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ABSTRACT

In this work we establish solvability and uniqueness for the D2 Dirichlet problem and

the R2 Regularity problem for second order elliptic operators L = − div(A∇·) + b∇· in

bounded Lipschitz domains, in which the drift b is bounded, as well as their adjoint operators

Lt = − div(At∇·)− div(b ·). The methods that we use are estimates on harmonic measure,

and the method of layer potentials.

The nature of our methods applied to D2 for L and R2 for Lt leads us to impose a specific

size condition on div b in order to obtain solvability. On the other hand, we show that R2

for L and D2 for Lt are uniquely solvable, only by assuming that A is Lipschitz continuous

(and not necessarily symmetric) and b is just bounded.
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CHAPTER 1

INTRODUCTION

In this work we will be interested in boundary value problems for the equation

Lu = − div(A∇u) + b∇u = 0

as well as the adjoint equation

Ltu = − div(At∇u)− div(bu) = 0,

in a Lipschitz domain Ω ⊆ Rd, which is open and bounded. We will always assume that

d ≥ 3.

The boundary value problems we will be interested in are the Dirichlet problem, Dp:


Lu = 0, in Ω

u = f, on ∂Ω

‖u∗‖Lp(∂Ω) <∞,

for f ∈ Lp(∂Ω),

and the Regularity problem, Rp:


Lu = 0, in Ω

u = f, on ∂Ω

‖(∇u)∗‖Lp(∂Ω) <∞,

for f ∈ W 1,p(∂Ω),

and similarly for the equation Ltu = 0 in Ω, where u∗ denotes the nontangential maximal

function of u on ∂Ω; that is,

u∗(q) = sup
x∈Γ(q)

|u(x)|,

where Γ(q) ⊆ Ω is a family of suitably chosen cones, which are based at q ∈ ∂Ω.
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We will show that under specific regularity conditions on the coefficients, those problems

are uniquely solvable in Ω, with constants depending only on the relevant norms of the

coefficients, the Lipschitz character of Ω and the diameter of Ω.

The methods we will use will be, first, the properties of harmonic measure for D2 for

the operator L, and second, the method of layer potentials for the other problems. In order

to do this, we first assume that A is symmetric (which is a crucial assumption in applying

the Rellich estimates), and we then pass to non-symmetric A with an integration by parts

argument, appearing in [KP01]. This passage will require to increase the assumed regularity

on A in the case of R2 for Lt, but no such assumption will be needed in the case of the

equation Lu = 0.

The theorems that will be shown are the following (also appearing in theorems 11.0.2

and 11.0.3). The term div b will mean the divergence of b, in the sense of distributions.

Theorem 1.0.1. Let Ω ⊆ Rd be a bounded Lipschitz domain, and let A be uniformly elliptic

and Lipschitz, b ∈ L∞(Ω) and div b ∈ Lpd(Ω) in the sense of distributions. Then there exists

a constant ε > 0 such that, for any p ∈ (2−ε,∞), the Dirichlet problem Dp for the equation

− div(A∇u) + b∇u = 0

is uniquely solvable in Ω, with constants depending on d, p, the ellipticity of A, the Lipschitz

norm of A, ‖b‖∞, ‖ div b‖pd , the diameter of Ω, and the Lipschitz character of Ω.

(Here, pd = 2 for d = 3, and pd = d/2 for d ≥ 4.)

Theorem 1.0.2. Let Ω ⊆ Rd be a bounded Lipschitz domain, and let A be uniformly elliptic

and Lipschitz, b ∈ L∞(Ω). Then, the Regularity problem R2 for the equation

− div(A∇u) + b∇u = 0

is uniquely solvable in Ω, with constants depending on d, the ellipticity of A, the Lipschitz
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norm of A, ‖b‖∞, the diameter of Ω, and the Lipschitz character of Ω.

For the adjoint equation we will show the following theorems (also appearing in theorems

11.0.4 and 11.0.5).

Theorem 1.0.3. Let Ω ⊆ Rd be a bounded Lipschitz domain, let A be uniformly elliptic

and Lipschitz, and b ∈ L∞(Ω). Then, the Dirichlet problem D2 for the equation

− div(At∇u)− div(bu) = 0

is uniquely solvable in Ω, with constants depending on d, the ellipticity of A, the Lipschitz

norm of A, ‖b‖∞, the diameter of Ω, and the Lipschitz character of Ω.

Theorem 1.0.4. Let Ω ⊆ Rd be a bounded Lipschitz domain, and let A be uniformly

elliptic and C1,α, b ∈ Cα(Rd) and div b ∈ Ld(Rd). Then, the Regularity problem R2 for the

equation

− div(At∇u)− div(bu) = 0

is uniquely solvable in Ω, with constants depending on d, the ellipticity of A, the C1,α norm

of A, ‖b‖Cα , ‖ div b‖d, the Lipschitz character of Ω and the diameter of Ω.

If A is symmetric, it is enough to assume that it is Lipschitz and not C1,α.

The problems we consider are classical, and there has been much work on those for

operators not involving drifts; for a comprehensive list of past results, we refer to [AAA+11]

and [Ngu16], as well as the references therein. A couple of results for operators with drifts

include solvability for some large p > 1, as in [KP01], or solvability under specific smallness

assumptions on the Lipschitz constant of the domain, as in [DPP07]. We also refer to [HL01]

for more results on equations with drifts.

We remark that solvability of D2 and R2 is the endpoint result for the best range of

exponents for which solvability can be obtained. As we explain, using the theory of weights

3



we can extend the theorems on the Dirichlet problem from p = 2 to p ∈ (2 − ε,∞). Also,

using the theory of the Hardy space H1, it is expected that a similar extension can be

done for the Regularity problem, but in this case the range obtained is p ∈ (1, 2 + ε), as in

[DK87]. Simple counterexamples involving harmonic functions in cones [Ken94] show that,

for Lipschitz domains, those ranges for p are optimal.

It is to be noted that we are assuming Hölder continuity of b in the case of the Regularity

problem Lt, but in the other cases there is no continuity assumption on b. This continuity

assumption is used in the continuity properties of ∇u, if Ltu = 0: if b is Hölder continuous,

then ∇u is continuous, but no such assumption is required in order to obtain the analogous

result for solutions of Lu = 0. For the Dirichlet problem for Lt we rely on solvability of R2

for L first, using properties of the single layer potential that have been established without

assuming continuity of b.

Moreover, we need a size assumption on div b for D2 for L, as well as R2 for Lt. On the

other hand, no such assumption is needed for R2 for L, as well as D2 for Lt. An assumption

like this is crucial for the method we will follow in this work (using the Rellich estimates),

which shows solvability of the problems discussed above for the optimal exponent p = 2.

Note that this also is consistent with the duality that is discussed in [HKMP15].

1.1 Summary

A short summary of this work is now in order.

In chapter 2 we will start with the various definitions, and we will describe the setting for

the problems. We then proceed, in chapter 3, to show various properties of solutions to the

equations Lu = 0 and Ltu = 0: that is, continuity of u, and continuity of ∇u. We will then

turn to the Rellich estimates, which will be our main tool in approaching our problems. We

show two local estimates, one for L and one for Lt; the one for Lt requiring an assumption

on div b.

4



The next step will be, in chapter 4, the construction of solutions to the inhomogeneous

equations Lu = F and Ltu = F , for various F . Since the operators L,Lt are not necessarily

coercive, we will construct the solutions using the Fredholm alternative, following the argu-

ments in [Eva10] and the estimates in [GT01]. It is to be noted that we will use an adjoint

operator similar to the one appearing in section 5 of [LSW63] in order to construct solutions

for measures. However, our solutions are not expected to be continuous up to the boundary

for general domains, and we will have to restrict our attention to the space of bounded and

continuous functions. The main difficulty that also arises is the exact dependence of the

various constants on the coefficients, and how to pass to non Lipschitz coefficients b, since

this will be one of our assumptions in some constructions.

In chapter 5 we proceed to the construction of Green’s function, which will be used later in

the formula for harmonic measure, as well as the method of layer potentials. There has been

some work on similar constructions, for example in [IR05], [DHM16] and [HL01], but our

case is not covered by the previous ones, the main difference with [DHM16] being the absence

of coercivity. For this reason, we will construct Green’s function for the adjoint equation

first, since we obtain the correct dependence on the coefficients, using arguments similar to

the ones appearing in [GW82]. Using a symmetry relation between Green’s function for L

and the corresponding for Lt, we will then construct Green’s function for L. Furthermore,

using Green’s representation formula for solutions, we then recover the correct dependence

of the constants involved in the constructions of solutions in chapter 4. We also proceed

to showing pointwise bounds on the derivative of Green’s function, which are crucial in the

development of the method of layer potentials, as well as various estimates that will be later

used in arguments involving the continuity method.

Chapter 6 involves construction of harmonic measure, and various estimates on nontan-

gential maximal functions, following [JK82] (we also refer to [Ken94] for a summary of those

results). We then apply those estimates in chapter 7, which treats solvability and uniqueness

5



for the Dirichlet problem for the equation Lu = 0, in the case where A is symmetric. A

crucial component in this development is the Rellich estimate for the equation Ltu = 0 (and

not the corresponding estimate for L), hence a regularity assumption on the divergence of b

is imposed. This assumption involves just the divergence of b, and not any specific deriva-

tives of b, and this is a crucial observation in our passage to non symmetric coefficients A in

chapter 11.

In chapter 8 we turn our attention to the Regularity problem for the equation Lu =

0. The first step involves uniqueness for R2. We then define the single layer potential,

which is a singular integral operator on L2 functions defined on the boundary of a Lipschitz

domain Ω. We also show convergence properties relying on the similar properties of the

analogous potentials for equations that do not involve drifts (as in [KS11], also in [MT99]

and [MMT01]), using estimates on differences of Green’s functions from chapter 5. We then

proceed to showing that the single layer potential of any function in L2(∂Ω) is a solution

to the equation Lu = 0, and its maximal function is bounded. Then, using a global analog

of the Rellich estimate, we show that boundary values of the single layer potential operator

span all of W 1,2(∂Ω), thus showing solvability of R2 for the equation Lu = 0, for symmetric

matrices A. In this development, no assumption on the derivatives of b is required.

In chapter 9 we treat the Dirichlet problem for the equation Ltu = 0. We first show

uniqueness, and, inspired by [HKMP15], we use the adjoint of the single layer potential from

chapter 8, to obtain existence of solutions for symmetric matrices A. In order to show this,

we do not reduce our case to the operators without a drift, as in chapter 8; instead, we

rely on boundedness of a maximal truncation operator in order to obtain boundedness of

the nontangential maximal functions, and a density argument to show what are the correct

boundary values for the adjoint of the single layer potential. As in chapter 8, no assumption

on the derivatives of b is required.

Chapter 10 treats the Regularity problem for Lt. Here, we assume that b is Hölder

6



continuous, in order to have a similar formula for the derivative of the single layer potential

as in chapter 8. We show the global Rellich estimate for symmetric matrices A, which is

more complicated to obtain compared to the one in chapter 8, since the Rellich estimate for

Lt is more involved than its analog for L; for this purpose, we have to show estimates that

involve parts of our domain that are close to the boundary.

Finally, in chapter 11, we pass to non-symmetric coefficients, using an integration by

parts argument appearing in [KP01]. Specifically, we transform the matrix A to a matrix

with symmetric coefficients, thus reducing to an equation with a new drift, which satisfies

the divergence assumptions under which the Dirichlet and the Regularity problem have been

shown to be solvable.

7



CHAPTER 2

PRELIMINARIES

In this chapter we will discuss the various definitions and the setting of the problems, and

we will perform some preliminary constructions.

2.1 Definitions

We say that A is uniformly elliptic with ellipticity λ, if there exists λ > 0 such that, for

almost all x ∈ Ω, and all y ∈ Rd with y 6= 0,

λ|y|2 ≤ 〈A(x)y, y〉 ≤ λ−1|y|2. (2.1)

In the following, we will write A ∈ Mλ(Ω) to denote that A satisfies (2.1) in Ω. If A is

also symmetric, we will write A ∈ Ms
λ(Ω). The matrices in Mλ(Ω) will always be assumed

to be bounded.

The regularity assumption on A will be Lipschitz continuity; that is, for a constant µ > 0,

for all x, y ∈ Ω,

|A(x)− A(y)| ≤ µ|x− y|. (2.2)

To make the statements of the theorems more succinct, we will write A ∈ Mλ,µ(Ω), if

A ∈Mλ(Ω) and A also satisfies (2.2). Ms
λ,µ(Ω) will denote the matrices in Mλ,µ(Ω) that are

symmetric.

We will denote by C∞c (Ω) the space of infinitely differentiable functions in Ω, which are

compactly supported in Ω. Moreover, we will be working in the classical Sobolev space

W 1,p(Ω), where p ≥ 1, which consists of functions u ∈ Lp(Ω) such that their derivative,

in the distributional sense, is an Lp(Ω) function. Also, W
1,p
loc (Ω) will denote the space of

functions u, such that uφ ∈ W 1,p(Ω) for any φ ∈ C∞c (Ω).

8



In addition to the above, W
1,p
0 (Ω) will denote the closure of C∞c (Ω) in W 1,p(Ω). Finally,

the dual space to W 1,p(Ω) will be denoted by W−1,p(Ω).

Let α be the bilinear form which is defined by

α(u, v) =

ˆ
Ω
A∇u∇v + b∇u · v.

For any element F ∈ W−1,2(Ω), a function u ∈ W 1,1
loc (Ω) is a weak solution to the equation

Lu = F , if α(u, φ) = Fφ for all φ ∈ C∞c (Ω).

Denote the space of bounded and continuous functions in Ω by Cb(Ω), and define B(Ω) =

Cb(Ω)∗. Note that there exists a description of B(Ω) via the space of measures on the Stone-

Čech compactification of Ω, but we will not need this description in this work. Then, for

any µ ∈ B(Ω), a function u ∈ W
1,1
loc (Ω) is a weak solution to the equation Lu = µ, if

α(u, φ) = 〈µ, φ〉 for all φ ∈ C∞c (Ω).

In order to treat the adjoint equation Ltu = 0, we also define the bilinear form

αt(u, v) =

ˆ
Ω
At∇u∇v + b∇v · u.

For any µ ∈ B(Ω), a function u ∈ W 1,1
loc (Ω) is a weak solution to the equation Ltu = µ, if

αt(u, φ) = 〈µ, φ〉 for all φ ∈ C∞c (Ω). Note also that α(u, v) = αt(v, u) for all v, u ∈ W 1,2(Ω).

A function u ∈ W 1,1
loc (Ω) is a subsolution to the equation Lu = 0, if α(u, φ) ≤ 0 for all

φ ∈ C∞c (Ω) with φ ≥ 0 in Ω. Similarly, we define supersolutions.

Finally, for α ∈ (0, 1], we denote by Cα(Ω) the space of Hölder continuous functions in

Ω; that is, functions such that the seminorm

‖b‖C0,α(Ω) = sup

{
|b(x)− b(y)|
|x− y|α

∣∣∣x, y ∈ Ω, x 6= y

}

is finite. We then define the norm ‖b‖Cα = ‖b‖∞ + ‖b‖Cα . We also define C1,α to be

9



functions b such that ∇b lies in Cα, with the norm

‖b‖C1,α = ‖b‖∞ + ‖∇b‖Cα .

2.2 Three extension lemmas

In the following we will need to extend our coefficients, which are defined in Ω, to either

a neighborhood of Ω or the whole space Rd, controlling the various norms associated with

them. We show how to achieve this in the following lemmas.

Lemma 2.2.1. Let Ω ⊆ Rd be an open domain and A ∈ Mλ,µ(Ω). Then, there exists

Ã ∈Mλ,Cµ(Rd) such that Ã = A on Ω, where C depends only on d.

If A ∈Ms
λ,µ(Ω), then there exists an extension Ã ∈Ms

λ,Cµ(Rd).

Proof. Consider the extension operator E0 : Lip(Ω)→ Lip(Rd), appearing in [Ste70, p. 172],

which is given by

E0f(x) =
∑
k

f(pk)φ∗k(x),

and for each fixed x, the sum is in fact finite. Set Ã = E0A; that is,

E0aij(x) =
∑
k

aij(pk)φ∗k(x),

for all i, j = 1, . . . d. Then, theorem 3 in [Ste70, p. 174] shows that Ã is Cµ-Lipschitz

continuous on Rd, with C depending only on d. Moreover, for any x /∈ Ω and y ∈ Rd with

10



y 6= 0,

〈
Ã(x)y, y

〉
=
∑
i,j

ãij(x)yiyj =
∑
i,j

E0aij(x)yiyj =
∑
i,j

∑
k

aij(pk)φ∗k(x)yiyj

=
∑
k

∑
i,j

aij(pk)yiyj

φ∗k(x) =
∑
k

〈A(pk)y, y〉φ∗k(x)

≥
∑
k

λ|y|2φ∗k(x) = λ|y|2,

since (φ∗k) is a partition of unity, and all the functions φ∗k are positive. Since Ã is an extension

of A, the same inequality holds for x ∈ Ω, which shows that Ã is λ-uniformly elliptic in Rd.

If A is symmetric, the definition of Ã shows that Ã is also symmetric, which completes

the proof.

The next lemma shows how we can extend A to also be periodic; thi will be a useful

property in order to consider fundamental solutions in all of Rd for the equation − div(A∇u).

We will follow remark 6.2 in [KS11] for this purpose.

Lemma 2.2.2. Let Ω ⊆ Rd be an open domain, with diam(Ω) < 1/4, and 0 ∈ Ω. Suppose

also that A ∈ Mλ,µ(Ω). Then, there exists an extension Ap of A, which is 1- periodic, and

also Ap ∈Mλ,µ0
(Rd), where µ0 depends on d, λ and µ.

Proof. Since 0 ∈ Ω and diam(Ω) < 1/4, we obtain that Ω ⊆ Q1 ⊆ Q2 ⊆ Q, where

Q1 =

[
−3

8
,
3

8

]d
, Q2 =

[
− 7

16
,

7

16

]d
, Q =

[
−1

2
,
1

2

]d
.

Fix now a smooth cutoff φ which is supported in Q2, with φ ≡ 1 in Q1, and define

Ap = φÃ+ (1− φ)λI,

where I is the identity matrix, and Ã is the extension that appears in lemma 2.2.1. Since Ã
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is Cµ-Lipschitz, we obtain that Ap is µ0 Lipschitz, where µ0 depends on d, λ and µ, since

the gradient of φ will be involved in the estimate. Moreover, since Ã and λI are λ-uniformly

elliptic, the same will be true for Ap.

Note now that, since φ ≡ 0 in Q2, Ap = λI in Q2. Therefore, if we extend Ap by λI

in Q \ Q2, we can then extend periodically to the rest of Rd by translations of Q, which

completes the proof.

Finally, we turn to Lipschitz extensions of drifts.

Lemma 2.2.3. Let Ω ⊆ Rd be an open domain, and b ∈ Lip(Ω). Then there exists an

extension b̃ of b in Rd, such that b̃ ∈ Lip(Rd), and ‖b̃‖L∞(Rd) = ‖b‖L∞(Ω).

Proof. We will use the extension operator from lemma 2.2.1, and set

b̃(x) = E0b(x) =
∑
k

b(pk)φ∗k(x).

From theorem 3 in [Ste70, p. 174], b̃ is Lipschitz in Rd, and b̃ extends b, hence ‖b̃‖L∞(Rd) ≥

‖b‖L∞(Ω). Since now (φ∗k) is a partition of unity and all the φ∗k are positive, we obtain that

|b̃(x)| ≤
∑
k

|b(pk)|φ∗k(x) ≤
∑
k

‖b‖L∞(Ω)φ
∗
k(x) = ‖b‖L∞(Ω),

hence ‖b̃‖L∞(Rd) ≤ ‖b‖L∞(Ω).

2.3 Lipschitz domains

For the next definitions, we will follow [Ver84, p. 575-577], and [KS11].

Let Ω ⊆ Rd be bounded. We say that Ω is a Lipschitz domain, if for each q ∈ ∂Ω there

exists a neighborhood U ⊆ Rd containing q and a Lipschitz function φU : Rd−1 → R such

12



that, after translation and rotation,

U ∩ Ω =
{

(x′, t)
∣∣t > φU (x′)

}
∩ Ω.

We also define a coordinate cylinder Z = Z(q, r), for q ∈ ∂Ω, and r > 0, to be a cylinder

with radius equal to r, that also has the following properties.

i) The bases of Z are some positive distance from ∂Ω.

ii) There is a rectangular coordinate system for Rd, (x′, t), with t- axis containing the axis

of Zi.

iii) There is a Lipschitz function φ = φZ : Rd−1 → R.

iv) Z ∩ Ω = Z ∩
{

(x′, t)
∣∣t > φZ(x′)

}
v) q = (0, φZ(0)).

We will call the pair (Z, φ) a coordinate pair.

By compactness, it is possible to cover ∂Ω by coordinate cylinders Zi = Zi(qi, rΩ), for

qi ∈ ∂Ω, i = 1, . . . N such that, for any i there exists a coordinate pair (Z∗i , φi) with

Z∗i = cΩZi(q, rΩ) (the dilation with respect to q), and cΩ = 10
(
1 + ‖∇φj‖∞

)1/2
.

Given a Lipschitz domain there exists M > 0 such that, for any covering of coordinate

cylinders, ‖∇φj‖∞ ≤M . The smallest such number is called the Lipschitz constant for Ω.

In order to quantify the results that will follow, given a Lipschitz domain with the fore

mentioned properties, we will say that Ω ∈ Π(M,N).

Note now that, given any q ∈ ∂Ω, q belongs to one of the coordinate cylinders Z∗i =

cΩZi(qi, rΩ). Therefore, there exists a coordinate cylinder Z(q, 10rΩ) that contains q, it is a

subset of Z∗i , with axis parallel to the axis of Z∗i , and height comparable to rΩ.
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Definition 2.3.1. For q ∈ ∂Ω and r ∈ (0, 10rΩ), we define

∆r(q) = Z(q, r) ∩ ∂Ω, Tr(q) = Z(q, r) ∩ Ω,

where Z(q, r) is a dilation of Z(q, 10rΩ) as above, with respect to q.

A constant C will be said to depend on the Lipschitz character of Ω, if Ω ∈ Π(M,N) for

some M,N , and the constant can be made uniform for any Ω ∈ Π(M,N).

Lemma 2.3.2. Let Ω be a Lipschitz domain. Then rΩ is bounded above and below by

constants that only depend on d, diam(Ω) and the Lipschitz character of Ω.

Proof. Since the coordinate cylinders Z∗i cover ∂Ω, we have that

σ(∂Ω) ≤ σ

 N⋃
i=1

Z∗i ∩ ∂Ω

 ≤ N∑
i=1

σ(Z(qi, cΩrΩ) ∩ ∂Ω) =
N∑
i=1

σ(∆cΩrΩ(qi)) ≤ NCM rd−1
Ω .

From the isoperimetric inequality, σ(∂Ω) is bounded below by a constant that depends on

diam(Ω) and d; therefore, rΩ is bounded below by a constant depending only on d, diam(Ω),

and the Lipschitz character of Ω. Since the coordinate cylinder Z∗i cannot contain all of Ω,

we also obtain that rΩ is bounded above by a constant that depends on diam(Ω) and d,

which completes the proof.

Note also that the definition of a Lipschitz domain shows the next lemma.

Lemma 2.3.3. For any Lipschitz domain Ω, there exists a ball B ⊆ Ω which is compactly

supported in Ω, such that, for any q ∈ ∂Ω,

Z(q, sΩ) ∩B = ∅,

where the number sΩ > 0 is bounded above and below by constants that depend on the

diameter of Ω and the Lipschitz character of Ω.
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Definition 2.3.4. Given a bounded Lipschitz domain Ω ⊆ Rd, A ∈ Mλ,µ(Ω) and b ∈

L∞(Ω), we call a constant C a good constant, if it depends on d, λ, µ, ‖b‖∞, diam(Ω), and

the Lipschitz character of Ω.

Note that the diameter of Ω is allowed in the definition above, since we are assuming that

b ∈ L∞(Ω), which is not a scale invariant space for b for the equation considered; therefore,

it is to be expected that the constants will depend on the size of the domain.

Given q ∈ ∂Ω, Γ(q) will denote an open, circular, doubly truncated cone with two

nonempty, convex components, with vertex at q, and one component in Ω and the other in

Rd \Ω. The component interior to Ω will be denoted by Γi(q) and the component exterior to

Ω will be denoted by Γe(q). Assigning a cone Γ(q) to each q ∈ ∂Ω, we call the family {Γ(q)}

regular if there is a finite covering of ∂Ω by coordinate cylinders, as described above, such

that for each (Z(p, r), φ) there are three cones, α, β and γ, each with vertex at the origin

and axis along the axis of Z such that

α ⊆ β \ {0} ⊆ γ,

and for all (x, φ(x)) = q ∈ 4
5Z
∗ ∩ ∂Ω,

α + q ⊆ Γ(q) ⊆ Γ(q) \ {q} ⊆ β + q,

(γ + q)i ⊆ Ω ∩ Z∗, (γ + q)e ⊆ Z∗ \ Ω.

We now turn to the definition of the nontangential maximal function.

Definition 2.3.5. Let Ω be a Lipschitz domain, and let u : Ω → R. We then define the

non-tangential maximal function of u, for q ∈ ∂Ω, by

u∗(q) = sup
x∈Γi(q)

|u(x)|.
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Similarly, we define the nontangential maximal function for functions defined outside Ω.

Finally, we state the next theorem on approximating Lipschitz domains by domains that

are smooth, which is theorem 1.12 in [Ver84].

Theorem 2.3.6. Let Ω be a Lipschitz domain. Then,

i) There is a sequence of C∞ domains, Ωj ⊆ Ω, and homeomorphisms Λj : ∂Ω → ∂Ωj

such that supq∈∂Ω |q − Λj(q)| → 0 as j → ∞, and Λj(q) ∈ Γi(q) for all j ∈ N and

q ∈ ∂Ω

ii) There is a covering of ∂Ω by coordinate cylinders Z so that, given a coordinate pair,

(Z, φ), then Z∗ ∩ ∂Ωj is given for each j as the graph of a C∞ function φj such that

φj → φ uniformly, ‖∇φj‖∞ ≤ ‖∇φ‖∞ and ∇φj → ∇φ pointwise almost everywhere

and in every Lq(Z∗ ∩ Rd−1), 1 ≤ q <∞

iii) There are positive functions τj : ∂Ω → R+, bounded away from zero and infinity

uniformly in j, such that for any measurable set E ⊆ ∂Ω,
´
E τj dσ =

´
Λj(E) dσj , and

so that τj → 1 pointwise almost everywhere and in every Lq(∂Ω), 1 ≤ q <∞

iv) The normal vectors to Ωj , ν(Λj(q)) converge pointwise almost everywhere and in every

Lq(∂Ω), 1 ≤ q <∞, to ν(q). An analogous statement holds for locally defined tangent

vectors.

v) There exists a C∞ vector field, h, in Rd such that
〈
h(Λj(q)), ν(Λj(q))

〉
≥ C > 0 for

all j and q ∈ ∂Ω, for some C depending only on h and the Lipschitz constant for Ω.

This approximation scheme will be denoted by Ωj ↑ Ω.

Consider now a Lipschitz domain Ω, and a large ball B containing Ω. A similar construc-

tion can be carried out for the Lipschitz domain 2B \ Ω, where 2B is the double ball of B,

and we obtain a sequence Uj ↑ (2B \Ω). Eventually, for j large, the sets Uj will contain the
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boundary of B. Then, for those j, set Ω′j = B \ Uj , and note that Ω′j is an approximation

scheme similar to the above, but then the sequence Ω′j decreases to Ω (as in definition 1.13

in [Ver84]).

2.4 Function spaces

The definition that follows provides the setting for the space of drifts for which solvability

of the Dirichlet problem for the equation Lu = 0 will be shown.

Definition 2.4.1. Let Ω ⊆ Rd be a Lipschitz domain, and p > 1. We define Drp(Ω) to

be the space of bounded vector functions b on Ω, such that their distributional divergence

belongs to Lp(Ω); that is, there exists C > 0 such that, for all φ ∈ C∞c (Ω),

∣∣∣∣ˆ
Ω
b∇φ

∣∣∣∣ ≤ C‖φ‖
L

p
p−1 (Ω)

.

We also define the Drp-norm of b ∈ Dr(Ω) to be

‖b‖Drp = ‖b‖L∞(Ω) + ‖ div b‖Lp(Ω),

where ‖ div b‖Lp(Ω) is the infimum of the C in the inequality above, for φ ∈ C∞c (Ω).

In some cases, we will need to assume some further regularity on b, together with the

fact that b ∈ Drp. For this purpose, we give the next definition.

Definition 2.4.2. Let Ω ⊆ Rd be a Lipschitz domain, and p > 1, α ∈ (0, 1]. We then define

Drp,α(Ω) = Drp(Ω) ∩ Cα(Ω),

with the norm

‖b‖Drp,α(Ω) = ‖b‖Drp(Ω) + ‖b‖Cα(Ω).
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We now turn to Lorentz spaces.

Definition 2.4.3. For p ∈ [1,∞), the Lorentz space L
p
∗(Ω) is the space of measurable

functions f : Ω→ R such that

‖f‖Lp∗(Ω) = sup
t>0

(
tλ

1/p
f (t)

)
<∞,

where λf is the distribution function of f ; that is, λf (t) =
∣∣{x ∈ Ω

∣∣|f(x)| > t
}∣∣.

Note that, if f ∈ Lp∗(Ω), Chebyshev’s inequality shows that

‖f‖Lp∗(Ω) ≤ ‖f‖Lp(Ω).

The Lorentz norm also bounds the p norms of lower order: from estimate 1.12 in [GW82], if

Ω ⊆ Rd is bounded, p ∈ [1,∞) and δ ∈ (0, p− 1], then

‖f‖Lp−δ(Ω) ≤
(p
δ

) 1
p−δ |Ω|

δ
p(p−δ)‖f‖Lp∗(Ω). (2.3)

Next, we turn to class of Gehring weights, which are functions that satisfy the reverse

Hölder inequality, the definition of which can also be found in [Geh73].

Definition 2.4.4. Let Ω be a Lipschitz domain and p ≥ 1. We say that f ∈ Lp(∂Ω)

belongs to the class Bp(∂Ω), if there exists a constant C > 0 such that, for any surface ball

∆r(q) ⊆ ∂Ω, ( 
∆r(q)

|f |p dσ

)1/p

≤ C

 
∆r(q)

|f | dσ.

The main property of the Bp weights we will use is their ability to self-improve. Specifi-

cally, similarly to lemma 3 in [Geh73], we obtain the next proposition.

Proposition 2.4.5. Let Ω be a Lipschitz domain, p > 1, and f ∈ Bp(∂Ω). Then, there

exists ε > 0, which depends only on d, p and the Bp constant of f , such that f ∈ Bp+ε(∂Ω).
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Finally, we define weak derivatives on the boundary of a Lipschitz domain Ω, and the

space W 1,p(∂Ω).

Definition 2.4.6. Let Ω be a Lipschitz domain. Then, we say that f ∈ W 1,p(∂Ω) if

f ∈ Lp(∂Ω) and if for each coordinate pair (Z, φ) there exist Lp(Z∩∂Ω) functions g1, . . . gd−1,

so that, for every h ∈ C∞c (Z ∩ Rd−1),

ˆ
Rd−1

h(x)gi(x, φ(x)) dx = −
ˆ
Rd−1

∂ih(x)f(x, φ(x)) dx.

In local coordinates, we then define (as in [Ver84, pg. 580])

−∇T f(p) = (g1
i (p′), . . . gd−1

i (p′), 0)−
〈

(g1
i (p′), . . . gd−1

i (p′), 0), ν(p)
〉
· ν(p).

Then ∇T f(p) is normal to ν(p) almost everywhere on ∂Ω, and it is independent of the choice

of coordinates. We also define the norm

‖f‖W 1,p(∂Ω) = ‖f‖Lp(∂Ω) + ‖∇T f‖Lp(∂Ω).

In the special case p = 2, W 1,2(∂Ω) becomes a Hilbert space, with the inner product

〈f, g〉W 1,2(∂Ω) =

ˆ
∂Ω

(f · g +∇T f · ∇T g) dσ.

For p ∈ (1,∞), we denote the dual of W 1,p(∂Ω) by W−1,p(∂Ω). The fact that the dual

to Lp(∂Ω) is Lp
′
(∂Ω), where p′ is the conjugate exponent to p, and reflexivity of Lp(∂Ω) for

p ∈ (1,∞) imply the next lemma.

Lemma 2.4.7. W−1,p(∂Ω) is reflexive, and for every F ∈ W−1,p(∂Ω), there exists a unique

f ∈ W 1,p′(∂Ω) such that

Fg =

ˆ
∂Ω

f · g +∇T f · ∇T g
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for all g ∈ W 1,p(∂Ω). We will then write F = Rpf .

For any p ∈ (1,∞), consider the canonical embedding operator

Ep : Lp
′
(∂Ω)→ W−1,p(∂Ω), (Epf)g =

ˆ
∂Ω

fg dσ

for all g ∈ W 1,p(∂Ω). Under this embedding of Lp
′
(∂Ω) in W−1,p(∂Ω), we will show that

the image Ep(L
p′(∂Ω)) is dense in W−1,p(∂Ω); we first show the local analog in the setting

of Rd−1.

Lemma 2.4.8. Let B be a ball in Rd−1, and p ∈ (1,∞). Then, Ep(L
p′(B)) is dense in

W−1,p(B), where Ep : Lp
′
(B) → W−1,p(B) is the canonical embedding, and W−1,p(B) =(

W 1,p(B)
)∗

.

Proof. Let g ∈ (W−1,p(B))∗, which is such that

〈g, Pf〉 = 0

for all f ∈ Lp′(B). From reflexivity of W−1,p(B), there exists g̃ ∈ W 1,p(B), such that

〈Pf, g̃〉 = 0

for all f ∈ Lp′(B). This implies that, for any f ∈ Lp′(B),
´
B fg̃ = 0, therefore g̃ = 0, hence

g = 0. This shows that every element of (W−1,p(∂Ω))∗ that vanishes on Ep(L
p′(B)), has

to be identically zero, hence the Hahn-Banach theorem shows that Ep(L
p′(B)) is dense in

W−1,p(B).

Lemma 2.4.9. The image of Lp
′
(∂Ω) in W−1,p(∂Ω) under Ep is dense in W−1,p(∂Ω).

Proof. Let F ∈ W−1,p(∂Ω) and ε > 0. Then, from lemma 2.4.7, F = Rpf for some

f ∈ W 1,p′(∂Ω).
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Consider the coordinate cylinders (Zj , φj), j = 1, . . . N that cover ∂Ω, and let (ψj) be a

partition of unity subordinate to the Zj . Let also g ∈ W 1,p(∂Ω), Bj ⊆ Rd−1 be the basis of

the cylinder Zj , and define

f̃j(x) = f(x, φj(x)), g̃j(x) = g(x, φj(x)), ψ̃j(x) = ψj(x, φj(x)),

for x ∈ Bj . Then, since f ∈ W 1,p′(∂Ω), we obtain that f̃jψ̃j ∈ W
1,p′

0 (Bj).

Denote the d − 1 dimensional gradient by ∇̃. Using the definition of the tangential

gradient, we compute in local coordinates in ∂Ω ∩ Zj ,

∇T f · ∇T g = ∇̃f̃j · ∇̃g̃j −
〈
∇̃f̃j , νj

〉〈
∇̃g̃j , νj

〉
,

where νj is the unit normal in ∂Ω ∩ Zj . Hence, setting θj =
√

1 + |∇φj |2, we compute

Fg =

ˆ
∂Ω

(fg +∇T f∇T g) dσ =
N∑
j=1

ˆ
∂Ω∩Zj

(fg +∇T f∇T g)ψj dσ

=
N∑
j=1

ˆ
Bj

(
f̃j g̃j + ∇̃f̃j · ∇̃g̃j −

〈
∇̃f̃j , νj

〉〈
∇̃g̃j , νj

〉)
ψ̃jθj .

Consider now, for j = 1, . . . N , the operator

F̃j g̃ =

ˆ
Bj

(
f̃j g̃ + ∇̃f̃j · ∇̃g̃ −

〈
∇̃f̃j , νj

〉〈
∇̃g̃, νj

〉)
ψ̃jθj .

Since f̃j ∈ W 1,p′(Bj) and ψ̃j , θj are bounded, F̃j ∈ W−1,p(Bj).

Let now ε > 0. Then, from lemma 2.4.8, for every j = 1, . . . N , there exists h̃j ∈ Lp
′

such that

‖Pj h̃j − F̃j‖W−1,p(Bj)
< ε .

where P̃j : Lp
′
(Bj) → W−1,p(Bj) is the canonical embedding. Also, for q ∈ ∂Ω ∩ Zj ,
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q = (x, φj(x)) for some x ∈ Bj ; we then define hj(q) = h̃j(x), and we extend hj by zero on

∂Ω \ Zj . We then obtain that hj ∈ Lp
′
(∂Ω ∩ Zj). Define also

h =
N∑
j=1

hj .

Then, we compute, for g ∈ W 1,p(∂Ω),

Pph(g) =

ˆ
∂Ω

hg dσ =
N∑
j=1

ˆ
∂Ω∩Zj

hjg dσ =
N∑
j=1

ˆ
Bj

h̃j g̃jθj ,

therefore

|Fg − Pph(g)| ≤
N∑
j=1

∣∣∣F̃j g̃j − P̃j h̃j(g̃j)∣∣∣ ≤ N∑
j=1

‖P̃jhj − F̃j‖W−1,p(Bj)
‖g̃j‖W 1,p(Bj)

≤ ε
N∑
j=1

‖g̃j‖W 1,p(Bj)
≤ CN ε ‖g‖W 1,p(∂Ω).

This shows that ‖F − Pph‖W−1,p(∂Ω) ≤ CN ε, which completes the proof.
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CHAPTER 3

A PRIORI ESTIMATES

In this chapter we will discuss some a priori estimates related to solutions of the equations

Lu = 0 and Ltu = 0.

3.1 The Cacciopoli estimate

We begin with the Cacciopoli estimate, which is a reverse Poincare inequality for solutions

of the equation Lu = 0.

Lemma 3.1.1. Let Ω be a Lipschitz domain, and let A ∈Mλ(Ω), b ∈ L∞(Ω).

i) Let u ∈ W 1,2
loc (Ω) be a solution to Lu = 0 in Ω. Then, for all balls Br ⊆ Ω such that

B2r is compactly supported in Ω,

ˆ
Br
|∇u|2 ≤ C

(
1 +

1

r2

)ˆ
B2r

u2,

where C = C(d, λ, ‖b‖∞).

ii) If u ∈ W 1,2(Ω) is a nonnegative solution in Ω, that vanishes on ∆2r(q) for some q ∈ ∂Ω,

then the same inequality holds in ∆2r(q).

Proof. Let φ be a smooth cutoff which is supported in B2r, φ ≡ 1 in Br, and |∇φ| ≤ C/r.

We then use uφ2 as a test function, to obtain that

ˆ
Ω
A∇u∇(uφ2) + b∇u · uφ2 = 0,

which shows that

λ

ˆ
Ω
|φ∇u|2 ≤

ˆ
Ω
A∇u∇u · φ2 ≤ −2

ˆ
Ω
A∇u∇φ · uφ−

ˆ
Ω
b∇u · uφ2.
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To bound the last two terms, we use the Cauchy inequality with δ, to obtain that

−2

ˆ
Ω
A∇u∇φ · uφ−

ˆ
Ω
b∇u · uφ2 ≤ C‖φ∇u‖2‖u∇φ‖2 + ‖buφ‖2‖φ∇u‖2

= (C‖u∇φ‖2 + ‖buφ‖2)‖φ∇u‖2

≤ 1

4δ
(C‖u∇φ‖2 + ‖buφ‖2)2 + δ‖φ∇u‖22.

Choosing δ = λ/2, we obtain

ˆ
Ω
|φ∇u|2 ≤ C‖u∇φ‖22 + C‖uφ‖22 = C

ˆ
Ω

(|φ|2 + |∇φ|2)u2,

where C depends on d, λ and ‖b‖∞. This shows that

ˆ
Br
|∇u|2 ≤ C

ˆ
Ω

(|φ|2 + |∇φ|2)u2 ≤ C

(
1 +

1

r2

) ˆ
B2r

u2,

which is the desired estimate.

For the second estimate, we let φ be a smooth cutoff which is supported in T2r(q), φ ≡ 1

in Tr(q), and |∇φ| ≤ C/r. We then apply the same argument as above in T2r(q), noting

that uφ2 ∈ W 1,2
0 (T2r(q)).

We now show that the same inequality holds for solutions to the equation Ltu = div f .

Lemma 3.1.2. Let Ω be a Lipschitz domain, and let A ∈ Mλ(Ω), b ∈ L∞(Ω), and f ∈

L2(Ω).

i) Let u ∈ W 1,2
loc (Ω) be a solution to Ltu = div f in Ω. Then, for all balls Br ⊆ Ω such

that B2r is compactly supported in Ω,

ˆ
Br
|∇u|2 ≤ C

(
1 +

1

r2

) ˆ
B2r

u2 +

ˆ
B2r

|f |2,

where C = C(d, λ, ‖b‖∞).
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ii) If u ∈ W 1,2(Ω) is a nonnegative solution of Ltu = 0 in Ω that vanishes on ∆2r(q) for

some q ∈ ∂Ω, then the same inequality holds in ∆2r(q).

Proof. The proof is similar to the proof of proposition 3.1.1. Let φ be a smooth cutoff which

is supported in B2r, φ ≡ 1 in Br, and |∇φ| ≤ C/r. We then use uφ2 as a test function, to

obtain that ˆ
Ω
A∇u∇(uφ2) + b∇(uφ2) · u =

ˆ
Ω
f∇(uφ2),

which shows that

ˆ
Ω
A∇u∇u · φ2 ≤ −2

ˆ
Ω
A∇u∇φ · uφ−

ˆ
Ω
b∇u · uφ2 −

ˆ
Ω

2b∇φ · uφ+

ˆ
Ω
f∇(uφ2)

≤ (2‖u∇φ‖2 + ‖buφ‖2 + ‖fφ‖2)‖φ∇u‖2 + (2‖bφ‖2 + ‖fφ‖2)‖u∇φ‖2,

and the uniform ellipticity of A shows that

λ‖φ∇u‖22 ≤ (2‖u∇φ‖2 + ‖buφ‖2 + ‖fφ‖2)‖φ∇u‖2 + (2‖bφ‖2 + ‖fφ‖2)‖u∇φ‖2.

Hence, using the Cauchy inequality with δ, we obtain that

ˆ
Ω
|φ∇u|2 ≤ C‖u∇φ‖22 + C‖uφ‖22 + C‖f‖22 = C

ˆ
Ω

(|φ|2 + |∇φ|2)u2 +

ˆ
Ω
|fφ|2,

where C depends on d, λ and ‖b‖∞. The estimate now follows.

For the second estimate, we apply the same argument in T2r(q) for φ vanishing outside

T2r(q), being equal to 1 in Tr(q), and |∇φ| ≤ C/r, noting that uφ2 ∈ W 1,2
0 (T2r(q)).

3.2 Low regularity estimates

In this section we will use the ellipticity of the equation to show how we can gain Lp regularity.

We first show a local weak reverse Hölder inequality for solutions to the equation Lu = 0.
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Lemma 3.2.1. Let Ω be a bounded domain, A ∈Mλ,µ(Ω), and b ∈ L∞(Ω). Suppose that a

ball B2r is compactly supported in Ω, and, for some p ∈ (1, d), u ∈ W 1,p(B2r) is a solution

to the equation Lu = 0 in Ω. Let also Bαr ⊆ Bβr be concentric balls, with 1 ≤ α < β ≤ 2.

Then there exists a constant c depending only on d, p, µ, λ such that, if r < c, then

‖∇u‖Lp∗(Bαr) ≤
C

r
‖∇u‖Lp(Bβr),

where C is a constant that depends on d, p, µ, λ, ‖b‖∞, and β − α.

Proof. Let γ = α+β
2 , and set B1 = Bαr, B2 = Bγr, B3 = Bβr. Note that, since constants

are solutions to the equation, we can assume that the average of u over B3 is 0. Let φ be a

a smooth cutoff which is supported in B2, it is equal to 1 in B1, and |∇φ| ≤ C
(β−α)r

, where

C = C(d). Let also ψn be a sequence of mollifiers, with |∇ψn| ≤ Cn for all n ∈ N, and set

v = uφ, vn = v ∗ ψn.

Note then that vn ∈ C2(B3), and vn ≡ 0 on ∂B3 for n sufficiently large. In addition, we

compute

div(A∇v) = div(A∇u · φ+ A∇φ · u) = div(A∇u) · φ+ A∇u∇φ+ A∇φ∇u+ div(A∇φ) · u

= b∇u · φ+ (A+ At)∇u∇φ+ div(A∇φ) · u = f,

where we used that u solves the equation Lu = 0 in Ω. In addition,

‖f‖Lp(B3) ≤
C

(β − α)r
‖∇u‖Lp(B3) +

C

(β − α)2r2
‖u‖Lp(B3),

and since u has average 0 over B3, we can apply Poincare’s inequality to obtain that

‖f‖Lp(B3) ≤
C

r
‖∇u‖Lp(B3), (3.1)
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where C now also depends on the difference β − α and p.

Let now x ∈ B3. Since B3 is compactly supported in Ω, the function y 7→ ψn(x − y)

is compactly supported in Ω for n sufficiently large. Therefore, since v solves the equation

div(A∇v) = f , we obtain that

ˆ
Ω
A(y)∇v(y)∇ψn(x− y) dy = −

ˆ
Ω
A(y)∇v(y)∇y(ψn(x− y)) dy =

ˆ
Ω
f(y)ψn(x− y) dy,

which shows that

(aij∂iv) ∗ ∂jψn(x) = f ∗ ψn(x). (3.2)

Consider now the constant coefficient operator L0 = aij(x0)∂ij . Note that, from estimate

9.37 in [GT01], if n is sufficiently large,

‖∇2vn‖Lp(B3) ≤ Cd,p,λ‖L0vn‖Lp(B3). (3.3)

But, we compute, for x ∈ B3,

|L0vn(x)| ≤ |aij(x0)− aij(x)||∂ijvn(x)|+ |aij(x)∂ijvn(x)|

≤ µβr|∂ijvn(x)|+ |aij(x)∂ijvn(x)| ≤ 2µr|∂ijvn(x)|+ |aij(x)∂ijvn(x)|.

This shows that

‖∇2vn‖Lp(B3) ≤ Cd,p,λµr‖∂ijvn‖Lp(B3) + ‖aij∂ijvn‖Lp(B3),

and if we choose r < 2δ(x0) such that Cd,p,λµr < 1/2, we obtain that

‖∇2vn‖Lp(B3) ≤ C‖aij∂ijvn‖Lp(B3).
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We now compute, in B3,

aij∂ijvn = aij∂i(v ∗ ∂jψn)− (aij∂iv) ∗ ∂jψn + f ∗ ψn

= aij(∂iv ∗ ∂jψn)− (aij∂iv) ∗ ∂jψn + f ∗ ψn,

where we also used (3.2). But, if we set Bn = B1/n(0), we compute

aij(x)(∂iv ∗ ∂jψn)(x)− (aij∂iv) ∗ ∂jψn(x) =

ˆ
Bn

(
aij(x)− aij(x− y)

)
∂iv(x− y)∂jψn(y) dy,

and the last integral is bounded by

ˆ
Bn

µ|y||∂iv(x− y)||∂jψn(y)| dy ≤ C

n

ˆ
B1/n(x)

|∂iv(y)||∂jψn(x− y)| dy

≤ Cnd
ˆ
B1/n(x)

|∂iv(y)| dy

≤ C

(
nd

ˆ
B1/n(x)

|∂iv(y)|p dy

)1/p

.

This shows that

|aij∂ijvn| ≤ C

(
nd

ˆ
B1/n(x)

|∂iv(y)|p dy

)1/p

+ |f ∗ ψn|.

If we consider the Lp norm, we obtain that, for large n,

ˆ
B2

(
Cnd

ˆ
B1/n(x)

|∂iv(y)|p dy

)
dx ≤ Cnd

ˆ
B3

ˆ
B1/n(y)

|∂iv(y)|p dxdy

≤ C

ˆ
B3

|∂iv(y)|p dy,

therefore

‖aij∂ijvn‖Lp(B3) ≤ C‖∇u‖Lp(B3) + C‖f‖Lp(B3).
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Plugging this back to (3.3) and letting n→∞, we finally obtain that

lim sup
n→∞

‖∇2vn‖Lp(B3) ≤ ‖f‖Lp(B3) ≤
C

r
‖∇u‖Lp(B3), (3.4)

for all n sufficiently large, where we also used (3.1).

(Note also that, up this point, we have only used that p ∈ (1,∞)).

Since now vn is a mollification of v in Ω and u = v in B1, we obtain that ∇vn → ∇u

in Lp(B1). Therefore, there exists a subsequence of (vn) such that ∇vkn → ∇u almost

everywhere in B1. Since now vn vanishes close to ∂B3 for large n, Fatou’s lemma and

Sobolev’s inequality show that

‖∇u‖Lp∗(B1) ≤ lim sup
n→∞

‖∇vkn‖Lp∗(B3) ≤ C lim sup
n→∞

‖∇2vkn‖Lp(B3) ≤
C

r
‖∇u‖Lp(B3),

where we used (3.4) in the last step. This completes the proof.

We also turn to the analog for solutions to the adjoint equation.

Lemma 3.2.2. Let Ω be a bounded domain, A ∈ Mλ,µ(Ω) and b ∈ Lip(Ω). Suppose

that, for some p ∈ (1, d), u ∈ W 1,p
loc (Ω) is a solution to the equation Ltu = 0 in Ω. Then,

u ∈ W 1,p∗

loc (Ω).

Proof. We mimic the proof of lemma 3.2.1: let U be compactly supported in Ω, and consider

a set U0 with U ⊆ U0 ⊆ V ⊆ Ω, where all inclusions are compact. Let φ be a a smooth cutoff

which is supported in U0 and it is equal to 1 in U . Let also ψn be a sequence of mollifiers,

with |∇ψn| ≤ Cn for all n ∈ N, and set

v = uφ, vn = v ∗ ψn.

Note then that vn ∈ C2(B3), and vn ≡ 0 on ∂B3 for n sufficiently large. In addition, we
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compute

div(A∇v) = div(A∇u · φ+ A∇φ · u) = div(A∇u) · φ+ A∇u∇φ+ A∇φ∇u+ div(A∇φ) · u

= − div b · uφ− b∇u · φ+ (A+ At)∇u∇φ+ div(A∇φ) · u = f,

where we used that u solves the equation Ltu = 0 in Ω. Since now u is bounded and

∇u ∈ W 1,p(V ), we obtain that f ∈ Lp(V ).

Let now x ∈ V . Since V is compactly supported in Ω, the function y 7→ ψn(x − y) is

compactly supported in Ω for n sufficiently large. Therefore, since v solves the equation

div(A∇v) = f , we obtain that

ˆ
Ω
A(y)∇v(y)∇ψn(x− y) dy = −

ˆ
Ω
A(y)∇v(y)∇y(ψn(x− y)) dy =

ˆ
Ω
f(y)ψn(x− y) dy,

which shows that

(aij∂iv) ∗ ∂jψn(x) = f ∗ ψn(x). (3.5)

Consider now the constant coefficient operator L0 = aij(x0)∂ij . Note that, from estimate

9.37 in [GT01], if n is sufficiently large,

‖∇2vn‖Lp(V ) ≤ Cd,p,λ‖L0vn‖Lp(V ). (3.6)

But, we compute, for x ∈ V ,

|L0vn(x)| ≤ |aij(x0)− aij(x)||∂ijvn(x)|+ |aij(x)∂ijvn(x)|

≤ µ · diam(V )|∂ijvn(x)|+ |aij(x)∂ijvn(x)| ≤ 2µr|∂ijvn(x)|+ |aij(x)∂ijvn(x)|.
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This shows that

‖∇2vn‖Lp(V ) ≤ Cd,p,λµ · diam(V )‖∂ijvn‖Lp(V ) + ‖aij∂ijvn‖Lp(V ),

and if the diameter of V is small enough, we obtain that

‖∇2vn‖Lp(B3) ≤ C‖aij∂ijvn‖Lp(B3).

We now compute, in B3,

aij∂ijvn = aij∂i(v ∗ ∂jψn)− (aij∂iv) ∗ ∂jψn + f ∗ ψn

= aij(∂iv ∗ ∂jψn)− (aij∂iv) ∗ ∂jψn + f ∗ ψn,

where we also used (3.2). But, if we set Bn = B1/n(0), we compute

aij(x)(∂iv ∗ ∂jψn)(x)− (aij∂iv) ∗ ∂jψn(x) =

ˆ
Bn

(
aij(x)− aij(x− y)

)
∂iv(x− y)∂jψn(y) dy,

and the last integral is bounded by

ˆ
Bn

µ|y||∂iv(x− y)||∂jψn(y)| dy ≤ C

n

ˆ
B1/n(x)

|∂iv(y)||∂jψn(x− y)| dy

≤ Cnd
ˆ
B1/n(x)

|∂iv(y)| dy

≤ C

(
nd

ˆ
B1/n(x)

|∂iv(y)|p dy

)1/p

.

This shows that

|aij∂ijvn| ≤ C

(
nd

ˆ
B1/n(x)

|∂iv(y)|p dy

)1/p

+ |f ∗ ψn|.
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If we consider the Lp norm, we obtain that, for large n,

ˆ
U0

(
Cnd

ˆ
B1/n(x)

|∂iv(y)|p dy

)
dx ≤ Cnd

ˆ
V

ˆ
B1/n(y)

|∂iv(y)|p dxdy ≤ C

ˆ
V
|∂iv(y)|p dy,

therefore

‖aij∂ijvn‖Lp(U0) ≤ C‖∇u‖Lp(U0) + C‖f‖Lp(U0).

Plugging this back to (3.6) and letting n → ∞, we finally obtain that ‖∇2vn‖Lp(V ) is

bounded.

The last estimate shows that (∇vn) is bounded inW 1,p(V ). From the Rellich-Kondrachov

compactness theorem and almost everywhere convergence, there exists a subsequence (∇vkn)

which converges to a function w, weakly in W 1,p(V ), and almost everywhere in V . Then

w ∈ W 1,p(U), hence w ∈ Lp
∗
(U). But, ∇vn converges to ∇u almost everywhere in U ,

hence u = w ∈ Lp∗(U). Since also the sequence (vn) is bounded in W 1,p(U), we obtain that

u ∈ Lp∗(U), hence u ∈ W 1,p∗(U), which completes the proof.

By iterating the previous lemmas over smaller domains, we obtain the next propositions.

Proposition 3.2.3. Let Ω be a bounded domain, A ∈ Mλ,µ(Ω), and b ∈ L∞(Ω). Suppose

that, for some p ∈ (1, 2), u ∈ W
1,p
loc (Ω) is a solution to the equation Lu = 0 in Ω. Then

u ∈ W 1,2
loc (Ω), with

‖u‖W 1,2(U) ≤ C‖u‖W 1,p(U1)

for any U ⊆ U1 ⊆ Ω, where all inclusions are compact.

Proposition 3.2.4. Let Ω be a bounded domain, A ∈ Mλ,µ(Ω), and b ∈ Lip(Ω). Suppose

that, for some p ∈ (1, 2), u ∈ W
1,p
loc (Ω) is a solution to the equation Ltu = 0 in Ω. Then

u ∈ W 1,2
loc (Ω), with

‖u‖W 1,2(U) ≤ C‖u‖W 1,p(U1)

for any U ⊆ U1 ⊆ Ω, where all inclusions are compact.

32



3.3 Local estimates on the gradient

The assumption that b ∈ L∞(Ω) together with the fact that A is Lipschitz and elliptic

guarantee that solutions to the equation Lu = 0 in Ω have gradients that are locally Hölder

continuous. This will be shown in the next proposition.

Proposition 3.3.1. Let Ω be a bounded domain, and let A ∈Mλ,µ(Ω) and b ∈ L∞(Ω). Let

also Br be a ball in Ω, such that its double B2r is compactly supported in Ω. Then, there

exists α ∈ (0, 1) such that, for any solution u ∈ W 1,2
loc (Ω) of the equation − div(A∇u)+b∇u =

0 in Ω,

|∇u(x)−∇u(y)| ≤ C

r

(
|x− y|
r

)α( 
B2r

|u|2
)1/2

,

for all x, y ∈ Br, where C depends on d, λ, µ, ‖b‖∞ and diam(Ω); that is, ∇u is localy Hölder

continuous.

Proof. Suppose first that r < c, where c is the constant that appears in the proof of lemma

3.2.1. Fix an irrational number s ∈ (1, 3/2). Then, Hölder’s inequality shows that

‖∇u‖Ls(B31r/16) ≤ rd/s−d/2‖∇u‖L2(B31r/16). (3.7)

We now set k =
[
d
s

]
, and we note that k is the first integer such that

1

s
− k

d
<

1

d
,

1

s
− k − 1

d
>

1

d
;

the fact that s < 3/2 guarantees that such a k ≥ 2 exists, with the inequalities being strict

since s is irrational. We also consider a sequence

15

8
= c1 > c2 > · · · > ck > ck+1 =

3

2
,
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and we set p1 = s, and pm+1 = p∗m for m = 1, . . . k; then, for m = 1, . . . k + 1,

1

pm
=

1

s
− m− 1

d
.

We then apply lemma 3.2.1 for α = cm+1 and β = cm, m = 1, . . . k, to obtain that

‖∇u‖Lpm+1(Bcm+1r)
≤ C

r
‖∇u‖Lpm(Bcmr)

,

where C also depends on the difference cm − cm+1. This will show that

‖∇u‖Lpk+1(Bck+1
r) ≤

C

rk
‖∇u‖Ls(B31r/16) ≤ Crd/s−d/2−k‖∇u‖L2(B31r/16),

where C is also depends on the sequence (cm), and where we used (3.7) in the last step.

Recall now the definition of vn from the proof of lemma 3.2.1, where the construction

takes place for α = 3/2 and β = ck. Since vn is a mollification of v and u = v in B3r/2, there

exists a subsequence vkn such that ∇vkn → ∇u almost everywhere in B3r/2. But, estimate

(3.4) in the proof of lemma 3.2.1 shows that

lim sup
n→∞

‖∇2vn‖Lpk+1(B3r/2) ≤
C

r
‖∇u‖Lpk+1(Bckr)

.

34



Since pk+1 > d, Morrey’s inequality shows that, for almost every x, y ∈ Br,

|∇u(x)−∇u(y)| ≤ lim sup
n→∞

|∇vn(x)−∇vn(y)|

≤ lim sup
n→∞

C|x− y|1−d/pk+1‖∇2vn‖Lpk+1(B3r/2)

≤ C|x− y|1−d/pk+1rd/s−d/2−k−1‖∇u‖L2(B31r/16)

≤ C

(
|x− y|
r

)α
rd/s−d/2+α−k−1‖∇u‖L2(B31r/16)

≤ C

(
|x− y|
r

)α
rd/s+α−k−1

( 
B31r/16

|∇u|2
)1/2

,

where α = 1− d/pk+1 ∈ (0, 1). But, we compute

d

s
+ α− k =

d

s
+ 1− d

pk+1
− k − 1 =

d

s
+ 1− d

(
1

s
− k

d

)
− k − 1 = 0,

which shows that

|∇u(x)−∇u(y)| ≤ C

(
|x− y|
r

)α( 
B31r/16

|∇u|2
)1/2

,

But, from Cacciopoli’s inequality,

( 
B31r/16

|∇u|2
)1/2

≤ C

r

( 
B2r

|u|2
)1/2

,

and this completes the proof.

The last proposition leads to the following corollary.

Corollary 3.3.2. Let Ω be a bounded domain, and let A ∈ Mλ,µ(Ω) and b ∈ L∞(Ω). Let

also Br be a ball in Ω, such that its double B2r is compactly supported in Ω. Then, for any
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solution u of the equation − div(A∇u) + b∇u = 0 in Ω,

‖∇u‖L∞(Br) ≤
C

r

( 
B2r

|u|2
)1/2

,

where C depends on d, λ, µ, ‖b‖∞ and diam(Ω). Hence, u is locally Lipschitz in Ω, with

|u(x)− u(y)| ≤ C
|x− y|
r

( 
B2r

|u|2
)1/2

for any x, y ∈ Br.

Proof. Fix x ∈ Br. Then, for any y ∈ Br, proposition 3.3.1 shows that

|∇u(x)| ≤ |∇u(y)|+ |∇u(x)−∇u(y)| ≤ |∇u(y)|+ C

r

( 
B2r

|u|2
)1/2

.

We now integrate for y ∈ Br and we apply the Cauchy-Schwartz inequality, to obtain that

|∇u(x)| ≤
 
Br
|∇u|+ C

r

( 
B2r

|u|2
)1/2

≤
( 

Br
|∇u|2

)1/2

+
C

r

( 
B2r

|u|2
)1/2

.

We now apply Cacciopoli’s inequality, and this completes the proof.

We also obtain the next qualitative corollary, by combining the last estimate with the

low regularity estimates from the previous section.

Corollary 3.3.3. Let Ω be a bounded domain, A ∈Mλ,µ(Ω) and b ∈ L∞(Ω). Suppose that

U ⊆ Ω is compactly supported, and u ∈ W
1,p
loc (Ω) is a solution to Lu = 0 in Ω, for some

p > 1. Then u is continuously differentiable in U .

Proof. Let U ⊆ U0 ⊆ Ω, where all inclusions are compact. From proposition 3.2.3, we

then obtain that u ∈ W 1,2(U0). We then cover U0 by balls such that their doubles are

contained in Ω and we apply corollary proposition 3.3.1 to each one of them to obtain that

u is continuously differentiable in U , which finishes the proof.
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3.4 Local estimates on the gradient for Lt

We now turn to showing that the gradient of a solution to the equation Ltu = 0 is locally

Hölder continuous, provided that b is Hölder continuous. We begin with a lemma.

Proposition 3.4.1. Let Ω be a bounded domain, A ∈ Mλ,µ(Ω) and b ∈ Cα(Ω) for some

α ∈ (0, 1]. Consider a ball B with radius r, such that 16B ⊆ Ω, and let g ∈ Cα(16B). Let

also u be an W 1,2(Ω) solution of the equation Ltu = div g in Ω. Then,

‖∇u‖C0,α(B) ≤
C

r1+α

( 
4B
|u|2
)1/2

+ Cr−α‖g‖L∞(2B) + C‖g‖C0,α(2B),

where C depends on d, λ, µ, ‖b‖C0,α and diam(Ω).

Proof. We can assume that r = 1; the general case can be then recovered after a dilation.

First, note that theorem 8.22 in [GT01] shows that u ∈ Cβ(8B) for some β ∈ (0, 1).

Hence, if γ = min{α, β}, the function f = bu belongs to Cγ(8B). Note also that u solves

the equation

− div(A∇u) = div(bu) + div g = div(f + g),

and f + g ∈ Cγ(8B). Hence we can apply estimate 2.2 in [KS11] to obtain that

‖∇u‖C0,γ(4B) ≤ C

( 
8B
|u|2
)1/2

+ C‖f + g‖C0,γ(8B),

therefore ∇u ∈ Cγ(4B). In particular, ∇u is bounded in 4B, therefore u is Lipschitz in 4B,

hence f = bu ∈ Cα(4B). Then, again from estimate 2.2 in [KS11],

‖∇u‖C0,α(2B) ≤ C

( 
4B
|u|2
)1/2

+ C‖f + g‖C0,α(4B),

therefore u ∈ Cα(2B).
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We can now apply theorem 8.32 in [GT01], for the domains B ⊆ 2B, to obtain that

‖∇u‖C0,α(B) ≤ C‖u‖L∞(2B) + ‖g‖L∞(2B) + ‖g‖C0,α(2B)

≤ C

( 
4B
|u|2
)1/2

+ ‖g‖L∞(2B) + ‖g‖C0,α(2B),

where we also used theorem 8.17 in [GT01]. This completes the proof.

We also obtain local Lipschitz continuity of solutions to the adjoint equation, as the next

corollary shows.

Corollary 3.4.2. Let Ω be a bounded domain, A ∈ Mλ,µ(Ω) and b ∈ Cα(Ω). Consider a

ball B with radius r, such that 16B ⊆ Ω, and let g ∈ Cα(16B). Let also u be an W 1,2(Ω)

solution of the equation Ltu = div g in Ω. Then,

‖∇u‖L∞(Br) ≤
C

r

( 
B4r

|u|2
)1/2

+ C‖g‖L∞(B2r)
+ Crα‖g‖C0,α(B2r)

,

where C depends on d, λ, µ, ‖b‖C0,α and diam(Ω).

Proof. Let x ∈ B. Then, for any y ∈ B,

|∇u(x)| ≤ |∇u(x)−∇u(y)|+ |∇u(y)| ≤ ‖∇u‖C0,α(Br)
|x− y|α + |∇u(y)|

≤ ‖∇u‖C0,α(Br)
rα + |∇u(y)|,

and after integrating for y ∈ B, we obtain that

|∇u(x)| ≤ ‖∇u‖C0,α(Br)
rα +

 
Br
|∇u| ≤ ‖∇u‖C0,α(Br)

rα +

( 
Br
|∇u|2

)1/2

≤ ‖∇u‖C0,α(Br)
rα +

C

r

( 
B2r

|u|2
)1/2

,

where we also used Cacciopoli’s inequality (lemma 3.1.2). We then use proposition 3.4.1 to
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bound ‖∇u‖C0,α(Br)
and we consider the supremum for x ∈ Br to conclude the proof.

3.5 Global estimates

In this section we will show two global results. The first will be an L2 control of the gradient

of a solution from the solution itself, and the second is the maximum principle.

Lemma 3.5.1. Let Ω be a bounded domain, and suppose that A ∈ Mλ(Ω), b ∈ L∞(Ω).

Let also u ∈ W 1,2
0 (Ω) be a solution to the equation Lu = f , for f ∈ L2(Ω). Then

‖∇u‖22 ≤ C‖u‖22 + C‖f‖22,

where C depends on λ and ‖b‖∞.

Proof. We use the definition of solution with u as a test function, to obtain that

ˆ
Ω
A∇u∇u+ b∇u · u =

ˆ
Ω
fu,

which shows that, for any δ > 0,

λ‖∇u‖2 ≤
ˆ

Ω
A∇u∇u = −

ˆ
Ω
b∇u · u+

ˆ
Ω
fu ≤ ‖b‖∞‖∇u‖2‖u‖2 + ‖f‖2‖u‖2

≤ δ‖b‖∞‖∇u‖22 +
1

4δ
‖b‖∞‖u‖22 + ‖f‖2‖u‖2

Choosing δ = λ
2‖b‖∞+1

, we then obtain the desired inequality.

We now turn to the maximum principle for subsolutions of the equation Lu = 0 in Ω.

We will need a notion of inequality on the boundary of Ω for Sobolev functions; for this

purpose, we will use the supremum in the W 1,2 sense (definition in section 8.1 in [GT01]).

To show the next proposition, we will follow the proof of theorem 8.1 in [GT01].
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Proposition 3.5.2. Let A ∈ Mλ(Ω), b ∈ L∞(Ω), and let u ∈ W 1,2(Ω) be a subsolution of

Lu = 0. Then,

sup
Ω
u ≤ sup

∂Ω
u,

and the sup∂Ω is considered in the W 1,2-sense.

Proof. Note first that, since u is a subsolution, for any v ∈ W 1,2
0 (Ω) with v ≥ 0,

ˆ
Ω
A∇u∇v + b∇u · v ≤ 0⇒

ˆ
Ω
A∇u∇v ≤ −

ˆ
Ω
b∇u · v.

If sup∂Ω u = ∞, then the inequality is valid. Suppose now that k0 = sup∂Ω u < ∞, and

suppose that k0 < supΩ u = k1. Let k ∈ [k0, k1), and define vk = (u− k)+ ∈ W 1,2
0 (Ω). We

then have that ∂ivk = ∂iu · χ[u>k], therefore

ˆ
Ω
A∇vk · ∇vk ≤ −

ˆ
Ω
b∇vk · vk,

and the ellipticity of A and the Sobolev inequality show that

λ

ˆ
Ω
|∇vk|2 ≤ ‖b‖∞‖vk‖L2∗‖∇vk‖L2|supp(vk)|1/d ≤ Cd‖b‖∞‖∇vk‖2L2 |supp(vk)|1/d, (3.8)

where supp(vk) denotes the support of vk.

If ‖∇vk‖L2(Ω) = 0, then vk is a constant. Since vk ∈ W
1,2
0 (Ω), this constant has to be

zero, therefore (u− k)+ = 0 in Ω. Therefore, u(x) ≤ k for all x ∈ Ω, so

k1 = sup
Ω
u ≤ k,

which is a contradiction. Therefore ‖∇vk‖L2(Ω) > 0, which shows that ‖b‖∞ 6= 0. Hence,

(3.8) shows that

|supp(vk)| ≥ λdC−dd ‖b‖
−d
∞ .
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Since this inequality does not depend on k, it should be true as k → supΩ u; therefore

|supp(vk1
)| ≥ C

−1/n
d ,

which shows that u attains its supremum at a set of positive measure. Since also v is

integrable, this supremum should be finite, therefore k1 <∞.

Let now v = (u− k0)+. Let also

l = sup
Ω
v = sup

Ω
(u− k0)+ = k1 − k0 > 0,

which is also finite, since k1 < ∞. Then, for any ε > 0, if we use v
l−v+ε as a test function,

we obtain that ˆ
Ω

A∇v · ∇v
(l − v + ε)2

≤ −
ˆ

Ω

b∇u · v
l − v + ε

= −
ˆ

Ω

b∇v · v
l − v + ε

.

Set now

wε = log(l + ε)− log(l − v + ε) = log
l + ε

l − v + ε
.

Since l + ε > l − v + ε and l − v + ε > 0, we obtain that wε ∈ W 1,2
0 (Ω), therefore

λ

ˆ
Ω
|∇wε|2 ≤

ˆ
Ω
A∇wε∇wε =

ˆ
Ω

A∇v · ∇v
(l − v + ε)2

= −
ˆ

Ω

b∇v · v
l − v + ε

= −
ˆ

Ω
b∇wε · v ≤ ‖b‖∞‖∇wε‖2‖v‖2 ≤ l‖b‖∞‖∇wε‖2|Ω|1/2,

since 0 ≤ v ≤ l. This shows that, for any ε > 0,

‖∇wε‖2 ≤ lλ−1‖b‖∞|Ω|1/2,

and Sobolev’s inequality shows that

‖wε‖2∗ ≤ Cd‖∇wε‖2 ≤ lλ−1‖b‖∞|Ω|1/2.
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Letting ε→ 0, we obtain that w0 = log l− log(l− v) is integrable, therefore v = l only on a

set of measure zero. But, if x ∈ Ω with u(x) = k1,

u(x)− k0 = k1 − k0 = l > 0⇒ v(x) = (u− k0)+(x) = l,

so u achieves its supremum only on a set of measure 0. But this is a contradiction, which

completes the proof.

We also obtain the next analog for supersolutions.

Proposition 3.5.3. Let A ∈ Mλ(Ω), b ∈ L∞(Ω), and let u ∈ W 1,2(Ω) be a supersolution

of Lu = 0. Then,

inf
Ω
u ≥ inf

∂Ω
u.

Proof. We apply proposition 3.5.2 to −u, which is an W 1,2(Ω) subsolution of Lu = 0.

We are thus led to the maximum principle for solutions.

Theorem 3.5.4. Let A ∈Mλ(Ω), b ∈ L∞(Ω), and let u ∈ W 1,2(Ω) be a solution of Lu = 0.

Then, for almost all x ∈ Ω,

inf
∂Ω

u ≤ u(x) ≤ sup
∂Ω

u.

We will also need a version of the maximum principle that will hold for the inhomogeneous

equation Lu = f .

Theorem 3.5.5. Let Ω be a bounded domain, and let A ∈ Mλ(Ω), b ∈ L∞(Ω). Let

p ∈
[
1, d
d−1

)
, and F ∈ W−1,p(Ω). If u ∈ W 1,2

0 (Ω) is a solution to the equation Lu = F in

Ω, then

‖u‖L∞(Ω) ≤ C‖F‖W−1,p(Ω),

where C depends on d, p, λ, ‖b‖∞ and diam(Ω).
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Proof. The proof can be found in [GT01], theorem 8.16. Note that the suprema on the

boundary in this proof are equal to 0, since we are assuming that u ∈ W 1,2
0 (Ω).

3.6 Local estimates

For matrices A that are just uniformly elliptic (and not Lipschitz continuous), we will need

the local regularity estimates which appear in [GT01]. We begin with theorem 8.20, which

is Harnack’s inequality.

Proposition 3.6.1. Let Ω be a bounded domain, A ∈ Mλ(Ω) and b ∈ L∞(Ω). Suppose

that u ∈ W 1,2(Ω) is a nonnegative solution to the equation Lu = 0, or Ltu = 0 in Ω. Let

also Br be a ball, such that B4r ⊆ Ω. Then,

sup
Br

u ≤ C inf
Br
u,

where C depends on d, λ, ‖b‖∞ and diam(Ω).

We also refer to the next continuity results, which are theorems 8.22 and 8.27 in [GT01],

respectively.

Proposition 3.6.2. Let Ω be a bounded domain, A ∈Mλ(Ω) and b ∈ L∞(Ω). Suppose that

u ∈ W 1,2(Ω) is a solution to the equation Lu = F , or Ltu = F in Ω, where F ∈ W−1,p(Ω),

p ∈
[
1, d
d−1

)
. Let also BR(x) ⊆ Ω be a ball. Then, for all r ∈ (0, R),

oscBr(x) u ≤ Crα

(
R−α sup

BR(x)
|u|+ ‖F‖W−1,p(Ω)

)
,

where C depends on d, λ, ‖b‖∞, diam(Ω) and p.

For the next proposition to hold, note that we need some regularity on the boundary; in

our case, we will assume that our domain is Lipschitz.
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Proposition 3.6.3. Let Ω be a Lipschitz domain, A ∈ Mλ(Ω) and b ∈ L∞(Ω). Let also

q ∈ ∂Ω, and R > 0. Suppose that u ∈ W 1,2(Ω) is a solution to the equation Lu = F , or

Ltu = F in Ω, which vanishes on ∆2R(q)), and where F ∈ W−1,p(Ω), p ∈
[
1, d
d−1

)
. Then,

for all r ∈ (0, R),

oscTr(x) u ≤ Crα

(
R−α sup

TR(x)
|u|+ ‖F‖W−1,p(Ω)

)
,

where C is a good constant that also depends on p.

Finally, we will need the next equicontinuity result, which follows from theorem 8.24.

Proposition 3.6.4. Let Ω be a bounded domain, An ∈ Mλ(Ω) and bn ∈ L∞(Ω), with

‖bn‖∞ ≤ M for some M > 0. Let K ⊆ Ω be compact, and suppose that un ∈ W 1,2(Ω) are

solutions to the equations Lun = 0, or Ltun = 0 in Ω which are uniformly bounded in K.

Then, (un) is equicontinuous in K.

3.7 The Rellich estimate for L

We now turn our attention to the Rellich estimate. This is the main estimate that relates

tangential with normal derivatives of solutions on the boundary of a domain, and it will be

the basis of our approach to the Dirichlet and Regularity problems.

Let Ω be a smooth domain with Lipschitz constant M . Let also A ∈ Ms
λ,µ(Ω) (the

symmetry assumption will be crucial here) and b ∈ L∞(Ω), and let q ∈ ∂Ω. Suppose also

that r > 0 is given, such that r < rΩ, where rΩ is as in section 1.1.

Suppose now that u : Ω→ R is a C1(Ω) ∩W 2,2
loc (Ω) solution of Lu = 0 in Ω. Consider a

smooth cutoff θ0 in Rd, with θ0 ≡ 1 in Tr(q) (from definition 2.3.1), θ0 supported in T2r(q),

0 ≤ θ0 ≤ 1 and |∇θ| ≤ C/r. Then, if ed is the unit vector field in the direction of the axis
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of Tr(q) and ∂du denotes 〈∇u, ed〉, we compute

div(〈A∇u,∇u〉 ed)− 2 div(∂duA∇u) = ∂d(〈A∇u,∇u〉)− 2∂du div(A∇u)− 2 〈∇∂du,A∇u〉

= 〈∂dA · ∇u,∇u〉 − 2∂du · b∇u,

since A is symmetric. Therefore, after multiplying with θ0, we obtain that

div(θ0 〈A∇u,∇u〉 ed)− 2 div(θ0∂du · A∇u) =

θ0 〈∂dA · ∇u,∇u〉 − 2θ0∂du · b∇u+ ∂dθ0 〈A∇u,∇u〉 − 2∂du 〈A∇u,∇θ0〉 .

Note now that the domain T2r(q) is Lipschitz. Therefore, using the divergence theorem

in a domain slightly smaller than T2r(q) (such that the solution is twice differentiable there),

an approximation argument and the support properties of θ0, we obtain the identity

ˆ
∆2r(q)

θ0 (〈A∇u,∇u〉 〈ed, ν〉 − 2 〈∇u, ed〉 〈A∇u, ν〉) dσ =

ˆ
T2r(q)

(θ0 〈∂dA · ∇u,∇u〉 − 2θ0∂du · b∇u+ ∂dθ0 〈A∇u,∇u〉 − 2∂du 〈A∇u,∇θ0〉) dx.

(3.9)

We now treat the left hand side, and we compute

〈A∇u,∇u〉 〈ed, ν〉 = 〈A∇u,∇Tu〉 〈ed, ν〉+ ∂0
νu 〈A∇u, ν〉 〈ed, ν〉

=
(
〈A∇u,∇Tu〉 − ∂0

νu 〈A∇u, ν〉
)
〈ed, ν〉+ 2 〈A∇u, ν〉

〈
ed, ∂

0
νu · ν

〉
,
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where ∂0
νu is the normal derivative of u on ∂Ω. Therefore, since

〈A∇u, ν〉
〈
ed, ∂

0
νu · ν

〉
= 〈A∇u, ν〉 〈ed,∇u−∇Tu〉

= 〈A∇u, ν〉 〈ed,∇u〉 − 〈A∇u, ν〉 〈ed,∇Tu〉 ,

we obtain that

〈A∇u,∇u〉 〈ed, ν〉 − 2 〈∇u, ed〉 〈A∇u, ν〉 =(
〈A∇u,∇Tu〉 − ∂0

νu 〈A∇u, ν〉
)
〈ed, ν〉 − 2 〈A∇u, ν〉 〈∇Tu, ed〉 .

For the term in the parenthesis, we write

〈A∇u,∇Tu〉 − ∂0
νu 〈A∇u, ν〉 =

〈
A∇u,∇Tu− ∂0

νu · ν
〉

=
〈
A(∇Tu+ ∂0

νu · ν),∇Tu− ∂0
νu · ν

〉
= 〈A∇Tu,∇Tu〉 − 〈Aν, ν〉 |∂0

νu|2,

where we used that A is symmetric on the last step. Plugging in (3.9), we obtain the Rellich

identity

ˆ
∆2r(q)

θ0

(
〈A∇Tu,∇Tu〉 〈ed, ν〉 − 〈Aν, ν〉 |∂0

νu|2 〈ed, ν〉 − 2 〈A∇u, ν〉 〈∇Tu, ed〉
)
dσ =

ˆ
T2r(q)

(θ0 〈∂dA · ∇u,∇u〉 − 2θ0∂dub∇u+ ∂dθ0 〈A∇u,∇u〉 − 2∂du 〈A∇u,∇θ0〉) dx. (3.10)

We arrange the terms so that the |∂0
νu|2 stays on the left hand side. Since 0 ≤ θ0 ≤ 1
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and |ed| = 1, we obtain that

ˆ
∆2r(q)

θ0 〈ed, ν〉 〈Aν, ν〉 |∂0
νu|2 dσ ≤

ˆ
∆2r(q)

θ0|∇Tu|| 〈A∇u, ν〉 | 〈ed, ν〉 dσ +

ˆ
∆2r(q)

θ0| 〈A∇Tu,∇Tu〉 |2 〈ed, ν〉 dσ+

ˆ
T2r(q)

(|〈∂dA · ∇u,∇u〉|+ 2 |∂dub∇u|+ |∂dθ0 〈A∇u,∇u〉|+ 2 |∂du 〈A∇u,∇θ0〉|) dx.

Now, 〈ed, ν〉 ≤ 1, and also

〈ed, ν〉 =

〈
ed,

(−∇φ, 1)

|(−∇φ, 1)|

〉
=

1√
|∇φ|2 + 1

≥ 1√
dM2 + 1

.

In addition, |∇θ0| ≤ C/r and 〈Aν, ν〉 ≥ λ|ν|2 = λ, from the ellipticity of A, therefore

ˆ
∆2r(q)

θ0|∂0
νu|2 dσ ≤ C

ˆ
∆2r(q)

θ0|∇Tu|| 〈A∇u, ν〉 | dσ + C

ˆ
∆2r(q)

θ0|∇Tu|2 dσ

+ C

ˆ
T2r(q)

(|∇A|+ ‖b‖∞) |∇u|2 +
C

r

ˆ
T2r(q)

|∇u|2 dx,

where C depends on d, λ and M .

We now add the term
´

∆2r(q)
θ0|∇Tu|2 to both sides, to obtain that

ˆ
∆2r(q)

θ0|∇u|2 dσ ≤ C

ˆ
∆2r(q)

θ0|∇Tu||∂νu| dσ + C

ˆ
∆2r(q)

θ0|∇Tu|2 dσ

+ C

ˆ
T2r(q)

(µ+ ‖b‖∞) |∇u|2 +
C

r

ˆ
T2r(q)

|∇u|2 dx,

and since

ˆ
∆2r(q)

θ0|∂νu|2 dσ =

ˆ
∆2r(q)

θ0| 〈A∇u, ν〉 |2 dσ ≤ C

ˆ
∆2r(q)

θ0|∇u|2 dσ,
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we obtain

ˆ
∆2r(q)

θ0|∂νu|2 dσ ≤ C

ˆ
∆2r(q)

θ0|∇Tu||∂νu|

+ C

ˆ
∆2r(q)

θ0|∇Tu|2 dσ + C
(

1 + r−1
)ˆ

T2r(q)
|∇u|2 dx.

Finally, we apply the Cauchy-Schwartz inequality on the first term on the right hand side,

and the Cauchy inequality with δ, to obtain that

ˆ
∆r(q)

|〈A∇u, ν〉|2 dσ ≤ C

ˆ
∆2r(q)

|∇Tu|2 dσ +
C

r

ˆ
T2r(q)

|∇u|2 dx,

where C depends on d, λ, µ, ‖b‖∞,M and rΩ, since 1 < rΩ/r. Therefore, we are led to the

next proposition.

Proposition 3.7.1. [First Local Rellich estimate] Let Ω be a smooth domain with Lipschitz

constant M . Let also A ∈ Ms
λ,µ(Ω), b ∈ L∞(Ω), and suppose that u : Ω → R is a

C1(Ω) ∩W 2,2
loc (Ω) solution of Lu = 0 in Ω. Then, for every q ∈ ∂Ω and r < rΩ,

ˆ
∆r(q)

|∂νu|2 dσ ≤ C

ˆ
∆2r(q)

|∇Tu|2 dσ +
C

r

ˆ
T2r(q)

|∇u|2,

where ∂νu = 〈A∇u, ν〉, C depends on d, λ, µ, ‖b‖∞,M and rΩ, and where rΩ is defined in

section 1.1.

3.8 The Rellich estimate for Lt

We now show the local Rellich estimate for the equation Ltu = 0; that is, u solves the

equation

− div(At∇u)− div(bu) = 0.

Let Ω be a smooth domain with Lipschitz constant M . Let also A ∈ Ms
λ,µ(Ω) (as in
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the proof of the Rellich estimate for L, the symmetry assumption will be crucial here),

b ∈ Lip(Ω), and let q ∈ ∂Ω. Suppose also that r > 0 is given, such that r < rΩ, where rΩ is

as in section 1.1.

Suppose now that u : Ω → R is a C1(Ω) ∩W 2,2
loc (Ω) solution of Lu = 0 in Ω. Consider

a cutoff θ0, with θ0 ≡ 1 in Tr(q) (from definition 2.3.1), θ0 supported in T2r(q), 0 ≤ θ0 ≤ 1

and |∇θ| ≤ C/r. Then, if ed is the unit vector field in the direction of the t axis and ∂du

denotes 〈∇u, ed〉, we compute

div(〈A∇u,∇u〉 ed)− 2 div(∂duA∇u) = ∂d(〈A∇u,∇u〉)− 2∂du div(A∇u)− 2 〈∇∂du,A∇u〉

= 〈∂dA · ∇u,∇u〉+ 2∂du div(bu)

= 〈∂dA · ∇u,∇u〉+ 2b∇u · ∂du+ 2 div b · u∂du,

since A is symmetric. Therefore, after multiplying with θ0, we obtain that

div(θ0 〈A∇u,∇u〉 ed)− 2 div(θ0∂duA∇u) =

θ0 〈∂dA∇u,∇u〉+ 2θ0∂dub∇u+ 2θ0 div b · u∂du+ ∂dθ0 〈A∇u,∇u〉 − 2∂du 〈A∇u,∇θ0〉 .

So, as in the proof of the Rellich estimate for L, the divergence theorem and the support

properties of θ0 show that

ˆ
∆2r(q)

θ0 (〈A∇u,∇u〉 〈ed, ν〉 − 2 〈∇u, ed〉 〈A∇u, ν〉) dσ ≤
ˆ
T2r(q)

µ|∇u|2 + |b||∇u|2 + 2| div b||u∇u|+ C

r
|∇u|2.

We now treat the left hand side exactly as in the proof of the Rellich estimate for the equation
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Lu = 0, to finally obtain that

ˆ
∆2r(q)

θ0|∂νu|2 dσ ≤ C

ˆ
∆2r(q)

|∇Tu|2 dσ

+ C

ˆ
T2r(q)

µ|∇u|2 + |b||∇u|2 + 2| div b||u∇u|+ C

r
|∇u|2.

We are then led to the following estimate for solutions to the adjoint equation.

Proposition 3.8.1. [Local Rellich estimate for the adjoint] Let Ω be a smooth domain with

Lipschitz constant M . Let also A ∈ Ms
λ,µ(Ω), b ∈ Lip(Ω), and suppose that u : Ω→ R is a

C1(Ω) ∩W 2,2
loc (Ω) solution of Ltu = 0 in Ω. Then, for every q ∈ ∂Ω and r < rΩ,

ˆ
∆r(q)

|∂νu|2 dσ ≤ C

ˆ
T2r(q)

|∇Tu|2 dσ + C

ˆ
T2r(q)

| div b||u∇u|+ C

r

ˆ
T2r(q)

|∇u|2,

where C depends on d, λ, µ, ‖b‖∞,M and rΩ, and where rΩ is defined in section 1.1.
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CHAPTER 4

SOLVABILITY IN VARIOUS SPACES

4.1 Solvability in W−1,2(Ω)

The goal of this section is to treat solvability of the equations Lu = F and Ltu = F when

F ∈ W−1,2(Ω). For this purpose, we will follow the arguments in [Eva10]: we will change the

equation so that the bilinear form that it defines is coercive, and we will pass to solvability

for the original equation using the Fredholm alternative.

In the following, for γ ∈ R, we will need to consider the bilinear form

αγ(u, v) =

ˆ
Ω
A∇u∇v + b∇u · v + γuv,

as well as its adjoint form

αtγ(u, v) = αγ(v, u).

We will then say that u ∈ W 1,1
loc (Ω) is a solution to the equation Lu+γu = 0, if αγ(u, φ) = 0

for all φ ∈ C∞c (Ω). Similarly, we will say that u ∈ W
1,1
loc (Ω) is a solution to the equation

Ltu+ γu = 0, if αtγ(u, φ)=0 for all φ ∈ C∞c (Ω).

Proposition 4.1.1. Let Ω ⊆ Rd be a bounded domain, and A ∈ Mλ(Ω), with b ∈ L∞(Ω).

Then there exists a constant γ > 0 depending only on λ and ‖b‖∞ such that, for any

F ∈ W−1,2(Ω), the equation

− div(A∇u) + b∇u+ γu = F

has a unique weak solution u ∈ W
1,2
0 (Ω). If we denote u = gγF , then the operator gγ :
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W−1,2(Ω)→ W
1,2
0 (Ω) is bounded and onto, and also

‖gγF‖W 1,2
0 (Ω)

≤ C‖F‖W−1,2(Ω),

where C depends on d, λ and ‖b‖∞.

Proof. Note first that the bilinear form αγ is continuous on W
1,2
0 (Ω), since, for u, v ∈

W
1,2
0 (Ω),

|αγ(u, v)| ≤
ˆ

Ω
|A∇u||∇v|+ |b∇uv|+ γ|uv|

≤ C‖∇u‖2‖∇v‖2 + ‖b‖∞‖∇u‖2‖v‖2 + γ‖u‖2‖v‖2 ≤ C‖u‖
W

1,2
0 (Ω)

‖v‖
W

1,2
0 (Ω)

,

where we used the Cauchy-Schwartz inequality.

For coercivity of αγ , note that since A is uniformly elliptic, then for every u ∈ W 1,2
0 (Ω),

αγ(u, u) =

ˆ
Ω
A∇u∇u+

ˆ
Ω
b∇u · u+

ˆ
Ω
γu2

≥ λ‖∇u‖22 − ‖b‖∞‖∇u‖2‖u‖2 + γ‖u‖22

≥ λ‖∇u‖22 − ‖b‖∞δ‖∇u‖
2
2 −
‖b‖∞

4δ
‖u‖22 + γ‖u‖22,

for any δ > 0, from Cauchy’s inequality. Let now

δ =
λ

2(‖b‖∞ + 1)
, γ =

‖b‖∞ + 1

4δ
> 0.

Note that γ depends only on λ and ‖b‖∞. Moreover, λ− ‖b‖∞δ ≥ λ
2 , therefore

αγ(u, u) ≥ λ

2
‖∇u‖22 −

‖b‖∞
4δ
‖u‖22 + γ‖u‖22 ≥

λ

2
‖∇u‖22 ≥ C‖u‖

W 1,2
0 (Ω)

, (4.1)

where we also used the Sobolev inequality. Therefore, for this γ, αγ is continuous and
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coercive, where the coercivity constant and the continuity constant depend only on d (from

the Sobolev inequality), λ, and ‖b‖∞. Therefore, the Lax-Milgram theorem shows that, for

any F ∈ W−1,2(Ω), there exists a unique u ∈ W 1,2
0 (Ω) such that

ˆ
Ω
A∇u∇φ+ b∇u · φ+ γuφ = Fφ,

for any φ ∈ C∞c (Ω). We now write u = gγF , and we apply the definition of solution for u

as a test function; then, coercivity of αγ shows that

C‖u‖2
W

1,2
0 (Ω)

≤ αγ(u, u) = Fu ≤ ‖F‖W−1,2(Ω)‖u‖W 1,2
0 (Ω)

,

therefore the operator gγ : W−1,2(Ω) → W
1,2
0 (Ω) is bounded, with the bound depending

only on d, λ and ‖b‖∞.

Finally, to show that gγ is onto, consider u ∈ W 1,2
0 (Ω), and set

Fv =

ˆ
Ω
A∇u∇v + b∇u · v,

for v ∈ W 1,2
0 (Ω). We then have that F ∈ W−1,2(Ω), and also gγF = u. This completes the

proof.

To pass to the original equation Lu = 0, we use the Fredholm alternative, as the next

proposition shows.

Proposition 4.1.2. Let Ω be a bounded domain, A ∈ Mλ(Ω), and b ∈ L∞(Ω). Then, for

any F ∈ W−1,2(Ω), the equation

− div(A∇u) + b∇u = F

has a unique weak solution u ∈ W 1,2
0 (Ω).
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Proof. Consider first the number γ that appears in proposition 4.1.1, and also the operator

gγ : W−1,2(Ω)→ W
1,2
0 (Ω). Consider also the operator T : L2(Ω)→ W−1,2(Ω), with

Tf(v) =

ˆ
Ω
fv

for all v ∈ W 1,2
0 (Ω). Since the embedding W

1,2
0 (Ω) ↪→ L2(Ω) is compact, the operator

K = T ◦ γgγ : W−1,2(Ω)→ W−1,2(Ω)

is compact.

Suppose now that F,G ∈ W−1,2(Ω), and G = KG+ F . Then, for any v ∈ W 1,2
0 (Ω),

α(gγG, v) = αγ(gγG, v)−
ˆ

Ω
γgγG · v = 〈G, v〉 −

ˆ
Ω
γgγG · v

= 〈KG+ F, v〉 −
ˆ

Ω
γgγG · v = 〈F, v〉+ 〈KG, v〉 −

ˆ
Ω
γgγG · v

= 〈F, v〉 ,

therefore u = gγG ∈ W
1,2
0 (Ω) solves the equation Lu = F . Hence, if G − KG = 0, then

u = gγG solves the equation Lu = 0, therefore the maximum principle (theorem 3.5.4) shows

that gγG = 0. Since gγ is injective, this implies that G = 0; therefore, the operator I −K

is injective.

We now use compactness of K, and we apply the Fredholm alternative to obtain that

I − K : W−1,2(Ω) → W−1,2(Ω) is bijective. The open mapping theorem shows then that

I −K is invertible. Therefore the operator

g = gγ ◦ (I −K)−1 : W−1,2(Ω)→ W
1,2
0 (Ω)
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is bounded. So, if F ∈ W−1,2(Ω) and u = gF , then

g−1
γ u−Kg−1

γ u = (I −K)(g−1
γ u) = F,

therefore u = gγ(g−1
γ u) ∈ W

1,2
0 (Ω) solves the equation Lu = F . Uniqueness now follows

from the maximum principle.

By considering the adjoint operator gt, we can show solvability of the equation Ltu = F .

Proposition 4.1.3. Under the same conditions as in proposition 4.1.2, for every F ∈

W−1,2(Ω), the equation

− div(At∇u)− div(bu) = F

has a unique solution u ∈ W 1,2
0 (Ω).

Proof. Consider the γ that appears in proposition 4.1.1, and the operator

g = gγ ◦ (I −K)−1 : W−1,2(Ω)→ W
1,2
0 (Ω)

that appears in the proof of proposition 4.1.2. Note first that g is a composition of two

bijective operators, therefore it is bijective.

Suppose now that F ∈ W−1,2(Ω), and set u = gtF . By identifying W−1,2(Ω)∗ with

W
1,2
0 (Ω), we can consider that gt : W−1,2(Ω) → W

1,2
0 (Ω). Then, if φ ∈ W

1,2
0 (Ω), there

exists G ∈ W−1,2(Ω) such that φ = gG, and then

αt(u, φ) = α(φ, u) = α(gG, u) = 〈G, u〉 =
〈
G, gtF

〉
= 〈F, gG〉 = 〈F, u〉 ,

therefore u = gtF solves the equation Ltu = F .

For uniqueness, suppose that u ∈ W 1,2
0 (Ω) solves the equation Ltu = 0. Then, for any
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G ∈ W−1,2(Ω),

〈G, u〉 = α(gG, u) = αt(u, gG) = 0,

therefore u = 0, and the proof is complete.

4.2 Solvability for measures

In chapter 2 we defined the spaces Cb(Ω) and B(Ω). In this section we will show solvability

of the equations Lu = µ and Ltu = µ, where µ ∈ B(Ω). We will later apply the theorems in

this section for Dirac masses, in order to construct Green’s function.

In order to construct those solutions, we will consider the operators from the previous

section and we will restrict their domains so that their images are contained in Cb(Ω); this

procedure will require pointwise estimates on the solutions. We will then consider their

adjoint operators, which will be defined on B(Ω).

We first show solvability for the adjoint equation.

Proposition 4.2.1. Let Ω be a bounded domain, A ∈ Mλ(Ω), and b ∈ L∞(Ω). For every

µ ∈ B(Ω), the equation

− div(At∇u)− div(bu) = µ

has a unique weak solution, which belongs to W
1,p
0 (Ω) for every p ∈

(
1, d
d−1

)
, and also

satisfies the inequality

‖u‖
W

1,p
0 (Ω)

≤ Cp‖µ‖B(Ω),

where Cp is a constant that depends on d, λ, ‖b‖∞, diam(Ω), and p.

Proof. Consider the operator g : W−1,2(Ω) → W
1,2
0 (Ω) that appears in proposition 4.1.2,

which maps F ∈ W−1,2(Ω) to the solution u ∈ W 1,2
0 (Ω) of the equation

− div(A∇u) + b∇u = F.
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Using proposition 3.6.2 we conclude that u ∈ C(Ω). Moreover, from theorem 3.5.5, this op-

erator maps W−1,p(Ω) to Cb(Ω), and its norm is a constant Cp which depends on d, λ, ‖b‖∞,

diam(Ω), and p. This shows that gt maps B(Ω) = Cb(Ω)∗ to W−1,p(Ω)∗, which we identify

with W
1,p
0 (Ω); hence, for any µ ∈ B(Ω), we obtain that

‖gtµ‖
W 1,p

0 (Ω)
≤ Cp‖µ‖B(Ω).

Given φ ∈ C∞c (Ω), and for v ∈ W 1,p
0 (Ω), set

Fφv =

ˆ
Ω
A∇φ∇v + b∇φ · v.

Then Fφ ∈ W−1,p(Ω) for all φ ∈ C∞c (Ω). Since Ω is bounded, W−1,p(Ω) ⊆ W−1,2(Ω),

therefore Fφ ∈ W−1,2(Ω). Also, g is injective on W−1,2(Ω), so we obtain that gFφ = φ,

hence C∞c (Ω) is contained in the image of g : W−1,p(Ω)→ Cb(Ω).

We will now show uniqueness: set X to be the subspace of W−1,p(Ω) that contains all the

Fφ. Note that X is dense in W−1,2(Ω), since g : W−1,2(Ω) → W
1,2
0 (Ω) is an isomorphism,

and X = g−1(C∞c (Ω)). Since the inclusion W−1,p(Ω) ↪→ W−1,2(Ω) is continuous, this

will mean that X is dense in W−1,p(Ω). Therefore, if u ∈ W
1,p
0 (Ω) solves the equation

− div(At∇u)− div(bu) = 0, then for every φ ∈ C∞c (Ω),

0 = αt(u, φ) = α(φ, u) = α(gFφ, u) =
〈
Fφ, u

〉
,

therefore Gu = 0 for all G ∈ X. But X is dense in W−1,p(Ω), therefore u = 0.

Let now µ ∈ B(Ω), and set u = gtµ ∈ W 1,p
0 (Ω). Let also φ ∈ C∞c (Ω). Then, we compute

αt(u, φ) = α(φ, u) = α(gFφ, u) = 〈F, u〉 =
〈
F, gtµ

〉
=
〈
µ, gFφ

〉
.
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Therefore u = gtµ solves the equation Ltu = µ, and also

‖u‖
W

1,p
0 (Ω)

= ‖gtµ‖
W

1,p
0 (Ω)

≤ Cp‖µ‖B(Ω).

We now proceed to show the analogous result for the equation Lu = µ. To do this, we

would need pointwise bounds for solutions to the equation Ltu = 0, which might not hold.

For this reason, we will transform our operator to a coercive operator, and then use the

Fredholm alternative. We first show the next lemma.

Lemma 4.2.2. Suppose that b ∈ Lip(Ω), and γ > 0 is sufficiently large. Then, for every

µ ∈ B(Ω), the equation

− div(A∇u) + b∇u+ γu = µ

has a weak solution u ∈ W 1,p
0 (Ω), for any p ∈

(
1, d
d−1

)
.

Proof. First, fix p ∈
(

1, d
d−1

)
. Consider also a constant γ > 0 which is larger than the one

appearing in proposition 4.1.1, and also

γ ≥ div b.

Consider now the operator gtγ : W 1,2(Ω)→ W
1,2
0 (Ω), which is the adjoint to gγ : W 1,2(Ω)→

W
1,2
0 (Ω), and where the last operator appears in proposition 4.1.1. Let F ∈ W−1,2(Ω) and

v ∈ W
1,2
0 (Ω). Since gγ is onto W

1,2
0 (Ω), there exists G ∈ W−1,2(Ω) such that gG = v.

Therefore,

αtγ(gtF, v) = αγ(φ, gtF ) = αγ(gγG, g
tF ) =

〈
G, gtF

〉
= 〈F, gG〉 = 〈F, v〉 .
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Hence, gγ maps F ∈ W−1,2(Ω) to u ∈ W 1,2
0 (Ω), such that

− div(A∇u)− div(bu) + γu = 0,

and, since b is almost everywhere differentiable, this is equivalent to

− div(A∇u)− b∇u+ (γ − div b)u = 0.

We now use proposition 8.22 in [GT01] to conclude that gtγ maps W−1,p(Ω) to C(Ω). Our

choice of γ shows now that proposition 8.16 in [GT01], is applicable for the equation Ltu+

γu = 0, hence there exists a constant C > 0, such that

‖gtγF‖L∞(Ω) ≤ C‖F‖W−1,p(Ω),

so gtγ : W−1,p(Ω)→ Cb(Ω) is bounded.

Denote by gtTγ the adjoint of gtγ : W−1,p(Ω) → Cb(Ω); then gtTγ : B(Ω) → W
1,p
0 (Ω) is

bounded. Let µ ∈ B(Ω) and set u = gtTγ µ ∈ W 1,p
0 (Ω). As in the proof of proposition 4.2.1,

if φ ∈ C∞c (Ω), there exists F ∈ W−1,p(Ω) such that gtγF = φ. Then, we compute

aγ(u, φ) = αtγ(φ, u) = αtγ(gtγF, u) = 〈F, u〉 =
〈
F, gtTγ µ

〉
=
〈
µ, gtγF

〉
,

therefore gtTγ µ = u ∈ W 1,p
0 (Ω) is a solution to the equation

− div(A∇u) + b∇u+ γu = µ.

This completes the proof.

To pass to the equation Lu = µ, we use the Fredholm alternative, as the next proposition

shows.
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Proposition 4.2.3. Suppose that b ∈ Lip(Ω), and let µ ∈ B(Ω). Then, there exists a unique

weak solution u of the equation

− div(A∇u) + b∇u = µ

in Ω, which also belongs to W
1,p
0 (Ω) for every p ∈

(
1, d
d−1

)
.

Proof. The proof is similar to the proof of proposition 4.1.2; we begin by fixing a p ∈(
1, d
d−1

)
. Consider the γ that appears in lemma 4.2.2, and the operators

gtγ : W−1,p(Ω)→ Cb(Ω), g0 = gtTγ : B(Ω)→ W
1,p
0 (Ω).

Consider also the operator T0 : Lp(Ω)→ B(Ω), with 〈T0f, φ〉 =

ˆ
Ω
fφ for every φ ∈ Cb(Ω).

Since the embedding i : W
1,p
0 (Ω) ↪→ Lp(Ω) is compact, the operator

K0 = T0 ◦ i ◦ γg0 : B(Ω)→ B(Ω)

is compact.

Suppose now that µ, ν ∈ B(Ω), and ν = K0ν + µ. If φ ∈ C∞c (Ω), note that there exists

F ∈ W−1,p(Ω) such that gtγF = φ. We then compute

α(g0ν, φ) = αt(φ, g0ν) = αtγ(gtγF, g0ν)−
ˆ

Ω
γφ · g0ν = 〈F, g0ν〉 −

ˆ
Ω
γφ · g0ν

=
〈
F, gtTγ ν

〉
−
ˆ

Ω
γφ · g0ν =

〈
gtγF, ν

〉
−
ˆ

Ω
γφ · g0ν

= 〈φ,K0ν + µ〉 −
ˆ

Ω
γφ · g0ν = 〈φ, µ〉+ 〈φ,K0ν〉 −

ˆ
Ω
γφ · g0ν

= 〈φ, µ〉+ 〈φ, T0(i(γg0ν))〉 −
ˆ

Ω
γφ · g0ν

= 〈φ, µ〉 ,

60



therefore u = g0ν solves the equation Lu = µ.

Let now q > d be the conjugate exponent to p. Since we have assumed that p > 1, we

have that q <∞. We now consider the operator

T̃ : Cb(Ω)→ Lq(Ω),

such that T̃ f = f for all f ∈ Cb(Ω). Note then that, if f ∈ Cb(Ω) and g ∈ Lp(Ω),

〈
f, T̃ tg

〉
=
〈
T̃ f, g

〉
=

ˆ
Ω
fg = 〈T0g, f〉 .

After identifying Lq(Ω)∗ with Lp(Ω) (which is possible, since p ∈ (d,∞)), the last equality

shows that T0 is equal to T̃ t, the adjoint of T̃ : Cb(Ω) → Lq(Ω). Therefore, if we consider

the adjoint it : Lq(Ω)→ W−1,p(Ω), and we set

K̃ = γgtγ ◦ it ◦ T̃ : Cb(Ω)→ Cb(Ω),

we obtain that

K̃t = T̃ t ◦ (it)t ◦ (γgtγ)t = T0 ◦ i ◦ γg0 = K0.

Since K0 is compact, we obtain that K̃ is also compact.

We now show that I − K0 is injective. To do this, it is enough to show that I − K̃ is

injective, from compactness of K̃. For this purpose, suppose that f ∈ Cb(Ω) is such that

f = K̃f . Set F = it(T̃ f) ∈ W−1,p(Ω), then F belongs also to W−1,2(Ω), since Ω is bounded.

Then,

γgtγF = γ(gtγ ◦ it ◦ T̃ )f = K̃f = f,

61



and gtγ maps W−1,2(Ω) to W
1,2
0 (Ω), therefore f ∈ W 1,2

0 (Ω). Hence, for every φ ∈ W 1,2
0 (Ω),

αt(f, φ) = αtγ(γgtγf, φ)−
ˆ

Ω
γfφ = 〈γf, φ〉 −

ˆ
Ω
γfφ = 0.

But then, proposition 4.1.3 shows that f = 0, hence I − K̃ is injective, therefore I −K0 is

injective as well.

We now apply the Fredholm alternative to obtain that I−K0 : B(Ω)→ B(Ω) is bijective,

therefore its inverse is also bijective, hence the operator

g̃0 = g0 ◦ (I −K0)−1 : B(Ω)→ W
1,p
0 (Ω)

is bounded. Hence, if µ ∈ B(Ω) and we set u = g̃0µ, we obtain that

g−1
0 u−K0g

−1
0 u = (I −K0)g−1

0 u = µ,

therefore u solves the equation Lu = µ. Uniqueness follows from the fact that I − K0 is

injective, and this concludes the proof.

In the last proof, we could show injectivity of I−K0 without passing through injectivity

of I − K̃ by using, for example, a uniqueness result for W
1,p
0 (Ω) solutions to the equation

Lu = 0, where p is strictly smaller than 2. We avoid using a result like this by showing

first that I − K̃ is injective, since this is reduced to uniqueness for W
1,2
0 (Ω) solutions to the

equation Ltu = 0.
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CHAPTER 5

GREEN’S FUNCTION

5.1 Preliminary constructions

In this section we will apply the results of the previous chapter to specific measures, in order

to construct Green’s functions for L and Lt in the case where b ∈ Lip(Ω).

Suppose that Ω is a bounded domain, and set δx to be the Dirac mass at x ∈ Ω. Then,

we have the following lemma.

Lemma 5.1.1. Let Ω be a bounded domain, and x ∈ Ω. Then, δx ∈ B(Ω), and ‖δx‖B(Ω) = 1.

Moreover, if g ∈ L1(Ω), then the functional Tg which maps f to
´

Ω fg belongs to B(Ω), with

‖Tg‖B(Ω) = ‖g‖L1(Ω).

Proof. For any f ∈ Cb(Ω), we compute

|〈δx, f〉| = |f(x)| ≤ ‖f‖L∞(Ω) = ‖f‖Cb(Ω),

hence δx ∈ B(Ω), and ‖δx‖B(Ω) ≤ 1. To show the reverse inequality, we test against the

function h ≡ 1, and we compute

1 = |g(x)| = |〈δx, f〉| ≤ ‖δx‖B(Ω)‖g‖Cb(Ω) = ‖δx‖B(Ω).

The proof for the second claim is similar. Indeed, if f ∈ Cb(Ω), we compute

|Tgf | =
∣∣∣∣ˆ

Ω
fg

∣∣∣∣ ≤ ‖f‖L∞(Ω)‖g‖L1(Ω) ≤ ‖g‖L1(Ω)‖f‖Cb(Ω),

therefore Tg ∈ B(Ω), and ‖Tg‖B(Ω) ≤ ‖g‖L1(Ω). The reverse inequality follows from applying

Lusin’s theorem to the function sgn(g), which completes the proof.
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Given A uniformly elliptic and bounded, b ∈ Lip(Ω) and y ∈ Ω, we apply proposition

4.2.3 and the previous lemma to obtain that there exists a solution Gy to the equation

LGy = δy, where δy is the Dirac delta at y ∈ Ω. The same proposition also shows that

Gy ∈ W 1,p
0 (Ω) for all p ∈

[
1, d
d−1

)
. We then set G(z, y) = Gy(z) for z ∈ Ω, and we note

that ˆ
Ω

(A(z)∇zG(z, y)∇φ(z) + b(z)∇zG(z, y) · φ(z)) dz = φ(y),

for all φ ∈ C∞c (Ω). We call G Green’s function for the equation Lu = 0 in Ω.

For the adjoint equation, consider A to be uniformly elliptic and bounded, b ∈ L∞(Ω)

and x ∈ Ω. We then apply proposition 4.2.1 to obtain that there exists a solution Gtx to

the equation LtGtx = δx. Since ‖δx‖B(Ω) = 1, the same proposition also shows that, for any

p ∈
[
1, d
d−1

)
,

‖Gtx‖W 1,p
0 (Ω)

≤ Cp,

where Cp is a constant that depends on d, λ, ‖b‖∞, diam(Ω), and p. We then set Gt(z, x) =

Gtx(z) for z ∈ Ω, and we note that

ˆ
Ω

(
At(z)∇zGt(z, x)∇φ(z) + b(z)∇φ(z) ·Gt(z, x)

)
dz = φ(x),

for all φ ∈ C∞c (Ω). We call Gt Green’s function for the equation Ltu = 0 in Ω.

Note that we have established existence of Green’s function for the equation Lu = 0

only for b that are Lipschitz. Moreover, it is not clear at this point how the W
1,p
0 (Ω) norms

of G relate to the given quantities. In the following, we will establish existence of Green’s

function for b ∈ L∞(Ω), and show good pointwise and Lp estimates on Green’s function and

its derivative.

To show those properties, we will follow the arguments appearing in the Grüter-Widman

paper on Green’s function [GW82], but first we need to show the symmetry relation between

G and Gt, in proposition 5.1.3. For the proof of this proposition (as well as other arguments
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that will appear later, for example in the proof of proposition 5.2.1) we need to construct

specific families of approximations to G,Gt and show that they satisfy various boundedness

and continuity properties. This is done in the next lemma.

Lemma 5.1.2. Let Ω be a bounded domain, A ∈ Mλ(Ω) and b ∈ Lip(Ω). Fix x, y ∈ Ω.

Then, for n,m ∈ N large enough, there exist Gn, G
t
m ∈ W

1,2
0 (Ω), such that

ˆ
Ω
A∇Gn∇v + b∇Gn · v =

1

|B1/n(y)|

ˆ
B1/n(y)

w, ∀w ∈ W 1,2
0 (Ω),

and also

ˆ
Ω
At∇Gtm∇w + b∇w ·Gtm =

1

|B1/m(x)|

ˆ
B1/m(x)

w, ∀w ∈ W 1,2
0 (Ω).

In addition, the following properties hold.

i) For any n ∈ N and z ∈ Ω, Gn(z) ≥ 0

ii) For any p ∈
[
1, d
d−1

)
, ‖Gtm‖W 1,p

0 (Ω)
≤ Cp, uniformly in y and m, and Gn ∈ W 1,p

0 (Ω)

iii) There exist subsequences (Gkn), (Gtlm
), such that Gkn → G(·, y) and Gtlm

→ Gt(·, x)

weakly in every W
1,p
0 (Ω), strongly in Lp(Ω), and almost everywhere in Ω, where p ∈[

1, d
d−1

)
iv) ‖Gtm‖

L
d
d−2
∗

≤ C uniformly in y and m, and Gn ∈ L
d
d−2
∗ (Ω)

v) For any compact K ⊆ Ω with y /∈ K, (Gn) is uniformly bounded and equicontinuous

in K.

In the above, C is a constant that depends on d, λ, ‖b‖∞ and diam(Ω), and Cp also depends

on p.
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Proof. Let N,M ∈ N such that B1/N (y), B1/M (x) ⊆ Ω, and for n ≥ N,m ≥ M we define

εn = 1/n, δm = 1/m, and

fn = |Bεn(y)|−1χBεn(y), gm = |Bδm(x)|−1χBδm(x).

Note that fn, gm ∈ L2(Ω); hence, propositions 4.1.2 and 4.1.3 show that there exist unique

solutions Gn, G
t
m ∈ W

1,2
0 (Ω) to the equations Lu = fn, L

tGtm = gm, therefore

ˆ
Ω
A∇Gn∇v + b∇Gn · v =

1

|Bεn(y)|

ˆ
Bεn(y)

w, ∀w ∈ W 1,2
0 (Ω),

and also

ˆ
Ω
At∇Gtm∇w + b∇w ·Gtm =

1

|Bδm(x)|

ˆ
Bδm(x)

w, ∀w ∈ W 1,2
0 (Ω).

For positivity of Gn, note that Gn ∈ W
1,2
0 (Ω) is a supersolution to the equation Lu = 0,

therefore the maximum principle (proposition 3.5.3) shows that Gn ≥ 0 in Ω.

Consider now the measures dµn = fn dx, dνm = gm dx, then lemma 5.1.1 shows that

µn, νm ∈ B(Ω), with norm 1. Moreover, we see that LGn = µn and LGtm = νm; therefore,

proposition 4.2.3 shows that, for any p ∈
[
1, d
d−1

)
, Gn ∈ W

1,p
0 (Ω). In addition, from

proposition 4.2.1, there exists a constant Cp depending only on d, λ, ‖b‖∞ and diam(Ω),

such that ‖Gtm‖W 1,p
0 (Ω)

≤ Cp. Therefore (ii) is proved.

For (iii) consider any p ∈
(

1, d
d−1

)
. From part (ii), (Gn) and (Gtm) are bounded in

W
1,p
0 (Ω); therefore, there exist subsequences Gkn , G

t
lm

, such that

Gkn → gy, Gtlm → gtx,
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weakly in W
1,p
0 (Ω), for some gy, g

t
x ∈ W

1,p
0 (Ω). Then, for every φ ∈ C∞c (Ω),

ˆ
Ω
A∇gy∇φ+ b∇gy · φ = lim

n→∞

ˆ
Ω
A∇Gkn∇φ+ b∇Gkn · φ

= lim
n→∞

1

|B1/kn(y)|

ˆ
Bkn(y)

φ

= φ(y),

therefore gy ∈ W 1,p
0 (Ω) solves the equation Lgy = δy. Uniqueness of solutions in proposi-

tion 4.2.3 shows that gy = Gy (Green’s function for L at y), and similarly, uniqueness in

proposition 4.2.1 shows that gtx = Gtx (Green’s function for Lt at x, therefore

Gkn → Gy, Gtlm → Gtx,

weakly in W
1,p
0 (Ω). Therefore, from the Rellich-Kondrachov compactness theorem, there

exist further subsequences, still denoted by (Gkn), (Gtlm
), which converge to Gy and Gtx in

Lp0(Ω) and almost everywhere in Ω.

We now come to the L
d
d−2
∗ bounds for Gtm. For this purpose fix s > 0, and set

Ωms = {z ∈ Ω|Gtm(z) > s}.

Consider also the positive part

w(z) =

(
1

s
− 1

Gtm(z)

)+

∈ W 1,2
0 (Ω).

Then, w ≡ 0 outside Ωms , and 0 ≤ w ≤ 1/s, therefore, using w as a test function we obtain

ˆ
Ωms

At∇Gtm∇Gtm · (Gtm)−2 +

ˆ
Ωms

b∇Gtm · (Gtm)−1 =
1

|Bδm(x)|

ˆ
Bδm(x)

v ≤ 1

s
,
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which implies that

ˆ
Ωms

At∇Gtm∇Gtm · (Gtm)−2 ≤ 1

s
−
ˆ

Ωms

b∇Gtm · (Gtm)−1

≤ 1

s
+ ‖b‖∞

ˆ
Ωms

|∇Gtm|(Gtm)−1

≤

(
1 + ‖b‖∞

ˆ
Ωms

|∇Gtm|

)
s−1 ≤ Cs−1,

where C depends on d, λ, ‖b‖∞ and diam(Ω), since (Gtm)−1 ≤ 1/s in Ωms , and where we also

used (i) for p = 1. Therefore, if we set w0(x) = (logGtm − log s)+, the last estimate shows

that ˆ
Ωms

|∇w0|2 ≤ λ−1
ˆ

Ωms

A∇w0∇w0 ≤
C

s
,

and Sobolev’s inequality shows that

ˆ
Ωm2s

(
log

Gtm
s

) 2d
d−2

d−2
d

≤ C(d)

(ˆ
Ωms

w
2d
d−2
0

)d−2
d

≤ C(d)λ−1
ˆ

Ωms

A∇w0∇w0 ≤
C

s
.

But, Gsm ≥ 2s in Ωm2s, so we obtain that s|Ωms |
d−2
d ≤ C for all s > 0, which shows that

‖Gtm‖
L

d
d−2
∗

≤ C.

To show the L
d
d−2
∗ (Ω) bound on Gn, we follow the same procedure: fix r > 0, and set

Ωnr = {z ∈ Ω|Gn(z) > r}.

Consider also the positive part

v(z) =

(
1

r
− 1

Gn(z)

)+

∈ W 1,2
0 (Ω).

68



Then, v ≡ 0 outside Ωnt , and 0 ≤ v ≤ 1/r, therefore, using v as a test function we obtain

ˆ
Ωnr

A∇Gn∇Gn · (Gn)−2 +

ˆ
Ωnr

b∇Gn · v =
1

|Bεn(y)|

ˆ
Bεn(y)

v ≤ 1

r
,

which implies that

ˆ
Ωnr

A∇Gn∇Gn · (Gn)−2 ≤ 1

r
−
ˆ

Ωnr

b∇Gn · v

≤ 1

r
+ ‖b‖∞

ˆ
Ωnr

|∇Gn|v

≤

(
1 + ‖b‖∞

ˆ
Ωnr

|∇Gn|

)
r−1 ≤ C̃r−1,

since Gn ∈ W 1,1(Ω), from part (i); the only difference here being that C̃ might depend on

the derivatives of b. Therefore, if we set v0(x) = (logGn − log r)+, the last estimate shows

that ˆ
Ωnr

|∇v0|2 ≤ λ−1
ˆ

Ωnr

A∇v0∇v0 ≤
C̃

r
,

and Sobolev’s inequality shows that

ˆ
Ωn2r

(
log

Gn
r

) 2d
d−2

d−2
d

≤ C̃

(ˆ
Ωnr

v
2d
d−2
0

)d−2
d

≤ C̃

ˆ
Ωnr

A∇v0∇v0 ≤
C

r
.

But, Gn ≥ 2r in Ωn2r, so we obtain that r|Ωnr |
d−2
d ≤ C̃ for all s > 0, which shows that

Gn ∈ L
d
d−2
∗ .

For equicontinuity of (Gn), consider K ⊆ U ⊆ Ω \ {y}, where all inclusions are compact,

and consider a covering of U by balls Bi, such that their doubles 4Bi are compactly supported

in Ω \ {y}. Let ri be the radius of Bi, set εi = δ(4Bi, ∂Ωx), and let ε be the minimum of the

εi, and r be the minimum of the ri. Then, for n > ε−1, Gn ∈ W 1,2(4Bi) and it is a positive

solution of the equation Lu = 0 in 4Bi. Consequently, from the Cacciopoli inequality (lemma
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3.1.1), we obtain that

 
Bi

|∇Gn|2 ≤
C

r2
i

 
2Bi

G2
n ≤

C

r2
i

sup{Gn(z)2
∣∣z ∈ 2Bi} ≤

C

r2
i

( 
2Bi

Gn

)2

, (5.1)

where C depends on d, λ and ‖b‖∞, and where the last inequality follows from Harnack’s

inequality (proposition 3.6.1) to Gn in 4Bi.

Now, we use estimate (2.3) with p = d
d−2 and δ = p− 1; since δ

p = 2
d , we obtain

 
B2Bi

Gn = Cr−di

ˆ
2Bi

Gn ≤ Cr−di |2Bi|
δ
p‖Gn‖Lp∗(2Bi)

= Cr−di |2Bi|
2
d‖Gn‖Lp∗(2Bi) ≤ C̃r

(2−d)
i ,

where we used part (iii) in the last step. Harnack’s inequality now shows that (Gn) is

uniformly bounded in 2Bi. In addition, combining with (5.1), we obtain that

 
Bi

|∇Gn|2 ≤
C

r2
i

(
C̃r2−d

i

)2
= C̃r2−2d

i ≤ C̃r2−2d.

This shows that (Gn), with respect to n, is bounded in W 1,2(2Bi); hence (Gn) is bounded

in W 1,2(U). We then apply proposition 3.6.4 to obtain that (Gn) is equicontinuous in K,

which finishes the proof.

We can now use the previous approximations as test functions, to show the symmetry

relation G(x, y) = Gt(y, x) for all x, y ∈ Ω with x 6= y.

Proposition 5.1.3. Let Ω be a bounded domain, A ∈Mλ(Ω), and b ∈ Lip(Ω). If G, Gt are

Green’s functions for the equations Lu = 0, Ltu = 0 in Ω respectively, then

G(x, y) = Gt(y, x)

for every x ∈ Ω and almost every y ∈ Ω, with x 6= y.
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Proof. Fix x, y ∈ Ω with x 6= y, and consider the construction that appears in lemma 5.1.2.

Since Gn, G
t
m ∈ W

1,2
0 (Ω), we can use them as test functions: set v = Gtm and w = Gn, to

obtain that ˆ
Ω
A∇Gn∇Gtm + b∇Gn ·Gtm =

ˆ
B1/n(y)

Gtm,

and also ˆ
Ω
At∇Gtm∇Gn + b∇Gn ·Gtm =

1

|B1/m(x)|

ˆ
B1/m(x)

Gn.

Since the integrals on the left hand sides of the two equations above coincide, we obtain that

for all n,m ∈ N that are large enough (in the notation of lemma 5.1.2),

1

|B1/kn(y)|

ˆ
B1/kn(y)

Gtlm =
1

|B1/lm(x)|

ˆ
B1/lm(x)

Gkn . (5.2)

Consider now a small closed ball B centered at x, which is far from ∂Ω and y, and fix

n. From lemma 5.1.2, every Gn is continuous in B, hence letting m→∞ in (5.2) and using

that Gtlm
converges to Gtx in L1(B1/kn(y)), we obtain that

1

|Bkn(y)|

ˆ
Bkn(y)

Gtx = Gkn(x, y).

Moreover, from lemma 5.1.2, (Gn) is uniformly bounded and equicontinuous in K, therefore

there exists a subsequence (Gkn) that converges uniformly to a continuous function in K.

Since Gkn converges to Gy almost everywhere, we obtain that Gkn → Gy uniformly in B;

therefore, from Lebesgue’s differentiation theorem, for almost every y ∈ Ω with y /∈ B,

Gt(y, x) = Gtx(y) = lim
n→∞

1

|Bεkn (y)|

ˆ
Bεkn

(y)
Gtx = lim

n→∞
Gkn(x, y) = G(x, y).

By considering smaller balls B, we obtain the equality for all x ∈ Ω and almost every y ∈ Ω,

whenever y 6= x; this completes the proof.
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5.2 The pointwise estimates

In this section we will drop the assumption on differentiability of b and show pointwise

estimates on G and Gt. We first show the size bounds and the pointwise estimates for

Green’s function for the adjoint equation Ltu = 0.

Proposition 5.2.1. Let Ω ⊆ Rd be a bounded domain, and let A ∈ Mλ(Ω), b ∈ Lip(Ω).

There exists a function Gt : (Ω × Ω) \ {(x, x)|x ∈ Ω} → [0,∞) that satisfies the following

properties.

i) For any x ∈ Ω, and any p ∈
[
1, d
d−1

)
, ‖Gt(−, x)‖

W 1,p
0 (Ω)

≤ Cp, uniformly in x.

ii) For all φ ∈ C∞c (Ω), αt(Gt(−, x), φ(−)) = φ(x): that is,

ˆ
Ω

(
At(z)∇zGt(z, x)∇φ(z) + b(z)∇φ(z) ·Gt(z, x)

)
dz = φ(x).

iii) For all x, y ∈ Ω, Gt(y, x) ≤ C|x− y|2−d.

iv) ‖Gt(−, x)‖
L

d
d−2
∗ (Ω)

≤ C, uniformly in x.

All the constants C depend on d, λ, ‖b‖∞ and diam(Ω), and Cp also depends on p. In

particular, the constants do not depend on the derivatives of b.

Proof. First, note that positivity of Gtx follows from combining proposition 5.1.3 with lemma

5.1.2.

Fix x ∈ Ω, let ε > 0, so that Bε = Bε(x) ⊆ Ω. Consider the construction in lemma

5.1.2; it is shown there that, for any p ∈
[
1, d
d−1

)
, there exists a subsequence such that

Gtlm
→ G(−, x) weakly in W

1,p
0 (Ω), strongly in Lp(Ω), and pointwise in Ω. Moreover, it is

also shown that

‖Gtm‖
L

d
d−2
∗

≤ C,
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where C depends on d, λ, ‖b‖∞ and diam(Ω). Set now

Ωms = {z ∈ Ω|Gtlm(z) > s}, Ωs = {z ∈ Ω|Gtx(z) > s}.

Since Gtm → Gtx almost everywhere, we obtain that for any fixed s, χΩms
→ χΩs almost

everywhere, as m→∞. Therefore, the dominated convergence theorem shows that

s|Ωs|
d−2
d ≤ lim

m→∞
s|Ωms |

d−2
d ≤ C,

which shows the uniform L
d
d−2
∗ bound on Gtx; that is,

‖Gtx‖
L

d
d−2
∗

= sup
s>0

(
s|Ωs|

d−2
d

)
≤ C, (5.3)

where C depends on d, λ, ‖b‖∞ and diam(Ω).

We now turn to the pointwise upper bound for Gtx. We fix z 6= x ∈ Ω, and set r = |z−x|.

We will consider the following cases: Br/2(x) ⊆ Ω, and Br/2(x) 6⊆ Ω.

In the first case, Br/4(z) ⊆ Ω \ B3r/4(x), and Gtx is a positive solution to the equation

Ltu = 0 in Br/4(z). We now apply Harnack’s inequality (proposition 3.6.1), to obtain that

Gtx(z) ≤ sup{Gtx(y)|y ∈ Br/4(z)} ≤ C

 
Br/4(z)

Gtx,

where C depends on d, λ, ‖b‖∞ and diam(Ω). Now, we use estimate (2.3) with p = d
d−2 and

δ = p− 1; since δ
p = 2

d , we obtain

 
Br/4(z)

Gtx = Cr−d
ˆ
Br/4(z)

Gtx

≤ Cr−d|Br/4(z)|
δ
p‖Gtx‖Lp∗(Br/4(x))

≤ Cr−d|Br/4(z)|
2
d ≤ Cr(2−d),
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where we also used (5.3). Therefore, in this case, Gtx(z) ≤ Cr2−d = C|x− z|2−d.

If, now, Br/2(x) 6⊆ Ω: in this case, consider a larger domain Ω̃ such that Br/2(x) ⊆ Ω̃,

and extend the operator L to L̃ on Ω̃. In Ω̃ we consider Green’s function G̃t, for the operator

L̃t. Then, the estimate above shows that G̃t(z, x) ≤ Cr2−d. If G̃ is Green’s function for the

operator L̃ in Ω̃, lemma 5.1.2 shows that

G̃(x, z) = G̃t(z, x) ≤ Cr2−d.

Note now that, if G̃n(x, z) is the approximation of G̃(x, z) constructed in proposition 5.1.3,

then, for fixed z and n ∈ N,

Gkn(−, z)− G̃kn(−, z) ∈ W 1,2(Ω)

is a solution to Lu = 0 in Ω, which is nonnegative on ∂Ω. Then, the maximum principle

(proposition 3.5.2) shows that, for all z ∈ Ω,

Gkn(x, z)− G̃kn(x, z) ≤ 0.

Therefore

Gtx(z) = G(x, z) = lim
n→∞

Gkn(x, z) ≤ lim
n→∞

G̃kn(x, z) = G̃(x, z) ≤ Cr2−d,

which implies that, in all cases, we have that Gt(z, x) ≤ C|x − y|2−d, where C depends on

d, λ, ‖b‖∞ and diam(Ω).

Note that in the previous proposition, none of the constants depend on the derivatives

of b. This fact leads us to the next theorem, in which the differentiability assumption on b

is dropped.
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Theorem 5.2.2. Let Ω ⊆ Rd be a bounded domain, and let A ∈Mλ(Ω), b ∈ L∞(Ω). There

exists a function Gt : (Ω×Ω)\{(x, x)|x ∈ Ω} → [0,∞) that satisfies the following properties.

i) For any x ∈ Ω, and any p ∈
[
1, d
d−1

)
, ‖Gt(−, x)‖

W
1,p
0 (Ω)

≤ Cp, uniformly in x.

ii) For all φ ∈ C∞c (Ω), αt(Gt(−, x), φ(−)) = φ(x): that is,

ˆ
Ω

(
At(z)∇zGt(z, x)∇φ(z) + b(z)∇φ(z) ·Gt(z, x)

)
dz = φ(x).

iii) For all x, y ∈ Ω, Gt(y, x) ≤ C|x− y|2−d.

iv) ‖Gt(−, x)‖
L

d
d−2
∗ (Ω)

≤ C, uniformly in x.

All the constants C depend on d, λ, ‖b‖∞ and diam(Ω), and Cp also depends on p.

Proof. Let p ∈
[
1, d
d−1

)
. Consider a mollification of b: that is, bn ∈ Lip(Ω), ‖bn‖∞ ≤ ‖b‖∞

for all n ∈ N, and bn → b in Ld(Ω). From proposition 5.2.1, we can construct Green’s

function G
t,n
x , for every point x ∈ Ω, such that

ˆ
Ω
At∇Gt,nx ∇φ+ b∇φ ·Gt,nx = φ(x) ∀φ ∈ C∞c (Ω),

where G
t,n
x also satisfies the estimates

|Gt,nx (y)| ≤ C|x− y|2−d, ‖Gt,nx ‖W 1,p
0 (Ω)

≤ Cp,

where C is a constant that depends d, λ, ‖b‖∞, diam(Ω), and Cp also depends on p. Hence,

there exists a subsequence G
t,kn
x which converges to a function Gtx ∈ W

1,p
0 weakly in W

1,p
0 ,

strongly in Lp(Ω), and almost everywhere in Ω. In particular, this function does not depend

on p. Then, for any φ ∈ C∞c (Ω), we compute

ˆ
Ω
At∇Gtx∇φ+ b∇φ ·Gtx = lim

n→∞

ˆ
Ω
At∇Gt,knx ∇φ+ b∇φ ·Gt,knx = φ(x).
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From almost everywhere convergence of G
t,kn
x to Gtx, we obtain the pointwise bound (iii)

and the Lorentz bound (iv), which completes the proof.

The final step involves the construction of Green’s function without any differentiability

assumption on b. Since we now have a pointwise bound on Green’s function, we will bound

its derivative using an analog of Cacciopoli’s inequality.

Lemma 5.2.3. Let Ω be a bounded domain, and let A ∈Mλ(Ω), b ∈ Lip(Ω). IfGy is Green’s

function for L at y, then for every p ∈
[
1, d
d−1

)
there exists a constant Cp, depending on

d, λ, ‖b‖∞, p and diam Ω, such that ‖Gy‖W 1,p
0 (Ω)

≤ Cp, uniformly in y.

Proof. Without loss of generality, assume that diam(Ω) < 1.

Let r > 0 and y ∈ Ω, and consider a smooth cutoff φ which is equal to 1 in B2r(y)\Br(y),

it is equal to 0 in Br/2(y) and outside B3r(y), and |∇φ| ≤ C/r. Consider also the functions

Gn ∈ W 1,2
0 (Ω) that appear in the proof of lemma 5.1.2. Using Gnφ

2 ∈ W 1,2
0 (Ω) as a test

function, we obtain that

ˆ
Ω
A∇Gn · ∇(Gnφ

2) + b∇Gn ·Gnφ2 = 0,

which implies that

λ

ˆ
Ω
|∇Gn|2φ2 ≤

ˆ
Ω
A∇Gn∇Gn · φ2 = −

ˆ
Ω

2A∇Gn∇φ ·Gnφ+ b∇Gn ·Gnφ2

≤ C

(ˆ
Ω
|∇Gn|2φ2

)1/2
((ˆ

Ω
|∇φ|2|Gn|2

)1/2

+ ‖b‖∞
(ˆ

Ω
G2
nφ

2
)1/2

)
,

and the last estimate shows that

ˆ
Ω
|∇Gn|2φ2 ≤ C

ˆ
Ω
|∇φ|2|Gn|2 + C

ˆ
Ω
G2
nφ

2,

where C depends on λ and ‖b‖∞. Considering the support properties of φ, using the previous
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estimate we obtain

ˆ
B2r(y)\Br(y)

|∇Gn|2 =

ˆ
B2r(y)\Br(y)

|∇Gn|2φ2 ≤
ˆ

Ω
|∇Gn|2φ2

≤ C

ˆ
Ω
|∇φ|2|Gn|2 + C

ˆ
Ω
G2
nφ

2

≤ C

r2

ˆ
B3r\Br/2

|Gn|2 + C

ˆ
B3r\Br/2(y)

|Gn|2

= C

(
1

r2
+ 1

) ˆ
B3r\Br/2(y)

|Gn|2.

If, now, p ∈
[
1, d
d−1

)
, then, from Hölder’s inequality,

ˆ
B2r(y)\Br(y)

|∇Gn|p ≤

(ˆ
B2r(y)\Br(y)

|∇Gn|2
)p/2

|B2r(y)|1−p/2

≤ Cp

(
1

r2
+ 1

)p/2(ˆ
B3r\Br/2(y)

|Gn|2
)p/2

rd−pd/2.

Hence, if r < 1, we obtain that 1 < diam(Ω)/r, so

ˆ
B2r(y)\Br(y)

|∇Gn|p ≤ Cp

(ˆ
B3r\Br/2(y)

|Gn|2
)p/2

rd−pd/2−p.

If r ≥ 1 the same inequality holds, since then (B2r(y) \ Br(y)) ∩ Ω = ∅, because we have

assumed that diam(Ω) < 1.

We now extend the operator L to an operator L̃ on B2(y), and let G̃y be Green’s function

for L̃ at y, and G̃n be the sequence constructed in lemma 5.1.2. Note that Gn and G̃n are

in W 1,2(Ω), Gn − G̃n is a solution to L̃u = 0 in Ω, and, from proposition 5.2.1, G̃n ≥ 0 on

∂Ω. Therefore, from the maximum principle, Gn ≤ G̃n in Ω, hence

ˆ
B2r(y)\Br(y)

|∇Gn|p ≤ Cp

(ˆ
B3r\Br/2(y)

|G̃n|2
)p/2

rd−pd/2−p.
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Let now K̃ be a compactly supported subset of B2(y)\{y}. Then, lemma 5.1.2 shows that G̃n

is uniformly bounded and continuous in K. Hence, for some subsequence, the same lemma

shows that G̃kn → G̃y uniformly. Hence, for every r ∈ (0, 1), the dominated convergence

theorem shows that

lim sup
n→∞

ˆ
B2r(y)\Br(y)

|∇Gkn |
p ≤ Cp

(
lim sup
n→∞

ˆ
B3r\Br/2(y)

|G̃kn |
2

)p/2
rd−pd/2−p

≤ Cp

(ˆ
B3r\Br/2(y)

lim sup
n→∞

|G̃kn |
2

)p/2
rd−pd/2−p

≤ Cp

(ˆ
B3r\Br/2(y)

|G̃y(x)|2
)p/2

rd−pd/2−p.

We now use the pointwise bound on G̃t from proposition 5.2.1, and the symmetry relation

from proposition 5.1.3, to conclude that

lim sup
n→∞

ˆ
B2r(y)\Br(y)

|∇Gkn|
p ≤ Cp

(ˆ
B3r\Br/2(y)

|y − x|2(2−d)

)p/2
rd−pd/2−p

≤ Cp

(ˆ
B3r\Br/2(y)

(r/2)2(2−d)

)p/2
rd−pd/2−p

= Cpr
d+p−dp = Cpr

α,

where α = p + d − dp; since p < d
d−1 , we obtain then that α > 0. Therefore, since a

subsequence of Gkn converges to Gy in W
1,p
0 , we obtain that

ˆ
B2r(y)\Br(y)

|∇Gy|p ≤ Cpr
α,

where Cp is a constant that depends on d, λ, ‖b‖∞ and p.

Finally, we apply this inequality for r = 2−j , j ∈ N and we add the resulting terms, to
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finally conclude

ˆ
Ω
|∇Gy|p =

∞∑
j=0

ˆ
B

21−j(y)
\B

2−j (y)
|∇Gy|p ≤

∞∑
j=0

Cp2
−jα ≤ Cp,

since α > 0, which implies that the series converges, and where Cp depends on d, λ, ‖b‖∞

and p. To bound the Lp norm of Gy we use the pointwise bound from proposition 5.2.1, and

the symmetry relation from proposition 5.1.3. This completes the proof.

We are now in position to construct Green’s function for bounded drifts b.

Theorem 5.2.4. Let Ω ⊆ Rd be a bounded domain, and suppose that A ∈ Mλ(Ω), b ∈

L∞(Ω). There exists a function G : (Ω × Ω) \ {(x, x)|x ∈ Ω} → [0,∞) that satisfies the

following properties.

i) For any y ∈ Ω, and any p ∈
[
1, d
d−1

)
, ‖G(−, y)‖

W
1,p
0 (Ω)

≤ Cp, uniformly in p

ii) For all φ ∈ C∞c (Ω), α(G(−, y), φ(−)) = φ(y): that is,

ˆ
Ω

(A(z)∇zG(z, y)∇φ(z) + b(z)∇zG(z, y) · φ(z)) dz = φ(y)

iii) For all x, y ∈ Ω, G(x, y) ≤ C|x− y|2−d.

In the above, C depends on d, λ, ‖b‖∞ and diam(Ω), and Cp also depends on p.

Proof. The proof is identical to the proof of theorem 5.2.2. For the good bound on the

norm ‖Gy‖W 1,p
0 (Ω)

we apply lemma 5.2.3. In addition, for the pointwise bound we use the

pointwise bound from proposition 5.2.1, and the symmetry relation from proposition 5.1.3.

This completes the proof.

We conclude this section with the following estimates on W
1,2
0 (Ω) solutions to the equa-

tions Lu = F and Ltu = F in Ω.
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Proposition 5.2.5. Let Ω be a bounded domain, A ∈ Mλ(Ω), and b ∈ L∞(Ω). Then,

for every F ∈ W−1,2(Ω), there exists a unique solution u ∈ W
1,2
0 (Ω) of the equation

− div(A∇u) + b∇u = F in Ω, and also

‖u‖
W 1,2

0 (Ω)
≤ C‖F‖W−1,2(Ω),

where C depends on d, λ, ‖b‖∞ and diam(Ω).

Proof. Existence and uniqueness follows from proposition 4.1.2. To show the estimate, con-

sider the γ that appears in proposition 4.1.1, and let u0 ∈ W
1,2
0 (Ω) be the solution to

− div(A∇u0) + b∇u0 + γu0 = F

in Ω, which exists from proposition 4.1.1. Then, the same proposition shows that

‖u0‖W 1,2
0 (Ω)

≤ C‖F‖W−1,2(Ω),

where C is a good constant. Let now

v(x) = γ

ˆ
Ω
G(x, y)u0(y) dy,

then we compute that v ∈ W 1,2
0 (Ω) is the solution to − div(A∇v) + b∇v = γu0 in Ω. From

the pointwise estimates on Green’s function in theorem 5.2.4 and lemma 3.5.1, we obtain

‖v‖
W 1,2

0 (Ω)
≤ C‖v‖L2(Ω) + C‖γu0‖L2(Ω) ≤ C‖u0‖L2(Ω) ≤ C‖F‖W−1,2(Ω),

where C is a good constant, since γ is a good constant. If we now set w = u0 − v, we
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compute

− div(A∇w) + b∇w = − div(A∇u0) + b∇u0 − div(A∇v) + b∇v = F,

therefore w = u. Hence

‖u‖
W

1,2
0 (Ω)

≤ ‖u0‖W 1,2
0 (Ω)

+ ‖v‖
W

1,2
0 (Ω)

≤ C‖F‖W−1,2(Ω),

where C is a good constant, which completes the proof.

We also show the analog of the last proposition for the adjoint equation Ltu = 0.

Proposition 5.2.6. Let Ω be a bounded domain, A ∈ Mλ(Ω), and b ∈ L∞(Ω). Then,

for every F ∈ W−1,2(Ω), there exists a unique solution u ∈ W
1,2
0 (Ω) of the equation

− div(A∇u)− div(bu) = 0 in Ω, and also

‖u‖
W 1,2

0 (Ω)
≤ C‖F‖W−1,2(Ω),

where C depends on d, λ, ‖b‖∞ and diam(Ω).

Proof. Recall the definition of the operator g : W−1,2(Ω)→ W
1,2
0 (Ω) from proposition 4.1.2,

that sends F ∈ W−1,2(Ω) to u = gF ∈ W 1,2
0 (Ω), which is the unique solution of Lu = F in

Ω. Then, proposition 5.2.5 shows that

‖g‖
W−1,2→W 1,2

0
≤ C

for some C that depends only on d, λ, ‖b‖∞ and diam(Ω). This shows that ‖gt‖
W−1,2→W 1,2

0
≤

C. But, from proposition 4.1.3, gt : W−1,2(Ω) → W
1,2
0 (Ω) sends F ∈ W−1,2(Ω) to the

unique W
1,2
0 (Ω) solution of Ltu = F in Ω, which completes the proof.
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5.3 Estimates on the gradients of G,Gt

In this section we will assume that A is Lipschitz continuous, to obtain pointwise bounds

and Hölder continuity on the derivative of Green’s function and its adjoint.

Proposition 5.3.1. Let B be a ball of radius 2ρ, and A ∈Mλ,µ(B), b ∈ L∞(B). Then, for

any x, y ∈ Bρ,

|∇xG(x, y)| ≤ C|x− y|1−d,

where C depends on d, λ, µ, ‖b‖∞ and ρ.

Proof. Let r = |x− y|/16, then B2r(x) ⊆ Bρ, and also y /∈ B2r(x). Set now u(x) = G(x, y),

then u is a solution of the equation Ltu = 0 in B2r(x). From theorem 5.2.4, u ∈ W 1,p
0 (B2r(y))

for p = d
2(d−1)

, therefore proposition 3.2.3 shows that u ∈ W 1,2(Br(y)). Hence, corollary

3.3.2 shows that

‖∇u‖L∞(Br/2(x)) ≤
C

r

( 
Br(x)

u2

)1/2

≤ C

r

( 
Br(x)

|z − y|2−d
)1/2

,

where we used the pointwise estimates on G, from theorem 5.2.4. But, for z ∈ Br(x),

|z − y| ≥ |x− y| − |x− z| > |x− y| − r = 15r,

therefore

|∇xG(x, y)| ≤ ‖∇u‖L∞(Br/2(x)) ≤
C

r

( 
Br(x)

r2−d
)1/2

= Cr1−d = C|x− y|1−d,

which completes the proof.

We also obtain local Hölder continuity of the gradient of Green’s function.
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Proposition 5.3.2. Let B be a ball of radius 2ρ, and suppose that A ∈ Mλ,µ(B), b ∈

L∞(B). Let also G be Green’s function for Lu = 0 in B. Then there exists α ∈ (0, 1) such

that, for all x1, x2 ∈ Bρ, y ∈ B2ρ,

|∇xG(x1, y)−∇xG(x2, y)| ≤ C
(
|x1 − y|1−d−α + |x2 − y|1−d−α

)
|x1 − x2|α,

where C depends on d, λ, µ, ‖b‖∞ and ρ.

Proof. For simplicity, assume that B is centered at 0. Without loss of generality, assume

that |y − x1| ≤ |y − x2|. Set Gy(x) = G(x, y), and define

R =
1

5
min{|y − x2|, ρ}.

First, suppose that |x1 − x2| ≥ R. Consider two cases: if |y − x2| ≤ ρ, the estimate in

proposition 5.3.1 shows that

|∇Gy(x1)−∇Gy(x2)| ≤ C|x1 − y|1−d + C|x2 − y|1−d

= C|x1 − y|α|x1 − y|1−d−α + C|x2 − y|α|x2 − y|1−d−α

≤ C|x2 − y|α
(
|x1 − y|1−d−α + |x2 − y|1−d−α

)
≤ C(5R)α

(
|x1 − y|1−d−α + |x2 − y|1−d−α

)
≤ C5α|x1 − x1|α

(
|x1 − y|1−d−α + |x2 − y|1−d−α

)
.

If, now, |y − x2| > ρ, we have that

|y − x2|α ≤ (|y|+ |x2|)α ≤ (2ρ+ ρ)α = 3αρα = 3α5αRα,
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since x2 ∈ Bρ. Therefore, as above, we obtain

|∇Gy(x1)−∇Gy(x2)| ≤ C|x1 − y|1−d + C|x2 − y|1−d

≤ C|x2 − y|α
(
|x1 − y|1−d−α + |x2 − y|1−d−α

)
≤ C · 15αRα

(
|x1 − y|1−d−α + |x2 − y|1−d−α

)
≤ C · 15α|x1 − x1|α

(
|x1 − y|1−d−α + |x2 − y|1−d−α

)
,

which shows the estimate in all cases when |x1 − x2| ≥ R.

Suppose now that |x1 − x2| < R. Then x1 ∈ BR(x2), and, if x ∈ B2R(x2), we obtain

that

|x− y| ≥ |x2 − y| − |x− x2| ≥ |x2 − y| − 2R ≥ |x2 − y| −
2

5
|x2 − y| =

3

5
|x2 − y|,

and also

|x| ≤ |x− x2|+ |x2| ≤ 2ρ,

therefore B2R(x2) ⊆ B2ρ. Therefore, x 7→ G(x, y) is a solution of Lu = 0 in B2R(x2), hence

proposition 3.3.1 shows that

|∇xG(x1, y)−∇xG(x2, y)| ≤ C

R

(
|x1 − x2|

R

)α( 
B2R(x2)

|G(x, y)|2
)1/2

≤ C|x1 − x2|αR−1−α|x2 − y|2−d

= C|x1 − x2|α|x2 − y|1−d−α
(
|x2 − y|

R

)1+α

.

If, now, R = 1
5 |x2 − y|, we obtain the required bound. On the other hand, if R = 1

5ρ, then

(
|x2 − y|

R

)1+α

≤
(

2ρ

ρ/5

)1+α

= 101+α
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which shows that the bound also holds in this case, and completes the proof.

The same argument as above, using corollary 3.3.2 instead of proposition 3.3.1, shows

the next estimate.

Proposition 5.3.3. Let B be a ball of radius 2ρ, and suppose that A ∈ Mλ,µ(B), b ∈

L∞(B). Let also G be Green’s function for Lu = 0 in B. Then for all x1, x2 ∈ Bρ, y ∈ B2ρ,

|G(x1, y)−G(x2, y)| ≤ C
(
|x1 − y|1−d + |x2 − y|1−d

)
|x1 − x2|,

where C depends on d, λ, µ, ‖b‖∞ and ρ.

We now turn to the analogous estimates for the gradient of Gt. We first show the

pointwise estimate.

Proposition 5.3.4. Let B be a ball of radius 2ρ, and A ∈ Mλ,µ(B), b ∈ Cα(B), for some

α ∈ (0, 1]. Then, for any x, y ∈ Bρ,

|∇yGt(y, x)| ≤ C|x− y|1−d,

where C depends on d, λ, µ, ‖b‖Cα and ρ.

Proof. Let (bn) be a mollification of b, where all the bn ∈ Lip(Ω), and bn → b in Ld. Consider

also the operator Ltn = − div(A∇u)− div(bnu), and set un = (y) = Gtn(y, x) to be Green’s

function for Lnt in B, centered at x.

Let r = |x− y|/16, then B2r(y) ⊆ Bρ, and also x /∈ B2r(y). Then u is a solution of the

equation Ltnu = 0 in B2r(y). From proposition 5.2.1, un ∈ W
1,p
0 (B2r(y)) for p = d

2(d−1)
,

therefore proposition 3.2.4 shows that un ∈ W 1,2(Br(y)). Hence, corollary 3.4.2 shows that

‖∇un‖L∞(Br/2(y)) ≤
C

r

( 
Br(y)

u2
n

)1/2

≤ C

r

( 
Br(y)

|z − x|2−d
)1/2

,
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where C depends on d, λ, µ and ‖b‖Cα , and where we used the pointwise estimates on Gtn,

from proposition 5.2.1. But, for z ∈ Br(y),

|x− z| ≥ |x− y| − |y − z| > |x− y| − r = 15r,

therefore

‖∇un‖L∞(Br/2(y)) ≤

( 
Br(y)

r2−d
)1/2

≤ Cr1−d,

where C depends on d, λ, µ and ‖b‖Cα .

Note now that, from proposition 5.2.1, (un) is uniformly bounded in Br(y); hence, propo-

sition 3.4.1 shows that (∇un) is equicontinuous in Br(y). Hence, there exists a subsequence

(ukn) which converges to some u in C1(Br(y)). But, as in theorem 5.2.2, a subsequence of

(ukn) converges weakly to Gt(·, x) almost everywhere in Br(y). This shows that Gt(·, x) is

continuously differentiable in Br(y), and also

|∇yGt(y, x)| ≤ ‖∇yGt(·, x)‖L∞(Br(y)) ≤ lim sup
n→∞

‖∇un‖L∞(Br/2(y)) ≤ Cr1−d,

which completes the proof.

We also show the Hölder estimate on the gradient of ∇Gt.

Proposition 5.3.5. LetB be a ball of radius 2ρ, and suppose that A ∈Mλ,µ(B), b ∈ Cα(B),

for some α ∈ (0, 1]. Let also Gt be Green’s function for the equation Ltu = 0 in B. Then,

for all y1, y2 ∈ Bρ, x ∈ B2ρ,

|∇yGt(y1, x)−∇yGt(y2, x)| ≤ C
(
|y1 − x|1−d−α + |y2 − x|1−d−α

)
|y1 − y2|α,

where C depends on d, λ, µ, ‖b‖Cα and ρ.

Proof. For simplicity, assume that B is centered at 0. After applying a mollification argument
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similar to the proof of proposition 5.3.4, it is enough to assume that b ∈ Lip(B).

Without loss of generality, assume that |x − y1| ≤ |x − y2|. Set Gtx(y) = Gt(y, x), and

define

R =
1

5
min{|x− y2|, ρ}.

First, suppose that |y1− y2| ≥ R. Consider two cases: if |x− y2| ≤ ρ, then proposition 5.3.4

shows that

|∇Gtx(y1)−∇Gtx(y2)| ≤ C|y1 − x|1−d + C|y2 − x|1−d

= C|y1 − x|α|y1 − x|1−d−α + C|y2 − x|α|y2 − x|1−d−α

≤ C|y2 − x|α
(
|y1 − x|1−d−α + |y2 − x|1−d−α

)
≤ C(5R)α

(
|y1 − x|1−d−α + |y2 − x|1−d−α

)
≤ C5α|y1 − y2|α

(
|y1 − x|1−d−α + |y2 − x|1−d−α

)
.

If, now, |x− y2| > ρ, we have that

|x− y2|α ≤ (|x|+ |y2|)α ≤ (2ρ+ ρ)α = 3αρα = 3α5αRα,

since y2 ∈ Bρ. Therefore, as above, we obtain

|∇Gtx(y1)−∇Gtx(y2)| ≤ C|y1 − x|1−d + C|y2 − x|1−d

≤ C|y2 − x|α
(
|y1 − x|1−d−α + |y2 − x|1−d−α

)
≤ C · 15αRα

(
|y1 − x|1−d−α + |y2 − x|1−d−α

)
≤ C · 15α|y1 − y2|α

(
|y1 − x|1−d−α + |y2 − x|1−d−α

)
,

which shows the estimate in all cases when |y1 − y2| ≥ R.
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Suppose now that |y1− y2| < R. Then y1 ∈ BR(y2), and, if z ∈ B2R(y2), we obtain that

|z − x| ≥ |y2 − x| − |z − y2| ≥ |y2 − x| − 2R ≥ |y2 − x| −
2

5
|y2 − x| =

3

5
|y2 − x|,

and also

|z| ≤ |z − y2|+ |y2| ≤ 2ρ,

therefore B2R(y2) ⊆ B2ρ. Therefore, z 7→ Gt(z, x) is a solution of Ltu = 0 in B2R(y2),

hence proposition 3.4.1 shows that

|∇yGt(y1, x)−∇yGt(y2, x)| ≤ C

R

(
|y1 − y2|

R

)α( 
B2R(y2)

|Gt(z, x)|2
)1/2

≤ C|y1 − y2|αR−1−α|y2 − x|2−d

= C|y1 − y2|α|y2 − x|1−d−α
(
|y2 − x|
R

)1+α

.

If, now, R = 1
5 |y2 − x|, we obtain the required bound. On the other hand, if R = 1

5ρ, then

(
|y2 − x|
R

)1+α

≤
(

2ρ

ρ/5

)1+α

= 101+α

which shows that the bound also holds in this case, and completes the proof.

The same argument as above, using corollary 3.4.2 instead of proposition 3.4.1, shows

the next estimate.

Proposition 5.3.6. LetB be a ball of radius 2ρ, and suppose that A ∈Mλ,µ(B), b ∈ Cα(B).

Let also Gt be Green’s function for Ltu = 0 in B. Then for all y1, y2 ∈ Bρ, x ∈ B2ρ,

|G(y1, x)−G(y2, x)| ≤ C
(
|y1 − x|1−d + |y2 − x|1−d

)
|y1 − y2|,

where C depends on d, λ, µ, ‖b‖Cα(B) and ρ.
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5.4 Mixed derivatives

We now turn our attention to properties of the function ∇xG(x, y), as a function of y. We

first show the next lemma.

Lemma 5.4.1. Let B be a ball of radius ρ, and suppose that A ∈ Mλ,µ(B), b ∈ L∞(B).

Fix also x ∈ B. Then, for any i ∈ {1, . . . d}, the function

u(y) = ∂xi G(x, y)

is a W
1,2
loc (B \ {x}) solution to the equation Ltu = 0 in B \ {x}, where ∂xi denotes the i-th

partial derivative with respect to x.

Proof. Assume first that b ∈ Lip(Ω).

Let U ⊆ B \ {x} be compactly supported, and consider a set V with U ⊆ V ⊆ B \ {x},

where all inclusions are compact. Then there exists ε0 > 0 such that B2 ε0
(x) ∩ V = ∅. Let

also |h| < ε0, fix i ∈ {1, . . . d}, and consider the function

gh(y) =
G(x+ hei, y)−G(x, y)

h
.

Note first that, from proposition 5.1.3 and theorem 5.2.2, gh is a W
1, d

2(d−1)

0 (B) solution of

Ltu = 0 in V ; hence, since b is Lipschitz, proposition 3.2.4 shows that gh ∈ W 1,2(V ). In

addition, for y ∈ V , we have that y /∈ B2 ε0
(x), hence G(·, y) is a solution of Lu = 0 in

B2 ε0
(x), therefore it is continuously differentiable in Bε0(x), from proposition 3.3.1. Hence,

the mean value theorem shows that

|gh(y)| =
∣∣∣∣G(x+ hei, y)−G(x, y)

h

∣∣∣∣ ≤ |∇zG(z, y)| ≤ C|z − y|1−d,

for some z lying on the segment [x, x+ hei], where we also used proposition 5.3.1. But then
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z ∈ Bε0(x), and since y /∈ B2 ε0
(x), we obtain that

|gh(y)| ≤ C|z − y|1−d ≤ C ε1−d
0 = C0.

This shows that, for |h| < ε0, gh is a uniformly bounded solution of Ltu = 0 in V , with

respect to h.

Consider now a covering of U by a finite number of balls Bi = Bri(xi), i = 1, . . . N , such

that 4Bi ⊆ V . Then, Cacciopoli’s inequality shows that

ˆ
Bi

|∇gh|2 ≤
C

ri

2 ˆ
2Bi

|gh|2 ≤
CC2

0 |2Bi|
r2
i

, (5.4)

hence ∇gh ∈ L2(Bi), with a uniform bound on its norm, for |h| < ε0, where this bound de-

pends on d, λ, ‖b‖∞ and diam(Ω). Therefore∇gh ∈ L2(U) uniformly, hence (gh) is uniformly

bounded in W 1,2(U), with respect to h.

From weak compactness, we obtain the existence of a function g0 ∈ W 1,2(U) such that,

for a sequence hn → 0,

ghn −−−−→n→∞
g0, weakly in W 1,2(U).

From the definition of weak solution, we have that g0 is a weak solution of Ltu = 0 in U .

In addition, the Rellich compactness theorem and almost everywhere convergence show that

there exists a subsequence gtn , with tn → 0, such that

gtn −−−−→n→∞
g0, almost everywhere in U.

Pick a y ∈ U such that this convergence holds. Then, we obtain that

g0(y) = lim
n→∞

gtn(y) = lim
n→∞

G(x+ tnei, y)−G(x, y)

tn
= ∂xi G(x, y),
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since G(·, y) is continuously differentiable in Bε0(x), and y /∈ B2 ε0
(x). But, g0 ∈ W 1,2(U) is

a solution to Ltu = 0 in U , therefore ∂xi G(x, y) is a solution to Ltu = 0 in U , at least when

b ∈ Lip(B).

In order to pass to non differentiable drifts, let (bn) be a mollification of b, consider the

operator Lu = − div(A∇u) + bn∇u, let Gn be Green’s function for this operator in B, and

set

gnh(y) =
Gn(x+ hei, y)−Gn(x, y)

h

as above. Since ∂xi Gn(x, y) is the weak W 1,2(V ) limit of a subsequence (gnhm
), as n → ∞,

(5.4) shows that (∂xi Gn(x, ·)) is bounded in W 1,2(V ). Therefore, the sequence (Gn(x, ·)) is

bounded in W 2,2(V ). In addition, a subsequence (∂xi Gkn(x, ·)) converges weakly in W 1,2(V )

to a solution v of Ltu = 0. Moreover, a subsequence of Gkn(x, ·) converges almost everywhere

to G(x, ·) in V , and the derivatives with respect to x of this subsequence converge almost

everywhere in V ; this shows that ∂xi G(x, ·) = v is a W 1,2(B) solution to Ltu = 0 in V , which

completes the proof.

We can now show estimates for the adjoint variable of the derivative of Green’s function.

Proposition 5.4.2. Let B be a ball of radius 2ρ, and suppose that A ∈ Mλ,µ(B), b ∈

L∞(B). Let also G be Green’s function for the equation Lu = 0 in B. Then, for all

y1, y2 ∈ Bρ, x ∈ B2ρ,

|∇xG(x, y1)−∇xG(x, y2)| ≤ C|y1 − y2|α
(
|y1 − x|1−d−α + |y2 − x|1−d−α

)
,

where α ∈ (0, 1) and C depend on d, λ, µ, ‖b‖∞ and ρ.

Proof. For simplicity, assume that B is centered at 0. Without loss of generality, assume

that |y1 − x| ≤ |y2 − x|. Set Gy(x) = G(x, y), and define

R =
1

5
min{|x− y2|, ρ}.
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First, suppose that |y1 − y2| < R. Fix x ∈ B2ρ, i ∈ {1, . . . d}, and set gi(y) = ∂xi G(x, y).

Then y1 ∈ BR(y2), and if y ∈ B2R(y2), then

|y − x| ≥ |y2 − x| − |y2 − y| ≥ |y2 − x| − 2R ≥ |y2 − x| −
2

5
|y2 − x| =

3

5
|y2 − x|,

hence the pointwise bounds on ∇Gy (theorem 5.2.4) show that gi is bounded in B2R(y2),

with

|gi(y)| ≤ C|y2 − x|1−d.

In addition, lemma 5.4.1 shows that gi ∈ W 1,2(B2R(y2)) is a solution to the equation

Ltu = 0, therefore theorems 8.20 and 8.22 in [GT01] show that

|gi(y1)− gi(y2)| ≤ C

(
|y1 − y2|

R

)α( 
B2R(y2)

|gi|2
)1/2

≤ C|y1 − y2|αR−α|y2 − x|1−d

= C|y1 − y2|α|y2 − x|1−d−α
(
|y2 − x|
R

)α
,

where α is a good constant. If now R = |y2 − x|/5 we obtain the estimate. On the other

hand, if R = ρ/5, then (
|y2 − x|
R

)α
≤
(

ρ

ρ/5

)α
= 5α,

which shows the bound in this case as well.

For the case |y1−y2| ≥ R, we follow the first part of the proof of proposition 5.3.2, which

only uses the pointwise bounds on the gradient of G, to obtain the inequality.

5.5 Continuity arguments estimates

Fix a uniformly elliptic matrix A, and denote the operator − div(A∇u) + b∇u by Lb, and

also denote Green’s function for the equation Lbu = 0 by Gb(x, y). In what follows, we will

need to estimate the difference between Gb1 and Gb2 , as well as ∇Gb1 and ∇Gb2 .
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To accomplish this, we first show a lemma.

Lemma 5.5.1. Let r ≥ 1, and consider two numbers p1, p2 with

p1, p2 >
r − 1

r
d, r(p1 + p2 − 2d) + d < 0.

Then, for every x, y ∈ Rd,

ˆ
Rd

dz

|x− z|r(d−p1)|y − z|r(d−p2)
≤ Cd|x− y|r(p1+p2−2d)+d.

Proof. Let x− y = a, set z = w + x, and write

ˆ
Rd

dz

|x− z|r(d−p1)|y − z|r(d−p2)
=

ˆ
Rd

dw

|w|r(d−p1)|a− w|r(d−p2)
= I1 + I2.

where for I1 we integrate over U1 = {|w| < |a − w|}, and for I2 we integrate over U2 =

{|w| > |a− w|}.

We will bound I1, the estimate for I2 being similar. We split I1 as

ˆ
U1∩

{
|w|> |a|2

} dw

|w|r(d−p1)|a− w|r(d−p2)
+

ˆ
U1∩

{
|w|> |a|2

} dw

|w|r(d−p1)|a− w|r(d−p2)
= I3 + I4.

We then estimate

I3 ≤
ˆ
|w|> |a|2

dw

|w|r(2d−p1−p2)
= Cd

ˆ ∞
|a|/2

ρd−1ρr(p1+p2−2d) dρ = Cd|a|r(p1+p2−2d)+d,
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and, for I4, since |w| < |a|/2, we have that |w − a| ≥ |a|/2, so

I4 ≤ Cd|a|r(p2−d)
ˆ
|w|< |a|2

dw

|w|r(d−p1)

≤ Cd|a|r(p2−d)
ˆ |a|/2

0
ρd−1ρr(p1−d) dρ

= Cd|a|r(p1+p2−2d)+d,

since the hypotheses imply that r(p1 − d) + d > 0. This shows the bound for I1, and the

proof is complete.

We then have the following estimates.

Proposition 5.5.2. Let B be a ball with radius ρ, and A ∈ Mλ,µ(Ω). Suppose also that

b1, b2 ∈ L∞(B). Then, there exists C = C(d, p, λ, µ, ‖b1‖∞, ‖b2‖∞, ρ) such that, for every

x, y ∈ B with x 6= y,

|Gb1(x, y)−Gb2(x, y)| ≤ C‖b1 − b2‖L2d(B)|x− y|
5/2−d.

and also

|∇xGb1(x, y)−∇xGb2(x, y)| ≤ C‖b1 − b2‖L2d(B)|x− y|
3/2−d.

Proof. Without loss of generality, assume that b ∈ Lip(B); we can then recover the case

b ∈ L∞(B) using a mollification argument.

Let x 6= y in B, and let Gtb2
be Green’s function for the adjoint equation Ltb2

u = 0. We

then obtain that

ˆ
B

(
A(z)∇zGb1(z, y)∇zGtb2(z, x) + b1(z)∇zGb1(z, y)Gtb2(z, x)

)
dz = Gtb2(y, x), (5.5)

since the poles of Gb1(·, x),∇Gb1(·, x), and Gtb2
(·, y),∇Gb1(·, x) occur at different points,
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from the pointwise bounds. In addition,

ˆ
B

(
At(z)∇zGtb2(z, x)∇zGb1(z, y) + b2(z)∇zGb1(z, y)Gtb2(z, x)

)
dz = Gb1(x, y).

We now subtract the identities above, to obtain

ˆ
B

(b1(z)− b2(z))∇zGb1(z, y)Gtb2(z, x) dz = Gb1(x, y)−Gtb2(y, x) = Gb1(x, y)−Gb2(x, y),

(5.6)

where we also used proposition 5.1.3. Therefore, from the pointwise bounds on Green’s

function and its derivative, if r = 2d
2d−1 is the conjugate exponent to 2d, then

|Gb1(x, y)−Gb2(x, y)| ≤ ‖b1 − b2‖L2d(B)

(ˆ
B

∣∣∣∇zGb1(z, y)Gtb2(z, x)
∣∣∣r dz)1/r

≤ ‖b1 − b2‖L2d(B)

(ˆ
Rd

dz

|z − y|r(d−1)|x− z|r(d−2)

)1/r

Set now p1 = 1, p2 = 2 in the previous lemma. Since r < d
d−1 , we obtain that r−1

r d < 1 =

p1 < 2 = p2, and also r > 1, therefore

r(p1 + p2 − 2d) + d < p1 + p2 − d = 3− d ≤ 0,

therefore the hypotheses of lemma 5.5.1 are satisfied. Hence, we obtain that

|Gb1(x, y)−Gb2(x, y)| ≤ ‖b1 − b2‖L2d(B)

(
C|x− y|r(3−2d)+d

)1/r

= C‖b1 − b2‖L2d(B)|x− y|
3−d(2−1/r),

which shows the first estimate.

Fix now y ∈ B, and set v(x) to be the left hand side of (5.6). We can then compute that
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v is weakly differentiable in B, and

∇v(x) =

ˆ
B

(b1(z)− b2(z))∇zGb1(z, y)∇xGtb2(z, x) dz,

therefore we obtain that

∇xGb1(x, y)−∇xGb2(x, y) =

ˆ
B

(b1(z)− b2(z))∇zGb1(z, y)∇xGb2(x, z) dz.

This shows that, as before,

|∇xGb1(x, y)−∇xGb2(x, y)| ≤ ‖b1 − b2‖L2d(B)

(ˆ
B

dz

|z − y|r(d−1)|x− z|r(d−1)

)1/r

,

and lemma 5.5.1 shows the second estimate.

We also treat the derivative of Green’s function with respect to the adjoint variable.

Proposition 5.5.3. Let B be a ball with radius ρ, and A ∈ Mλ,µ(Ω). Suppose also that

b1, b2 ∈ Cα(B). Then, there exists C = C(d, p, λ, µ, ‖b1‖Cα , ‖b2‖Cα , ρ) such that

|∇yGtb1(y, x)−∇yGtb2(y, x)| ≤ C‖b1 − b2‖Cα(B2r)
|x− y|3/2−d,

for every x, y ∈ B with x 6= y.

Proof. Let r = |x− y|/32, and set u(z) = Gtb1
(z, x)−Gtb2(z, x), for z ∈ B16r = B16r(y). We

then compute, in B2r,

− div(A∇u)− div(b1u) = − div(A∇Gtb1)− div(b1G
t
b1

) + div(A∇Gtb2) + div(b1G
t
b2

)

= div((b1 − b2)Gtb2) = div g.
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We now apply corollary 3.4.2, to obtain that

‖∇u‖L∞(Br) ≤
C

r

( 
B2r

|u|2
)1/2

+ C‖g‖L∞(2B) + Crα‖g‖C0,α(B2r)
.

For the last term, we compute

‖g‖C0,α(B2r)
= ‖(b1 − b2)Gtb2‖C0,α(B2r)

≤ ‖b1 − b2‖L∞(B2r)
‖Gtb2‖C0,α(B2r)

+ ‖b1 − b2‖C0,α(B2r)
‖Gtb2‖L∞(B2r)

≤ ‖b1 − b2‖Cα(B2r)

(
‖∇Gtb2‖L∞(B2r)

r1−α + ‖Gtb2‖L∞(B2r)

)
.

Using proposition 5.3.4 we then obtain that

‖g‖C0,α(B2r)
≤ ‖b1 − b2‖Cα(B2r)

(
Cr1−dr1−α + r2−d

)
≤ C‖b1 − b2‖Cα(B2r)

r2−d−α.

In addition,

‖g‖L∞(2B) ≤ ‖b1 − b2‖L∞(B2r)
‖Gtb2‖L∞(B2r)

≤ C‖b1 − b2‖L∞(B2r)
r2−d.

Moreover, using propositions 5.1.3 and 5.5.2,

C

r

( 
B2r

|u|2
)1/2

=
C

r

( 
B2r

|Gtb1(z, x)−Gtb2(z, x)|2 dz
)1/2

=
C

r

( 
B2r

|Gb1(x, z)−Gtb2(x, z)|2 dz
)1/2

≤ C

r
‖b1 − b2‖L2d

( 
B2r

|x− z|5−2d dz

)1/2

≤ C

r
‖b1 − b2‖L2dr

5/2−d = C‖b1 − b2‖L2dr
3/2−d,
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therefore

‖∇u‖L∞(Br) ≤ C‖b1 − b2‖L2dr
3/2−d + C‖b1 − b2‖L∞(B2r)

r2−d + C‖b1 − b2‖Cα(B2r)
r2−d

≤ C‖b1 − b2‖Cα(B2r)
r3/2−d = C‖b1 − b2‖Cα(B2r)

|x− y|3/2−d.

The last estimate completes the proof.
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CHAPTER 6

HARMONIC MEASURE

In this chapter we will be concerned with the classical Dirichlet problem, and we will define

harmonic measure for the equation Lu = 0 in a Lipschitz domain Ω. We will then show how

the harmonic measure relates to Green’s function, and we will show estimates analogous to

the ones appearing in [Ken94]; for a more comprehensive treatment, we also refer to [JK82].

6.1 The classical Dirichlet problem

We turn our attention to the Dirichlet problem for the equation Lu = 0 with boundary data

f ∈ C(∂Ω). We first give the following definition.

Definition 6.1.1. Let Ω be a Lipschitz domain, A ∈ Mλ(Ω), and b ∈ L∞(Ω). Given

f ∈ C(∂Ω), we say that u ∈ W
1,2
loc (Ω) ∩ C(Ω) is a weak solution to the Dirichlet problem

with data f ,  Lu = 0, in Ω

u = f, on ∂Ω,

if u is a weak solution of Lu = 0 in Ω, and u = f on ∂Ω.

It is the case that we can always solve the Dirichlet problem with boundary values in

C(∂Ω), only assuming that A is bounded and uniformly elliptic and b is bounded. In order

to show this, we first treat the case of f being Lipschitz.

Proposition 6.1.2. Let Ω be a Lipschitz domain, A ∈Mλ(Ω), and b ∈ L∞(Ω). Then there

exists α ∈ (0, 1) such that, for every f ∈ Lip(∂Ω), the Dirichlet problem

 − div(A∇u) + b∇u = 0, in Ω

u = f, on ∂Ω
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has a unique weak solution in W 1,2(Ω) ∩ Cα(Ω).

Proof. Uniqueness follows from the maximum principle (theorem 3.5.4). For existence, let

f ∈ Lip(∂Ω), and extend f to a Lipschitz function f ∈ Lip(Rd). For v ∈ W 1,2
0 (Ω), define

Fv = α(f, v) =

ˆ
Ω
A∇f∇v + b∇f · v.

Since f is Lipschitz, we obtain that F ∈ W−1,2(Ω), therefore proposition 4.1.2 shows that

there exists u0 ∈ W
1,2
0 (Ω) such that, for all v ∈ W 1,2

0 (Ω), α(u0, v) = Fv. Note that, from

propositions 3.6.2 and 3.6.3, u0 ∈ Cα(Ω).

Set u = f − u0 ∈ W 1,2(Ω). Since f is Lipschitz, we obtain that u ∈ Cα(Ω). In addition,

for every v ∈ W 1,2
0 (Ω), we compute

α(u, v) = α(f, v)− α(u0, v) = 0,

which shows that u is a solution of Lu = 0 in Ω. Since u0 has trace 0 on ∂Ω, this shows that

u has trace f on ∂Ω, and continuity of u shows that u = f on ∂Ω.

By a density argument, we can show solvability of the Dirichlet problem for all f ∈

W
1,2
loc (Ω) ∩ C(∂Ω).

Theorem 6.1.3. Under the same assumptions as in proposition 6.1.2, for any f ∈ C(∂Ω),

the Dirichlet problem  − div(A∇u) + b∇u = 0, in Ω

u = f, on ∂Ω,

has a unique weak solution u ∈ W 1,2
loc ∩ C(Ω).

Proof. For uniqueness, consider two solutions u, v of the Dirichlet problem with data f .

Then, u − v ∈ W
1,2
0 (Ω) solves Lu = 0, therefore the maximum principle (theorem 3.5.4)

shows that u− v = 0 in Ω, hence u = v.
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For existence, consider a sequence (fn) of Lipschitz functions which converge to f in

(C(∂Ω), ‖ · ‖∞). Let also un ∈ W 1,2(Ω) ∩ C(Ω) be the weak solutions with trace fn to the

equation, whose existence is guaranteed by proposition 6.1.2. Then, the maximum principle

(theorem 3.5.4) shows that

‖un − um‖L∞(Ω) ≤ ‖fn − fm‖L∞(∂Ω).

The supremum is the usual in this case, since the un are continuous, and the fn are Lipschitz

functions. This shows that the sequence (un) is Cauchy in (C(Ω), ‖ · ‖∞), therefore a con-

vergent subsequence of (un), still denoted by (un), converges uniformly to some u ∈ C(Ω).

Then, u = f on ∂Ω.

To show that u ∈ W
1,2
loc (Ω), let U ⊆ Ω be compactly supported. Cover U by N balls

B1, · · ·BN of radius δ, where 2δ is the distance from K to ∂Ω. Then, Cacciopoli’s inequality

shows that (un) is uniformly bounded inW 1,2(Bk), so it has a weakly convergent subsequence

in W 1,2(Bk). By repeating this process for all of the Bk, we have that a subsequence of (un),

still denoted by (un), converges to some v ∈ W 1,2(U) weakly in W 1,2(U) and strongly in

L2(U). Hence, a further subsequence converges to v almost everywhere in U . Since a further

subsequence converges uniformly to u, this shows that u ∈ W 1,2(U), therefore u ∈ W 1,2
loc (Ω).

We now show that u is a solution in Ω: let φ ∈ C∞c (Ω) and K = suppφ. Consider also a

subsequence (un) as above, which converges to u weakly in W 1,2(K). Then,

ˆ
Ω
A∇u∇φ+ b∇u · φ = lim

n→∞

ˆ
Ω
A∇un∇φ+ b∇un · φ = 0,

since the un are solutions to the equation. Hence u is a solution in Ω.
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6.2 Construction of harmonic measure

Consider a Lipschitz domain Ω, let A ∈ Mλ(Ω), and b ∈ L∞(Ω). For a fixed x0 ∈ Ω, we

consider the functional

Tx0 : C(∂Ω)→ R, Tx0f = u(x0),

where u is the continuous weak solution of Lu = 0 in Ω with boundary data f , which exists

from theorem 6.1.3. The maximum principle shows that Tx0 is a positive linear functional

on C(∂Ω), therefore there exists a positive Borel measure ωx0 such that

u(x0) =

ˆ
∂Ω

f(q) dωx0(q).

The choice f ≡ 1 also shows that ωx0 is a probability measure on ∂Ω. ωx0 will be called the

harmonic measure for the equation Lu = 0 in Ω, centered at x0.

Two basic properties of harmonic measure are the following.

Proposition 6.2.1. i) If x1, x2 ∈ Ω, then ωx1 << ωx2 .

ii) If E ⊆ ∂Ω is a Borel set, then u(x) = ωx(E) is a solution in Ω, with boundary values

χE on ∂Ω, in the sense of W 1,2(Ω) (as in the definition in section 8.1 in [GT01]).

Proof. For the first part, suppose that E ⊆ ∂Ω with ωx2(E) = 0. From regularity of the

harmonic measure, there exists a sequence of open sets (En) in ∂Ω that contain E, such that

ωx2(En) ≤ 1/n.

Let now f ∈ C(∂Ω) be a nonnegative function which is supported in En with f ≡ 1

on E, and let u be the solution of Lu = 0 with data f . Then u ≥ 0 from the maximum

principle, so u+ 1
n > 0 in Ω. Therefore, Harnack’s inequality (proposition 3.6.1) shows that,
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for some C = Cx1,x2 ,

ωx1(E) =

ˆ
E
f dωx1 ≤

ˆ
∂Ω

f dωx1 = u(x1) = u(x1) +
1

n
− 1

n

≤ C

(
u(x2) +

1

n

)
− 1

n
= C

ˆ
∂Ω

f dωx2 +
C − 1

n

≤ C

ˆ
En

f dωx2 +
C − 1

n
= Cωx2(En) +

C − 1

n

≤ C

n
+
C − 1

n
.

Letting n→∞ shows then that ωx1(E) = 0.

For the second part, write E =
⋂
j∈N Uj ∪N , where ωx(N) = 0 and (Uj) is a decreasing

sequence of open subsets of ∂Ω; it is then enough to show that ωx(U) is a solution, for

all U ⊆ ∂Ω which are open. For this purpose, let Ki ⊆ ∂Ω be an increasing sequence

of compact sets, with
⋃
i∈NKi = U . Let also gi be a continuous function which satisfies

χKi ≤ gi ≤ χU , and let ui be the solution to Dirichlet’s problem, with data gi, which exists

from theorem 6.1.3. From the maximum principle (theorem 3.5.4), 0 ≤ ui ≤ 1 throughout Ω.

Therefore, from compactness of solutions (proposition 3.6.4), there exists a subsequence uik

which converges to a solution u0 in Ω, uniformly in compact subsets of Ω. But, for x ∈ Ω,

uik(x) =

ˆ
∂Ω

gik(q)dωx(q) −−−−→
k→∞

ˆ
∂Ω

χU (q)dωx(q) = ωx(U),

from the dominated convergence theorem. Hence ωx(U) is a solution in Ω. The previous

convergence, as well as the convergence of the boundary values (gik) to χU also shows that

ωx(U) is equal to χU in the sense of W 1,2(Ω) on ∂Ω, which completes the proof.

Of particular importance is the following representation formula for the harmonic mea-

sure, which holds in smooth domains.
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Proposition 6.2.2. Suppose that Ω is smooth, and A ∈Mλ,µ(Ω), b ∈ Lip(Ω). Then

dωx0(q) = −∂qνAtG(x0, q) dσ(q) ∀x0 ∈ Ω,

where σ is the surface measure on ∂Ω, G is Green’s function for the equation

Lu = − div(A∇u) + b∇u = 0

in Ω, and νAt denotes the conormal derivative associated with Lt.

Proof. Set Gtx0
(x) = Gt(x, x0), and note that then Gtx0

is Green’s function for the adjoint

equation Ltu = 0 in Ω, with pole at x0. Let f ∈ Lip(∂Ω), and consider F ∈ Lip(Rd) which

is a Lipschitz extension of f , with F ≡ 0 and ∇F ≡ 0 in a neighborhood B0 = Bε0(x0)

of x0. Then u − F ∈ W 1,2
0 (Ω), and since ∇u is bounded close x0, the defining property of

Green’s function shows that

ˆ
Ω
At∇Gtx0

∇(u− F ) + b(x)∇(u− F ) ·Gtx0
dx = u(x0)− F (x0) = u(x0),

which implies that

ˆ
Ω
A∇(u− F )∇Gtx0

+ b(x)∇(u− F ) ·Gtx0
dx = u(x0).

Since now u is a solution of Lu = 0 in Ω, ∇u is bounded close to x0 and Gtx0
is bounded

away from x0, and after approximating Gtx0
with C∞c (Ω) functions, the last identity shows

that ˆ
Ω
A∇F∇Gtx0

+ b∇F ·Gtx0
dx = −u(x0).

But, A, b and Ω are smooth, hence theorem 8.12 in [GT01] shows that Gtx0
is smooth away

from x0. Hence, LtGtx0
= 0 pointwise, away from x0. In addition, the support properties of
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F show that

−u(x0) =

ˆ
Ω\B0

At∇Gtx0
∇F + b∇F ·Gtx0

=

ˆ
Ω\B0

div(F · At∇Gtx0
)− F div(At∇Gtx0

) + div(bGtx0
F )− div(bGtx0

)F

=

ˆ
∂(Ω\B0)

F
〈
At(q)∇Gtx0

(q), ν(q)
〉
dσ +

ˆ
Ω\B0

F (− div(At∇Gtx0
)− div(bGtx0

))

=

ˆ
∂Ω

f(q) · ∂qνAtG
t(q, x0) dσ(q),

from the divergence theorem, the fact that LtGtx0
= 0 pointwise away from x0, and the

support properties of F . This concludes the proof.

6.3 Estimates on harmonic measure

We now turn to the basic estimates on harmonic measure. Throughout this section we will

assume that Ω is a Lipschitz domain, A ∈ Mλ(Ω), and b ∈ L∞(Ω). In order to show our

estimates, we will follow the method that is outlined in [Ken94].

Consider the number rΩ that appears in the definition of the Lipschitz character; then,

given any point q ∈ ∂Ω and 0 < r < rΩ, the ball B10r(q) lies in a coordinate cylinder. Also,

for any point q ∈ ∂Ω and 0 < r < rΩ, there exists a point Ar(q) ∈ Ω such that

r ≤ |Ar(q)− q|, δ(Ar(q)) ≤ c0r,

with the constant c0 only depending on the Lipschitz constant of Ω. The points Ar(q) will

be the analogs of the similar points in the definition of an NTA domain.

The next lemma is a consequence of the Harnack inequality, after applying a Harnack

chain argument [Ken94].

Lemma 6.3.1. Let Ω be a Lipschitz domain, A ∈ Mλ(Ω) and b ∈ L∞(Ω). Let also
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x1, x2 ∈ Ω, with δ(x1), δ(x2) ≥ ε and |x1 − x2| < 2k ε. Then, for every positive solution u

to Lu = 0 or Ltu = 0 in Ω, we have that

C−ku(x2) ≤ u(x1) ≤ Cku(x2),

where C depends on d, λ, ‖b‖∞ and diam(Ω).

The main estimates that we will show connect L harmonic measure to Green’s function

for the equation Lu = 0. We will first need the following lemma, originally due to Carleson

(lemma 4.4 in [JK82]).

Lemma 6.3.2. Let Ω ⊆ Rd be a Lipschitz domain, and A ∈ Mλ(Ω), b ∈ L∞(Ω). For any

nonnegative solution u to Lu = 0 or Ltu = 0 in Ω which vanishes continuously on ∆2r(q),

and any r < rΩ, we have that

∀x ∈ Tr(q), u(x) ≤ Cu(Ar(q)),

where C depends on d, λ, ‖b‖∞, diam(Ω) and the Lipschitz constant of Ω.

Proof. After normalizing, we can suppose that u(Ar(q)) = 1. From theorem 8.27 in [GT01],

there exists a constant c1, only depending on d, λ, ‖b‖∞, the Lipschitz constant of Ω and

diam(Ω), such that for all p ∈ ∂Ω and s < rΩ,

sup {u(x)|x ∈ Tc1s(p)} ≤
1

2
sup {u(x)|x ∈ Ts(p)} . (6.1)

Now, by lemma 6.3.1, there exists a constant c2 such that, if u(y) > ch2 and y ∈ Tr(q), then

δ(y) ≤ c−h1 r. Set c3 = ch2 , where h = N + 3, and where N is such that 2N > c2.

Suppose now that, for some y0 ∈ Tr(q), u(y0) > c3 = ch2 . Then, δ(y0) ≤ c−h1 r. So, if the
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distance δ(y0) is achieved at p ∈ ∂Ω,

|q − p| ≤ |q − y|+ |y − p| < r + c−h1 r <
3

2
r.

Therefore, from (6.1), we obtain that

sup{u(x)|x ∈ T
c−h+N
1 r

(p)} ≥ 2N sup{u(x)|x ∈ T
c−h1 r

(p)} ≥ 2Nu(y0) ≥ ch+1
2 .

Therefore, there exists y1 ∈ Tc−h+N
1 r

(p) such that u(y1) ≥ ch+1
2 . Let the distance δ(y1) be

achieved at q1 ∈ ∂Ω. Inductively, we construct two sequences (yn), (qn) such that

u(yk) ≥ ch+k
2 , δ(yk) = |yk − qk| < c−h−k2 r, yk ∈ Tc−h−k−N1 r

(qk−1).

But,

|yk − q| ≤ |yk − qk|+ |qk − yk−1|+ |yk−1 − q| ≤ (c−h−k1 + c−h−k−n1 )r + |yk−1 − q|,

and, since |y0 − q| < r, we obtain that

|yk − q| ≤ r +
k∑
i=1

(c−h−i1 + c−h−i−N1 )r < 2r,

from the choice of N . Hence, yk ∈ T2r(q), and yk contains a subsequence that converges

to ∆2r(q), while u(yk) does not converge to 0, and this is a contradiction. Hence, for all

y0 ∈ Tr(q), u(y0) ≤ c3.

We are now in position to prove the estimates that connect harmonic measure with

Green’s function.

Lemma 6.3.3. Let r < rΩ, and q ∈ ∂Ω. Then there exists a constant C depending on
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d, λ, ‖b‖∞ and the Lipschitz constant of Ω, such that

∀x ∈ Br/2(Ar(q)), ωx(∆r(q)) ≥ C.

Proof. Let φ be a cutoff function which is equal to 1 in Tr/2(q), it is supported in Tr(q), and

also satisfies that 0 ≤ φ ≤ 1. Let u be the solution to the classical Dirichlet problem for L,

with data φ. Since φ ≤ χ∆r(q), and ωx(∆r(q)) is a solution with data χ∆r(q) on ∂Ω from

proposition 6.2.1, the maximum principle shows that

x ∈ Ω⇒ ωx(∆r(q)) ≥ u(x).

Now, set v = 1 − u, then v is a solution in Ω that vanishes on ∆r(q). From the maximum

principle, 0 ≤ v ≤ 1 in Ω, therefore, from theorem 8.27 in [GT01], we obtain that

v(x) ≤ C

(
|x− q|
r

)β
∀x ∈ Tr/2(q).

Now, since |Ar/2C0
(q) − q| ≤ C0

r
2C0

= r/2, we can apply this inequality to Ar/2C0
(q), to

obtain that v(Ar/2C0
(q)) ≤ C2−β , therefore

ω
Ar/2C0

(q)
(∆r(q)) ≥ 1− C2−β .

Since now ωx(∆r(q)) is a positive solution in Ω, lemma 6.3.1 completes the proof.

Lemma 6.3.4. Let r < rΩ. Then, for all q ∈ ∂Ω,

∀x ∈ Ω \Br/2(Ar(q)), rd−2G(x,Ar(q)) ≤ Cωx(∆r(q)),

where C depends on d, λ, ‖b‖∞ and the Lipschitz constant of Ω.

Proof. If x is on the boundary of Br/2(Ar(q)), the pointwise estimates on Green’s function
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(in theorem 5.2.4) we obtain that

rd−2G(x,Ar(q)) ≤ Crd−2|x− Ar(q)|2−d ≤ C,

and, from lemma 6.3.3,

ωx(∆r(q)) ≥ C,

which implies that rd−2G(x,Ar(q)) ≤ Cωx(∆r(q)) for x on the boundary of Bc0r(Ar(q)).

On the other hand, G vanishes on ∂Ω, so the same estimate holds for x ∈ ∂Ω. Since

rd−2G(x,Ar(q))−Cωx(∆r(q)) is a solution of the equation Lu = 0 in Ω \Br/2(Ar(q)), the

estimate follows from the maximum principle.

For the reverse inequality, we show the next lemma.

Lemma 6.3.5. If Ω is a Lipschitz domain, then there exists a constant C which depends on

d, λ, ‖b‖∞, diam(Ω) and the Lipschitz constant of Ω, such that, if q ∈ ∂Ω and r < rΩ, then,

for all x /∈ B2r(q),

ωx(∆r(q)) ≤ Crd−2G(x,Ar(q)).

Proof. Fix 1 < α < β < γ < 2. Let ψ be a smooth cutoff function, which is supported in

Tβr(q), is equal to 1 in Tαr(q), and satisfies the bounds 0 ≤ ψ ≤ 1, and |∇ψ| ≤ C/r. Consider

now the classical solution u to Lu = 0, with boundary data ψ. Since then χ∆r(q) ≤ u on

∂Ω, from the maximum principle we obtain

ωy(∆r(q)) ≤ u(y).

Now, u− ψ ∈ W 1,2
0 (Ω), and, from the fact that u is a solution we get that

u(y) = −
ˆ

Ω
A(x)∇ψ(x)∇xGt(x, y) + b(x)∇ψ(x)Gt(x, y) dx, a.e. y ∈ Ω \B2r(q).
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Therefore, for any y satisfying this equality, we obtain that

ωy(∆r(q)) ≤ u(y) ≤ C

r

ˆ
Tβr(q)

|∇xGt(x, y)| dx+

ˆ
Tβr(q)

|b(x)∇ψ(x)Gt(x, y)| dx

≤ C

r
rd/2

(ˆ
Tβr(q)

|∇xGt(x, y)| dx

)1/2

+ Crd−1‖b‖∞Gt(Ar(q), y)

≤ Crd/2−1

(
C

r2

ˆ
Tγr(q)

|Gt(x, y)|2 dx

)1/2

+ Crd−1‖b‖∞Gt(Ar(q), y)

≤ Crd−2Gt(Ar(q), y)

for some constant C depending on d, λ, ‖b‖∞, diam(Ω) and the Lipschitz constant of Ω, where

we also used Cacciopoli’s inequality and the estimate in lemma 6.3.2. Then, proposition 5.1.3

shows that

ωy(∆r(q)) ≤ Crd−2G(y, Ar(q))

for almost all y ∈ Ω \ B2r(q). Since the functions involved are continuous, we obtain the

inequality for all y ∈ Ω \B2r(q).

As a corollary of lemmas 6.3.4 and 6.3.5, we obtain the following comparison.

Proposition 6.3.6. If Ω is a Lipschitz domain, then for all 0 < r < rΩ and q ∈ ∂Ω,

ωx(∆r(q)) ' rd−2G(x,Ar(q)), ∀x ∈ Ω \B2r(q),

with C being a good constant. In particular, ωx is a doubling measure on ∂Ω; that is, for

every x ∈ Ω, there exists C = Cx > 0 which also depends on d, λ, ‖b‖∞, diam(Ω) and the

Lipschitz constant of Ω such that, for every q ∈ ∂Ω and r > 0,

ωx(∆2r(q)) ≤ Cωx(∆r(q)).
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To obtain the fact that ωx is doubling, we use the Harnack inequality for r > 0 sufficiently

small, such that x ∈ Ω \B2r(q) for every q ∈ ∂Ω.

The previous connection between the harmonic measure and Green’s function leads to

the next lemma.

Lemma 6.3.7 (Comparison Principle). Let u, v be positive solutions of Lu = 0 in Ω, which

vanish continuously on ∆2r(q), and r < rΩ. Then,

∀x ∈ Tr(q), c−1
1
u(Ar(q))

v(Ar(q))
≤ u(x)

v(x)
≤ c1

u(Ar(q))

v(Ar(q))
.

Proof. For r < rΩ, consider the Lipschitz domain T = Tr(q). Let x ∈ T , and consider the

following partition of ∂T \ ∂Ω: set

L1 = {x ∈ ∂T \ ∂Ω|δ(x) > cr}

L2 = {x ∈ ∂T \ ∂Ω|δ(x) ≤ cr},

where δ(x) denotes the distance from x to ∂Ω. Denote the harmonic measure for T with

respect to x by ωxT . First, L2 contains a surface ball of radius comparable to r, therefore,

from the doubling property of ωxT (proposition 6.3.6), we obtain that

ωxT (∂Ω \ ∂T ) = ωxT (L1 ∪ L2) ≤ CωxT (L2)

where C is a good constant. Now, by lemma 6.3.2, since u vanishes on ∆cr(q), we obtain

that u(x) ≤ Cu(Ar(q)). Therefore, the function

u(x)

u(Ar(q))
−MωxT (∂Ω \ ∂T )

is a solution in T , which is 0 on ∂Ω (since u vanishes there), and is nonpositive on ∂Ω \ ∂T
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(since the harmonic measure is equal to 1 there). Therefore, we obtain that

u(x) ≤ CωxT (∂Ω \ ∂T )u(Ar(q)) ∀x ∈ T.

Also, if x ∈ L2, since L2 is about r-far from ∂Ω, we obtain that v(x) ≥ Cv(Ar(q)). Similarly,

we obtain that

v(x) ≥ CωxT (L2)v(Ar(q)) ∀x ∈ T,

which shows the second statement. By interchanging the roles of u and v, we also obtain

the first statement.

6.4 Maximal functions

Fix x0 ∈ Ω, and let ω = ωx0 . For a Borel measure ν on ∂Ω, we define the Hardy-Littlewood

maximal function of ν with respect to ω,

Mων(q) = sup
∆3q

1

ω(∆)

ˆ
∆
d|ν| = sup

∆3q

|ν|(∆)

ω(∆)
.

In particular, for a function f ∈ L1(∂Ω), we define

Mωf(q) = sup
∆3q

1

ω(∆)

ˆ
∆
|f |dω.

From the doubling property of ω, the usual estimates for the Hardy-Littlewood maximal

function hold; that is, Mω is weakly (1, 1) bounded, and strongly (p, p) bounded, for p ∈

(1,∞] (see for example [Ste93]).

Our goal is to express any solution u of the equation Lu = 0 in Ω as an integral of its

boundary values, integrated with respect to the measure ω. For this purpose, we define the

kernel function K(x, q), which is the Radon-Nikodym derivative of ωx with repect to ω at
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the point q ∈ ∂Ω; or, equivalently,

K(x, q) = lim
r→0

ωx(∆r(q))

ω(∆r(q))
. (6.2)

This kernel function exists, and also K(x, ·) ∈ L1(∂Ω, dω), since ωx is absolutely continuous

with respect to ω, which follows from proposition 6.2.1. Then, for all f ∈ L1(∂Ω, dωx),

u(x) =

ˆ
∂Ω

f(q)dωx(q) =

ˆ
∂Ω

f(q)K(x, q)dω(q).

To obtain the relation between the maximal functions defined above and the nontangen-

tial maximal function, we will need estimates on the kernel K. For this purpose, we first

prove the Carleson-Hunt-Wheeden lemma (lemma 4.11 in [JK82]), which will follow from

the comparison principle.

Lemma 6.4.1. Suppose that r < rΩ, and let ∆ = ∆(q0, r), ∆′ = ∆(q, s) ⊆ ∆(q0, r/2).

Then, there exists C = C(M) such that, for all x ∈ Ω \B(q0, 2r), we have that

CωAr(q0)(∆′) ≤ ωx(∆′)
ωx(∆)

≤ C−1ωAr(q0)(∆′).

Proof. Note that, from proposition 6.3.6, we have to show that (since x is far from q0 and

q),

G(Ar(q0), As(q)) ' r2−d G(x,As(q))

G(x,Ar(q0))
,

or, equivalently,

G(Ar(q0), As(q))

G(x,As(q))
' r2−d

G(x,Ar(q0))
.

For this purpose, set u(y) = G(Ar(q0), y) and v(y) = G(x, y). Since |Ar(q0)− q0| > c0r and

|x− q0| > 2r, this implies that u and v are solutions to Lu = 0 in Tc0r(q0), which also vanish
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on ∆c0r(q0). Therefore, from the comparison principle, we obtain that

G(Ar(q0), As(q))

G(x,As(q))
=
u(As(q))

v(As(q)
' u(Ar(q0))

v(Ar(q0))
=
G(Ar(q0), Ac0r(q0))

G(x,Ac0r(q))
.

First, the distance from Ar(q0) to Ac0r(q0) is comparable to r, and is also comparable to

the distances of Ar(q0) and Ac0r(q0) to ∂Ω, therefore, from the pointwise bounds on Green’s

function, we obtain that

G(Ar(q0), Ac0r(q0)) ' |Ar(q0)− Ac0r(q0)|2−d ' r2−d,

therefore it only suffices to show that

G(x,Ac0r(q0)) ' G(x,Ar(q0))⇔ v(Ac0r(q0)) ' v(Ar(q0)).

But, this is a corollary of lemma 6.3.1, since v is also a solution in Ω \Br(x).

The previous lemma leads to the pointwise bound of the kernel K.

Lemma 6.4.2. Let q0 ∈ ∂Ω, and A = Ar(q0). Define also ∆j = ∆(q0, 2
jr), and Rj =

∆j \∆j−1. Then,

sup{K(A, q)|q ∈ Rj} ≤
C2−αj

ω(∆j)
,

where C = C(Ω), and α = α(Ω).

Proof. Suppose first that j is such that 2j+1r < min{2r0, |x− q0|} = M0.

Consider q ∈ Rj , and let s > 0. Then, if s is sufficiently small, we have that ∆s(q) ⊆

Rj ⊆ ∆j . Therefore, from lemma 6.4.1, if Aj = A2jr(q0), we obtain that

ωx(∆s(q))

ωx(∆j)
' ωAj (∆s(q)).

Now, since ∆s(q)∩∆j = ∅, the function u(x) = ωx(∆s(q)) is a positive solution in T2j−1r(q0)
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which vanishes continuously on ∆j , hence, from proposition 3.6.3 and lemma 6.3.2,

ωA(∆s(q)) = u(A) ≤ Cu(Aj−1)

( |Aj−1 − A|
2j−1r

)β
≤ C

ωx(∆s(q))

ωx(∆j)
2−βj ,

from the similarity estimate above. This shows that, for sufficiently small s,

ωA(∆s(q))

ωx(∆s(q))
≤ C2−βj

ω(∆j)
,

and the result follows by taking the limit as s→ 0.

For the rest of the j, since we have finitely many j such that Rj 6= ∅ and 2j+1r ≥ M0,

it is enough to show that

sup{K(A, q)|q ∈ ∂Ω \∆M0/2
(q0)} ≤ C.

For this purpose, consider a ball ∆s(q), with ∆s(q) ⊆ Ω \∆M0/2
(q0). Then, similarly to the

above,

ωA(∆s(q)) = u(A) ≤ Cu(AM0/4
(q0)) ≤ Cu(x) = ωx(∆s(q)),

where we also used Harnack’s inequality. The result now follows again by taking the limit

as s→ 0.

The last lemma leads to the following theorem, which relates the maximal functions Mωf

and u∗.

Theorem 6.4.3. Let ν be a finite Borel measure on ∂Ω and set

u(x) =

ˆ
∂Ω

K(x, q)dν(q).

Then, u∗ ≤ CMων. In addition, if ν is positive, we have that Mων ≤ Cu∗.
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Proof. Let p ∈ ∂Ω, and x ∈ Γα(q). Set r = |x− p|, ∆j = ∆2jr(p), and Rj = ∆j \∆j−1. We

then write

u(x) =

ˆ
∂Ω

K(x, q)dν(q) =

ˆ
∆r/2(p)

K(x, q)dν(q) +
∞∑
j=0

ˆ
Rj

K(x, q)dν(q).

For the summands, note that, for fixed q ∈ Rj , from lemma 6.4.2, we obtain that

∣∣∣∣∣
ˆ

∆j\∆j−1

K(x, q)dν(q)

∣∣∣∣∣ ≤ C2−βj

ω(∆j)

ˆ
Rj

|dν| ≤ C
|ν|(∆j)

ω(∆j)
≤ C2−βjMω(p),

therefore the sum is dominated by CMω(p). For the first integral, note that for q ∈ ∆r(p),

lemma 6.4.1 and (6.2) show that

K(x, q) ' 1

∆r(p)
,

which concludes the first claim.

For the second claim, note that if ν is a positive measure, then for any r > 0

u(x) ≥
ˆ

∆r(p)
K(x, q) dν(q) ≥ C

ω(∆r(p))

ˆ
∆r(p)

dν(q),

which completes the proof.
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CHAPTER 7

THE DIRICHLET PROBLEM FOR L

In this chapter we turn our attention to the Dirichlet problem for the equation Lu = 0, with

boundary data in Lp(∂Ω). We will follow the method outlined in [Ken94], and we will use

the estimates in the previous chapter in order to obtain solvability.

7.1 Formulation, and the weight property

Definition 7.1.1. Let Ω be a Lipschitz domain, and p ∈ (1,∞). We say that Dp for Lu = 0

is solvable in Ω, if there exists C > 0 such that, for every f ∈ C(∂Ω), the solution u : Ω→ R

of Lu = 0 in Ω with boundary data f satisfies the estimate ‖u∗‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω).

Alternatively, we could have defined solvability for Dp such that the nontangential bound-

ary values of the solution lie in Lp(∂Ω), and the bound on the nontangential maximal function

holds. However, our definition above will imply this property after a density argument, as

we will show later (proposition 7.3.4).

In the next theorem (which is analogous to theorem 1.7.3 in [Ken94]) we show that the

Dirichlet problem is solvable if and only if the harmonic measure kernel satisfies a weight

property. For this purpose, recall the space Bp, defined in definition 2.4.4.

Theorem 7.1.2. Let Ω ⊆ Rd be a Lipschitz domain, A ∈ Mλ,µ(Ω), and b ∈ L∞(Ω).

Suppose also that the classical Dirichlet problem is solvable in Ω, and that ω << σ. Then

Dp is solvable in Ω if and only if the kernel k = dω
dσ is in Bp′(∂Ω). In this case, the constant

in Dp is comparable to the Bp′ norm of k, with the comparability constants depending only

on d, p, λ, µ, ‖b‖∞, the Lipschitz constant of Ω, and diam(Ω).

Proof. Suppose that k ∈ Bp′(∂Ω), and let f ∈ C(∂Ω), and u be the solution of Lu = 0 with

boundary data f . From the self improving property of Bp′ functions (proposition 2.4.5),
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there exists a constant ε > 0, depending only on d, p′ and the B′p constant of k, such that

k ∈ Bp′+ε. Therefore, if ∆ is a surface ball and s < p is the conjugate exponent to p′ + ε,

1

ω(∆)

ˆ
∆
|f | dω =

1

ω(∆)

ˆ
∆
|f |k dσ ≤ 1

ω(∆)

(ˆ
∆
|f |s dσ

)1/s(ˆ
∆
kp
′+ε dσ

) 1
p′+ε

≤ C

(
1

σ(∆)

ˆ
∆
|f |s dσ

)1/s

≤ C(Mσ(|f |s))1/s.

Therefore, Mωf ≤ C(Mσ(|f |s))1/s. So, from the Hardy-Littlewood maximal theorem, since

p/s > 1, we obtain

ˆ
∂Ω
|Mωf |p dσ ≤ C

ˆ
∂Ω

(Mσ(|f |s))p/s dσ

≤ C

ˆ
∂Ω

(|f |s)p/s dσ = C

ˆ
∂Ω
|f |p dσ.

But, from theorem 6.4.3, applied to ν = fω, we have that u∗ is bounded pointwise by CMωf ,

therefore ˆ
Ω
|u∗|p dσ ≤ C

ˆ
∂Ω
|f |p dσ,

where C depends on s and the constant appearing in the Bp′ property of k. Therefore, Dp

is solvable in Ω.

Conversely, suppose that Dp is solvable in Ω. Let ∆ ⊆ ∂Ω be a surface ball, and consider

a positive and continuous function f : ∂Ω→ R, which is supported on ∆, with ‖f‖Lp(∆) ≤ 1.

Then, for any q ∈ ∆,

1

ω(∆)

ˆ
∆
kf dσ =

1

ω(∆)

ˆ
∆
f dω ≤Mωf(q).

Raise this relation to the p power, and integrate it for q ∈ ∆: then, if u is the solution to
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Lu = 0 in Ω with boundary data f ,

(
1

ω(∆)

ˆ
∆
kf dσ

)p
≤ 1

|∆|

ˆ
∆
|Mωf(q)|p dσ(q)

≤ C

|∆|

ˆ
∂Ω
|u∗|p dσ ≤ C

|∆|

ˆ
∂Ω
|f |p dσ ≤ 1

|∆|
,

from theorem 6.4.3 (since f ≥ 0, so the measure ν = fω is positive) and the fact that Dp is

solvable in Ω. Therefore, ˆ
∆
kf dσ ≤ Cω(∆)

|∆|1/p
,

hence, by duality,

(ˆ
∆
kp
′
dσ

)1/p′

≤ Cω(∆)

|∆|1/p′
⇒
(

1

|∆|

ˆ
∆
kp
′
dσ

)1/p′

≤ Cω(∆)

|∆|
=

C

|∆|

ˆ
∆
k dσ,

therefore k ∈ Bp′ , with constant C only depending on the constant appearing in Dp.

The monotonicity property of Bp′ weights leads to the following corollary.

Corollary 7.1.3. If Dp is solvable in Ω for some p ∈ (1,∞), then there exists ε > 0 such

that Dq is solvable in Ω for all q ∈ (p− ε,∞).

7.2 Solvability of the Dirichlet problem

In this section, we turn to solvability of the Dirichlet problem, for symmetric matrices A.

The results above show that, in order to show solvability for the range (1, 2+ε), it is enough

to show that the harmonic measure kernel is in B2(∂Ω). This will be done first in smooth

domains, and we will pass to Lipschitz domains using an approximation argument.

For the next lemma, we will assume that the ball B that appears in lemma 2.3.3 is

centered at 0.
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Lemma 7.2.1. Let Ω ⊆ Rd be a bounded C∞ domain, and suppose that A is smooth,

A ∈ Ms
λ,µ(Ω), and b ∈ Lip(Ω). Then k(q) = dω0

dσ ∈ L2(∂Ω), and, for all r < rΩ, sΩ and

q ∈ ∂Ω, (
1

σ(∆r(q))

ˆ
∆r(q)

k2 dσ

)1
2

≤ C

σ(∆r(q))

ˆ
∆r(q)

k dσ,

where C is a good constant that also depends on the Drpd-norm of b, and sΩ appears in

lemma 2.3.3. (Here, pd = 2 for d = 3, and pd = d/2 for d ≥ 4.)

Proof. Set Gt(x) = Gt(x, 0) to be Green’s function for the equation Ltu = 0, with pole at

0. Then, from proposition 6.2.2, we obtain that for all q ∈ ∂Ω,

dω(q) = −∂νGt(q) dσ(q)⇒ k(q) = −∂νGt(q).

Consider now r > 0, with r < rΩ, sΩ. Consider also the ball B that appears in lemma 2.3.3,

which we assume it is centered st 0. Then, T2r(q) ∩ B = ∅, therefore Gt is a solution of

LtGt = 0 in T2r(q). From theorem 8.12 in [GT01], Gt ∈ W 2,2(Ω \ B), hence the Rellich

estimate for the adjoint equation (proposition 3.8.1), is applicable. Note that Gt vanishes

on ∂Ω, therefore ∇TGt ≡ 0; hence, using Carleson’s estimate (lemma 6.3.2) we obtain that

ˆ
∆r(q)

|∂νGt|2 dσ ≤
C

r

ˆ
T2r(q)

|∇Gt|2 + C

ˆ
T2r(q)

| div b||Gt · ∇Gt|

≤ C

r

ˆ
T2r(q)

|∇Gt|2 + CGt(Ar(q))

ˆ
T2r(q)

| div b||∇Gt|

≤ C

r

ˆ
T2r(q)

|∇Gt|2 + CGt(Ar(q))

(ˆ
T2r(q)

| div b|2
)1

2
(ˆ

T2r(q)
|∇Gt|2

)1
2

since Gt vanishes on ∂Ω. Now, from the boundary Cacciopoli inequality for the adjoint
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equation (lemma 3.1.2) and lemma 6.3.2, we obtain that

ˆ
∆r(q)

∣∣∣∂νGt∣∣∣2 dσ ≤ C

r3

ˆ
T4r(q)

|Gt|2 + CGt(Ar(q))

(ˆ
T2r(q)

| div b|2
)1

2
(
C

r2

ˆ
T4r(q)

|Gt|2
)1

2

≤
(
Crd−3 + Crd/2−1‖ div b‖L2(T2r(q))

)(
Gt(Ar(q))

)2
.

We now consider the two cases d = 3 and d ≥ 4 separately.

If d = 3, then we have shown that

ˆ
∆r(q)

∣∣∣∂νGt∣∣∣2 dσ ≤ C
(

1 + r1/2‖ div b‖L2(T2r(q))

)(
Gt(Ar(q))

)2
≤ C

(
Gt(Ar(q))

)2

= Crd−3
(
Gt(Ar(q))

)2
,

where C depends on the Lipschitz character of Ω (since r < rΩ, sΩ) and the L2 norm of

div b.

If, now, d ≥ 4, then we apply Hölder’s inequality for the exponent p = d/4, to obtain

that

ˆ
T2r(q)

| div b|2 ≤

(ˆ
T2r(q)

| div b|d/2
)4/d

|T2r(q)|1−4/d ≤ C‖ div b‖2d/2r
d−4,

which implies that

ˆ
∆r(q)

|∂νGt|2 dσ ≤ Crd−3
(
Gt(Ar(q))

)2
= Crd−3 (G(0, Ar(q)))

2 ,

where C also depends on the d/2-norm of div b. Therefore, in all cases, we have shown that

ˆ
∆r(q)

|∂νGt|2 dσ ≤ Crd−3 (G(0, Ar(q)))
2 .
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But, from lemma 6.3.4, the last quantity is bounded by

Crd−3 (G(0, Ar(q)))
2 ≤ Crd−3

(
r2−dω(∆r(q))

)2
= Cr1−dω(∆r(q)).

This finally shows that ˆ
∆r(q)

k2 ≤ Cr1−d(ω(∆r(q)))
2,

which concludes the proof.

For arbitrary Lipschitz domains and b ∈ Drpd(Ω), we will approximate with smooth

domains to finally obtain that k ∈ B2(∂Ω), with the constants being good constants.

Denote by LA,b the operator − div(A∇u)+b∇u; then, the main approximation argument

to pass to Lipschitz domains is contained in the next lemma.

Lemma 7.2.2. Let Ω ⊆ Rd be a Lipschitz domain, and consider the approximation scheme

Ωj ↑ Ω from theorem 2.3.6, with 0 ∈ Ωj for all j. Suppose that the following hold.

i) A ∈Mλ,µ(Ω), Aj ∈Mλ,µ(Ωj), and χΩj (Aj − A)→ 0, almost everywhere in Ω.

ii) ‖b‖L∞(Ω), ‖bj‖L∞(Ωj)
≤M , and χΩj (bj − b)→ 0, almost everywhere in Ω.

Let also k, kj denote the harmonic measure with respect to 0 for L = LA,b in Ω and

Lj = LAj ,bj in Ωj , respectively. Then, for all f ∈ C(Rd),

ˆ
∂Ωj

kjf dσj −−−−→
j→∞

ˆ
∂Ω

kf dσ.

Proof. Let u ∈ W 1,2
loc (Ω) ∩ C(Ω) be the solution of Lu = 0 in Ω with boundary values f on

∂Ω, which exists from theorem 6.1.3. Then, corollary 3.3.2 shows that u is Lipschitz in Ωj .

Let now uj ∈ W 1,2(Ωj)∩Cα(Ωj) be the solution of Lju = 0 in Ωj , with boundary values u
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on ∂Ωj , which exists from proposition 6.1.2. We now define

vj = uj−u ∈ W
1,2
0 (Ωj)∩C(Ωj), fj = (Aj−A)∇u ∈ L2(Ωj), gj = (bj−b)∇u ∈ L2(Ωj),

where fj , gj ∈ L2(Ωj) since u ∈ W
1,2
loc (Ω), hence ∇u ∈ L2(Ωj). Then, almost everywhere

convergence in (i), (ii) and the dominated convergence theorem show that

‖fj‖2L2(Ωj)
=

ˆ
Ω
χΩj |Aj − A||∇u|

2 −−−−→
j→∞

0, ‖gj‖2L2(Ωj)
−−−−→
j→∞

0.

We also compute

Ljvj = −Lju = − div(Aj∇u) + bj∇u = − div(fj) + gj ,

therefore vj solves the equation Ljvj = F ∈ W−1,2(Ωj), with

Fjφ =

ˆ
Ωj

fj∇φ+ gj · φ

for all φ ∈ W 1,2
0 (Ωj). Then, for all such φ,

|Fjφ| ≤
ˆ

Ωj

|fj ||∇φ|+ |gj ||φ| ≤
(
‖fj‖L2(Ωj)

+ ‖gj‖L2(Ωj)

)
‖φ‖

W 1,2
0 (Ωj)

,

therefore ‖Fj‖W−1,2(Ωj)
≤ ‖fj‖L2(Ωj)

+ C‖gj‖L2(Ωj)
. Hence, proposition 5.2.5 shows that,

for a good constant C,

‖vj‖W 1,2
0 (Ωj)

≤ C‖Fj‖W−1,2(Ωj)
≤ C‖fj‖L2(Ωj)

+ C‖gj‖L2(Ωj)
−−−−→
j→∞

0. (7.1)

Set now δ = δ(x, ∂Ω)/2, then for large j ∈ N we obtain that Bδ = Bδ(0) ⊆ Ωj . Consider

now a subsequence (vnj ); then, (7.1) shows that a subsequence of (vmnj
) converges to 0
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almost everywhere in Bδ. Also, for x ∈ Bδ, the maximum principle shows that

|vj(x)| ≤ |u(x)|+ |uj(x)| ≤ 2‖f‖L∞(∂Ω),

hence the (vj) are uniformly bounded in Bδ. Therefore, equicontinuity of solutions (propo-

sition 3.6.4) shows that there exists a further subsequence (vlmnj
) that converges uniformly

to a continuous function in Bδ. Since (vmnj
) converges to 0 almost everywhere in Bδ, we

obtain that (vlmnj
(0)) converges to 0 as j →∞. Therefore, any subsequence of (vj(0)) has

a subsequence that converges to 0; this shows that vj(0)→ 0.

The definition of harmonic measure now shows that

ˆ
∂Ωj

kju dσj = uj(0) = u(0) + vj(0) −−−−→
j→∞

u(0) =

ˆ
∂Ω

kf dσj . (7.2)

Since now u ∈ C(Ω) and f ∈ C(Rd), u − f is uniformly continuous in Ω. Since also u − f

is equal to 0 on ∂Ω, given ε > 0, there exists δ > 0 such that, if x ∈ Ω with δ(x) < δ, then

|u(x)− f(x)| < ε. Also, from theorem 2.3.6,

sup
q∈∂Ω

∣∣Λj(q)− q∣∣→ 0,

therefore there exists j0 ∈ N such that, for all j ≥ j0, dist(∂Ωj , ∂Ω) < δ. Hence, for j ≥ j0,

we compute

∣∣∣∣∣
ˆ
∂Ωj

kju dσj −
ˆ
∂Ωj

kjf dσj

∣∣∣∣∣ ≤
ˆ
∂Ωj

kj |u− f | dσj ≤ sup
x∈∂Ωj

|u(x)− f(x)| ≤ ε,

since kj is a probability measure on ∂Ωj . Combining with (7.2), we obtain that

lim
j→∞

ˆ
∂Ωj

kjf dσj =

ˆ
∂Ω

kf dσ,
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which completes the proof.

Using the previous approximation lemma, we will show that the harmonic measure kernel

belongs to B2 for any Lipschitz domain. In order to obtain Lipschitz approximations to drifts

b ∈ Drp(Ω), we will have to ensure that the divergence of the approximations belongs to Lp;

for this purpose, we will carefully mollify b, so that the mollification “matches” the rate in

which Ωj approximates Ω.

Proposition 7.2.3. Let Ω ⊆ Rd be a bounded Lipschitz domain with 0 ∈ Ω, and Bβ(0) ⊆ Ω.

Suppose also that A ∈Ms
λ,µ(Ω), and b ∈ Drpd(Ω). Then k(q) = dω0

dσ (q) ∈ L2(∂Ω), and

(
1

|∆r(q)|

ˆ
∆r(q)

k2 dσ

)1
2

≤ C

|∆r(q)|

ˆ
∆r(q)

k dσ

for all surface balls ∆r(q), where C is a good constant that also depends on the Drpd-norm

of b, and pd appears in lemma 7.2.1.

Proof. First, extend b by 0 outside Ω. We will construct a mollification of b: consider a

smooth function ψ which is positive, supported in B(0, 1), and has integral 1. Let δj > 0

be the distance from ∂Ωj to ∂Ω, and consider mj ∈ N such that 1/mj < δj . Set φm(x) =

mdφ(mx) for m ∈ N, and define

bj(x) = b ∗ ψmj (x) =

ˆ
Rd
b(x− y)ψmj (y) dy.

First, every bj is in C∞(Rd). In addition, for all φ ∈ C∞c (Ωj),

ˆ
Ωj

bj∇φ =

ˆ
Ωj

ˆ
Ωj

b(x− y)ψmj (y)∇φ(x) dydx =

ˆ
Ωj

(ˆ
Ωj

b(x− y)∇φ(x) dy

)
ψmj (y)dx

=

ˆ
Ωj

(ˆ
Ωj−y

b(z)∇φ(z + y) dz

)
ψmj (y)dy.
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Now, since ψmj is supported in B1/mj
(0), we obtain that Ωj−y ⊆ Ω and φ(x+y) ∈ C∞c (Ω).

Therefore, since b ∈ Drpd(Ω), the inner integral above can be written as

∣∣∣∣∣
ˆ

Ωj−y
b(z)∇φ(z + y) dx

∣∣∣∣∣ =

∣∣∣∣ˆ
Ω
b(z)∇φ(z + y) dx

∣∣∣∣ ≤ ‖ div b‖Lpd(Ω)‖φ‖
L

pd
pd−1 (Ω)

,

therefore

∣∣∣∣∣
ˆ

Ωj

bj∇φ

∣∣∣∣∣ =

∣∣∣∣∣
ˆ

Ωj

(ˆ
Ωj−y

b(x)∇φ(x+ y) dx

)
ψmj (y)dy

∣∣∣∣∣
≤
ˆ

Ωj

∣∣∣∣∣
ˆ

Ωj−y
b(x)∇φ(x+ y) dx

∣∣∣∣∣ψmj (y)dy

≤ ‖ div b‖Lpd(Ω)‖φ‖
L

pd
pd−1 (Ω)

ˆ
Ωj

ψmj (y)dy

= ‖ div b‖Lpd(Ω)‖φ‖
L

pd
pd−1 (Ω)

,

since the integral of φj in B1/mj
(0) is equal to 1. Since the previous estimate holds for all

φ ∈ C∞c (Ωj), we obtain that ‖ div bj‖Lpd(Ωj)
≤ ‖ div b‖Lpd(Ω). Note also that ‖bj‖∞ ≤ ‖b‖∞,

therefore

‖bj‖Drpd(Ωj)
≤ ‖ div b‖Drpd(Ω).

Consider now the same mollification for A; that is, set Aj(x) = A ∗ ψmj (x). Then the

coefficients Aj , bj satisfy the hypotheses of lemma 7.2.2, therefore

ˆ
∂Ωj

kjf dσj −−−−→
j→∞

ˆ
∂Ω

kf dσ,

in the notation of the same lemma.

We will first show the inequality for r < rΩ, sΩ. For this purpose, let q ∈ ∂Ω, and consider

the cylinder Z(q, r). Consider also a positive function f0 ∈ Lip(∆r(q)), and extend it to a
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function f ∈ Lip(Rd), which is supported in Z(q, 3r/2) and also satisfies the inequality

ˆ
∂Ω
|f |2 ≤ 2

ˆ
∆r(q)

|f0|2.

For q ∈ ∆r(q), let qj ∈ ∂Ωj be the point on ∂Ωj that lies above q, in the direction of the

axis of Z(q, r). Then, if we set ∆
j
r(qj) = Z(q, r) ∩ ∂Ωj , the support properties of f , the

Cauchy-Schwartz inequality and lemma 7.2.1 (which is applicable, since Aj ∈Ms
λ,µ(Ωj) and

bj ∈ Drpd(Ωj)) show that

ˆ
∂Ωj

kjfdσj =

ˆ
∆j

2r(qj)
kjfdσj ≤

(ˆ
∆j

2r(qj)
k2
j dσj

)1/2(ˆ
∆j

2r(qj)
f2dσj

)1/2

≤ C

σ
1/2
j (∆

j
2r(qj))

ˆ
∆j

2r(qj)
kj dσj ·

(ˆ
∆j

2r(qj)
f2dσj

)1/2

≤ C

σ1/2(∆r(q))

ˆ
∆j

2r(qj)
kj dσj ·

(ˆ
∆j

2r(qj)
f2dσj

)1/2

,

where we used that ∆
j
2r(qj) is about equal to rd−1, where C is a good constant, which also

depends on the Drp(Ω) norm of b. Hence, letting j → ∞ and applying lemma 7.2.2, we

obtain that

ˆ
∂Ω

kfdσ ≤ C

σ1/2(∆r(q))
lim sup
j→∞

ˆ
∆j

2r(qj)
kj dσj

(ˆ
∆j

2r(qj)
f2dσj

)1/2

≤ C

σ1/2(∆r(q))
lim sup
j→∞

ˆ
∆j

2r(qj)
kj dσj ·

(ˆ
∂Ω

f2dσ

)1/2

,

since f is continuous on Rd. From our choice of f , we obtain that

ˆ
∆r(q)

kf0 dσ ≤
C

σ1/2(∆r(q))
lim sup
j→∞

ˆ
∆j

2r(qj)
kj dσj ·

(ˆ
∆r(q)

f2
0dσ

)1/2

,
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and since this inequality holds for all f0 ∈ Lip(∆r(q)), we obtain that

(ˆ
∆r(q)

k2 dσ

)1/2

≤ C

σ1/2(∆r(q))
lim sup
j→∞

ˆ
∆j

2r(qj)
kj dσj . (7.3)

To treat the last term, let g be a continuous function which is supported in Z(q, 3r) and it

is equal to 1 in Z(q, 2r). We then apply lemma 7.2.2, to obtain that

lim sup
j→∞

ˆ
∆j

2r(qj)
kj dσj ≤ lim sup

j→∞

ˆ
∂Ωj

kjg dσj =

ˆ
∂Ω

kg dσ

≤
ˆ

∆3r(q)
k dσ = ω(∆3r(q)) ≤ Cω(∆r(q)),

from the doubling property of ω. Plugging the last inequality in (7.3), we obtain that, for

r < rΩ, sΩ,

(ˆ
∆r(q)

k2 dσ

)1/2

≤ Cω(∆r(q))

σ1/2(∆r(q))
= Cσ1/2(∆r(q))

 
∆r(q)

k dσ.

The last inequality shows that k ∈ L2(∂Ω). In addition, if r ≥ rΩ, we have that

ˆ
∆r(q)

k2dσ ≤ ‖k‖22 ≤
‖k‖22|∂Ω|
ω2(∆r(q))

ω2(∆r(q))

|∆r(q)|
≤
‖k‖22|∂Ω|
ω2(∆rΩ(q))

ω2(∆r(q))

|∆r(q)|

and we use that 1 = ω(∂Ω) ≤ cω(∆rΩ(q)), from the doubling property of ω. A similar

inequality holds if r > sΩ, therefore k ∈ B2(∂Ω).

As a corollary of the fact k ∈ B2(∂Ω), we obtain the next theorem on solvability of the

Dirichlet problem.

Theorem 7.2.4. Let Ω ⊆ Rd be a bounded Lipschitz domain, and set pd = 2 for d = 3,

and pd = d/2 for d ≥ 4. Suppose that A ∈ Ms
λ,µ(Ω) and b ∈ Drpd(Ω). Then there exists

ε > 0 such that Dp is uniquely solvable in Ω for all p ∈ (2− ε,∞), with the constant being
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a good constant that also depends on p and ‖b‖Drpd
.

Proof. From proposition 7.2.3, the harmonic measure kernel k = dω0

dσ belongs to B2(∂Ω),

with its norm being a good constant that also depends on ‖b‖Drpd
. Proposition 2.4.5 then

shows that k ∈ Bq(∂Ω) for any q ∈ (1, 2 + δ), where δ is a good constant. Hence, theorem

7.1.2 shows that the Dirichlet problem Dp for the equation Lu = 0 in Ω is solvable, for any

p ∈ (2 − ε,∞), where 2 − ε is the conjugate exponent to 2 + δ, with bounds being good

constants that also depend on p and ‖b‖Drpd
.

Note that, in the theorem above, A has to be symmetric. Later on, we will be able to

drop this assumption.

7.3 Existence and uniqueness for data in Lp

When Dp is solvable in Ω, we can show existence and uniqueness of solutions for the Dirichlet

problem with data in Lp(∂Ω). We will first need a lemma.

Lemma 7.3.1. Suppose that D is a Lipschitz domain above the graph of a Lipschitz function

φ : B → R with Lipschitz constant M , where B ⊆ Rd−1 is a ball; that is,

D =
{

(x0, t) ∈ Rd
∣∣∣t > φ(x0)

}
.

Consider the set

Dε =
{
x ∈ D

∣∣∣ε
2
≤ δ(x) ≤ ε

}
.

Then, there exists C = CM > 0 such that, for all ε > 0, if x = (x0, t) ∈ Dε, then

ε

2
≤ t− φ(x0) ≤ C ε .
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Proof. Let x = (x0, t) ∈ Dε. Then,

ε

2
≤ δ(x) ≤ δ(x, (x0, φ(x0)) = t− φ(x0),

which shows the first inequality. For the second, suppose that the distance δ(x) is achieved

at a point (y0, φ(y0)), for some y0 ∈ B. Then |y0 − x0|2 + |φ(y0)− t|2 = δ2(x) ≤ ε2, which

implies that |y0 − x0| ≤ ε and |φ(y0)− t| ≤ ε. Therefore,

t− φ(x0) ≤ |t− φ(y0)|+ |φ(y0)− φ(x0)| ≤ ε+M |y0 − x0| ≤ (M + 1) ε,

so we can take C = M + 1.

We will also need a version of the Cacciopoli inequality over sets that are not necessarily

balls.

Lemma 7.3.2. Let D be a Lipschitz domain above a domain U ⊆ Rd−1, of the graph of a

Lipschitz function ψ; that is,

D =
{

(x0, t) ∈ Rd−1 × R
∣∣∣t > φ(x0)

}
,

and consider a cube Q ⊆ Rd−1, with side length ε, such that its triple 3Q is subset of U .

Let also c0 > 1. Then, if u : D → R is a solution of Lu = 0, there exists C = C(M) such

that ˆ
Q

ˆ ψ(x0)+c0 ε

ψ(x0)+ε /2
|∇u(x0, t)|2 dx0dt ≤

C

ε2

ˆ
3Q

ˆ ψ(x0)+3c0 ε

ψ(x0)+ε /4
|u(x)|2 dx0dt.

Proof. Let

Ui =

{
(x0, t) ∈ Rn

∣∣∣x0 ∈ iQ, ψ(x0) +
ε

i+ 1
≤ t ≤ ψ(x0) +

ic0
ε

}
, i = 1, 2, 3,

and consider a smooth cutoff function φ which is supported on Bε /100(0), is nonnegative,
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and has integral 1. Consider the convolution φ0 = χU2
∗φ. Then φ0 is smooth, it is equal to

1 in U1, it is supported in U3, and also |∇φ0| ≤ C/ ε. The proof is now similar to the proof

of lemma 3.1.1.

The next proposition guarantees uniqueness for the Dirichlet problem with data in Lp,

whenever Dp is solvable.

Proposition 7.3.3. Let Ω be a Lipschitz domain, A ∈ Ms
λ(Ω) and b ∈ L∞(Ω). Suppose

that u ∈ W
1,2
loc (Ω) is a solution to the equation − div(A∇u) + b∇u = 0 in Ω, such that

u → 0 on ∂Ω nontangentially, almost everywhere with respect to the surface measure. Let

also p ∈ (1,∞), and suppose that ‖u∗‖Lp(∂Ω) <∞. If Dp is solvable in Ω, then u ≡ 0 in Ω.

Proof. Let y ∈ Ω. For ε > 0, set

Ωε = {x ∈ Ω|δ(x) ≤ ε}, Rε = Ω2 ε \ Ωε.

Consider a smooth cutoff φε which is 1 outside Ωε, 0 in Ω2 ε, and |∇φε| ≤ C/ ε. Suppose

that ε is small enough, such that Gty is a solution of LtGty = 0 in T10 ε(q), for any q ∈ ∂Ω.

Then, we obtain that

u(y) = u(y)φε(y) =

ˆ
Ω
At∇Gty∇(uφε) + b∇(uφε)G

t
y,

hence

u(y) =

ˆ
Ω
At∇Gty∇φε · u+ At∇Gty∇u · φε + b∇u · φεGty + b∇φε · uGty

=

ˆ
Ω
At∇Gty∇φε · u+ At∇(Gtyφε)∇u+ b∇u · φεGty + b∇φε · uGty − At∇φε∇u ·Gty dx

=

ˆ
Rε
At∇Gty∇φε · u dx+

ˆ
Rε
b∇φε · uGty dx−

ˆ
Rε
At∇φε∇u ·Gty dx = I1 + I2 + I3,

since u is a solution in Ω, and from the support properties of φε.
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Consider now the covering of ∂Ω by coordinate cylinders Zi, for i = 1, . . . N . Then, if ε

is small enough, we obtain that

Rε ⊆
N⋃
i=1

Zi ⇒ Rε ⊆
N⋃
i=1

(Zi ∩Rε).

Fix i, and suppose that Zi has basis Bi, where Bi ⊆ Rd−1 is a ball. Consider a cube Q with

side length l, such that Bi ⊆ Q ⊆
√
dBi, and split Q in 2ad dyadic subcubes Qj , with side

length l/a, such that l/a ≤ c̃ ε, where c̃ will be chosen later. Suppose also that ε is small

enough, such that ε < sΩ, where sΩ appears in lemma 2.3.3, and set Pj to be the part of

∂Ω that lies above Qj . Then, using lemma 7.3.2, we can write every x ∈ Zi∩Rε in the form

(x0, s), with x0 ∈ Q and s ∈ (ψ(x0) + c1 ε, ψ(x0) + c2 ε), where ψ is a Lipschitz function.

Therefore,

ˆ
Zi∩Rε

∣∣∣At∇Gty∇φε · u∣∣∣ dx ≤ C

ε

ˆ
Q

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇Gty(x0, s)||u(x0, s)|χRε(x0, s) dsdx0

≤ C

ε

∑
j

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇Gty(x0, s)||u(x0, s)|χRε(x0, s) dsdx0.

We now bound the last integral using the Cauchy-Schwartz inequality. First, note that,

using Cacciopoli’s inequality (lemma 7.3.2),

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇Gty(x0, s)|2 dsdx0 ≤

C

ε2

ˆ
3Qj

ˆ ψ(x0)+c4 ε

ψ(x0)+c0 ε
|Gty(x0, s)|2 dsdx0

≤ C

ε
sup{Gty(x0, s)|x0 ∈ 3Qj , ψ(x0) + c0 ε ≤ s ≤ ψ(x0) + c3 ε}2|3Qj |.

So, applying lemmas 6.3.2 and 6.3.4, the quantity above is bounded by

C

ε
ωy(∆2 ε(q))

2 ε4−2d |Qj | ≤ Cωy(∆2 ε(q))
2 ε2−d,
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for all q ∈ Pj .

We now choose c̃ sufficiently small, such that, for any point y0 ∈ Qj and for each (x0, t)

with δ(x0, t) ≥ ε /2, x0 ∈ Qj , and ψ(x0)+c1 ε ≤ t ≤ ψ(x0)+c2 ε, we have that (x0, t) belongs

to the cone Γ(y0, ψ(y0)), defined in the introduction; this choice of c̃ will only depend on the

apertures of the cones Γ, and the constants c1, c2. Hence, for any y0 ∈ Qj , we see that

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|u(x0, s)|2χRε(x0, s) dsdx0 ≤

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|u∗ε(y0, ψ(y0))|2 dsdx0

≤ C εd |u∗ε(y0, ψ(y0))|2,

where u∗ε is defined as

u∗ε(q) = sup{|u(x)||x ∈ Γ(q), |x− q| ≤ C ε},

Therefore, we finally get that

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇Gty(x0, s)||u(x0, s)|χRε(x0, s) dsdx0

≤ C εωy(∆2 ε(y0, ψ(y0)))u∗ε(y0, ψ(y0))

for all y0 ∈ Qj . Now, we integrate this relation in Qj and we change variables, to obtain

that

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇Gty(x0, s)||u(x0, s)|χRε(x0, s) dsdx0

≤ C ε2−d
ˆ
Pj

ωy(∆2 ε(q))u
∗
ε(q) dσ(q).
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Hence, we obtain that

ˆ
Zi∩Rε

∣∣∣At∇Gy∇φεu∣∣∣ dx ≤ C
∑
j

ε1−d
ˆ
Pj

ωy(∆2 ε(q))u
∗
ε(q) dσ(q).

Now, using the fact that the surface measure of ∆2 ε(q) is comparable to εd−1, we obtain

that

ˆ
Zi∩Rε

∣∣∣At∇Gy∇φεu∣∣∣ dx ≤ C
∑
j

ˆ
Pj

ωy(∆2 ε(q))

σ(∆2 ε(q))
u∗(q) dσ(q)

≤ C
∑
j

ˆ
Pj

Mωy(q)u∗ε(q) dσ(q) = C

ˆ
Ui∩∂Ω

Mωy(q)u∗ε(q) dσ(q)

where Mωy is the maximal function of ωy. Since Dp is solvable, by theorem 7.1.2 we obtain

that the kernel dωy

dσ is an Lp
′
(∂Ω) function, therefore, from the bounds on the maximal

function, we obtain that

ˆ
Z∩Rε

∣∣∣At∇Gy∇φεu∣∣∣ dx ≤ C

(ˆ
U∩∂Ω

|u∗ε(q)|p dσ(q)

)1/p

.

But u→ 0 on ∂Ω, nontangentially, almost everywhere, therefore the dominated convergence

theorem shows that ˆ
Zi∩Rε

∣∣∇Gy∇φεu∣∣ dx −−−→
ε→0

0.

Adding those integrals over the cylinders Zi (since we have N of them), we obtain that

I1 → 0.

We now turn to I2, and we write, as above

ˆ
Zi∩Rε

|b∇φε · uGty dx| ≤
C

ε

∑
j

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|Gty(x0, s)||u(x0, s)|χRε(x0, s) dsdx0.
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We then use the Cauchy-Schwartz inequality, and we bound

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|Gty(x0, s)|2 dsdx0 ≤ Cωy(∆2 ε(q))

2 ε3−d,

for every y0 ∈ Qj , from lemmas 6.3.2 and 6.3.4. In addition,

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|u(x0, s)|2 dsdx0 ≤ C εd |u∗ε(y0, ψ(y0))|2,

therefore, if we multiply the two estimates above and we integrate over Qj , we obtain that

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|Gty(x0, s)||u(x0, s)|χRε(x0, s) dsdx0 ≤ C ε

3
2−d

ˆ
Pj

ωy(∆2 ε(q))u
∗
ε(q) dσ(q).

This shows that

ˆ
Zi∩Rε

|b∇φε · uGty dx| ≤ C
√
ε
∑
j

ε1−d
ˆ
Pj

ωy(∆2 ε(q))u
∗
ε(q) dσ(q),

which goes to 0, as above; hence I2 → 0.

Finally, for I3,

ˆ
Zi∩Rε

|At∇φε∇u ·Gty dx| ≤
C

ε

∑
j

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|Gty(x0, s)||∇u(x0, s)|χRε(x0, s) dsdx0,

and, for all y0 ∈ Qj ,

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|Gty(x0, s)|2 dsdx0 ≤ Cωy(∆2 ε(y0, ψ(y0)))2 ε3−d,

135



while

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇u(x0, s)|2 dsdx0 ≤

C

ε2

ˆ
3Qj

ˆ ψ(x0)+c4 ε

ψ(x0)+c0 ε
|u(x0, s)|2 dsdx0

≤ C εd−2 |u∗ε(y0, ψ(y0))|2.

Therefore, as above,

ˆ
Zi∩Rε

|At∇φε∇u ·Gty dx| ≤ C
∑
j

ˆ
Pj

Mωy(q)u∗ε(q) dσ(q),

which goes to 0 as ε → 0. Therefore I3 → 0 as well, which shows that u(y) = 0. This

completes the proof.

The next proposition shows existence of solutions with boundary data in Lp(∂Ω).

Proposition 7.3.4. Suppose that Ω is a bounded Lipschitz domain, and let A ∈ Mλ(Ω),

b ∈ L∞(Ω). Assume also that that Dp is solvable in Ω, with constant C. Then, for every

f ∈ Lp(∂Ω), there exists a unique u ∈ W 1,2
loc (Ω) which satisfies the following:

i) u is a weak solution to Lu = 0 in Ω.

ii) u converges to f nontangentially, for almost every point q ∈ ∂Ω with respect to the

surface measure: that is,

lim
x∈Γ(q)
x→q

u(x) = f(q), σ − a.e. q ∈ ∂Ω

iii) ‖u∗‖Lp(Ω) <∞.

Then, this solution u will satisfy the inequality ‖u∗‖Lp(Ω) ≤ C‖f‖Lp(Ω).

Proof. Uniqueness follows from proposition 7.3.3.
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For existence, let f ∈ Lp(∂Ω), and consider a sequence fn ∈ C(∂Ω) with fn → f in

Lp(∂Ω). Consider also the solutions un to the Dirichlet problem with boundary data fn.

From solvability of Dp, we obtain that

‖u∗n‖Lp(∂Ω) ≤ C‖fn‖Lp(∂Ω).

Consider now the approximation scheme Ωj ↑ Ω, from theorem 2.3.6, and fix j ∈ N. Let

also q ∈ ∂Ω. Since Λj(q) ∈ Γ(q) from the same theorem and j is fixed, we obtain that

Λj(q) ∈ Γ(p) for all p ∈ ∆rj (q), where rj is sufficiently small. This will show that

|un(Λj(q))| ≤ |u∗n(p)| ⇒ |un(Λj(q))| ≤
 

∆rj
(q)
|u∗n| dσ ≤

‖fn‖Lp(∂Ω)

rj
.

It follows that, for any j ∈ N, (un) is a uniformly bounded sequence of solutions in Ωj .

Therefore, from equicontinuity of solutions (proposition 3.6.4) and also applying a diagonal

argument, (un) converges pointwise to a solution u in Ω, uniformly in compact subsets of Ω.

Let now q ∈ ∂Ω, and x ∈ Γ(q). Then, for all n ∈ N,

|u(x)− un(x)| = lim inf
m→∞

|um(x)− un(x)| ≤ lim inf
m→∞

(um − un)∗(q),

which implies that (u−un)∗ ≤ lim infm→∞(um−un)∗. We now integrate and apply Fatou’s

lemma, to obtain

‖(u− un)∗‖p ≤ lim
m→∞

‖(um − un)∗‖p ≤ C lim
m→∞

‖fm − fn‖p = C‖f − fn‖p,

where we also used that Dp is solvable in Ω. Therefore, ‖(u− un)∗‖p → 0 as n→∞.
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We now compute, for x ∈ Γ(q) and n ∈ N,

lim sup
x→q

u(x)− f(q) ≤ lim sup
x→q

(u(x)− un(x)) + lim sup
x→q

un(x)− f(q)

= lim sup
x→q

(u(x)− un(x)) + fn(q)− f(q) ≤ (u− un)∗(q) + fn(q)− f(q).

Therefore, for any ε > 0,

σ

({
q ∈ Γ(q)

∣∣∣ lim sup
x→q

u(x)− f(q) > ε

})
≤ σ

({
q ∈ Γ(q)

∣∣∣(u− un)∗(q) + fn(q)− f(q) > ε
})

,

for all n ∈ N. But, (u− un)∗ + fn − f converges to 0 almost everywhere, so

lim sup
x→q

u(x)− f(q) ≤ ε

for almost all q ∈ ∂Ω. This shows that lim supx→q u(x) ≤ f(q) for almost all q ∈ ∂Ω.

A similar procedure shows that lim infx→q u(x) ≥ f(q) for almost all q ∈ ∂Ω, therefore u

converges nontangentially to f , almost everywhere.

Finally,

‖u∗‖p ≤ ‖(u− un)∗‖p + ‖u∗n‖p ≤ C‖f − fn‖p + C‖fn‖p −−−−→
n→∞

C‖f‖p,

which shows that u is the required solution.
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CHAPTER 8

THE REGULARITY PROBLEM FOR L

In this chapter we turn our attention to the Regularity problem for the equation Lu = 0 in

a Lipschitz domain Ω. Rather than obtaining our results for smooth data on the boundary

and using approximations, as in the case of the Dirichlet problem in the previous chapter, we

will show solvability for the Regularity problem providing a formula for the solutions which

will hold for data in W 1,2(∂Ω). This will be achieved using the method of layer potentials.

8.1 Formulation and uniqueness

We begin with the formulation of the Regularity problem. Recall that the space W 1,p(∂Ω)

is defined in definition 2.4.6.

Definition 8.1.1. Let Ω be a Lipschitz domain, and p ∈ (1,∞). We say that the Regularity

problem Rp is solvable in Ω, if there exists C > 0 such that, for every f ∈ W 1,p(∂Ω), there

exists a solution u ∈ W 1,2
loc (Ω) to the Dirichlet problem

 Lu = 0, in Ω,

u = f, on ∂Ω,

which also satisfies the estimate

‖(∇u)∗‖Lp(∂Ω) ≤ C‖∇f‖Lp(∂Ω),

and u = f on the boundary is interpreted in the nontangential, almost everywhere sense.

Note that only the gradient of f appears on the right hand side. This is to be expected

since constants are solutions to the equation.
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The next proposition relates the nontangential maximal functions of a function and its

gradient. This will be the basic estimate that shows uniqueness for the Regularity problem.

Recall first that, if u is a function in Ω, then for q ∈ ∂Ω we define

u∗ε(q) = sup
{
|u(x)|

∣∣∣x ∈ Γ(q), |x− q| < C ε
}
,

for some constant C.

Proposition 8.1.2. Let Ω be a Lipschitz domain, and let ε > 0. Suppose that u ∈ C1
loc(Ω)

and u converges nontangentially, almost everywhere to a function f ∈ Lp(∂Ω) on the bound-

ary, for some p ∈ [1,∞). Then, for all ε > 0, and almost all q ∈ ∂Ω,

u∗ε ≤ C ε(∇u)∗ + |f |.

Proof. Consider first q ∈ ∂Ω such that f(q) is finite and u converges nontangentially to f(q)

at q, and suppose that x ∈ Γ(q) and |x − q| < C ε. Since Γ(q) is a cone, the line segment

[x, q) is a subset of Γ(q). Consider now the sequence of points

xm = q + 21−m(x− q),

then all those points lie in [x, q), and x1 = x.

Let now m ∈ N. Since u is continuously differentiable in a neighborhood of the line

segment from xm to xm+1, there exists zm in this line segment such that

|u(xm)− u(xm+1)| ≤ |∇u(zm)||xm − xm+1|.

Since zm lies in the line segment from x to q, we obtain that zm ∈ Γ(q), therefore

|u(xm)− u(xm+1)| ≤ (∇u)∗(q)|xm − xm+1|.
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In addition, xm → q, and xm ∈ Γ(q), therefore u(xm)→ f(q). This shows that

|u(x)− f(q)| ≤
∑
m∈N

|u(xm)− u(xm+1)| ≤
∑
m∈N

(∇u)∗(q)|xm − xm+1|

= (∇u)∗(q)
∑
m∈N

2−m|x− q| = C(∇u)∗(q)|x− q|

≤ C ε(∇u)∗(q),

since |x− q| < C ε. This inequality shows that

|u(x)| ≤ C ε(∇u)∗ + |f(q)|

for all x ∈ Γ(q), with |x − q| < C ε. We now consider the supremum for those x to obtain

the desired inequality.

We now show uniqueness for the Regularity problem; in order to do this, we will follow an

argument similar to the proof of proposition 7.3.3. A standard way of showing this uniqueness

would involve using proposition 7.3.3 directly, since from proposition 8.1.2 the norm of (∇u)∗

is stronger than the norm of u∗. However, proposition 7.3.3 shows uniqueness after assuming

that the Dirichlet problem is solvable in Ω, which we have obtained after assuming a condition

on div b, as in theorem 7.2.4. Since we want to treat the Regularity problem only assuming

that b is bounded, the previous argument will not work, which justifies the need for the next

proposition.

Proposition 8.1.3. Suppose that Ω is a bounded Lipschitz domain, A ∈ Mλ(Ω), b ∈

L∞(Ω). Let u ∈ W 1,2
loc (Ω) be a solution to Lu = 0 in Ω, with (∇u)∗ ∈ L1(∂Ω) and u → 0

nontangentially, almost everywhere. Then, u ≡ 0.
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Proof. Let ε > 0, such that ε < sΩ, where sΩ is defined in lemma 2.3.3. Set also

Ωε = {x ∈ Ω|δ(x) ≤ ε}, Rε = Ω2 ε \ Ωε.

Consider a smooth cutoff φε which is 1 outside Ωε, 0 in Ω2 ε, and |∇φε| ≤ C/ ε. We then

proceed as in proposition 7.3.3, to obtain that

u(y) =

ˆ
Rε
A∇Gty∇φε · u+

ˆ
Rε
b∇φε · uGty −

ˆ
Rε
A∇u∇φε ·Gty = I1 + I2 + I3.

Consider now the cylinders Zi for i = 1, . . . N , the sets Bi, Q,Qj and Pj , and the function

ψ that appear in the proof of theorem 7.3.3. We then estimate, for I1,

ˆ
Zi∩Rε

∣∣∣A∇Gty∇φε · u∣∣∣ dx ≤ C

ε

ˆ
Q

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇Gty(x0, s)||u(x0, s)|χRε(x0, s) dsdx0

≤ C

ε

∑
j

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇Gty(x0, s)||u(x0, s)|χRε(x0, s) dsdx0.

We now apply the Cauchy-Schwartz inequality to bound the integral. First, we obtain that

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇Gty(x0, s)|2 dsdx0 ≤

C

ε2

ˆ
3Qj

ˆ ψ(x0)+c3 ε

ψ(x0)+c0 ε
|Gty(x0, s)|2 dsdx0

≤ C εd

ε2
sup

δ(x)<c4 ε
|Gty(x)|2 ≤ C εd+2α−2,

for some α ∈ (0, 1), where we also used proposition 3.6.3. Moreover, for any y0 ∈ Qj , we see

that

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|u(x0, s)|2χRε(x0, s) dsdx0 ≤

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|u∗ε(y0, ψ(y0))|2 dsdx0

≤ C εd |u∗ε(y0, ψ(y0))|2,
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therefore, after multiplying the last two inequalities, we obtain that

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇Gty(x0, s)||u(x0, s)|χRε(x0, s) dsdx0 ≤ C εd+α−1 |u∗ε(y0, ψ(y0))|,

for all y0 ∈ Qj . Now, we integrate this relation in Qj and we change variables, to obtain

that ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇Gty(x0, s)||u(x0, s)|χRε(x0, s) dsdx0 ≤ C εα

ˆ
Pj

|u∗ε| dσ.

Hence, we have shown that

ˆ
Zi∩Rε

∣∣A∇Gy∇φεu∣∣ ≤ C
∑
j

εα−1
ˆ
Pj

|u∗ε| dσ ≤ C εα−1
ˆ
∂Ω
|u∗ε| dσ

≤ C εα
ˆ
∂Ω
|(∇u)∗| dσ −−−→

ε→0
0,

where we also used proposition 8.1.2. Adding those integrals over the cylinders Zi (since we

have N of them), we obtain that I1 → 0.

We now turn to I2. From proposition 3.6.3 we obtain that

∣∣∣∣ˆ
Zi∩Rε

b∇φε · uGty
∣∣∣∣ ≤ C‖b‖∞ εα−1

ˆ
Rε
|u|

≤ C‖b‖∞ εα−1
∑
j

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|u(x0, s)| dsdx0.

But, as above, for any y0 ∈ Qj ,

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|u(x0, s)| dsdx0 ≤

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|u∗ε(y0, φ(y0))| dsdx0

≤ C εd |u∗ε(y0, φ(y0))|,
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and after integrating on Qj and summing for j, we obtain that

∣∣∣∣ˆ
Zi∩Rε

b∇φε · uGty
∣∣∣∣ ≤ C εα

ˆ
∂Ω
|u∗ε| dσ.

Since (∇u)∗ ∈ L1(∂Ω), proposition 8.1.2 shows that u∗ ∈ L1(∂Ω), therefore the last integral

above converges to 0, as ε→ 0. Therefore, I2 → 0 as well.

Finally, we turn to I3. As in the case for I2, we estimate

∣∣∣∣ˆ
Zi∩Rε

A∇u∇φε ·Gty
∣∣∣∣ ≤ C εα−1

ˆ
Rε
|∇u| ≤ C εα−1

∑
j

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇u(x0, s)| dsdx0.

Then, for any y0 ∈ Qj ,

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇u(x0, s)| dsdx0 ≤

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|(∇u)∗(y0, φ(y0))| dsdx0

≤ C εd |(∇u)∗(y0, φ(y0))|,

and after integrating on Qj and summing for j, we obtain that

∣∣∣∣ˆ
Zi∩Rε

A∇u∇φε ·Gty
∣∣∣∣ ≤ C εα

ˆ
∂Ω
|(∇u)∗| dσ.

Since (∇u)∗ ∈ L1(∂Ω), letting ε→ 0 shows that I3 → 0 as well. This finishes the proof.

8.2 Singular integrals

In the following, we will turn our attention to symmetric matrices A.

Given a Lipschitz domain Ω, we will assume that 0 ∈ Ω and diam(Ω) < 1/40, and we

will also set B to be the unit ball in Rd; we will denote this class of domains by D.

Given a matrix A ∈Mλ,µ(Ω), we will extend A periodically as in lemma 2.2.1. Moreover,

given a function b ∈ L∞(Ω), we will extend it by 0 outside Ω; if b ∈ Lip(Ω), we will extend
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it as in lemma 2.2.3. Finally, we set G to be Green’s function for the equation

L̃u = − div(A∇u) + b∇u = 0

in B.

For p, q ∈ Ω with p 6= q, we define the kernel

k(p, q) = ∇pG(p, q),

where differentiation takes place with respect to the p variable. We also define

T∗f(p) = sup
ε>0

∣∣∣∣∣
ˆ
|p−q|>ε

k(p, q)f(q) dσ(q)

∣∣∣∣∣ ,
and, if ei is the unit vector in the xi direction, we set

Tif(p) = lim
ε→0

ˆ
|p−q|>ε

〈k(p, q), ei〉 f(q) dσ(q).

The first operator is the maximal truncation operator, while the second is a singular integral

operator; the fact that they define bounded operators will be shown in the next propositions.

Proposition 8.2.1. Let Ω ∈ D, A ∈ Mλ,µ(Ω) and b ∈ L∞(Ω). Then, the operator T∗ is

bounded from L2(∂Ω) to L2(∂Ω), and its norm is bounded by a good constant.

Proof. Consider the periodic extension Ap of A in Rd, as in lemma 2.2.2 (which we still

denote by A) extend b by 0 outside Ω, and set G0 be Green’s function for the equation

− div(A∇u) = 0 in B. Let also Γ(x, y) to be the fundamental solution of the equation

− div(A∇u) = 0 in

T̃∗f(p) = sup
δ>0

∣∣∣∣∣
ˆ
|p−q|>δ

∇pΓ(p, q) · f(q) dσ(q)

∣∣∣∣∣
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is bounded from L2(∂Ω) to itself, with the bound being a good constant.

We will now interpolate the maximal truncation operator with the analogous operator

with kernel ∇pG0(p, q) to obtain boundedness: we write

∇pG(p, q) =
(
∇pG(p, q)−∇pG0(p, q)

)
+
(
∇pG0(p, q)−∇pΓ(p, q)

)
+∇pΓ(p, q)

= k1(p, q) + k2(p, q) +∇pΓ(p, q).

After fixing δ > 0, multiplying with f and integrating, we estimate

ˆ
|p−q|>δ

|k1(p, q)f(q)| dσ(q) ≤ C

ˆ
|p−q|>δ

|p− q|3/2−d|f(q)| dσ(q), (8.1)

from proposition 5.5.2. For k2, we fix q ∈ ∂Ω and we set

u(x) = G0(x, q)− Γ(x, q),

for x ∈ B. Then, the regularity properties of Green’s function show that u ∈ W 1, d
2(d−1) (B),

and for every φ ∈ C∞c (B),

ˆ
B
A∇u(x)∇φ(x) dx =

ˆ
B
A∇xG0(x, q)∇φ(x) dx−

ˆ
B
A∇xΓ(x, q)∇φ(x) dx

= φ(q)− φ(q) = 0,

since G0 is Green’s function for− div(A∇u) = 0 in B, and Γ(x, y) is the fundamental solution

of the equation − div(A∇u) = 0 in Rd. This shows that u is a W
1, d

2(d−1) (B) solution to

− div(A∇u) = 0 in B, therefore lemma 3.2.1 shows that u is a W 1,2(B/2) solution to

− div(A∇u) = 0 in B/2. Hence, estimate 2.2 in [KS11] shows that the function

∇u(x) = ∇xG0(x, q)−∇xΓ(x, q)
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is bounded in B/4, hence k2 is bounded, with the bound being a good constant. Therefore

ˆ
|p−q|>δ

|k2(p, q)f(q)| dσ(q) ≤ C

ˆ
|p−q|>δ

|f(q)| dσ(q)

for a good constant C.

We now add the last estimate with (8.1) and we use the definition of T̃∗, to obtain that,

for any δ > 0,

∣∣∣∣∣
ˆ
|p−q|>δ

∇pG(p, q) · f(q) dσ(q)

∣∣∣∣∣ ≤ C

ˆ
|p−q|>δ

(
|p− q|3/2−d + 1

)
|f(q)| dσ(q) + T̃∗f(p),

hence

T∗f(p) ≤ C

ˆ
|p−q|>δ

(
|p− q|3/2−d + 1

)
|f(q)| dσ(q) + T̃∗f(p).

The fact that the kernel |p− q|3/2−d + 1 is integrable on ∂Ω, together with boundedness of

T̃∗, complete the proof.

We also treat the operators Ti.

Proposition 8.2.2. Let Ω ∈ D, A ∈ Mλ,µ(Ω) and b ∈ L∞(Ω). Then, the operators Ti are

bounded from L2(∂Ω) to L2(∂Ω), and their norms are bounded by a good constant.

Proof. The proof follows using the almost everywhere existence of the operator T 1
A(f) in

theorem 3.1 in [KS11], an argument similar to the proof of proposition 8.2.1, and the bound-

edness of the operators T∗ shown in the same proposition.

8.3 Layer potentials

In this section we will apply the results of the previous section to obtain the basic properties

of the single layer potential. We will always assume that Ω ∈ D.
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Definition 8.3.1. If f ∈ L2(∂Ω), we define the single layer potential of f to be

S±f : B → R, S±f(x) =

ˆ
∂Ω

G(x, q)f(q) dσ(q),

where differentiation takes place with respect to q.

We will write S+f(x) for x ∈ Ω and S−f(x) for x ∈ B \ Ω. Note that, from the

pointwise bounds on Green’s function and its derivatives, the integrals in those definitions

are absolutely convergent for x ∈ B \ ∂Ω, since we are integrating far from x.

We now define, for f ∈ L2(∂Ω),

Sf(p) =

ˆ
∂Ω

G(p, q)f(q) dσ(q).

Since G(p, q) ≤ C|p− q|2−d, G is integrable on ∂Ω, therefore S is a bounded operator from

L2(∂Ω) to L2(∂Ω). In fact, as the next lemma shows, S maps L2(∂Ω) to W 1,2(∂Ω).

Lemma 8.3.2. Let Ω ∈ D and A ∈Mλ,µ(B), b ∈ L∞(B). Then S is bounded from L2(∂Ω)

to W 1,2(∂Ω), with

∇TSf(p) = lim
ε→0

ˆ
|p−q|>ε

∇pTG(p, q)f(q) dσ(q),

in every coordinate cylinder (Z, φ) on the boundary of Ω. Moreover, the norm of S from

L2(∂Ω) to W 1,2(∂Ω) is a good constant.

Proof. For f ∈ L2(∂Ω), the pointwise bounds on G show that

|Sf(p)| =
∣∣∣∣ˆ
∂Ω

G(p, q)f(q) dσ(q)

∣∣∣∣ ≤ ˆ
∂Ω
|p− q|2−d|f(q)| dσ(q)

≤
(ˆ

∂Ω
|p− q|2−d dσ(q)

)1/2(ˆ
∂Ω
|p− q|2−d|f(q)|2 dσ(q)

)1/2
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The first integral is absolutely convergent and uniformly bounded with respect to p, with

bounds depending only on Ω. Therefore,

ˆ
∂Ω
|Sf |2 ≤ C

ˆ
∂Ω

ˆ
∂Ω
|p− q|2−d|f(q)|2 dσ(q)dσ(p) ≤ C

ˆ
∂Ω
|f |2.

For the second part, note that the singular integral bounds in propositions 8.2.1 and 8.2.2

will imply the theorem, once the formula for the tangential derivative is established. For this

reason, consider a coordinate cylinder (Z, φ), where Z has basis BZ ⊆ Rd−1, and suppose

that f is supported in Z ∩ ∂Ω. Let h ∈ C∞c (Z ∩ Rd−1), and set G0 to be Green’s function

for the equation − div(A∇u) = 0 in B. If S0 is the single layer potential for this equation,

we have that

∇TS0f(p) = lim
ε→0

ˆ
|p−q|>ε

∇pTG0(p, q)f(q) dσ(q),

using an argument similar to the proof of proposition 8.2.1. Therefore, it suffices to find the

formula for the tangential partial derivative of the difference Sf − S0f .

Set gq(x) = G(x, q)−G0(x, q) for q ∈ Z ∩ ∂Ω, and fix p ∈ Z ∩ ∂Ω. For any q ∈ Z ∩ ∂Ω,

let q0 ∈ BZ be the point on the basis of BZ that lies right under q. Define also

Φ : BZ → Z ∩ ∂Ω, Φ(y) = (y, φ(y)),

then Φ is Lipschitz, with a Lipschitz constant CM depending on M , the Lipschitz constant

of ∂Ω. Then, for ε > 0, we integrate by parts in BZ \Bε(q0) to obtain that

ˆ
y:|y−q0|>ε

gq(y, φ(y))∂ih(y) dy =

−
ˆ
∂(Bε(q0))

gq(y, φ(y))h(y)νi(y) dσn−1(y)−
ˆ
y:|y−q0|>ε

∂igq(y, φ(y))h(y) dy,

where ∂(Bε(q0)) is the d − 2 dimensional boundary of Bε(q0). We now apply proposition
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5.5.2, and we note that |Φ(y)− q| ≥ |y − q0|, to obtain that

ˆ
∂(Bε(q0))

∣∣gq(y, φ(y))h(y)νi(y)
∣∣ dσd−1(y) ≤ C

ˆ
∂(Bε(q0))

|Φ(y)− q|5/2−d|h(y)| dσd−1(y)

≤ CM

ˆ
∂(Bε(q0))

|y − q0|5/2−d|h(y)| dσd−1(y)

= C ε5/2−d
ˆ
∂(Bε(q0))

|h(y)| dσd−1(y)

≤ C ε5/2−d σd−1 (∂(Bε(q0))) ‖h‖∞

≤ C ε5/2−d εd−2 ‖h‖∞,

which goes to 0 as ε→ 0. This shows that

ˆ
y:|y−q0|>ε

gq(y, φ(y))∂ih(y) dy +

ˆ
y:|y−q0|>ε

∂igq(y, φ(y))h(y) dy = I1
ε (q) + I2

ε (q) −−−→
ε→0

0,

(8.2)

for all q ∈ Z ∩ ∂Ω.

From the pointwise bounds on Green’s function we now obtain that

I1
ε (q) −−−→

ε→0

ˆ
Rd−1

gq(y, φ(y))∂ih(y) dy.

Moreover,

|I1
ε (q)| ≤ C

ˆ
y:|y−q0|>ε

|Φ(y)− q|5/2−d|∂ih(y)| dy ≤ C

ˆ
Z∩∂Ω

|q′ − q|5/2−d dσ(q′),

and the last function is bounded with respect to q. Therefore, the dominated convergence
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theorem shows that

ˆ
Z∩∂Ω

ˆ
y:|y−q0|>ε

gq(y, φ(y))∂ih(y) · f(q) dydσ(q) −−−→
ε→0ˆ

Z∩∂Ω

ˆ
Rd−1

gq(y, φ(y))∂ih(y) · f(q) dydσ(q).

Applying a similar procedure to I2
ε (q) and using (8.2), we obtain that

ˆ
∂Ω

ˆ
Rd−1

gq(Φ(y))∂ih(y)f(q) dydσ(q) = −
ˆ
∂Ω

ˆ
Rd−1

∂igq(Φ(y))h(y)f(q) dydσ(q).

But, from Fubini’s theorem, note that the integral on the left is equal to

ˆ
Rd−1

ˆ
∂Ω

gq(Φ(y))f(q)∂ih(y) dσ(q)dy =

ˆ
Rd−1

(Sf(Φ(y))− S0f(Φ(y))) ∂ih(y) dy,

therefore we obtain that

ˆ
Rd−1

(Sf(Φ(y))− S0f(Φ(y))) ∂ih(y) dy =

ˆ
Rd−1

(ˆ
∂Ω

∂igq(Φ(y))f(q) dσ(q)

)
h(y) dy

From definition 2.4.6, this shows that the difference Sf − S0f is tangentially differentiable

on ∂Ω, with

∇T (Sf(p)− S0f(p)) =

ˆ
∂Ω
∇pT (G(p, q)−G0(p, q)) f(q) dσ(q).

Finally, we combine with the formula for ∇TS0f(p), and the proof is complete.

The single layer potential is the solution to the Dirichlet problem with data Sf on ∂Ω;

this is shown in the next proposition.

Proposition 8.3.3. Let Ω ∈ D, A ∈ Mλ,µ(B) and b ∈ L∞(B). If f ∈ L2(∂Ω), then

S+f ∈ W 1,2
loc (Ω) is the solution to the Dirichlet problem D2 for the equation Lu = 0 in Ω,
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with boundary values Sf on ∂Ω. Similarly, S−f is the solution to D2 in B \ Ω, and has

boundary values Sf · χ∂Ω on ∂(B \ Ω). In addition,

‖(∇S±f)∗‖L2(∂Ω) ≤ C‖f‖L2(∂Ω),

where C is a good constant.

Proof. We will compute the weak derivatives of S+f : if φ ∈ C∞c (Ω), then

ˆ
Ω
S+f(x)∂iφ(x) dx =

ˆ
∂Ω

(ˆ
Ω
G(x, q)∂iφ(x) dx

)
f(q) dσ(q),

from Fubini’s theorem, since ∂iφ is supported at a positive distance from ∂Ω. So, from

differentiability of G(·, q) and Fubini’s theorem, we obtain that

ˆ
∂Ω

(ˆ
Ω
G(x, q)∂iφ(x) dx

)
f(q) dσ(q) = −

ˆ
∂Ω

(ˆ
Ω
∂iG(x, q)φ(x) dx

)
f(q) dσ(q),

which shows that

∇S+f(x) =

ˆ
∂Ω
∇xG(x, q)f(q) dσ(q).

With a similar procedure, we can show that ∇S+f ∈ L2
loc(Ω). Now, let φ ∈ C∞c (Ω). We

then have

α(S+f, φ) =

ˆ
Ω
A∇S+f∇φ+ b∇S+f · φ

= −
ˆ

Ω

ˆ
∂Ω

(A(x)∇xG(x, q)∇φ(x) + b(x)∇G(x, q) · φ(x)) f(q) dσ(q)dx

=

ˆ
∂Ω

(ˆ
Ω
A(x)∇xG(x, q)∇φ(x) + b(x)∇G(x, q) · φ(x) dx

)
f(q) dσ(q),

from Fubini’s theorem, since the integrand is supported on a strictly positive distance from

∂Ω, hence the integral converges absolutely. But, the inner integral is equal to φ(q) = 0, so
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S+f is indeed a solution in Ω.

We now turn to the boundary values of S+f . Let Af ⊆ ∂Ω be the set of p ∈ ∂Ω such that

Sf(p) is finite. Fix p ∈ Af , and let x ∈ Γ(p). Let also n ∈ N, and suppose that |x−p| < 1
2n .

We then bound |S+f(x)− Sf(p)| by

ˆ
Ω\∆1/n(p)

|G(x, q)−G(p, q)||f(q)| dσ(q) +

ˆ
∆1/n(p)

|G(x, q)−G(p, q)||f(q)| dσ(q) = I1 + I2.

To bound I1: if |p− q| ≥ 1/n, then

|x− q| ≥ |p− q| − |x− p| ≥ |p− q|
2

+
1

2n
− |x− p| ≥ |p− q|

2
,

and, if we use Lipschitz continuity of Green’s function (proposition 5.3.3), we obtain that

I1 ≤ C|x− p|
ˆ

Ω\∆1/n(p)

(
|x− q|1−d + |p− q|1−d

)
|f(q)| dσ(q)

≤ C|x− p|
ˆ

Ω\∆1/n(p)

((
|p− q|

2

)1−d
+ |p− q|1−d

)
|f(q)| dσ(q)

≤ C|x− p|
ˆ

Ω\∆1/n(p)
|p− q|1−d|f(q)| dσ(q)

≤ C|x− p|n1−d‖f‖22.

For I2, note first that since x ∈ Γ(q), we have that |x− p| ≤ Cδ(x), therefore

q ∈ ∂Ω⇒ |p− q| ≤ |x− q|+ |x− p| ≤ |x− q|+ Cδ(x) ≤ C|x− q|. (8.3)
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Using the pointwise bounds on G, we then obtain

I2 ≤
ˆ

∆1/n(p)
(|G(x, q)|+ |G(p, q)|) |f(q)| dσ(q)

≤ C

ˆ
∆1/n(p)

(
|x− q|2−d + |p− q|2−d

)
|f(q)| dσ(q)

≤ C

ˆ
∆1/n(p)

|p− q|2−d|f(q)| dσ(q) ≤ C

ˆ
∂Ω

G(p, q)|f(q)χ∆1/n(q)| dσ(q).

Combining the estimates for I1 and I2, we finally obtain that, if p ∈ Af , |x − p| < 1
2n and

x ∈ Γ(p), then

|S+f(x)− Sf(p)| ≤ C|x− p|n1−d‖f‖22 + C

ˆ
∂Ω

G(p, q)|f(q)χ∆1/n(q)| dσ(q). (8.4)

Since the kernel G(p, q) in integrable on ∂Ω and fχ∆1/n

‖·‖2−−−−→
n→∞

0, we obtain that

ˆ
∂Ω

G(p, q)|f(q)χ∆1/n(q)| dσ(q)
‖·‖2−−−−→
n→∞

0,

therefore, for a subsequence of the n, we obtain pointwise convergence to 0 for all p ∈ Bf ,

where the set Bf ⊆ Af has full measure.

Let now p ∈ Bf and ε > 0. Then there exists N ∈ N such that

∣∣∣∣ˆ
∂Ω

G(p, q)|f(q)χ∆1/N (q)| dσ(q)

∣∣∣∣ < ε

2
.

Then, for all x ∈ Γ(p) with |x− p| < 1/2N and

C|x− p|N1−d‖f‖22 <
ε

2
,

we obtain from estimate (8.4) that |S+f(x)−Sf(p)| < ε. Hence, S+f(x)→ Sf(p) nontan-

gentially, almost everywhere on ∂Ω.
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We now show the boundedness of the nontangential maximal function of the gradient.

For this purpose, let G0 be Green’s function for the equation − div(A∇u) = 0 in B, and let

S0
+ be the single layer potential for the same equation in Ω. Let also p ∈ ∂Ω and x ∈ Γ(p).

We then write

|∇S+f(x)| ≤ |∇S+f(x)−∇S0
+f(x)|+ |∇S0

+f(x)|

≤
ˆ
∂Ω
|∇xG(x, q)−∇xG0(x, q)| |f(q)| dσ(q) + |∇S0

+f(x)|

≤ C

ˆ
∂Ω
|x− q|3/2−d|f(q)| dσ(q) + |∇S0

+f(x)|

≤ C

ˆ
∂Ω
|p− q|3/2−d|f(q)| dσ(q) + |∇S0

+f(x)|,

where we also used proposition 5.5.2 and the fact that x ∈ Γ(p). This shows that

(∇S+f)∗ (p) ≤ C

ˆ
∂Ω
|p− q|3/2−d|f(q)| dσ(q) +

(
∇S0

+f
)∗

(p),

for all p ∈ ∂Ω. Similarly to the proof of proposition 8.2.1, the operator (∇S0
+f)∗ is bounded

from L2(∂Ω) to L2(∂Ω); hence, after integrating over ∂Ω, we obtain that

ˆ
∂Ω

(∇S+f)∗ dσ ≤ C

ˆ
∂Ω
|f |2 dσ,

as we wanted.

Finally, we show that (S+f)∗, (S−f)∗|∂Ω ∈ L2(∂Ω): for this purpose, note that proposi-

tion 8.1.2 shows that

(S+f)∗ ≤ C(∇S+f)∗ + |Sf |,

and boundedness follows after integrating on ∂Ω, using the bound on the nontangential

maximal function of the gradient, and lemma 8.3.2. A similar argument works for (S−f)∗.

Finally, to show that (S−f)∗|∂B ∈ L2(∂B) we use th., which completes the proof.
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8.4 Behavior on the boundary, and the jump relations

The goal of this section is to study how the derivative of the single layer potential ∇S+f(x)

in Ω behaves as x→ p ∈ ∂Ω. We start with the tangential derivative first.

The next proposition shows that, in fact, the tangential derivatives of S+f,S−f are

nontangentially continuous on ∂Ω.

Proposition 8.4.1. Let Ω ∈ D, A ∈Mλ,µ(B) and b ∈ L∞(B). Then, for any f ∈ L2(∂Ω),

∇S+f(x) · T (p) −−−→
x→p

∇TSf(p),

non-tangentially, almost everywhere on ∂Ω.

Proof. Consider the operator R : L2(∂Ω)→ L2(∂Ω), with

Rf(p) =

ˆ
Ω
|p− q|5/4−df(q) dσ(q),

then R is bounded. Therefore, |Rf | <∞ almost everywhere on ∂Ω.

Let δ0 > 0. We begin by writing

∇S+f(x) · T (p)−
ˆ
|p−q|>δ0

∇TG(p, q)f(q) dσ(q) =

ˆ
|p−q|≥δ0

(∇xG(x, q)−∇xG(p, q))T (p) ·f(q) dσ(q)+

ˆ
|p−q|<δ0

∇xG(x, q)T (p) ·f(q) dσ(q),

(8.5)

where T (p) is a tangential vector on ∂Ω at p. Note then that, if x ∈ Γ(p), then

|x− q| ≥ δ(x) ≥ C|x− p|,
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therefore the last term is bounded by

∣∣∣∣∣
ˆ
|p−q|<δ0

∇xG(x, q)T (p) · f(q) dσ(q)

∣∣∣∣∣ ≤ C

ˆ
|p−q|<δ0

|x− q|1−d|f(q)| dσ(q)

≤ C|x− p|1−d
ˆ
|p−q|<δ0

|f(q)| dσ(q)

≤ C|x− p|1−dδ(d−1)/2
0 ‖f‖L2(∂Ω).

The last relation and (8.5) show that for almost all p ∈ ∂Ω, and any x ∈ Γ(p),

∇S+f(x) · T (p)−∇TSf(p) = lim
δ0→0

ˆ
|p−q|≥δ0

(∇xG(x, q)−∇xG(p, q))T (p) · f(q) dσ(q).

(8.6)

Similarly, if S0
+ is the single layer potential for the equation − div(A∇u) = 0 in Ω, and

G0 is Green’s function for the same equation in B, we obtain that, for almost every p ∈ ∂Ω,

and every x ∈ Γ(p),

∇S0
+f(x) · T (p)−∇TS0f(p) = lim

δ0→0

ˆ
|p−q|≥δ0

(
∇xG0(x, q)−∇xG0(p, q)

)
T (p) · f(q) dσ(q).

(8.7)

If we now subtract (8.7) from (8.5), we obtain that

∣∣∣∇(S+f − S0
+f)(x) · T (p)−∇T (Sf − S0f)(p)

∣∣∣
≤ lim
δ0→0

ˆ
|p−q|≥δ0

∣∣∣∇xG(x, q)−∇xG(p, q) +∇xG0(x, q)−∇xG0(p, q)
∣∣∣ |f(q)| dσ(q)

≤
ˆ
∂Ω

∣∣∣∇xG(x, q)−∇xG(p, q) +∇xG0(x, q)−∇xG0(p, q)
∣∣∣ |f(q)| dσ(q). (8.8)

Let now δ > 0. Note that, if x ∈ Γ(p), then

|p− q| ≤ |x− p|+ |x− q| ≤ Cδ(x) + |x− q| ≤ C|x− q|,
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therefore, proposition 5.3.2 shows that

∣∣∣∣∣
ˆ
|p−q|≥δ

(∇xG(x, q)−∇xG(p, q))T (p) · f(q) dσ(q)

∣∣∣∣∣ ≤
C|x− p|α

ˆ
|p−q|≥δ

|p− q|1−d−α|f(q)| dσ(q) ≤ C|x− p|αδ1−d−α
ˆ
|p−q|≥δ

|f(q)| dσ(q). (8.9)

Similarly, we obtain the same estimate with G0 in the place of G.

Finally, we apply proposition 5.5.2 to obtain that

∣∣∣∣∣
ˆ
|p−q|<δ

(
∇xG(x, q)−∇xG(p, q)−∇xG0(x, q) +∇xG0(p, q)

)
T (p) · f(q) dσ(q)

∣∣∣∣∣ ≤ˆ
|p−q|<δ

(
|x− q|3/2−d + |p− q|3/2−d

)
|f(q)| dσ(q) ≤

ˆ
|p−q|<δ

|p− q|3/2−d|f(q)| dσ(q), (8.10)

since x ∈ Γ(p). Then, for the last term, we estimate

ˆ
|p−q|<δ

|p− q|3/2−d|f(q)| dσ(q) ≤ δ1/4
ˆ
∂Ω
|p− q|3/2−d|f(q)| dσ(q) ≤ δ1/4R|f |(p).

We now plug this estimate in (8.10), and we substitute in (8.8), together with (8.9) and its

analog for G0: then, we obtain that, for almost all p ∈ ∂Ω, and almost all x ∈ Γ(p),

∣∣∣∇(S+f − S0
+f)(x) · T (p)−∇T (Sf − S0f)(p)

∣∣∣ ≤ C|x−p|αδ1−d−α
ˆ
∂Ω
|f | dσ+δ1/4R|f |(p).

Let now A be the set of p ∈ ∂Ω for which |Rf(p)| <∞, and consider any p ∈ A. Let ε > 0,

then there exists δ > 0, such that δ1/4R|f |(p) < ε. Therefore, if x ∈ Γ(p) is such that

C|x− p|αδ1−d−α
ˆ
∂Ω
|f | dσ < ε,
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we obtain that

∣∣∣∇(S+f − S0
+f)(x) · T (p)−∇T (Sf − S0f)(p)

∣∣∣ ≤ 2 ε,

which shows that

∇(S+f − S0
+f)(x) · T (p) −−−→

x→p
∇T (Sf − S0f)(p),

nontangentially, almost everywhere. Since now, from theorem 4.4 in [KS11] and an argu-

ment similar to proposition 8.2.1, ∇TS0
+f(x) converges to∇TS0f(p) nontangentially, almost

everywhere, we obtain

∇S+f(x) · T (p) −−−→
x→p

∇TSf(p),

nontangentially, almost everywhere, which completes the proof.

The convergence shown above leads to the following corollary, which will be useful in an

approximation argument later.

Corollary 8.4.2. Let Ω ∈ D, A ∈Mλ,µ(B) and b ∈ L∞(B). Then, for all f ∈ L2(∂Ω),

lim sup
j→∞

ˆ
∂Ωj

|∇TjS+f |2 dσj ≤ ‖∇TSf‖2L2(∂Ω)
,

where Ωj ↑ Ω is the approximation scheme in theorem 2.3.6 and ∇Tj denotes the tangential

gradient on ∂Ωj . The analogous inequality also holds for S−f , using the domains Ω′j ↓ Ω.

Proof. Recall the approximation scheme Ωj ↑ Ω, from theorem 2.3.6. From the same theo-

rem, we have that

Tj ◦ Λj → T,

where the Tj are locally defined tangent vectors, and convergence takes place in L2 and

almost everywhere. Using proposition 8.4.1, the dominated convergence theorem, and the
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fact that (∇S+f)∗ ∈ L2(∂Ω) from proposition 8.3.3, we obtain that

lim sup
j→∞

ˆ
∂Ω
|∇TjS+f ◦ Λj |2 dσ ≤

ˆ
∂Ω
|∇TSf |2 dσ.

Since τj → 1 from theorem 2.3.6, after changing variables we obtain that

lim sup
j→∞

ˆ
∂Ωj

|∇TjS+f |2 dσj ≤
ˆ
∂Ω
|∇TSf |2 dσ,

which completes the proof.

The next property we show is discontinuity of the normal derivative of the single layer

potential across the boundary of a domain Ω. In the calculations that follow, we will need

to assume that b is Lipschitz in Ω, therefore we will consider an extension of b in B using

lemma 2.2.3.

Lemma 8.4.3. Let Ω ∈ D, let A ∈ Mλ,µ(B), b ∈ Lip(B) and consider a Lipschitz function

F : B → R which vanishes on ∂B. Then, for x ∈ Ω,

ˆ
∂Ω

∂
q
νG

t(x, q) · F (q) dσ(q) = −
ˆ
B\Ω

A∇Gx∇F + b∇Gx · F,

while, for x ∈ B \ Ω,

ˆ
∂Ω

∂
q
νG

t(x, q) · F (q) dσ(q) =

ˆ
Ω
A∇Gx∇F + b∇Gx · F,

where ∂
q
ν denotes the conormal derivative with respect to q on ∂Ω, associated to L, and

Gx(·) = Gt(x, ·).

Proof. Suppose first that x ∈ Ω. Then, from proposition 5.1.3 and theorems 8.8 and 8.12 in
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[GT01], Gx(·) = G(·, x) and Gx is a classical solution of Lu = 0 in B \ Ω; that is,

div(A∇Gx) = b∇Gx,

almost everywhere in B, away from x, and Gx ∈ W 2,2(B \ Bε(x)), for all small ε > 0.

Therefore, since F ≡ 0 on ∂B, and from proposition 3.3.1 the derivative of Gx is continuous

away from x and the boundary of B,

ˆ
∂Ω

∂νGx · F dσ = −
ˆ
∂(B\Ω)

∂νGx · F dσ = −
ˆ
B\Ω

div(F · A∇Gx)

= −
ˆ
B\Ω

A∇Gx∇F + div(A∇Gx) · F = −
ˆ
B\Ω

A∇Gx∇F + b∇Gx · F,

because Gx is a classical solution of Lu = 0 B \Ω. Now, if x ∈ B \Ω, then Gx is a classical

solution of Lu = 0 in Ω, therefore

ˆ
∂Ω

∂νGx · F dσ =

ˆ
Ω

div(F · A∇Gx) =

ˆ
Ω
A∇Gx∇F + b∇Gx · F,

which concludes the proof.

Lemma 8.4.4. Let B be a ball, and let A ∈Mλ,µ(B), and b ∈ Lip(B). Then, for all p ∈ B,

lim
ε→0

ˆ
∂Bε(p)

∂
q
νG

t(p, q) dσBε(q) = −1,

where ∂ν is the conormal derivative associated with L.

Proof. Let ε > 0 such that Bε(p) ⊆ B, and consider the domain Uε = B \ Bε(p). Set also

Gp(·) = Gt(p, ·). As in the proof of lemma 8.4.3, Gp is a classical solution of the equation

div(A∇Gp) = b∇Gp
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away from p, therefore

ˆ
Uε

div(A∇Gp) =

ˆ
Uε
b∇Gp −−−→

ε→0

ˆ
B
b∇Gp,

since b∇Gp is integrable in B. We then integrate by parts, to obtain

ˆ
Uε

div(A∇Gp) =

ˆ
∂Uε

∂νGp dσUε =

ˆ
∂B

∂νGp dσB −
ˆ
∂Bε(p)

∂νGp dσBε(p),

therefore ˆ
∂Bε(p)

∂νGp dσBε(p) −−−→ε→0

ˆ
∂B

∂νGp dσB −
ˆ
B
b∇Gp. (8.11)

Let now φ ∈ C∞c (B) be a smooth cutoff which is equal to 1 in a small ball Bp that is centered

at p, and vanishes outside a ball B′p that contains Bp. Then ψ = 1−φ is identically 1 outside

B′p and identically 0 inside Bp, therefore the divergence theorem shows that

ˆ
∂B

∂νGp dσB =

ˆ
∂B

∂νGp · ψ dσB =

ˆ
∂B

〈
A∇Gp · ψ, ν

〉
dσB =

ˆ
B\Bp

div(A∇Gp · ψ)

=

ˆ
B\Bp

A∇Gp∇ψ + div(A∇Gp) · ψ =

ˆ
B\Bp

A∇Gp∇ψ + b∇Gp · ψ

=

ˆ
B
A∇Gp∇ψ + b∇Gp · ψ =

ˆ
B
A∇Gp∇(1− φ) + b∇Gp · (1− φ)

=

ˆ
B
b∇Gp −

ˆ
B
A∇Gp∇φ+ b∇Gp · φ =

ˆ
B
b∇Gp − φ(p)

=

ˆ
B
b∇Gp − 1,

where we also used that Gp is a classical solution of Lu = 0 away from p. We then plug this

into (8.11) to conclude the proof.

We now define, for a Lipschitz function f : ∂Ω→ R and p ∈ ∂Ω,

Kf(p) = lim
ε→0

ˆ
|p−q|>ε

∂
q
νG

t(p, q)F (q) dσ(q).
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The fact that this limit exists is shown in the next lemma.

Lemma 8.4.5. Let Ω ∈ D, let A ∈Mλ,µ(B), b ∈ Lip(B), and consider a Lipschitz function

F : B → R which vanishes on ∂B. Then, for almost all p ∈ ∂Ω,

Kf(p) =
1

2
F (p)−

ˆ
B\Ω

A∇Gp∇F + b∇Gp · F

= −1

2
F (p) +

ˆ
Ω
A∇Gp∇F + b∇Gp · F.

Proof. Let Vε = Ω ∪Bε(p). We also define

∂1
ε = Ωc ∩ ∂(Bε(p)), ∂

2
ε = Ω ∩ ∂(Bε(p)),

and we write

ˆ
∂Ω\∆ε(p)

∂νGp · F dσ =

ˆ
∂Vε

∂νGp · F dσ −
ˆ
∂1
ε

∂νGp · F dσ

=

ˆ
∂B

∂νGp · F dσ −
ˆ
∂(B\Vε)

∂νGp · F dσ −
ˆ
∂1
ε

∂νGp · F dσ

= 0− I1 − I2,

since F vanishes on ∂B.

We now treat I1. As in the proof of lemma 8.4.3, using the divergence theorem we

compute

I1 =

ˆ
∂(B\Vε)

∂νGp · F dσ =

ˆ
B\Vε

div(F · A∇Gp) =

ˆ
B\Vε

A∇Gp∇F + b∇Gp · F,

Then, since the terms A∇Gp∇F, b∇Gp are integrable in B \ Ω, we obtain that

I1 →
ˆ
B\Ω

A∇Gp∇F + b∇Gp · F.
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For I2, we write

I2 =

ˆ
∂1
ε

∂νGp · F dσ =

ˆ
∂1
ε

∂νGp · (F − F (p)) dσ + F (p)

ˆ
∂1
ε

∂νGp dσ = I3 + I4.

From Lipschitz continuity of F and the pointwise bounds on the gradient of G, we obtain

that

|I3| ≤ C

ˆ
∂1
ε

|p− p′|1−d|F (p′)− F (p)| dσ(p′) ≤ C ε2−d σd−1(∂Bε(p)) −−−→
ε→0

0.

For I4, for almost all p ∈ ∂Ω there exists a well defined tangent plane to ∂Ω at p. For those

p, the symmetric difference between ∂1
ε and ∂2

ε is contained in a strip

Aε(p) = {y ∈ Bε(p)
∣∣|y · ν(p)| ≤ C ε2},

(as in [Fol95, p. 125]), and if we combine with the pointwise bounds for the gradient of G,

we obtain that ˆ
∂1
ε

∂νGp −
ˆ
∂2
ε

∂νGp −−−→
ε→0

0.

Using lemma 8.4.4, we then obtain that

ˆ
∂1
ε

∂νGp dσ =
1

2

(ˆ
∂1
ε

∂νGp dσ +

ˆ
∂2
ε

∂νGp dσ

)
+

1

2

(ˆ
∂1
ε

∂νGp dσ −
ˆ
∂2
ε

∂νGp dσ

)

=
1

2

ˆ
Bε(p)

∂νGp dσ +
1

2

(ˆ
∂1
ε

∂νGp dσ −
ˆ
∂2
ε

∂νGp dσ

)
−−−→
ε→0

−1

2
,

therefore I2 → −1
2F (p). Therefore,

KF (p) = lim
ε→0

(−I1 − I2) = −I(p)

2
F (p)−

ˆ
B\Ω

A∇Gp∇F + b∇Gp · F.

164



For the second representation, using the first representation in this lemma, we write

F (p) =

ˆ
B
A∇Gp∇F + b∇Gp · F

=

ˆ
Ω
A∇Gp∇F + b∇Gp · F +

ˆ
B\Ω

A∇Gp∇F + b∇Gp · F

=

ˆ
Ω
A∇Gp∇F + b∇Gp · F +

1

2
F (p)−KF (p),

which concludes the proof after rearranging the terms.

We are now led to the following convergence lemma.

Lemma 8.4.6. Let Ω ∈ D, A ∈ Mλ,µ(B) and b ∈ Lip(B), and consider two Lipschitz

functions F,H : B → R with F,H ≡ 0 on ∂B. Then, for all j ∈ N,

ˆ
∂Ωj

∂νjS+F (pj) ·H(pj) dσj(pj) −−−−→
j→∞

ˆ
∂Ω

(
1

2
F (q)H(q) + F (q) · KH(q)

)
dσ(q),

and also

ˆ
∂Ω′j

∂ν′j
S−F (p′j) ·H(p′j) dσ

′
j(p
′
j) −−−−→

j→∞

ˆ
∂Ω

(
−1

2
F (q)H(q) + F (q) · KH(q)

)
dσ(q),

where Ωj ,Ω
′
j are defined in theorem 2.3.6 and the comments right after it, and νj , ν

′
j are

the unit outer normals on Ωj , Ω′j , respectively.

Proof. Let Ij be the first integral above. From the formula for ∂νjS+F (pj), we first have

that

Ij =

ˆ
∂Ωj

(ˆ
∂Ω

∂
pj
νjG(pj , q)F (q) dσ(q)

)
H(pj) dσj(pj).

Now, for j fixed, since |pj−q| is bounded below by some positive number, the integral above
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is absolutely convergent, so we can apply Fubini’s theorem to obtain that

Ij =

ˆ
∂Ω

(ˆ
∂Ωj

∂
pj
νjG(pj , q)H(pj) dσj(pj)

)
F (q) dσ(q),

where differentiation takes place with respect to the pj variable of G. We now apply the

second representation in lemma 8.4.3 for fixed j, for the domain Ωj and for G. Since q /∈ Ωj ,

we obtain that

Ij =

ˆ
∂Ω

(ˆ
Ωj

A∇Gq∇H + b∇Gq ·H

)
F (q) dσ(q),

where Gq = G(·, q). By letting j →∞, the dominated convergence theorem shows that

Ij −−−−→
j→∞

ˆ
∂Ω

(ˆ
Ω
A∇Gq∇H + b∇Gq ·H

)
F (q) dσ(q)

=

ˆ
∂Ω

1

2
FH dσ(q) +

ˆ
∂Ω

F (q)

(
−1

2
H(q) +

ˆ
Ω
A∇Gq∇H + b∇Gq ·H

)
dσ(q)

and, since q ∈ ∂Ω, the second equality in lemma 8.4.5 shows that

Ij →
ˆ
∂Ω

(
1

2
FH + F · KH

)
dσ(q).

Set now I ′j to be the second integral. As above, and since now q ∈ Ω′j , we obtain from the

first representation in lemma 8.4.3 that

I ′j = −
ˆ
∂Ω

(ˆ
B\Ω′j

A∇Gq∇H + b∇Gq ·H

)
F (q) dσ(q).
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We then apply the dominated convergence theorem to obtain

I ′j −−−−→
j→∞

−
ˆ
∂Ω

F (q)

(ˆ
B\Ω

A∇Gq∇H + b∇Gq ·H

)
dσ(q)

=

ˆ
∂Ω
−1

2
FH dσ +

ˆ
∂Ω

F (q)

(
1

2
H(q)−

ˆ
B\Ω

A∇Gq∇H + b∇Gq ·H

)
dσ(q)

=

ˆ
∂Ω

(
−1

2
FH + F · KH

)
dσ(q),

where we used the first equality in lemma 8.4.5.

As a consequence of the previous lemma, we obtain the next important relation.

Corollary 8.4.7 (Jump Relation). Let Ω ∈ D, A ∈Mλ,µ(B) and b ∈ Lip(B). Then

ˆ
∂Ωj

∂νjS+F (pj) ·H(pj) dσj(pj)−
ˆ
∂Ω′j

∂ν′j
S−F (p′j) ·H(p′j) dσ

′
j(p
′
j) −−−−→

j→∞

ˆ
∂Ω

FH dσ,

for all F,H : B → R which are Lipschitz continuous and vanish on ∂B, where νj , ν
′
j are the

unit outer normals on Ωj , Ω′j , respectively.

Proof. To obtain this convergence, we subtract the second line in lemma 8.4.6 from the

first.

8.5 Invertibility of the single layer potential

We will now turn our attention to the global Rellich estimates, which will lead to invertibility

of the single layer potential operator. Since we will apply the Rellich estimates, we will need

to assume that A is symmetric.

Lemma 8.5.1. Let Ω be a Lipschitz domain, A ∈ Ms
λ,µ(Ω) and b ∈ L∞(Ω). Suppose that

u is a W
1,2
loc (Ω) solution to the equation Lu = − div(A∇u) + b∇u = 0 with (∇u)∗ ∈ L2(∂Ω),
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and ∇Tu has non-tangential limits almost everywhere on ∂Ω. Then,

ˆ
Ω
|∇u|2 ≤ C

ˆ
∂Ω
|∇Tu|2 dσ,

where C is a good constant.

Proof. Consider the approximation scheme Ωj ↑ Ω that appears in theorem 2.3.6 and fix j.

After subtracting a constant cj , we obtain that the average of uj = u− cj over ∂Ωj is equal

to 0. Consider the operator

L0 = − div(A∇),

and let vj be a solution to L0vj = 0 in Ωj , with vj = uj on ∂Ωj , and set wj = uj − vj . We

then compute

− div(A∇wj) + b∇wj = − div(A∇uj) + div(A∇vj) + b∇u− b∇vj = −b∇vj ,

since uj solves the equation Lu = 0. Note that uj is continuously differentiable in the interior

of Ω (from proposition 3.3.1); hence vj ∈ W 1,2(Ωj) from proposition 6.1.2. Since vj = uj on

∂Ωj , we obtain that wj ∈ W
1,2
0 (Ωj), therefore proposition 5.2.5 shows that

‖∇wj‖L2(Ωj)
≤ C‖b∇vj‖L2(Ωj)

≤ C‖b‖∞‖∇vj‖L2(Ωj)
,

where C is a good constant, hence

‖∇u‖L2(Ωj)
= ‖∇uj‖L2(Ωj)

≤ C‖∇vj‖L2(Ωj)
+ C‖∇wj‖L2(Ωj)

≤ C‖∇vj‖L2(Ωj)
, (8.12)

where C is a good constant. Since now vj solves the equation L0vj = 0 in Ωj and vj = uj
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on ∂Ωj , we compute

λ

ˆ
Ωj

|∇vj |2 ≤
ˆ

Ωj

A∇vj∇vj =

ˆ
∂Ωj

∂νjvj · vj ≤
ˆ
∂Ωj

|uj |2 dσj +

ˆ
∂Ωj

|∂νjvj |
2 dσj .

Therefore, since uj has average 0 over ∂Ωj , using Poincare’s inequality on ∂Ωj and plugging

in (8.12) we obtain that

ˆ
Ωj

|∇u|2 ≤ C

ˆ
Ωj

|∇vj |2 ≤ C

ˆ
∂Ωj

|∇Tju|
2 dσj + C

ˆ
∂Ωj

|∂νjvj |
2 dσj , (8.13)

where C depends on λ and the Lipschitz character of Ωj .

To treat the last term, note that from [KS11], the Rellich property holds for the operator

− div(A∇) in Ωj with a good constant C, since A is symmetric. Therefore, if we consider

the homeomorphisms Λj : ∂Ω→ ∂Ωj that appear in theorem 2.3.6, we obtain that

ˆ
∂Ωj

|∂νjvj |
2 dσj ≤ C

ˆ
∂Ωj

|∇Tjvj |
2 dσj = C

ˆ
∂Ωj

|∇Tjuj |
2 dσj = C

ˆ
∂Ωj

|∇u · Tj |2 dσj

= C

ˆ
∂Ω
|∇u(Λj(q)) · Tj(Λj(q))|2τj(q) dσ(q),

since vj = uj on ∂Ωj , and we are considering the tangential derivatives on ∂Ωj . Recall now

that Λj(q) ∈ Γ(q) for large j, and for all q ∈ ∂Ω,

Λj(q) −−−−→
j→∞

q, Tj(Λj(q)) −−−−→
j→∞

T (q), τj(q) −−−−→
j→∞

1.

Since (∇u)∗ ∈ L2(∂Ω) and ∇u has nontangential limits almost everywhere, the dominated

convergence theorem shows that

ˆ
∂Ωj

|∇u(Λj(q)) · Tj(Λj(q))|2τj(q) dσ(q) −−−−→
j→∞

ˆ
∂Ω
|∇Tu|2 dσ, (8.14)
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which finally shows that

lim sup
j→∞

ˆ
∂Ωj

|∂νjvj |
2 dσj ≤ C

ˆ
∂Ω
|∇Tu|2 dσ.

Plugging in (8.13) and letting j →∞, we obtain that

ˆ
Ω
|∇u|2 ≤ lim sup

j→∞

ˆ
Ωj

|∇u|2 ≤ C lim sup
j→∞

ˆ
∂Ωj

|∇Tju|
2 dσj + C

ˆ
∂Ω
|∇Tu|2 dσ.

We then use (8.14) to complete the proof.

We are now in position to show the global Rellich estimate.

Proposition 8.5.2 (Global Rellich Estimate). Let Ω be a smooth domain, A ∈ Ms
λ,µ(Ω)

and b ∈ L∞(Ω). Suppose that u is a C1(Ω) solution of Lu = 0 in Ω. Then,

ˆ
∂Ω
|∂νu|2 dσ ≤ C

ˆ
∂Ω
|∇Tu|2 dσ,

where C is a good constant.

Proof. Fix q ∈ ∂Ω and set r0 = rΩ/2, where rΩ is defined in section 1.1. Note that the local

Rellich estimate (proposition 3.7.1) is applicable, from theorem 8.12 in [GT01]; that is,

ˆ
∆r0(q)

|∂νu|2 dσ ≤ C

ˆ
∆2r0

(q)
|∇Tu|2 dσ +

C

r0

ˆ
T2r0

(q)
|∇u|2.

We now integrate for q ∈ ∂Ω and we use Fubini’s theorem to obtain that

ˆ
∂Ω
|∂νu|2 dσ ≤ C

ˆ
∂Ω
|∇Tu|2 dσ +

C

r0

ˆ
Ω
|∇u|2

≤ C

ˆ
∂Ω
|∇Tu|2 dσ +

C

r0

ˆ
∂Ω
|∇Tu|2 dσ

≤ C

ˆ
∂Ω
|∇Tu|2 dσ,
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where we used lemma 8.5.1 in the last step.

The global Rellich estimate leads us to the next bound for the single layer potential

operator on the boundary of a Lipschitz domain.

Proposition 8.5.3. Suppose that Ω ∈ D, A ∈ Ms
λ,µ(B) and b ∈ Lip(B). Then, for every

f ∈ L2(∂Ω),

‖f‖L2(∂Ω) ≤ C‖∇TSf‖L2(∂Ω),

where C is a good constant.

Proof. Suppose first that f is Lipschitz, and consider a Lipschitz extension F : B → R of

f , which vanishes on ∂B. Set u+ = S+f , and u− = S−f , then the jump relation (corollary

8.4.7) with H = F shows that

ˆ
∂Ωj

∂νju+ · F dσj −
ˆ
∂Ω′j

∂ν′j
u− · F dσ′j −−−−→

j→∞

ˆ
∂Ω

F 2 dσ.

Since now F is continuous in Ω, the Cauchy-Schwartz inequality shows that

‖F‖2
L2(∂Ω)

≤ lim sup
j→∞

(
‖∂νju+‖L2(∂Ωj)

‖F‖L2(∂Ωj)
+ ‖∂ν′ju−‖L2(∂Ω′j)

‖F‖L2(∂Ω′j)

)
= ‖F‖L2(∂Ω) lim sup

j→∞

(
‖∂νju+‖L2(∂Ωj)

+ ‖∂ν′ju−‖L2(∂Ω′j)

)
,

therefore we obtain

‖F‖2
L2(∂Ω)

≤ 2 lim sup
j→∞

(
‖∂νju+‖2L2(∂Ωj)

+ ‖∂ν′ju−‖
2
L2(∂Ω′j)

)
. (8.15)

From proposition 8.3.3 and 3.3.1, u+ is a C1 solution in Ωj . Note also that, from the global

Rellich estimate (proposition 8.5.2), we obtain that

‖∂νju+‖2L2(∂Ωj)
≤ C‖∇Tu+‖2L2(∂Ωj)

,
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where Cj is a good constant for Ωj . We now apply corollary 8.4.2 to obtain that

lim sup
j→∞

‖∂νju+‖2L2(∂Ωj)
≤ C‖∇TSf‖2L2(∂Ω)

.

A similar process shows that

lim sup
j→∞

‖∂ν′ju−‖
2
L2(∂Ω′j)

≤ C‖∇TSf‖2L2(∂Ω)
.

Adding those inequalities and plugging in (8.15), we finally obtain that

‖f‖2
L2(∂Ω)

≤ 2C‖∇TSf‖2L2(∂Ω)
,

which shows the desired inequality for Lipschitz functions f : ∂Ω→ R.

To obtain the estimate for f ∈ L2(∂Ω), we use the fact that Lip(∂Ω) is dense in L2(∂Ω)

and S : L2(∂Ω)→ W 1,2(∂Ω) is continuous (from lemma 8.3.2) to conclude the proof.

We now pass to bounded drifts.

Proposition 8.5.4. Suppose that Ω ∈ D, A ∈ Ms
λ,µ(B) and b ∈ L∞(B). Then, for every

f ∈ L2(∂Ω),

‖f‖L2(∂Ω) ≤ C‖∇TSf‖L2(∂Ω),

where C is a good constant.

Proof. Let (bn) be a mollification of b, and let Sn be the single layer potential operator for

the equation

− div(A∇u) + bn∇u = 0

in Ω. Let also Gn be Green’s function for the same equation in B. Then, for any fixed n ∈ N
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and p ∈ ∂Ω,

|∇TSnf(p)−∇TSf(p)| ≤
ˆ
∂Ω
|∇pGn(p, q)−∇pG(p, q)||f(q)| dσ(q)

≤ C‖bn − b‖L2d(B)

ˆ
∂Ω
|p− q|3/2−d|f(q)| dσ(q),

from proposition 5.5.2. Since the kernel |p− q|3/2−d is integrable on ∂Ω and

‖bn − b‖L2d(B) −−−−→n→∞
0,

we obtain that

∇TSnf
L2(∂Ω)
−−−−−→
n→∞

∇TSf.

Since bn ∈ Lip(B), we apply proposition 8.5.3 to obtain that

‖f‖L2(∂Ω) ≤ C‖∇TSnf‖L2(∂Ω),

where C is a good constant. We then let n→∞ to conclude the proof.

The last proposition, together with the continuity method, show invertibility of the single

layer potential on the boundary for symmetric matrices A.

Theorem 8.5.5. Let Ω be a Lipschitz domain Ω, A ∈Ms
λ,µ(Ω) and b ∈ L∞(Ω). Then, the

operator S : L2(∂Ω)→ W 1,2(∂Ω) is invertible, with

‖S−1f‖L2(∂Ω) ≤ C‖∇T f‖L2(∂Ω),

and C being a good constant.

Proof. After a dilation and a translation, we can assume that Ω ∈ D.
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We will use the continuity method: consider the family of equations

Ltu = − div(A∇u) + tb∇u = 0,

for t ∈ [0, 1], and the family of operators St : L2(∂Ω)→ W 1,2(∂Ω), with

Stf(p) =

ˆ
∂Ω

Gt(p, q)f(q) dσ(q),

where Gt is Green’s function for the equation Ltu = 0 in a large ball containing Ω. We now

show that the map t 7→ St, is continuous in the W 1,2(∂Ω) norm, by showing that, for any

t1, t2 ∈ [0, 1] and any f ∈ L2(∂Ω),

‖St1f − St2f‖W 1,2(∂Ω) ≤ C|t1 − t2|‖f‖L2(∂Ω).

For this purpose, we first use the estimate in proposition 5.5.2, to obtain that, for p ∈ ∂Ω,

|St1f(p)− St2f(p)| =
∣∣∣∣ˆ
∂Ω

(Gt1(p, q)−Gt2(p, q))f(q) dσ(q)

∣∣∣∣
≤ C|t1 − t2|

ˆ
∂Ω
|p− q|

5
2−d|f(q)| dσ(q)

≤ C|t1 − t2|
(ˆ

∂Ω
|p− q|

5
2−d|f(q)|2 dσ(q)

)1
2
(ˆ

∂Ω
|p− q|

5
2−d dσ(q)

)1
2

≤ C|t1 − t2|
(ˆ

∂Ω
|p− q|

5
2−d|f(q)|2 dσ(q)

)1/2

,

since |p − q|5/2−d is integrable on ∂Ω. So, after squaring and integrating for p ∈ ∂Ω, we

obtain that

‖St1f − St2f‖L2(∂Ω) ≤ C|t1 − t2|‖f‖L2(∂Ω).

For the tangential gradient of the difference St1f − St2f , we apply the second estimate in
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proposition 5.5.2 and a procedure similar to above, to obtain that

|∇TSt1f(p)−∇TSt2f(p)| ≤ C|t1 − t2|
(ˆ

∂Ω
|p− q|3/2−d|f(q)|2 dσ(q)

)1/2

,

which shows continuity of t 7→ St. Note now that the operator S0 in invertible, from remark

6.9 in [KS11]. The continuity method now shows that S : L2(∂Ω)→ W 1,2(∂Ω) is invertible.

We then use the estimate in proposition 8.5.4 to bound the norm of the inverse, which

completes the proof.

We are now led to solvability of the R2 Regularity problem in Lipschitz domains.

Theorem 8.5.6. Let Ω be a Lipschitz domain, A ∈ Ms
λ,µ(Ω), and b ∈ L∞(Ω). Then the

Regularity problem R2 is uniquely solvable in Ω, with constants depending on d, λ, µ, ‖b‖∞,

the Lipschitz character of Ω and the diameter of Ω. Moreover, the solution admits the

representation

u(x) = S+(S−1f)(x) =

ˆ
∂Ω

G(x, q)S−1f(q) dσ(q).

Proof. Let f ∈ W 1,2(Ω). From theorem 8.5.5, the operator S : L2(∂Ω) → W 1,2(∂Ω) is

invertible, therefore we can consider the function g = S−1f ∈ L2(∂Ω). Set also u =

S+(S−1f). From proposition 8.3.3, u solves the Dirichlet problem in Ω, with data S(S−1f) =

f . Moreover, from the same proposition,

‖(∇u)∗‖L2(Ω) = ‖(∇S+(S−1f))∗‖L2(Ω) ≤ C‖S−1f‖L2(Ω) ≤ C‖f‖W 1,2(Ω),

where C is a good constant, from theorem 8.5.5. This shows that S+(S−1f) solves the

Regularity problem with data f on ∂Ω. Uniqueness now follows from proposition 8.1.3.

We will be able to drop the symmetry assumption on A later, in theorem 11.0.3.
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CHAPTER 9

THE DIRICHLET PROBLEM FOR Lt

This chapter will focus on solvability of the Dirichlet problem for the equation Ltu = 0. We

will rely on the results of the previous chapter, and we will use the adjoint of the single layer

potential operator in order to establish existence.

9.1 Uniqueness

In order to show uniqueness, we will need a nontangential maximal bound on the derivatives

of Green’s function. To show this, we first show the next lemma.

Lemma 9.1.1. Let Ω be a Lipschitz domain, A ∈ Mλ(Ω) and b ∈ L∞(Ω). Let also y ∈ Ω,

and q ∈ ∂Ω, r > 0 fixed, such that y /∈ T5r(q). If Gy denotes Green’s function for L in Ω

with pole at y from theorem 5.2.4, then Gy ∈ W 1,2(T2r(q)).

Proof. We will assume that b is Lipschitz; the case of bounded b can be shown by using a

mollification argument.

Consider the functions Gn that are constructed in lemma 5.1.2, and consider n ∈ N large,

such that Gn is a solution of the equation LGn = 0 in T4r(q). Since Gn ∈ W 1,2(T4r(q)),

proposition 3.6.3 shows that Gn is continuous in W 1,2(T4r(q)).

Note now that, from Carleson’s estimate (lemma 6.3.2)

Gn(x) ≤ CGn(A4r(q))

for all x ∈ T4r(q). But, (v) in lemma 5.1.2 shows that (Gn) is equicontinuous in a small

neighborhood of A4r(q), therefore there exists C > 0 such that, for a subsequence,

Gkn(A4r(q)) ≤ C
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for all n ∈ N. This shows that Gkn is uniformly bounded in T4r(q), hence, Cacciopoli’s

estimate in T4r(q) (lemma 3.1.1) shows that (Gkn) is uniformly bounded in W 1,2(T2r(q)),

therefore a subsequence converges to some g ∈ W 1,2(T2r(q)) almost everywhere in T2r(q).

But, again from (v) in lemma 5.1.2, there exists a subsequence of Gkn that converges to Gy

in every compact subset of Ω\B0. Hence Gy ∈ W 1,2(T2r(q)), which completes the proof.

Lemma 9.1.2. Let Ω be a Lipschitz domain, A ∈Ms
λ,µ(Ω), and b ∈ L∞(Ω). Let also y ∈ Ω,

and Gy be Green’s function for the equation Lu = 0 in Ω, centered at y. Let also B0 ⊆ Ω be

a ball which is compactly supported in Ω and is centered at y. Then, for ε > 0 sufficiently

small, ˆ
∂Ω

∣∣(∇Gy)∗ε
∣∣2 dσ <∞,

where (∇Gy)∗ε is the nontangential maximal function in Ω \ B0, and where the supremum

in the nontangential maximal function is taken ε-close to the boundary.

Proof. From theorem 5.2.4, Gy is a W
1, d

2(d−1)

0 (Ω \ B0/2) solution of the equation Lu = 0

in Ω \ B0/2, were B0/2 is the half ball of B0. Therefore, corollary 3.3.3 shows that Gy is

continuously differentiable close to the boundary of B0.

Consider now the solution u to the Regularity problem R2 for L in Ω\B0, with u|∂Ω ≡ 0

and u|∂B0
= Gy, which exists from theorem 8.5.6. Note also that u ∈ W 1,2(Ω\B0), and also

Gy ∈ W 1,2(Ω \ B0), which follows from lemma 9.1.1 and the fact that Gy is continuously

differentiable in the interior of Ω \ {y}. Therefore, u − Gy is a W
1,2
0 (Ω \ B0) solution to

Lu = 0, hence u ≡ Gy in Ω \ B0. But, for ε > 0 sufficiently small, since u solves the

Regularity problem, ˆ
∂Ω
|(∇u)∗ε|2 dσ <∞,

which completes the proof.

The next proposition shows uniqueness for the Dirichlet problem for the equation Ltu = 0.

177



Proposition 9.1.3. Let Ω be a Lipschitz domain, A ∈ Mλ,µ(Ω), and b ∈ L∞(Ω). Suppose

that u : Ω → R is a weak solution to the equation Ltu = 0 in Ω, with u∗ ∈ L2(∂Ω) and

u→ 0 non-tangentially, almost everywhere on ∂Ω. Then u ≡ 0.

Proof. The proof is similar to the argument in proposition 7.3.4. Fix y in Ω, write Gy(x) for

G(x, y), and for ε > 0 recall the definitions of Ωε, Rε and φε from proposition 7.3.4. Then

we obtain that, for ε small,

u(y) = u(y)φε(y) =

ˆ
Ω
A∇Gy∇(uφε) + b∇Gy · uφε,

which implies that

u(y) =

ˆ
Rε
A∇Gy∇φε · u−

ˆ
Rε
A∇φε∇u ·Gy − b∇φε ·Gyu = I1 + I2 + I3.

since u is a solution of Ltu = 0 in Ω, and from the support properties of φε.

Recall now the definitions of Zi, Pj , Qj and ψ from theorem 7.3.4. We then write

|I1| ≤
C

ε

∑
j

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇Gy(x0, s)||u(x0, s)| dsdx0.

Then, note that for each one of the summands, if x0 ∈ Qj and s ∈ (ψ(x0)+c1 ε, ψ(x0)+c2 ε),

then (x0, s) ∈ Γ(q) for all q ∈ Pj . Therefore,

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇Gy(x0, s)||u(x0, s)| dsdx0 ≤ C εd(∇Gy)∗(q)u∗ε(q),

and, after integrating on Pj , we obtain that

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇Gy(x0, s)||u(x0, s)| dsdx0 ≤ C ε

ˆ
Pj

(∇Gy)∗εu
∗
ε dσ.
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Therefore, the sum above is bounded by

C

ε

∑
j

C ε

ˆ
Pj

(∇Gy)∗u∗ε dσ = C

ˆ
Ui∩∂Ω

(∇Gy)∗εu
∗
ε dσ.

For ε sufficiently small, the term

ˆ
∂Ω

∣∣(∇Gy)∗ε
∣∣2 dσ

is uniformly bounded, from lemma 9.1.2. Therefore, the Cauchy-Schwartz inequality and the

dominated convergence theorem show that the last term goes to 0 as ε→ 0. Hence, adding

those integrals for i = 1, . . . N , we obtain that I1 → 0.

For I2, we first estimate

ˆ
Zi∩Rε

|A∇φε∇u ·Gy| ≤
C

ε

∑
j

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇u(x0, s)||Gy(x0, s)| dsdx0.

For each one of the summands, we apply the Cauchy-Schwartz inequality. For the term with

the gradient of u, we apply the Cacciopoli inequality, to obtain

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇u(x0, s)|2 dx0ds ≤

C

ε2

ˆ
2Qj

ˆ ψ(x0)+c3 ε

ψ(x0)+c0 ε
|u(x0, s)|2 dx0ds

≤ C

ε2

ˆ
2Qj

ˆ ψ(x0)+c3 ε

ψ(x0)+c0 ε
|u∗ε(q)|2 dx0ds = C εd−2 |u∗ε(q)|2,

for each q ∈ Pj . Moreover, for every q ∈ Pj ,

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|Gy(x0, s)|2 dx0ds ≤ C εd |(Gy)∗ε|2(q) ≤ C εd+2

∣∣(∇Gy)∗ε(q)
∣∣2 ,
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where we also used proposition 8.1.2. Therefore the Cauchy-Schwartz inequality shows that

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇u(x0, s)||Gy(x0, s)| dsdx0 ≤ C εd u∗ε(q)(∇Gy)∗ε(q),

for all q ∈ Pj , and after integrating on Pj , we obtain that

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε
|∇u(x0, s)||Gy(x0, s)| dsdx0 ≤ C ε

ˆ
Pj

u∗ε(∇Gy)∗ε dσ.

Returning to I2, we estimate

ˆ
Zi∩Rε

|A∇u∇φ ·Gy| ≤
C

ε

∑
j

C ε

ˆ
Pj

u∗ε(∇Gy)∗ε dσ =

ˆ
Ui∩Zi

u∗ε(∇Gy)∗ε dσ,

and the last term goes to 0 as ε → 0, with an argument similar to the case of I1. Adding

for i = 1, · · ·N shows that I2 → 0 as well.

Finally, for I3, we write

ˆ
Zi∩Rε

|b∇φε ·Gyu| ≤
C

ε

∑
j

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε

∣∣Gy(x0, s)u(x0, s)
∣∣ dx0ds,

and for each one of the summands, for all q ∈ Pj ,

ˆ
Qj

ˆ ψ(x0)+c2 ε

ψ(x0)+c1 ε

∣∣Gy(x0, s)u(x0, s)
∣∣ dx0ds ≤ εd−1(Gy)∗ε(q)u

∗
ε(q).

Therefore, after integrating over Pj and summing for j, we obtain that

ˆ
Zi∩Rε

|b∇φ ·Gyu| ≤ C
∑
j

ˆ
Pj

(Gy)∗εu
∗
ε dσ ≤ C ε

ˆ
Ui∩Zi

u∗ε(∇Gy)∗ε dσ,

and the last term goes to 0 as ε→ 0. This finishes the proof.
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9.2 Singular integrals

We will now turn our attention to integral operators that will be central to establishing

existence for the Dirichlet problem for Lt. The setting will be as in the case of the Regularity

problem for L: we will assume that Ω is a subset of a ball B, and we will extend the

coefficients A and b in Ω. We will also set Gt(y, x) to be Green’s function for the operator

Ltu = − div(A∇u)− div(bu) in B.

Note that, from proposition 5.1.3, Gt(y, x) = G(x, y), where G is Green’s function for

the operator Lu = − div(A∇u) + b∇u in B.

The first operator we will consider is the maximal truncation operator

T ∗f(p) = sup
δ>0

∣∣∣∣∣
ˆ
|p−q|>δ

∇qTG(q, p) · f(q) dσ(q)

∣∣∣∣∣ ,
for f ∈ L2(∂Ω) and p ∈ ∂Ω. An important property of T ∗ is the fact that it is bounded

from L2 to L2, as the next proposition shows.

Proposition 9.2.1. Let Ω be a Lipschitz domain, A ∈ Mλ,µ(Ω) and b ∈ L∞(Ω). Then

the operator T ∗ is bounded from L2(∂Ω) to L2(∂Ω), and its norm is bounded by a good

constant.

Proof. We will mimic the proof of proposition 8.2.1.

Without loss of generality, we will assume that 0 ∈ Ω and diam(Ω) < 1/40. Then

B ⊆ B1/4(0). Let now G0 be Green’s function for the equation − div(At∇u) = 0 in B.

Consider also the periodic extension Ap of A in Rd, as in lemma 2.2.2, and set Γ(x, y) to be

the fundamental solution of the equation − div(At∇u) = 0 in

T̃ ∗f(p) = sup
δ>0

∣∣∣∣∣
ˆ
|p−q|>δ

∇qΓ(q, p) · f(q) dσ(q)

∣∣∣∣∣
is bounded from L2(∂Ω) to itself, with the bound being a good constant.
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We now write

∇qTG(q, p) =
(
∇qTG(q, p)−∇qTG0(q, p)

)
+
(
∇qTG0(q, p)−∇qTΓ(q, p)

)
+∇qTΓ(q, p)

= k1(q, p) + k2(q, p) +∇qTΓ(q, p).

After fixing δ > 0, multiplying with f and integrating, we estimate

ˆ
|p−q|>δ

|k1(q, p)f(q)| dσ(q) ≤ C

ˆ
|p−q|>δ

|p− q|3/2−d|f(q)| dσ(q), (9.1)

from proposition 5.5.2. For k2, we fix p ∈ ∂Ω and we set

u(x) = G0(x, p)− Γ(x, p),

for x ∈ B. Then, the regularity properties of Green’s function show that u ∈ W 1, d
2(d−1) (B),

and for every φ ∈ C∞c (B),

ˆ
B
At∇u(x)∇φ(x) dx =

ˆ
B
At∇xG0(x, p)∇φ(x) dx−

ˆ
B
At∇xΓ(x, p)∇φ(x) dx

= φ(p)− φ(p) = 0,

since G0 is Green’s function for − div(Atu) = 0 in B, and Γ(x, y) is the fundamental solution

of the equation − div(At∇u) = 0 in Rd. This shows that u is a W
1, d

2(d−1) (B) solution to

− div(A∇u) = 0 in B, therefore lemma 3.2.1 shows that u is a W 1,2(B/2) solution to

− div(A∇u) = 0 in B/2. Hence, estimate 2.2 in [KS11] shows that the function

∇u(x) = ∇xG0(x, p)−∇xΓ(x, p)
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is bounded in B/4, hence k2 is bounded, with the bound being a good constant. Therefore

ˆ
|p−q|>δ

|k2(q, p)f(q)| dσ(q) ≤ C

ˆ
|p−q|>δ

|f(q)| dσ(q)

for a good constant C.

We now add the last estimate with (9.1) and we use the definition of T̃ ∗, to obtain that,

for any δ > 0,

∣∣∣∣∣
ˆ
|p−q|>δ

∇qTG(q, p) · f(q) dσ(q)

∣∣∣∣∣ ≤ C

ˆ
|p−q|>δ

(
|p− q|3/2−d + 1

)
|f(q)| dσ(q) + T̃ ∗f(p),

hence

T ∗f(p) ≤ C

ˆ
|p−q|>δ

(
|p− q|3/2−d + 1

)
|f(q)| dσ(q) + T̃ ∗f(p).

The fact that the kernel |p− q|3/2−d + 1 is integrable on ∂Ω, together with boundedness of

T̃ ∗. complete the proof.

The second operator we will be interested in will be the operator

Th(p) = lim
ε→0

ˆ
|p−q|>ε

∇pTG(p, q) · ∇Th(q) dσ(q), (9.2)

for h ∈ W 1,2(∂Ω).

Proposition 9.2.2. Let Ω be a Lipschitz domain. Then the limit in the definition of T in

(9.2) exists in L2(∂Ω) and almost everywhere, hence Th ∈ L2(∂Ω).

Proof. Since∇Th ∈ L2(∂Ω) for h ∈ W 1,2(∂Ω), the proof is similar to the proof of proposition

8.2.2 using theorem 3.1 in [KS11] and boundedness of the operator T 2
A that appears there.
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9.3 Existence

In order to show existence for the Dirichlet problem for the equation Ltu = 0, we will consider

the adjoint of the single layer potential for the equation Lu = 0. Our first observation is

that, from theorem 8.5.5, we obtain the following proposition.

Proposition 9.3.1. Let Ω be a Lipschitz domain, A ∈Ms
λ,µ(Ω) and b ∈ L∞(Ω). Set

S∗ : W−1,2(∂Ω)→ L2(∂Ω)

to be the adjoint operator to S : L2(∂Ω) → W 1,2(∂Ω), from theorem 8.5.5. Then this

operator is invertible, and its norm is bounded by a good constant.

Note that, at this point, we need to assume that A is symmetric: recall that we have

proved theorem 8.5.5 using the Rellich estimates, which in turn we have showed assuming

that A is symmetric.

We turn to finding the formula for the adjoint: for this purpose, let f ∈ L2(∂Ω) and

H ∈ W−1,2(Ω). Then, lemma 2.4.7 shows that there exists a unique h ∈ W 1,2(∂Ω), such

that H = R2h: that is,

〈Sf,H〉W 1,2(∂Ω) =

ˆ
∂Ω
Sf · h dσ +

ˆ
∂Ω
∇TSf · ∇Th dσ.

For the first integral, we compute

ˆ
∂Ω
Sf · h dσ =

ˆ
∂Ω

(ˆ
∂Ω

G(p, q)f(q) dσ(q)

)
· h(p) dσ(p)

=

ˆ
∂Ω

(ˆ
∂Ω

G(p, q)h(p) dσ(p)

)
· f(q) dσ(q),

from Fubini’s theorem, since the double integral converges absolutely from the pointwise

bounds for G. For the second integral, proposition 9.2.1 shows that the dominated conver-
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gence theorem is applicable, hence

ˆ
∂Ω
∇TSf · ∇T g dσ =

ˆ
∂Ω

(
lim
ε→0

ˆ
|p−q|>ε

∇pTG(p, q)f(q) dσ(q)

)
· ∇Th(p) dσ(p)

= lim
ε→0

ˆ
∂Ω

(ˆ
|p−q|>ε

∇pTG(p, q)f(q) dσ(q)

)
· ∇Th(p) dσ(p)

= lim
ε→0

ˆ
∂Ω

(ˆ
|p−q|>ε

∇pTG(p, q) · ∇Th(p) dσ(p)

)
· f(q) dσ(q)

=

ˆ
∂Ω

(
lim
ε→0

ˆ
|p−q|>ε

∇pTG(p, q) · ∇Th(p) dσ(p)

)
· f(q) dσ(q),

where we used Fubini’s theorem for the third equality, since for fixed ε the inner integral is

absolutely convergent, and the dominated convergence theorem for the last equality. There-

fore, we finally obtain that

S∗H(q) =

ˆ
∂Ω

G(p, q)h(p) dσ(p) + lim
ε→0

ˆ
|p−q|>ε

∇pTG(p, q) · ∇Th(p) dσ(p),

therefore using proposition 5.1.3, we are led to the following lemma.

Lemma 9.3.2. Let Ω be a Lipschitz domain, A ∈ Ms
λ,µ(Ω) and b ∈ L∞(Ω). Then, for any

H ∈ W−1,2(∂Ω) with H = R2h in the sense of lemma 2.4.7,

S∗H(p) =

ˆ
∂Ω

Gt(p, q)h(q) dσ(q) + lim
ε→0

ˆ
|p−q|>ε

∇qTG
t(p, q) · ∇Th(q) dσ(q).

We will also need to compute the formula for S∗H when H is of the special form H = E2h

for h ∈ L2(∂Ω), where E2 : L2(∂Ω)→ W−1,2(∂Ω) is the embedding that appears right before

lemma 2.4.8.

Lemma 9.3.3. Let Ω be a Lipschitz domain, A ∈ Ms
λ,µ(Ω) and b ∈ L∞(Ω). Then, if
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H ∈ W−1,2(∂Ω) is of the form H = E2h for some h ∈ L2(∂Ω),

S∗H(p) =

ˆ
∂Ω

Gt(p, q)h(q) dσ(q).

Proof. Let f ∈ L2(∂Ω). The definition of E2 shows that

〈Sf, E2h〉W 1,2(∂Ω) =

ˆ
∂Ω
Sf · h dσ =

ˆ
∂Ω

ˆ
∂Ω

G(p, q)f(q)h(p) dσ(q)dσ(p)

=

ˆ
∂Ω

(ˆ
∂Ω

G(p, q)h(p) dσ(p)

)
f(q)dσ(q)

=

〈ˆ
∂Ω

Gt(·, p)h(p) dσ(p), f

〉
L2(∂Ω)

,

from Fubini’s theorem, since the kernel G(p, q) is integrable on ∂Ω. This completes the

proof.

We will now extend the operator S∗ inside Ω. In order to do this, note that for any fixed

x ∈ Ω, the function

y 7→ Gt(x, y) = Gx(y)

solves the equation Lu = 0 away from x, therefore it is continuously differentiable near

∂Ω from proposition 3.3.1. Hence, restricted on ∂Ω, Gx ∈ W 1,2(∂Ω). Therefore, for F ∈

W−1,2(∂Ω), we can define

S∗+F (x) = F (Gx).

We are then led to the following expressions.

Lemma 9.3.4. Let Ω be a Lipschitz domain, A ∈ Ms
λ,µ(Ω) and b ∈ L∞(Ω). If H ∈

W−1,2(∂Ω) can be represented as H = R2h for h ∈ W 1,2(∂Ω), in the sense of lemma 2.4.7,

then

S∗+H(x) =

ˆ
∂Ω

(
Gt(x, q)h(q) +∇qTG

t(x, q) · ∇Th(q)
)
dσ(q).
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In the special case where H = E2f for some f ∈ L2(∂Ω), then

S∗+H(x) =

ˆ
∂Ω

Gt(x, q)f(q) dσ(q).

Proof. The first representation follows from the definition of S∗+ and a proof analogous to

the proof of lemma 9.3.2. The second representation follows from an analogue of the proof

of lemma 9.3.3.

The basic properties of the operator S∗+ are now demonstrated in the next proposition.

Proposition 9.3.5. Let Ω be a Lipschitz domain, A ∈ Ms
λ,µ(Ω), b ∈ L∞(Ω). For every

F ∈ W−1,2(∂Ω), u = S∗+F is a W
1,2
loc (Ω) solution of the equation Ltu = 0 in Ω. Moreover, u

converges to S∗F on ∂Ω, nontangentially, almost everywhere, and also

‖u∗‖L2(∂Ω) ≤ C‖F‖W−1,2(∂Ω),

where C is a good constant.

Proof. We mimic the proof of theorem 8.3.3. The proof that u ∈ W 1,2
loc (Ω) and that u solves

Ltu = 0 in Ω is identical, after noting that the functions

x 7→ Gt(x, q), x 7→ ∇qGt(x, q) · T (q)

are solutions of Ltu = 0 in Ω away from q, for any q ∈ ∂Ω, from lemma 5.4.1, and where

T (q) is any tangential vector to q at ∂Ω.

To show the bound on the non-tangential maximal function, we write F = R2f for some

f ∈ W 1,2(∂Ω), in the sense of lemma 2.4.7. Let p ∈ ∂Ω and x ∈ Γ(p). Set r = |x− p|. We

then write, using lemma 9.3.4,

u(x) =

ˆ
∂Ω

Gt(x, q)f(q) dσ(q) +

ˆ
∂Ω
∇qTG

t(x, q) · ∇T f(q) dσ(q) = I1 + I2.
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To bound I1, note that x ∈ Γ(p), therefore |x− q| ≥ C|p− q|. Hence, the pointwise bounds

on G show that

|I1| ≤
ˆ
∂Ω
|Gt(x, q)f(q)| dσ(q) ≤ C

ˆ
∂Ω
|x−q|2−d|f(q)| dσ(q) ≤ C

ˆ
∂Ω
|p−q|2−d|f(q)| dσ(q).

To bound I2 we set r = |x− p|, and we write

|I2| ≤
ˆ
|p−q|≤r

∣∣∇qTG(q, x) · ∇T f(q)
∣∣ dσ(q) +

∣∣∣∣∣
ˆ
|p−q|>r

∇qTG(q, x) · ∇T f(q) dσ(q)

∣∣∣∣∣
= I3 + |I4|.

For I3, note that |x − q| ≥ C|x − p| = Cr for any q ∈ ∂Ω, hence the pointwise bounds on

∇G show that

I3 ≤ C

ˆ
|p−q|≤r

|x− q|1−d |∇T f(q)| dσ(q) ≤ C

rd−1

ˆ
∆cr(p)

|∇T f(q)| dσ(q) ≤ CM(∇T f)(p),

where M is the Hardy-Littlewood maximal operator on ∂Ω.

For I4, we use Hölder continuity of the derivative of Green’s function in the adjoint

variable from proposition 5.4.2, and the definition of the maximal truncation operator, and

we estimate

|I4| ≤

∣∣∣∣∣
ˆ
|p−q|>r

(
∇qTG(q, p) + (∇qTG(q, x)−∇qTG(q, p))

)
· ∇T f(q) dσ(q)

∣∣∣∣∣
≤ T ∗(∇T f)(p) +

ˆ
|p−q|>r

∣∣∇qTG(q, x)−∇qTG(q, p)
∣∣ |∇T f(q)| dσ(q)

≤ T ∗(∇T f)(p) + C|x− p|α
ˆ
|p−q|>r

(
|x− q|1−d−α + |p− q|1−d−α

)
|∇T f(q)| dσ(q)

≤ T ∗(∇T f)(p) + C|x− p|α
ˆ
|p−q|>r

|p− q|1−d−α|∇T f(q)| dσ(q)

= T ∗(∇T f)(p) + CrαI5,
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since |x− q| ≥ C|p− q|. Finally, to bound I5, we write

I5 ≤
∞∑
k=0

ˆ
2kr<|p−q|≤2k+1r

|p− q|1−d−α|∇T f(q)| dσ(q)

≤
∞∑
k=0

ˆ
2kr<|p−q|≤2k+1r

(
2kr
)1−d−α

|∇T f(q)| dσ(q)

≤ C

∞∑
k=0

(
2kr
)1−d−α (

2k+1r
)d−1

 
|p−q|≤2k+1r

|∇T f(q)| dσ(q)

≤ C

∞∑
k=0

2−kα2d−1r−αM(∇T f)(p) =
C · 2d−1

1− 2−α
r−αM(∇T f)(p)

≤ Cr−αM(∇T f)(p),

since −α < 0, which implies that the series converges; moreover, C is a good constant.

Combining the bounds for Ii, i = 1, . . . 5, we finally obtain that

|u(x)| ≤ C

ˆ
∂Ω
|p− q|2−d|f(q)| dσ(q) + CM(∇T f)(p) + T ∗(∇T f)(p),

for any x ∈ Γ(p), hence

u∗(p) ≤ C

ˆ
∂Ω
|p− q|2−d|f(q)| dσ(q) + CM(∇T f)(p) + T ∗(∇T f)(p).

Since now the kernel |p − q|2−d is integrable on ∂Ω, M is bounded from L2(∂Ω) to itself,

and applying proposition 9.2.1, we obtain the estimate

‖u∗‖L2(∂Ω) ≤ C‖f‖L2(∂Ω) + C‖∇T f‖L2(∂Ω) ≤ C‖F‖W−1,2(∂Ω),

which completes the estimate on the non-tangential maximal fuction.

Finally, we turn to non-tangential, almost everywhere convergence on the boundary. We

claim that, from the bound on the nontangential maximal function we have just shown, it
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is enough to show that

S∗+F (x) −−−→
x→p

S∗F (p), (9.3)

nontangentially, almost everywhere, for F ∈ V , where V is a dense subset of W−1,2(∂Ω).

Suppose that this is the case; then let F ∈ W−1,2(∂Ω) and set u(x) = S∗+F (x). Consider

also Fn ∈ V such that Fn → F in W−1,2(∂Ω), and set un(x) = S∗+Fn(x). Set also An to be

the set of p ∈ ∂Ω such that

un(x) −−−→
x→p

S∗Fn(p),

and A =
⋃
nAn; then An has full measure on ∂Ω, hence A has full measure on ∂Ω as well.

Fix now n ∈ N and p ∈ A. Then, since

un(x) −−−→
x→p

S∗Fn(p)

for x ∈ Γ(p), we compute

lim sup
x→p

u(x)− S∗F (p) ≤ lim sup
x→p

(u(x)− un(x)) + lim sup
x→p

un(x)− S∗F (p)

= lim sup
x→p

(u(x)− un(x)) + S∗Fn(p)− S∗F (p)

≤ sup
x∈Γ(p)

|u(x)− un(x)|+ S∗(Fn − F )(p)

≤ (u− un)∗(p) + S∗(Fn − F )(p),

for every n ∈ N. Hence, for any ε > 0,

{
p ∈ A

∣∣∣ lim sup
x→p

u(x)− S∗F (p) > ε

}
⊆
{
p ∈ A

∣∣∣(u− un)∗(p) + S∗(Fn − F )(p) > ε
}
,
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hence Chebyshev’s inequality shows that

σ

({
p ∈ A

∣∣∣ lim sup
x→p

u(x)− S∗F (p) > ε

})
≤ 1

ε

ˆ
∂Ω

((u− un)∗ + S∗(Fn − F )) dσ

≤ C

ε

(
‖(u− un)∗‖L2(∂Ω) + ‖S∗(Fn − F )‖L2(∂Ω)

)
,

for any n ∈ N. But, from the choice of the Fn and boundedness of S∗,

‖S∗(Fn − F )‖L2(∂Ω) −−−−→n→∞
0,

and also, from the bound on the nontangential maximal function shown above, we obtain

‖(u− un)∗‖L2(∂Ω) = ‖(S∗+(Fn − F ))∗‖L2(∂Ω) ≤ C‖Fn − F‖W−1,2(∂Ω) −−−−→n→∞
0.

This shows that, for any ε > 0,

σ

({
p ∈ A

∣∣∣ lim sup
x→p

u(x)− S∗F (p) > ε

})
= 0,

hence

lim sup
x→p

u(x) ≤ S∗F (p)

for almost every p ∈ A. A similar process shows that

lim inf
x→p

u(x) ≥ S∗F (p)

for almost every p ∈ A, therefore u converges to S∗F nontangentially, almost everywhere.

To conclude the proof, it remains to show that (9.3) holds for F in a dense subset V

of W−1,2(∂Ω). This subset will be the set E2(L2(∂Ω)), which is dense in W−1,2(∂Ω) from

lemma 2.4.9, and where E2 : L2(∂Ω)→ W−1,2(∂Ω) is the canonical embedding. We now let
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f ∈ L2(∂Ω), and we note that, from lemma 9.3.4,

S∗+(E2f)(x) =

ˆ
∂Ω

G(q, x)f(q) dσ(q),

and, from lemma 9.3.3,

S∗(E2f)(p) =

ˆ
∂Ω

G(q, p)f(q) dσ(q).

In order now to show that

ˆ
∂Ω

G(q, x)f(q) dσ(q) −−−→
x→p

ˆ
∂Ω

G(q, p)f(q) dσ(q)

nontangentially, almost everywhere, we follow the proof of the analogous result in proposition

8.3.3: instead of Lipschitz continuity of Green’s function from proposition 5.3.3, we use

Hölder continuity of Green’s function in the adjoint variable, which holds from proposition

3.6.2, since Gt solves the adjoint equation away from the pole. This completes the proof.

We can now show existence for D2, for the equation Ltu = 0, when A is symmetric.

Proposition 9.3.6. Let Ω be a Lipschitz domain, A ∈ Ms
λ,µ(Ω) and b ∈ L∞(Ω). Then

the Dirichlet problem D2 for the equation Ltu = 0 is uniquely solvable in Ω, with constants

depending only on d, λ, µ, ‖b‖∞ and the Lipschitz character of Ω. Moreover, the solution

admits the representation

u(x) = S∗+
(

(S∗)−1f
)

(x).

Proof. Uniqueness follows from proposition 9.1.3. For existence, let f ∈ L2(∂Ω). From

proposition 9.3.1, the operator

S∗ : W−1,2(∂Ω)→ L2(∂Ω)
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is invertible, therefore we can consider the element F = (S∗)−1f ∈ W−1,2(∂Ω). Set now

u = S∗+F . Then proposition 9.3.5 shows that u is a solution to D2, with boundary values

S∗F = f , and also

‖u∗‖L2(∂Ω) ≤ C‖F‖W−1,2(∂Ω) = ‖(S∗)−1f‖W−1,2(∂Ω) ≤ C‖f‖L2(∂Ω),

where we also used proposition 9.3.1. This completes the proof.

We will be able to drop the symmetry assumption on A later, in theorem 11.0.4.
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CHAPTER 10

THE REGULARITY PROBLEM FOR Lt

We now turn to solvability of the Regularity problem for the equation Ltu = 0. We will

mainly follow the method of chapter 8, but since constants are not necessarily solutions to

the equation Ltu = 0, a couple of modifications need to be made.

10.1 Formulation and uniqueness

We begin with the formulation of Rp.

Definition 10.1.1. Let Ω be a Lipschitz domain, and p ∈ (1,∞). We say that the Regularity

problem Rp for the equation Ltu = 0 in Ω is solvable, if there exists C > 0 such that, for

every f ∈ W 1,p(Ω), there exists a solution u ∈ W 1,2
loc (Ω) to the Dirichlet problem

 Ltu = 0, in Ω

u = f, on ∂Ω,

such that

‖∇u‖Lp(∂Ω) ≤ C‖f‖W 1,p(∂Ω),

and u = f on the boundary is interpreted in the nontangential, almost everywhere sense.

We now turn to uniqueness for the Regularity problem for Ltu = 0.

Theorem 10.1.2. Suppose that Ω is a bounded Lipschitz domain, A ∈ Mλ,µ(Ω) and b ∈

L∞(Ω). Let u ∈ W 1,2
loc (Ω) be a solution to Ltu = 0 in Ω, with (∇u)∗ ∈ L2(∂Ω) and u → 0

nontangentially, almost everywhere. Then, u ≡ 0.

Proof. We begin by computing, as in proposition 7.3.3,

u(y) = u(y)φε(y) =

ˆ
Ω
A∇Gy∇(uφε) + b∇Gy · uφε,
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where Gy(x) = G(x, y) is Green’s function for the equation Lu = 0 in Ω, therefore

u(y) =

ˆ
Ω
A∇Gy∇φε · u+ A∇Gy∇u · φε + b∇(Gyφε) · u− b∇φε · uGy

=

ˆ
Ω
A∇Gy∇φε · u+ A∇(Gyφε)∇u+ b∇(Gyφε) · u− b∇φε · uGy − A∇φε∇u ·Gy dx

=

ˆ
Rε
A∇Gy∇φε · u dx−

ˆ
Rε
b∇φε · uGy dx−

ˆ
Rε
A∇φε∇u ·Gy dx = I1 + I2 + I3,

since u is a solution of Ltu = 0, in Ω, and from the support properties of φε. We then

bound the last terms exactly as in the proof of proposition 8.1.3 to show that they go to 0

as ε→ 0.

10.2 Layer potentials

We will now assume that Ω ∈ D, as in chapter 8; that is, 0 ∈ Ω and diam(Ω) < 1/40. We

will also set B to be the unit ball in Rd.

Given A ∈ Mλ,µ(Ω), we will extend A periodically as in lemma 2.2.1, and similarly for

b, depending whether b ∈ Lip(Ω) or b ∈ L∞(Ω). We will then set Gt to be Green’s function

for the equation Ltu = − div(A∇u)− div(bu) = 0 in B.

For f ∈ L2(∂Ω), let St+ be the operator

St+f(x) =

ˆ
∂Ω

Gt(x, q)f(q) dσ(q),

for x ∈ Ω. If x /∈ Ω we denote this operator by St−, and for x ∈ ∂Ω, we denote it by St; this

will be called the single layer potential operator for the adjoint equation Ltu = 0 in Ω.

In order to consider differentiability properties of St on ∂Ω, we will assume that b is

Hölder continuous. This, together with proposition 5.3.4 will show that we obtain bounds

on the derivative of Green’s function in the adjoint variable that are similar to the bounds

for the derivative of Green’s function. Hence, proceeding as in lemma 8.3.2, we can show
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the next proposition.

Proposition 10.2.1. Let Ω ∈ D, A ∈ Mλ,µ(B) and b ∈ Cα(B). The operator St maps

L2(∂Ω) to W 1,2(∂Ω), with

∇TStf(p) = lim
ε→0

ˆ
|p−q|>ε

Gt(p, q)f(q) dσ(q),

and its norm is bounded above by a good constant that also depends on ‖b‖Cα(Ω).

We can also show the next proposition.

Proposition 10.2.2. Let Ω ∈ D, A ∈ Mλ,µ(B) and b ∈ Cα(B). If f ∈ L2(∂Ω), then

St+f ∈ W
1,2
loc (Ω) is a solution to the Dirichlet problem D2 for the equation Ltu = 0 in Ω,

with boundary values Stf on ∂Ω. Similarly, St−f is the solution to D2 in B \ Ω, and has

boundary values Stf · χ∂Ω on ∂(B \ Ω). In addition,

‖(∇St±f)∗‖L2(∂Ω) ≤ C‖f‖L2(∂Ω),

where C is a good constant.

Proof. The proof is identical to the proof of proposition 8.3.3, for the fact that St+f and St−f

are solutions. For the boundary values, instead of Lipschitz continuity of Green’s function

in proposition 5.3.3, we use the analogous result for the adjoint of Green’s function, from

proposition 5.3.6. Moreover, for the boundedness of the nontangential maximal function, we

use proposition 5.5.3 instead of proposition 5.5.2, which completes the proof.

We now proceed to studying the behavior of the single layer potential on the boundary,

and the jump relations.

Proposition 10.2.3. Let Ω ∈ D, A ∈Mλ,µ(B) and b ∈ Cα(B). Then, for any f ∈ L2(∂Ω),

∇St+f(x) · T (p) −−−→
x→p

∇TStf(p),
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non-tangentially, almost everywhere on ∂Ω. Therefore, if Ωj ↑ Ω is the approximation scheme

in theorem 2.3.6, we obtain that

lim sup
j→∞

ˆ
∂Ωj

(
|St+f |2 + |∇TjS

t
+f |2

)
dσj ≤ ‖Stf‖2W 1,2(∂Ω)

,

and similarly for St−f .

Proof. The proof is identical to the proof of proposition 8.4.1, using the analogous estimates

for the adjoint of Green’s function. For the second part, we proceed as in corollary 8.4.2.

We now pass to the discontinuity of the normal derivative of the single layer potential

across the boundary of Ω.

Lemma 10.2.4. Let Ω ∈ D, let A ∈Mλ,µ(B), b ∈ Lip(Ω) and consider a Lipschitz function

F : B → R with F ≡ 0 on ∂B. Then, for x ∈ Ω,

ˆ
∂Ω

∂
q
νG(x, q) · F (q) dσ(q) = −

ˆ
B\Ω

At∇Gtx∇F + b∇F ·Gtx,

while, for x ∈ B \ Ω,

ˆ
∂Ω

∂
q
νG(x, q) · F (q) dσ(q) =

ˆ
Ω
At∇Gtx∇F + b∇F ·Gtx,

where ∂
q
ν denotes the conormal derivative with respect to q on ∂Ω, associated to Lt, and

Gtx(·) = G(x, ·).

Proof. Suppose first that x ∈ Ω. Then, from proposition 5.1.3 and theorems 8.8 and 8.12 in

[GT01], Gtx(·) = Gt(·, x) and Gtx is a classical solution of Ltu = 0 in B \ Ω; that is,

div(At∇Gx) = − div(bGx),
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almost everywhere in B, away from x. Therefore, since F ≡ 0 on ∂B,

ˆ
∂Ω

∂νG
t
x · F dσ = −

ˆ
∂(B\Ω)

∂νG
t
x · F dσ = −

ˆ
B\Ω

div(F · At∇Gtx)

= −
ˆ
B\Ω

At∇Gtx∇F + div(At∇Gtx) · F

= −
ˆ
B\Ω

At∇Gtx∇F + b∇F ·Gtx,

because Gtx is a classical solution of Ltu = 0 B \Ω. Now, if x ∈ B \Ω, then Gtx is a classical

solution of Ltu = 0 in Ω, therefore

ˆ
∂Ω

∂νG
t
x · F dσ =

ˆ
Ω

div(F · At∇Gtx) =

ˆ
Ω
At∇Gtx∇F + b∇F ·Gtx,

which concludes the proof.

Lemma 10.2.5. Let B be a ball, and let A ∈ Mλ,µ(B), and b ∈ Lip(B). Then, for all

p ∈ B,

lim
ε→0

ˆ
∂Bε(p)

∂
q
νG(p, q) dσBε(q) = −1,

where ∂ν is the conormal derivative associated with Lt.

Proof. Let ε > 0, and consider the domain Uε = B \ Bε(p). Set also Gtp(·) = G(p, ·). As in

lemma 10.2.4, Gtp is a classical solution of the equation

Ltu = − div(At∇u)− div(bu) = 0

away from p, therefore ˆ
Uε

div(A∇Gtp) =

ˆ
Uε

div(b∇Gtp).
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For the last term, the divergence theorem shows that

ˆ
Uε

div(b∇Gtp) =

ˆ
∂Uε

Gtp 〈b, ν〉 dσ = −
ˆ
∂Bε(p)

Gtp 〈b, ν〉 dσε,

since Gtp vanishes in ∂B. But, from the pointwise estimates on G,

∣∣∣∣∣
ˆ
∂Bε(p)

Gtp 〈b, ν〉 dσε

∣∣∣∣∣ ≤ ‖b‖∞
ˆ
∂Bε(p)

|p− q|2−d dσε(q) ≤ C‖b‖∞ ε2−d σε(∂Bε(p)) −−−→
ε→0

0,

therefore ˆ
Uε

div(A∇Gtp) −−−→
ε→0

0.

We now integrate by parts, to obtain

ˆ
Uε

div(A∇Gtp) =

ˆ
∂Uε

∂νG
t
p dσUε =

ˆ
∂B

∂νG
t
p dσB −

ˆ
∂Bε(p)

∂νG
t
p dσBε(p),

therefore ˆ
∂Bε(p)

∂νG
t
p dσBε(p) −−−→ε→0

ˆ
∂B

∂νG
t
p dσB .

Note now that, from proposition 6.2.2,

∂
q
νG

t
p(q) = ∂

q
νG(p, q) = −

dω
p
B(q)

dσB(q)
,

which is the harmonic measure kernel on ∂B. Since the harmonic measure is a probability

measure, we finally obtain that

ˆ
∂Bε(p)

∂νG
t
p dσBε(p) −−−→ε→0

ˆ
∂B

∂νG
t
p dσB = −

ˆ
∂B

dωp = −1,

and this completes the proof.
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We now define, for a Lipschitz function f : ∂Ω→ R and p ∈ ∂Ω,

Ktf(p) = lim
ε→0

ˆ
|p−q|>ε

∂
q
νG(p, q)F (q) dσ(q).

The fact that this limit exists is shown in the next lemma.

Lemma 10.2.6. Let Ω ∈ D, let A ∈Mλ,µ(B), b ∈ Lip(B), and consider a Lipschitz function

F : B → R with F ≡ 0 on ∂B. Then, for almost all p ∈ ∂Ω,

Kf(p) =
1

2
F (p)−

ˆ
B\Ω

At∇Gtp∇F + b∇F ·Gtp

= −1

2
F (p) +

ˆ
Ω
At∇Gtp∇F + b∇F ·Gtp.

Proof. Set Gtp(q) = G(p, q), and let Vε = Ω ∪Bε(p). We also define

∂1
ε = Ωc ∩ ∂(Bε(p)), ∂

2
ε = Ω ∩ ∂(Bε(p)),

and we write

ˆ
∂Ω\∆ε(p)

∂νG
t
p · F dσ =

ˆ
∂Vε

∂νG
t
p · F dσ −

ˆ
∂1
ε

∂νG
t
p · F dσ

=

ˆ
∂B

∂νG
t
p · F dσ −

ˆ
∂(B\Vε)

∂νG
t
p · F dσ −

ˆ
∂1
ε

∂νG
t
p · F dσ

= 0− I1 − I2,

since F vanishes on ∂B.

We now treat I1. We first write

I1 =

ˆ
∂(B\Vε)

∂νG
t
p dσ =

ˆ
B\Vε

div(F · At∇Gtp) =

ˆ
B\Vε

At∇Gtp∇F + b∇F ·Gtp,

since Gp is a solution of Ltu = 0 away from p. Then, since the term b∇F ·Gtp is integrable,
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we obtain that

I1 →
ˆ
B\Ω

At∇Gtp∇F + b∇F ·Gtp.

For I2, we write

I2 =

ˆ
∂1
ε

∂νG
t
p · F dσ =

ˆ
∂1
ε

∂νG
t
p · (F − F (p)) dσ + F (p)

ˆ
∂1
ε

∂νG
t
p dσ = I3 + I4.

From Lipschitz continuity of F and the pointwise bounds on the gradient of Gt, we obtain

that

|I3| ≤ C

ˆ
∂1
ε

|p− p′|1−d|F (p′)− F (p)| dσ(p′) ≤ C ε2−d σd−1(∂Bε(p)) −−−→
ε→0

0.

For I4, for almost all p ∈ ∂Ω there exists a well defined tangent plane to ∂Ω at p. For those

p, the symmetric difference between ∂1
ε and ∂2

ε is contained in a strip

Aε(p) = {y ∈ Bε(p)
∣∣|y · ν(p)| ≤ C ε2},

as in lemma 8.4.5, and if we combine with the pointwise bounds for the gradient of Gt, we

obtain that ˆ
∂1
ε

∂νGp −
ˆ
∂2
ε

∂νGp −−−→
ε→0

0.

Using lemma 10.2.5, we then obtain that

ˆ
∂1
ε

∂νG
t
p dσ =

1

2

(ˆ
∂1
ε

∂νG
t
p dσ +

ˆ
∂2
ε

∂νG
t
p dσ

)
+

1

2

(ˆ
∂1
ε

∂νG
t
p dσ −

ˆ
∂1
ε

∂νG
t
p dσ

)

=
1

2

ˆ
Bε(p)

∂νAG
t
p dσ +

1

2

(ˆ
∂1
ε

∂νAG
t
p dσ −

ˆ
∂1
ε

∂νG
t
p dσ

)
−−−→
ε→0

−1

2
,
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therefore I2 → −1
2F (p). Therefore,

KtF (p) = lim
ε→0

(−I1 − I2) =
1

2
F (p)−

ˆ
B\Ω

At∇Gtp∇F + b∇F ·Gtp.

For the second representation, using the fact that LtGtp = δp and the first representation in

this lemma, we write

F (p) =

ˆ
B
At∇Gtp∇F + b∇F ·Gtp

=

ˆ
Ω
At∇Gtp∇F + b∇F ·Gtp +

ˆ
B\Ω

At∇Gtp∇F + b∇F ·Gtp

=

ˆ
Ω
At∇Gtp∇F + b∇F ·Gtp +

1

2
F (p)−KtF (p),

which concludes the proof after rearranging the terms.

We are now led to the following convergence lemma.

Lemma 10.2.7. Let Ω ∈ D, let A ∈ Mλ,µ(B) and b ∈ Lip(B), and consider two Lipschitz

functions F,H : B → R with F,H ≡ 0 on ∂B. Then, for all j ∈ N,

ˆ
∂Ωj

∂νjS
t
+F (pj) ·H(pj) dσj(pj) −−−−→

j→∞

ˆ
∂Ω

(
1

2
F (q)H(q) + F (q) · KtH(q)

)
dσ(q),

and also

ˆ
∂Ω′j

∂ν′j
St−F (p′j) · F (p′j) dσ

′
j(p
′
j) −−−−→

j→∞

ˆ
∂Ω

(
1

2
F (q)H(q) + F (q) · KtH(q)

)
dσ(q),

where νj , ν
′
j are the unit outer normals on Ωj , Ω′j , respectively.

Proof. The proof is identical to the proof of lemma 8.4.6, using lemmas 10.2.4 and 10.2.6

instead of lemmas 8.4.3 and 8.4.5.

More specifically, let Ij be the first integral above. From the formula for ∂νjSt+F (pj), we

202



first have that

Ij =

ˆ
∂Ωj

(ˆ
∂Ω

∂
pj
νjG

t(pj , q)F (q) dσ(q)

)
H(pj) dσj(pj).

Now, for j fixed, since |pj − q| is bounded below by some positive number, the last integral

is absolutely convergent, so we can apply Fubini’s theorem to obtain that

Ij =

ˆ
∂Ω

(ˆ
∂Ωj

∂
pj
νjG

t(pj , q)H(pj) dσj(pj)

)
F (q) dσ(q),

where differentiation takes place with respect to the second variable of G. We now apply

the second representation in lemma 10.2.4 for fixed j, for the domain Ωj and for Gt. Since

q /∈ Ωj , we obtain that

Ij =

ˆ
∂Ω

(ˆ
Ωj

At∇Gtq∇H + b∇H ·Gtq

)
F (q) dσ(q).

By letting j →∞, the dominated convergence theorem shows that

Ij −−−−→
j→∞

ˆ
∂Ω

(ˆ
Ω
At∇Gtq∇H + b∇H ·Gtq

)
F (q) dσ(q)

=

ˆ
∂Ω

1

2
FH dσ(q) +

ˆ
∂Ω

F (q)

(
−1

2
H(q) +

ˆ
Ω
At∇Gtq∇H + b∇H ·Gtq

)
dσ(q)

and, since q ∈ ∂Ω, the second equality in lemma 10.2.6 shows that

Ij →
ˆ
∂Ω

(
1

2
FH + F · KtH

)
dσ(q).

Set now I ′j to be the second integral. As above, and since now q ∈ Ω′j , we obtain from the
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first representation in lemma 10.2.4 that

I ′j = −
ˆ
∂Ω

(ˆ
B\Ω′j

At∇Gtq∇H + b∇H ·Gtq

)
F (q) dσ(q).

We then apply the dominated convergence theorem to obtain

I ′j −−−−→
j→∞

−
ˆ
∂Ω

F (q)

(ˆ
B\Ω

At∇Gtq∇H + b∇H ·Gtq

)
dσ(q)

=

ˆ
∂Ω
−1

2
FH dσ +

ˆ
∂Ω

F (q)

(
1

2
H(q)−

ˆ
B\Ω

At∇Gtq∇H + b∇H ·Gtq

)
dσ(q)

=

ˆ
∂Ω

(
−1

2
FH + F · KtH

)
dσ(q),

where we used the first equality in lemma 10.2.6.

As a consequence of the previous lemma, we obtain the jump relation.

Corollary 10.2.8 (Jump Relation). Let Ω ∈ D, A ∈Mλ,µ(B) and b ∈ Lip(B). Then

ˆ
∂Ωj

∂νjS
t
+F (pj) ·H(pj) dσj(pj)−

ˆ
∂Ω′j

∂ν′j
St−F (p′j) ·H(p′j) dσ

′
j(p
′
j) −−−−→

j→∞

ˆ
∂Ω

FH dσ,

for all F,H : B → R which are Lipschitz continuous and vanish on ∂B, where νj , ν
′
j are the

unit outer normals on Ωj , Ω′j , respectively.

Proof. To obtain this convergence, we subtract the second line in lemma 10.2.7 from the

first.

10.3 Invertibility of St

As in the case for the single layer potential for the equation Lu = 0, we will turn our attention

to the global Rellich estimates that will lead to invertibility of St : L2(∂Ω) → W 1,2(∂Ω).

For the adjoint operator, though, the situation is more complicated, since we need to show
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control on the size of the divergence of b, together with control of the term u in Ω. For this

purpose, we begin with the next lemma.

Lemma 10.3.1. Let Ω be a Lipschitz domain, and q ∈ ∂Ω, r ∈ (0, rΩ). Then, for any

u ∈ W 1,2(Ω),

‖u‖2
L2∗(Tr(q))

≤ Cr−2‖u‖2
L2(Tr(q))

+ C‖∇u‖2
L2(Tr(q))

,

where C depends only on the Lipschitz character of Ω.

Proof. Set T0 = r−1Tr(q), and let v(x) = u(rx), for x ∈ T0. Consider also Stein’s extension

operator ([Ste70], chapter VI, section 3)

E : W 1,2(T0)→ W 1,2(Rd),

which extends W 1,2(T0) functions to W 1,2(Rd) functions. Then the norm of E depends only

on the Lipschitz character of T0. Since now Ev ∈ W 1,2(Rd), there exists a sequence (vn) in

C∞c (Rd) with vn → v in W 1,2(Rd). Then, Sobolev’s inequality shows that

‖v‖L2∗(T0) ≤ ‖Eu‖L2∗(Rd) ≤ Cd‖∇Ev‖L2(Rd) ≤ Cd‖Ev‖W 1,2(Rd)

≤ Cd‖E‖‖v‖W 1,2(T0) ≤ C‖v‖L2(T0) + C‖∇v‖L2(T0).

We now compute, for any p ≥ 1,

ˆ
T0

|v(y)|p dy =

ˆ
T0

|u(ry)|p dy =

ˆ
Tr(q)

|u(x)|pr−d dx,

and also ˆ
T0

|∇v(y)|p dx =

ˆ
T0

rp|∇u(ry)|p dy =

ˆ
Tr(q)

|u(x)|prp−d dx,
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which shows that

r−d/2
∗
‖u‖L2∗(Tr(q))

≤ Cr−d/2‖u‖L2(Tr(q))
+ Cr1−d/2‖∇u‖L2(Tr(q))

.

Therefore, we finally obtain that

‖u‖L2∗(Tr(q))
≤ Crd/2

∗−d/2‖u‖L2(Tr(q))
+ Crd/2

∗+1−d/2‖∇u‖L2(Tr(q))

= Cr−1‖u‖L2(Tr(q))
+ C‖∇u‖L2(Tr(q))

,

which completes the proof.

For the next lemma, we recall the definition of u∗r , from right before proposition 8.1.2.

Lemma 10.3.2. Let Ω be a Lipschitz domain, q ∈ ∂Ω and r ∈ (0, rΩ). Then, for any

function u defined in Ω, ˆ
Tr(q)

|u|2 ≤ Cr

ˆ
∆r(q)

|u∗r|2 dσ.

Proof. Let Br ⊆ Rd−1 be the basis of the cylinder portion Tr(q), and suppose that Ω is given

as the graph of the Lipschitz function φ above Br. Since the height of Tr(q) is comparable

to r, we obtain that

ˆ
Tr(q)

|u|2 ≤
ˆ
Br

ˆ φ(q)+Cr

φ(q)
|u(x0, t)|2 dtdx0 ≤

ˆ
Br

ˆ φ(q)+Cr

φ(q)
|u∗r(x0)|2 dtdx0

≤ Cr

ˆ
Br
|u∗r(x0)|2 dx0 ≤ Cr

ˆ
∆r(q)

|u∗r|2 dσ,

where we perform a change a variables from Br to ∆r(q) for the last equality.

Lemma 10.3.3. Let Ω be a Lipschitz domain, and consider a function u ∈ C1(Ω). Let

q ∈ ∂Ω and r ∈ (0, rΩ). Then,

‖u‖2
L2∗(Tr)

≤ Cr−1
ˆ

∆r(q)
|u∗r|2 dσ + Cr

ˆ
∆r(q)

|(∇u)∗|2 dσ,
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where C is a good constant.

Proof. We first apply lemma 10.3.1 to Tr(q), to obtain

(ˆ
Tr(q)

|u∗|2
)2/2∗

≤ Cr−2
ˆ
Tr(q)

|u|2 + C

ˆ
Tr(q)

|∇u|2,

where C is a good constant. We then apply lemma 10.3.2 to bound the last two integrals,

which completes the proof.

The next proposition shows how to control the size of ∇u in Ω.

Proposition 10.3.4. Let Ω ∈ D, A ∈ Ms
λ,µ(B) and b ∈ Lip(B). Let also u be a solution

to Ltu = 0 in Ω, with (∇u)∗ ∈ L2(∂Ω), and u and ∇Tu having nontangential limits almost

everywhere on ∂Ω. Then,

ˆ
Ω
|∇u|2 ≤ C

ˆ
∂Ω
|u|2 + C

ˆ
∂Ω
|∇Tu|2 dσ,

where C is a good constant.

Proof. We mimic the proof of lemma 8.5.1: consider the approximation scheme Ωj ↑ Ω as

in theorem 2.3.6, and fix j. Let L0 be the operator L0 = − div(At∇), and let vj be the

solution to L0vj = 0 in Ωj , with vj = u on ∂Ωj . Then, if wj = u− vj , we compute

− div(At∇wj)− div(bwj) = − div(At∇u) + div(At∇vj)− div(buj) + div(bvj) = div(bvj).

Since now wj ∈ W
1,2
0 (Ωj), proposition 5.2.6 shows that

‖∇wj‖L2(Ωj)
≤ C‖ div(bvj)‖W−1,2(Ωj)

= C‖vj‖L2(Ωj)
,
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therefore

‖∇u‖L2(Ωj)
≤ C‖∇wj‖L2(Ωj)

+ C‖∇vj‖L2(Ωj)
≤ C‖vj‖L2(Ωj)

+ C‖∇vj‖L2(Ωj)
. (10.1)

Let Stj,+ be the single layer potential operator for the operator L0 in Ωj , which is given

by integration with respect to the fundamental solution Γ for L0, as in [KS11]. From its

definition, vj solves the R2 Regularity problem for L0 in Ωj , with boundary data u; therefore,

theorems 6.3 and 5.3 in [KS11] show that

vj(x) = Sj,+(S−1
j u(x)) =

ˆ
∂Ωj

Γ(x, q)S−1
j u(q) dσj(q).

Set aj to be the average of vj in Ωj . Using estimate 2.5 in [KS11], we compute

|aj | =

∣∣∣∣∣
 

Ωj

vj

∣∣∣∣∣ =
1

|Ωj |

ˆ
Ωj

∣∣∣∣∣
ˆ
∂Ωj

Γ(x, q)S−1
j u(q) dσj(q)dx

∣∣∣∣∣
≤ C

|Ωj |

ˆ
∂Ωj

(ˆ
Ωj

|x− q|2−d dx

)
|S−1
j u(q)| dσj(q)

≤ C

|Ωj |

ˆ
∂Ωj

|S−1
j u(q)| dσj(q).

Then, from remark 5.8 in [KS11], we obtain that, for a good constant C,

|aj |2 ≤
Cσj(∂Ωj)

|Ωj |2

ˆ
∂Ωj

|S−1
j u|2 dσj ≤ C‖Sj(S−1

j u)‖2
W 1,2(∂Ωj)

= C‖u‖2
W 1,2(∂Ωj)

= C

ˆ
∂Ωj

|u|2 dσj +

ˆ
∂Ωj

|∇Tu|2 dσj .
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Therefore, Poincare’s inequality in Ωj shows that

ˆ
Ωj

|vj |2 ≤ C

ˆ
Ωj

|vj − aj |2 + C

ˆ
Ωj

|aj |2

≤ C

ˆ
Ωj

|∇vj |2 + C|aj |2

≤ C

ˆ
Ωj

|∇vj |2 + C

ˆ
∂Ωj

|u|2 dσj +

ˆ
∂Ωj

|∇Tu|2 dσj ,

hence, plugging the last estimate in (10.1), we obtain that

‖∇u‖L2(∂Ωj)
≤ C

ˆ
Ωj

|∇vj |2 + C

ˆ
∂Ωj

|u|2 dσj +

ˆ
∂Ωj

|∇Tu|2 dσj . (10.2)

We now treat the first term on the right hand side exactly as in lemma 8.5.1: we compute

λ

ˆ
Ωj

|∇vj |2 ≤
ˆ
∂Ωj

∂νjvj · vj dσj ≤ C

ˆ
∂Ωj

|u|2 + C

ˆ
∂Ωj

|∂νjvj |
2.

But, since the Rellich property holds for vj in Ωj with a good constant C, after letting

j →∞ we find that

lim sup
j→∞

ˆ
Ωj

|∇vj |2 ≤ C lim sup
j→∞

ˆ
∂Ωj

|u|2 dσj + C lim sup
j→∞

ˆ
∂Ωj

|∂νjvj |
2 dσj

≤ C lim sup
j→∞

ˆ
∂Ωj

|u|2 dσj + C lim sup
j→∞

ˆ
∂Ωj

|∇Tju|
2 dσj

≤ C

ˆ
∂Ω
|u|2 dσ + C

ˆ
∂Ω
|∇Tu|2 dσ.

Therefore, letting j →∞ in (10.2), we obtain the required estimate.

We are now in position to show the global Rellich estimate for solutions to the adjoint

equation.

Proposition 10.3.5 (Global Rellich Estimate). Let Ω be a smooth domain, A ∈ Ms
λ,µ(Ω)
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and b ∈ Lip(Ω). Let also u be a C1(Ω) solution of Ltu = 0 in Ω. Then, for any r ∈ (0, rΩ),

ˆ
∂Ω
|∂νu|2 dσ ≤ Cr

ˆ
∂Ω
|(∇u)∗|2 dσ +

C

rd

ˆ
∂Ω
|u|2 +

C

rd

ˆ
∂Ω
|∇Tu|2 dσ,

where C is a good constant that also depends on ‖ div b‖Ld(Ω).

Proof. Let r < rΩ and consider q ∈ ∂Ω. From theorem 8.12 in [GT01], u ∈ W 2,2(Ω),

therefore after applying proposition 3.8.1 we obtain that

ˆ
∆r(q)

|∂νu|2 dσ ≤ C

ˆ
∆2r(q)

|∇Tu|2 dσ + C

ˆ
T2r(q)

| div b||u∇u|+ C

r

ˆ
T2r(q)

|∇u|2

= C

ˆ
∆2r(q)

|∇Tu|2 dσ + CI1 +
C

r

ˆ
∂Ω
|u|2 +

C

r

ˆ
∂Ω
|∇Tu|2 dσ,

where C is a good constant, and where we also used proposition 10.3.4.

To bound I1, note that, from Hölder’s inequality

I1 ≤

(ˆ
T2r(q)

| div b|d
)1/d

‖u‖L2∗(T2r(q))
‖∇u‖L2(T2r(q))

≤ ‖ div b‖Ld
(
‖u‖2

L2∗(T2r(q))
+ ‖∇u‖2

L2(T2r(q))

)
≤ ‖ div b‖Ld

(
‖u‖2

L2∗(T2r(q))
+ ‖∇u‖2

L2(Ω)

)
= ‖ div b‖Ld(I3 + I4).

We estimate I3 using lemma 10.3.3, and I4 by using proposition 10.3.4. Then, for a good

constant C,

I3 + I4 ≤
C

r

ˆ
∆4r(q)

|u∗r|2 dσ + Cr

ˆ
∆4r(q)

|(∇u)∗|2 dσ + C

ˆ
∂Ω
|u|2 + C

ˆ
∂Ω
|∇Tu|2 dσ.
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But, from proposition 8.1.2,

C

r

ˆ
∆4r(q)

|u∗r|2 dσ ≤
C

r

ˆ
∆4r(q)

(
Cr2|(∇u)∗|2 + C|u|2

)
dσ

= Cr

ˆ
∆4r(q)

|(∇u)∗|2 dσ +
C

r

ˆ
∆4r(q)

|u|2 dσ,

which shows that

I1 ≤ Cr

ˆ
∆4r(q)

|(∇u)∗|2 dσ +

(
C

r
+ C

) ˆ
∂Ω
|u|2 dσ + C

ˆ
∂Ω
|∇Tu|2 dσ,

where C is a good constant that also depends on the d norm of div b. Therefore, plugging

into the first estimate in this proof, we obtain that

ˆ
∆r(q)

|∂νu|2 dσ ≤ Cr

ˆ
∆4r(q)

|(∇u)∗|2 dσ +
C

r

ˆ
∂Ω
|u|2 +

C

r

ˆ
∂Ω
|∇Tu|2 dσ.

To finish the proof, we then integrate for q ∈ ∂Ω.

We now turn to the analog of proposition 8.5.3, which will lead to invertibility of St on

∂Ω.

Proposition 10.3.6. Suppose that Ω ∈ D, A ∈Ms
λ,µ(B) and b ∈ Lip(Rd). Then, for every

f ∈ L2(∂Ω),

‖f‖L2(∂Ω) ≤ C‖Stf‖W 1,2(∂Ω),

where C is a good constant that also depends on ‖b‖Drd,α .

Proof. As in the proof of proposition 8.5.3, suppose first that f is Lipschitz, and consider a

Lipschitz extension F : B → R of f , which vanishes on ∂B. Set u+ = St+f , and u− = St−f ,

then the jump relation (corollary 10.2.8) with H = F shows that

ˆ
∂Ωj

∂νju+ · F dσj −
ˆ
∂Ω′j

∂ν′j
u− · F dσ′j −−−−→

j→∞

ˆ
∂Ω

F 2 dσ.
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Since now F is continuous in Ω, the Cauchy-Schwartz inequality shows that

‖F‖2
L2(∂Ω)

≤ lim sup
j→∞

(
‖∂νju+‖L2(∂Ωj)

‖F‖L2(∂Ωj)
+ ‖∂ν′ju−‖L2(∂Ωj)

‖F‖L2(∂Ω′j)

)
= ‖F‖L2(∂Ω) lim sup

j→∞

(
‖∂νju+‖L2(∂Ωj)

+ ‖∂ν′ju−‖
2
L2(∂Ωj)

,
)

therefore we obtain

‖F‖2
L2(∂Ω)

≤ 2 lim sup
j→∞

(
‖∂νju+‖2L2(∂Ωj)

+ ‖∂ν′ju−‖
2
L2(∂Ωj)

)
. (10.3)

Note now that u+ is a C1 solution in Ωj , from propositions 10.2.2 and 3.4.1. Moreover, from

the global Rellich estimate (proposition 10.3.5), we obtain that, for all r < rΩ,

‖∂νju+‖2L2(∂Ωj)
≤ Cr‖(∇u+)∗‖2

L2(∂Ωj)
+
C

rd
‖u+‖2L2(∂Ωj)

+
C

rd
‖∇Tu+‖2L2(∂Ωj)

,

where Cj is a good constant for Ωj . We now let j → ∞, and applying proposition 10.2.3,

we obtain that

lim sup
j→∞

‖∂νju+‖2L2(∂Ωj)
≤ Cr‖(∇u+)∗‖2

L2(∂Ω)
+
C

rd
‖Sf‖2

L2(∂Ω)
+
C

rd
‖∇TSf‖2L2(∂Ω)

= Cr‖(∇S+f)∗‖2
L2(∂Ω)

+
C

rd
‖Sf‖2

L2(∂Ω)
+
C

rd
‖∇TSf‖2L2(∂Ω)

≤ Cr‖f‖2
L2(∂Ω)

+
C

rd
‖Sf‖2

L2(∂Ω)
+
C

rd
‖∇TSf‖2L2(∂Ω)

,

where we also used the maximal function bound from proposition 10.2.2. A similar process

shows that

lim sup
j→∞

‖∂ν′ju−‖
2
L2(∂Ω′j)

≤ Cr‖f‖2
L2(∂Ω)

+
C

rd
‖Sf‖2

L2(∂Ω)
+
C

rd
‖∇TSf‖2L2(∂Ω)

.
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Adding those inequalities and plugging in (10.3), we finally obtain that

‖f‖2
L2(∂Ω)

≤ Cr‖f‖2
L2(∂Ω)

+
C

rd
‖Sf‖2

L2(∂Ω)
+
C

rd
‖∇TSf‖2L2(∂Ω)

,

where C is a good constant that also depends on ‖ div b‖d. Choosing r < rΩ with Cr < 1/2

shows that

‖f‖2
L2(∂Ω)

≤ C‖Stf‖2
L2(∂Ω)

+ C‖∇TStf‖2L2(∂Ω)
= C‖Stf‖W 1,2(∂Ω),

where C is a good constant that also depends on ‖ div b‖d. This shows the desired inequality

for Lipschitz functions f : ∂Ω→ R.

To obtain the estimate for f ∈ L2(∂Ω), we use the fact that Lip(∂Ω) is dense in L2(∂Ω)

and St : L2(∂Ω)→ W 1,2(∂Ω) is continuous.

We now pass to non differentiable drifts, as in proposition 8.5.4.

Proposition 10.3.7. Suppose that Ω ∈ D, A ∈ Ms
λ,µ(B) and b ∈ Drd,α(Rd). Then, for

every f ∈ L2(∂Ω),

‖f‖L2(∂Ω) ≤ C‖Stf‖W 1,2(∂Ω),

where C is a good constant that also depends on ‖b‖Drd,α .

Proof. Suppose first that f is Lipschitz on ∂Ω, and extend it to a Lipschitz function F in Ω.

Consider a mollification bn = b ∗ φn of b, where

φn(x) = ndφ(nx),

and φ is positive, it is supported in B1 and has integral 1. We then compute

|bn(x)| ≤
ˆ
B1/n

|b(x− z)||φn(z)| dz ≤ ‖b‖∞
ˆ
B1/n

φn(z) dz = ‖b‖∞,
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and also

|bn(x)− bn(y)| ≤
ˆ
B1/n

|b(x− z)− b(y − z)||φn(z)| dz ≤ ‖b‖C0,α|x− y|α
ˆ
B1/n

φn(z) dz

= ‖b‖C0,α |x− y|α

which shows that ‖bn‖Cα(Ω) ≤ ‖b‖Cα(Ω). In addition, for any ψ ∈ C∞c (Rd),

∣∣∣∣ˆRd bn∇ψ
∣∣∣∣ =

∣∣∣∣∣
ˆ
Rd

ˆ
B1/n

b(x− z)φn(z)∇ψ(x) dzdx

∣∣∣∣∣
≤
ˆ
B1/n

φn(z)

∣∣∣∣ˆRd b(x− z)∇ψ(x) dx

∣∣∣∣ dz
=

ˆ
B1/n

φn(z)

∣∣∣∣ˆRd b(x)∇ψ(x+ z) dx

∣∣∣∣ dz
≤
ˆ
B1/n

φn(z)

∣∣∣∣ˆRd b(x)∇ψ(x+ z) dx

∣∣∣∣ dz
≤
ˆ
B1/n

φn(z)‖ div b‖d‖∇ψ‖
L

d
d−1 (Rd)

dz

= ‖ div b‖d‖∇ψ‖
L

d
d−1 (Rd)

.

therefore bn ∈ Drd,α(Rd), with

‖bn‖Drd,α(Rd) ≤ ‖b‖Drd,α(Rd).

Let now Gtn be Green’s function for the operator

Ltn = − div(A∇u)− div(bnu)

in B, and set Stn to be the single layer potential operator on ∂Ω for the same operator; that
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is,

Stnf(p) =

ˆ
∂Ω

Gtn(p, q)f(q) dσ(q),

for p ∈ ∂Ω. Set also β = α/2. Then, we apply the estimates in proposition 5.5.3 for β

instead of α to obtain, as in proposition 8.5.4,

‖Stnf − Stf‖W 1,2(∂Ω) ≤ C‖bn − b‖Cβ(Ω)‖f‖L2(∂Ω),

where C is a good constant. But, the embedding Cβ(Ω) ↪→ Cα(Ω) is compact, and also (bn)

is bounded in Cα(Ω) and bn → b in C(Ω), therefore, for a subsequence,

‖bkn − b‖Cβ(Ω) −−−−→n→∞
0,

which shows that

‖Stknf − S
tf‖W 1,2(∂Ω) −−−−→n→∞

0.

Since now bn ∈ C1(Ω), we can apply proposition 10.3.6 to obtain that

‖f‖L2(∂Ω) ≤ C‖Stknf‖W 1,2(∂Ω),

where C is a good constant that does not depend on n. Letting n → ∞ then shows the

result for Lipschitz functions f . To pass to all f ∈ L2(∂Ω) we use the fact that Lip(∂Ω) is

dense in L2(∂Ω) and St : L2(∂Ω)→ W 1,2(∂Ω) is continuous.

We are then led to the next theorem.

Theorem 10.3.8. Let Ω be a Lipschitz domain, A ∈ Ms
λ,µ(Ω) and b ∈ Drd,α(Rd). Then,

the operator St : L2(∂Ω)→ W 1,2(∂Ω) is invertible, with

‖(St)−1f‖L2(∂Ω) ≤ C‖f‖W 1,2(∂Ω),
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and C being a good constant that also depends on ‖b‖Drd,α .

Proof. The proof is identical to the proof of theorem 8.5.5, but instead of the gradient

estimates that appear in proposition 5.5.2, we use the estimate in proposition 5.5.3. We

then conclude using proposition 10.3.7.

Using invertibility of St, we can then obtain solvability of R2 for the adjoint equation.

Theorem 10.3.9. Let Ω be a Lipschitz domain, A ∈ Ms
λ,µ(Ω), and b ∈ Drd,α(Rd). Then

the Regularity problem R2 is uniquely solvable in Ω, with constants depending on d, λ, µ,

‖b‖Drd,α(Ω), the Lipschitz character of Ω and the diameter of Ω. Moreover, the solution

admits the representation

u(x) = St+((St)−1f)(x) =

ˆ
∂Ω

Gt(x, q)
(

(St)−1f
)

(q) dσ(q).

Proof. The proof is identical to the proof of theorem 8.5.6, after using theorems 10.3.8 and

10.1.2.

We will be able to drop the symmetry assumption on A later, but we will then have to

assume that the derivatives of A are Hölder continuous (theorem 11.0.5).
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CHAPTER 11

THE CASE OF NON-SYMMETRIC COEFFICIENTS

We are now in position to drop the symmetry assumption on A, and show solvability for the

Dirichlet and the Regularity problem for A ∈Mλ,µ(Ω), for the operators L and Lt. For this

purpose, we will reduce the general case to the cases treated before, as in [KP01].

We first prove the next lemma, to explain how we will transform our equations so that

the matrix A becomes symmetric. The crucial observation is that we obtain an equation

with a drift which depends on the derivatives of A, but it is divergence free.

Lemma 11.0.1. Let A ∈Mλ,µ(Ω), and let b ∈ L∞(Ω). Define b̃ by the relation

b̃i =
1

2

d∑
j=1

∂j(aij − aji), i = 1, . . . d.

Then div b̃ = 0, ‖b̃‖∞ ≤ Cµ, and u is a solution of the equation − div(At∇u) + b∇u = 0 in

Ω if and only if u solves the equation

− div (As∇u) + (b+ b̃)∇u = 0

in Ω, where As = 1
2(A + At) is symmetric. Moreover, v is a solution of the equation

− div(A∇v)− div(bv) = 0 in Ω if and only if v solves the equation

− div (As∇v)− div
(

(b+ b̃)v
)

= 0.

Proof. First, in the sense of distributions, we compute

2 div b̃ =
d∑
i=1

∂i

 d∑
j=1

∂j(aij − aji)

 =
∑
i,j

∂ijaij −
∑
i,j

∂ijaji =
∑
i,j

∂jiaji −
∑
i,j

∂ijaij = 0,
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since ∂ij = ∂ji, which shows that b̃ has divergence 0. Since b̃ is written as the sum of the

derivatives of A, we also obtain that ‖b̃‖∞ ≤ Cµ.

Let now u ∈ W 1,2
loc (Ω), and φ ∈ C∞c (Ω). Since b̃ has divergence 0, we integrate by parts

to compute

ˆ
Ω
At∇u∇φ+ 2b̃∇u · φ =

ˆ
Ω
At∇u∇φ− 2b̃∇φ · u

=

ˆ
Ω

∑
i,j

aji∂ju · ∂iφ−
∑
i,j

∂j(aij − aji)∂iφ · u

=

ˆ
Ω

∑
i,j

aji∂ju · ∂iφ+
∑
i,j

(aij − aji)(∂jiφ · u+ ∂iφ · ∂ju)

=

ˆ
Ω

∑
i,j

aij∂ju · ∂iφ+
∑
i,j

(aij − aji)∂jiφ · u =

ˆ
Ω
A∇u∇φ,

since ∂ij = ∂ji. Therefore,

ˆ
Ω

(A+ At)∇u∇φ+ 2(b+ b̃)∇u · φ =

ˆ
Ω

2A∇u∇φ+ 2b∇u · φ,

which shows the first claim. For the second claim, a similar calculation shows that

ˆ
Ω
A∇u∇φ+ 2b̃∇φ · u =

ˆ
Ω
At∇u∇φ,

therefore ˆ
Ω

(A+ At)∇u∇φ+ 2(b+ b̃)∇φ · u =

ˆ
Ω

2At∇u∇φ+ 2b∇φ · u,

which completes the proof.

Theorem 11.0.2. Let Ω be a Lipschitz domain, and let A ∈ Mλ,µ(Ω) and b ∈ Drpd(Ω).

Then, there exists ε > 0 such that, for p ∈ (2 − ε,∞), the Dirichlet problem Dp for the

equation

− div(A∇u) + b∇u = 0
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is uniquely solvable in Ω, with constants depending only on d, p, λ, µ, ‖b‖Drpd
, diam(Ω) and

the Lipschitz character of Ω. Here, pd = 2 for d = 3, and pd = d/2 for d ≥ 4.

Proof. Consider the ε that appears in theorem 7.2.4, and let p ∈ (2 − ε,∞). Let f ∈

Lp(∂Ω), and consider the symmetric matrix As and b̃ that appear in lemma 11.0.1. Since b̃

is divergence free, we obtain that

‖b+ b̃‖Drpd
≤ ‖b‖Drpd

+ ‖b̃‖∞ ≤ ‖b‖Drpd
+ Cµ.

Therefore, from theorem 7.2.4, there exists a unique solution to the equation


− div (As∇u) + (b+ b̃)∇u = 0, in Ω

u = f, on ∂Ω

‖u∗‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω)

.

Combining with lemma 11.0.1, we obtain that u is the unique solution of the Dirichlet

problem Dp for the equation − div(A∇u) + b∇u = 0 with u = f on the boundary, which

completes the proof.

Theorem 11.0.3. Let Ω be a Lipschitz domain, and let A ∈ Mλ,µ(Ω) and b ∈ L∞(Ω).

Then, the Regularity problem R2 for the equation

− div(A∇u) + b∇u = 0

is uniquely solvable in Ω, with constants depending only on d, λ, µ, ‖b‖∞, diam(Ω) and the

Lipschitz character of Ω.

Proof. The proof is similar to the proof of theorem 11.0.2, using theorem 8.5.6.

Theorem 11.0.4. Let Ω be a Lipschitz domain, and let A ∈ Mλ,µ(Ω) and b ∈ L∞(Ω).
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Then, the Dirichlet problem D2 for the equation

− div(At∇u)− div(bu) = 0

is uniquely solvable in Ω, with constants depending only on d, λ, µ, ‖b‖∞, diam(Ω) and the

Lipschitz character of Ω.

Proof. The proof is similar to the proof of theorem 11.0.2, using theorem 9.3.6.

Theorem 11.0.5. Let Ω be a Lipschitz domain, and let A ∈ Mλ,µ(Ω) with A ∈ C1,α(Ω),

and b ∈ Drd,α(Rd). Then, the Regularity problem R2 for the equation

− div(At∇u)− div(bu) = 0

is uniquely solvable in Ω, with constants depending only on d, λ, ‖A‖C1,α , ‖b‖Drd,α , diam(Ω)

and the Lipschitz character of Ω.

Proof. The proof is similar to the proof of theorem 11.0.2, using theorem 10.3.9, since

‖b+ b̃‖Drd,α ≤ ‖b‖Drd,α + ‖b̃‖Cα ,

and the last term is bounded above by a constant times the C1,α norm of A.
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