C Q C v/dB;, and split Q in gad dyadic subcubes @, with side
length [/a, such that [/a < ¢e, where ¢ will be chosen later. Suppose also that ¢ is small
enough, such that € < s, where s appears in lemma 2.3.3, and set P; to be the part of
0N that lies above @;. Then, using lemma 7.3.2, we can write every x € Z; N R in the form
(xg,s), with g € @ and s € (Y(zg) + c1€,%(xg) + co€), where 9 is a Lipschitz function.

Therefore,

y y xo +62€ "
[ AR ey A / VG (0, ) [ulxo, 5) xR, (x0. 5) dsday

xo +01€
1’0 +co € ;
= € Z/ / VG (0, 5)|[u(zo, s)| xR, (0, ) dsdxp.
J

:I:O +cl 15

We now bound the last integral using the Cauchy-Schwartz inequality. First, note that,

using Cacciopoli’s inequality (lemma 7.3.2),

xo +CQ€ a:g +cqe
/ / VGl (a0.9) P dsdng < & [ / Gt (0, )2 dsdzg
Y(xg)+ere 3Q] Y(xg)+ege

C
< ;SHP{GZ(%, s)|zo € 3Q;, ¥(wp) + coe < s < Plwp) + c3}2|3Q;]-
So, applying lemmas 6.3.2 and 6.3.4, the quantity above is bounded by

C _ _
Z (Bg2(@)? M Q)] < Cul(Ba(@)? Y,
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for all ¢ € P;.

We now choose ¢ sufficiently small, such that, for any point yy € @; and for each (z, )
with §(zg,t) > € /2, 29 € Qj, and Y(zg)+c1e <t < 9(xg)+cg e, we have that (g, t) belongs
to the cone T'(yg, ¥ (yg)), defined in the introduction; this choice of ¢ will only depend on the

apertures of the cones I', and the constants c1, co. Hence, for any yg € Q;, we see that

m() +CQE (zo +025 9
/ / u(zg, 8)|2x . (20, 8) dsdzg < / / Y0, ¥ (yo))|” dsdxg
Qjo +Cl £ Q] 1'0 +C1 €

< O e ut (yo, ¥ (w0))|?,

where u} is defined as

uz(q) = sup{lu(z)|lz € T(q), |z —q| < Ce},

Therefore, we finally get that

Y(xg)+tere

a:g +025 .
/Q / VG (w0, 5)[[u(zo, 8)IXR, (70, 5) dsdxg
J

< Cew(Aae(yo, ¥ (v0)))uz (yo, ¥ (yo))

for all yg € Q. Now, we integrate this relation in (); and we change variables, to obtain

that

(zg)+cae ;
/ / VG (0, 5)ulzo, )X, (0. 5) dsdo

Y(xg)+ere

< 2 /P W (Ao e(q))u(q) do(q).

J
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Hence, we obtain that

ZiNRe Pj

dr < 03 el / WY (g e(q))u(q) do(q).
J

d—1

Now, using the fact that the surface measure of Ay.(q) is comparable to ¢+, we obtain

that

x<C§2/9ﬁé&ﬁDﬁde®

AVG, Voeu
/ZiﬂRa‘ v o(A2:(q))

<C Ejj /P Mo @ (0) dole) = C /U o M @@ o0

where My is the maximal function of w¥. Since D), is solvable, by theorem 7.1.2 we obtain
that the kernel % is an Lpl(ﬁ(l) function, therefore, from the bounds on the maximal

function, we obtain that

wee([  juapi) "

But v — 0 on 02, nontangentially, almost everywhere, therefore the dominated convergence

/ )AtVGngzﬁgu
ZNRe

theorem shows that

/ IVGyVdeu| dz — 0.
Z,NR: e—0

Adding those integrals over the cylinders Z; (since we have N of them), we obtain that
I — 0.

We now turn to Io, and we write, as above

xo —l—cl €

C (zg)+coe
fy V0 w1 < T3 [ / G (0, 5) lu(o, 9) . (a0, 5) dsdry
7 € j
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We then use the Cauchy-Schwartz inequality, and we bound

(zg)+coe
/ / Gt (g, 8)|2 g < Cub (Mg o (q))2 3,

Y(xg)+ere

for every yo € ()}, from lemmas 6.3.2 and 6.3.4. In addition,

(zg +02€ d 9
/ / w(z, s)|2 dsdzg < C e [u? (30, ¥(y0)|2.

Y(xg)+ere

therefore, if we multiply the two estimates above and we integrate over ();, we obtain that

:C() “+co € t é—d .
/ / G (20, 9)\u(x0, 9)| xR (20, 5) dsdig < C 3 /Pwy(Agg(q))ug(q)da(q).

xo —|—01 € b

This shows that

/ZmRE bV e - uG!, da| < Oﬁ%:g—d/ (D (q))u(q) dolq),

J

which goes to 0, as above; hence I9 — 0.

Finally, for I3,

(xo)+coe

| 1AV0u Gl <—Z / / G (20, 5)|[Vu(zo, 5) xR (20, 5) dsdzo,

Y(xg)+ere

and, for all yg € Q,

(o)+eae 2 9 3.4
/ / G (g, 5)|2 dsdzg < Cw¥ (Mg (yo, ¥(wo))2 7,

Y(xg)+ere
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while

Y(xg)+ege (zo +C4e’:‘
/ / |Vu(zg, s)| dsdx0<—/ / u(zg, s)|? dsdzg
i J(zg)tere 3Q; JY(xg)+coe

< C T2 [k (yo, ¥ (o)) %

Therefore, as above,
| 146V Ghdi <0 [ Masla)(a) dola)
ZiNRe j Pj

which goes to 0 as ¢ — 0. Therefore I3 — 0 as well, which shows that u(y) = 0. This

completes the proof. O
The next proposition shows existence of solutions with boundary data in LP(0S).

Proposition 7.3.4. Suppose that € is a bounded Lipschitz domain, and let A € M, (Q),
b e L>(€). Assume also that that D, is solvable in €, with constant C'. Then, for every

f € LP(09), there exists a unique u € Wé’f(Q) which satisfies the following:
i) w is a weak solution to Lu = 0 in .
i) u converges to f nontangentially, for almost every point ¢ € 02 with respect to the

surface measure: that is,

lim u(x) = f(q), 0 —a.e. ¢ € 0N
z€l'(q)
T—q

i) [lu* zp(q) < oo
Then, this solution u will satisfy the inequality |[u*|| 7y < C||fllr()-

Proof. Uniqueness follows from proposition 7.3.3.
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For existence, let f € LP(02), and consider a sequence fp, € C(092) with f, — f in
LP(09). Consider also the solutions u, to the Dirichlet problem with boundary data fp,.

From solvability of Dp, we obtain that

lunllLo@0) < Cllfall Lran)-

Consider now the approximation scheme (2; 1 €, from theorem 2.3.6, and fix j € N. Let
also ¢ € 99Q. Since Aj(q) € I'(g) from the same theorem and j is fixed, we obtain that

Aj(q) € I'(p) for all p € Ay (g), where r; is sufficiently small. This will show that

fnll e
unl4(0)] < [ (p)] = Jun (5000 < ) dor < AP0

r; (9) "j

It follows that, for any j € N, (up) is a uniformly bounded sequence of solutions in €2;.
Therefore, from equicontinuity of solutions (proposition 3.6.4) and also applying a diagonal
argument, (up) converges pointwise to a solution w in 2, uniformly in compact subsets of .

Let now g € 092, and = € T'(q). Then, for all n € N,

lu(z) — up(x)| = lrinni}gof [um () — up(x)] < lrinrri}glof(um —un)*(q),

which implies that (u—wuy)* < liminf,,—oo(um —up)*. We now integrate and apply Fatou’s

lemma, to obtain

(= un)*llp < T (= un)*llp < € Tim_|[fin = fallp = CILf = fullp

where we also used that Dy, is solvable in Q. Therefore, ||(u — un)*||p = 0 as n — oo.
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We now compute, for z € I'(¢q) and n € N,

limsup u(x) — f(q) < lim sup(u(z) — wn(z)) + lim sup un(z) — f(g)

T—q T—q T—q
— 1ix§jgp(u(x) —un(x)) + flq) — f(q) < (u—un)*(q) + fula) — fla).

Therefore, for any € > 0,

o ({q € I'(q)

msupu(e) — ) > <}

T—q

<o ({a€T@|(u—un)(@) + fule) = F(0) > ¢} ).

for all n € N. But, (u —un)* + fn — f converges to 0 almost everywhere, so

limsupu(z) — f(q) <e
T—q

for almost all ¢ € 9S2. This shows that limsup,_,,u(z) < f(g) for almost all ¢ € 95.
A similar procedure shows that liminf; qu(z) > f(q) for almost all ¢ € OS2, therefore u
converges nontangentially to f, almost everywhere.

Finally,

o llp < 11Cu = wa)*llp + liglly < CIUF = Fallp + Cllfally ——= Clflly

which shows that wu is the required solution. O

138



CHAPTER 8
THE REGULARITY PROBLEM FOR L

In this chapter we turn our attention to the Regularity problem for the equation Lu = 0 in
a Lipschitz domain ). Rather than obtaining our results for smooth data on the boundary
and using approximations, as in the case of the Dirichlet problem in the previous chapter, we
will show solvability for the Regularity problem providing a formula for the solutions which

will hold for data in W12(9€). This will be achieved using the method of layer potentials.

8.1 Formulation and uniqueness

We begin with the formulation of the Regularity problem. Recall that the space WP (0Q)

is defined in definition 2.4.6.

Definition 8.1.1. Let €2 be a Lipschitz domain, and p € (1, 00). We say that the Regularity
problem R, is solvable in €, if there exists C' > 0 such that, for every f € WP (09), there

exists a solution u € VVI})’CQ(Q) to the Dirichlet problem

Lu =0, in €,
u=f, on 0,

which also satisfies the estimate

(VW) ran) < CIVfliLpa0)

and v = f on the boundary is interpreted in the nontangential, almost everywhere sense.

Note that only the gradient of f appears on the right hand side. This is to be expected

since constants are solutions to the equation.
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The next proposition relates the nontangential maximal functions of a function and its
gradient. This will be the basic estimate that shows uniqueness for the Regularity problem.

Recall first that, if » is a function in €, then for g € 992 we define

ui(q) = sup {|u(m)\‘:ﬁ €Tl(q), |z —q| < C’s},

for some constant C.

Proposition 8.1.2. Let Q be a Lipschitz domain, and let ¢ > 0. Suppose that u € C'L (Q)

loc

and u converges nontangentially, almost everywhere to a function f € LP(92) on the bound-

ary, for some p € [1,00). Then, for all € > 0, and almost all g € 99,
ul < Ce(Vu)* +|f].

Proof. Consider first ¢ € 92 such that f(q) is finite and u converges nontangentially to f(q)
at ¢, and suppose that = € I'(¢) and |x — ¢q| < C'e. Since I'(q) is a cone, the line segment

[z, q) is a subset of I'(¢). Consider now the sequence of points
rm=q+2"""(x - q),

then all those points lie in [z, q), and 21 = =.
Let now m € N. Since u is continuously differentiable in a neighborhood of the line

segment from x;, to z,,4+1, there exists zj, in this line segment such that

u(zm) = w(@mi1)] < [Vulzm)llzm = Tmarl

Since zp, lies in the line segment from z to ¢, we obtain that z,, € I'(q), therefore

u(zm) — u(@mir)] < (V)" (@)lzm — zmal-
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In addition, xy, — ¢, and x, € I'(q), therefore u(zy,) — f(¢). This shows that

u(z) = f@) < Y ulem) = u(@mnin)l < Y (V) (@)|em —

meN meN

= (Vu)*(q) Y 27"z — | = C(Vu)*(q)|z — g
meN

< Ce(Vu)*(g),
since |z — ¢q| < C'e. This inequality shows that
[u(z)] < Ce(Vu)* +(9)]

for all z € I'(¢q), with |z — ¢q| < C'e. We now consider the supremum for those x to obtain

the desired inequality. O

We now show uniqueness for the Regularity problem; in order to do this, we will follow an
argument similar to the proof of proposition 7.3.3. A standard way of showing this uniqueness
would involve using proposition 7.3.3 directly, since from proposition 8.1.2 the norm of (Vu)*
is stronger than the norm of u*. However, proposition 7.3.3 shows uniqueness after assuming
that the Dirichlet problem is solvable in €2, which we have obtained after assuming a condition
on div b, as in theorem 7.2.4. Since we want to treat the Regularity problem only assuming
that b is bounded, the previous argument will not work, which justifies the need for the next

proposition.

Proposition 8.1.3. Suppose that Q is a bounded Lipschitz domain, A € M)(Q2), b €
L>(Q). Let u € WI})’CQ(Q) be a solution to Lu = 0 in Q, with (Vu)* € L1(9Q) and u — 0

nontangentially, almost everywhere. Then, u = 0.
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Proof. Let € > 0, such that € < sq, where sq is defined in lemma 2.3.3. Set also
QE:{$€Q|6($) §€}7 REZQQE\QE.

Consider a smooth cutoff ¢ which is 1 outside Q¢, 0 in Qo ., and |V¢e| < C/e. We then

proceed as in proposition 7.3.3, to obtain that
u(y) = / AVGLV e -u+ / bV e - uGl — / AVuVee - Gl =T + I + I3
&€ RE €

Consider now the cylinders Z; for i = 1,... N, the sets B;,Q,Q; and Pj, and the function

1 that appear in the proof of theorem 7.3.3. We then estimate, for Iy,

(xg)+eae
[ Javees ] ar< [ / VG (w0, ) lu(zo. 9)xg (w0, ) dsday
ZiNR

a?() —i—cl 15

(zo +025 .
= c Z/ / ‘VGy(an3)““(330,3”)(1%5(960,8) dsdzx.
J

xo —I—Cl €

We now apply the Cauchy-Schwartz inequality to bound the integral. First, we obtain that

(xg)+ecoe (xg)+ecse
/ / |VGt (zg, s)|? dsdzy < —/ / |Gt (zg, 5)|? dsdxg
3Q;

xo +cl 15 mo +co 5

S 2 sup |Gt( )|2 < C€d+2a 2
&7 S(z)<ceye

for some a € (0,1), where we also used proposition 3.6.3. Moreover, for any yg € Q;, we see

that

Y(wg)+ee (xg)+coe )
/ / (o, 3)2X R, (20, ) dsdazg < / / 0 (0, $(y0)) 2 dsdirg

i 1/)(1‘0)+Cl 15 170 Jrcl 15

< C et (yo, ¥ (y0)) |
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therefore, after multiplying the last two inequalities, we obtain that

a:o +co € ; d 1
/ / VG (20, 5)l[u(z0. )| XA, (20, 5) dsdzg < C =1 [uZ (g, (yo))],

Y(xg)+ere

for all yg € Q)j. Now, we integrate this relation in ); and we change variables, to obtain

that

ac() )teoe
/Q / VG (20, )| ulzo, )X R, (0. 5) dsdzg < O /P ] dor
J |

Y(xg)+ere

Hence, we have shown that

/ AVG, Voeu| 30250‘1/ | do < Cgal/ lif| do
Z;NRe Pj 0N

J

< C’z—:o‘/ |(Vu)*| do —— 0,
o0

e—0

where we also used proposition 8.1.2. Adding those integrals over the cylinders Z; (since we
have N of them), we obtain that I; — 0.

We now turn to Io. From proposition 3.6.3 we obtain that

/ bV e - uG, gOHbHOOaO‘_l/ |u
Z;NR: R.

(zg)+e2 6

< Clblloc 12/ / u(zo, 5)| dsdzo.

a:g +cl 5

But, as above, for any yy € @,

(z0) +02€ (wo +C25
/ / u(wg, s)| dsdrg < / / =(y0, (o)) | dsdzxq
Qg xO )+cie Y(xo +Cl €

< C et (yo, d(y0)),
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and after integrating on ; and summing for j, we obtain that

/ bV o: - uG, §C€O‘/ lu¥| do.
ZiNRe o0

Since (Vu)* € L1 (99Q), proposition 8.1.2 shows that u* € L1 (9Q), therefore the last integral
above converges to 0, as € — 0. Therefore, Io — 0 as well.

Finally, we turn to 3. As in the case for I5, we estimate

/ AVuVe. - G},
ZiNR.

1‘0 —‘rcl 5

1 1 xo +C2€
< Ce*™ / |Vu| < Ce*™ E / / |Vu(zg, s)| dsdx.
Rg -
J

Then, for any yg € Q,

xo —1—025 xo —1—025 .
L vt asa < [ 0 ot s
Qj JY(xo)+ere Qj JY(xo)+ere

< C e |(Vu)*(yo, d(v0))]:

and after integrating on ; and summing for j, we obtain that

/ AVuVe. - G,
Z;NRe

< C’ga/ |(Vu)*| do.
29

Since (Vu)* € L1(99), letting € — 0 shows that I3 — 0 as well. This finishes the proof. [

8.2 Singular integrals

In the following, we will turn our attention to symmetric matrices A.

Given a Lipschitz domain 2, we will assume that 0 € Q and diam(2) < 1/40, and we
will also set B to be the unit ball in R%: we will denote this class of domains by D.

Given a matrix A € M) ,(€2), we will extend A periodically as in lemma 2.2.1. Moreover,

given a function b € L*°(Q2), we will extend it by 0 outside €; if b € Lip(Q2), we will extend
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it as in lemma 2.2.3. Finally, we set G to be Green’s function for the equation

Lu = —div(AVu) +bVu =0

in B.

For p,q € Q) with p # ¢, we define the kernel

k(p,q) = VpG(p, q),

where differentiation takes place with respect to the p variable. We also define

T*f(P) = sup
e>0

/ k(p,q)f(q)do(q)|,
lp—q|>¢

and, if e; is the unit vector in the z; direction, we set

T;f(p) = 1ir% (k(p,q),ei) f(q)do(q).
=V JIp—q|>e

The first operator is the maximal truncation operator, while the second is a singular integral

operator; the fact that they define bounded operators will be shown in the next propositions.

Proposition 8.2.1. Let 2 € D, A € M) ,(2) and b € L°°(€2). Then, the operator T is

bounded from L?(9Q) to L?(89), and its norm is bounded by a good constant.

Proof. Consider the periodic extension Ay of A in R, as in lemma 2.2.2 (which we still

denote by A) extend b by 0 outside €2, and set Gy be Green’s function for the equation

—div(AVu) = 0 in B. Let also I'(z,y) to be the fundamental solution of the equation

—div(AVu) =0 in

Tif(p) = sup
6>0

/ Vpl'(p,q) - fq) do(q)
lp—q|>0
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is bounded from L?(99) to itself, with the bound being a good constant.
We will now interpolate the maximal truncation operator with the analogous operator

with kernel V,G(p, q) to obtain boundedness: we write

VpG(p.q) = (VpG(p,q) — VpGo(p.q)) + (VpGo(p, 9) — Vl'(p,q)) + Vpl'(p, q)

= k1(p,q) + ka2(p, q) + VpI'(p, q).

After fixing 6 > 0, multiplying with f and integrating, we estimate

/ |k1(p, @) f(q)| do(q) < C/ p— a** f(q)| do(q), (8.1)
lp—q|>0

lp—q|>0

from proposition 5.5.2. For k9, we fix ¢ € 0 and we set

u(z) = Go(z,q) — I'(x, q),

: : : 1,4~
for x € B. Then, the regularity properties of Green’s function show that u € W '2(d-1)(B),

and for every ¢ € C2°(B),

/AVu(x)V¢(a:)dx:/ AVxGO(a:,q)qu(x)dx—/ AV . I(z,q)Vo(x) dx
B B B

(¢) — ¢(q) =0,

since G is Green’s function for — div(AVu) = 0in B, and I'(z, y) is the fundamental solution
_d

of the equation —div(AVu) = 0 in R%. This shows that u is a ) (B) solution to

—div(AVu) = 0 in B, therefore lemma 3.2.1 shows that u is a W12(B/2) solution to

—div(AVu) = 0 in B/2. Hence, estimate 2.2 in [KS11] shows that the function

Vu(z) = ViGo(z,q) — ViI'(z,q)
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is bounded in B/4, hence ks is bounded, with the bound being a good constant. Therefore

/ Ibm@ﬂwwdQSC/ 1(@)] do()
lp—q|>6

lp—q|>0

for a good constant C'.
We now add the last estimate with (8.1) and we use the definition of Tk, to obtain that,

for any 6 > 0,

<o [ (p=d 1) i@l + Tose)
p—q|>

‘ / VpG(p,q) - f(q) do(q)
lp—q|>0

hence

ﬂﬂmgC/

(a0 @) o)+ )

The fact that the kernel |p — q]?’/ 2-d 4 1 s integrable on 0f2, together with boundedness of

T, complete the proof. O
We also treat the operators 7;.

Proposition 8.2.2. Let Q € D, A € M) ,(Q) and b € L>(Q). Then, the operators T; are

bounded from L?(99) to L?(99), and their norms are bounded by a good constant.

Proof. The proof follows using the almost everywhere existence of the operator T}l( f) in

theorem 3.1 in [KS11], an argument similar to the proof of proposition 8.2.1, and the bound-

edness of the operators Tk shown in the same proposition. O
8.3 Layer potentials

In this section we will apply the results of the previous section to obtain the basic properties

of the single layer potential. We will always assume that €2 € D.
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Definition 8.3.1. If f € L?(99), we define the single layer potential of f to be

Sif:BoR, Sif(r)— /a Gl (@) dola)

where differentiation takes place with respect to q.

We will write S4f(z) for x € Q and S_f(x) for x+ € B\ Q. Note that, from the
pointwise bounds on Green’s function and its derivatives, the integrals in those definitions

are absolutely convergent for z € B\ 0{2, since we are integrating far from x.

We now define, for f € L2(99),

Sf(p) = /6 6.0 (0) dolo)

Since G(p,q) < C|p — q|2’d, G is integrable on 012, therefore S is a bounded operator from
L2(09) to L?(99Q). In fact, as the next lemma shows, S maps L?(9) to WH2(99).

Lemma 8.3.2. Let Q € D and A € M), ,(B), b € L>(B). Then S is bounded from L2(09)

to W12(09Q), with

VrSf(p) = lim V4G, q)f(q) do(q),
=0 J|p—q|>e

in every coordinate cylinder (Z,¢) on the boundary of . Moreover, the norm of S from

L2(09) to W2(0Q) is a good constant.

Proof. For f € L2(99), the pointwise bounds on G show that

S| = ] /a 6.1 da<q>\ < /(‘3 p= a1 @) doo)

< ([ -t v (f - q|2d!f(q)|2d0(q))1/2
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The first integral is absolutely convergent and uniformly bounded with respect to p, with

bounds depending only on 2. Therefore,

p 2-d 2 4o (o do 2
éﬁﬁﬂ scé&[&m d uwnd<@d@osclﬁu\

For the second part, note that the singular integral bounds in propositions 8.2.1 and 8.2.2
will imply the theorem, once the formula for the tangential derivative is established. For this
reason, consider a coordinate cylinder (7, ¢), where Z has basis By C Rd_l, and suppose
that f is supported in Z N 9. Let h € C°(Z NRI1), and set G to be Green’s function
for the equation — div(AVu) = 0 in B. If Sy is the single layer potential for this equation,

we have that

VrSof(p) = lim Vi.Go(p, q)f(q) do(q),
£20J|p—q|>e

using an argument similar to the proof of proposition 8.2.1. Therefore, it suffices to find the
formula for the tangential partial derivative of the difference Sf — Sy f.
Set gq(z) = G(x,q) — Go(z, q) for ¢ € ZN 0N, and fix p € ZN Q. For any ¢ € Z N 012,

let gy € By be the point on the basis of By that lies right under ¢q. Define also
©: By — ZN0Q, 2y) = (y.6(y)),

then @ is Lipschitz, with a Lipschitz constant C'y; depending on M, the Lipschitz constant

of 9€). Then, for £ > 0, we integrate by parts in By \ Bz(qp) to obtain that

/ 9q(y, 6(y))9ih(y) dy =
y:ly—qol>e

—/ %%MMW@MW@hNM—/ Bida(y, Sy)h(y) dy,
9(B:(q0)) Y

|ly—qo|>¢

where 9(B:(qp)) is the d — 2 dimensional boundary of B:(qg). We now apply proposition
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5.5.2, and we note that |®(y) — q| > |y — qol, to obtain that

/ W@ﬁ@%@%@ﬂ%a@SC/ 1B(y) — g*’2 | h(y)| dog_1 ()
9(B:(q0)) 0(B:(q0))
scm4/ 1y — qoP"2= ()| dog_s ()
a(Bs(qO)
:céﬂ%/“ ()| dog_1(y)
9(Be(qo0))
<05y 1 (8(Be(a0))) |1l
< 055/2—d 5d—2 ||h||007

which goes to 0 as € — 0. This shows that

/ 9q(y, 9(y))0;h(y) dy + / 0194y, d(y))h(y) dy = 1}(q) + I2(q) — 0,
y:ly—qol>e y:ly—qo|>e e—0

for all ¢ € Z N oSL.

From the pointwise bounds on Green’s function we now obtain that

L@ =5 [, 92 6w)0h(y) dy.

Moreover,

|@mnsc/

|Mm—ﬂwﬁﬂamwwysc/‘ ¢ — P> do(q),
y:|ly—qo|>e Zn09

and the last function is bounded with respect to q. Therefore, the dominated convergence
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theorem shows that

/ / 90, ()0 (y) - £(q) dydo(q) —s
ZNoQY Jy:ly—qo|>e

e—0

/ZmaQ /Rd 9 q(y: 0(y))0ih(y) - f(q) dydo(q).

Applying a similar procedure to I2(¢) and using (8.2), we obtain that

/ag /Rd  9a(P())9i(y) f(g) dydo g /m /Rd 9i9q(®(y))1(y) f(q) dydo(q)-

But, from Fubini’s theorem, note that the integral on the left is equal to

/ / (@)0:h(y) do(q)dy = / (SH®(y)) — S ((y))) Bih(y) dy.
Rd—-1 8Q

Rd-1

therefore we obtain that

[ 5@~ Sos@tm) inio) dy = [
Rd-1

Rd-1

([ oaml@w)stado) 1is)dy

From definition 2.4.6, this shows that the difference Sf — Sy f is tangentially differentiable
on 0f), with

7 (Sf(p) = Sof(p) = /aQ VI A(G(p,q) — Golp, ) f(q) do(q).

Finally, we combine with the formula for VSyf(p), and the proof is complete. ]

The single layer potential is the solution to the Dirichlet problem with data Sf on 0€2;

this is shown in the next proposition.

Proposition 8.3.3. Let Q € D, A € M, ,(B) and b € L®(B). If f € L*(9), then
Sif € W’é’f(@) is the solution to the Dirichlet problem Dy for the equation Lu = 0 in €2,
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with boundary values Sf on dQ. Similarly, S_f is the solution to Dy in B\ €, and has

boundary values Sf - xg on 9(B \ Q). In addition,

I(VS< /) N r200) < CllFlIL200):

where C' is a good constant.

Proof. We will compute the weak derivatives of S; f: if ¢ € C2°(Q2), then

[ seswostio= | ([ conao i) s o),

from Fubini’s theorem, since 0;¢ is supported at a positive distance from 0€2. So, from

differentiability of G(-, ¢) and Fubini’s theorem, we obtain that

/ag </Q G(z, q)0;0(x) d:z:> f(q) do(q) /89 (/ 9;G(z,q)o ) f(q)do(q),

which shows that

VS (a /vxexq 7)do(q).

With a similar procedure, we can show that VS4 f € Lloc<Q)' Now, let ¢ € C2°(©2). We

then have

a(Stf,¢) = / AVSL fVG+ VS f - ¢
-/, /m )V,G(x,q)Vo(2) + Hx)VG(x.q) - d(x) f(a) do(q)da
_/asz (/ A()VaG(x.q)Vo(a) + <>ve<x,q>-¢<x>dx) 7(q) do(q),

from Fubini’s theorem, since the integrand is supported on a strictly positive distance from

02, hence the integral converges absolutely. But, the inner integral is equal to ¢(q) = 0, so
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S+ f is indeed a solution in 2.

We now turn to the boundary values of Sy f. Let Ay C 962 be the set of p € 952 such that
Sf(p) is finite. Fix p € Ay, and let x € T'(p). Let also n € N, and suppose that [z —p| < %
We then bound |Sy f(x) — Sf(p)| by

/ |G($aQ)—G(P7Q)||f(Q)|dU(Q)+/ |G(2,q) — G(p, )|l f(q)|do(q) = I1 + 2.
NA/,(p) Arjn(p

To bound I: if [p — ¢q| > 1/n, then

= 1
p—al 1

lp — gl
2 2n ’

|z —p| >
Ifffpl_2

lz—q|>|p—q|— |z —p| >

and, if we use Lipschitz continuity of Green’s function (proposition 5.3.3), we obtain that
n<clo-pl [l - a ) 1@ doto)
N\Ay/(p)

o\ 1-d
< Clz — p| (u) +lp—al'™") 1£(q) do(q)
N\, (p) 2

< Cle—pl / ip— a4 £(q)| do(q)
Q\Al/n(p)

1-d 2
< Clo = pln= =% fl2-
For Io, note first that since x € I'(¢), we have that |z — p| < Cé(x), therefore

qeIN=|p—q|<|v—q|+|r—p|<|z—q|+Co(x) < Clz—q (8.3)

153



Using the pointwise bounds on GG, we then obtain

I < / (16, )| + 1G0, @)) | (@) do(a)
A1/np
2-d _2-d >
<c N G e R

2—d
< C/Al/n ) p—al" f () do(q) < C/ag2 G(p, 0| f(@)Xa, ,(q)] do(a).

Combining the estimates for I1 and I, we finally obtain that, if p € Ay, |z —p| < % and

x € ['(p), then

S0() = S0) < Cle =l “N7B+C | Galf@xa, @l do@. (4

Since the kernel G(p, q) in integrable on 092 and fXAl/ ”_>L> 0, we obtain that
n n—oo

(RE:

| Gl , gl 1250,

n—oo

therefore, for a subsequence of the n, we obtain pointwise convergence to 0 for all p € By,
where the set B rC A ¥ has full measure.

Let now p € By and € > 0. Then there exists N € N such that

DN ™

‘/asz G, A (Dxa, (gl do(@)| <

Then, for all z € I'(p) with |x — p| < 1/2N and

_ £
Cla = pINTI£13 < 5.
we obtain from estimate (8.4) that |S4f(x) —Sf(p)| < e. Hence, S1 f(z) = Sf(p) nontan-

gentially, almost everywhere on 0f2.
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We now show the boundedness of the nontangential maximal function of the gradient.
For this purpose, let G be Green’s function for the equation —div(AVwu) = 0 in B, and let
82 be the single layer potential for the same equation in €. Let also p € 992 and x € I'(p).

We then write

VS4f(@)] < VS f(x) — VSY f(z)] + VS f ()]
< / V4G (2, q) — VaGol,0)| | £(a)| do(q) + |VSLf ()|
o0
<c /a e =¥ @) dofa) + 9L @)

<c /a =2 @) dole) + VS £ )],

where we also used proposition 5.5.2 and the fact that x € I'(p). This shows that

(VS0 0 <C [ p=al (@) dota) + (VS11) ),

for all p € Q2. Similarly to the proof of proposition 8.2.1, the operator (VS?L f)* is bounded

from L2(8Q) to L2(8Q); hence, after integrating over 0€), we obtain that

/ (VSLf)* do < c/ |f|? do,
o9 o0

as we wanted.
Finally, we show that (S1 f)*, (S—f)*|gq € L?*(99Q): for this purpose, note that proposi-
tion 8.1.2 shows that

(S+f)* <C(VSLf)* +ISfl,

and boundedness follows after integrating on 0f2, using the bound on the nontangential
maximal function of the gradient, and lemma 8.3.2. A similar argument works for (S—f)*.

Finally, to show that (S_f)*|gp € L?(0B) we use th., which completes the proof. O
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8.4 Behavior on the boundary, and the jump relations

The goal of this section is to study how the derivative of the single layer potential VS f(z)
in €2 behaves as x — p € 0€). We start with the tangential derivative first.
The next proposition shows that, in fact, the tangential derivatives of Sy f,S_f are

nontangentially continuous on 0.

Proposition 8.4.1. Let Q € D, A € M), ,(B) and b € L*°(B). Then, for any f € L2(09),

VSt f(x) - T(p) — VrSf(p),

T—p

non-tangentially, almost everywhere on 0f2.

Proof. Consider the operator R : L2(0Q) — L?(99), with

Rf(p) = /Q p— a?/*f(q) do(q).

then R is bounded. Therefore, |Rf| < oo almost everywhere on 0.

Let 09 > 0. We begin by writing

V84 f(z) - T(p) - /|p—q|><s VrG(p.q)f(q) dolq) =

/ (V2G(x,q) = V2G(p,q)) T(p)- fq) dff(é])+/ VzG(x,q)T(p)- f(q) do(q),
lp—q|>do lp—q|<do

(8.5)

where T'(p) is a tangential vector on 02 at p. Note then that, if z € I'(p), then

|z —q| > 0(x) > Clz —p,
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therefore the last term is bounded by

/ V.G, 9)T(p) - f(g)do(g)| < C / & — g4 £(q)] do(q)
Ip—q|<do Ip—q|<do

< Cle = p / (@) do(a)

lp—q|<do

1—d (d—1)/2
< Cla = I8V 11l 2 90,
The last relation and (8.5) show that for almost all p € 92, and any x € I'(p),

VE4+f(x)-T(p) —VrSf(p) = 5lim0 (VaG(x,q) = V2 G(p,q)) T(p) - f(q) do(q).
0—0J|p—q|>do (56)

Similarly, if 89r is the single layer potential for the equation — div(AVu) = 0 in €, and
Gy is Green’s function for the same equation in B, we obtain that, for almost every p € 052,

and every z € I'(p),

VSY () T(p) — VS’ f(p) = Jim . (VxGO(:L", q) — V2G(p, q)) T(p) - f(q) do(q).
- (8.7)

If we now subtract (8.7) from (8.5), we obtain that

V(84S = SUN@) - T(p) = Vr(SF = Sof)p)

< lim ‘va<$> q) — VaG(p,q) + VaGO(x, q) — V.GO(p, q)‘ |(q)| do(q)
900 J|p—q|>o

< /aQ ‘V,TG('I’ Q> - VxG(p7 Q) + vaO(m’ (]> — vaO(p’ q)‘ |f(q)| d(f(q), (88)
Let now § > 0. Note that, if x € I'(p), then

lp—ql <l|x—p|+]z—q| <Cd(zx)+ |z —q| < Clz—q,
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therefore, proposition 5.3.2 shows that

‘/ (VaG(x,q) — VaG(p,q)) T(p) - f(q)do(q)| <
lp—q|>6

Cla — pl° / ip— a'~4f(q)| do(g) < Clzx — p|251—0—0 / (@) dola). (8.9)
lp—q|>6 lp—q|>0

Similarly, we obtain the same estimate with GY in the place of G.

Finally, we apply proposition 5.5.2 to obtain that

‘/| <5 (VmG(IE, q) — VzG(p,q) — Vq;GO(x, q) + VQCGO(p7 q)> T(p) - flq)do(q)| <
pP—q

/ (Ix—QIg’/Q*dJr Ip—QI3/2*d) |f(g)|do(q) <
lp—q|<d

/ p— a2 f(g)] dolq), (8.10)
lp—q|<o
since z € I'(p). Then, for the last term, we estimate
/ p—al*?~ f(q)| do(q) < 6'/* / p— > >~ f(q)| do(q) < 8Y/AR|f|(p).
lp—ql<é o0

We now plug this estimate in (8.10), and we substitute in (8.8), together with (8.9) and its

analog for GY: then, we obtain that, for almost all p € 99, and almost all z € [(p),

V(Stf—SYf)) T(p) — Vp(Sf—S"f)(p)| < Cle—p|*ot-d-e /a M do+8/4R| f|(p).

Let now A be the set of p € 92 for which |Rf(p)| < oo, and consider any p € A. Let € > 0,

then there exists d > 0, such that 6%/4R|f|(p) < . Therefore, if z € I'(p) is such that

0|x—p|a51—d—a/ fldo <&,
o
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we obtain that

V(S+f—SYf)(@) T(p) — V(S —S°f)(p)| < 2¢,

which shows that

V(S+f = SLN)@) ) - Vr(Sf =" N(p)

nontangentially, almost everywhere. Since now, from theorem 4.4 in [KS11] and an argu-
ment similar to proposition 8.2.1, VTSE)L () converges to V7SY f(p) nontangentially, almost
everywhere, we obtain

VS f(z)-T(p) P VrSf(p),

nontangentially, almost everywhere, which completes the proof. O

The convergence shown above leads to the following corollary, which will be useful in an

approximation argument later.

Corollary 8.4.2. Let Q € D, A € M, ,(B) and b € L°(B). Then, for all f € L*(09),

iimsup [ (V1,512 do; < 971132 g0

Jj—oo JOQ,

where €2; 1 Q is the approximation scheme in theorem 2.3.6 and VT]. denotes the tangential

gradient on 9€);. The analogous inequality also holds for S_ f, using the domains Q; 3 Q.

Proof. Recall the approximation scheme {2; 1 ), from theorem 2.3.6. From the same theo-
rem, we have that

TjOAJ'—>T,

where the T} are locally defined tangent vectors, and convergence takes place in L? and

almost everywhere. Using proposition 8.4.1, the dominated convergence theorem, and the
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fact that (VS. f)* € L?(9Q) from proposition 8.3.3, we obtain that

limsup/ |VT,S+foAj|2da§/ VS f|? do.
oo 7 o9

j—00

Since 7; — 1 from theorem 2.3.6, after changing variables we obtain that

imswp [ (Vp,SepPdny < [ VrSfR o

j—oo JOQ,
which completes the proof. ]

The next property we show is discontinuity of the normal derivative of the single layer
potential across the boundary of a domain €2. In the calculations that follow, we will need
to assume that b is Lipschitz in €, therefore we will consider an extension of b in B using

lemma 2.2.3.
Lemma 8.4.3. Let Q € D, let A € M), ,(B), b € Lip(B) and consider a Lipschitz function

F : B — R which vanishes on dB. Then, for z € (,

/ LG (x,q) - F(q) do(q) = —/ AVGVF +bVGy - F,
20 B\Q
while, for » € B\ Q,

G (x,q) - F(q)do(q) = / AVGVE +bVGy - F,

[)9] Q

where 0% denotes the conormal derivative with respect to ¢ on 0, associated to L, and

Gz(-) = Gl(x,").

Proof. Suppose first that € . Then, from proposition 5.1.3 and theorems 8.8 and 8.12 in
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[GTO01], Gz(-) = G(-,x) and G is a classical solution of Lu = 0 in B \ Q; that is,

almost everywhere in B, away from z, and G, € W??(B \ B:(z)), for all small £ > 0.
Therefore, since F' = 0 on dB, and from proposition 3.3.1 the derivative of GG, is continuous

away from x and the boundary of B,

a0 8(B\Q) B\Q

B\Q B\Q

because Gy is a classical solution of Lu = 0 B\ Q. Now, if z € B\ Q, then G is a classical

solution of Lu = 0 in €2, therefore

Q Q

o9
which concludes the proof. O

Lemma 8.4.4. Let B be a ball, and let A € M), ,(B), and b € Lip(B). Then, for all p € B,

lim 93G (p,q) dop.(q) = —1,
e—0 0B:(p)

where 0, is the conormal derivative associated with L.

Proof. Let € > 0 such that B:(p) C B, and consider the domain U; = B\ B:(p). Set also

Gp(-) = GY(p, ). As in the proof of lemma 8.4.3, Gy, is a classical solution of the equation
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away from p, therefore

€ UE

e—=0 JB

since bVG) is integrable in B. We then integrate by parts, to obtain

div(AVG :/ 0, Gy do :/ 0,Gpdo —/ 0,Gpdo ,
/6 ( ») o, vlp oy, op P B 5B.(p) vp 4O B (p)

therefore

e—0

0,Gy do - 0y, Gy do —/bVG. 8.11
/aBE(p)vp Be(p) g rPBT | P (8.11)

Let now ¢ € C2°(B) be a smooth cutoff which is equal to 1 in a small ball B), that is centered
at p, and vanishes outside a ball B{j that contains Bj. Then 1) = 1—¢ is identically 1 outside

B]’g and identically 0 inside B), therefore the divergence theorem shows that

OB OB OB B\B,
= / AVGyVY + div(AVGy) - = / AVGpVY + bV Gy -9
B\B, B\By
- / AVG, Vi + bVGy - 1) = / AVG,V(1— ) + VG- (1 - ¢)
B B

:/ bvap—/ AVGPV¢+bVGp~¢>=/ bVG)p — 6(p)
B B B

B

where we also used that Gy, is a classical solution of Lu = 0 away from p. We then plug this

into (8.11) to conclude the proof. O

We now define, for a Lipschitz function f: 02 — R and p € 012,

Kf(p) = lim OEG (p,q)F(q) do(q).
=0 Jlp—g|>c
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The fact that this limit exists is shown in the next lemma.

Lemma 8.4.5. Let Q € D, let A € M), ,(B), b € Lip(B), and consider a Lipschitz function
F : B — R which vanishes on 0B. Then, for almost all p € 99,

KF(p) = %F(p) _ /B AV NGy

1
= —§F(p) + / AVG,VF +bVGy, - F.
Q
Proof. Let Vz = QU B:(p). We also define
0z = Q°NO(B=(p)). 02 = QN O(B(p)),

and we write

/ apr'FdO-: 8pr'FdO-_/ apr'FdO-
I\ Ac(p) Ve o2

oB H(B\Vz) o1

=0—1; — Iy,

since F' vanishes on 0B.
We now treat I1. As in the proof of lemma 8.4.3, using the divergence theorem we

compute

I(B\Ve) B\Ve B\Ve

Then, since the terms AVG,VF,bVG), are integrable in B \ €2, we obtain that

B\Q
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For Io, we write

12:/1ayap-Fda= aVGp-(F—F(p))dferF(p)/l@quda=f3+f4'
o) O

02

From Lipschitz continuity of F' and the pointwise bounds on the gradient of GG, we obtain

that

BI<C [ =) = Pl o) < O oy 1 (08:(0) —5 0

For I, for almost all p € 9€) there exists a well defined tangent plane to 02 at p. For those

p, the symmetric difference between 8; and (93 is contained in a strip

Ac(p) = {y € B-(p)|ly - v(p)| < C'?},

(as in [Fol95, p. 125]), and if we combine with the pointwise bounds for the gradient of G,

we obtain that

e—0

a]_ apr - /82 apr — 0

Using lemma 8.4.4, we then obtain that

1 1

1 1 1
=_ 8,Gypdo + - 0,Gpdo — | 0,Gpdo | — —=
2/35(11) ver 0+2</3g vep e /ag vep g) 0 2

therefore Io — —%F (p). Therefore,

I
KF(p) = lim (=1 — Iz) = —%F(p) = /B o AVG,VF +bVGy - F.
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For the second representation, using the first representation in this lemma, we write

F(p) = / AVG,VF +bVG), - F

B

= / AVGRVF +bVG), - F +/ AVGRVF +bVG), - F
Q B\Q

1

= / AVG,VF +bVG), - F + iF(p) — KF(p),

Q
which concludes the proof after rearranging the terms. O

We are now led to the following convergence lemma.

Lemma 8.4.6. Let 2 € D, A € M)\’M(B) and b € Lip(B), and consider two Lipschitz
functions F, H : B — R with F, H = 0 on 9B. Then, for all j € N,

/ij Oy; S+ F(p;) - H(pj) doj(pj) —— - (EF(Q)H(Q) + F(q) - KH(Q)) do(q),

Jj—00 2

and also

/ / / / 1
o0 Oy S—F(p;) - H(pj) doj(p;) o g (—§F(Q)H(Q) + F(q) - /CH(q)) do(q),

where ()5, Q; are defined in theorem 2.3.6 and the comments right after it, and v;, u;. are

the unit outer normals on {2}, Q;-, respectively.

Proof. Let I be the first integral above. From the formula for d,,54F (p), we first have

that
L= [ (] #60 0F @ dota)) 1) doyr)

Now, for j fixed, since | Pj— q| is bounded below by some positive number, the integral above
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is absolutely convergent, so we can apply Fubini’s theorem to obtain that

Ij = /652 (/an aﬁgG(pj,q)H(Pj)de(Pj)> F(q)do(q),

where differentiation takes place with respect to the p; variable of GG. We now apply the
second representation in lemma 8.4.3 for fixed j, for the domain 2; and for G. Since ¢ ¢ Q_j,

we obtain that

Ij:/ (/ AVGqVH+bVGq-H) F(q)do(q),
o0 \JQ;

where Gy = G(+,¢q). By letting j — oo, the dominated convergence theorem shows that

——= | ( /Q AVGVH +bVGy - H) F(q) da(q)

J—00

_ /a ) %FHda(q)nL /a P (—%H(q)nL /Q AVGQVH+bVGq-H) do(q)

and, since ¢ € 0f), the second equality in lemma 8.4.5 shows that

1
I; — 0 <§FH+F-ICH) do(q).

Set now I} to be the second integral. As above, and since now g € €., we obtain from the

first representation in lemma 8.4.3 that

I =— / ( / AVGQVHerVGq-H) F(q)do(q).
o0 \/ B\
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We then apply the dominated convergence theorem to obtain

j—00

I —— — [ F(g ( / AVGyVH + bVGy - H) do(q)
o0 B\Q
= / _EFH do +/ F(q) 1H(q) —/ AVG,VH +bG,-H | do(q)
o0 2 o0 2 B\Q

:/agz <_%FH+F-ICH) do(q),

where we used the first equality in lemma 8.4.5. ]
As a consequence of the previous lemma, we obtain the next important relation.

Corollary 8.4.7 (Jump Relation). Let @ € D, A € M, ,,(B) and b € Lip(B). Then

dv;S+F(pj) - H(p;)do;(p;) — 0, S_F(pl) - H(p;) do’s (v FHd
g, P8 F 1) Hp3) dos0) /m S-Fh) - HOA) o) —— [ FH o

for all F, H : B — R which are Lipschitz continuous and vanish on 0B, where Vi, V§ are the

unit outer normals on €25, Qg-, respectively.

Proof. To obtain this convergence, we subtract the second line in lemma 8.4.6 from the

first. O

8.5 Invertibility of the single layer potential

We will now turn our attention to the global Rellich estimates, which will lead to invertibility
of the single layer potential operator. Since we will apply the Rellich estimates, we will need

to assume that A is symmetric.

Lemma 8.5.1. Let 2 be a Lipschitz domain, A € My M<Q) and b € L%(2). Suppose that
uis a Wﬁ)’g(Q) solution to the equation Lu = — div(AVu) +bVu = 0 with (Vu)* € L?(9Q),
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and Vpu has non-tangential limits almost everywhere on 0€). Then,

/ V< C / Vrul? do,
Q o0

where C' is a good constant.

Proof. Consider the approximation scheme €2; 1 {2 that appears in theorem 2.3.6 and fix j.
After subtracting a constant c;, we obtain that the average of u; = u — ¢; over 9€2; is equal

to 0. Consider the operator

Ly = —div(AV),

and let v; be a solution to Lov; = 0 in §;, with v; = u; on 99, and set w; = u; —v;. We

then compute
—div(AVw;) + bVw; = — div(AVu;) + div(AVv;) + bVu — bVv; = =bV;,

since u; solves the equation Lu = 0. Note that u; is continuously differentiable in the interior
of {2 (from proposition 3.3.1); hence v; € W1’2(Qj) from proposition 6.1.2. Since v; = u; on

0€);, we obtain that w; € VVO1 ’Q(Qj), therefore proposition 5.2.5 shows that
vajHLQ(Qj) < CHbVUjHLQ(Qj) < CHbHooHVUjHB(Qj),
where C' is a good constant, hence

HquLQ(Qj) = HvujHL2(Qj) S Cvaj“Lz(Qj) + Cva]’HLz(Qj) S C”VUjHLQ(Qj)v (8.12)

where C' is a good constant. Since now v; solves the equation Lyv; = 0 in ; and v; = u;
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on J€2;, we compute

)\/ VU'QS/AVU'V’U':/ 84v--v-§/
Q'| il o, IV Joq, TS Jog

J J

2 2
|UJ| da]+/aQ|6Vij| dO'j

J J

Therefore, since u; has average 0 over J€2;, using Poincare’s inequality on d¢2; and plugging

in (8.12) we obtain that

/ Va2 < c/ Vo2 < c/ |VT.u|2d0j+C'/ By0;12 dor, (8.13)
Q; Q; ;7 09

J

where C' depends on A and the Lipschitz character of €);.
To treat the last term, note that from [KS11], the Rellich property holds for the operator
—div(AV) in ; with a good constant C, since A is symmetric. Therefore, if we consider

the homeomorphisms A; : 9§2 — 9€; that appear in theorem 2.3.6, we obtain that

0 <U‘2d0'§0/ VTAU'2dO"—C/ VT,u-2da‘—C/ Vu - T;|? do;
[, stsPaos <€ [ Onuian=c [ rusPao=c [ vz,

=C [ 1VulA;(a) - T80 Py ) do(a)

since v; = u; on 92, and we are considering the tangential derivatives on 9€2;. Recall now

that A;(q) € I'(q) for large j, and for all ¢ € 082,

A;(q) el T;(A;(q)) T T(q), 7;(q) v L.

Since (Vu)* € L?(9Q) and Vu has nontangential limits almost everywhere, the dominated
convergence theorem shows that
J—=00  Jon

L 19us ) T @)@ dot) —— [ [9puPin (314)
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which finally shows that

limsup/ |8Vjvj|2daj < C/ \Vul? do.
00

Plugging in (8.13) and letting j — 0o, we obtain that

/ IVul? < hmsup/ IVul? < Climsup/ |VTju|2d0j—|—C/ IVul? do.
Q o0

Jj—oo SO j—oo JOQ,
We then use (8.14) to complete the proof. O
We are now in position to show the global Rellich estimate.

Proposition 8.5.2 (Global Rellich Estimate). Let 2 be a smooth domain, A € MiM(Q)
and b € L>(Q). Suppose that u is a C'1(Q) solution of Lu = 0 in Q. Then,

/ 10,u|? do < C/ IV ul|? do,
o0 o0

where C' is a good constant.

Proof. Fix q € 02 and set ro = rq /2, where rq is defined in section 1.1. Note that the local

Rellich estimate (proposition 3.7.1) is applicable, from theorem 8.12 in [GTO01]; that is,

/ 0, u|? do < C'/ Vpul? do + —/ IVul?.
Aro (Q) AQrO (q) 2r0

We now integrate for ¢ € 92 and we use Fubini’s theorem to obtain that

C
/ 0, ul? do < C/ \Vul|? do + —/ Vu|?
o0 o0 0 JQ

C
< 0/ |vTuy2da+—/ IVrul? do
o0 o JoQ
<c [ |Vrutds
o0
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where we used lemma 8.5.1 in the last step. [

The global Rellich estimate leads us to the next bound for the single layer potential

operator on the boundary of a Lipschitz domain.

Proposition 8.5.3. Suppose that 2 € D, A € MiM(B) and b € Lip(B). Then, for every
f e L*(09),

Iflz200) < ClIVTSFlir2(00);
where C'is a good constant.

Proof. Suppose first that f is Lipschitz, and consider a Lipschitz extension F' : B — R of
f, which vanishes on 0B. Set uy = St f, and u— = S_ f, then the jump relation (corollary
8.4.7) with H = F shows that

Oy;uy - Fdoj — O u_ - Fda;- — F? do.
00, o5y, j=oo Joo

Since now F' is continuous in €2, the Cauchy-Schwartz inequality shows that

FlI32p0) < limsup (|10, Nia 410, F )
1E 17200 < im sup 19wt 200 11 L206) + 19070l L2y 1 F 1 2202

= [[F'll 29 lim sup <||8Vju+||L2(6Qj) + Hayg.U—Hm(aQ;)) :

j—00
therefore we obtain
2 . 2 2
HFHL2(8Q) < 211mSUP Hal/jquHLQ(QQ.) + ||8y(u*||L2(aQ/,) . (8.15)
Jj—00 J J J

From proposition 8.3.3 and 3.3.1, uy is a C1 solution in Q_] Note also that, from the global

Rellich estimate (proposition 8.5.2), we obtain that

1904 122(00,) < CIVTU+ 12200,
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where C'; is a good constant for €2;. We now apply corollary 8.4.2 to obtain that

lim sup Hayju+||%2(ag) < CHVTSf”%?(aQ)'
j—00 !

A similar process shows that

limsup ||8V/,U—||%2(89/,) S CHVTSfH%Q(aQ)
Jj—00 J J

Adding those inequalities and plugging in (8.15), we finally obtain that

Hf||%2(3g) < QCHVTSJC”%2(3Q)7

which shows the desired inequality for Lipschitz functions f : 902 — R.
To obtain the estimate for f € L%(9Q), we use the fact that Lip(9Q) is dense in L?(99)

and S : L?(0Q) — Wh2(99Q) is continuous (from lemma 8.3.2) to conclude the proof. [
We now pass to bounded drifts.

Proposition 8.5.4. Suppose that 2 € D, A € M3 M(B> and b € L°°(B). Then, for every
f € L2(09),

11200y < CIVTS 200
where C'is a good constant.

Proof. Let (by) be a mollification of b, and let S, be the single layer potential operator for
the equation

— div(AVu) + by Vu = 0

in €. Let also Gy, be Green’s function for the same equation in B. Then, for any fixed n € N
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and p € 09,

VrSuf(p) - VISE(p)] < /a 1¥5Gn(p.0) = V00, )|1f(a) do (o)

< Cll bl [ 1= > 1(a)l dota),
from proposition 5.5.2. Since the kernel |p — q|3/ 2—d i5 integrable on 99 and

1on = bl p2a() 7555 O

we obtain that

L2090
VrSpf M VrSf.

n—oo

Since by, € Lip(B), we apply proposition 8.5.3 to obtain that

HfHL2(aQ) < CHVTSanL2(8Q)7

where C' is a good constant. We then let n — oo to conclude the proof. O]

The last proposition, together with the continuity method, show invertibility of the single

layer potential on the boundary for symmetric matrices A.

Theorem 8.5.5. Let ) be a Lipschitz domain Q, A € My M(Q) and b € L*>°(Q). Then, the
operator S : L?(09) — W12(9Q) is invertible, with

157 1l z2(00) < CIVTSlL2(00):

and C being a good constant.

Proof. After a dilation and a translation, we can assume that €2 € D.
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We will use the continuity method: consider the family of equations
Liu = —div(AVu) + tbVu = 0,
for t € [0,1], and the family of operators S; : L?(9Q) — W12(99Q), with

S/ (p) = /a  Gilp.a)fa) do(a),

where Gy is Green’s function for the equation L;u = 0 in a large ball containing 2. We now
show that the map ¢ — &, is continuous in the W1’2(8Q) norm, by showing that, for any

t1,to € 0,1] and any f € L?(99),

1St f = Sta fllwr2(a0) < Cltr — L2lllfll z2(a0)-

For this purpose, we first use the estimate in proposition 5.5.2, to obtain that, for p € 02,

St f(p) — Sty [ (p)| = ‘/E)Q(th(p, q) — Gty (p,q)) f(q) da(q)‘

< Clt — ty] /a p= a0 dota)

<ct-nl ([ - qlg_d!f(q)l2da(q)>% (f - Q|g_dda(Q)>%

1/2
< Clt1 — ( NG q|3—d|f<q>|2do<q>) |

since |p — q|5/2*d is integrable on 0f). So, after squaring and integrating for p € 0f), we

obtain that

IS = St fllz200) < Cltr — t2l1 2 00

For the tangential gradient of the difference St f — St, f, we apply the second estimate in
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proposition 5.5.2 and a procedure similar to above, to obtain that

1/2
VSt (9) — VoSe, f )] < Clty — 1] ( | o= a2 da<q>) ,

which shows continuity of ¢t — S;. Note now that the operator Sy in invertible, from remark
6.9 in [KS11]. The continuity method now shows that S : L?(9Q) — W12(99Q) is invertible.
We then use the estimate in proposition 8.5.4 to bound the norm of the inverse, which

completes the proof. O
We are now led to solvability of the Ro Regularity problem in Lipschitz domains.

Theorem 8.5.6. Let €2 be a Lipschitz domain, A € MiM(Q), and b € L°°(Q2). Then the
Regularity problem Rj is uniquely solvable in €2, with constants depending on d, A, y, ||b|co,
the Lipschitz character of 2 and the diameter of ). Moreover, the solution admits the

representation

u(x) = 84(S f)(x) = / G, )5~ 1(q) do(g).
o0

Proof. Let f € W12(Q). From theorem 8.5.5, the operator S : L?(9Q) — W2(99Q) is
invertible, therefore we can consider the function ¢ = S™Lf € L%*(9Q). Set also u =
S+ (S71f). From proposition 8.3.3, u solves the Dirichlet problem in 2, with data S(S™1 f) =

f. Moreover, from the same proposition,

1Y) 120y = HTSHES T 200y < IS 20y < Cllf gy

where C' is a good constant, from theorem 8.5.5. This shows that S; (S™1f) solves the

Regularity problem with data f on 0f2. Uniqueness now follows from proposition 8.1.3. [

We will be able to drop the symmetry assumption on A later, in theorem 11.0.3.
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CHAPTER 9
THE DIRICHLET PROBLEM FOR L/

This chapter will focus on solvability of the Dirichlet problem for the equation Lfu = 0. We
will rely on the results of the previous chapter, and we will use the adjoint of the single layer

potential operator in order to establish existence.

9.1 Uniqueness

In order to show uniqueness, we will need a nontangential maximal bound on the derivatives

of Green’s function. To show this, we first show the next lemma.

Lemma 9.1.1. Let Q be a Lipschitz domain, A € M, (2) and b € L*°(€2). Let also y € Q,
and ¢ € 0, > 0 fixed, such that y ¢ T5,(¢q). If Gy denotes Green’s function for L in Q

with pole at y from theorem 5.2.4, then Gy, € Wh2(Th,(q)).

Proof. We will assume that b is Lipschitz; the case of bounded b can be shown by using a
mollification argument.

Consider the functions Gy, that are constructed in lemma 5.1.2, and consider n € N large,
such that G, is a solution of the equation LGy, = 0 in Ty,(q). Since G € WH2(Ty,(q)),
proposition 3.6.3 shows that Gy, is continuous in W12 (Ty,.(q)).

Note now that, from Carleson’s estimate (lemma 6.3.2)
Gn(z) < CGn(As4r(q))

for all x € Ty-(¢). But, (v) in lemma 5.1.2 shows that (Gy,) is equicontinuous in a small

neighborhood of Ay,-(q), therefore there exists C' > 0 such that, for a subsequence,

G, (A4 (q) <C
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for all n € N. This shows that Gy, is uniformly bounded in Ty.(q), hence, Cacciopoli’s
estimate in Ty-(¢) (lemma 3.1.1) shows that (Gy, ) is uniformly bounded in W2(Ty,.(q)),
therefore a subsequence converges to some g € W12(Ty,(¢)) almost everywhere in Th,.(q).
But, again from (v) in lemma 5.1.2, there exists a subsequence of G, that converges to Gy,

in every compact subset of Q\ By. Hence Gy € W1’2(T2T<Q)), which completes the proof. [

Lemma 9.1.2. Let (2 be a Lipschitz domain, A € My M(Q)’ and b € L°°(Q). Let alsoy € Q,
and Gy be Green’s function for the equation Lu = 0 in 2, centered at y. Let also By C (2 be
a ball which is compactly supported in 2 and is centered at y. Then, for ¢ > 0 sufficiently

small,

/ ‘(VG’y);F do < oo,
o0

where (VGy): is the nontangential maximal function in €2\ By, and where the supremum

in the nontangential maximal function is taken e-close to the boundary.

Proof. From theorem 5.2.4, Gy is a qu(f_l)(Q \ Bp/2) solution of the equation Lu = 0
in Q\ By/2, were By/2 is the half ball of By. Therefore, corollary 3.3.3 shows that Gy is
continuously differentiable close to the boundary of Bj.

Consider now the solution u to the Regularity problem Ry for L in Q\ By, with u|gn =0
and u|gp, = Gy, which exists from theorem 8.5.6. Note also that u € W12(Q\ By), and also
Gy € W12(Q\ By), which follows from lemma 9.1.1 and the fact that Gy is continuously
differentiable in the interior of © \ {y}. Therefore, u — Gy is a VVO1 ’2((2 \ Bp) solution to
Lu = 0, hence u = Gy in Q\ By. But, for ¢ > 0 sufficiently small, since u solves the

Regularity problem,

/ (Va) 2 do < oo,
o)

which completes the proof. O

The next proposition shows uniqueness for the Dirichlet problem for the equation Lu = 0.
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Proposition 9.1.3. Let Q be a Lipschitz domain, A € M) ,(Q), and b € L>(Q2). Suppose
that v : @ — R is a weak solution to the equation Liu = 0 in Q, with v* € L?(9Q) and

u — 0 non-tangentially, almost everywhere on 0€2. Then u = 0.

Proof. The proof is similar to the argument in proposition 7.3.4. Fix y in €2, write Gy (z) for
G(z,y), and for € > 0 recall the definitions of ¢, R. and ¢ from proposition 7.3.4. Then

we obtain that, for € small,

u(y) = u(y)dey) = /Q AVG Y (ude) + VG, - ude.

which implies that
R Re

since u is a solution of Lfu = 0 in €, and from the support properties of ¢e.

Recall now the definitions of Z;, P;, (); and ¢ from theorem 7.3.4. We then write

m() +CQE
I < —Z / / VG (20, 9)lulzo, )| dsda.

Y(xg)+ere

Then, note that for each one of the summands, if 29 € Q; and s € (¢(xg)+c1 &, (xg) +c2€),

then (x¢,s) € I'(¢) for all ¢ € P;. Therefore,

(zg)+coe d
L [ G . s < C AT

xo —l—cl 5

and, after integrating on Pj, we obtain that

(zg)+cae
/ / VG, (w0, 8)|lulzo, s)| dsday < C / (V)i do.
Qj

P(zg)+ere P;
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Therefore, the sum above is bounded by

—ch/ (VGy)*ut do = 0/ (VGy)iut do.
U,

;N0

For e sufficiently small, the term

%12
[ Gz o

is uniformly bounded, from lemma 9.1.2. Therefore, the Cauchy-Schwartz inequality and the
dominated convergence theorem show that the last term goes to 0 as € — 0. Hence, adding
those integrals for ¢ = 1,... N, we obtain that I; — 0.

For Iy, we first estimate

C :1:0 +025
/ZmR |AV¢:Vu - Gy| < ;Z/ / |Vu(zo, s)||Gy(xo, s)| dsdzxy.
i € j

Y(xg)+tere

For each one of the summands, we apply the Cauchy-Schwartz inequality. For the term with

the gradient of u, we apply the Cacciopoli inequality, to obtain

xo +02€ a:() +035
/ / [Vu(z0, 5)|2 dugds < / / [u(z0, 5)|2 dzods
Qj Y(xg)ter e W(xg)+coe

C' (zg)+cse _
<5 / / i (g)[2 dods = € 92 [ (q) 2.

W(xg)+coe

for each ¢ € P;. Moreover, for every q € P},

x(] +62€ J 42 . 9
L [ e o dats < €416z Pl < €92 (9

Y(xg)+ere
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where we also used proposition 8.1.2. Therefore the Cauchy-Schwartz inequality shows that

JU() +CQ€
/ / Vu(zo, 5)||Gy (w0, )| dsdzg < Ol ()(VGy):(a),

Y(xg)+ere

for all ¢ € P;, and after integrating on P;, we obtain that

(xg)+cae
/ / |Vu(zg, s)||Gy(xg, s)| dsdzg < C’s/ ug(VGy)g do.
P

Y(xg)+ere ’j

Returning to I, we estimate

c
/Zme AVuVo- Gyl < g%:(]sfp L(VGy)? da—/UimZi CE(VGy)? do,

J

and the last term goes to 0 as ¢ — 0, with an argument similar to the case of I7. Adding
for2=1,--- N shows that Iy — 0 as well.

Finally, for I3, we write

C CUO +Cg€
fy, 00 Gl < T30 [ / y{0, 9)ulzo, )| deods

J:Q +cl 5

and for each one of the summands, for all ¢ € P;,

:ﬂo +62€ I1
/Q / ‘Gy(xo,s)u(xo,s)‘ drods < &%~ (Gy)g(q)ug(q)
j

xo —|—01 5

Therefore, after integrating over P; and summing for j, we obtain that

bWVo-Guu| < C / (Gy) da<C€/ ur(VGy)k do,
|, 199G > ], 6o VG,

iNZ;

and the last term goes to 0 as ¢ — 0. This finishes the proof. O
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9.2 Singular integrals

We will now turn our attention to integral operators that will be central to establishing
existence for the Dirichlet problem for Lf. The setting will be as in the case of the Regularity
problem for L: we will assume that ) is a subset of a ball B, and we will extend the
coefficients A and b in . We will also set G'(y,z) to be Green’s function for the operator
Lty = — div(AVu) — div(bu) in B.

Note that, from proposition 5.1.3, G'(y,z) = G(z,y), where G is Green’s function for
the operator Lu = — div(AVu) + bVu in B.

The first operator we will consider is the maximal truncation operator

T*f(p) = sup
6>0

/ VEG(q,p) - f(q)do(q)],
lp—q|>d

for f € L?(0) and p € 9. An important property of T is the fact that it is bounded

from L2 to L2, as the next proposition shows.

Proposition 9.2.1. Let 2 be a Lipschitz domain, A € M) ,(Q2) and b € L*°(2). Then
the operator T* is bounded from L2(99Q) to L2(9N), and its norm is bounded by a good

constant.

Proof. We will mimic the proof of proposition 8.2.1.

Without loss of generality, we will assume that 0 € 2 and diam(§2) < 1/40. Then
B € By(0). Let now Gy be Green’s function for the equation —div(A'Vu) = 0 in B.
Consider also the periodic extension Ay of A in R?, as in lemma 2.2.2, and set ['(x,y) to be

the fundamental solution of the equation — div(A'Vu) = 0 in

T* f(p) = sup
6>0

/ VT (q,p) - f(q) do(q)
lp—q|>0

is bounded from L%(9Q) to itself, with the bound being a good constant.
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We now write

ViG(q,p) = (VEG(q,p) — VEGo(q,p)) + (VEGo(q.p) — VAT (g, p)) + VI (q,p)

= k1(q,p) + ka2(q,p) + VLI (q,p).

After fixing 6 > 0, multiplying with f and integrating, we estimate

/ k1(a.p) f(0)] do(q) < C / ip— %27 (q)| do(a). (9.1)
lp—q|>6 lp—q|>0

from proposition 5.5.2. For ko, we fix p € 0) and we set

u(z) = Go(z,p) — I'(z,p),

: : : 1,4
for x € B. Then, the regularity properties of Green’s function show that u € W™ "2(d-1)(B),

and for every ¢ € C2°(B),

/AtVu(:L‘)ng(x)dx:/ AthGo(m,p)ng(:p)dx—/ AN LD (2, p)Vo(z) da
B B B

= o¢(p) — ¢(p) =0,

since G is Green’s function for — div(A%u) = 0 in B, and I'(z, y) is the fundamental solution
d

of the equation —div(A*Vu) = 0 in R?. This shows that u is a W e (B) solution to

—div(AVu) = 0 in B, therefore lemma 3.2.1 shows that u is a W1h2(B/2) solution to

—div(AVu) = 0 in B/2. Hence, estimate 2.2 in [KS11] shows that the function

Vu(z) = VGo(z,p) — Val'(z,p)
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is bounded in B/4, hence ks is bounded, with the bound being a good constant. Therefore

/ |@@Mﬂwwd@30/ 1(@)] do()
lp—q|>6

lp—q|>0

for a good constant C'.
We now add the last estimate with (9.1) and we use the definition of 7, to obtain that,

for any 6 > 0,

/“ V4G (4.p) - /(q) do()
lp—q|>0

<o f  (p=d ) i@l + T )
p—q|>

hence

Wﬂmso/

mqbéop—mW*d+1)uwnmw@+fﬁﬂm.

The fact that the kernel |p — q]?’/ 2-d 4 1 s integrable on 0f2, together with boundedness of

T*. complete the proof. O

The second operator we will be interested in will be the operator

Th(p) = lim ViG(p,q) - Vrh(g) do(q), (9.2)
£20J|p—q|>e

for h € Wh2(0Q).

Proposition 9.2.2. Let Q2 be a Lipschitz domain. Then the limit in the definition of T" in

(9.2) exists in L?(9€2) and almost everywhere, hence Th € L2(09).

Proof. Since Vph € L?(99) for h € W12(99), the proof is similar to the proof of proposition

8.2.2 using theorem 3.1 in [KS11] and boundedness of the operator Tfl that appears there. []
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9.3 Existence

In order to show existence for the Dirichlet problem for the equation Ltu = 0, we will consider
the adjoint of the single layer potential for the equation Lu = 0. Our first observation is

that, from theorem 8.5.5, we obtain the following proposition.

Proposition 9.3.1. Let 2 be a Lipschitz domain, A € M} M(Q) and b € L*>(Q). Set
S*:w2(00) — L2(09)

to be the adjoint operator to S : L2(8Q) — Wl’z(aQ), from theorem 8.5.5. Then this

operator is invertible, and its norm is bounded by a good constant.

Note that, at this point, we need to assume that A is symmetric: recall that we have
proved theorem 8.5.5 using the Rellich estimates, which in turn we have showed assuming
that A is symmetric.

We turn to finding the formula for the adjoint: for this purpose, let f € L2(8Q) and
H € W12(Q). Then, lemma 2.4.7 shows that there exists a unique h € W1H2(9Q), such

that H = R9h: that is,

(SF, H)yriza0) = /me -hdo + /m VSt - Vohdo.

For the first integral, we compute

/m §F-hdo = /m ( /m G(p.q)f(a) do<q>) h(p) do(p)
= /m( 0 G(p, q)h(p) da(p)) - f(q) do(q),

from Fubini’s theorem, since the double integral converges absolutely from the pointwise

bounds for GG. For the second integral, proposition 9.2.1 shows that the dominated conver-

184



gence theorem is applicable, hence
| Vist-Vrgdo= [ (1w [ VhGG0)f) o)) - Vrhip)do(p
o0 o0 \e=0J|p—g|>e

e—0

= lim 4 o : o
=1 o ( /|pq|>6 VG, q)f(g)d (Q)) Vrh(p) do(p)

e—0

= lim b : o : o
iy [ ( /|pq|>€VTG<p>Q) Vrh(p)d <p>> f(q)do(q)

= im 4 . o : g
_ /a ) <1 /|pq|>€VTG<p’q> Vrh(p)d <p>> f(q) do(q),

e—0

where we used Fubini’s theorem for the third equality, since for fixed € the inner integral is
absolutely convergent, and the dominated convergence theorem for the last equality. There-

fore, we finally obtain that

S*H(q) = | G(p,q)h(p)do(p) + lim V4G(p.q) - Vrh(p) do(p),
09 €20/ |p—q|>¢

therefore using proposition 5.1.3, we are led to the following lemma.

Lemma 9.3.2. Let Q be a Lipschitz domain, A € M} M(Q) and b € L°°(Q2). Then, for any

H e W=12(0Q) with H = Roh in the sense of lemma 2.4.7,

S*H(p) = / G (p, q)(g) do(q) + lim VLG (p,q) - Vrh(g) do(q).
o0 e=0J|p—q|>e

We will also need to compute the formula for S* H when H is of the special form H = Esh
for h € L?(9Q), where Ey : L?(9Q) — W~12(9Q) is the embedding that appears right before

lemma 2.4.8.

Lemma 9.3.3. Let 2 be a Lipschitz domain, A € MiM(Q) and b € L*>(R). Then, if
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H e W~L2(99) is of the form H = Eoh for some h € L?(9Q),

S*H(p) = /59 G'(p, q)h(q) do(q).

Proof. Let f € L2(0Q). The definition of Ey shows that

(SF By = [ Sr-hdo= | [ 6. s(ant) dalads(s)

0

-/ ( | cwano) do<p>) Fla)do(a)
- </6'Q G'(-,p)h(p) da(p),f>L2(m)a

from Fubini’s theorem, since the kernel G(p,q) is integrable on 0. This completes the

proof. O

We will now extend the operator 8* inside €. In order to do this, note that for any fixed
x € €1, the function

y— Gl(z,y) = Gu(y)

solves the equation Lu = 0 away from x, therefore it is continuously differentiable near
0f) from proposition 3.3.1. Hence, restricted on 0S2, G, € W1’2(8Q). Therefore, for F' €
W—12(0Q), we can define

ST F(z) = F(Gy).

We are then led to the following expressions.

Lemma 9.3.4. Let Q be a Lipschitz domain, A € MiH(Q) and b € L®(Q). If H €
W*I’Q(ﬁﬁ) can be represented as H = Roh for h € W1’2((?Q), in the sense of lemma 2.4.7,

then

SiH@) = | (Ge.a)hia) + V4G w.0) - Vrhla)) dola)

186



In the special case where H = FEs f for some [ € L2(3Q), then

St H(x) = /8 G@.0)f(q) dota)

Proof. The first representation follows from the definition of S and a proof analogous to
the proof of lemma 9.3.2. The second representation follows from an analogue of the proof

of lemma 9.3.3. O
The basic properties of the operator S are now demonstrated in the next proposition.

Proposition 9.3.5. Let Q be a Lipschitz domain, A € Miﬂ(Q), b e L°°(Q). For every
Few1200), u= SiFisa VV&)’CQ(Q) solution of the equation Lfu = 0 in Q. Moreover, u

converges to S*F on 02, nontangentially, almost everywhere, and also

HU*HL?(aQ) < CHFHW%J(aQ);

where C' is a good constant.

Proof. We mimic the proof of theorem 8.3.3. The proof that u € Wﬁ)’g(Q) and that u solves

L'u = 0 in € is identical, after noting that the functions
v Glz,q), > VIG(z,q) T(q)

are solutions of L'u = 0 in Q away from ¢, for any ¢ € 09, from lemma 5.4.1, and where
T(q) is any tangential vector to ¢ at 0f2.
To show the bound on the non-tangential maximal function, we write /' = Ro f for some

f € Wh2(9Q), in the sense of lemma 2.4.7. Let p € 9Q and z € T'(p). Set r = |z — p|. We

then write, using lemma 9.3.4,

u(z) = /aQ G'(x,q)f(q) do(q) + /m VaG (2.q) - Vrf(q)do(q) =11 + I
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To bound Iy, note that x € T'(p), therefore |z — q| > C|p — q|. Hence, the pointwise bounds

on (G show that

) < /8 16 @] dlo) < C /a e (@)l doq) < /a Ip=a 10 doto)

To bound Iy we set r = |x — p|, and we write

|Io] < /|p_q|<r IV3.G(q,2) - Vo f(q)| do(q) + /p_qm V1G(q,x) - Vo flq)do(q)

= I3+ |14].

For I3, note that |z — ¢q| > Clx — p| = Cr for any ¢ € 012, hence the pointwise bounds on
VG show that

C
B<C[  e—d V@l do@) < 5 [ [Vef@)] dola) < CM(TRA)0),
|p_Q|§7’ r Acr(p)

where M is the Hardy-Littlewood maximal operator on 0f).
For 14, we use Holder continuity of the derivative of Green’s function in the adjoint
variable from proposition 5.4.2, and the definition of the maximal truncation operator, and

we estimate

L] < / (V4G(g.p) + (VEG(g, x) — VEG(g.p)) - Vo f (q) dolq)
lp—q|>r
< T*(Vrf)(p) + / IVLG(q,x) = VEG(q.p)| IV f(q)| do(q)
lp—q|>r

<T*(Vrf)(p)+Clz — pla/ (I:lf —gl T p - q\lfd*a) IV fq)|do(q)
lp—q|>r

< T*(Vof)(p) + Clz — p|® / p— a0V f(q) do(q)
lp—q|>r

=T*(Vrf)(p) + CrIs,
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since |z — q| > C|p — ¢|. Finally, to bound [I5, we write

oo

I5 < / p— g £ ()] do(g
kzz%) 2k7’<‘p7q|§2k+17~| | | (¢)|do(q)

<

(2) " @) dota)

<oy ()T () / V1 f (@)l do(a)
k=0

0 /Zkr<p—q|§2k+1r

[p—q|<2k+1y

C . 2d71

<0y ahort (v () = S (V) )

k=0
< Crm“M(Vrf)(p),

since —a < 0, which implies that the series converges; moreover, C' is a good constant.

Combining the bounds for I;, ¢ = 1,...5, we finally obtain that

u(x)] < C /8 Ip= a1 @) do(a) + CM(V ) (o) + T (V1))

for any = € I'(p), hence

W(p) < C /a = a5 (@) do(a) + CM (V1) (p) + T (V7o)

Since now the kernel |p — ¢|2~% is integrable on 99, M is bounded from L2(9) to itself,

and applying proposition 9.2.1, we obtain the estimate

le*llz2g00) < Ol 200y + CIVE 200) < CIFl—12000)-

which completes the estimate on the non-tangential maximal fuction.
Finally, we turn to non-tangential, almost everywhere convergence on the boundary. We

claim that, from the bound on the nontangential maximal function we have just shown, it
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is enough to show that

STF(x) — S*F(p), (9.3)

TP

nontangentially, almost everywhere, for F' € V| where V is a dense subset of W_1’2(8Q).
Suppose that this is the case; then let F € W~12(9Q) and set u(z) = S* F(x). Consider
also Fy, € V such that Fj, — F in W12(9Q), and set uy,(z) = S¥ Fp(x). Set also Ay to be
the set of p € 9 such that

un(x) —— S Fn(p),

and A = J,, An; then A, has full measure on 0€2, hence A has full measure on 9 as well.

Fix now n € N and p € A. Then, since
un(z) " S*Fn(p)

for x € I'(p), we compute

limsup u(z) — S*F(p) < limsup (u(z) — up(x)) + lim sup up(x) — S*F(p)

T—p T—p T=p
= limsup (u(z) — up(x)) + S*Fp(p) — S*F(p)
T—p
< sup |u(z) — up(z)| + S*(F, — F)(p)
zel'(p)

< (u—un)*(p) + S*(Fn — F)(p),
for every n € N. Hence, for any € > 0,

{p € A‘ limsupu(x) — S*F(p) > 5} C {p € A‘(u —up)*(p) + S*(Fn — F)(p) > 5} :

T—p
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hence Chebyshev’s inequality shows that

o({rea

hr;;szpu(a:) —S*F(p) > €}> < 2/89 (w—up)" +S*(Fp — F)) do
C

€

<

VS

(= wn)*ll 2o + 1™ (B = F)ll 2o ) -
for any n € N. But, from the choice of the F;, and boundedness of S*,

IS™(Fn = F) 2(00) 7= O,

n—oo

and also, from the bound on the nontangential maximal function shown above, we obtain

1w = un) "l r290) = (ST Fn = F) I 12090) < CllFn = Flly-12(00) 0

n—oo

This shows that, for any € > 0,

o({rea

lim sup u(z) — S*F(p) > 5}) =0,

T—p

hence

limsupu(x) < S*F(p)
T—p

for almost every p € A. A similar process shows that

. . *
hgrcn_igfu(x) > S"F(p)

for almost every p € A, therefore u converges to S* F' nontangentially, almost everywhere.
To conclude the proof, it remains to show that (9.3) holds for F' in a dense subset V'

of W—12(9Q). This subset will be the set Ey(L?(d9)), which is dense in W~12(9Q) from

lemma 2.4.9, and where Fy : L?(9Q) — W~12(9Q) is the canonical embedding. We now let
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fe L2(3Q), and we note that, from lemma 9.3.4,

S (Eaf)(x) = /a Gla.0)f (@) dola),

and, from lemma 9.3.3,

S*(Eaf)(p) = /8 Gla.1(0) dola)

In order now to show that

/ Glg,2)f(q) do(g) — | Gla.p)f(q) dolq)
o0 =P JoN

nontangentially, almost everywhere, we follow the proof of the analogous result in proposition
8.3.3: instead of Lipschitz continuity of Green’s function from proposition 5.3.3, we use
Holder continuity of Green’s function in the adjoint variable, which holds from proposition

3.6.2, since G solves the adjoint equation away from the pole. This completes the proof. [
We can now show existence for Dy, for the equation L'u = 0, when A is symmetric.

Proposition 9.3.6. Let 2 be a Lipschitz domain, A € Miu(Q) and b € L°°(Q2). Then
the Dirichlet problem Dy for the equation Lfu = 0 is uniquely solvable in 2, with constants
depending only on d, A, i, ||b||c and the Lipschitz character of Q. Moreover, the solution

admits the representation
u(@) = 81 ((87Y) @).

Proof. Uniqueness follows from proposition 9.1.3. For existence, let f € L2(8Q). From

proposition 9.3.1, the operator

S*:w2(00) — L2(09)
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is invertible, therefore we can consider the element F' = (S*)71f € W—12(99Q). Set now
u = STF. Then proposition 9.3.5 shows that u is a solution to Do, with boundary values

S*F = f, and also

||U*HL2(GQ) B C||FHV[/—1,2(09) = ||(5*)_1f|fw—172(89) = CHfHL?(aQ)’

where we also used proposition 9.3.1. This completes the proof. O]

We will be able to drop the symmetry assumption on A later, in theorem 11.0.4.
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CHAPTER 10
THE REGULARITY PROBLEM FOR L/

We now turn to solvability of the Regularity problem for the equation Liu = 0. We will
mainly follow the method of chapter 8, but since constants are not necessarily solutions to

the equation Liu = 0, a couple of modifications need to be made.

10.1 Formulation and uniqueness

We begin with the formulation of 2.

Definition 10.1.1. Let 2 be a Lipschitz domain, and p € (1,00). We say that the Regularity
problem R, for the equation L'u = 0 in  is solvable, if there exists C' > 0 such that, for

every f € WHP(Q), there exists a solution u € WI})’CQ(Q) to the Dirichlet problem

L'y =0, inQ
u=f, on 09,

such that
IVull oogy < CIF lyaon.
and v = f on the boundary is interpreted in the nontangential, almost everywhere sense.
We now turn to uniqueness for the Regularity problem for L'u = 0.

Theorem 10.1.2. Suppose that {2 is a bounded Lipschitz domain, A € M) ,(©2) and b €
L>(Q). Let u € W&)’CZ(Q) be a solution to Ltu = 0 in Q, with (Vu)* € L?(09Q) and u — 0

nontangentially, almost everywhere. Then, u = 0.

Proof. We begin by computing, as in proposition 7.3.3,

u(y) = u(y)dely) = /Q AV Gy (ude) + BV Gy - ude.
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where Gy (z) = G(x,y) is Green’s function for the equation Lu = 0 in 2, therefore

u(y) = / AVGyN ¢e - u+ AVGyNVu - ¢ + bV (Gyo:) - u — bV de - uGy
Q
Q

= / AVGyNV ¢ - udx — / bV e - uGy dx — / AV@NVu - Gydr =11 + Is + 13,
Rg Rs RE

since u is a solution of Lfu = 0, in ©Q, and from the support properties of ¢.. We then
bound the last terms exactly as in the proof of proposition 8.1.3 to show that they go to 0

as € — 0. O

10.2 Layer potentials

We will now assume that 2 € D, as in chapter 8; that is, 0 € Q and diam(€2) < 1/40. We
will also set B to be the unit ball in R?,

Given A € M) ,(Q), we will extend A periodically as in lemma 2.2.1, and similarly for
b, depending whether b € Lip(Q) or b € L>®(2). We will then set G? to be Green’s function
for the equation Liu = — div(AVu) — div(bu) = 0 in B.

For f € L?(09), let St be the operator

S () = /a G0 f(a) doa),

for z € Q. If 2 ¢ Q0 we denote this operator by S | and for x € 99, we denote it by S?; this
will be called the single layer potential operator for the adjoint equation Lfu = 0 in .

In order to consider differentiability properties of St on 91, we will assume that b is
Holder continuous. This, together with proposition 5.3.4 will show that we obtain bounds
on the derivative of Green’s function in the adjoint variable that are similar to the bounds

for the derivative of Green’s function. Hence, proceeding as in lemma 8.3.2, we can show
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the next proposition.

Proposition 10.2.1. Let 2 € D, A € M) ,(B) and b € C*(B). The operator S! maps
L2(09) to W2(0Q), with

VrS'f(p) = lim G'(p.q)f(q)do(q),
€0/ |p—q|>¢

and its norm is bounded above by a good constant that also depends on |[b]|ca(q)-
We can also show the next proposition.

Proposition 10.2.2. Let Q € D, A € M, ,(B) and b € C%B). If f € L?(09), then
SEF fe Wé’g(Q) is a solution to the Dirichlet problem Dy for the equation L'u = 0 in €,
with boundary values Sf on 9. Similarly, St f is the solution to D9 in B \ ©, and has

boundary values S f - xgn on 9(B \ Q). In addition,

(VS 1 r200) < ClLA 200y

where C'is a good constant.

Proof. The proof is identical to the proof of proposition 8.3.3, for the fact that Sif and St f
are solutions. For the boundary values, instead of Lipschitz continuity of Green’s function
in proposition 5.3.3, we use the analogous result for the adjoint of Green’s function, from
proposition 5.3.6. Moreover, for the boundedness of the nontangential maximal function, we

use proposition 5.5.3 instead of proposition 5.5.2, which completes the proof. O

We now proceed to studying the behavior of the single layer potential on the boundary,

and the jump relations.

Proposition 10.2.3. Let Q € D, A € M), ,(B) and b € C%(B). Then, for any f € L2(09),

VSLf (@) T(p) = V1S f(P),
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non-tangentially, almost everywhere on 9€). Therefore, if 2; 1 2 is the approximation scheme

in theorem 2.3.6, we obtain that

limsup/ | <]Sif\2 + |VTjSif|2) doj < Hstf||12/V1,2(aQ)7

Jj—oo JOQ,
and similarly for St f.

Proof. The proof is identical to the proof of proposition 8.4.1, using the analogous estimates

for the adjoint of Green’s function. For the second part, we proceed as in corollary 8.4.2. [

We now pass to the discontinuity of the normal derivative of the single layer potential

across the boundary of (2.

Lemma 10.2.4. Let Q € D, let A € M), ,(B), b € Lip(£2) and consider a Lipschitz function
F:B — R with F =0 on 0B. Then, for z € Q,

/ LG (x,q) - F(q)do(q) = — / AVGLVE +bVF -G,
o0 B\Q
while, for z € B\ Q,

G (x,q) - F(q) do(q) = / AVGLVE +bVF -G,

12)9) Q

where 92 denotes the conormal derivative with respect to ¢ on 9<, associated to Lf, and

Proof. Suppose first that = € 2. Then, from proposition 5.1.3 and theorems 8.8 and 8.12 in
[GTO1], GL(-) = G¥(-,z) and G is a classical solution of L'u = 0 in B\ Q; that is,

div(A'VG,) = — div(bGy),
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almost everywhere in B, away from x. Therefore, since F' =0 on 0B,

ayGtx'FdU:_/

G - Fdo = — / div(F - A'VGL)
a(B\Q)

o9 B\Q

=— AVGLVF + div(A'VGL) - F
B\Q

= —/ ANGIVE +WVEF -G,
B\Q

because GY is a classical solution of Liu = 0 B\ Q. Now, if z € B\ Q, then G, is a classical

solution of L'u = 0 in €, therefore

QdiV(F-AtVG;) = /Q ANVGLVF +bVF -G,

9]
which concludes the proof. ]

Lemma 10.2.5. Let B be a ball, and let A € M) ,(B), and b € Lip(B). Then, for all
p € B,

lim IOLG(p, q) dop_(q) = —1,
e—0 OBe(p)

where 9, is the conormal derivative associated with LY.

Proof. Let € > 0, and consider the domain U: = B\ B:(p). Set also Gé(-) =G(p,). Asin

lemma 10.2.4, Gzt7 is a classical solution of the equation
L'y = — div(A'Vu) — div(bu) = 0

away from p, therefore

/ div(AVG),) = / div(bVGY).
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For the last term, the divergence theorem shows that

/ div(bVG}) = /a . G (b,v) do = — /a " )Gg, (b,v) doe,
5 € e\p

since Gé vanishes in 0B. But, from the pointwise estimates on G,

< Blloo / 19— a2 doe(g) < Clb]loo 2 0 (9B-(p)) — 0,
8Be(p) e—0

/ Gl (b,v) doe
0B:(p)

therefore

/ div(AVGL) — 0.

. e—0

We now integrate by parts, to obtain

/ div(AVGE) = - 0, G}y doyy. = /8 . 0, G}y dop — /8 " )angdaBe(p),
= e\P

)

therefore

0,G do — 0,Gt dop.
/335(]9) vEPTEBp) g o VT8

Note now that, from proposition 6.2.2,

~ dwz(q)
dop(q)’

OEGh(q) = 0LG(p, q) =

which is the harmonic measure kernel on 0B. Since the harmonic measure is a probability

measure, we finally obtain that

d,GL do — 6thaB:—/ dwP = —1,
/a&(p) CTPTEBW) " Jop TP OB

and this completes the proof. O
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We now define, for a Lipschitz function f: 92 — R and p € 012,

Kl f(p) = lim O3G(p. q)F(q) do(q).
€20 J|p—q|>e

The fact that this limit exists is shown in the next lemma.

Lemma 10.2.6. Let Q € D, let A € M), ,(B), b € Lip(B), and consider a Lipschitz function
F: B — R with F =0 on 9B. Then, for almost all p € 01,

1
Kf(p) = =F(p) — / AVGIVF +bVF - G
2 B\Q
1
=—5F () +/QAfVG§)VF+bVF -G},
Proof. Set Gl(q) = G(p,q), and let Vo = QU Be(p). We also define
0} = Q°NA(B:(p)), 02 = QN (Be(p)),
and we write
/ 0,Gh-Fdo= | 9,Gl-Fdo— | 9,GlFdo
IMNAc(p) oV

02

= aGt.Fda—/
Vp a

aVG;;-Fda—/ 0,Gl - Fdo
OB o}

(B\Ve)

=0—-1; — Iy,

since F' vanishes on 0B.

We now treat I;. We first write

I = / 0, Gl do = / div(F - A'VG) = / ANVGLVF +bVF -G,
O(B\V:) B\Ve B\Ve

since G is a solution of L'u = 0 away from p. Then, since the term bV F - Gé is integrable,
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we obtain that

I = A'VGLVF +bVF - G,
B\Q

For Io, we write

Iy = / 0,Gh-Fdo= | 0,Gl-(F—F(p))do+ F(p)/ 0,Ghdo = I3 + Iy
ol ol

02

From Lipschitz continuity of F' and the pointwise bounds on the gradient of G, we obtain

that

e—0

Il <C /a Ao =1 ~ Fp)ldo(p) < Ce* P og1(0B:(p) —> 0.

For I, for almost all p € 9€) there exists a well defined tangent plane to OS2 at p. For those

p, the symmetric difference between 9! and 92 is contained in a strip

Ac(p) = {y € B-(p)|ly - v(p)| < C?},

as in lemma 8.4.5, and if we combine with the pointwise bounds for the gradient of G, we

obtain that

e—0

| 0Gy /82 By Gy — 0.

Using lemma 10.2.5, we then obtain that

1 1
t t t t t
| OGpdo =3 (/ala,,apda+/a2(9yapda> +3 (/alﬁprda—/alE)prdcr>

1 1 1
== Oy Gl do + = /a Gt d —/ath —
2/35@) ”ApH?(@é A Rty T
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therefore 19 — —%F (p). Therefore,

1
K'F(p) = lim (=11 — I) = S F(p) —/ AVGEVEF +bVF -G
B\Q

e—0

For the second representation, using the fact that LtGé = 0p and the first representation in

this lemma, we write

F(p) = /B AVGLVF +bVF - G,
= / ANGLVF +WVF -G, + / AVGLVF + bV - G,
Q B\Q

1
- /Q ALV F +bVF -Gl + SF(p) ~ K'F(p),
which concludes the proof after rearranging the terms. O]

We are now led to the following convergence lemma.

Lemma 10.2.7. Let Q € D, let A € M), ,(B) and b € Lip(B), and consider two Lipschitz

functions F, H : B — R with F, H =0 on B. Then, for all j € N,

f, 2SsE @) 1 doitop) S [ (Gratta) + Pk ) doto)

j—00

and also

/ / / / ]‘
o 23S EO) PO )+ [ (7@ + F0) - K'H(0) ) doa)

where v, v

; are the unit outer normals on 25, Q}, respectively.

Proof. The proof is identical to the proof of lemma 8.4.6, using lemmas 10.2.4 and 10.2.6
instead of lemmas 8.4.3 and 8.4.5.

More specifically, let I; be the first integral above. From the formula for al,jSiF (pj), we
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first have that

L= [, ([0 e ar@ i) wo o)

Now, for j fixed, since |p; — ¢| is bounded below by some positive number, the last integral

is absolutely convergent, so we can apply Fubini’s theorem to obtain that

I; = /z—m </an (95§Gt(pj7Q)H(pj)d0j(Pj)> F(q)do(q),

where differentiation takes place with respect to the second variable of G. We now apply
the second representation in lemma 10.2.4 for fixed j, for the domain €2; and for G!. Since

q¢ Q_j, we obtain that

Ij = / ( / AtVGgVHerVH-GZ) F(q)do(q).
o0 \JQ;

By letting j — 0o, the dominated convergence theorem shows that

i rnd) ( /Q A'VGIVH + bV H - Gé) F(q)do(q)

J—00
1 1
:/ —FHda(q)+/ F(q) <——H(q)+/ AtVGZVH+bVH-GZ> do(q)
00 2 o9 2 Q

and, since ¢ € 0f2, the second equality in lemma 10.2.6 shows that
1 t
I; — §FH+F-ICH do(q).

[)9]

Set now [ ; to be the second integral. As above, and since now ¢ € Q;-, we obtain from the
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first representation in lemma 10.2.4 that

Ih=- / ( / ,AtVGZVHanVH-GZ) F(q)do(q).
o0 \/ B\

We then apply the dominated convergence theorem to obtain

I ——— | F(q < / AtVGZVHerVH-GZ) do(q)
oY) B\Q

j—00
1 1
:/ ——FHda+/ F(q) —H(q)—/ AVGEVH +bVH -Gl | do(q)
o0 2 o0 2 B\Q

1
:/ (——FH+F-ICtH) do(q),
o0\ 2

where we used the first equality in lemma 10.2.6. ]

As a consequence of the previous lemma, we obtain the jump relation.

Corollary 10.2.8 (Jump Relation). Let 2 € D, A € M), ,(B) and b € Lip(B). Then

a.stF~-H-d--—/ 0, SLF (") - Hp,) do's(p, FH do,
/mj WSHE W) ) dos0) = | 0 S-F W) - HOE)ao30) = | FHdo

for all F, H : B — R which are Lipschitz continuous and vanish on 9B, where Vi, V§ are the

unit outer normals on €25, Q}, respectively.

Proof. To obtain this convergence, we subtract the second line in lemma 10.2.7 from the

first. O

10.3 Invertibility of S

As in the case for the single layer potential for the equation Lu = 0, we will turn our attention
to the global Rellich estimates that will lead to invertibility of St : L2(9Q) — W12(9Q).

For the adjoint operator, though, the situation is more complicated, since we need to show
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control on the size of the divergence of b, together with control of the term w in 2. For this

purpose, we begin with the next lemma.

Lemma 10.3.1. Let 2 be a Lipschitz domain, and ¢ € 09, r € (0,rq). Then, for any
uwe Wh2(Q),

2 —2 2 2
* <
HUHLQ (Tr(q)) = Cr HUHLQ(TT(q)) + OHVUHLZ(TT((])),
where C' depends only on the Lipschitz character of 2.

Proof. Set Ty = 7~ 1T,(q), and let v(z) = u(rx), for z € Ty. Consider also Stein’s extension

operator ([Ste70], chapter VI, section 3)
£ WHA(Tp) -» WHA(RY),

which extends W12(Ty) functions to W12(R%) functions. Then the norm of € depends only
on the Lipschitz character of Tp. Since now Ev € W12(R?), there exists a sequence (vy,) in

C®(RY) with v, — v in WL2(R%). Then, Sobolev’s inequality shows that

ol 2t gy < NEull 2 ay < Call VEW p2gety < CallEvliypazay

< CallElvliwrz ry) < Cllvlizzi) + ClIVUll2r)-

We now compute, for any p > 1,

()P dy = / fu(ry)|P dy = / ju(z)Pr=? d,
TO TO Tr(q)

and also

Vol ds = [

PVl dy = [ Ju(oprr s
To )

To Tr(q
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which shows that

= ull o o ) S O Y lull 2y gy) + ORIVl p2 -

Therefore, we finally obtain that

lall 2# 1, gy < Cr7 =2 ull g2, gy + Cr > VU 2, )

= O ull 2z, ) + OVl 2z,

which completes the proof. n

For the next lemma, we recall the definition of w, from right before proposition 8.1.2.

Lemma 10.3.2. Let Q be a Lipschitz domain, ¢ € 092 and r € (0,rq). Then, for any

/ ul? < CT/ lu¥|? do.
Tr(a) Ar(q)

Proof. Let B, C R~ be the basis of the cylinder portion 7;(q), and suppose that 2 is given

function u defined in €2,

as the graph of the Lipschitz function ¢ above B,.. Since the height of T, (¢q) is comparable

to r, we obtain that

+C7"
/ Jul* < // u(zo, t \2dtd$0<// Iu,a (20)|? dtdxg
T (q)

< C’r/ |k (20)|? dag < C’r/ u¥|? do,
B, Ar(‘])

where we perform a change a variables from B, to A, (q) for the last equality. O]

Lemma 10.3.3. Let Q be a Lipschitz domain, and consider a function u € C1(Q). Let

q € 00 and r € (0,rq). Then,

2oy <€ [ e cr [ ((ay P s,
’ Ar(a) Ar(q)
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where C' is a good constant.

Proof. We first apply lemma 10.3.1 to T}-(q), to obtain

2/2*
(/ |u*]2> < CT_Q/ \u!Q + C’/ |Vu\2,
T:(q) T:(q) T:(q)

where C' is a good constant. We then apply lemma 10.3.2 to bound the last two integrals,

which completes the proof. O
The next proposition shows how to control the size of Vu in (2.

Proposition 10.3.4. Let (2 € D, A € My M(B) and b € Lip(B). Let also u be a solution
to L'u = 0 in Q, with (Vu)* € L?(09), and u and Vpu having nontangential limits almost

everywhere on 0€2. Then,

/ Vul? < 0/ |u|2—|—C/ Vgl do,
Q o0 15)9]

where C' is a good constant.

Proof. We mimic the proof of lemma 8.5.1: consider the approximation scheme €2; 1 (2 as
in theorem 2.3.6, and fix j. Let Lg be the operator Ly = — div(A'V), and let vj be the

solution to Lov; = 0 in 2, with v; = u on 9€2;. Then, if w; = u — v;, we compute
— div(Atij) — div(bw;) = — div(A'Vu) + diV(AtVUj> — div(buj) + div(bv;) = div(bv;).
Since now w; € W&’2(Qj), proposition 5.2.6 shows that

IVwjll 2o,y < Clldiv(bu)lly-12(0,) = Cllojllz2(0,):
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therefore
1Vull 20, < CIVw;l 20, + IVl 20, < Clloilliz,) + Ol 2, (10.0)

Let S; . be the single layer potential operator for the operator Ly in §2;, which is given
by integration with respect to the fundamental solution I' for Lg, as in [KS11]. From its
definition, v; solves the Ro Regularity problem for L in 2;, with boundary data u; therefore,

theorems 6.3 and 5.3 in [KS11] show that

0y(e) = 83.0(85 ) = | Tl ) doy o).

Set a; to be the average of v; in ;. Using estimate 2.5 in [KS11], we compute

\Q|/ /aQ qu u(q) doj(q)dx

C
<m (/ o~ q> ddx> 155 u(a)] dorj(0)

C
< — S-*uq do;(q).
T o, 157 @ dst0)

Then, from remark 5.8 in [KS11], we obtain that, for a good constant C,

Co;(09;)
o < /a 57 ul?doy < CISH(ST W) R0,

= OHU“%/VLZ@QJ,) = C/aQ \u]2d0j +/@Q |VTU‘2de.

J J
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Therefore, Poincare’s inequality in {2; shows that

isc/|v—wF+0/|wF
/Q'J o T 0 1Y

J J J

< o/ Vos[? + Clay 2
Q.

J

gc/rwﬁ+0/ M%%+/ Vrul® doj,
Q. 00 o0

J J J

hence, plugging the last estimate in (10.1), we obtain that

YVull 7200 SC/ VU-2+C’/ u2d0-—|—/ VTquU-. 10.2
IVullpzony <C | (9o +0 [ fldr+ [ Vrudn. 02

J J J

We now treat the first term on the right hand side exactly as in lemma 8.5.1: we compute

A/‘VU2§/ aﬂ”UmTSC/
Qj| jl o0, vity vy %o 50

But, since the Rellich property holds for v; in €; with a good constant C', after letting

|m2+cé%|a¢w?

J J

7 — oo we find that

limsup/ |ij|2 < Climsup/ |u|2daj—|—01imsup/ |8y.vj|2daj
Q j 09, ' o

j—o0 i j—o0 Q; j—oo JOQ,
< C’limsup/ uf? doj + Climsup/ Vo uf? doj
; ; j
j—oo JOQ, j—oo JOQ;
< C'/ \u|2d0+0/ IV ul? do.
o0 o0
Therefore, letting j — oo in (10.2), we obtain the required estimate. ]

We are now in position to show the global Rellich estimate for solutions to the adjoint

equation.
Proposition 10.3.5 (Global Rellich Estimate). Let 2 be a smooth domain, A € My u(Q)
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and b € Lip(Q). Let also u be a C'1(Q) solution of L'u = 0 in Q. Then, for any r € (0,7q),

c c
/ |8yu|2dU§C’r/ |(Vu)*|2da+—d/ |u|2—|——d/ Vpul? do,
o0 oN ™ JoQ ™ JoQ

where C' is a good constant that also depends on || div b”Ld(Q)'

Proof. Let r < rq and consider ¢ € J€2. From theorem 8.12 in [GTO01], u € W2’2(Q),

therefore after applying proposition 3.8.1 we obtain that

/ 0y u)? do < 0/ Vpul? do + 0/ | div b||uVu| + Q/ Vul?
AT(Q) AQT(Q) TQr(q) r T2T(Q)

= C/ Vul? do + CIh + 9/ ul? + 9/ IV rul? do,
Ao (q) r Joo T Jon

where C' is a good constant, and where we also used proposition 10.3.4.

To bound 7, note that, from Holder’s inequality

1/d
o pld
e </Tgr<q> . ) el 2 (2 ) 1Vl 2225, )

< bl ga (el g g + 1900 F2(s )

< N1 div el o (Il g, () + 1Vl320)) = 11Vl ol + o).

We estimate I3 using lemma 10.3.3, and I4 by using proposition 10.3.4. Then, for a good

constant C,

I+1, < 9/ |u¢|2da+c7~/ |(Vu)*|2da+0/ |u|2+0/ IVu)? do.
r A4r(‘]) A4T(Q) o0 o0
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But, from proposition 8.1.2,

C

- |2 do < Q/ (C’r2|(Vu)*|2 + C|u|2) do
r A4r(‘]) r A4T(Q)

= C’r/ |(Vu)*? do + 9/ |u)? do,
A4T(Q) r A4r(q)

which shows that

L §C’r/ |(Vu)*|? do + (€+C’)/ |u|2d0+0/ IV ul? do,
Aar(q) " i) o0

where C' is a good constant that also depends on the d norm of divb. Therefore, plugging

into the first estimate in this proof, we obtain that

/ B2 do < C’r/ |(vu)*|2da+9/ |u|2+9/ Yyl do.
Ar(q) A4r(q) " JoQ " JoQ

To finish the proof, we then integrate for g € 0S). ]

We now turn to the analog of proposition 8.5.3, which will lead to invertibility of S* on

o0.
Proposition 10.3.6. Suppose that Q2 € D, A € My M(B) and b € Lip(Rd). Then, for every
f e L(09),

t
1 llz200) < CIS fllwr2a0);
where C'is a good constant that also depends on [[b||py, -

Proof. As in the proof of proposition 8.5.3, suppose first that f is Lipschitz, and consider a
Lipschitz extension F : B — R of f, which vanishes on 0B. Set u, = Sif, and u_ = St f,

then the jump relation (corollary 10.2.8) with H = F shows that

/ ayju+-Fdaj—/ O u- - Fdo; —— F2 do.
09 o9 I j—oo JoQ
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Since now F'is continuous in €2, the Cauchy-Schwartz inequality shows that

9 .
1172 90) < hﬁi%p (l|ayju+||L2(8Qj)||F||L2(8Qj) + ||8y§u—“L?(ﬁQj)”FHLQ(@Q;))

— ; 2
= ||F||L2(aQ) hjﬁigép (||3uju+||L2(an) + ||ay§.u—||L2(an)7)

therefore we obtain

2 : 2 2
HF”LZ(aQ) < 2111111 sup <||8Vju+||L2(aQ.) + H@y’.u—HLQ(aQ.)> . (10.3)
Jj—00 J J J

Note now that u is a C'! solution in Q_j, from propositions 10.2.2 and 3.4.1. Moreover, from

the global Rellich estimate (proposition 10.3.5), we obtain that, for all r < rq),

C C
Hauij%z(an) < Orll(Vus) 7290, + T—dHU+H2L2(39j) + EI\VTmH%z(an),

where C} is a good constant for 2;. We now let j — oo, and applying proposition 10.2.3,

we obtain that

C C
: 2 %12 ¢ 2 ¢ 2
llﬁsolép ||8Vju+||L2(an) < COr||(Vuy) ||L2(8Q) + d HSfHLQ(aQ) + TdHVTSfHL?(aQ)

C C
= Crl(VS ) I T200) + 1S 72000 + VTS FIZ2(00)

C C
< OT”fH%Q(aQ) + T_dHSfH%?(aQ) + r_d”VTSfH%Z(aQy

where we also used the maximal function bound from proposition 10.2.2. A similar process

shows that

. C C
thUP Hayé,u—H%Q(@Q;) < CTHfH%Q(aQ) + r_dHSfH%Q(@Q) + T_deT8f||%2(aQ>-

J]—00
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Adding those inequalities and plugging in (10.3), we finally obtain that

C C
171 Z2000) < CrIIT2g00) + 315 I7200) + IV TSI T2(00):

where C' is a good constant that also depends on || div b||;. Choosing r < rq with Cr < 1/2

shows that

17122000 < CUS 122 00) + CIVTS F122(50) = CIS ey

where C'is a good constant that also depends on || div b||;. This shows the desired inequality
for Lipschitz functions f : 002 — R.

To obtain the estimate for f € L%(9Q), we use the fact that Lip(9Q) is dense in L?(99)
and S : L?(9Q) — WH2(99) is continuous. O

We now pass to non differentiable drifts, as in proposition 8.5.4.

Proposition 10.3.7. Suppose that 2 € D, A € MiM(B) and b € Drd@(Rd). Then, for
every f € L2(6Q),

t
||f||L2(8Q) < CHS f||W172(QQ)>
where C'is a good constant that also depends on [[b||py, -

Proof. Suppose first that f is Lipschitz on 0, and extend it to a Lipschitz function F in €.

Consider a mollification b, = b * ¢, of b, where

on(z) = nlo(nz),

and ¢ is positive, it is supported in B; and has integral 1. We then compute

b ()] < /B )

|b(z = 2)|én(2)| dz < ||b||oo/B ¢n(2) dz = [|bloo,
1/n
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and also

bn(@) — ba(y)] < /

Bl/n

[b(z = 2) = by — 2)[[én(2)[dz < [|bl| coalz —y[* /B On(z) dz
1/n

= [lbllgo.alz —y[*

which shows that [|bn[|ca(q) < [|bllca(q). In addition, for any ¢ € C°(RY),

fond-

< on(2) /Rd b(z — 2)Vi(x)dx| dz

1/n

B
_ /B . bn(2) /R B@)Ve(e + 2) da da

fe /Bw bla = 2)0u(2) V(@) dzda

< on(2) /Rd b(z)Vi(z + z) dx| dz

Bl/n

< / on( divblla Vel o de
Bi/n Ld-T(R9)

= || divolgVel a -
L1 (RY)

therefore by, € Drd,a(Rd), with

1bnllpy () < 181Dx, , (t):

Let now G%, be Green’s function for the operator
Ll = —div(AVu) — div(byu)

in B, and set S}fb to be the single layer potential operator on 0f) for the same operator; that
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Stf(p) = / Gt (p.9)F(q) do(q).
o0

for p € 0Q. Set also f = «a/2. Then, we apply the estimates in proposition 5.5.3 for g

instead of a to obtain, as in proposition 8.5.4,

IS5 = S fllwrza) < Clitn = bllos oy 1 2(00):

where C is a good constant. But, the embedding C?(€2) < C%(Q) is compact, and also (by,)

is bounded in C%*(Q2) and b, — b in C(Q), therefore, for a subsequence,

10k, — b||cB(Q) — 0,

n—oo

which shows that
t o ot
1Sy, = S Fllwrz0) — 0

Since now b, € C1(Q), we can apply proposition 10.3.6 to obtain that

11200 < CUISE, Flwi2gon),

where C' is a good constant that does not depend on n. Letting n — oo then shows the
result for Lipschitz functions f. To pass to all f € L2(99) we use the fact that Lip(99) is

dense in L?(99) and S* : L?(9Q) — W12(9Q) is continuous. O
We are then led to the next theorem.

Theorem 10.3.8. Let Q be a Lipschitz domain, A € M§M<Q) and b € Drd’a(Rd). Then,

the operator ' : L2(0Q) — W12(9Q) is invertible, with

1689~ ll 200y < ClFlwr2qn).
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and C being a good constant that also depends on ||b[|py, -

Proof. The proof is identical to the proof of theorem 8.5.5, but instead of the gradient
estimates that appear in proposition 5.5.2, we use the estimate in proposition 5.5.3. We

then conclude using proposition 10.3.7. O
Using invertibility of S, we can then obtain solvability of Rs for the adjoint equation.

Theorem 10.3.9. Let Q be a Lipschitz domain, A € Miu(Q), and b € Drdﬂ(Rd). Then
the Regularity problem Rs is uniquely solvable in €2, with constants depending on d, A, p,
16lpr, ,()> the Lipschitz character of €2 and the diameter of 2. Moreover, the solution

admits the representation

uw) =SS ) = [ 6o ((59715) (@) dota)

Proof. The proof is identical to the proof of theorem 8.5.6, after using theorems 10.3.8 and
10.1.2. O

We will be able to drop the symmetry assumption on A later, but we will then have to

assume that the derivatives of A are Hélder continuous (theorem 11.0.5).
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CHAPTER 11
THE CASE OF NON-SYMMETRIC COEFFICIENTS

We are now in position to drop the symmetry assumption on A, and show solvability for the
Dirichlet and the Regularity problem for A € M) ,(€2), for the operators L and Lt. For this
purpose, we will reduce the general case to the cases treated before, as in [KPO1].

We first prove the next lemma, to explain how we will transform our equations so that
the matrix A becomes symmetric. The crucial observation is that we obtain an equation

with a drift which depends on the derivatives of A, but it is divergence free.

Lemma 11.0.1. Let A € M), ,(2), and let b € L°°(2). Define b by the relation

1 d
—Zaj ajj —aj;), i=1,...d.
=1

[\]
<.

Then divb = 0, ||bl|c < C, and u is a solution of the equation — div(A'Vu) + bVu = 0 in

Q if and only if u solves the equation

—div (AsVu) + (b+b)Vu =0

in €, where A; = %(A + AY) is symmetric. Moreover, v is a solution of the equation

—div(AVwv) — div(bv) = 0 in © if and only if v solves the equation
— div (AsV0) — div ((b + B)v) —0.

Proof. First, in the sense of distributions, we compute

d d
2divb=>_0; | > 0j(aij — aj) Za”aw Zamaﬂ_z:aﬂaﬂ Z%%—O
=1 1

j:
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since d;; = 0j;, which shows that b has divergence 0. Since b is written as the sum of the
derivatives of A, we also obtain that ||b]|ec < C'pt.

Let now u € W." ( ), and ¢ € C2°(2). Since b has divergence 0, we integrate by parts

loc

to compute

/ A'VuVe + 20Vu - ¢ = / A'VuVe — 20V ¢ - u
Q

/Zajzau 9i¢ — Za Qig — ajl) 0;p-u

2y i,J
/Zaﬂ@u (9@—1—2 aijj — aj;)(05;¢ - u+ 0;¢ - Oju)
i,J

/Zaw@u 82¢+Z ajj — aj;)04;¢ - u—/QAVqub,

since d;; = 0j;. Therefore,
/ (A+ ADYVuVe+2(b+b)Vu- ¢ = / 2AVuV ¢ + 2bVu - ¢,
Q Q
which shows the first claim. For the second claim, a similar calculation shows that
/ AVuV¢ + 20V ¢ - u = / AlVuVe,
Q Q
therefore
/ (A+ AHVuVe +2(b+ )V -u = / 2A'VuV¢ + 206V - u,
Q Q

which completes the proof. O]

Theorem 11.0.2. Let 2 be a Lipschitz domain, and let A € M) ,(€2) and b € Drp, ().
Then, there exists ¢ > 0 such that, for p € (2 — ¢,00), the Dirichlet problem D), for the
equation

—div(AVu) +bVu =0
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is uniquely solvable in 2, with constants depending only on d, p, A, u, Hb”Drpda diam(€2) and

the Lipschitz character of Q2. Here, p; = 2 for d = 3, and p; = d/2 for d > 4.

Proof. Consider the e that appears in theorem 7.2.4, and let p € (2 — ¢,00). Let f €
LP(99), and consider the symmetric matrix Ag and b that appear in lemma 11.0.1. Since b

is divergence free, we obtain that
16+ Bllpr,, < [1Bllps,,, + [Blloo < lbllpr,, + Ci.

Therefore, from theorem 7.2.4, there exists a unique solution to the equation

—div (AsVu) 4 (b+b)Vu =0, in Q
u=f on 9 -

[u*[| Lra0) < CllfllLran)

Combining with lemma 11.0.1, we obtain that u is the unique solution of the Dirichlet
problem Dy, for the equation —div(AVu) 4+ bVu = 0 with v = f on the boundary, which

completes the proof. n
Theorem 11.0.3. Let Q be a Lipschitz domain, and let A € M) ,(Q2) and b € L>(9).
Then, the Regularity problem R9 for the equation
—div(AVu) +bVu =0

is uniquely solvable in €2, with constants depending only on d, A, p, ||b]| 0, diam(€2) and the
Lipschitz character of 2.

Proof. The proof is similar to the proof of theorem 11.0.2, using theorem 8.5.6. ]
Theorem 11.0.4. Let Q be a Lipschitz domain, and let A € M) () and b € L>(9).
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Then, the Dirichlet problem D9 for the equation
—div(A'Vu) — div(bu) = 0

is uniquely solvable in €2, with constants depending only on d, A, , ||b]|c0, diam(£2) and the

Lipschitz character of 2.
Proof. The proof is similar to the proof of theorem 11.0.2, using theorem 9.3.6. O

Theorem 11.0.5. Let Q be a Lipschitz domain, and let A € M) ,(€2) with A € cheq),

and b € Drd@(Rd). Then, the Regularity problem Ry for the equation
— div(A'Vu) — div(bu) = 0

is uniquely solvable in 2, with constants depending only on d, A, | A s1.a, [|DllDr, ,» diam(€2)

and the Lipschitz character of €.

Proof. The proof is similar to the proof of theorem 11.0.2, using theorem 10.3.9, since
16+ blDry, < [0llDry,, + lIbllce,

and the last term is bounded above by a constant times the CH% norm of A. m
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